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Abstract

Since its discovery in 1986, high-temperature superconductivity in copper oxides
has puzzled researchers. Its intricate phase diagram, which unveils unusual physical
properties, is particularly challenging to understand because of its strongly correlated
nature. Despite numerous efforts, a consensus on the mechanism that forms electron-
pair condensate underpinning the high-temperature superconductivity remains
elusive. The research presented in this thesis endeavours to shed new light on
the electron-pairing mechanism.

In this thesis, I use advanced scanning tunnelling microscopy (STM) tech-
niques to study the mechanisms behind the high-temperature superconductor
Bi2Sr2CaCu2O8+x (Bi-2212). Chapter 1 presents an introduction to conventional
superconductivity which leads to a review of the cuprate superconductivity from
both theory and experiment. Chapter 2 is devoted to introducing two novel STM
techniques that are instrumental to the scientific findings presented in this thesis.
In Chapter 3, I present the development of a next-generation STM, Gemini, that I
built and operated during my DPhil. This home-built STM is designed to function
at milli-kelvin temperatures with a 14 Tesla superconducting magnet. An in-depth
examination of the design details and various testing results are presented. In
Chapter 4, using the innovative STM techniques, an experimental discovery of an
exotic quantum state in optimally doped Bi-2212 called the nematic pair-density
wave (PDW) state is presented. Towards identifying the electron-pairing mechanism
in Bi-2212, Chapter 5 first introduces a modern numerical technique called the
dynamical mean-field theory (DMFT) that predicts the paring mechanism as the
charge-transfer superexchange interaction. Then, this chapter presents an analogue
isotope effect experiment that identifies the distance between the Cu atom and
its apical O atom as the tuning parameter that alters the pairing strength. The
anti-correlation relationship between the charge-transfer energy and the pairing
amplitude is established whose slope conforms to the predictions of DMFT, which
indicates that the charge-transfer superexchange interaction is key to the electron-
pairing mechanism in optimally doped Bi-2212. Lastly, in Chapter 6, I present my
recent STM experiments on candidate excitonic insulator 1T -TiSe2. The results
reveal directly the charge-transfer process between the Ti and Se atoms which is
responsible for exciton formation. Furthermore, visualisation of the excitonic energy
gap reveals a highly heterogeneous spatial pattern inconsistent with a conventional
CDW but which indicates strong electron-electron interactions.
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It was long believed that the wave function of the
Schrödinger equation would never have a macroscopic
representation analogous to the macroscopic repre-
sentation of the amplitude for photons. On the other
hand, it is now realized that the phenomenon of
superconductivity presents us with just this situation.

— The Feynman lectures on physics [1]

1
The cuprate problem

Contents
1.1 Superconductivity: an introduction . . . . . . . . . . . 2

1.1.1 Ginzburg-Landau theory . . . . . . . . . . . . . . . . . . 2
1.1.2 Off-diagonal long-range order . . . . . . . . . . . . . . . 4
1.1.3 BCS theory . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Copper-oxide superconductivity . . . . . . . . . . . . . . 10
1.2.1 Crystal and electronic structure . . . . . . . . . . . . . . 10
1.2.2 Phase diagram . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.3 Theoretical proposals . . . . . . . . . . . . . . . . . . . 19

In this chapter, I will introduce the theory of conventional super-

conductivity, followed by the modern understanding of unconventional

cuprate superconductors and the remaining challenges. This chapter also

laid the foundations for understanding my experimental findings of the

essential ingredient behind the electron-pairing mechanism in a cuprate

superconductor presented in Chapter 5 of this thesis.

In 1911, Dutch physicist Heike Kamerlingh-Onnes discovered superconductivity

- a phenomenon where materials conduct electricity with zero resistance at tem-

peratures near that of liquid helium. We now understand that the material has

undergone a phase transition from a normal conductor to a new phase of matter - a

superconducting phase below a critical temperature Tc. This new superconducting

1



2 1.1. Superconductivity: an introduction

phase is a direct manifestation of the macroscopic quantum phenomenon where

electrons are bound to form pairs and condense into a zero momentum ground

state. Forty years after its discovery, direct experimental evidence showed that Tc

scales with the square root of the isotopic mass [2], directly confirming the critical

role of lattice vibrations in the mechanism of electron pairing in conventional

superconductors.

Since the discovery of High-temperature copper-oxide superconductors (the

cuprates) in the 1980s, one of the biggest challenges in contemporary physics

research is to identify the mechanism that binds the electrons so strongly that it

sustains superconductivity at such high temperatures. Despite decades of research,

no consensus has been made on the mechanism behind electron pairing in these

superconductors.

1.1 Superconductivity: an introduction

1.1.1 Ginzburg-Landau theory

Superconductivity is a direct manifestation of quantum phenomena at a macroscopic

scale. It exhibits two characteristic properties - zero resistivity and perfect diamag-

netism (the Meissner effect). Normal matter has to go through a phase transition to

reach the superconducting state from the normal state, a process which involves the

concept of broken symmetry. Without knowing the details of the superconducting

mechanism, Ginzburg and Landau were able to describe its thermodynamic and

electromagnetic properties based solely on a phenomenological theory.

Ginzburg and Landau realised that a macroscopic phenomenon such as super-

conductivity could be described by a complex order parameter ψ(r) = |ψ(r)|eiϕ(r),

where ϕ being the phase, which is zero in the normal state above Tc and finite

below Tc. They postulate that the physical properties of a superconductor can

be completely described by the free energy of the form

F = Fn + 1
2m∗ |(−iℏ∇ − e∗A) Ψ|2 + α|Ψ|2 + β

2 |Ψ|4 + H2

2µ0
(1.1)
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where Fn is the free energy in the normal state, A is the vector potential, H is the

external magnetic field, m∗ and e∗ are the effective mass and charge respectively1

and −iℏ∇ − e∗A is the canonical momentum. Physically, |Ψ|2 is proportional to

the superfluid density near Tc. The free energy functional can be minimised with

respect to Ψ. Assuming the presence of no magnetic field and the spatial variation

of Ψ is negligible, the solution of δF = 0 gives

|Ψ| =

0, T > Tc

[α (Tc − T ) /β]1/2 , T < Tc
(1.2)

where β > 0 and α = |α| (T − Tc). Here, the superconducting system described by

the order parameter Ψ is said to have undergone spontaneous symmetry breaking.

This is because if the order parameter is multiplied by an additional phase factor eiθ,

though the free energy functional is invariant under this phase gauge transformation,

the order parameter acquires an additional phase θ in the superconducting state, i.e.

Ψ → Ψ exp(iθ) ̸= Ψ, which is still zero in the normal state. The gauge symmetry

exhibited in the original functional is now spontaneously broken.

Next, if the free energy is minimised with respect to A, we have the current

density in the superconducting state

Js = 2e2|ψ|2

m

(
A − ℏ

2e∇θ
)
. (1.3)

Taking the curl of the above equation and using Maxwell’s equation, we can solve

for the external field H that is perpendicular to the superconductor’s surface (z

direction). Then we have [3]

H(z) = H(0)e−z/λ, js = dH
dz = js(0)e−z/λ (1.4)

with the penetration depth defined as

λ =
√

mβ

2µ0|α|e2 . (1.5)

This suggests that an external magnetic field can only penetrate a superconductor

by a small length λ and vanishes in the bulk. This is exactly the Meissner effect2.
1It turns out that e∗ = 2e and m∗ = 2me due to the formation of electron pairs. This can be

verified, for example, by measuring the flux quanta (Φ0 = h
2e ) through a superconducting ring.

2More fundamentally, the Meissner effect is related to the Anderson-Higgs mechanism where
the photon acquires mass along the longitudinal propagation direction inside a superconductor, in
which the external field becomes massive and decays on the scale of λ.
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1.1.2 Off-diagonal long-range order

It was suggested by Yang [4] that the appearance of a macroscopic quantum

phenomenon is due to the onset of the off-diagonal long-range order (ODLRO). For

superconductivity, it can be described by a two-particle reduced density matrix [5]

ρ2 (r, r′) =
〈
ψ†

α(r)ψ†
β(r)ψα (r′)ψβ (r′)

〉
(1.6)

where ψ†
α(r) and ψα(r) are particle creation and annihilation operators with spin

index α, and the expectation value is taken with respect to the superconducting

ground state. Physically, this off-diagonal density matrix represents the correlation

between creating and annihilating a particle pair at position r and r′, respectively. If

ρ2 (r, r′) does not vanish even if the two-particle pairs are far apart, i.e. |r − r′| → ∞,

it is said that ODLRO has occurred. Note that ODLRO is distinct from the

classical long-range order in solids where the density matrix is in diagonal form,

such as the charge density.

Assuming that the two-particle pairs can be treated independently for a particle

pair with opposite spins, Eqn. 1.6 can be written as

ρ2 (r, r′) =
〈
ψ†

↓(r)ψ†
↑(r)

〉
⟨ψ↓ (r′)ψ↑ (r′)⟩ . (1.7)

Thus, a direct consequence of ODLRO is the non-vanishing expectation value of

the particle correlator ⟨ψ↓(r)ψ↑(r)⟩. This is consistent with the order parameter

definition from the Ginzburg-Landau theory. We can then define a superconducting

order parameter based on ODLRO as the following

Ψ = ⟨ck↑c−k↓⟩ (1.8)

where ck is the Fourier transform of ψ (r). As we will see in the next section,

ODLRO is crucial in the microscopic description of superconductivity.
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Figure 1.1: (a) Schematic of phonon-mediated electron-electron interaction. As an
electron travels through the lattice, it pulls the positively charged ions away from their
equilibrium positions due to attractive Coulomb interaction and thus creates a high
positive charge density (yellow background), which then attracts the other electron. An
effective electron-electron interaction is then established. (b) Feynman diagram of the
electron-phonon interaction. An electron (solid line) with momentum k loses a phonon
(wavy line) that is absorbed by another electron with momentum k′ .
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1.1.3 BCS theory

Conventional superconductors such as simple metals Pb, Al, and Nb are well

described by the BCS theory proposed by Bardeen, Cooper, and Schrieffer [6],

which provides the first microscopic framework of superconductivity. An early

hint of the superconducting mechanism came from the experimental discovery

of the isotope effect. In 1950, Reynolds et al. [2] measured the superconducting

transition temperature Tc of various mercury isotopes (199Hg, 200Hg, 202Hg, 203Hg).

This experiment shows that Tc varies significantly with different unclear masses

and provides direct evidence that lattice vibrations are a crucial ingredient in

conventional superconductivity.

Later, it was physically realised that it is possible to have an effective, attractive

interaction between two electrons due to lattice vibration despite the existing

Coulomb repulsion. Firstly, because of the screening effect, a charge in a lattice

system is dressed with a cloud of opposite charges, effectively reducing the long-

range Coulomb potential to be short-ranged3. Secondly, as electrons travel through

the lattice, they interact with the positive ions and thus create lattice vibrations.

This phenomenon is visualised in Fig. 1.4(a). A travelling electron distorts the

positive ions that create a localised positive charge density which then attracts

another electron as the first electron moves away. This way, an effective attractive

interaction is created between two electrons via the lattice vibration. In other

words, this attractive electron interaction is mediated by the exchange of the lattice

vibration quanta - the phonon, as depicted in the Feynman diagram Fig. 1.4(b).

In reality, this electron-phonon interaction is not instantaneous. If the electron

travelling speed is too fast so that the ions have little time to respond, the interaction

would not be efficient. Thus, an upper bound is imposed on the electron energy,

ℏωD, where ωD is the characteristic Debye frequency of the lattice vibration.

The next hint comes from Cooper’s [7] discovery in 1956. When two electrons

are paired together by an attractive interaction in the presence of the electronic
3Typically, the magnitude of the screening length in a normal metal is on the order of the

lattice constant.
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Fermi sea, a bound state exists. Explicitly, by solving the Schrödinger equation of

two electrons subject to an attractive interaction V (V < 0), the binding energy

ϵ of the two electrons is given by

∆ϵ = −2ℏωDe
2

N(0)V (1.9)

where N(0) is the density of states at the Fermi energy EF and ∆ϵ = ϵ− EF . The

above equation says that a bound state (∆ϵ < 0) always exists no matter how

weak the attractive interaction V is. This means that the usual ground state for

a normal metal - the Ferimi sea is unstable under the presence of an attractive

interaction since the formation of electron pairs lowers the energy. This pairing

effect can easily extend to all other electrons until the lowest energy ground state

is achieved. This is the Cooper instability. An important part of the BCS theory

is to find out what this electron-pair ground state is.

Based on this Fermi surface instability, Bardeen, Cooper, and Schrieffer [6]

proposed a variational ansatz of the ground state which is a coherent state of paired

electrons formed from states |k, ↑⟩ and | − k, ↓⟩:

|ψBCS⟩ =
∏
k

(
uk + vkc

†
k↑c

†
−k,↓

)
|0⟩ (1.10)

where uk and vk are the variational parameters chosen to minimise the energy that

corresponds to the system Hamiltonian and |0⟩ the vacuum state. Normalisation

condition requires that |uk|2 + |vk|2 = 1 for all k. Note that the above BCS

ground state is a coherent state, i.e. it does not conserve particle (Cooper pair)

numbers but possesses a definite phase ϕ. As a result, the BCS wavefunction

actually satisfies the ODLRO condition.

Following Cooper, the BCS Hamiltonian can be written as

HBCS =
∑
k,σ

ξk,σc
†
k,σck,σ +

∑
k,k′

Vk,k′c†
k,↑c

†
−k,↓c−k′,↓ck′,↑ (1.11)

where the bare electron energy is relative to the Fermi energy ξk,σ = εk,σ − EF and

the interaction Vk,k′ =
〈
−k, ↑; k, ↓ |V̂ | − k′, ↓; k′, ↑

〉
is attractive. This Hamiltonian

describes the exact scattering process shown in Fig. 1.1 (b). Several important

assumptions have been made here:
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2∆Ek

ξk

Figure 1.2: Bogoliubov quasiparticle dispersion relation Ek =
√

ξ2
k + |∆k|2 as a function

of ξk. In the superconducting state, a gap 2∆ opened near the Fermi wavevector kF. In
the normal state, ∆ vanishes, and the free-quasiparticle dispersion is recovered (dashed
lines).

1. The scattering process starts with electron states with opposite momenta and

opposite spins, i.e. |k, ↑⟩ and | − k, ↓⟩.

2. The scattered and paired electrons are very close to the Fermi surface, i.e.

|ξk,σ| ≤ ℏωD.

3. Vkk′ =

−V0 for |ξk| < ℏωD and |ξk′ | < ℏωD

0 otherwise
where V0 is constant.

Upon applying the mean-field approximation, where the fluctuations of the pair

field are omitted4, the BCS Hamiltonian Eqn. 1.11 reduces to

HBCS =
∑
kσ

ξkc
†
kσckσ −

∑
k

∆∗
kc−k,↓ck↑ −

∑
k

∆kc
†
k↑c

†
−k,↓ + const. (1.12)

4Operators A and B satisfy the relation: (A − ⟨A⟩)(B − ⟨B⟩) = 0 where A = c†
k↑c†

−k,↓, B =
c−k′,↓ck′↑.
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where

∆k = −
∑
k′
Vkk′ ⟨c−k′,↓ck′↑⟩ . (1.13)

To diagonalise the BCS Hamiltonian in Eqn. 1.12, we apply the Bogoliubov

transformation (
γk↑

γ†
−k,↓

)
=
(
u∗

k −vk
v∗

k uk

)(
ck↑

c†
−k,↓

)
(1.14)

where new fermionic operators γ†
−k,↓, γk↑ are introduced as the superposition of

particle and hole operators. The particles they create or annihilate are called

the Bogoliubov quasiparticles. The BCS Hamiltonian can now be written in

a diagonal form

HBCS =
∑
kσ

Ekγ
†
kσγkσ + const. (1.15)

with the dispersion relation Ek =
√
ξ2

k + |∆k|2. The parameters uk and vk now sat-

isfy

|uk|2 = 1 − |vk|2 = 1
2

(
1 + ξk

|Ek|

)
. (1.16)

According to the dispersion relation in Fig. 1.2, it is clear that there exists a gap

of magnitude |∆kF
| near the Fermi surface within which there is no quasiparticle

excitation at all. This indicates that, within the gap and at T = 0, the system is in

a Cooper pair condensate - the ground state. |∆kF
| is called the superconducting

gap. Eqn. 1.13, shows that the gap ∆k is related to the superconducting order

parameter ⟨ck↑c−k↓⟩ defined in the last section.

Next, inserting the Bogoliubov transformation (Eqn. 1.14) into the definition of

the gap Eqn. 1.13 to obtain the temperature dependence of the gap magnitude. Note

that at a critical temperature Tc, the gap varnishes. Therefore, the superconducting

gap can be seen as the order parameter of superconductivity in Ginzburg–Landau

theory. Moreover, the ratio of T = 0 gap magnitude to kBTc is a universal constant:

∆(T = 0)
kBTc

= 1.76. (1.17)

Recognising the total number of states are fixed for both superconducting

and normal state quasiparticles, i.e. NS(E)dE = NN(ξ)dξ ≈ N (EF ) dξ, we can
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Figure 1.3: Simulated quasiparticle density of states N(E) of the s−wave (a) and
d−wave (b) superconductors at T = 0. Because of d−wave symmetry of the gap function,
the gap is not fully opened in (b) but has a node at the Fermi energy.

directly have the density of states spectrum in the superconducting state from

the superconducting dispersion relation:

NS(E) = N (EF ) E√
E2 − ∆2

E > ∆ (1.18)

where an isotropic “s-wave” gap has been assumed. The spectrum is shown

in Fig. 1.3(a).

1.2 Copper-oxide superconductivity

1.2.1 Crystal and electronic structure

Before the discovery of Copper-oxide superconductivity in 1986 by Bednorz and

Müller [8], it was widely believed that the highest Tc at ambient pressure could

not exceed 40 K based on the predictions of phonon-mediated electron pairing

[9]. The surprisingly high Tc observed in cuprate superconductors5 then suggests a

distinct superconducting mechanism. Now, almost half a century has lapsed, and

much physics has been uncovered in the cuprates, but much is still unknown in the

mechanism behind both the superconducting and the normal states.
5The highest Tc at ambient pressure was observed in Hg-based cuprate materials with Tc up to

133 K [10].
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Figure 1.4: Bi-2212 unit cell with its tetragonal structure. The CuO2 planes responsible
for superconductivity are shaded with yellow, separated by the charge reservoir layers
(Sr/Ca). The CuO5 pyramids with apical Oxygen atoms are indicated with shaded areas.
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A common feature of different families of cuprate superconductors is that they all

share at least one layer of CuO2 square lattice plane that is believed to be responsible

for high Tc superconductivity. The CuO2 planes are separated by layers consisting of

other atoms called the charge reservoir layers. The reason is that superconductivity

appears upon doping the cuprate parent compound, in which the dopants usually

go to charge reservoir layers. This process provides extra holes or electrons to the

CuO2 plane. A schematic of Bi2Sr2CaCu2O8+x crystal unit cell is shown in Fig. 1.4.

The cuprate electronic structure is shown in Fig. 1.5. In its parent compound,

the Cu2+ ions are in the 3d9 state where one electron is in its valence shell. The

intervening O2− ions are in the 2p6 state where the valence shell is filled. Because

of the Jahn–Teller effect, the five degenerate Cu d orbitals are split, and the 3dx2−y2

orbital occupies the highest energy state and contains one valence electron. The

Cu2+ ion is in S = 1/2 spin state. The lobes of the O 2pσ and the Cu 3dx2−y2

orbitals then have the largest overlap, causing strong hybridisation between the O

and Cu bands. According to band theory, the cuprate parent compound should

have been a conductor since its valence band is half-filled, but in reality, it is an

antiferromagnetic insulator. The failing of band theory here is due to the strong

electron-electron correlation caused by the Coulomb interaction. As an electron

at one Cu site hops to another Cu site, the strong Coulomb repulsive energy

U (∼ 3 eV) resists any double occupancy, thus resulting in localised single Cu

electrons. Unlike a Mott insulator where the O band energy level is below that of

all the Cu bands, the O band here is placed between the upper and lower Hubbard

bands split by U where an electron at the O band has to overcome an energy gap

(the charge-transfer gap) to reach the Upper Hubbard band. The cuprate parent

compound is called the charge-transfer insulator.

