

PREVIEW EGU General Assembly 2024 © Author(s) 2024. This work is distributed under the Creative Commons Attribution 4.0 License.

Supraglacial Lake Drainage: from process puzzle to subglacial diagnostic

Laura A. Stevens¹, Alison F. Banwell², Mark D. Behn³, Danielle L. Chase⁴, Sarah B. Das⁵, Rebecca L. Dell⁶, Emily Falconer¹, Ian R. Joughin⁷, Ching-Yao Lai⁸, Stacy Larochelle⁹, George J. Lu⁹, Jeffrey J. McGuire⁵, Meredith Nettles⁹, Marianne Okal¹⁰, Joshua Rines⁸, and Ian C. Willis⁶ ¹Department of Earth Sciences, University of Oxford, Oxford, UK

²Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA

³Department of Earth and Environmental Sciences, Boston College, Chestnut Hill, MA, USA

⁴Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, USA

⁵Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA, USA

⁶Scott Polar Research Institute, University of Cambridge, Cambridge, UK

⁷Polar Science Center, Applied Physics Laboratory, University of Washington, Seattle, WA, USA

⁸Department of Geophysics, Stanford University, Stanford, CA, USA

⁹Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA

¹⁰EarthScope Consortium, Socorro, NM, USA

Supraglacial lake drainages are isolated events that deliver the largest observable fluxes of surface melt to the ice-sheet bed. This talk will present advances in the study of these lake drainages, through which we piece together an empirical understanding of glacier hydrology. We examine the ways in which lakes both respond to, and determine, the hydrologic and glaciologic conditions under which they exist. We begin with the process puzzle of what mechanisms drive the opening of fractures within the compressive regions where lakes form, allowing hydro-fracture-driven drainages to occur. Next, we follow drained lake water in time and space, using the natural experiments provided by the drainages to infer subglacial-drainage-system transmissivity and structure beneath kilometer-thick ice flowing at rates of tens to thousands of meters per year in Greenland. In widening our view to previous subglacial-flood events observed at other ice-sheet locations—as well as at alpine, valley, and tidewater glaciers—we observe surprising similarities across a wide range of ice thicknesses, flow speeds, and types of flood events. The similarities we observe are encouraging because they suggest that information on drainage-system structure and evolution gleaned from these episodic events can be used to understand the wider picture. Finally, we examine current challenges: how do we move from the observed mechanisms of individual lake drainages to an integrated understanding of the importance of hundreds of drainages for long-term ice-sheet response and ice-shelf collapse? Progress will require the combination of geodetic observations, hydrologic simulations, and geophysical models to deconvolve the differing mechanisms that result in clusters of drainages in the multiple settings in which lakes form.