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Multifaceted consequences of visual
distraction during natural behaviour
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Levi Kumle 1,2 , Melissa L.-H. Võ 3, Anna C. Nobre 1,2,4 & Dejan Draschkow1,2

Visual distraction is a ubiquitous aspect of everyday life. Studying the consequences of distraction
during temporally extended tasks, however, is not tractable with traditional methods. Here we
developeda virtual reality approach that segments complexbehaviour into cognitive subcomponents,
including encoding, visual search, workingmemory usage, and decision-making. Participants copied
a model display by selecting objects from a resource pool and placing them into a workspace. By
manipulating the distractibility of objects in the resource pool, we discovered interfering effects of
distraction across the different cognitive subcomponents. We successfully traced the consequences
of distraction all the way from overall task performance to the decision-making processes that gate
memory usage. Distraction slowed down behaviour and increased costly bodymovements. Critically,
distraction increased encoding demands, slowed visual search, and decreased reliance on working
memory. Our findings illustrate that the effects of visual distraction during natural behaviour can be
rather focal but nevertheless have cascading consequences.

Consider following a recipe when baking. We have no trouble finding the
necessary utensils and ingredients in the kitchen and combining them into a
comforting product. Even as children, we can follow Lego instructions,
finding the required pieces and assembling them in the right order into our
creations. During such natural behaviours, we often encounter many
competing visual objects (distractors) while we hold the relevant object in
mind (e.g., seeing theflour aswe search for the sugar or rummaging through
many Lego bricks to find the red tile). Despite the distractions, we usually
succeed in completing our behavioural goals.

Effects of distraction on core components of natural behaviour,
such as working memory (WM)1–10, attentional allocation during visual
search11–22, and decision-making23–26 have long been investigated in
separate branches of research. This separation has been essential for
addressing fundamental questions about the mechanisms that help us
handle distracting information during perceptual tasks (reviewed in
refs. 27–33) and protect information we hold in in mind from dis-
traction (reviewed in refs. 34,35).

However, accomplishing complex goals during natural behaviour
often necessitates the coordination of multiple cognitive processes.
Understanding distraction during unconstrained behaviours, therefore,
requires considering cognitive processes – and their interconnections–
jointly36–40. For instance, imagine it takes us longer to find the sugarwhile we
are assembling the recipe because the kitchen is very cluttered. Distraction,
in this example, interferes with an isolated cognitive subcomponent: visual

search. However, would such interference affect other cognitive sub-
components once we found the sugar? Would we structure our overall
behaviour differently, knowing the kitchen is cluttered? We know little
about the temporally extended consequences of distraction during naturally
unfolding cognition.

Here, we developed a virtual reality (VR) approach to separate and
quantify core cognitive subcomponents in an immersive context to study
the impact of visual distraction in naturally unfolding behaviour. During an
adapted object-copying task41,42, participants copied a model display by
selecting realistic objects from a resource pool and placing them into a
workspace (Fig. 1a, Supplementary Movie 1). Compared to traditional
laboratory studies, participants could freely decide when to look back at or
move away from the model display (i.e., stop and start encoding). That is,
participants could choose between using their memory representations to
guide behaviour (memory-guided behaviour) and looking back at objects
within the model.

Building upon a rich theoretical tradition of breaking down complex
behaviour into subtasks36,37, ourVRmethod and the sequential nature of the
task allowed us to segment continuous behaviour into elemental cognitive
subcomponents (Fig. 1b). We tracked head, hand, and eye movements as
well as their interactions with the virtual environment to quantify sub-
components such as encoding, visual search, and working-memory usage.
Critically, this approach allowed us to capture sensorimnemonic decisions
(i.e., decisions about whether to rely on information in the external
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environment versus on information stored inmemory; Fig. 1b), which have
received limited scientific attention.

Critically, participants completed the task in either a high- or low-
distraction condition (Fig. 1a, Supplementary Movie 2). We manipulated
the opacity of irrelevant objects in the resource pool, thus increasing visual
competition while searching for task-relevant objects. This allowed us to
directly investigate the influences of visual distraction on several cognitive
subcomponents of naturally unfolding behaviour. Working memory usage
is generally low during natural behaviour41–45 but increases when additional
movement effort is required to access information in the external
environment42. To experimentally induce more variability in participant’s
WM usage and investigate how the impact of distraction varies depending
on locomotor demands, we therefore also included two movement effort
conditions (Fig 1a, Supplementary Movie 3).

To foreshadow, this studymakes three distinct contributions. First, we
replicate that reliance onWM increased as sampling information from the
environment required increased locomotion42. Second, we develop analy-
tical tools that segment continuous behaviour into its core subcomponents.
Third, we illustrate how specific changes in sensory parameters of the
environment can have multiple cascading consequences for processes that
are contingent on the affected subcomponent.

Methods
Participants
Thirty participants (Mean age = 24.5, range = 18–32, 22 women, 8 men, 0
other, 26 right-handed, 4 left-handed, all self-reported) were recruited at
GoetheUniversity Frankfurt (n = 20) and theUniversity ofOxford (n = 10).
All participants had a normal or corrected-to-normal vision (contact lenses;
including colour vision) and provided informed consent prior to partici-
pating in the study. Participants recruited at Goethe University were com-
pensated with course credit. At the University of Oxford, participants
received £10/h as compensation. Participants completed an identical pro-
tocol at two testingdays (T1-T2: 7–12days). Participantswere only included
if they completed both testing days (n = 1participantwas replaced following
non-participation on the second testing day) and data fromboth timepoints
were combined for all reported analyses. The research protocol was
approved by the local ethics committee of the Faculty of Psychology and
Sport Sciences at Goethe University Frankfurt as well as the Central Uni-
versityResearchEthicsCommittee,University ofOxford (#R64089/RE001).
Participants gave informed consent, and all relevant ethical regulationswere
followed throughout the study protocol.