1.2.2 Phase diagram
Antiferromagnetism

The region in the leftmost (purple) of the cuprate phase diagram in Fig. 1.6 is

the antiferromagnetic (AF) state. The undoped cuprate compound is called the
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Figure 1.5: (a) Schematic of the antiferromagnetic charge-transfer insulator state in
an undoped CuO2. Inset: schematic of the density of states N vs energy E in this state.
LHB, lower Hubbard band. UHB, upper Hubbard band. CTB, charge-transfer band. (b)
Schematic of hole-doped CuO2. Long-range antiferromagnetic order is destroyed. HDB,
hole-doped band.
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Figure 1.6: Phase diagram for hole-doped cuprate superconductors. AF, antiferromag-
netism. dSC, d-wave superconductivity.

parent compound. Strong Coulomb interaction renders this state an insulating state,

and effective spin-spin exchange interaction between electrons on the Cu orbitals

gives antiferromagnetism. This antiferromagnetism is a result of the superexchange

interaction between spin-1/2 Cu orbitals mediated by the intervening O orbitals,

which can be described by the Heisenberg model

H = J
∑
⟨i,j⟩

Si · Sj (1.19)
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where Si is the Cu-site spin operator, i, j sum over the Cu sites and J is the exchange

coupling constant. In the high-energy limit where U → ∞, J is found to be positive

and thus favours antiferromagnetism. Detailed discussion is presented in Chapter 5.

d-wave superconductivity

The insulating antiferromagnetism gradually disappears after doping holes or

electrons into the cuprate parent compound, and superconductivity sets in. Su-

perconductivity survives a much wider range on the hole-doped side than on the

electron-doped side. This thesis will mainly focus on the hole-doped side. In

the hole-doped side, superconductivity appears around 5% doping. Tc then scales

up with increasing doping level until it reaches the maximum value at around

19% doping before going down. The doping level at which Tc maximum occurs is

called optimal doped, below which is called underdoped and above which is called

overdoped. An interesting phenomenon occurs at around 1/8 doping where Tc is

suppressed, resulting in a dip in the superconducting dome of the phase diagram.

This is now considered to result from the observed stripe order and contains the

rich physics of intertwined order [11].

The cuprate superconductivity has d-wave symmetry. To understand this

concept, let us start with two pairing electrons that are in states |k1s1⟩ and

|k2s2⟩ respectively. Assuming zero centre-of-mass momentum, the electron pair

wavefunction can be decoupled into the product of the spin part χ and the

spatial part ψ:

Ψ (σ1, r1;σ2, r2) = χ (σ1, σ2)ψ(r) (1.20)

where r = r1 − r2 is the relative coordinate between the two electrons. ψ can

also be called the gap function since it is related to the superconducting gap via

Eqn. 1.13. Because electrons are fermions, Ψ must be antisymmetric under the

exchange of the two-electron coordinates, i.e. Ψ(−r) = −Ψ(r). This results in

two cases. The first is that the spin wavefunction is antisymmetric, and the gap

function is symmetric or has even parity. For example, two electrons have opposite
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Figure 1.7: (a) Fermi surface of the CuO2 plane. Nodal (red) and antinodal (green)
regions are indicated. (b) Near-nodal gaps measured by ARPES in the cuprate
superconducting state reveal the d−wave symmetry. The gap is minimum at the nodes
and maximum at the antinodes. Photo reproduced from Hashimoto et al. [13].

spins, forming a spin singlet (S = 0). The second is that the two pairing electrons

have the same spins (S = 1) and are thus symmetric, but the gap function is

antisymmetric or has odd parity. In cuprate superconductors, the electron pairs

form spin singlets as suggested by the Knight shift suppression at low temperatures

observed in the nuclear magnetic resonance (NMR) measurements [12]. We can

then describe the cuprates as being spin singlet, even parity.

If the system has rotational symmetry, ψ(r) is then an eigenfunction of the

orbital angular momentum L that satisfies the condition:

L2ψ(r) = l(l + 1)ℏ2ψ(r) (1.21)

where l is an integer. The angular quantum number l here determines the symmetry

of ψ. If l is even (odd), ψ is symmetric (antisymmetric). This is analogous to the

electron-proton bound state in the Hydrogen atom except that here, it is the electron

pairs that carry the angular quantum number l in a superconductor. Using the same

convention, l = 0, 1, 2, 3 corresponds to s-wave, p-wave, d-wave, f-wave respectively.

Unlike conventional BCS superconductors whose gap function is s-wave and isotropic,

cuprate superconductors have d-wave gap symmetry and exhibit gapless nodes. It
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is reported by angle-resolved photoemission spectroscopy (ARPES) that dx2−y2 is

the dominant symmetry of the gap function [14]. Since the gap is suppressed in the

nodal regions, quasiparticles can be excited without energy cost. This is shown in

the scanning tunnelling spectroscopy spectrum, where the gap is not completely

open but has a V shape. The gap function does not have the C4 rotational symmetry

of the CuO2 lattice plane, but rather changes sign after 90◦ rotation.

Besides the distinct d-wave pairing symmetry, the unconventional nature of the

cuprate superconductivity can be seen from the relationships between the three

quantities that characterise superconductivity, namely, the superconducting energy

gap ∆, superfluid density ns and the critical temperature Tc. The superconducting

energy gap is the energy needed to break Cooper pairs. In BCS theory, the

gap is related to Tc via Eqn. 1.17. Above Tc, Cooper pairs are destroyed, and

superconductivity vanishes. But in the cuprates, the superconducting gap and Tc

are not simply related; for example, superconductivity could also depend on the

long-range phase coherence of the pair condensate’s wavefunction.

In Ginzburg-Landau theory, the superfluid density is defined as ns ≡ |ψ|2,

which measures the fraction of electron pairs that carry current without dissipation

(supercurrent). The superfluid density is a measure of phase fluctuation of the

superconducting order parameter. This can be seen from Eqn. 1.1 where the

phase gradient term reads [15]

f = ℏ2

2m∗ns|(∇θ)|2 (1.22)

where m∗ is the effective mass. This is the energy needed for phase fluctuations to

take place. The pre-factor ns thus determines the rigidity of the superconducting

phase or the “phase stiffness”. One can then define a temperature scale Tθ ≈ ns/m
∗

above which fluctuations destroy long-range phase coherence. If kBTθ ≫ ∆, the

system becomes phase coherent instantly after T < Tc. It is the pair-breaking

energy ∆ here that determines Tc as in BCS-type superconductors. On the other

hand, if kBTθ ≤ ∆, phase coherence is more the thing that determines Tc than ∆

as in materials that have very small ns [16]. Indeed, it was discovered by muon
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spin relaxation measurements that Tc is proportional to ns in underdoped cuprates

(the “Uemura plot”) [17], which suggests the critical role of phase fluctuations

in determining superconductivity.

To uncover the electron pairing mechanism in cuprates, it is therefore necessary

to search for the element that controls the pairing amplitude |⟨ck↑c−k↓⟩|, which

is related to the Cooper pair binding energy via Eqn. 1.13. Therefore, it is

not conclusive to use Tc as a proxy to |⟨ck↑c−k↓⟩| as it can also be influenced by

the superfluid phase stiffness.

Pseudogap

At temperatures below T ∗ in the cuprate phase diagram (Fig. 1.6), there exists an

enigmatic unidentified region called the Pseudogap (PG) that cannot be simply

associated with any broken symmetry. This region is characterised by the suppression

of the quasiparticle excitation spectrum near the Fermi energy even though it is in

the normal state. This phenomenon is clearly shown in ARPES measurements where

a gap exists at T ∗ > T > Tc in the antinodal region. More strangely, near the nodal

region, ARPES detects an ungapped ‘Fermi arc’ that suggests an unclosed Fermi

surface. Scanning tunnelling spectroscopy (STS) also reveals much information

about the pseudogap. Differential conductance measurements across Tc directly show

an energy gap that appears continuously from the superconducting dome to above

Tc. The PG state is also believed not to be associated with a single broken symmetry

but with many broken symmetries, such as broken translational symmetry [18]. As

to which ordered state simultaneously satisfies all the observed broken symmetries, it

is still under debate. A possible candidate is the pair density wave (PDW) state [19].

Strange metal

Another mysterious region in the hole-doped cuprate phase diagram is the strange

metal regime in the normal state. Unlike simple metals, in this region, the electrical

resistivity is measured to be linear with temperature from Tc up to more than

700 K [20] and below Tc when strong magnetic fields suppress superconductivity.

These transport phenomena suggest that conventional Fermi liquid theory cannot
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simply describe the strange metal regime and indicate the lack of quasiparticles

[18]. Together with the PG regime, they represent the forefront of contemporary

cuprate research and remain one of the unsolved problems in modern physics.

1.2.3 Theoretical proposals
Hubbard model

The single-band Hubbard model is one of the simplest models that captures the

strong correlations in the high-Tc CuO2 plane. Its Hamiltonian is written as

H = −t
∑
⟨ij⟩

(
c†

icj + c†
jci

)
+ U

∑
i

c†
i↑ci↑c

†
i↓ci↓ (1.23)

where c† (c) is the electron creation (annihilation) operator, t is the hopping

amplitude and U denotes the on-site Coulomb repulsion. In the cuprates, U > t

due to strong correlations. In the limit of U ≫ t, the hopping amplitude t can

be seen as a perturbation, and the Hamiltonian can be simplified by projecting

out all the doubly occupied states. Virtual hopping between two singly occupied

electrons induces an antiferromagnetic exchange interaction with coupling constant

J = 4t2/U . The Hubbard model can then be reduced to the t − J model

H = −t
∑
⟨ij⟩

(
c†

icj + c†
jci

)
+ J

∑
⟨ij⟩

Si · Sj (1.24)

where S is the spin operator.

RVB state

One of the most influential theories for high-Tc cuprates based on the one-band

Hubbard model is the resonating valence bond theory proposed by Anderson [21] in

1987. In this theory, two electrons form a singlet pair due to the superexchange

J . A ground state is then formed by a superposition of all possible singlet pairs,

making it a singlet spin liquid. In a 1D chain, an antiferromagnetic Néel state has

site energy −J/4 but a RVB spin singlet (S = 0) has site energy −3/8J , which is

energetically more favourable. However, this is not the case in higher dimensions

where the Néel state has lower energy and is thus favoured. Anderson argued that
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a resonating singlet liquid further lowers the energy and competes with the Néel

state in 2D, which could be the ground state [22].

According to the theory, the singlet pairs are localised in the undoped state

due to large Coulomb repulsion U . The singlet pairs are now mobile and charged

upon doping and can condense into a superconducting ground state. Although the

undoped cuprate is in the antiferromagnetic state rather than the RVB state, the

idea could be correct in the doped superconducting case [23].

To implement the RVB concept, Anderson proposed a variational ground state

as the RVB state for the t − J model based on the projected BCS ground state

wavefunction [22]:

|ΨRVB⟩ = PNPG|BCS⟩ (1.25)

where |BCS⟩ is given in Eqn. 1.10, PG is the Gutzwiller projection operator that

projects out all the doubly occupied states, and PN is the operator that fixes

the particle number to N . Physical observables can then be calculated based

on this variational ground state. .

Three-band model

Around the same time Anderson proposed the RVB theory, Emery proposed a

model that includes the additional Oxygen sites [24] and thus “three-band”. The

single-band Hubbard model seems inadequate since the doped holes primarily go

into the Oxygen sites. In this model, the Oxygen sites play an essential role as

they host the holes that pair up to form supercurrent. Details of the three-band

model are discussed in section 5.2.1.

Zhang-Rice singlet

It was shown by Zhang and Rice [25] that the three-band model could be reduced to

an effective one-band model by hybridising the holes in the four O 2p orbitals with

the central Cu 3dx2−y2 orbital. This leads to a singlet formation that eliminates

the spin-1/2 of the Cu site. This singlet can then hop to other Cu sites that is

responsible for hole-doped superconducting Cu oxides.
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Figure 1.8: Schematic of spin fluctuation induced electron pairing by exchanging a
magnon. Photo reproduced from [26].

Spin fluctuations

Starting from the undoped insulating phase, a pairing mechanism based on anti-

ferromagnetic spin fluctuations is proposed. The effective Hamiltonian can be

written as [26]:

H =
∑
k,s

ξkc
†
kscks − 1

2N2

∑
k,k′,q

∑
s1,s2,s3,s4

v(q)σ⃗s1s2 · σ⃗s3s4c
†
k+q,s1

cks2c
†
k′−q,s3

ck′,s4 (1.26)

where χ(q) and χ0(q) are the static spin susceptibility and the free electron spin

susceptibility respectively. The pairing interaction has the form

v(q) = U + U2χ(q) with χ(q) = χ0(q)
1 − Uχ0(q) (1.27)

where U is the Coulomb repulsion. Here, χ(q) describes the antiferromagnetic

spin fluctuations if its maximum value occurs at Q = (π/a, π/a). The electron

pairing mechanism can then be understood as two electrons scattered by exchanging

a magnon, as shown in Fig. 1.8.
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One never notices what has been done; one can only
see what remains to be done.

— Marie Curie

2
Techniques of scanning tunnelling

microscopy
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In this chapter, I will introduce two powerful techniques that are

based on STM: spectroscopic imaging scanning tunnelling microscopy (SI-

STM) and scanned Josephson tunnelling microscopy (SJTM). Together,

they laid the foundation for the scientific discoveries presented later

in this thesis.

In 1982, G. Binnig and H. Rohrer pioneered a groundbreaking tool: the scanning

tunnelling microscope (STM). Their seminal work transformed the landscape of

microscopy and earned them the Nobel Prize in Physics in 1986 [27]. Distinct

from other microscopes, STM employs the quantum tunnelling effect to capture

23
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Figure 2.1: Schematic of the working princeple of STM. The tip is controlled by a
piezoelectric tube that moves in the X, Y and Z directions to produce scanning motions.
ECU, electronic control unit.

images through a scanning approach.

2.1 SI-STM: visualising quantum states via single-
particle tunnelling

2.1.1 Quantum tunnelling theory

The quantum tunnelling effect happens when two conductors are brought close

together and separated by a layer of insulating material, forming a conductor-

insulator-conductor junction. Because the electron wavefunctions of the conductors

overlap in the insulating region, electrons are allowed to travel through the classically
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forbidden potential barrier, i.e. the insulating region, from one conducting side

to the other. When a bias voltage is applied to the junction, a tunnelling current

flows. In this section, I will follow the theoretical approach given by Fischer et al.

[28] to derive the tunnelling current.

The total Hamiltonian of the system can be written as

H = HL + HR + HT ≡ H0 + HT (2.1)

where HT is the tunnelling Hamiltonian. HL and HR are the single-electron

bare Hamiltonian of the left and right conductors respectively, which have the

form − ℏ2

2m
∇2 + V (r). The two conductors are assumed to be independent of each

other so that the commutation relationship satisfies [HL,HR] = 0. In the real

space representation, we have

HT =
∫
dldrT (l, r)ψ†(r)ψ(l) +

∫
dldrT ∗(l, r)ψ(r)ψ†(l) (2.2)

where ψ†(r)(ψ(r)) creates (destroys) an electron at position r at the right conductor,

ψ†(l)(ψ(l)) creates (destroys) an electron at position l at the left conductor. T (l, r)

contains the tunnelling matrix element Tµν in the single-particle states φµν through

T (l, r) = ∑
µν φ

∗
µ(l)Tµνφν(r).

Define A =
∫
dldrT (l, r)ψ†(r)ψ(l), so that HT = A + A†. Ehrenfest theorem

gives the time evolution of the particle number nR

iṅR = [nR,H] = [nR,HT ] = A − A† (2.3)

where we use the fact that [H0, nR] = 0 and set ℏ = 1. The tunnelling current is

then defined as the rate of change of charged particles

I = e ⟨ṅR⟩ . (2.4)

Treating HT as a perturbation, to the first order, we then have the linear response

of the tunnelling current from the Kubo formula

⟨ṅR⟩t = −i
∫ +∞

−∞
dt′θ (t− t′) ⟨[ṅR(t),HT (t′)]⟩H0

. (2.5)
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Since the time evolution of operator A is also described by the bare Hamilto-

nian H0, we have

eiH0tAe−iH0t = e−i(µL−µR)teiKtAe−iKt ≡ e−ieV tA(t) (2.6)

where µ is the chemical potential and V is the applied bias voltage and K = H0−

µLnL − µRnR. Now A and A† evolve according to K and we have

iṅR(t) = e−ieV tA(t) − eieV tA†(t),

HT (t′) = e−ieV t′A (t′) + eieV t′A† (t′) .
(2.7)

Inserting Eqn. 2.7 into Eqn. 2.5, we arrive at the expression for the tunnelling current

I =2e Im
∫ +∞

−∞
dt′
{
e−ieV (t−t′)(−i)θ (t− t′)

〈[
A(t),A† (t′)

]〉
+e−ieV (t+t′)(−i)θ (t− t′) ⟨[A(t),A (t′)]⟩

}
≡ Ie + IJ

(2.8)

where the first term is the single-particle tunnelling current Is and the second term

is the pair-tunnelling current IJ related to the Josephson effect. The first term can

be written as the Fourier transform of a time-ordered correlator

Ie = 2e Im
∫
dl1dr1dl2dr2T (l1, r1)T ∗ (l2, r2)

× G (l1, l2, τ) G (l1, l2,−τ)
(2.9)

in which G (l1, l2, τ) = −
〈
Tτψ (l1, τ)ψ† (l2, 0)

〉
is the time-ordered Green’s function.

In the spectral representation, we have

G (x1, x2, iωn) =
∫ +∞

−∞
dω
A (x1, x2, ω)
iωn − ω

(2.10)

where ωn = (2n + 1)π/β is the odd Matsubara frequencies and A the spectral

function. Substituting Eqn. 2.10 into Eqn. 2.9 and inserting back the dimensional

quantity ℏ−1, the single-particle tunnelling current has the final expression

Ie = 2πe
ℏ

∫
dω[f(ω − eV ) − f(ω)]

∑
µν

|Tµν |2 Aµ(ω − eV )Av(ω) (2.11)

where f is the Fermi-Dirac distribution.

Based on Bardeen’s matrix element calculation [30], Tersoff and Hamann [29]

obtained the tunnelling matrix element Tµν specifically for STM by assuming a
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Figure 2.2: Schematic of the Tersoff-Hamann STM model. The tip apex is assumed
spherical with radius r and is centred at O. When the tip is approached, the tip-sample
distance is d. Photo adapted from Tersoff and Hamann [29].

spherical geometry at the apex of the tip. They found that Tµν is proportional to

the wavefunction of the sample at the centre of the tip apex φν (r0),

Tµν = ℏ2

2m4πΩ−1/2
t ReκRφν (r0) , (2.12)

where κ =
√

2mϕ/ℏ2 is the minimum inverse decay length for the wave functions

in vacuum, ϕ the effective work function, r the curvature radius of the tip apex,

Ωt the tip volume and r0 the centre of the tip apex. Recognizing the relationship

between the real space spectral function and the local density of states (LDOS)

N(r, ω) = A(r, r, ω) and inserting Eqn. 2.12 back into Eqn. 2.11 we have

Ie(V ) ∝ R2e2κR
∫ dω

ℏ
[f(ω − eV ) − f(ω)]gtip (ω − eV )Nsample (r0, ω) (2.13)

where gtip is the tip density of states (DOS) per unit volume, and the real space

spectral function is given by∫
dr1dr2φ

∗
v (r1)A (r1, r2, ω)φv (r2) = A(ω). (2.14)
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Eqn. 2.13 indicates that the tunnelling current depends on two factors: 1) the

density of states at a given energy and 2) the difference of the electron occupation

numbers. This means that information on the density of states can be obtained

by measuring the tunnelling current as a function of the voltage difference. Taking

the derivative with respect to the applied bias voltage gives

dIe

dV
(V ) ∝

∫
dω [f ′(ω − eV )]Nsample (r0, ω) . (2.15)

Thus, the differential conductance measured by STM gives a direct probe of the

LDOS of the sample. Note that at finite temperature, the derivative of the Fermi

function also leads to a thermal broadening of approximately 3.5kBT since it’s

no longer a delta function but has a finite width. This is one of the reasons why

a dilution-fridge-based mK STM is necessary as it offers energy resolution down

to tens of µeV, making it possible to study many exotic phases of matter that

have very low transition temperatures.

For a tip-sample distance z, we have |φν(r0)|2 ∝ e−κ(R+z). Assuming constant

tip DOS and since the Fermi function is step-like at low temperatures, the above

current expression can be simplified as

Ie(V ) ∝ e−κzgtip

∫ eV

0
dωNsample(ω). (2.16)

Thus, the tunnelling current decays exponentially as the tip moves away from the

sample. Typically, the work function has the value ϕ ∼ 5 eV in a simple metal.

So even if the tip retracts by an angstrom from the sample, it would result in an

order of magnitude drop in the tunnelling current. The differential conductance

at a specific voltage then has the following compact form:

dIe

dV
(V ) ∝ e−κzNsample (ω = eV ). (2.17)
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Figure 2.3: Illustration of different STM tunnelling modes. (a)-(d) Single-particle
tunnelling in a normal-insulating-superconducting (N-I-S) junction. (a) Schematic of
the tunnelling junction circuit diagram. (b) Schematic of the density of states (N) with
sample modelled as a d-wave superconductor. (c) Measured I − V characteristics. (d)
Measured differential conductance dI/dV − V characteristics. (e)-(h) Single particle
tunnelling in superconducting-insulating-superconducting (S-I-S) junction. The measured
dI/dV spectrum results from the convolution between the sample and tip density of states
and thus shows a doubled energy gap. (i)-(k) Josephson (Cooper pair) tunnelling where
supercurrent flows at zero bias.
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2.1.2 SI-STM measurement types

The contemporary operating principles of an STM involve the use of a sharp metallic

tip, which is precisely controlled by a piezoelectric tube to adjust its horizontal

and vertical movements with picometer-scale accuracy. This enables the tip to

scan the surface in parallel lines. By applying a bias voltage between the tip

and the sample and positioning the tip mere angstroms away from the surface,

the quantum tunnelling phenomenon occurs, allowing for the measurement of the

tunnelling current. An electronic PID-controlled feedback loop is then implemented

to maintain a constant current, as well as a constant tip-sample distance, using

the preselected setup current Is and voltage Vs.

Topography

During experiments, the distance between the tip and the sample is determined

by the set-up current and voltage, Is and Vs, which are chosen arbitrarily. Eqn.

2.16 can then be re-written as

Is = Ce
− T (r)

T0

∫ eVs

0
Nsample(r, ε)dε

⇒ Ce
− T (r)

T0 = Is∫ eVs
0 Nsample(r, ε)dε

(2.18)

where T is the tip-sample distance or the topography. Extracting T (r) gives

T (r, Vs) = T0 ln
[∫ eVs

0 Nsample(r, ε)dε
]

+ C, which is the topographic image that a

typical STM measures. Notice that from the above equation, the measured quantity

T (r) not only depends on the topographic structure of the sample surface but also

the logarithm of the integrated sample LDOS.

The topographic image is often measured in the constant-current mode, where

the tunnelling current and, thus, the tip-sample distance are kept constant by a

PID feedback loop. As the tip scans across the sample surface, if the tunnelling

current exceeds its set-up value, the feedback system activates the high voltage for

the Z electrode on the scan tube. This action retracts the tip, effectively reducing

the current. Conversely, if the current falls below its set-up value, the feedback

system compensates by extending the tip to increase the current. Thus, the Z
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variation in space generated by the scan tube movement in the Z direction produces

the topographic image T (r). Inside the PID control unit, the error function e(t)

that measures the difference between the measured tunnelling current and the

set-up current is amplified and converted to the output voltage signal Z(t) via the

proportional (P), integral (I) and the differential (D) gain. Usually, only P and I

terms are used for topographic imaging. This is described by the equation:

Z(t) = P · e(t) + I
∫ t

0
e (t′) dt′ (2.19)

where the P , I are the gain parameters set by the user. This output signal Z(t)

can then be calibrated to its corresponding Z variations.

Spectroscopy

Inserting Eqn. 2.18 into Eqn. 2.16 we have

I(r, V )
Is

=
∫ eV

0 Nsample(r, ε)dε∫ eVs
0 Nsample(r, ε)dε

(2.20)

where f(ω, T ) ≈ 1. In practice, |V | ≪ |Vs|, so the tunnelling current is directly

proportional to the integrated density of states provided that
∫ eVs

0 Nsample(r, ε)dε is

almost featureless. Taking the voltage derivative of the above equation, we obtain

the essential measurement quantity of an SI-STM:

g(r, eV ) = dI

dV
(r, E = eV ) = eIsNsample(r, eV )∫ eVs

0 Nsample(r, eV )dε
, (2.21)

which is the differential conductance. If Vs is chosen so that T (r, Vs) is essentially ho-

mogeneous, the measured differential conductance is then linearly proportional to the

LDOS and Eqn. 2.21 gives a direct measurement of the sample electronic structure.

There are usually two ways to measure the differential conductance spectrum
dI
dV

(V ). The first is to measure the I(V ) spectrum first by sweeping the bias voltage

and then take the numerical derivative with respect to V . The other is to use a

lock-in amplifier to measure the AC component of the response current subject to

an input AC reference signal. In general, the flicker (1/f) noise easily dominates

the near DC region (< 10 Hz) of the current noise power spectrum but remains
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2Δ≈2.2 meV

Figure 2.4: Spectrum showing the superconducting gap of NbSe2 measured at 1.4 K at
GEMINI. Ix: X channel of the lock-in amplifier.

relatively constant in the thermal noise region (> 10 Hz). It is thus advantageous

to employ the lock-in amplifier with a reference modulation in the thermal noise

region to enhance the signal-to-noise ratio (SNR) [31].

Suppose a reference voltage modulation Vm(t) = Vm cos(ωt) is added to the

DC bias voltage V0, the response tunnelling current can then be expanded using

the Taylor series:

I [V0 + Vm(t)] = I (V0)+
dI

dV

∣∣∣∣∣
V0

Vm cos(ωt+ϕ)+ 1
2
d2I

dV 2

∣∣∣∣∣
V0

V 2
m cos2(ωt+ϕ)+· · · (2.22)

where ϕ is the additional phase shift induced by the circuit such as band-pass

filters. In a lock-in amplifier, a high-pass filter (fcutoff < 1 Hz) removes the DC
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component before multiplying the modulation cos(ωt). This yields

Ix = I [V0 + Vm(t)] − I (V0) = dI

dV

∣∣∣∣∣
V0

Vm︸ ︷︷ ︸
Iac

cos(ωt+ ϕ) cos(ωt) + · · ·

= Iac

2 [cos(ϕ) − cos(2ωt+ ϕ)] + · · ·

(2.23)

where Ix stands for the X channel1 of the lock-in amplifier. Then the current

signal goes through a low-pass filter (typically ωcutoff ≈ ω/3 ) which removes the

AC components of the current. This gives

Ix = dI

dV

∣∣∣∣∣
V0

Vm cos(ϕ). (2.24)

Typically, the phase shift ϕ is calibrated so that the resistive channel of the current

Ix is zero while the tip is withdrawn (off tunnelling). Thus, Eqn. 2.24 indicates

that the X channel of the lock-in amplifier is a direct measure of the differential

conductance at bias voltage V0. In practice, before acquiring any Ix measurements,

an additional settling time τ is added after having reached the next bias level. This

time scale needs to be larger than the rise time of the lock-in low-pass filter to prevent

any signal loss. Then, Ix(t) is averaged over a time scale called the integration time.

This gives one data point for a certain bias level before moving to the next one. This

procedure is then repeated for a range of biases to generate spectrum measurements.

Spectroscopic mapping

The above point spectrum measurement naturally extends to spatial mapping.

During a point spectrum measurement at a specific location, the z-piezo feedback

circuit is turned off. The feedback loop is turned on when the STM begins

moving to the next location and then turned off again for the next point spectrum

measurement. After scanning completes, the data file is thus 3-dimensional which

constitutes a 2-dimensional spatial conductance layer at each bias level. Therefore,

SI-STM has the capability to access position-dependent LDOS measurements

at different energy levels.
1Typically, a lock-in amplifier has two output channels, X and Y, which represent the signal as

a vector relative to the reference signal. Here, we use the X channel to measure the tunnelling
signal.
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Despite the enhanced SNR using the lock-in amplifier, the extra voltage modula-

tion Vm(t) centred at bias V further reduces the energy resolution. This is because

the measured dI
dV

is an average over the amplitude of Vm(t). Together with the

thermal broadening effect, the finial energy resolution of an SI-STM is given by [32]:

∆E ≃
√

(3.3kBT )2 + (2.5Vm)2. (2.25)

2.2 SJTM: visualising superconducting conden-
sate via pair tunnelling

Conventional STM measures the single-particle tunnelling current to access the

topographic and spectroscopic properties of the sample. While the measured single-

particle excitation gap is defined as the superconducting gap in conventional BCS

superconductors, it fails to represent the true superconducting gap in strongly

correlated cuprate high Tc superconductors as, for example, the gap defined as the

distance between two coherence peaks in the DOS spectrum can be influenced by

the issue of the pseudogap. It is therefore necessary to develop a new technique

that directly probes the electron-pair (Cooper pair) condensate that is the definite

signature of superconductivity. In 2016, scanned Josephson tunnelling microscopy

(SJTM) [33] was developed in our group. This technique utilizes a superconducting

tip to scan the superconducting sample and measure the Josephson tunnelling

current that is related to the amplitude of the superconducting condensate. Since

then, a variety of exotic phases and mechanisms have been discovered using this

powerful technique [33–36]. In this chapter, I will present the operating principle of

SJTM and then in Chapter 4, its application to discovering a new state of matter

in the hole-doped cuprate superconductor Bi2Sr2CaCu2O8+x (Bi-2212).

Brian D. Josephson predicted a fascinating quantum tunnelling effect that

allows a non-dissipative supercurrent (electron-pair current) to flow between two

superconductors that are separated by a thin insulating layer. The superconductor-

insulator-superconductor (SIS) junction is called the Josephson junction. The
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macroscopic wavefunctions for each side of the superconductor can be written as:

ψ1 = |ψ1(r, t)| eiθ1(r,t), ψ2 = |ψ2(r, t)| eiθ2(r,t) (2.26)

respectively, where |ψ|2 is proportional to the density of electron pairs n and θ is

the quantum phase. In the 1960s, Josephson [37] worked out the expression for

the tunnelling supercurrent which has the following form:

Is = IJ sinφ (2.27)

where IJ is the maximum pair tunnelling current that the junction can sustain

(also called the Josephson critical current) and φ = θ1 − θ2 the phase difference

between the left and right superconductors. The above equation suggests that

there exists tunnelling current even though no bias voltage is present. Indeed, this

effect was experimentally verified by Anderson and Rowell [38] and is called the

d.c. Josephson effect. But what happens if a bias voltage (V ̸= 0) is applied across

the junction? It turns out the applied voltage V drives the evolution of the phase

difference φ. The corresponding equation reads

dφ

dt
= 2π

Φ0
V (2.28)

where Φ0 = h
2e

the elementary magnetic flux quantum. This equation thus results

in the appearance of an alternating current

Is(t) = IJ sin (φ0 + ωt) (2.29)

where the oscillation frequency ωJ = 2π
Φ0
V . This is the a.c. Josephson effect.

Note that since the frequency-to-voltage ratio fJ

V
∼ Φ0

−1 ∼ 483 MHz/µV [39],

the typical oscillation frequency is about several hundred GHz at mV range. In

addition, the coupling strength between the two superconductors is measured by

the Josephson energy EJ = IJ Φ0
2π

which is the characteristic energy scale of the

junction at zero bias voltage.

To derive the Josephson relations (Eqn. 2.27, Eqn. 2.28), I will follow

Feynman’s approach given in the famous Feynman lectures [1]. Assuming the
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two superconductors in the Josephson junction are weakly coupled, the Schrödinger

equation of the coupled system can be written as:

iℏ
∂ψ1

∂t
= E1ψ1 +Kψ2 (2.30a)

iℏ
∂ψ2

∂t
= E2ψ2 +Kψ1 (2.30b)

where K is the coupling constant between the superconductors, E the energy

of an isolated superconductor and E2 − E1 = (2e)V . Inserting Eqn. 2.28 into

the above equation and equating the real and imaginary parts of both sides of

the equations we have

ṅ1 = +2
ℏ
K

√
n2n1 sinφ (2.31a)

ṅ2 = −2
ℏ
K

√
n2n1 sinφ (2.31b)

θ̇1 = −K

ℏ

√
n2

n1
cosφ− (2e)V

2ℏ (2.31c)

θ̇2 = −K

ℏ

√
n1

n2
cosφ+ (2e)V

2ℏ (2.31d)

If pair current is defined as Is ≡ ṅ1 = −ṅ2, the d.c. Josephson relation (Eqn.

2.27) is thus recovered where IJ = 2
ℏK

√
n2n1. Subtracting Eqn. 2.31(c) from

Eqn. 2.31(d) gives

dφ

dt
= 2e

ℏ
V − K

ℏ

(√
n1

n2
−
√
n2

n1

)
cosφ (2.32)

which differs from Josephson’s original relation (Eqn. 2.28) by an additional cosine

term. Ohta later realised that, in Feynman’s approach, the contribution from the

external circuit W =
∫
IV dt is not considered, which represents the external energy

transferred into the junction. By using a rigorous semi-classical analysis, Ohta

recovered the strict a.c. Josephson relation [40].

Ambegaokar and Baratoff [41] calculated the d.c. Josephson tunnelling current in

the framework of BCS theory for finite temperature. For identical superconductors

the following relation is obtained:

IJRN = π∆(T )
2e tanh

[
∆(T )
2kBT

]
(2.33)
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Figure 2.5: (a) The washboard potential as a function of the bias current I and the
junction phase difference φ. When I < IJ , the ball is trapped inside one of the potential
minima resulting in zero-voltage current flow. When I > IJ , the ball rolls down the
washboard potential where the changing phase difference induces a finite voltage. (b)
Circuit diagram of the RSCJ model.

where RN is the normal state junction resistance and ∆ the superconducting gap.

At the case when T = 0, the previous equation is reduced to

IJRN = π∆(0)
2e (2.34)

which indicates that the Josephson critical current IJ is a direct measure of the

superconducting gap and, at least near Tc, the superconducting order parameter.

2.2.1 RCSJ model

The effective circuit of the Josephson junction can be seen as a parallel circuit

consisting of a resistive element RN , a capacitive element C, and the Josephson

element with IJ as shown in Fig. 2.5(b). In the absence of fluctuations, an I − V

relation can be derived from the resistively- and capacitively shunted junction

(RCSJ) model based on the analysis of Fig. 2.5(b)[42].

The total current injected into the junction can be written as (current conserva-

tion):
I = IC + IR + IS

= C
dV

dt
+ V

RN

+ IJ sinφ
(2.35)
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where the second step uses Eqn. 2.27. A changing phase difference induces a

finite voltage, we can thus replace V with the a.c. Josephson relation. The

above equation then becomes:

I = Φ0C

2π
d2φ

dt2
+ Φ0

2πRN

dφ

dt
+ IJ sinφ (2.36)

Rearranging terms we have(
Φ0

2π

)2

C
∂2φ

∂t2
+
(

Φ0

2π

)2 1
RN

∂φ

∂t
+ ∂

∂φ
U = 0 (2.37)

where U = −EJ [IJ cos(φ) + Iφ] is called the tilted washboard potential. The

amplitude of the potential is the Josephson coupling energy EJ introduced earlier.

The physical description of Eqn. 2.37 is analogous to the classical motion of a

point-like particle rolling down the titled washboard potential U (Fig. 2.5(a), which

is governed by the following equation [39]:

mẍ+ ξẋ = −∂w(x)
∂x

+ Fext = −∂ [w(x) − Fext x]
∂x

(2.38)

with the correspondence m ↔ C, 1
RN

↔ ξ, I ↔ Fext , φ ↔ x, where ξ the friction

coefficient, Fext the external driving force that tilts the potential w.

In the RCSJ model, the d.c. Josephson effect corresponds to situation I < IJ ,

where the point-like particle is trapped in one of the potential wells of U and

oscillates back and forth with the plasma frequency

ωp,i = ωp

[
1 −

(
I

IJ

)2]1/4

with ωp =
(2π

Φ0

IJ

C

)1/2
. (2.39)

Since in this state ⟨φ̇⟩ = 0, the average voltage V is also zero. For I > IJ , the

washboard potential is tilted enough so that there are no local potential minima,

and the point-like particle just keeps rolling. This dynamic case involves an evolving

phase difference corresponding to a finite d.c. voltage across the junction.

Another important parameter of the model is the McCumber-Stewart parameter

βc ≡ 2π
Φ0
IJR

2
NC

that describes the damping of the RCSJ circuit. Two limiting cases arise from the

consideration of: 1) The strongly overdamped case (βc ≪ 1) and 2) The strongly
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underdamped case (βc ≫ 1). When the circuit is strongly overdamped, the junction

capacitance is negligible (C → 0). A notable difference appears in the current-

voltage relations of the two limiting cases while decreasing the bias current from

above IJ . Because of the small inertia in the overdamped case, the particle will

be instantly trapped into a local potential minimum and no current flows in the

resistive channel but the non-dissipative Josephson channel. Solving Eqn. 2.37

in the limit βc → 0 we have

V = 0 for I < IJ

V (t) = RN
I2−IJ

I+IJ cos ωt
for I > IJ with ω = 2πIJ RN

Φ0

√(
I

IJ

)2
− 1. The voltage

is thus oscillating with time with a frequency determined by the current amplitude

(Fig. 2.6(c) for I > IJ . The time-averaged voltage ⟨V ⟩ = 0 when I < IJ and

increases with bias current as I exceeds IJ :

V = RN

√
I2 − 1 for I > IJ (2.40)

The overdamped current-voltage relation is plotted in Fig. 2.6(a).

For the strongly underdamped limit where the capacitance has a sizable value,

the particle has a large enough inertia that it cannot be immediately trapped into

the potential minimum but keeps rolling to the next minimum as the bias current

decreases from IJ . This results in a finite voltage at I < IJ (Fig. 2.6(b)). In this

case, the current-voltage relation exhibits strong hysteresis.

2.2.2 Thermal fluctuations in the Josephson junction

In practice, thermal fluctuations will often render d.c. Josephson current measure-

ments impractical. This is because for a typical SJTM junction where RN = 1

GΩ and ∆ = 1 meV, IJ is about 1.5 pA according to Eqn. 2.34. The Josephson

energy is then about 5 neV which corresponds to 30 µK. This is generally not

accessible even with a dilution-fridge-based STM. However, it is still possible to

have pair-tunnelling current at finite voltages while I < IJ . This is because in

the overdamped regime of the RCSJ model, while the particle is locked in a local
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Figure 2.6: Schematics of the Josephson junction current and voltage dynamics. (a)
I − V characteristics in the over-damped regime. (b) I − V characteristics in the under-
damped regime where a significant hysteresis is present. Sweeping directions are indicated
with red arrowheads. IJ is set to 1. (c) V (t) characteristics while I > IJ for different
values of I. Figure adapted from [39].
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minimum in the tilted washboard potential, thermal fluctuation can still knock

it out of the potential well which induces a changing phase difference. Typically,

this situation happens when the thermal fluctuation energy kBT is much greater

than the potential barrier EJ so that

EJ

kBT
≪ 1. (2.41)

Indeed, Ivanchenko and Zil’berman [43] derived the I − V relation for the electron-

pair tunnelling in the presence of thermal fluctuations and found that the maximum

pair tunnelling current at a finite voltage is proportional to the Josephson current,

which corresponds to the superconducting order parameter. This is the I-Z model

that establishes the foundation of the SJTM principle.

In the I-Z model, the thermal fluctuation is introduced as an additional Johnson

noise term VN(t) to the applied emf E. In the limit of RN → ∞, C → 0,

Eqn. 2.37 becomes

1
Z

dφ

dt
= −2e

ℏ
IJ sinφ+ 2e

ℏ
E + VN(t)

Z
(2.42)

where Z is the external impedance of the environment that is assumed to be

constant, namely, Zext (ω) = Z. According to the classical Nyquist-Johnson formula,

VN(t) satisfies ⟨VN(t)VN(0)⟩ = 2kBT
∗Zext δ(t) with T ∗ being the effective noise

temperature of the external circuit. It is evident that the thermal noise is white

noise so that ⟨VN(t)⟩ = 0. Eqn. 2.42 can now be seen as the Langevin equation [39]

of the phase difference. The corresponding Fokker-Planck equation then describes a

particle that undergoes Brownian motion and diffuses down the washboard potential

(Fig: 2.5(a)) that is activated by thermal fluctuations:

∂W

∂t
= D

∂2W

∂φ2 + Ω cosφW + (Ω sinφ− Ω0)
∂W

∂φ
(2.43)

where W = W (φ, t | φ0, t0) is the probability density of finding the phase difference

in the interval φ0+dφ at time t given that φ = φ0 at time t0 and Ω = 2eZIJ

ℏ ,Ω0 = 2eE
ℏ

and D = T ∗Z
(

2e
ℏ

)2
. Thus, the I-Z model is said to be in the phase-diffusive regime.

The d.c. Josephson current can then be calculated via
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Figure 2.7: Numerical plots of I − V (a) and dI/dV (b) characteristics in the phase-
diffusive Josephson tunnelling regime. Parameters used: T ∗ = 0.5 K, Z = 110 Ω.

I = IJ⟨sinφ⟩ = IJ lim
t→∞

∫ ∞

−∞
dφ sinφW (φ, t | φ0, t0) (2.44)

where t → ∞ ensures the system is at equilibrium where limt→∞
∂W
∂t

= 0. Solving

for W in Eqn. 2.43 and inserting back into the Eqn. 2.44, we have the explicit

pair-tunnelling I − V relation in the limit EJ

kBT
≪ 1:

I(V ) = I2
JZ

2
V

V 2 + V 2
c

(2.45)

where Vc = 2eZkT ∗

ℏ . Numerical plots of this I − V relation with different junction

resistance is plotted in Fig. 2.7(a). By taking the derivative, a zero-bias conductance

peak that is characteristic of the phase-diffusive pair tunnelling is shown in 2.7(b).

Most importantly, the maximum current is directly related to the Josephson

critical current through

Im = ℏ
8ekT ∗ I

2
J . (2.46)

Therefore, one can directly access the superconducting order parameter (electron-

pair density) by measuring the
√
ImRN product in the phase diffusive channel

as demonstrated by the following relation√
ImRN ∝ IJRN ∝ ⟨c↑c↓⟩1 ⟨c↑c↓⟩2 . (2.47)



By the help of microscopes, there is nothing so small,
as to escape our inquiry; hence there is a new visible
world discovered to the understanding.