Given that most dependent measures within our VR approach are
unique to the present study, effect sizes to run a-priori power analyses were
difficult to determine. Therefore, sample size planning was guided by a
previous study using a similar VR paradigm42, combined with a high trial-
number approach to maximise the number of observations per participant.
We ran simulation-based power analyses for the outcome variables attri-
butes used in memory, display completion time, and model viewing time
based on data fromDraschkow and colleagues42.We explored power over a
range of simulated effect sizes for the main effect of distraction (for details
see shared materials). Thirty participants, each completing 224 trials, yiel-
ded power > 90% to detect an absolute mean difference of 0.04 attributes
used inmemory, 0.7 seconds in display completion time, and 8milliseconds
in model viewing time between distraction conditions. We did not pre-
register the study protocol.

Apparatus and virtual environment
Participants were equipped with an HTC Vive Tobii Pro VR integration
with a built-in binocular eye tracker and one wireless HTCVive Controller
in their dominant hand. The head-mounted display (HMD) consisted of
two 1080 ×1200 pixel resolution OLED screens (refresh rate = 90Hz, field-
of-view = 100°horizontally 3 ×110° vertically). Gaze was tracked at a sam-
pling rate of 90Hz (refresh rate ofHMD) and an accuracy of approximately
0.5° visual angle. Gaze position in 3D spacewas obtained by intersecting the
gaze vector with objects in the VR environment. Identical equipment was
used at both locations (Frankfurt and Oxford).

We tracked the location in space for both the HMD and hand-held
controller using two Lighthouse base stations emitting infrared pulses (60
per second) detected by the sensors in the devices (37 infrared sensors in the
HMD and 24 in the controller). Tracking was further optimized by an
accelerometer and a gyroscope embedded in the HMD, resulting in sub-
millimetre precision.

A trigger button (operated with the index finger) and grip button
(operated with the thumb) on the wireless controller were used for inter-
acting with the environment. Participants pulled, held, and released the
trigger button to grab, move, and place objects. The grip buttons were used
to advance to the next stage of the experiment (e.g., start a new trial, and start
calibration of the eye-tracker).

The virtual environment consisted of two alternating 400 × 400-cm
rooms with a ceiling height of 240 cm: An Instruction room and a Trial
room (see Supplementary Movie 2 and 3). The Instruction room displayed
instructions and a fixation cross on the front-facing wall. A blue square on

Fig. 1 | Subcomponents in VR Object copying task. a In the temporally extended
VR protocol, participants copied a “model” arrangement by selecting realistic
objects froma “resource”pool and placing them into a “workspace” (Supplementary
Movie 1). Bymanipulating the transparency of the distractor objects in the resource
pool, the participants completed the task in either a high or low distraction con-
dition (Supplementary Movie 2). When copying the objects, the model was posi-
tioned either directly above the workspace (low movement effort) or rotated 90°
(high movement effort, Supplementary Movie 3). b Our VR protocol allowed us to

break down the overall behavioural goal of copying the model arrangement by
capturing several proxy measures of hallmark cognitive subcomponents. First,
participants had to encode information from the model (i.e., Encoding). Next,
participants searched for encoded objects in the resource pool (i.e., Visual search).
Both picking up and placing an object additionally required participants to use
information stored in memory (i.e., Memory usage). Critically, participants could
choose when to look back at the model (rely on the external environment) or when
to rely on memory to guide behaviour (i.e., Sensorimnemonic decisions).
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the ground indicated the centre of the room. Participants could only
advance to thenextTrial room if positionedon theblue square andwhen the
gaze intersected with the fixation cross. The Trial room contained three
task-relevant stations: A model display, a resource pool, and a workspace.
The model display consisted of 18 square white placeholders (arranged in a
grid of 3 rows of 6 placeholders). Eight placeholders were occupied by
pictures of the target objects in a random configuration. Above themodel, a
timer counting backwards from 45 seconds was displayed. Within the
resource pool, participants would find an arrangement of 24 cubes (10 ×
10 cm), organized in three rows of 8 cubes, as viewed from a frontal per-
spective, including the 8 targets seen in the model and an additional 16
distractors. The cubes were overlaid with images of objects from the Novel
Object and Unusual Name Database46, which had the advantage of being
naturalistic while also unfamiliar and difficult to verbalize. Images for both
target anddistractor objectswere selected froma stimulus pool of 60 images,
for each display and participant. The location and identity of target objects
in the model display was pseudo-randomized, ensuring that a specific
arrangement would not repeat across trials for any given participant. The
workspace consistedof an emptygridof 18whiteplaceholdersmirroring the
configuration of the model display.

The virtual environment and experiment were programmed and run
in Unity (version 2019.3; Unity Technologies) using the SteamVR Unity
plugin (version 1.2.10; Valve Corporation) on a computer operated with
Windows 10.

Procedure and task
Upon arrival, participants gave informed consent, were screened for vision
requirements, and then familiarized with the HMD and the wireless
controller.

During the task, participants had to copy the arrangement of objects
seen in a model display by picking up the corresponding objects from the
resource pool and placing them at the correct corresponding location in the
workspace (see Fig. 1b and Supplementary Movie 1). Following a correct
placement, the placed object “locked into” the workspace, and green con-
tours indicated correct placement. Replacement objects (i.e., identical to the
placed object) reappeared in the resource pool following correct placement
to keep the number of objects in the resource pool constant. In case of an
erroneous placement, the placeholder would light up red and the object
would not lock into the workspace, nudging participants to correct their
mistake. Participants could not pick up another object until the previously
picked-up object was placed correctly: all other objects in the resource pool
disappeared until the not-yet (correctly) placed object was placed correctly
or brought back to the resource pool. This ensured that a) participants
corrected their mistake before continuing with the task, preventing any
flow-over ofmistakes into the next task action andb) completed the task in a
sequential object-by-object manner, prohibiting them from moving mul-
tiple target objects from the resource pool to the workspace before placing
them in their corresponding placeholders.

No further instructions were provided apart from solving the task as
accurately as possible, allowing participants to structure their behaviour
freely. Trials timed out after 45 seconds, and participants were informed
about their remaining time through a backwards counting timer above
the model.