— Robert Hooke
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In this chapter, I will introduce the development of a fourth-generation

home-built scanning tunnelling microscope (STM) called Gemini, housed

at the ultra-low vibration laboratory about 20 metres underground in

the basement of the new Beecroft building in Oxford.

The microscope is designed to be operated at extreme conditions - millikelvin

temperature, ultra-high vacuum, and high magnetic field (14 T). The mK-STM

is designed to have dual functionality: SI-STM, which features single electron

tunnelling and SJTM, which features cooper pair tunnelling using a superconducting

43
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tip. A photograph of the Gemini STM is shown in Fig. 3.1. During my DPhil,

I built the instrument from an empty laboratory and played a key role in the

microscope’s assembly, testing, upgrading, and operation. Examples include but

are not limited to assembling the entire instrument, the design and construction

of the 3He − 4He mixture and vacuum pumping system, testing and upgrading

the system’s cryogenic performance, testing and upgrading the cryogenic sample

transferring and cleaving system, optimising the system’s noise performance and

making topographic and spectroscopic imaging measurements. Detailed design

and testing results are presented below.

3.1 Vibration isolation

Since the tunnelling current exponentially depends on the Z distance to the sample,

suppressing the vibration noise is critical in building a successful STM. In the

Gemini system, vibration isolation is achieved through multiple stages. A schematic

is shown in Fig. 3.2. First, the entire experimental apparatus sits on top of a 30-ton

concrete plinth or the ‘Keel Slab’ that is floating on six air isolators (f0 < 1 Hz).

On top of this, the entire UHV chamber and the cryostat are mounted on a 2-ton

rectangular table filled with lead shots (#8 2.2 mm diameter), which is floating

on a second stage of 4 air isolators (f0 ≈ 1.2 Hz) sitting on two table supporting

legs filled with sands and lead bricks. The vacuum gas tubes from the vacuum

chamber and the cryostat are first anchored at the table legs and then go through a

floor manifold firmly cemented into the B2 floor. Then, on the lower floor, level

B3, the tubes go through a second cemented manifold before reaching the pump

room separated from the STM by an acoustic wall. To minimise acoustic noise,

the experimental room is covered with acoustic-absorbing foam and the entire

experimental floor is covered with carpet. To model the entire vibration-damping

system, let us start with a damped forced harmonic oscillator model for the STM

tip with external acceleration a(t). The equation of motion reads

ẍ+ βẋ+ ω2
0x = a(t) (3.1)
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Figure 3.1: Photograph of the Gemini STM (October 2023).
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Figure 3.2: Section view of the ultra-low vibration (ULV) laboratory that houses the
Gemini STM at the basement of the Beecroft building about 20 m below the ground. The
entire apparatus rests on a 30-ton concrete “keel slab” that is floated on six air isolators.
All the vacuum and gas pumps are placed in a separate acoustic room (B3) below the
experimental floor (B2).

where ω0 = k
m
, β consists of the damping constant and x is the Z displacement of

the STM tip. Solving this differential equation yields

x(ω) = a(ω)√
(ω2

0 − ω2)2 + (βω)2
. (3.2)

With a typical ω0 ≈ 3000 rad/s at the STM tip, achieving atomic resolution with a

noise displacement amplitude of δx < 10−14 m/
√

Hz then requires the corresponding

acceleration noise to be δa < 10−7 m
s2/

√
Hz(ω → 0). The measured noise spectra

for the Gemini STM are shown in Fig. 3.3. With all these noise isolation methods

in place, the tip vibration amplitude can be in the order of 1 fm (Fig. 3.3(a)).

The current background noise is suppressed to below 10 fA (Fig. 3.3(b)). And the

vibration velocity measured on the STM table is below 10−7 m
s /

√
Hz (Fig. 3.3(c)).
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Figure 3.3: Vibration isolation characteristics. Measurements were taken while all stages
of air isolators were turned on. (a) Power spectral density (PSD) measurements of the
scan piezo Z height. The 1 K pot pump was turned on. (b) The background current PSD
vs frequency plot while the tip was withdrawn and the 1 K pot pump was turned off. (c)
PSD measurements of velocity vs frequency taken on the STM table.



48 3.2. STM head

3.2 STM head

The STM head is the microscope’s core component, where the phenomena of

‘scanning’ and ‘tunnelling’ occur. The head is firmly attached to the cryostat base

(the pedestal), where it has the lowest temperature. Its design follows from an

earlier version [44] that utilizes a sliding motion produced by stacked shear piezo

motors for tip approaching. Views of the STM head are shown in Fig. 3.4. The

core structure of the head is crafted from a single block of machinable ceramic

(Macor), characterized by its relatively high thermal and low electrical conductivity.

Within this structure, a coarse-approach mechanism is housed. This mechanism

encompasses a piezo-tube scanner (to which the STM tip is connected) and a

polished sapphire triangular prism. This prism is securely fastened by six-shear

piezo motors attached to the head body. On top of the piezo tube is a brass-made

sample receptacle ensuring sturdy thermal and electrical connections with the

sample. At the prism’s base, two cylindrical capacitors are arranged concentrically

as a position sensor to gauge the motor’s location.

The shear piezo motors employ a distinct ‘walking’ mechanism for movement.

To initiate this, each component of the motor, referred to as a ‘walker’, advances

individually by applying a high voltage, approximately 300 V, at liquid Helium

temperature. During this process, the sapphire prism is held fixed due to friction.

Following this individual advancement, all walkers collectively move together to

have the sapphire prism move into its new positions. Next, each walker moves back

individually before starting a new movement cycle. The walker movements are

recorded by recording the capacitance change of a co-axial capacitor (the position

sensor as shown in Fig. 3.4(a)). Records of walker movement cycles at room and

liquid He temperatures are shown in Fig. 3.5.

The scan tube is made of a material that exhibits the piezoelectric effect. By

applying external stress, an electric field is induced inside the material. The inverse

process also holds, i.e. the applied electric field generates internal mechanical strain.

The piezo scan tube is cut into a cylindrical shape where its inside is coated with a
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Figure 3.4: (a) CAD trimetric and section view of the Gemini STM head. The sample
is placed between the upper and lower bias plates. (b) Photograph of the STM head on
board the cryo-insert pedestal.

metal electrode for Z (vertical) motion and its outside is coated with four equally

divided electrodes for ±X and ±Y (horizontal) motions.

A tip-approaching procedure can be established with the shear walkers and the

scan tube: 1) Z electrode voltage is ramped from -400 V to 400 V (piezo tube

extends to its maximum length). 2) Z electrode voltage returns to -400 V (piezo

tube retracted). 3) Shear piezo walkers walk one step further. 4) Repeat the process

until the tip reaches the tunnelling regime of the sample surface. Once the tip has

approached the sample surface, scanning can start. Topographic scanning images

of various samples taken by the Gemini STM are shown in Fig. 3.6.
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Figure 3.5: (a),(c) Tip position sensor capacitance as a function of shear piezo walker
step count at different temperatures. Black arrows indicate walker walking directions.
(b), (d) STM shear piezo walker step size at different temperatures.

3.3 Electronics

3.3.1 Current amplifier

The first electronic device that the tunnelling current passes through is the pream-

plifier (or transimpedance amplifier), which consists of an effective operational

amplifier and a feedback resistor. A circuit diagram is shown in Fig. 3.7. Its

essential function is to convert the current signal to a voltage signal. In practice,
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Figure 3.6: Sample topographies that I have taken using the Gemini STM throughout
my DPhil.

the tunnelling current is in the range of tens of pA, and this results in an output

voltage of several hundred mV (In my case, gain=100 pA/V). The noise level of the

current pre-amplifier is crucial, as it determines the noise level of the experimental

data. The chosen pre-amplifier (NF SA-607F2) has extremely low noise, achieving

as low as 2.5 fA/
√

Hz. In addition, the pre-amplifier has adjustable bandwidth

up to 104 Hz. This gives advantages such as enabling high-frequency selection of

the lock-in modulation voltage, which reduces the required settling time in bias

spectroscopy and in turn, decreases the time required to perform spectroscopic
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Figure 3.7: Current pre-amplifier circuit diagram.

mapping. During field emission on Au for tip preparation, the bias voltage can be

as high as 200 V, corresponding to the current of several µA. This easily exceeds

the maximum input (±1 nA) of the pre-amplifier and can cause irreversible damage.

I thus use a separate amplifier with a small gain (Gain=1 µA/V ) for field emission.

3.3.2 Control electronics

The electronic control unit (ECU) for the Gemini STM is provided by a commercial

system (Nanonis), which consists of four instruments: a Real-time Controller (RC5),

a Signal Conversion Interface (SC5), a High Voltage Amplifier (HVA4) and a High

Voltage Supply (HVS4). Fig. 3.8 shows a detailed electronics wiring diagram. The

RC5 has a built-in central processing unit (CPU) and a field-programmable gate

array (FPGA), which is the central data processing device or the ‘brain’ of the entire

ECU. It also provides digital communication to other Nanonis instruments and the

host computer that runs the Nanonis software. The SC5 has a digital-analogue

conversion interface connected to RC5 for computer control. Inside SC5, the digital

signal from the computer is converted to its analogue form, such as the bias voltage

and the analogue input signal is digitalised such as the tunnelling current. The HVA4

provides a high voltage gain of up to 400 V for applications such as the scanning



3. Gemini: a next generation STM 53

Figure 3.8: Gemini electronics block diagrams. The thick blue line represents the
acoustic isolation wall that separates the control room from the experimental STM room
on floor B2.
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of the piezo scan tube. Together, the Nanonis system offers a range of essential

functions that include various adjustable parameters for STM. Examples include

PID control for scan tube Z movement, lateral scan control, lock-in amplifier, etc.

3.3.3 Temperature monitoring and control

Reliable temperature monitoring is important in cryostat design. For the Gemini

STM, I use LakeShore ruthenium-oxide (RTD) thermal sensors and LakeShore

Model 350 for temperature monitoring and control. On the 4KP and 1KP are the

ROX type (RX-103A) RTS sensors, which are useful in measuring temperatures

from 1.4 K to 40 K. The ROX sensors are not individually calibrated but are

provided with a universal resistance-temperature calibration curve. On the Still

and Mix plates are the Cernox-type RTD sensors (CX-1010) that can measure from

100 mK to 420 K. These Cernox sensors are individually calibrated and provide

very high-resolution temperature measurements. Each of the sensors introduced

above has 4 electrodes attached, i.e. +I, -I, +V, -V, which are fed into the Model

350 control for resistance measurements using the four-point probe method. For

temperature control, a 100 Ohms resistor is installed on the Mix plate that is

connected to the 1 W output of the Model 350 controller, and another 100 Ohms

resistor is installed on the Still plate that is connected to the 75 W output of the

Model 350 controller. A closed-loop PID is used to maintain the temperature to

a specific setpoint. The heater output is given by

Heater Output = P

[
e+ I

∫
(e)dt+D

de

dt

]
(3.3)

where e = setpoint - temperature reading. With appropriately chosen P, I and

D parameters, the temperature fluctuation amplitude of the Gemini STM can

be suppressed within 1 mK.

3.4 UHV and sample transfer

The vacuum system consists of the main chamber, cryogenic vacuum cans and a

load-lock chamber (LLC). A gate valve separates the main chamber from the LLC.
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Figure 3.9: Top view of the UHV system. It consists of three main parts: load lock
chamber, room-temperature (RT) chamber and sample transfer manipulators.

A turbomolecular pump is connected to the main chamber for the initial pumping

down. During stable operation at liquid Helium temperature, only the ion pump is

turned on continuously, and the system is under ultra-high vacuum (UHV) with

main chamber pressure around 10−10 Torr at room temperature without baking.

The LLC itself also has its turbomolecular pump. Top and cross-sectional views of

the UHV system are shown in Fig. 3.9 and Fig. 3.10, respectively.

The sample transfer process is designed to occur inside UHV and consists of

horizontal and vertical transfer arms. The transfer arms are magnetically coupled
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Figure 3.10: CAD section drawing of room-temperature UHV chambers. The sample is
inserted into the load lock chamber and then to the vertical transfer arm via the horizontal
transfer arm before moving downwards to the STM head.

to the magnets outside the vacuum system and can thus be moved from outside.

The sample transferring procedure is as follows. The horizontal transfer arm sends

the sample from the LLC to the centre of the main chamber. The vertical arm then

grabs the sample from the horizontal arm. After the horizontal arm is retracted

to the LLC, the vertical arm sends the sample down to the 4 K plate for in situ

cleavage. Then, the cryogenically cleaved sample is inserted into the STM head.

Finally, the vertical arm is retracted to the home position in the main chamber.

3.5 Refrigeration

The refrigerator is a wet dilution system designed to operate at tens of mK. It

comprises several components that are discussed in detail in the following sections.

A comprehensive vacuum-gas diagram for the refrigerator is shown in Fig. 3.11.
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Figure 3.11: Gemini vacuum-gas block diagrams. Green boxes: vacuum pumps. “I”
shapes: vacuum tubes with flanges. Blue lines: 3He gas lines. Sky blue lines: 4He gas
lines.
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3.5.1 Dewar

The Dewar is a double-walled liquid Helium (LHe)1 container that houses the

cryogenic insert. It has a vacuum jacket that separates the inner cryogenic

environment from the hot outside world. The boil rate is an essential parameter

of a research Dewar. It determines the experimental hold time and the noise level,

which are crucial to SI-STM studies. Thus, minimising heat transfer to the LHe

reservoir is crucial in the Dewar design. To reduce the heat conduction via residual

gas molecules in the vacuum jacket, the vacuum level should be low enough so that

the effective jacket size L is less than the collisional mean free path l of the gas

molecules, i.e. L ≪ l. Under such a regime, the gas thermal conductivity is linearly

dependent on pressure [45]. In practice, layers of superinsulation materials, usually

aluminized mylar, are placed into the vacuum jacket to reduce L. Moreover, an

activated charcoal getter is also placed inside the vacuum jacket to absorb residual

gas at low temperatures. For practical use, the vacuum jacket of the Gemini Dewar

is evacuated to ∼ 10−6 mbar and the Helium leak rate tested by a leak detector is

∼ 10−10mbar · L/s. The superinsulation layers also attenuate the radiation from the

∼ 300 K outer wall to the ∼ 4 K inner wall. It can be shown that the final heat

transfer to the inner wall is reduced by a factor of n+ 1 where n is the number of

radiation shields used. To reduce heat leak through the Dewar neck, the neck of our

Dewar is made of G-10 fibreglass that has lower thermal conductivity than Al or

stainless steel at low temperatures as well as provides good structural support. The

Dewar boil rate also strongly depends on the Helium gas venting configurations.

Allowing neck venting only, where the helium gas exits the Dewar through the

Dewar’s neck, significantly decreases LHe boil-off rate since the residual heat leak

through the neck is absorbed by the enthalpy of the cold Helium gas. The minimum

boil rate achieved at Oxford is ∼10 L/day, as shown in Fig. 3.12 for a 120 L 14 T

magnet Dewar, which gives us an operation time of around a week.
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Figure 3.12: The Dewar liquid helium level over about 20 hours. The red dashed line
shows a linear fit whose slope indicates a boil rate of 10.02 L/day.

3.5.2 Superconducting magnet

A 14 Tesla superconducting magnet, manufactured by American Magnetics, Inc.

(AMI), sits at the bottom of the Dewar’s belly. It has a 5.3 cm concentric bore

to fit the STM head and the sample with a homogenous magnetic field (+/-0.1%

over 1 cm DSV). The superconducting magnet coil is in a completely closed circuit

in the persistent mode. To energize the magnet, a persistent switch needs to be

turned on. The switch consists of a short superconducting wire thermally coupled

to a resistive heater. When the heater is on, it turns the superconducting wire

into its normal state so that the closed superconducting magnet circuit is open and

the persistent mode is exited. An external power supply can then be connected

to the magnet via two removable current leads to ramp up or down the current.

After the target field is reached, the heater is then turned off and the magnet

goes back to persistent mode again, where the magnetic field persists. During

persistent mode, the two current leads are removed to reduce heat leak to the

LHe reservoir and thus the LHe boil rate.

3.5.3 Cooling to 4 Kelvin

The cooling process of the refrigerator involves multiple stages and is designed to

reach temperatures as low as tens of millikelvin (mK). The initial stage operates

at the temperature of LHe, i.e. 4.2 K. This temperature is achieved by creating a
1Unless otherwise specified, all Helium mentioned in the text refers to 4He.
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Figure 3.13: CAD section view of Gemini cryogenic system.

direct thermal connection between the cryostat inside the vacuum and the Dewar

LHe bath through a vacuum flange connected to the 4-kelvin plate (4KP) (Fig.

3.14). It is important to have 4KP reach 4 K as it not only condenses the 3He gas

in the 3He/dilution fridge but also pre-cools components such as coaxial cables and

pumping tubes before the heat reaches the lower temperature region below. The

strategy is to maximise the thermal conductivity to the LHe bath from the 4KP and

simultaneously minimise the heat leak of the parts coming from above. To achieve

the first condition, the thermal link is a vacuum flange made of high-purity copper so

that its thermal conductivity is extremely high (> 104 W/(m · K) at 4 K). Various

methods are employed to achieve the second condition. The room-temperature
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Figure 3.14: (a) Photograph of the cryogenic insert from the room-temperature (RT)
plate to the STM head. (b) Photograph of the cryogenic insert sealed with the vacuum
cans. The indicated Indium seal is at the position of the 4K plate in (a). (c) Zoomed-in
view for the dilution unit and the 1K pot. (d) Zoomed-in view for the 1K pot NbTi
siphon that provides LHe flow impedance. The siphon bottom is soldered to a Cu stud
that is indium-sealed to the lower vacuum can.
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(RT) thermal radiation is attenuated through 5 copper shields above the 4KP. All

rigid components from the room temperature linked to 4KP are made of stainless

steel, a material known for its low thermal conductivity at low temperatures (<

1 W/m · K below 10 K). For example, the heat conduction through the helium

gas pumping tubes is sunk into the Dewar LHe bath through the copper radiation

shields. Eventually, the estimated heat leak from the cryostat into the LHe bath

should be kept under 250 mW, corresponding to a boil-off rate of less than 10 L/day.

3.5.4 Cooling to 1 Kelvin

The physical principle to achieving near 1 Kelvin temperature is evaporation, wherein

a vacuum pump evacuates the space above LHe. Rather than pumping the entire

Dewar helium bath, which significantly accelerates LHe boil-off, a more economically

efficient method involves using a separate, small container with a volume of several

cm3. This container, known as a ‘1K pot’, is placed inside the vacuum system,

and when it is pumped, it cools the experiment to a lower temperature. The 1K

pot is connected to the main LHe bath through a thin capillary siphon with a

fraction of a millimetre diameter. The liquid in the main bath is at atmospheric

pressure and can then flow into the evaporation pot due to the pressure difference.

The liquid level h inside the pot is determined by the balance between the heat

transferred from the main bath liquid, the heat load from the experiment, and the

pot evaporation cooling power. This condition reads [46]:

Q̇evaporation = Q̇siphon (h) + Q̇ext . (3.4)

Q̇siphon is determined by the siphon impedance which controls the LHe volumetric

flow. If the impedance is too high, the pot risks running dry and escalating in

temperature because of external heat leaks. Conversely, if the impedance falls too

low, the liquid level within the pot could become excessively high, overwhelming

the cooling power from evaporation. Q̇evaporation is controlled by the pumping

speed of the vacuum pump. The pressure-temperature (P − T ) relation satisfies
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the Clausius-Clapeyron formula:

dP

dt
= L

R

P

T 2

⇒P ∝ e− L
RT

(3.5)

where L is the helium latent heat of vaporisation and R is the specific gas constant.

This relation suggests that to achieve a lower temperature, it is necessary to minimise

the vapour pressure as much as possible. Usually, this is achieved by using a pump

with a large pumping speed. Under continuous operation, the 1K pot temperature

normally remains around 1.3 K. Eventually, the temperature cannot be lowered

further because the vapour pressure is too small. Common problems for 1 K pot

operation include siphon blockage and vibrational noise. The fine capillary siphon is

easily blocked by impurities in the LHe bath, such as N2 ice, but can be prevented by

installing a filter at its front to keep flowing LHe clean. The vibration noise can come

from the ultra-sonic ‘jet’ when the normal LHe is injected into the superfluid He.

This can be solved by thermalising the capillary siphon or adjusting its impedance.

3.5.5 Cooling to milli-Kelvin

A dilution refrigerator must be employed to access the tens of milli-Kelvin range.