Critically, wemanipulated the task environment in two ways. First, we
varied the amount of visual distraction while searching for task-relevant
objects in order to investigate the effect of the visual distraction on different
subcomponents of behaviour. Specifically, we changed the opacity of dis-
tractor objects in the resource pool (Fig. 1 and Supplementary Movie 2),
manipulating the discriminability between targets and distractors, and
therefore distractibility, while participants searched for and picked up target
objects. In the low-distraction condition, distractor objects were overlaid
with a white plane set to 20% transparency. In the high-distraction condi-
tion, distractor objects appeared with the same opacity as target objects.We
will henceforth denote thismanipulation as distraction. Second, themodel’s
location was varied (0° or 90° relative to the workspace, Fig. 1a and

Supplementary Movie 3), thus manipulating the movement effort asso-
ciated with encoding information from the model42. Prior work demon-
strated that reliance onmemory during naturalistic tasks is generally low42,43

but increases when accessing information in the task environment becomes
more effortful42–45,47. For example, as the distance to themodel increases (i.e.,
requiring greater movement effort to look back to the model), participants
spendmore time encoding from themodel aswell as relying onWMmore42.
Replicating previous work42, we manipulated movement effort to experi-
mentally induce more variability in how much participants relied on WM,
allowing us to observe the effects of visual distractionduring a broader range
of naturalistic memory usage.

On both testing days, participants completed a minimum of four
practice trials to familiarise themselves with the task and the VR environ-
ment. The practice phase ended if participants were able to finish the last
practice trial within the time constraint of 45 seconds. Otherwise, onemore
practice trial was added until this condition was met. Afterwards, partici-
pants completed 8 blocks of 14 displays. Eachblock consisted of trials froma
single condition (e.g., 90° and high distraction) andwas further divided into
two sub-blocks (7 displays each) differing in the relative positions of the
model and resource displays and, therefore, direction of required move-
ment. That is, participants had to either turn to the right or left to find the
resource pool. The order of sub-blocks was randomized within each block
and participant. A 5-point calibration was performed after each block or
manually whenever participants failed the fixation-check protocol.

The 8 blocks were further divided into two sessions consisting of 4
blocks each. A mandatory break (5–10minutes) was included between
sessions during which participants took off the HMD and could rest. Both
sessions contained all combinations of conditions, and the order of blocks
was randomized within each session. In total, participants completed 112
displays per testing day (28 displays and 224 copied objects per condition,
224 displays overall). The experiment lasted approximately 90–120minutes
on each testing day.

Data processing and measures
Frame-by-frame (90 Hz) data were written into csv-files during recording.
For each frame, we recorded which objects in the VR environment were
looked at, the location in space of both HMD and controller, as well as all
relevant interactions with the environment (e.g., if and which object was
grabbed). For the purpose of data analysis, we then segmented and sum-
marised our data in order to extract metrics for the subcomponents high-
lighted in Fig. 1b.

Overall behaviour. We quantified overall behaviour through display
completion time and total head movement. Display completion time was
calculated by summing up all frame durations from trial start to end. The
total head movement per display was determined by first calculating the
Euclidian distance of the coordinates of the HMD between subsequent
frames, which were then all summed up from trial start to end.

Encoding. To quantify encoding, we first identified the periods in which
participants looked at the model (i.e., the gaze intersected with the
model). The start of an encoding period was set as the frame when gaze
first intersected with the model. An encoding period was considered
finished when the gaze stopped intersecting with the model and gaze did
not return to themodel within 25 frames (~250 ms). To further qualify as
an encoding period, participants had to have either looked at the resource
pool or workspace before their gaze returned to the model. After deter-
mining periods of encoding, model viewing time was calculated by
summing up frame durations from encoding start to end. The number of
model viewings per display was determined by counting periods of
encoding within each trial (i.e., display). Total encoding per display was
calculated by summing up all model viewing times within each trial. We
additionally determined the number of targets encoded by counting the
number of individual target slots that gaze intersectedwith for at least two
consecutive frames (~20 ms) within each period of encoding.
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Visual search. Similarly, we quantified visual search by first identifying
periods in which participants searched for objects in the resource pool.
The start of a visual search period was set to the frame when the gaze first
intersected with the resource pool. We considered a visual search period
to be finished when participants picked up an object from the resource
pool. We then calculated search time by summing up frame durations
from search start to end. The number of looked-at objects during each
search was determined by counting the number of objects (targets and
distractors separately) in the resource pool the gaze intersected with for at
least two consecutive frames (approx. 20 ms) within each search. We
additionally determined object viewing time, which was calculated by
determining periods within one search where the gaze intersected with a
specific object in the resource pool (for at least two consecutive frames)
and summing up the frame durations while the gaze intersected with this
specific object.

WMusage.WMusage was calculated by segmenting task behaviour into
sequences, which each started and ended with an encoding period. For
example, a sequence could consist of an initial gaze on the model, fol-
lowed by a gaze to the resource pool and workspace before concluding
with another gaze on themodel, whichwouldmark the end of the current
and the beginning of the next sequence. To further qualify as a sequence,
participants had to have either looked at the resource pool or workspace
in between gaze on the model. Since the successful copying of one object
minimally requires the usage of two representational attributes (the
object’s identity forfinding and picking it up, and its location for correctly
placing it), attributes used inWMwere calculated by counting the correct
pick-ups and placements of target objects within each sequence.

Sensorimnemonic decisions. We identified two discrete sensor-
imnemonic decisions (i.e., decisions of whether to rely onmemory versus
information in the external world) within the object copying task. First,
after picking-up a target object from the resource pool, participants had
to decide between relying on the (previously encoded) location of the
object or gathering information from the model to guide their next pla-
cement (i.e., a location-related decision). Consequently, location-related
decisions were locked to the frame (90 Hz) after a target had been picked-
up. We then determined if participants re-fixated the model before pla-
cing the picked-up object. If participants placed the picked-up object
without re-fixating the model first, participants decided to rely on
memory to place the object. Second, after placing a target object in the
workspace, participants had to decide between using memory to pick up
the next object or first to re-fixate the model to encode identity infor-
mation (i.e., identity-related decision). Identity-related decisions were
therefore locked to the frame after an object placement. We then iden-
tified if participant re-fixated themodel before picking-up the next target.
If participants did not re-fixate the model, participants decided to rely on
memory to pick-up the object. Sensorimnemonic decisions were further
indexed by their position within a WM usage sequence. That is, if par-
ticipants encoded, then searched and picked-up an object, the following
location-related decision would be the first sensorimnemonic decision
within this behavioural sequence. If participants decided to rely on
memory to place the picked-up object, the following identity-related
decision would be the second sensorimnemonic decision within this
behavioural sequence. The probability of using memory for each sen-
sorimnemonic decision (i.e., for each position within the behavioural
sequence separately) was then calculated as the proportion of sensor-
imnemonic decisions during which participants decided to rely on
memory divided by the total number of decisions.

Errors. We identified two types of errors: Identity and location errors.
Any pick-up of a non-target object (i.e., distractor object or previous
target that has already been placed) from the resource pool was counted
as an identity error. For location errors, we considered all instances in
which participants attempted to place a picked-up target object (i.e.,

attempted placements of non-targets were not considered). All place-
ments in an incorrect workspace slot were counted as a location error.
Errors were further indexed by their position within their behavioural
sequence as well (i.e., for details see WM usage and sensorimnemonic
decisions above). The percentages of location/identity errors at each
position within the behavioural sequences were then calculated as the
proportion of incorrect placements/pick-ups of the total number of
placements/pick-ups.

Data analysis
All data were pre-processed and analysed in the R statistical programming
language (version 4.2.2;48) usingRStudio (version 2023.6.2.561;49). The lme4
package50 was used to run linear mixed models (LMMs) and generalised
linear mixed models (GLMMs), which were all fitted with the restricted
maximum likelihood criterion.

To meet LMM assumptions, distribution and power coefficient of all
continuous dependent variables were inspected using the MASS package51

and the Box-Cox procedure52. As a result, all continuous dependent vari-
ables except total encoding time were log-transformed. Sum contrasts were
defined formovement effort conditions (0° vs. 90°) as well as the distraction
conditions (high vs. low). Accordingly, the grand mean of the dependent
measure serves as the intercept, and slope coefficients can be interpreted as
main effects. Additional continuous predictor variables were z-transformed
(scaled and centred).

Model selection always started with the maximal random-effects
structure53. If not specified otherwise, this included subject random inter-
cepts as well as by-subject random slopes for movement effort and dis-
tractibility as well as their interaction. We then identified potential
overparameterization in each model by using a principal component ana-
lysis (PCA) of the random effect variance-covariance estimates and
removed random slopes that were not supported by the PCA and did not
contribute significantly to the goodness of fit in a likelihood ratio (LR) test50.

For LMMs, we report regression coefficients β with the t statistic. P-
values are calculated with Satterthwaite’s degrees of freedommethod using
the lmerTest package54. For GLMMs, we report β with the z statistic and p-
values are based on asymptotic Wald tests. For all models, we apply a two-
tailed criterion corresponding to a 5% error criterion for significance. Sig-
nificant interactions were broken down by examining planned pairwise
comparisons using the emmeans package55 with default Tukey-adjusted p-
values, as well as through conditional effects using the ggeffects package56.
Where applicable, differences inmeans betweenplanned comparisons were
compared using paired t-tests48. All pairwise comparisons were additionally
followed up by paired Bayesian t-tests using the BayesFactor package57, with
default priors (r = 707) to test the null hypothesis (m = 0) against an alter-
native hypothesis suggesting a non-zero effect size (r = 0.707). In line with
reporting policies, we additionally report ηp

2 for LMMs and the corre-
sponding 95% confidence intervals using the effectsize package58. Note that
for GLMMs, β acts as a standardised effect size measure and we report
Wald’s confidence intervals referring to the reported β. For all pairwise
comparisons, we report Cohen’s d and the corresponding 95% confidence
intervals as an effect size measure58. Visualizations were done using the
ggplot2 package59 and standard errors for plots were computed using the
Rmisc package60.

Overall behaviour. Only trials that were completed before the timeout
(i.e., < 45 seconds) were included in the analyses of overall behaviour (101
trials excluded across all participants; 1.5% of data). The effect of
movement effort, distraction, and their interaction ondisplay completion
time and total head movement was analysed using LMMs and we report
outcomes of the full models. For a complete report of the results, see
Supplementary Tables 2 and 3.

Encoding. For all analyses concerning encoding, we excluded encoding
periods that were not followed by either gaze on the workspace or
resource pool (2.6% of encoding periods). Since the model appeared in
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front of the participant at trial start and participants had to first orient
themselves in the trial room, we further excluded the first encoding
period in each display (additional 9.4% of encoding periods). Addi-
tionally, encoding periods with amodel viewing time that lasted less than
50 ms (0.5% excluded) were excluded. Next, we removed encoding epi-
sodes with a model viewing time of more than 3.5 standard deviations
above the individualmean across all conditions (additional 1.4%), leaving
60,976 encoding periods that entered analysis. For total encoding time
and model viewings per trial, only trials that have been completed before
timeout were included in the analysis (see overall behaviour above). The
effect of movement effort, distraction, and their interaction on total
encoding time and model viewing time was then analysed using LMMs.
Model viewings per trial and the number of encoded objects were ana-
lysed using GLMMswith a Poisson distribution. For total encoding time,
model viewing time, andmodel viewings per display, we report outcomes
of the full models. The random-effect structure for the best fitting model
for number of targets encoded included a subject intercept and by-
subject random slope for movement effort. For a complete report of the
results, see Supplementary Tables 4 and 5.