The dilution refrigerator utilizes the mixing of two helium isotopes, 3He and 4He,

to achieve ultra-low temperatures. Its operating principle is as follows. A 3He-4He

mixture is pre-cooled to 4.2 K at the 4KP and then down to around 1.3 K by the

1K pot. The mixture then continues to be condensed and cooled through a series

of small-volume heat exchangers anchored to the still pot (Fig. 3.15). Finally, the

condensed mixture arrives at the mixing chamber, where the temperature reaches

the phase separation boundary. At this point, the helium mixture separates into

two phases, one 4He-rich ( 3He-dilute) phase and the other 3He-rich phase. The
3He-rich part floats on top because of its lower density. The surprising feature of

the phase-separated mixture is that the concentration of the 3He inside the 4He-rich

liquid is still finite (about 6.6%) as the temperature approaches zero. This may

seem a violation of the third law of thermodynamics in the classical regime. But

despite non-zero mixing, the mixture has zero entropy at T = 0 K because of the
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Figure 3.15: (a) Schematic of the working principle of the dilution fridge. (b) 3He –
4He mixture phase diagram. Photo reproduced from [47].

quantum nature of the liquid, i.e. superfluid. As the 3He vapour pressure is lowered

in the Still chamber, an osmatic pressure is established across the two phases in

the mixing chamber that drives the 3He atoms to the 4He - rich liquid. This is

the process that generates cooling in the dilution refrigerator.

To calculate the cooling power in the mixing chamber, consider 3He atoms in

the 3He-rich and dilute phases separately. Since 3He atoms are fermions, the Fermi

temperatures for 3He atoms in both phases are given by

3He rich phase: kBT
R
F = ℏ2

2m3

(
3π2NR

V

) 2
3

(2.2.5.3a)

3He dilute phase: kBT
D
F = ℏ2

2m3

(
3π2ND

V

) 2
3

(2.2.5.3b)

where the particle number density has the relation ND

V
∝ (0.06)NR

V
. As a result,

the entropy in the 3He dilute phase is larger than that in the 3He rich phase

SR = π2

2 NkB
T

TR
F

< SD = π2

2 NkB
T

TD
F

(3.6)

which results in the ‘evaporation’ of 3He atoms from its rich phase to the dilute

phase that gives the cooling. Given a 3He evaporation rate of n3 moles/s, the

specific entropy for both phases is sR = π2

2 NAn3kB
T

T R
F
, sD = π2

2 NAn3kB
T

T D
F

. The
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cooling power of the 3He dilution process is given by

Q̇ = T 2
M ṅ3

π2

2 kBNA

(
1
TD

F

− 1
TR

F

)
⇒ Q̇ ≈ (95)ṅ3T

2
M [W]

(3.7)

where TM is the mixing chamber temperature and NA the Avogadro number. Given

the base temperature of around 15 mK and pumping speed of 4.45 × 10−5moles/s

in the Still chamber, the estimated cooling power is about 1 µW.
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4
Discovery of a nematic pair density wave

state in Bi2Sr2CaCu2O8+x
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In this chapter, I will present the discovery of a nematic PDW state

in Bi2Sr2CaCu2O8+x by extensive analysis of the scanned Josephson

tunnelling data collected by SJTM1. The spatial configurations of the

discovered PDW state have domains of opposite nematicity, each of

which is primarily unidirectional and lattice commensurate. Simultane-

ous visualisation of the amplitudes reveals that the intertwined PDW

and d − wave superconductivity (dSC) are mutually attractive states.

Furthermore, imaging the scattering resonances identifies the Zn impurity

atoms at the boundaries between the domains, indicating that the Zn
1The data analysis presented in this chapter was performed using MATLAB. M. H. Hamidian

at Cornell University carried out the SJTM measurements.
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Figure 4.1: Schematic of finite momentum pairing at wavevector Q. (a) The original
Fermi surface is split into up and down spin Fermi surfaces due to the Zeeman effect.
Pairing only occurs in the red shaded regions (gapped out) between electrons in state
|−k, ↓⟩ and state |k + Q, ↑⟩. This leaves a large unpaired region (gapless) on the Fermi
surface, which gives finite spin susceptibility. (b) Pairing can be perceived as shifting the
down spin Fermi surface with wavevector Q. The nested regions indicate pairing with
centre-of-mass momentum Q. The origin is at the centre of the spin-up Fermi surface.

atoms pin this nematic PDW state.

Exotic superconducting states such as the pair-density wave (PDW) state with

finite momentum pairing have been shown to exist in the cuprates [33], but their

mechanism remains unknown. The interplay between the homogeneous d-wave

superconductivity (dSC) and PDW is hypothesized to generate a variety of global

electron-pair orders, but it is not clear which one is present [11, 48, 49]. SJTM is

an ideal technique for studying the intertwined orders between dSC and PDW in

cuprates since it gives direct access to the superconducting order parameter.

4.1 FFLO state

In 1964, Flulde, Ferrell, Larkin, and Ovchinnikov (FFLO) proposed a novel state

where superconductivity persists beyond the upper critical field Hc2 but with a

finite centre-of-mass momentum Q in the Cooper pair condensate. This is because

of the electron pairing between two split Fermi surfaces due to the Zeeman effect

(Pauli paramagnetism) as shown in Fig. 4.1. However, in the superconducting state,

the condensed Cooper pairs have zero total spin susceptibility, χs,total = 0, and are
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not spin polarized by the magnetic field H. Thus, to polarize the Cooper pairs, the

spin polarization energy should reach the superconducting condensation energy [50]:

1
2 (χn − χs)H2 = H2

c (T )
8π (4.1)

where χn is the spin susceptibility at the normal state, Hc is the critical field.

A critical field H = HP can then be identified as the pair-breaking limit due

to Pauli paramagnetism only:

HP (T ) = Hc(T )√
4π (χn − χs)

. (4.2)

This is the Pauli-limited critical field. At T = 0, we have

HP (0) =
√

2∆
gµB

(4.3)

where the relation H2
c (0)
8π

= N(0)∆2

2 is used and g is the electron spectroscopic splitting

factor (g = 2). In addition, the formation of vortices can also break Cooper pairs

and destroy superconductivity with upper critical field Horb
c2 = Φ0/2πξ2 where ξ

is the coherence length and Φ0 is the flux quantum. This is the orbital limited

pair-breaking effect. In a type II superconductor, the phase transition at Horb
c2 is

of the second order. In the presence of the paramagnetic effect only, it has been

shown by [51] that the transition to the normal state can be of the first order. In

general, it is the competition between the paramagnetic pair-breaking effect and the

orbital pair-breaking effect that determines the upper critical field and the order

of the phase transition. This is quantified by the Maki parameter:

α =
√

2H
orb
c2 (0)
HP (0) . (4.4)

For the first-order phase transition, high α is needed. Flulde and Ferrell [52] proposed

that the Pauli-limited critical field can be further extended by transitioning into

an inhomogeneous superconducting state with finite momentum pairing between

the split Fermi surfaces. This is called the FF state. In general, for a FF state to

persist in a clean type II superconductor, α > 1.8 needs to be satisfied [53].
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The general superconducting order parameter can be written in a spatially

dependent form [48]

∆(r) = V0
〈
ψ̂↓(r)ψ̂↑(r′)

〉
(4.5)

= V0F (r − r′)
[
∆0 + ∆Qe

iQ·R + ∆−Qe
−iQ·R

]
(4.6)

where F is the form factor and R is the centre-of-mass momentum. In BCS theory,

the electron-pair condensate is homogeneous, i.e. ∆(r) = ∆,∆Q = 0,∆−Q = 0.

This is in contrast with the FF state, where the superconducting order param-

eter is given by

∆(r) = ∆Qe
iQ·r (4.7)

in which the pairing amplitude ∆Q = ∆ is constant but the phase modulates in

space with period 2π/Q. This state only modulates in +Q direction, and the time-

reversal symmetry is thus broken. Larkin and Ovchinnikov [54] considered another

inhomogeneous state consisting of two opposite wavevectors where the time-reversal

symmetry is preserved, i.e. the LO state. The order parameter has the form

∆(r) = ∆
(
eiQ·r + e−iQ·r

)
= 2∆ cos(Q · r). (4.8)

Here, the pairing amplitude modulates in space but with fixed phase which suggests

a modulated electron-pair density |∆|2. The LO state has lower free energy than

the FF state [51].

4.2 Pair-density waves in the cuprates

The FFLO states are a subset of the pair-density wave (PDW) states that have

finite momentum pairing. In some cases, the magnetic field is not necessary

to induce a PDW state. For example, in the cuprates, the symmetry of the

square CuO2 plane allows four components of the PDW order parameter, i.e.

∆i =
(
∆P x ,∆P y ,∆−P x ,∆−P y

)
. The general Ginzberg-Landau-Wilson (GLW)
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Table 4.1: Possible PDW ground states. Table reproduced from [49].

Phase
(
∆Px ,∆Py ,∆−Px ,∆−Py

)
Induced orders

FF-type
(
eiϕ1 , 0, 0, 0

)
lx, ϵx2−y2

FF*-type
(
eiϕ1 , eiϕ2 , 0, 0

) lx = ly
ρPx−Py ,M

z
Px−Py

Unidirectional
(
eiϕ1 , 0, eiϕ2 , 0

) ϵx2−y2 ,∆4e

ρ2Px

Bidirectional-I
(
eiϕ1 , eiϕ2 , eiϕ3 , ei[ϕ1+ϕ3−ϕ2]

) ∆4e

ρ2Px , ρ2Py , ρPx−Py , ρPx+Py

Bidirectional-II
(
eiϕ1 , ieiϕ2 , eiϕ3 , iei[ϕ1+ϕ3−ϕ2]

) ∆4e

ρ2Px , ρ2PyM
z
Px−Py

,M z
Px+Py

free energy density that preserves time-reversal, parity and gauge symmetries

can be written as [49]

F = α
∑

i

|∆Pi
|2 + β1

(∑
i

|∆Pi
|2
)2

+ β2
∑
i<j

|∆Pi
|2
∣∣∣∆Pj

∣∣∣2 + β3
(
|∆Px|2 |∆−Px|2

+
∣∣∣∆Py

∣∣∣2 ∣∣∣∆−Py

∣∣∣2)+ β4
[
∆Px∆−Px

(
∆Py∆−Py

)∗
+ (∆Px∆−Px)∗ ∆Py∆−Py

]
,

(4.9)

which allows the five possible PDW ground states as summarised in Table 4.1. The

difference between the Bidirectional-I and the Bidirectional-II phase is that the

phase difference between the two modulation directions is 0 for the former case and

π/2 for the latter case. Including the homogeneous superconducting order parameter

(dSC) ∆0, there are then five possible complex-valued scalar order parameters that

are intertwined together, generating a plethora of induced order parameters.

4.2.1 Coupling between dSC and PDW

The coupling between the dSC order and the PDW order can be described by

a subset of the overall GLW free energy density functional to the lowest order

of coupling terms, namely,

F = βc1 |∆0|2
(

|∆Px|2 +
∣∣∣∆Py

∣∣∣2 + |∆−Px|2 +
∣∣∣∆−Py

∣∣∣2)
+ βc2

[
∆2

0

(
∆Px∆−Px + ∆Py∆−Py

)∗
+
(
∆2

0

)∗ (
∆Px∆−Px + ∆Py∆−Py

)]
,

(4.10)

where the gradient terms are ignored. An interesting hypothetical state that arises

from the interplay between dSC and PDW is the nematic pair density wave state
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with the order parameter defined as

N ≡
(
|∆Px|2 + |∆−Px|2

)
−
(∣∣∣∆Py

∣∣∣2 +
∣∣∣∆−Py

∣∣∣2) . (4.11)

The experimental goal is then to determine how dSC and PDW are intertwined

and search for the consequent electron-pair order.

4.3 Visualising nematicity of a pair-density wave
state

To image the nematic order of a PDW state, a dilution-refrigerator-based SJTM is

used to directly measure the superconducting order parameter in lightly underdoped

single crystals of Bi2Sr2CaCu2O8+x (Bi-2212) (hole density p = 0.17 ) at 45 mK.

The sample is cryogenically cleaved to reveal the BiO crystal layer. Under the

regime of phase-diffusive Josephson tunnelling (I-Z model), the maximum value of

the pair tunnelling current Im is proportional to the electron-pair density via

n(r) ∝ Im(r)R2
N(r) (4.12)

where the normal state junction resistance RN(r) ≈ 20 MΩ [33]. The d-wave scan-

ning tip is prepared by picking up a Bi2Sr2CaCu2O8+x nano-flake from the sample.

A typical topographic image of the BiO layer scanned by the Bi2Sr2CaCu2O8+x

tip is shown in Fig. 4.2(a) with the inset showing a typical measured I − V

characteristics. With virtually constant RN(r), we can measure IP (V, r) and

therefore visualise Im(r) at 45 mK. The Fourier transform of Im(r) image, Im(q),

is shown in Fig. 4.2(b). Besides the broad peak centred around q = 2π
a

(0, 0)

that represents the heterogeneous dSC state, there are four broad peaks centred

around q ≈ 2π
a

(
0,±1

4

)
; 2π

a

(
±1

4 , 0
)
.

4.3.1 Visualising the interplay between dSC and PDW

By analysing the relationships among the five wavevectors in Im(q) in real space, i.e

Im,i =
{
Im,q= 2π

a
(0,0)(r), Im,q= 2π

a (0,± 1
4)(r), Im,q= 2π

a (± 1
4 ,0)(r)

}
, the interplay of the five

order parameters
(
∆0,∆P x ,∆P y∆−P x ,∆−P y

)
can then be detected.
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Figure 4.2: Visualising electron-pair density n(r). (a) SJTM topographic image T (r) of
BiO termination layer of Bi2Sr2CaCu2O8+x. Inset: average electron-pair current spectrum
IP (VJ) measured in this FOV at T = 45 mK and RN ≈ 20 MOhm, with maxima
occurring at ±Im. (b) Power spectral density Fourier transform of Im(r), Im(q), as
measured in FOV of (a). Four broad PDW peaks surround the wavevectors P =
(2π/a)(0, ±0.25); (2π/a)(±0.25, 0) as indicated by pairs of red and blue circles respectively.
The dSC electron-pair density is represented by the broad peak at q = (2π/a)(0, 0) as
indicated by the yellow circle. (c) Fourier filtration of Im(q) P = (2π/a)(0, ±0.25) as in
(b), to visualise the ±Px PDW modulating along the CuO2 x axis. (d) Fourier filtration
of Im(q) P = (2π/a)(±0.25, 0) in (b), to visualize the ±Py PDW modulating along the
CuO2 y axis.
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The two orthogonal PDWs can be parametrised as

Im;x,y(r) = Ax,y(r) cos [Px,y · r + δx,y(r)]

≡ Ax,y(r) cos [Φx,y(r)]
(4.13)

where ±Px = 2π
a

(
0,±1

4

)
,±Py = 2π

a

(
±1

4 , 0
)

and δx,y(r) is the spatially dependent

phase variation. To independently analyse Im;x(r) and Im;y(r), inverse Fourier

transformation of Im(q) centred at ±Px and ±Py respectively then gives

I ′
m(r) = 1√

2πσ

∫
dr′Im (r′) e−iP x,y ·r′

e
|r−r′|2

2σ2 (4.14)

where σ = 3 nm represents the reciprocal space selection range as indicated in

red and blue circles in Fig. 4.2(b). The resulting Im;x(r) and Im;y(r) images are

shown in Fig. 4.2(c - d). The modulation amplitude of the Fourier selected PDW

components can then be written as

Ax,y(r) ≡ 2
√

(ReI ′
m(r))2 + (ImI ′

m(r))2. (4.15)

The amplitude of the heterogeneous dSC state near q = 0, A0(r), can be

obtained using the similar inverse Fourier transform technique. We then have

simultaneously measured Ax(r), Ay(r) and A0(r) as shown in Fig. 4.3(a - c) in the

same field of view of Fig. 4.2(a). To quantify and relationship between the dSC and

PDW states, ⟨Ax(r) + Ay(r)⟩ and ⟨A0(r)⟩ are plotted against each other where the

average is taken over all positions r. The positive slope s = ⟨Ax(r)+Ay(r)⟩
⟨A0(r)⟩ = 0.0389

shown in Fig. 4.3(d) clearly indicates a mutually attractive relation on the average

between the PDWs and the dSC states throughout the spatial variations. This result

is completely independent of any spatial variations in the normal state junction

resistance RN(r) since it’s divided out in the definition of the slope s.

To understand this result in the GLW free energy framework, we must insert

the full order parameter expression for each component ∆i = |∆i| eiϕi into Eqn.

4.10, which yields

F = 2 |∆0|2 |∆x|2 [βc1 +βc2 cos (2ϕ0 − ϕ1 − ϕ3)]

+ 2 |∆0|2 |∆y|2 [βc1 + βc2 cos (2ϕ0 − ϕ2 − ϕ4)]
(4.16)



4. Discovery of a nematic pair density wave state in Bi2Sr2CaCu2O8+x 75

Figure 4.3: Intertwined dSC and PDW order parameters. (a) Amplitude of Im(r)
modulations Ax(r) for PDW state with ±P x, from Fig. 4.2(c). (b) Amplitude of Im(r)
modulations Ay(r) for PDW state with ±P y, from Fig. 4.2(d). (c) Amplitude of dSC
electron-pair density A0(r) derived from Eqn. 4.12 with q = 0 as indicated by the yellow
circle in Fig. 4.2(b). (d) ⟨Ax(r) + Ay(r)⟩ averaged over all locations r where A0(r) equals
the abscissa value A0. The solid line is a linear fit to these data through (0, 0). Inset: 2D
histogram of the same data.
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Figure 4.4: (a) Nematic order parameter N (r) = {Ax(r) − Ay(r)} / {Ax(r) + Ay(r)}
derived from Fig. 4.3 (a) and (b). Domains of opposite nematicity occur with correlation
length ξ ≈ 15 nm. Inset: histogram of all N (r) values in (a), showing nonzero mean value.
The magnitude |N | > 0.3 for approximately 45% of the FOV indicates a strong nematic
interaction between the two PDW. (b, Left) Four examples of measured Im(r) along the x
axis. (b, Right) Four examples of measured Im(r) along the y axis, both within domains
where N (r) ≫ 0. (c, Left) Four examples of measured Im(r) along the x axis. (c, Right)
Four examples of measured Im(r) along the y axis, both within domains where N (r) ≪ 0.
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Here the loop current terms are neglected for simplicity. The coupling term βc2

then locks the phase between the dSC and PDW orders [49]. The minimum of

the free energy is then given by

Fmin = 2 |∆0|2
(
|∆x|2 + |∆y|2

)
[βc1 − |βc2|] (4.17)

As a result, a positive correlation between |∆0|2 and |∆x|2+|∆y|2 indicates a relation

of

βc1 − |βc2| < 0 (4.18)

in the absence of a magnetic field, although there exists evidence showing a repulsive

relation when strong gradients are present, such as in the vortex core.

4.3.2 Searching for a nematic PDW state

To search for the proposed nematic PDW phase, I start by defining an empirical

nematic order parameter based directly on the measured Im(r) data:

N (r) = Ax(r) − Ay(r)
Ax(r) + Ay(r) (4.19)

where the variations in RN(r) is again completely irrelevant. According to the

Ax(r) and Ay(r) data shown in Fig. 4.3, N (r) can be calculated and is shown in

Fig. 4.4. Upon virtual inspection, Fig. 4.4(a) reveals a strong PDW nematicity in

the cuprate Bi2Sr2CaCu2O8+x. This is demonstrated by plotting the histogram of

N (r) shown in the inset of Fig. 4.4(a), where 45% of the FOV has |N (r)| > 0.3.

This phenomenon is also evident from the original Im(r) data, as we can plot

linecuts along the x and y directions within the domains, where |N (r)| ≫ 0 is

shown in Fig. 4.4(b-c). This indicates that where Im;x(r) modulation is strong,

Im;y(r) modulation is weak and vice versa.

Having identified the nematic PDW domains in nearly optimal-doped Bi-

2212, the natural question is what sets the nematic domain boundaries. A

hint comes from a recent transport study on 1% Zn substituted La2−xBaxCuO4

(LBCO) away from p = 1/8 doping (p = 0.125 ) [55]. Based on resistivity and

susceptibility measurements, they find that two-dimensional (2D) superconductivity
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Figure 4.5: (a) SIS tunnelling spectra at a Zn impurity site on a near-optimally doped
Bi-2212 sample measured by a superconducting Bi-2212 nano flake tip which shows
coherence peaks near -20 mV. (b) NIS tunnelling spectra at a Zn impurity site on a
near-optimally doped Bi-2212 sample measured by a normal tip, which shows coherence
peaks near 0 V.

transition occurs below 26 K, which is well above that of the three-dimensional

(3D) superconductivity. This is similar to the case of p = 1/8 doping LBCO where

the occurrence of 2D superconductivity and suppression of 3D superconductivity

is due to the frustration of the interlayer Josephson coupling, which is caused by

the appearance of the PDW order [49, 56]. The inference is that the Zn impurities

locally stabilise and pin the PDW order. In superconductive Bi-2212, the effects

of Zn impurities are to 1) induce an impurity state near the energy of 1 eV and 2)

suppress superconducting condensate [57]. The Zn impurity states can be directly

measured in the differential conductance dI/dV spectrum that shows a broad peak

near −1 meV [58]. For our BSCCO tip, the measured dI/dV spectrum is a result

of the convolution between the coherence peaks of the tip near ±20 mV and the

Zn impurity peak of the sample near −1 mV. This gives rise to a spectral local

maximum near 20 mV representing the Zn impurity state. The Zn impurity states

can then be visualised by measuring the quantity

Z(r) ≡ I(20 mV, r) − I(−20 mV, r) (4.20)
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where I(V ) is the single particle tunnelling current in the SIS STM junction. Each

Zn impurity maximum is identified by blue circles in the Z(r) image. And the Z(r)

and N (r) images are atomically registered in the same FOV. By superimposing

the Zn impurity atoms onto the magnitude of the nematic order parameter |N (r)|,

it is evident that the Zn atoms are typically located near the nematic domain

boundaries, as shown in Fig. 4.6(b). To quantify this phenomenon, we can compare

the histogram of the distance between the Zn atom to the nearest domain boundary

to the histogram of the distance between the randomly distributed points to the

nearest domain boundary. Fig. 4.6(c) demonstrates that the Zn impurity sites

reside highly towards the nematic PDW domain boundaries. Thus, our results

suggest that the Zn impurity atoms at the Cu sites pin the nematic PDW domains,

which agrees with the transport measurements in Zn-doped LSCO [55].