Visual search. Search periods with a search time of less than 50 ms
(<0.1% excluded) and search periods that ended with a pick-up error
(additional 2.0% of searches) were excluded from all analyses on the
visual search subcomponent. Additionally, we removed search periods
with a search time of more than 3.5 standard deviations above the
individual mean across all conditions (additional 1.2%), leaving
55,093 searches that entered analysis. The effects of movement effort,
distraction, and their interaction on search time and object distractor
viewing times (targets and distractors separately) were then analysed
using LMMs. The number of looked-at objects (targets and distractors
separately) was analysed using GLMMs with a Poisson distribution. For
all analyses, we report outcomes of the full models. For a complete report
of the results, see Supplementary Tables 6 and 7.

WM usage. Given the tight link between encoding periods and the
behavioural sequences used to quantifyWMusage, we included the same
data that entered analyses for encoding in our analyses forWMusage (see
exclusion criteria above). The effect of movement effort, distraction, and
their interaction on the number of attributes used in WM was then
analysed using GLMMs with a Poisson distribution. The random-effect
structure for the best-fitting model included a subject intercept and by-
subject random slopes formovement effort and distraction. Additionally,
we computed the probability of different numbers of attributes used in
WM.Differences inmeans between distraction conditions were analysed
nested in movement effort conditions, using planned paired pairwise t-
tests as well as paired Bayesian t-tests. We further investigated the rela-
tionship between the number of attributes used inWMand the preceding
encoding episode. Here, model viewing time entered the fixed effect
structure as an additive predictor. The random-effect structure for the
best-fitting model with this added predictor again included a subject
intercept and by-subject random slopes for movement effort and dis-
traction. For a complete report of the results, see Supplementary
Tables 8–10.

Sensorimnemonic decisions. Given the unconstrained nature of the
VR task, sensorimnemonic decisions could be preceded by vastly dif-
ferent behaviour. Nonetheless, to compare the different types of sen-
sorimnemonic decisions across distractor conditions, we aimed to align
the decisions within their behavioural sequences as stringently as pos-
sible. To do so, we focused on decisions within sequences during which
participants searched and picked up an object directly after encoding
from the model (70% of sequences in 90° movement effort condition).
That is, the first sensorimnemonic decision in this type of behavioural
sequence was a location-related decision (i.e., decide to place the picked-

up object vs. encode location from the model first; see Supplementary
Notes 4 for analysis on decisions within the remaining 30% of sequences
that started with placement and an identity-related decision). Further,
decisions were only included if the initial encoding period of the decision
sequence was within the inclusion criteria for encoding periods (see
encoding above). Decisions were also excluded if we could not identify
and match the search period preceding the first location-related decision
or if this search period was outside of the exclusion criteria for search (see
visual search above). Additionally, decisionswere excluded if participants
were disrupted during the behavioural sequence leading up to the deci-
sion (e.g., by making an error that had to be corrected), if participants
decided to rely on memory but made a mistake (e.g., decided to place a
picked-up object but placed the object at the wrong location), or if the
decision was not followed by either encoding from the model or place-
ment/pick-up (e.g., the trial ended or following action could not be
identified due to idiosyncratic behaviour). Since participants pre-
dominantly relied on only one attribute when movement effort was low
(i.e., participants only rarely reached the second identity-related deci-
sion), we focused on decisions in trials with high movement effort. Here,
participants relied on up to four attributes often enough for us to consider
three consecutive sensorimnemonic decisions. Overall, 13,198 decisions
were included in the analysis for the first location-related decision, 7833
decisions were included in analysis regarding the second identity-related
decisions, and 1670 decisions remained for the third location-related
decision. The effect of distraction on the probability of using memory
(i.e., sampling from model vs. direct placement or pick-up using mem-
ory) was then investigated using GLMMs with a Binomial distribution.
For the first location-related decision and the second identity-related
decision, we report outcomes from the full model. That is, the random-
effect structure included a subject intercept and by- subject random
slopes distraction. The random-effect structure for the best-fitting model
for the third location-related decision only included a subject intercept.
For a complete report of the results, see Supplementary Table 11.

Errors. Analyses of error rates were based on the same data used to
analyse sensorimnemonic decisions. That is, we again focused on errors
within sequences during which participants searched and picked up an
object directly after encoding from themodel display (see Supplementary
Notes 4 for analysis of errors within sequences that started with a pla-
cement). In comparison to analyses on sensorimnemonic decisions,
however, sequences with incorrect placements and pick-ups were not
excluded. Given that incorrectly picked-up objects inadvertently lead to a
placement error if participants attempted to place a non-target object
(combined with the general disruption caused by the need to correct
errors), sequences were excluded after the first error occurred. Any
subsequent errors within the same behavioural sequence therefore did
not enter data analysis to keep location and identity errors pure. Addi-
tionally, since errors had to be corrected immediately and therefore
differed from correct placements/pick-ups in how participants could
proceed with the task, placement, and pick-ups were included irrespec-
tive of the following action. This left us with 13,825 pick-ups immediately
following encoding from the model (i.e., first pick-up), 10,080 first pla-
cements, 1845 second pick-ups, and 1523 second placements. The effect
of distraction on location or identity errors (i.e., correct vs. incorrect
placement or pick-up) was then investigated using GLMMs with a
Binomial distribution. Separate models were run for the first and second
pick-up or placement in the behavioural sequences respectively. The
random-effect structure for all best fittingmodels only included a subject
intercept. For a complete report of the results, see Supplementary
Table 12.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.
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Results
In this section, we first consider the consequences of visual distraction on
summary measures of overall temporally extended behaviour. We then
dissect the extended behaviour into standalone cognitive subcomponents
and separately focus on the effects of distraction on encoding, visual search,
WM usage, and sensorimnemonic decision-making. In the Results section,
we highlight the most relevant findings. The full outputs for the mixed-
effectsmodelling approach can be found in the SupplementaryTables 1–12.

Distraction slows down behaviour and increases costly body
movements
To test whether encountering more visual distraction while searching for
target objects impedes overall behaviour, we calculated the time required to
copy each display (i.e., display completion time, Fig. 2a, top) as well as the
total head movement associated with copying a display (i.e., total head
movement, Fig. 2b).

Both distraction and movement effort produced changes in overall
behaviour. High distraction significantly slowed display completion time
(β = 0.05, SE = 0.003, t = 18.23, p < 0.001, ηp

2 = 0.92, CI95% = [0.86, 0.95])
and led to more head movement (β = 0.02, SE = 0.002, t = 9.15, p < 0.001,
ηp

2 = 0.75, CI95% = [0.56, 0.84]), compared to the low distraction condition.
Unsurprisingly, high movement effort also led to more head move-

ment while copying displays (β =−0.06, SE = 0.003, t =−22.07, p < 0.001,
ηp

2 = 0.94, CI95% = [0.91, 0.96]). Additionally, highmovement effort also led
to slower display completion times (β = –0.08, SE = 0.003, t = –24.79,
p < 0.001, ηp

2 = 0.95, CI95% = [0.92, 0.97]), replicating previous findings42.
For display completion time, movement effort and distraction interacted
(β = 0.01, SE = 0.002, t = 4.00, p < 0.001, ηp

2 = 0.36, CI95% = [0.10, 0.57]):
high distraction slowed down global behaviour more strongly when
movement effort was low (t = 2.05, df = 29, p = 0.02; d = 0.37, CI95% = [0,
0.74]; BF10 = 1.21), but the difference inmeans (0.52 s) was small relative to
the overall display completion times and the follow-up Bayesian t-test
provided no credible evidence in favour of the alternative hypothesis.

Distraction influences overall encoding demands
As a proxy for encoding, we next isolated the periods participants spent
viewing the model during the selection of to-be-copied objects (Fig. 1b).
Both distraction and movement effort affected encoding demands during
the task, although in distinct ways.

High distraction was associated with longer total encoding per display
(β = 0.14, SE = 0.03, t = 5.04, p < 0.001, ηp

2 = 0.47, CI95% = [0.20, 0.65];
Fig. 3a). Specifically, participants encoded from themodelmore oftenwhen
distraction was high (β = 0.03, SE = 0.01, z = 5.19, p < 0.001, CI95% = [0.02,
0.04]; Fig. 3c), but we observed no meaningful difference in the time par-
ticipants spent encoding during each encoding episode (β = 0.01, SE =
0.003, t = 1.90, p = 0.07, ηp

2 = 0.11, CI95% = [0,0.34]; Fig. 3b) or in the
number of objects encoded from the model during each episode (see Sup-
plementary Notes 1 and Supplementary Fig. 1). The effect of distraction on

model viewing time was subtly moderated by movement effort (β = 0.01,
SE = 0.003, t = 2.34, p = 0.03, ηp

2 = 0.17, CI95% = [0.01, 0.41]). Planned
comparisons revealed that model viewing time between distractor condi-
tions did not differ when movement effort was high (β < 0.0001, SE = 0.01,
z = 0.01,p = 1,d = –0.02,CI95% = [−0.38,0.34]),with a follow-upBayesian t-
test (BF10 = 0.20) providing moderate evidence in favour of the null
hypothesis. During the low movement effort condition, participants enco-
ded slightly longer when distraction was high compared to low (β = 0.02,
SE = 0.01, z = 2.86, p = 0.02, d = –0.52, CI95% = [−0.83, −0.13]), with a
follow-up Bayesian t-test (BF10 = 5.19) providing moderate evidence in
favour of the alternative hypothesis. However, the difference between pre-
dictedmeans during lowmovement effort was very small (~9.5ms) relative
to the overall model viewing time.

In comparison,movement effort influenced overall encoding demands
by affecting both encoding frequency and durations. Interestingly, partici-
pants devoted less time in total encoding per display (β = 0.28, SE = 0.05,
t = 5.20, p < 0.001, ηp

2 = 0.48, CI95% = [0.21, 0.66]; Fig. 3a) when movement
effort was high. This is the result of encoding longer during each encoding
episode (β = –0.19, SE = 0.02, t = –11.44, p < 0.001, ηp

2 = 0.82, CI95% = [0.68,
0.89]; Fig. 3b) in combination with encoding from the model less often
(β = 0.25, SE = 0.02, z = 15.37, p < 0.001, CI95% = [0.22, 0.29]; Fig. 3c). This
replicates previous findings showing that participants “loaded-up” more
information in one gowhen the task wasmore effortful (see Supplementary
Notes 1)42.

Given the temporally-extended nature of each trial, we conducted a
post-hoc analysis into potential temporal effects in the encoding sub-
component, showing that the effects of distraction and movement effort go
above and beyond any temporal task effects (see Supplementary Notes 2).

Distraction interferes with visual search
To investigate the effect of distraction on the visual search subcomponent
(Fig. 1b),we isolatedperiodsduringwhichparticipants searched for relevant
objects in the resource pool (Fig. 4). Encountering more distracting dis-
tractor objects while searching for target objects strongly interfered with
visual search.

Participants were slower to find objects when faced with high dis-
traction (β = 0.1, SE = 0.004, t = 26.16, p < 0.001, ηp

2 = 0.96, CI95% = [0.93,
0.97]; Fig. 4a). Specifically, participants looked atmore distractors (β = 0.29,
SE = 0.01, z = 33.76, p < 0.001, CI95% = [0.27, 0.31]; Fig. 4b) and viewed
distractors longer (β = 0.09, SE = 0.003, t = 31.12, p < 0.001, ηp

2 = 0.97,
CI95% = [0.95, 0.98]; Fig. 4c) when distraction was high. In high distraction
trials, participants also looked at target objects longer (β =−0.02, SE = 0.01,
z =−2.96, p = 0.006, ηp

2 = 0.23, CI95% = [0.02, 0.47]), but they looked at
subtly more target objects during low compared to high distraction trials
(β = –0.02, SE = 0.01, z =−2.96, p = 0.003, CI95% = [–0.04, –0.0]).