Our SJTM study of lightly underdoped BSCCO suggests that the PDW in

BSCCO tends to be unidirectional and lattice-commensurate (λ = 4a0), which

is predicted by the CuO2 Hubbard model in the strong coupling regime [55, 56,

59–66]. Furthermore, at the doping level (p = 0.17) in which our experiments are

performed, the charge density wave (CDW) order is virtually non-existent. This

indicates that the PDW order is not a subsidiary order of the CDW order but rather

the primary order. Also, the nematic PDW order that we discovered breaks the

4-fold (C4) rotational symmetry of the CuO2 lattice but preserves the long-range

translational symmetry. This agrees with the definition of the vestigial order, which

only partially breaks the symmetry of the parent order state.
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Figure 4.6: (a) Locations of Zn impurity atoms Z(r) as detected in Z(r) ≡ I(r, 20mV) −
I(r, −20mV) are shown as blue circles. (B) |N (r)|, the amplitude of the nematic order
parameter from Fig. 4.4(a), with the sites of Zn impurity resonances overlaid as blue dots.
(c) The distribution of distances between each Zn impurity atom and its nearest PDW
domain walls (red). This is compared to the expected average distance if no correlation
exists between Zn impurity atoms and the PDW domain walls (blue). Zn impurity atoms
are concentrated near the PDW domain walls.
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In this chapter, I will present an analogue isotope effect experiment

to study the electron-pairing mechanism in nearly optimally doped

Bi2Sr2CaCu2O8+x (Bi-2212), in which the superexchange interactions

are controllably varied and the consequent effects on the electron-

pair wavefunction Ψ are directly measured1. The experimental results
1The data analysis presented in this chapter was performed using MATLAB. M. H. Hamidian

at Cornell University carried out the SJTM measurements.
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compare excellently with predictions from strong-correlation theory

for hole-doped charge-transfer insulators, indicating that the charge-

transfer superexchange is key to the electron-pairing mechanism of

superconductive Bi-2212.

5.1 Charge-transfer superexchange

The elementary CuO2 plane is believed to be responsible for the high-temperature

superconductivity in the cuprates. It was proposed by Philip W. Anderson in 1987

[21] that it was the superexchange interactions between electrons on the adjacent Cu

sites that caused the electron-pair binding. The superexchange spin-spin interaction

occurs at the energy J ≈ 4t4/E3, where E is the charge-transfer energy that defines

the energy difference between the relevant orbitals on the adjacent Cu and O atoms,

and electrons transition between them at rate t/ℏ.

Besides the d-electrons in the transition metal ion, the oxygen p orbital also

plays a significant role in most transition metal oxides. In the case of cuprate

superconductors, the singly occupied Cu2+ (3d9) ions are separated by the doubly

occupied O2− (2p6) ions in the square CuO2 plane. The energy of the O pσ orbital

εp lies above that of the Cu d orbital εd (Fig. 5.1). Here, because of the Coulomb

double occupancy energy U at Cu d orbitals, the degeneracy of the Cu dx2−y2

orbitals is lifted so that the O pσ orbitals are separated from the upper Cu dx2−y2

band by the charge transfer energy

E = (εd + U) − εp. (5.1)

The exchange interaction between the singly occupied d-electrons thus involves

hopping via the intermediate O orbitals. This is called the superexchange. For

simplicity, consider the interaction between two Cu sites mediated by one O site

only and ignore the onsite Coulomb repulsion at the O site. In the case of two

anti-parallel spins on the Cu sites with one intervening O site (Fig. 5.1(b)), the basis
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Figure 5.1: (a)Schematic representation of CuO5 pyramids whose bases comprise the
CuO2 plane. (b) Schematic of the electronic structure of the CuO2 plane.

that spans the Hilbert space is nine-dimensional. The corresponding Hamiltonian

matrix has the following form [67]:

H =



0 0 +tpd +tpd 0 0 0 0 0
0 0 0 0 +tpd +tpd 0 0 0

+tpd 0 U + E 0 0 0 −tpd 0 −tpd

+tpd 0 0 U + E 0 0 0 −tpd −tpd

0 +tpd 0 0 U + E 0 +tpdd 0 +tpdd

0 +tpd 0 0 0 U + E 0 +tpd +tpd

0 0 −tpd 0 +tpd 0 U 0 0
0 0 0 −tpd 0 +tpd 0 U 0
0 0 −tpd −tpd +tpd +tpd 0 0 2 (U + E)


where tpd is the hopping rate between the Cu and O sites. In the limit of large U ,

states with at least one doubly occupied d-orbital can be projected out, and the

downfolded effective Hamiltonian has the Heisenberg form:

Heff = JS1 · S2 (5.2)

with the superexchange coupling

J =
4t4pd

E2

( 1
U

+ 1
E

)
(5.3)

where S1,S2 are the electron spin operators at Cu sites. Since the J > 0, states

with antiparallel d-electron spins have lower energy, and thus, the superexchange

interaction leads to antiferromagnetism. Note that the superexchange interaction
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Figure 5.2: Possible electron configurations in the CuO2 unit cell due to the superex-
change interaction. Ground states are shown in the top row, followed by various excited
states. Figure reproduced from [68].

involves a multi-stage hopping process with two possibilities. The first one is

described by the first term in Eqn. 5.3 and involves a single doubly occupied d

orbital. This is analogous to the direct exchange between d-electrons in the one-

band Hubbard model with Jdd = 4t2eff /U where teff = t2pd/E . The second possibility

involves two doubly occupied d orbitals shown in Fig. 5.2. This is represented

by the second term in Eqn. 5.3. In the strong coupling limit where U
t

≫ 1, the

superexchange coupling constant in Eqn. 5.3 reduces to

J ≈
4t4pd

E3 . (5.4)

Indeed, because of the large energy cost to doubly occupy any dx2−y2 orbital,

the d electrons become fully Mott localised and the CuO2 plane is in a charge-

transfer insulator state.
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Figure 5.3: Schematic of CuO2 partially overlaid by a Bi2Sr2CaCu2O8+x topographic
image T (r) to exemplify how the crystal supermodulation modulates along the (1,1) axis,
with one period 0 ≤ Φ ≤ 2π being approximately 26 Å. The Cu to apical O distance δ is
modulated at the same wavevector but perpendicular to this plane.

Differing from the Mott insulator state where U ≪ E , the lowest excitation state

of a charge-transfer insulator involves the O orbital, as dndn → dnp5dn+1, instead of

dndn → dn−1dn+1 in the Mott insulator case. Consequently, any doped holes into the

charge transfer insulator would go into the O orbitals. Under such circumstances, an

electronic structure with t ≈ 0.4 eV and E ≈ 1 eV implies a superexchange energy

J ≈ 100 meV which should stabilise a robust spin-1/2, Q = (π, π) antiferromagnetic

state. Indeed, this is exactly what was observed by inelastic neutron scattering

in La2CuO4 [69], confirming that the charge-transfer superexchange interaction is

the mechanism of antiferromagnetism in undoped CuO2.
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Figure 5.4: Schematic of the Emery three-band model. Cu d orbital is shown in light
blue, and O p orbitals in pink. The dashed square indicates the CuO2 unit cell that
contains five electrons (undoped).

5.2 Superexchange mediated electron pairing

5.2.1 Three-band Hubbard model

Upon doping holes into the CuO2 plane, which primarily enters the pσ orbitals [70],

the electrons become delocalised, and the long-range antiferromagnetic order is dis-

rupted. This scenario can be closely modelled by the three-band (or Emery) Hubbard

model [71], wherein the electron mobility is characterized by the hopping rate t:

H =
∑

iαjβσ

tαβ
ij c

†
iασcjβσ +

∑
iασ

εαniασ + Udd

∑
iσ

nid↑nid↓ (5.5)

where i, j enumerate planer CuO2 unit cells; α, β label any of the three orbitals;

tαβ
ij are transition rates for electrons between orbitals α, β at sites i, j; εα are orbital

energies; and nid↑, nid↓ are dx2−y2 orbital occupancies by spin state. Note that only

the interaction on Cu sites is considered. The CuO2 unit cell is depicted in Fig. 5.4

where 5 electrons are included (4 from the two O orbitals, 1 from the Cu orbital).

Using the following Nambu spinor basis [72]:

Ψ(k) =
(

Ψ↑(k)
Ψ↓(k)

)
Ψ↑(k) =

 d↑(k)
px

↑(k)
py

↑(k)

 Ψ↓(k) =


d†

↓(−k)
px†

↓ (−k)
py†

↓ (−k)

 (5.6)
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which contains the electron operators on the Cu dx2−y2 and O px and py orbitals,

Eqn. 5.5 can then be re-written as [73]:

H =
∑
kσ

Ψ†
kσh0(k)Ψkσ + U

∑
i

nd
i↑n

d
i↓ (5.7)

where h0(k) is the non-interacting Hamiltonian. Eqn. 5.7 then has the same form

as the one-band Hubbard model (Eqn. 1.23) with the replacements: ckσ → Ψkσ.

Heuristically, such a model represents a strongly correlated metallic state with strong

antiferromagnetic exchange interactions between spins. Consequently, a natural

question arises: is it the superexchange interaction between Cu spins that binds

two electrons together and gives rise to the high- Tc superconductivity in cuprates?

This is signified by the emergence of the electron pair condensate Ψ ≡ ⟨ci↓cj↑⟩, a

quantity that is directly measurable using SJTM as discussed in detail in Chapter 2.

5.2.2 DMFT

Because of the large parameter space, exact diagonalisation of the three-band model

has proven exceptionally challenging. However, with the modern advancement of

numerical techniques and computing power, the solution of Eqn. 5.7 is possible,

such as the application of dynamical-mean field theory (DMFT). In this section,

I will follow closely the thesis of Kowalski [72] and give a brief introduction to

DMFT and its application in superconductivity.

Introduction

Early insights into the correlated electron problem emerged in 1989 when Metzner

and Vollhardt [74] analysed the Hubbard model in infinite dimensions (d → ∞ ),

equivalently, with infinitely many neighbouring atoms. In this limit, they proposed

that the electron self-energy is momentum-independent, i.e. Σ(k, ω) d→∞−→ Σ(ω),

and the competition between U and t is preserved under appropriate scaling.

Consequently, the infinite-dimensional Hubbard model can be regarded as a local

problem in space where spatial fluctuations are neglected while preserving temporal

on-site electron-electron correlations. This understanding motivated Georges et al.
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[75] to develop a dynamical mean-field theory in infinite dimensions for calculating

the self-energy Σ(ω), which maps the lattice Hubbard model onto a self-consistent

Anderson impurity model. In this framework, the local on-site interaction can

be viewed as an impurity embedded in a non-interacting electron bath. Unlike

classical mean-field theory, this site in DMFT is now a dynamic entity that

undergoes transitions between four possible states |0⟩, | ↑⟩, | ↓⟩, | ↓↑⟩, and thus

the term ‘dynamical’.

To present the self-consistent DMFT equations, let’s start with the original

one-band lattice Hubbard model:

H = −
∑

⟨ij⟩,σ
tij
(
c†

iσcjσ + c†
jσciσ

)
+ U

∑
i

ni↑ni↓ (5.8)

where the electron hopping tij is between the nearest neighbour sites and
{
c†

iσ, cjσ

}
the fermion operators with spin index σ. In the path integral language, the

corresponding full Green’s function Gσ
ii (τ, τ ′) ≡ −

〈
T ciσ(τ)c†

iσ (τ ′)
〉

S
that governs

the temporal fluctuations of the electron occupancy at a typical lattice site reads

Gσ
ii (τ, τ ′) = 1

Z

∫
Dψ∗

iσDψiσ

[
ciσ(τ)c†

iσ (τ ′)
]
e−S (5.9)

where

Z =
∫

Dψ∗
iσDψi,σe

−S (5.10)

is the partition function, and

S =
∫ β

0
dτ

∑
iσ

c†
iσ(τ)

(
∂

∂τ
− µ

)
ciσ(τ) +

∑
ijσ

tijc
†
iσ(τ)cjσ(τ)

+
∑

i

Uc†
i↑(τ)ci↑(τ)c†

i↓(τ)ci↓(τ)
(5.11)

is the imaginary-time action for the Hubbard model [76] and ψ∗
iσ, ψiσ the Grassmann

variables. In the non-trivial limit of infinite dimensions, Georges et al. [75] show

that the Hubbard action S reduces to an effective local action

S
d→∞−→ SImp = −

∫ β

0
dτ
∫ β

0
dτ ′∑

σ

c†
oσ(τ)G−1

0 (τ − τ ′) coσ (τ ′)

+ U
∫ β

0
dτno↑(τ)no↓(τ)

(5.12)
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which is essentially a description of a single impurity site o under the time-dependent

mean field G−1
0 with onsite interaction U . Physically, this is completely analogous

to the Anderson impurity model, where the extra degrees of freedom of the

noninteracting electron bath is added. The Anderson Hamiltonian reads [72]

HAM =
Impurity part︷ ︸︸ ︷∑

σ

ϵoc
†
oσcoσ + Uno↑no↓ +

Electron bath part︷ ︸︸ ︷∑
lσ

ϵlc
†
lσclσ +

Hybridisation part︷ ︸︸ ︷∑
⟨o,j⟩,σ

(
Vojc

†
oσcjσ + h.c.

)
. (5.13)

where AM stands for Anderson Model. Since the non-interacting electrons enter

HAM as a quadradic form, it can then be integrated out [77], and this results in

an action of the same form as in Eqn. 5.12, with the ‘mean-field’

G−1
0 (iωn)AM = iωn + µ− ∆AM (iωn) (5.14)

where ∆AM (iωn) includes the hybridisation term and the conducting bath that is

integrated out, ωn = (2n+ 1)π/β (β = 1/kBT ) the fermionic Matsubara frequency,

µ the chemical potential. Thus, the Anderson impurity model Eqn. 5.13 can be

regarded as the Hamiltonian representation of the effective local action of SImp . The

interacting Green’s function of SImp can then be obtained from the Dyson’s equation

[GImp (iωn)]−1 =
〈
T c (iωn) c+ (iωn)

〉−1

SImp
= G−1

0 (iωn) − ΣImp (iωn) (5.15)

where ΣImp is the impurity self-energy. To establish a mapping between the Hubbard

model and the Anderson impurity model, this requires equivalence between the

Green’s function G (iωn) calculated from the effective impurity action SImp and

the onsite local part of the original lattice Green’s function Gii (iωn). The self-

consistency condition then reads [72]
1

G−1
0 (iωn)m − Σ (iωn)

= GImp (iωn) = Gii (iωn) =
∑

k

1
iωn + µ− ϵ(k) − Σ (iωn)

(5.16)

where the original lattice self-energy Σ (iωn) is momentum independent as d → ∞

and Σ = ΣImp (iωn).

The local Green’s function G and self-energy Σ of the Hubbard model can then

be determined from a closed set of the DMFT mean-field equations Eqn. 5.12 - Eqn.

5.16. These equations can be solved iteratively until convergence using modern

numerical techniques. A schematic describing the algorithm is shown in Fig. 5.5.
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Figure 5.5: Self-consistent loop for the iterative solution of DMFT equations. GL, lattice
Green’s function. GC , cluster Green’s function. CT-QMC, continuous-time Monte Carlo.
c-DMFT, cluster dynamical mean-field theory. Figure reproduced from [68].

Superconductivity

Superconductivity is characterised by the non-vanishing of the order parameter,

i.e. ∆k = ⟨ck↑c−k↓⟩ ̸= 0, which is conveniently described by the anomalous Green’s

function F (k, τ) = − ⟨T ck↑(τ)c−k↓⟩
τ→0+
−→ ∆k. With the non-vanishing F (k, τ), the

DMFT mean field equations can be extended to calculate the superconductivity

of the one-band Hubbard model in Eqn. 5.8. In the basis of Nambu spinor

Ψ+
k ≡

(
c+

k↑, c−k↓
)
, the matrix representation of the single-particle Green’s function is

Ĝ(k, τ) ≡ −
〈
T Ψk(τ)Ψ+

k (0)
〉

(5.17)

=
(
G(k, τ) F (k, τ)
F (k, τ)† −G(−k,−τ)†

)
. (5.18)

Since the quadratic terms in the Hubbard Hamiltonian can be eventually integrated

out in the calculation of its impurity action, we can then add a pairing field

η(k) = η′(k) + iη′′(k) that couples the particle pairs ck↑c−k↓ to the noninteracting

part of Eqn. 5.8 so that it reads [78]

H0 = ΣkΨ†
k [ϵkσ3 − η′(k)σ1 + η′′(k)σ2] Ψk (5.19)
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where σi are the Pauli matrices. The corresponding impurity action has the form

SImp = U
∫ β

0
dτn↑(τ)n↓(τ) −

∫ β

0
dτ
∫ β

0
dτ ′Ψ+(τ)G−1

0 (τ − τ ′) Ψ (τ ′) (5.20)

where G−1
0 contains the dynamical pairing field applied to all sites of the bath.

Physically, this describes an impurity being immersed in a superconducting bath.

The matrix self-energy is

Σ̂ = G−1
0 − Ĝ−1 =

(
Σ (iωn) S (iωn)
S (iωn) −Σ (iωn)†

)
(5.21)

where S is the anomalous self-energy that describes pairing. The lattice matrix

Green’s function can then be written as

Ĝ (k, iωn) =
(
ωn + µ− ϵ(k) − Σ (iωn) S (iωn)

S (iωn) ωn − µ+ ϵ(k) + Σ (iωn)†

)
. (5.22)

Finally, self-consistency is achieved by equating the impurity matrix Green’s function

calculated from the impurity action to the lattice matrix Green’s function of Eqn.

5.22. After convergence is achieved, the superconducting order parameter can

then be calculated.

DMFT predictions

Recently, cluster dynamical mean-field theory (c-DMFT) analysis of the CuO2

Hubbard model has yielded quantitative predictions of the hole-doped cuprates.

Kowalski et al. [73] use four CuO2 unit cells (4 Cu orbitals and 8 O orbitals) as a

quantum impurity cluster and solve the c-DMFT equations based on the three-band

Hubbard model using realistic parameters of Bi-2212. A calculated density-of-states

vs. energy spectrum is shown in Fig. 5.6, which clearly shows a charge-transfer

gap for 13 % hole-doped Bi-2212 at T = 0. More importantly, their numerical

results show that the superconducting order parameter Ψ decreases monotonically

as the charge-transfer energy E increases (Fig. 5.8), suggesting that the electron

pairing in CuO2 is controlled by E and thus the superexchange J (Eqn. 5.4).

Furthermore, theory based on DMFT also indicates that the interplay between E

and Ψ can be adjusted by altering the distance δ between each Cu atom and the
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Figure 5.6: c-DMFT predicted density of states vs. frequency spectrum based on the
three-band model for 13 % hole-doped Bi-2212 at T = 0 in the covalent case (ϵp − ϵd =
1.50 eV, tpd = 1.37 eV, t′

pp = 0.13 eV). LHB, lower Hubbard band. UHB, upper Hubbard
band. CTG, charge-transfer gap. CTB, charge-transfer band. Figure reproduced from
Kowalski et al. [73].

out-of-plane apical O atom of its CuO5 pyramid [71]. This is because as δ is varied,

so is the Coulomb potential at the planar Cu and O atoms, which modifies E and

thus controls Ψ in a predictable manner [71, 79, 80]. Indeed, this situation has

been strongly supported since the discovery of cuprate superconductivity [81–84].

These quantitative predictions based on real material parameters provide great

experimental opportunities: including determining the dependency of Ψ on E at the

Cu atom beneath each displaced apical oxygen atom. This may provide valuable

insight into the change in Ψ with respect to E , i.e. (dΨ/dE), as a direct evaluation

of a charge-transfer superexchange electron-pairing mechanism. The challenge for

experimentalists thus lies in measuring the correlation between Ψ and E directly

and simultaneously at the superconducting CuO2 plane. If such data is acquired, it

can serve a role similar to the isotope effect in conventional BCS superconductors,

by empirically identifying the specific electron-electron interaction responsible for
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Figure 5.7: Superconducting order parameter as a function of the charge-transfer gap
(CTG) predicted by the c-DMFT calculations for optimally doped cuprates. For each
colour, only one material parameter is varied. Figure reproduced from Kowalski et al.
[73].

electron-pair formation in cuprates.