Movement effort had no significant impact on search time (β = 0.0003,
SE = 0.004, t = 0.09, p = 0.93, ηp

2 < 0.001, CI95% = [0,0.07]), but it did
interact with distraction (β = 0.006, SE = 0.003, t = 2.32, p = 0.03, ηp

2 = 0.16,

Fig. 2 | Effects of distraction on global behaviour.
a Influence of distraction on display completion
time and b total head movement, which served as a
proxy for global behavioural performance. Error
bars depict the standard error of the mean (N= 30).
Lines show individual participant data. The symbols
*, **, and *** in the figure denote statistical sig-
nificance with p-values less than 0.05, 0.01, and
0.001, respectively.
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CI95% = [0.01, 0.4]). However, planned pairwise comparisons revealed no
statistically significant differences in search times when distraction was low
(β = –0.01, SE = 0.01, z = –1.22, p = 0.62, d = –0.22, CI95% = [–0.58, 0.14];
BF10 = 0.38) or when it was high (β = 0.01, SE = 0.01, z = 1.44, p = 0.47,
d = 0.26, CI95% = [–0.11, 0.62]; BF10 = 0.48). Conversely, Bayes Factors yield
no credible evidence for the absence of such a difference in either condition.
We further found no statistically significant differences betweenmovement
effort conditions in the number of distractors (β = 0.01, SE = 0.01, z = 0.66,
p = 0.51, CI95% = [–0.01,0.02]) or targets (β = –0.001, SE = 0.01, z = –0.18,
p = 0.85, CI95% = [–0.01, 0.01]) participants looked at during search (see
Supplementary Tables 5 and 6 for analysis on target and distractor viewing
times). Apost-hoc control analysis showed that the effects of distraction and
movement effort go above and beyond any temporal task effects (see Sup-
plementary Notes 2).

Distraction decreases memory usage
Returning to the baking example:Would we rely on ourmemory less when
distraction is high? Compared to traditional lab studies, in our task parti-
cipants could choose when to rely on memory representations or when to
sample information from the external environment (Fig. 1b).We capitalised
on our recent discovery that the coordination between encoding informa-
tion from the external world and relying on information from memory
during natural behaviour can be captured by a metric we refer to as WM
usage42.Deriving an implicitmeasure forWMusage, therefore, allowedus to
capture a fundamental co-ordinational aspect of complex behaviour.

In our task, successful copying of one object minimally requires the
usage of two representational attributes: the object’s identity for finding and
picking it up, and its location for correctly placing it (Figs. 1b and 5a). Here,
picking up a target object indicates that one attribute (i.e., object identity) has
been used in WM. If a participant then places the object in the workspace
without looking back to the model, a second attribute (i.e., object location)
has been used to guide behaviour.

As intended, the average number of attributes used in WM increased
with movement effort (β = –0.21, SE = 0.01, z = –18.17, p < 0.001,
CI95% = [–0.23, –0.18])42,44, allowing us to observe a broader range of natural
WM usage (Fig. 5b). Further replicating findings from Draschkow et al.42,
participants mostly relied on only one attribute in WM when locomotive
effort was low but were more likely to rely on 2 attributes in WM when
movement effort was high (Fig. 5c). This shift towardsmoreWMusagewas
supportedbyparticipants encoding longer each time they viewed themodel,
with encoding time positively predicting subsequent WM usage (see Sup-
plementary Notes 1 and Supplementary Fig. 1), highlighting again the close
relationship between encoding information from the external world and
relying on information from memory.

Distraction also critically influenced the coordination between gath-
ering information from the environment and using information in WM,
although to a lesser extent. Encountering high distraction led to participants
relying on their memory less (β = –0.03 SE = 0.004, z = –7.02, p < 0.001,
CI95% = [–0.03, –0.01]). Here, distraction interacted with movement effort
(β = 0.01, SE = 0.0043, z = 2.23, p = 0.03, CI95% = [0.001, 0.01]): Distraction
decreased WM usage more when movement effort was high (t = 3.05, df =
29, p = 0.002, d = 0.56, CI95% = [0.17, 0.94]; BF10 = 8.43). Comparing the
probability of using different numbers of attributes inWM (Fig. 5c) further
highlighted that the distraction-induced difference in WM usage was con-
sistently driven by a small decrease in using 3 or 4 attributes (see Supple-
mentary Table 10 for a full reporting of the pairwise comparisons).

Importantly, theflexibility in self-structuring behaviourduring the task
did additionally allow for potential strategy changes. That is, behavioural
sequences could have a different structure, even if participants are using the
samenumberof attributes inWM.For example,using twoattributes inWM

Fig. 4 | Distraction interferes with visual search. Influence of distraction on
a search time for target objects, b the number of distractors and targets looked at
during search (collapsed over movement effort condition, middle), and c the time
spent looking at distractors or target objects during search (collapsed over

movement effort condition, right). Error bars depict the standard error of the mean
(N = 30). Lines show individual participant data. N shows the number of overall
searches included in the analysis. The symbols *, **, and *** in the figure denote
statistical significance with p-values less than 0.05, 0.01, and 0.001, respectively.

Fig. 3 | Distraction affects overall encoding demands. a Influence of distraction on
total encoding time (i.e., time spend encoding while completing one display, left),
b model viewing time (i.e., time spent encoding from the model each time it is
viewed), and c the number model viewings while copying one display. The data are
depicted as a function of the movement effort condition. Error bars depict the
standard error of themean (N = 30). Lines show individual participant data. N shows
the number of encoding episodes included in the analysis. The symbols *, **, and
*** in the figure denote statistical significance with p-values less than 0.05, 0.01, and
0.001, respectively.
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could be the result of first searching for and picking up a target object (i.e.,
identity feature used) and then directly placing this object (i.e., location
attributeused).At the same time, participants couldhaveused twoattributes
inWMbyfirst placing an already picked-up object (i.e., participant encoded
while holding anobject inhand) before continuing to search for andpick-up
another object. However, while visual distraction-affectedWMusage, it did
not lead to major strategy changes (see Supplementary Notes 3).

Consequences of distraction on sensorimnemonic decisions
Our findings from the encoding and WM usage metrics converge on a
consistent pattern: When encountering high distraction, participants on
average use a slightly lower number of attributes in WM. Instead, they
encode from the external environment more frequently.