5.2.3 Previous bulk studies

In the past, many studies concerned the relationship between E and J in bulk

cuprate crystals. For example, optical reflectivity measurements [85, 86] show

that the charge-transfer energy E is 1 eV < E < 2 eV in the undoped insulating

state of the cuprate crystals which become superconducting after hole-doping. An

energy J ∼ 150 meV is identified as the superexchange energy of the electron-

pair excitations according to Raman scattering studies [85–87]. Spectroscopic

studies using single-electron tunnelling [88] indicate that in the insulating parent

state, the charge transfer energy in Bi2Sr2CaCu2O8+x is E ≳ 1 eV. Additionally,

as E measured in the undoped insulator increases, there’s a decreasing trend in

the maximum Tc measured in the corresponding superconductor across various

material samples. Also, from ARPES studies [89], the reported transitions to

unoccupied states is consistent with the on-site Cu double occupancy energy U ∼ 2.7

eV, and the charge-transfer energy in optimally-doped Bi2Sr2CaCu2O8+x which
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Figure 5.8: Apical O distance as a function of the charge-transfer energy from DMFT.
Figure reproduced from Weber et al. [71].

is E ≈ 1.1 eV. Resonant inelastic X-ray scattering [90, 91] directly shows that

140 meV < J < 180 meV from spin wave excitation spectra spanning many cuprate

materials. Furthermore, a recent X-ray absorption spectra study [92] of optimally-

doped superconducting (CaxLa1−x) (Ba1.75−xLa0.25+x) Cu3Oy at both the Cu-L edge

and O-K edge reveals that E ≈ 1.3 eV.

According to Eqn. 5.4, a comprehensive understanding of the charge-transfer

superexchange as the mechanism of CuO2 superconductivity necessitates examining

the empirical relationship between the electron-pair condensate Ψ and the charge-

transfer energy E . However, this has been difficult to achieve experimentally.

Despite the pioneering studies on bulk crystals mentioned above, accessing different

E values typically involves switching between crystal families in the antiferromagnetic

insulator state. This makes it impossible to simultaneously measure E and Ψ in

the same superconducting state. Alternatively, the maximum superconducting

critical temperature Tc after hole doping is often proposed as a proxy for Ψ and

then compared with the E derived from the parent insulator, for a range of different
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compounds. But this method is not definitive. Changing the crystal family affects

many material parameters besides E , and Tc is influenced by other factors such as

dimensionality and superfluid phase stiffness [16]. More fundamentally, modern

theoretical analysis has recently revealed that there is no direct correspondence

between Tc and Ψ in the CuO2 Hubbard model [73, 93]. Therefore, although

encouraging, studies comparing maximum superconducting Tc and with insulating

E cannot conclusively determine the electron-pairing mechanism. On the other

hand, muon spin rotation studies do show that Ψ decreases rapidly with increasing

correlations while approaching the charge-transfer insulator state [17]. Ultimately,

to identify the fundamental physics of electron pairing, it is crucial to directly and

systematically measure the dependence of the electron-pair condensate Ψ on the

charge-transfer energy E at the same hole density.

5.3 Methods for measuring δ, E and Ψ

To investigate this possibility, it is crucial to determine both Ψ and E as a function

of the apical distance δ above each planer Cu atom. My approach combines

atomic-resolution imaging with a fortuitous characteristic of the canonical cuprate

Bi2Sr2CaCu2O8+x. Due to the mismatch between the preferred bound lengths

of the rock-salt and perovskite layers, a periodic crystal modulation of period

∼ 26 Å along the axis of the CuO2 plane is generated as shown in Fig. 5.3. This

crystal supermodulation also induces periodic variations in δ up to 12 % [94] as

measured by the single-particle tunnelling spectroscopy as well as the Josephson

tunnelling current [33]. However, the influence of this supermodulation on E

and Ψ is still undetermined.

5.3.1 Imaging Φ(r) and δ(r)

The strategy is to image E(r) and Ψ(r) directly at the atomic scale, which are varied

by the apical distance δ(r) produced by the crystal supermodulation. In practice,

near optimally doped (hole density p = 17 % ) single crystals of Bi2Sr2CaCu2O8+x

are inserted into the STM head right after its cleavage under cryogenic and UHV



96 5.3. Methods for measuring δ, E and Ψ

Figure 5.9: (a) Exemplary Bi2Sr2CaCu2O8+x topograph T (r) at the BiO termination
layer. The planar Cu − O axes are at 45◦ to the supermodulation, as shown. The
supermodulation runs from top to bottom with wavevector Qs ≈ (0.15, 0.15)2π/a0,
obviously with a relatively short correlation length. (b) From (a), the supermodulation
phase Φ(r) is derived. (c) From (b), the apical distance δ(r) is derived from X-ray
refinement data for the Bi2Sr2CaCu2O8+x crystal structure.
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conditions to reveal the BiO termination layer shown in Fig. 5.9(a). The CuO plane

is around 5 Å beneath the BiO layer, separated by the SrO layer that contains the

apical oxygen atoms. To determine the apical distance δ beneath every location r,

the supermodulation in the topography T (r) of the BiO surface is first imaged by

atomic resolution STM. To the first harmonic, this surface corrugation occurring at

the supermodulation wavevector Qs ≈ (0.15, 0.15)2π/a0 can be parametrised by

T (r) = A(r) cos Φ(r), where Φ(r) = Qs · r + θ(r) and θ(r) represents the disorder

effects. Φ(r) is extracted from the Fourier transform of the topographic image

T (r) by using the Lock-in technique (Appendix A) as shown in Fig. 5.9(b). The

topographic elevation is minimal at Φ = π and maximal at Φ = 0. Then by inferring

from Bi-2212 X-ray crystallography data [95], the spatial structure of the apical

distance δ(r) can be related to the T (r) above, which shows that the apical distance

is minimal at Φ = 0 and maximal at Φ = π as shown in Fig. 5.10. This is due to the

larger supermodulation displacement in the CuO layer compared to its neighbouring

SrO layer. Thus, to the first harmonic, the apical distance image can be determined

as δ(r) ≈ 2.44 − 0.14 cos Φ Å as shown in Fig. 5.9(c).

5.3.2 Measuring E and Ψ

By using single particle tunnelling spectroscopy, the local density of electronic states

N(r, E) can be determined from the measurement of the differential conductance

spectrum dI/dV (r, V ) ≡ g(r, V ) at every location r as a function of V up to 2 V.

As this energy scale is comparable to that of the CuO 3-band model (Eqn. 5.5), this

should reveal E in the tunnelling spectrum at every location r. Lastly, to determine

the electron pair condensate Ψ, we measure the electron-pair density |Ψ|2 ≡ nP

by using SJTM. This is because Ψ is, in general, a complex value and cannot be

measured directly. In addition, the energy gap extracted from the single-particle

tunnelling spectrum is obscured by the pseudogap, rendering it unsuitable for use

as the superconducting gap in lightly hole-doped cuprates.



98 5.4. Simultaneous visualisation of E(r) and Ψ(r)

Figure 5.10: (a) Left hand axis: apical Cu-O and Bi-O distances as a function of
supermodulation phase (red and purple dots) Φ from [95]. Right-hand axis: displacement
of Bi-O termination layer from symmetry plane of crystal as a function of supermodulation
phase Φ from X-ray data (gray dots). (b) Schematic showing the atomic modulations
induced along the z axis by the supermodulation. The CuO2 layer modulates with a
larger amplitude than the SrO layer, resulting in δ being maximal at Φ = π, where the
topographic elevation has its minimum.

5.4 Simultaneous visualisation of E(r) and Ψ(r)

To search for the supermodulation induced effects on E(r), we measure the tunnelling

g(V ) spectrum at every location r within the high-voltage range −1.6 V ≤ V ≤

2 V at high junction resistance of RN ∼ 85 GΩ (Vs = 600 mV, Is = 7 pA), which

precludes any tip-induced electric field effect. Two spectra averaged at Φ = 0 (blue)

and Φ = π (red) locations in the FOV of Fig. 5.11(a) are shown in Fig. 5.11(b) in

logarithmic scale. This clearly shows an exponential growth of density of states at
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Figure 5.11: (a) Topographic image of BiO termination layer at T = 4.2 K, using a
nonsuperconducting W-tip. The trajectory of the dashed red line corresponds to the data
in (c). (b) g(V ) spectra of single-electron tunnelling measured at high-voltage and high
tunnel junction resistance RN ≈ 85 GΩ in the FOV of (a) averaged at supermodulation
phases Φ = 0 and Φ = π. (c) Measured g(V ) along the dashed line in (a). Typical
examples of E(Φ = 0) and E(Φ = π) indicated by blue and red double-headed arrows,
respectively. (d) Topographic image of BiO termination layer at T = 2.1 K, using a
superconducting tip. The trajectory of the dashed red line corresponds to the data in
(f). (e) Typical IP (VJ) spectrum of electron-pair tunnelling measured at low voltage
and RN ≈ 21 MΩ in the FOV of (d). (f) Measured |IP (VJ)| along the dashed linecut
in (d). For clarity, (c) and (f) have been Fourier filtered at the crystal supermodulation
wavevector.



100 5.4. Simultaneous visualisation of E(r) and Ψ(r)

the gap edges of upper and lower bands, revealing the charge-transfer gap. I then use

the standard method to estimate E as the minimum energy difference between the

valence and conduction bands at a constant conductance G ≈ 20 pS, as indicated

by the double-headed arrows (appendix B). The extracted E value is consistent

with the charge-transfer energy E ≈ 1.2 V measured by other techniques mentioned

in section 5.2.3. The choice of the conductance value G ≈ 20 pS has several reasons.

First, this avoids disorder in the density of states caused by the oxygen dopants

around V = 0.9 V. Second, E(G, r) extracted from different values of G ranging

from 20 pS to 80 pS exhibit similar spatial structure (Fig. B.2). Furthermore,

the spatial modulation pattern in E(G, r) at the supermodulation wavevector Qs

is independent of the choice of G as shown in the power spectral density Fourier

transform E(G,q). This indicates that the E(Φ) relation will stay qualitatively

unchanged for a range of G, but with different amplitude variations in E . To reveal

the E(r) modulation more explicitly, Fig. 5.11(b) shows a contour plot of g(r, V )

along the red dashed line in Fig. 5.11(a), directly revealing that E(r) modulates at

Qs with E(Φ = 0) ≈ 1.35 eV (blue arrow) and E(Φ = π) ≈ 0.95 eV (red arrow).

Similarly, Fig. 5.11(d) shows a topographic image measured with a supercon-

ducting nano flake tip. To visualise supermodulation-induced variations in nP (r),

we measure the tunnelling current spectrum in the µV range with a normal state

junction resistance RN ∼ 21 MΩ. Fig. 5.11(e) shows a typical tunnelling current

spectrum measured at 45 mK which exhibits the phase-diffusive behaviour with pair

tunnelling current Ip(V ) expressed in Eqn. 2.45. As introduced in chapter 2, nP

can be extracted by identifying the maximum of the pair-tunnelling current Im and

using the relation nP (r) ∝ Im(r)R2
N(r) or equivalently nP (r) ∝ g0(r)R2

N(r). The

modulations in nP (r) can be visualised by plotting Ip(r, V ) along the red dashed

line in Fig. 5.11(f) in the direction of Qs. This contour plot clearly demonstrates

modulations of the Im(r) at wavevector Qs.

Next, I will present a quantitative description of the modulations of E(r) and

nP (r) at Qs. Starting with two FOVs with their topographic images T (r) shown in

Fig. 5.12(a) and Fig. 5.12(b). In Fig. 5.12(a), T (r) is simultaneous to the high
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Figure 5.12: (a) Topographic image T (r) simultaneous with high-voltage g(r, V )
measured at RN ≈ 85 GΩ, yielding (c). The pink arrowheads are at supermodulation
Φ = π. (b) Topographic image T (r) simultaneous with low-voltage IP (r, VJ) and RN (r)
maps, yielding (d). The blue arrowheads are at Φ = π. (c) Measured E(r) in the FOV
of (a). The mean value is E = 1.195 eV. The pink arrowheads are at Φ = π of the
supermodulation. (d) Measured nP (r) in the FOV of (b). The blue arrowheads are at
Φ = π. (e) Fourier filtered Ẽ(r) at supermodulation wavevectors ±Qs in the FOV of (a)
and (c). The pink arrowheads are at Φ = π. (F ) Fourier filtered ñP (r) at supermodulation
wavevectors ±Qs in the FOV of (b) and (d). The blue arrowheads are at Φ = π.
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voltage g(r, V ) measurements. Fig. 5.12(b) is taken using the superconducting

nanoflake tip and is simultaneous to the Ip(r, V ) measurements. Both topographic

images are analysed to extract the supermodulation phase Φ(r). The red and blue

arrows indicate Φ = π phase of Fig. 5.12(a) and Fig. 5.12(b), respectively. A

high-voltage, single particle tunnelling g(r, V ) map is measured at RN ≈ 85 GΩ and

T = 4.2 K in the same FOV of Fig. 5.12(a). The resulting E(r) image is presented

in Fig. 5.12(c) by measuring the energy difference between the top of the valence

band and the bottom of the conducting band at a constant conductance G = 20 pA.

The modulation at Qs appear to have little difference if E(r) is estimated at the

range 20 pS ≤ V ≤ 80 pS. Concomitantly, a low-voltage, electron-pair tunnelling

Ip(r, V ) map is measured at RN ≈ 21 MΩ and T = 2.0 K in the same FOV of Fig.

5.12(b). The nP (r) image in Fig. 5.12(d) is obtained by multiplying g0(r) ≡ g(r, 0)

with R2
N(r), both of which are measured in the same FOV as in Fig. 5.12(b). The

normal state junction resistance RN is calculated by self-normalising two sets of g(V )

spectra, one for Vmax < ∆/e and the other for Vmax > ∆/e (Appendix C). Lastly,

Fourier filtering both E(r) and nP (r) images at Qs reveals the supermodulation

induced first-harmonic modulations Ẽ(r) and ñP (r) in Fig. 5.12(e) and Fig. 5.12(f).

5.5 Towards the mechanism of electron-pairing

5.5.1 Relationship between nP and E

Next, we seek to quantify the effect of the supermodulation displaced apical distance

δ on the charge-transfer energy E and the electron-pair density nP at each planer

Cu atom. First, the apical distance is plotted against the supermodulation phase

shown by the grey dots in Fig. 5.13(b). Then by the corresponding simultaneous

measurements Φ(r) : E(r), the image of the charge transfer energy E is Fourier

filtered near the wavevectors ±Qs and E(Φ) is plotted by the red dots in Fig.

5.13(b) where it is normalised to its mean value. Similarly, according to the

simultaneous measurements of Φ(r) : nP (r), the electron-pair density nP is Fourier

filtered near the wavevectors ±Qs and n̄P (Φ) is plotted by the blue dots in Fig.

5.13(b) where it is normalised to its mean value. In the data analysis, I use a
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Figure 5.13: (a) Schematic of planar Cu to apical O distance modulations δ(r) in Bi-2212
shown versus supermodulation phase Φ. (b) Gray dots: δ(Φ) showing the displacement of
the apical oxygen atom within the CuO5 pyramid versus supermodulation phase Φ. Red
dots: measured E(Φ) showing the typical value for the Cu-O charge-transfer energy E for
each value of the supermodulation phase Φ normalised to the mean value of E . These
data are from the same FOV as Fig. 5.12(a),(c) and (e). Blue dots: measured n̄P (Φ)
showing the measured value of electron-pair density versus supermodulation phase Φ.
(c) Measured dependence of Cu-O charge-transfer energy E and electron-pair density nP

on the displacement δ of the apical O atoms from the planar Cu atoms. (d) Measured
relationship of electron-pair density n̄P to the Cu-O charge-transfer energy E in the
CuO2 plane of Bi-2212. The yellow shaded region shows the range of predicted slopes for
dn̄P /dE ≡ −α eV−1, as 0.3 ≤ α ≤ 1.0 eV−1 from DMFT calculations with the parameter
limits reported for La2CuO4 and Bi2Sr2CaCu2Ox, as indicated by black arrows.
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E(r) FOV that has 7 periods of supermodulation and a nP (r) FOV that has 13

periods. Next, the relation between E and δ and between nP can be determined

by eliminating the common variable Φ which results in Fig. 5.13(c). The slopes in

Fig. 5.13(c) give dE
dδ

≈ −1.04 ± 0.12 eV/Å and dn̄P

dδ
≈ 0.85± 0.22 Å−1 for Bi-2212,

which provides quantitative evidence of the characteristics of cuprate electronic

structure. Finally, by eliminating the common variable Φ, the fundamental atomic

relationship between the charge-transfer energy E and the electron-pair density

n̄P is plotted in Fig. 5.13(d), which shows that dn̄P

dE ≈ −0.81± 0.17 eV−1 or

equivalently d|⟨c↑c↓⟩|
dE ≈ −0.40 ± 0.09 eV−1. Here, the apical distance is analogous

to the ‘isotope effect’ in conventional BCS superconductors, where it varies the

strength of the charge transfer energy and, in turn, the superexchange interaction,

which ultimately alters the electron-pair condensate.

5.5.2 Comparison with c-DMFT predictions

The relationship between Ψ and E has been predicted by numerical study of the

3-band Hubbard model using the c-DMFT technique introduced in the previous

chapter. The predicted values of α = dnP/dE can be extracted and then compared

to the experimental result shown in Fig. 5.13(d). However, in the experiments, the

proportionality constant that relates g0R
2
N to nP is unknown, and the comparison

between g0R
2
N and nP = |Ψ|2 is meaningless. Therefore, both the experimentally

measured and theoretically predicted values need to be normalised consistently.

To achieve this, experimentally acquired value g0R
2
N at each atomic position is

averaged to its mean value across the entire experimental FOV, i.e.

n̄P = g0R
2
N

⟨g0R2
N⟩
. (5.23)

The pairing amplitude |Ψ| calculated from c-DMFT is normalised to its reference

value for the so-called covalent case |Ψ|cov = 0.0774, whose input parameters are

based on Bi-2212. This procedure can be shown as

∣∣∣⟨c↑c↓⟩
∣∣∣Bi-2212

= |Ψ|
|Ψ|cov

. (5.24)
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Similar normalisation is applied to the calculated c-DMFT results for La2CuO4 [79]

∣∣∣⟨c↑c↓⟩
∣∣∣LSCO

= |Ψ|
|Ψ|LSCO

(5.25)

where |Ψ|LSCO = 0.0154. The yellow shaded triangular region in Fig. 5.13(d)

represents c-DMFT predictions of the direct response of the electron-pair condensate

on the alteration of the charge-transfer energy, namely, dn̄P

dE ≈ −α eV−1, with α

in the range 0.3 ≤ α ≤ 1.0 for material parameters ranging from La2CuO2 to

Bi2Sr2CaCu2O8. Specifically for Bi2Sr2CaCu2O8, the three-band CuO2 Hubbard

model based c-DMFT calculation for the superexchange mediated electron-pairing

mechanism yields d|⟨c↑c↓⟩|
dE ≈ −0.46 ± 0.05 eV−1 or equivalently α ≈ 0.93 ±

0.1 eV−1, which agrees quantitatively with the experimental measurements presented

in Fig. 5.13(d).

5.6 Summary and outlook

Taken all together, the anti-correlation between the charge-transfer energy E and

the electron-pair density nP directly suggests that the charge-transfer superex-

change interaction is key to the electron-pairing mechanism in 17% hole-doped

cuprate superconductor Bi2Sr2CaCu2O8+x. To further test this mechanism across

the Bi2Sr2CaCu2O8+x phase diagram, future experiments can measure
∣∣∣dn̄P

dE

∣∣∣ as

a function of hole-doping level. If successful, the result will directly validate

that the charge transfer superexchange mechanism is universally responsible for

superconductivity in the cuprates. The proposed experiments can be challenging.

On one hand, in previous studies, a nanometer scale flake had to be picked up by

the scanning tip to achieve electron-pair tunnelling into cuprates. This technique

works successfully but is technically challenging, unreliable and with limited atomic

resolution. On the other hand, to measure the charge-transfer energy, one needs to

measure the single-particle tunnelling spectrum up to two volts and at a junction

resistance of GΩ, which requires extreme stability of the STM. The Gemini STM

described in Chapter 2 is ideal for carrying out these experiments. With its

superior mechanical stability and milli-kelvin temperature, it is capable of imaging
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electron-pair density using a Niobium tip with far better atomic resolution and

stable high-voltage spectroscopic imaging.
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Like Cooper pairs, excitons are composite bosons made of electron-

hole pairs predicted to exhibit macroscopic condensation. 1T -TiSe2

is known to host an unconventional charge-density wave (CDW) state

hypothesized to result from exciton condensation. This chapter reports

my recent spectroscopic imaging STM experiments of 1T -TiSe2
1 that

directly reveal the charge-transfer process between the Se and Ti atoms,

which is responsible for exciton formation. Further, direct imaging of

the excitonic energy gap shows a highly heterogeneous spatial pattern

inconsistent with a conventional Peierls CDW but indicates strong

electron-electron interactions.
1The data analysis presented in this chapter utilized the Python package stmpy available at

https://github.com/harrispirie/stmpy.
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6.1 Concept of exciton condensate

6.1.1 A distinct type of composite boson

Below a certain transition temperature Tc, Bose-Einstein condensation leads to

remarkable macroscopic quantum phenomena such as superconductivity and su-

perfluidity, in which the composite bosons condense into the ground state. Here,
4He atoms and Cooper pairs are examples of composite bosons that are made of

an even number of fermions and are categorised as type I bosons by Kohn and

Sherrington [96]. In contrast to type I bosons, fermion and its hole can also form

a bound pair which is the type II boson. A particular example is the bound

electron-hole pair called the exciton.

The exciton and its condensate exhibit distinct properties as compared to

Cooper-pairs described in Chapter 1. Particularly, the condensation of excitons

possesses neither superfluidity nor ODLRO. Instead, diagonal long-range order

(DLRO) is present that signifies a change of real-space long-range order such as the

formation of a superlattice. For example, in a two-band solid where the valence

band maximum is peaked at k = 0 and the conduction band has its minimum at

wavevector q, the one-particle density is predicted to be oscillating at non-zero

wavevector q, generating a charge density wave. In this case, the wavefunction

for a single exciton can be written as [96]

Ψ1 =
(
1/Ω1/2

)∑
k
f(k)c†

1,k+qc0,kΨ0 (6.1)

where Ψ0 = ∏
p c

†
0,pΨvac is the fully occupied insulating ground state, n = 0

denotes the valence band and n = 1 is the conduction band, c†(c) is the electron

creation (annihilation) operator, Ω is the system volume and f(k) is the internal

pair form factor. A condensation of N excitons into the insulating ground state

Ψ0 is then described by

ΨN ≈
(
Bk

†
)N

Ψ0, (6.2)
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Figure 6.1: Band structure schematics for a two-band solid with an indirect bandgap
EG in the normal state (T > Tc). (a) the semiconductor case. (b) The semimetal case.

where Bq
† =

(
1/Ω1/2

)∑
k f(k)c†

1,k+qc0,k is the exciton creation operator. This

suggests that the condition,
〈
Bq

†
〉

̸= 0, ensures the following relation

〈
c†

1,k+qc0,k
〉

̸= 0. (6.3)

This results in q being a multiple of the reciprocal lattice vector [97].

Previously, signatures of excitonic condensation phases have been observed in

many systems. For example, the excitonic superfluid, as shown in the semiconductor

quantum Hall bilayer systems [98], or the localised excitons in an excitonic insulator

1T -TiSe2 [99]. Despite these encouraging achievements, no experiments have directly

visualised excitons at the atomic scale. In this Chapter, I will present my attempt

to directly visualise exciton condensates in the CDW phase of 1T -TiSe2 by using

the spectroscopic imaging STM I built during my DPhil.

6.1.2 Formation of the excitonic insulating phase

In the picture of a two-band solid with a bandgap EG, interband Coulomb interaction

can lead to exciton condensation during a transition from a small band-gap

semiconductor to a semimetal with small band-overlap (Fig. 6.1) [97]. For simplicity,
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consider a semiconductor with a direct band gap, analogous to the BCS theory;

the excitonic order parameter can be defined as [100]

∆(k) ≡ − 1
Ω
∑
k′
V (k − k′)

〈
c†

1,k′c0,k′

〉
(6.4)

where V describes the Coulomb interaction, 0 denotes the valance band, and 1

denotes the conduction band. The occurrence of exciton condensation means

that
〈
c†

1,kc0,k
〉

̸= 0. This leads to a finite gap value ∆(k) ̸= 0, rendering the

system insulating.

In the semiconductor case (Fig. 6.1(a)), when the band gap EG is larger than

the exciton binding energy EB, no excitons are formed (∆ = 0). Decreasing EG

until 0 < EG < EB, the system transitions to the excitonic phase as the Fermi

surface becomes unstable to the formation of excitons whose condensation leads to

a new insulating state. Further decreasing EG until it crosses over the Fermi level,

the normal state is a semimetal with a negative band gap (Fig. 6.1(b)). Assuming

the overlap between the two bands is small and EG is restricted to Ec < EG < 0,

the screening effect of the Coulomb attraction is weak between an electron and its

hole due to low carrier density, which favours exciton formation. The semimetal

ground state is thus unstable to the spontaneous formation of excitons [97]. Further

decreasing EG until the two bands are deeply overlapped, i.e. EG < Ec, the

screening effect is too strong to have exciton condensation. In conclusion, excitonic

phases can emerge from the semiconductor to semimetal transition below a certain

temperature Tc when the band gap is within the range Ec < EG < |Ec| = EB.

Fig. 6.2 shows the resulting phase diagram. The semiconducting region has no

screening effect, so the excitons are tightly bound stable objects of the BEC type.

In the semimetal region, band-overlaps give way to the screening effect where the

excitonic phase can be approximated to the BCS type [100].
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Figure 6.2: Phase diagram for the semiconductor-to-semimetal phase transition. Figure
adapted from [100].

6.2 SI-STM measurements of 1T -TiSe2

6.2.1 The excitonic insulator

1T -TiSe2 is a member of the transition-metal dichalcogenide (TMD) family with a

1T polytype crystal structure (Fig. 6.3(a)). This layered material is interconnected

by weak Van der Waals bonds, making it easy to cleave. Historical predictions [101]

suggest that, below a specific temperature, 1T -TiSe2 behaves as an exciton insulator

due to its distinctive band structure with a small band gap magnitude. Whether

this compound is a semimetal [102] or a semiconductor [103] is debated. These

excitons are believed to form between the top of the Se-4p band and the bottom of

the Ti-3d band, separated by the wavevector q0 (Fig. 6.3(b)). At approximately

200 K, 1T -TiSe2 undergoes a second-order phase transition to a commensurate 2

× 2 × 2 charge-density wave (CDW) with wavelength 2π/ |q0|, as evidenced by

heat capacity and resistivity measurements [104, 105]. In the CDW phase, the

band structure is modified as both the Se valance band and the Ti conduction

band are backfolded with accompanying spectral weight transfer and an opening

of an energy gap near the Fermi level (Fig. 6.3(c)).
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Figure 6.3: Crystal and electronic structure of 1T -TiSe2. (a) Crystal structure of the
1T polytype. The dashed line shows the cleaving plane. Orange sphere: Se atom. Grey
sphere: Ti atom. (b) Schematic of the Fermi surface shown within the first Brillouin zone
(BZ). The Se valence band is at the Γ point, and the elliptical Ti conduction band is at
the BZ boundary (M point). (c) Schematic of the electronic structure in the excitonic
phase. Compared with the normal state structure in Fig. 6.1, both bands are backfolded
onto each other, and an energy gap opens at the Fermi level. Spectral weight transfer
also exists, which is not shown here.

The mechanism of the CDW formation in 1T -TiSe2 is distinct from the con-

ventional Peierls CDW where electron-phonon interaction is dominant. One of the

reasons is that the Fermi surface is too small to have any nesting effects. Instead,

the nature of the CDW formation is hypothesized to result from a pure electronic

origin, i.e. exciton condensation driven by inter-band Coulombic interactions [106].

Bound pairs of the electrons from the Ti-3d band and the holes from the Se-4p band

can condense into the ground state and crystallize into the CDW formation. Indeed,
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Ti
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Figure 6.4: Schematic of charge-transfer pattern in 1T -TiSe2 as viewed from the top of
the c axis. Grey arrows indicate directions of atomic displacements. Solid grey lines mark
the CDW unit cell boundaries. Figure inferred from Peng et al. [108].

BCS-type theoretical calculations based on sole electronic correlation (no lattice

effects) match well with ARPES results [107]. Furthermore, just as the diminishing

of a phonon mode at the CDW transition signifies the electron-phonon coupling

in a Peierls CDW, a recent experiment demonstrates an electronic plasmon mode

softening at the CDW transition in 1T -TiSe2 [99], which strongly suggests that

exciton condensation plays the central role. Thus, using STM, I aim to search for

direct evidence of exciton condensates by atomic-scale visualisation.

6.2.2 Imaging localised exciton condensate

I studied the bulk 1T -TiSe2 crystal with a tungsten tip using the Gemini STM

described in Chapter 3. In practice, the crystal is cleaved in cryogenic ultra-high

vacuum conditions to reveal the Se layer and then directly inserted into the STM

head. All measurements are taken at T = 13 K. A typical STM topographic image

measured at T ≪ Tc is shown in Fig. 6.5(a), which clearly shows CDW modulations

with wavelength 2a0 (a0 is the unit cell length) in the three directions separated by
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60 degrees. Typical dI/dV spectra are shown in Fig. 6.5(b), which directly reveals

an energy gap of about 100 meV near the chemical potential.

Visualising exciton charge-transfer

In momentum space, it is evident from ARPES experiments that there exists spectral

weight transfer at the CDW transition from the top of the Se valence band at the Γ

point to the bottom of the Ti conduction bands at Brillouin zone boundaries [107].

Such a spectral weight transfer can be understood in real space as the electron

transfer from the Se atoms to the Ti atoms, equivalent to creating electron-hole pairs

(excitons). The triple-Q CDW is accompanied by lattice displacement, resulting in

the shortening or extension of Ti-Se bonds. This gives charge accumulation and

depletion at different atomic sites [108]. A schematic of the real-space charge-transfer

picture viewed from the top of the lattice c axis is shown in Fig. 6.4.

At 13 K, differential conductance spectra g(V ) = dI/dV (V ) are measured from

-200 mV to 200 mV at every atomic position r. To get the spectral weight for the

valence (conduction) band, each differential conductance spectrum is integrated

from -50 mV to -150 mV (0 mV to 50 mV), yielding the following two quantities

STv(r) =
∫ −150mV

−100mV
g(r, E) dE, (6.5)

STc(r) =
∫ 50mV

0mV
g(r, E) dE, (6.6)

where STv (STc) denotes the valence (conduction) band spectral weight. The

integration energy range is approximated from ARPES experiments [107]. The

spectral weight images for both the filled and empty states are shown in Fig. 6.6(b),

(c), respectively. To better visualise the atomic spectral weight transfer, the two

images in Fig. 6.6(b), (c) are superimposed to yield the total spectral weight

transfer image ST(r) via the relation ST(r) = STv(r) + αSTc(r) where α is the

scaling factor, which is shown in Fig. 6.7. In ST(r), red colour indicates electron

depletion and blue colour indicates electron accumulation.

For a more detailed examination of the inter-atomic charge transfer, the CDW

unit cell is averaged over the entire FOV and is shown in Fig. 6.9(a) by the black
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Figure 6.5: (a) Topographic image of 1T -TiSe2 showing the Se surface. The 2 × 2 CDW
is evident. Set-up condition: Vs = 200 mV, Is = 50 pA. (b) Differential conductance
spectra were measured at 5 different atomic sites in (a).
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Figure 6.6: (a) A typical differential conductance spectrum. The Blue (red) shaded
area defines the valence (conduction) band spectral weight. Red dashed lines are linear
fittings of the filled and empty bands and the gap floor. The energy difference between
the intersection points is defined as the excitonic energy gap. (b) Valence band spectral
weight image. (c) Conduction band spectral weight image.

dashed rhombus. It is clear that, within the CDW unit cell, two types of Ti atoms

and Se atoms are distinguished by charge depletion or accumulation. The existence

of charge transfer is clear since, in the normal state, one would expect to have

4 Ti atoms visible in STc(r) and 4 Se atoms visible STv(r) within a CDW unit

cell. However, looking at the Se atom labelled 1; the electrons are transferred from

the Se atom to the three surrounding Ti atoms, which could be attributed to the

formation of localised excitons between the Ti and Se atoms.
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Figure 6.7: Total spectral weight transfer image defined as ST(r) = STv(r) + αSTc(r)
where α is the scaling factor.

Imaging the energy gap variations

Second, the energy gap is visualised in the same FOV as Fig. 6.7(a) by extracting

the gap value in the single-particle tunnelling spectrum at every atomic position r.

We use the standard gap extraction procedure by linearly fitting the filled and empty

bands as well as the gap floor and then assigning the energy difference between

the intersection points as the gap value [88]. A typical differential conductance

spectrum that illustrates this procedure is shown in Fig. 6.5(a). The gap edges

used as inputs of the linear fittings are determined by the eye from the spatially

averaged dI/dV spectrum. The resulting gap map ∆(r) is shown in Fig. 6.8. The
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Figure 6.8: Image of the excitonic gap that is highly heterogeneous.

Fourier transform of the gap map reveals both atomic Bragg peaks and modulations

at the 2a0-CDW wavevectors. This differs from the homogeneous Peierls CDW

gap, where no electron-electron correlation is involved.

Similarly, by averaging the CDW unit cell over the entire gap FOV, we have

the averaged gap image 6.9(b). By comparing with the spectral weight transfer

image in the same FOV on the left side, it is evident that the gap value is low

wherever the spectral weight is high. This can be interpreted as a smaller gap value

facilitating charge transfer and thereby enhancing exciton formation.
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Figure 6.9: (a) Total spectral weight transfer map averaged over the entire FOV in Fig.
6.7. Black dashed rhombus indicates a CDW unit cell. Black solid circles indicate the
upper Se atoms, black solid squares indicate the Ti atoms and open black circles indicate
the bottom Se atoms which are not seen by STM. (b) The gap map averaged over the
entire FOV in Fig. 6.8. Yellow dashed rhombus indicates a CDW unit cell. Yellow solid
circles indicate the upper Se atoms, yellow solid squares indicate the Ti atoms, and open
yellow circles indicate the bottom Se atoms. Note that the labelled atomic locations are
proposed ones. Further experiments on simultaneous high-resolution topographies are
needed for precise atomic registration.

6.3 Summary and outlook

Using spectroscopic imaging STM, I have shown direct visualisation of the charge

transfer processes between the Ti and Se atoms associated with exciton formation.

Although a detailed comparison with the schematic of real-space charge transfer

image in Fig. 6.4 shows some difference, observation of two types of Ti atoms and Se

atoms is agreed. Moreover, the heterogeneous nature of the energy gap image reveals

that electronic correlation plays an important role and suggests the CDW formation

in 1T -TiSe2 is likely to originate from the electronic nature rather than the phonon-

mediated effects. There are also outstanding questions that remain to be answered.

For example, what is the structural factor of the excitons? Are there other broken

symmetries associated with exciton formation besides the broken translational

symmetry, such as chirality? At the time this thesis is being written, the experiment

is still ongoing, and I hope to address these interesting questions soon.
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A
Method for extracting the

supermodulation phase

The quasi-periodic crystal supermodulation is clearly observed in the topographic

image T (r) of the BiO layer of Bi-2212. This modulation pattern can be pa-

rameterized as

T ′(r) = As(r) cos Φ(r), (A.1)

Φ(r) = Qs · r + θ(r), (A.2)

where Qs is the supermodulation wavevector, Φ(r) is the total phase and θ(r)

represents the phase disorder. In order to extract Φ(r), the topographic image

T (r) is first Fourier-filtered that only keeps wavevectors near q = ±Qs. This

process can be expressed as

T ′(r) = 1
σ

√
2π

∫
T (q)

(
e

|q−Qs|2

2σ2 + e
|q+Qs|2

2σ2

)
exp(−iq · r)dq (A.3)

where T (q) is the Fourier transform of T (r).

Next, to quantify the phase disorder θ(r), a method based on the principle

of the lock-in amplifier is used [109]. Here, the Fourier-filtered image T ′(r) is

multipulied by the reference modulations α(r) = sin (Qs · r) and β(r) = cos (Qs · r)

respectively, resulting
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X(r) ≡ T ′(r)α(r) (A.4)

Y (r) ≡ T ′(r)β(r). (A.5)

Then after applying a low-pass filter to the product images that removes the a.c.

term, the phase disorder can be expressed as

θ(r) = arctan
(
Y (r)
X(r)

)
. (A.6)

Finally, the total phase modulation image can be obtained by adding back the perfect

modulation Qs · r, yielding Φ(r) = [Qs · r + θ(r)] mod 2π (as shown in Fig. 5.9(b)).



B
Visualising the charge transfer energy E

B.1 The setup effect

In visualising the supermodulation-induced charge-transfer energy variations, the

setup effect’s influence must be carefully considered. From Chapter 2, the to-

pographic image is expressed as

T (r, VS) = T0 ln
[∫ E=eVS

0
N(r, E)dE

]
(B.1)

where N(r, E) is the sample LDOS and Vs is the set-up bias voltage. The differential

conductance is expressed as

g(r, V ) = eIsN(r, E)/
∫ eVs

0
N(r, E)dE. (B.2)

Here, the differential conductance g(r, V ) is only proportional to the sample LDOS

provided that the denominator of Eqn. B.2 is homogeneous. Since the integrated

LDOS term is also present in the topography (Eqn. B.1), any significant modulations

of the Bi-2212 crystal supermodulation would then modulate
∫ eVs

0 N(r, E)dE at

the supermodulation wavevector Qs, rendering g(r, V ) not being proportional to

N(r, E). This is the “setup effect”.

To analyse this effect in our charge-transfer energy visualisation, we simulate

the effects by multiplying a typical differential conductance image g(r, V ) by a
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Figure B.1: (a) Spectrogram reproduced from Fig. 5.11(c). Modulations of the
lower filled bands are clearly visible. The upper empty states modulate very weakly. (b)
Simulated spectrogram that would occur due to a setup effect arising from the topographic
supermodulation. Both the filled and empty states modulate strongly.

periodic function A cos (Qs · r) that simulates the supermodulation presented in

the topography. The simulated spectrogram is shown in Fig. B.1 (b). If the setup

effect caused by the topographic supermodulation is the dominant phenomenon, the

two images in Fig. B.1 would look very similar. However, upon close comparison,

it is clear that the prominent modulation at Qs in the conduction band of the

simulated data is virtually non-existent in the experimental data. This demonstrates

that the setup effect is not the predominant feature of the modulations at Qs

in the measured g(r, V ) data.

B.2 Defining the charge-transfer gap

In our studies, the charge-transfer energy E is defined as the energy separation

between the edges of the valence and conduction bands at a constant differential

conductance G = 20 pS as shown in Fig. 5.11(b). The reasons for this definition

are explained below.

First, it is important to realise that the E(r) variations at Qs are not dependent

on any specific chosen G value. For instance, E(r) images that are extracted from



B. Visualising the charge transfer energy E 127

different values of G ranging from 20 pS to 80 pS are shown in Fig. B.2. The

variations in the spatial structure of the charge-transfer energy is very similar in E(r)

images defined with different choices of G. This is evident in the power spectrum

density Fourier transform of E(r) which shows clear ±Qs peaks. This implies that

the connection between E and the supermudulation phase Φ will be consistent for

any G examined in this context, though there might be variations in the amplitude

of E . Second, Oxygen dopants cause strong peaks in the differential conductance

spectrum in the range 40 pS < G < 80 pS, resulting in inaccurate estimation

of E . This is another reason for choosing G = 20 pS, where the dopant-atom

complication is kept at a minimum.
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Figure B.2: E(G, r) images defined at constant differential conductance of (a): 20 pS,
(c): 40 pS, (e): 60 pS and (g): 80 pS. (b), (d), (f) and (h) show the corresponding power
spectrum density images that demonstrate clear Qs peaks for different G values.



C
Evaluating the normal-state junction

resistance RN (r)

It is challenging to determine the normal state resistance RN in the Josephson

junction since the Josephson tunnelling current is measured in the range of several

hundreds of µV but RN is only quantifiable at 100 mV range (far away from

the coherence peaks in the dI/dV spectrum of a SIS junction) where Ohmic

I − V behaviour is shown. Therefore, we adapt a two-step procedure where we

first measure spectra at low voltage range (−15 mV < V < 15 mV) g1(r, V )

with a setpoint Is1 = 100 pA, Vs1 = 15 mV and spectra at high voltage range

(−350 mV < V < 350 mV) g2(r, V ) with a setpoint Is2 = 350 pA, Vs2 = 350 mV.

Then the normal state resistance of the low voltage spectra can be calculated from

scaling that of the high voltage spectra. The detailed procedure is shown below:

1. g1(r, VJ) is fit with a parabolic curve g1 = a1V
2

J + b1 over the voltage range

[−Vs1, Vs1] at every position r.

2. g2(r, VJ) is fit with a parabolic curve g2 = a2V
2

J + b2 over the voltage range

[−V0, V0], where 15 mV < V < 50 mV.

3. The scaling factor between g2(r) and g1(r) is determined via the relation

g1(r) = g′
2(r) = α(r)g2(r) + β(r), where α = a1

a2
, β = b1 − b2

a1
a2

.
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Figure C.1: Image of the normal-state junction resistance RN (r) ≡ 1/g′
2 (r, Vs2) at

which the g1 (r, VJ) map was measured.

4. The normal state junction resistance of the low voltage difference conductance

map g1(r, VJ) can be calculated through RN(r) ≡ 1
g′

2(r,Vs2) .

A image of the normal-state junction resistance in the same FOV of Fig. 5.11(d)

is shown in Fig.C.1.
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