However, the coordination between encoding and WM usage ulti-
mately results fromdistinct sensorimnemonic decisions. For instance,when
participants pick up thefirst object, theymust decide between relying on the
previously encoded location of the object or gathering information from the
model to guide their next placement action (i.e., a location-related decision,
Fig. 1). Similarly, after placing an object, individuals must again decide
between using memory to pick up the next object (i.e., identity-related
decision) or first to re-fixate the model.

Natural behaviour is punctuated by instances of such sensor-
imnemonicdecisions, buthow theyare impactedbydistractionhasnotbeen
studied before. Our VR approach enabled us to isolate these decision points
during continuous behaviour, allowing us to trace the consequences of
distraction all the way to the decision-making processes that gate memory
usage. To increase sensitivity, we focused our analysis on trials with high
movement effort, as participants predominantly relied on only one attribute
when movement effort was low, precluding us from observing longer
sequences of memory-guided behaviour (see overall WM usage depicted
in Fig. 4b).

To anticipate, we identified two types of sensorimnemonic decisions,
some of which were robust and others affected by our specific distraction
manipulation (i.e., increased visual distraction from competing task-
irrelevant object identities while searching for relevant objects).

Specifically, identity-related sensorimnemonic decisions – that is,
decisions to pick up objects using initially encoded identity information
versus re-encoding the object identity before picking them up – were
impacted by high distraction. For these specific decisions, encountering
high distraction led to participants deciding to rely onmemory less.When
faced with high distraction, participants were less likely to decide to pick
up a second object (β = –0.23, SE = 0.05, z = –4.23, p < 0.001,
CI95% = [−0.33,−0.12]; BF10 = 71.16; Fig. 6b), whichwould have required
behaviour to be guided by using a second identity attribute frommemory.
Interference with identity-related sensorimnemonic decisions were fur-
ther corroborated by additional analysis of other sequence types
(see Supplementary Notes 4).

In contrast, we did not observe a similar effect of high distraction on
location-related sensorimnemonic decisions – that is, decisions to place an
object using its encoded location attribute versus re-encoding its location
first. In these cases, encountering high distraction did not lead to partici-
pants deciding to rely less on memory. Distraction did not lead to statisti-
cally significant differences in the probability of relying on memory when
placing the first object (β =−0.05, SE = 0.03, z =−1.39, p = 0.16,
CI95% = [−0.11, 0.02]; Fig. 6a),with a follow-upBayesian t-test (BF10 = 0.45)
providing no credible evidence in favour of the null hypothesis. Further, the
probability of placing the second object using its encoded location was not
negatively affected by distraction. Participants were instead more likely to
decide to rely on memory when encountering high distraction (β = 0.24,
SE = 0.08, t = 3.12, p = 0.002, CI95% = [0.09, 0.39]; Fig. 6c). However, a
follow-upBayesian t-test (BF10 = 1.37) providedno credible evidence for the
alternative hypothesis.

Fig. 5 | Trade-off between reliance on WM and
gathering information from the external world.
a Our implicit metric for working memory (WM)
usage: Copying each object requires its identity and
location information (attribute) to be held in
memory. Counting successful pick-ups (i.e., identity
attribute used) and placements (i.e., location attri-
bute used) in between model fixations provided a
metric for the number of attributes used in WM.
bAverage number of attributes used inWM in both
movement effort conditions as a function of dis-
traction, c distribution of attributes used inWM(%).
Error bars depict the standard error of the mean
(N = 30). Lines show individual participant data. N
shows the number of overall sequences included in
the analysis The symbols *, **, and *** in the figure
denote statistical significance with p-values less than
0.05, 0.01, and 0.001, respectively.
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Further, we observed how distraction in the form of competing object
identity information interfered with memory guided behaviour through
error rates (also see Supplementary Notes 4 and Supplementary Fig. 5).
Participants made more identity errors (i.e., picked up non-target objects)
when distraction was high, evident when picking up the first (β = 0.27,
SE = 0.08, z = 3.64, p < 0.001, CI95% = [0.13, 0.42];BF10 = 5.63; Fig. 6d) and
second object (β = 0.36, SE = 0.10, z = 3.51, p < 0.001, CI95% = [0.16, 0.56];
BF10 = 0.31; Fig. 6f) before re-fixating the model. However, location errors

(i.e., placing an object at thewrong location) did not increase significantly in
response to highdistraction.We foundno statistically significant differences
in location error rates between distraction conditions when placing the first
object (β =−0.05, SE = 0.05, z =−1.04, p = 0.30, CI95% = [−0.14, 0.04];
Fig. 6e), with a follow-up Bayesian t-test (BF10 = 0.45) providing no credible
evidence in favour of the null hypothesis. During the second placement,
there alsowasnodetrimental effectof distractionon location errors. Instead,
participants mademore location errors when distraction was low (β = 0.32,

Fig. 6 | Distraction influences sensorimotor decisions and errors. The flow dia-
gram depicts the sequence of sensorimnemonic decisions in our VR Object copying
task. a The pick-up of the first object is followed by a location-related decision (i.e.,
Place object using memory or re-fixate model?). b If participants place the object
using memory, placement is followed by an identity-related decision (i.e., Pick-up a
second object or re-fixate model?). c If memory was used again, a second location-
related decision would follow. Error bars depict standard error of the mean (a and b:

N = 30, c: N = 28). Identity and location errors at different moments of behavioural
sequences. Error bars depict standard error of the mean (d and e: N = 30, f and g:
N = 28). All plots and analyses are based on the high movement effort condition.
Lines show individual participant data. N shows the number of sensorimnemonic
decisions or pick-ups/ placements included in the analyses. The symbols *, **, and
*** in the figure denote statistical significance with p-values less than 0.05, 0.01, and
0.001, respectively.
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SE = 0.14, z = 2.37,p = 0.02,CI95% = [0.06, 0.59]; Fig. 6g).However, a follow-
up Bayesian t-test (BF10 = 2.16) provided no credible evidence for the
alternative hypothesis.

Discussion
Using a multivariate VR approach, we discovered multifaceted con-
sequences of visual distraction on several interconnected subcomponents of
natural behaviour.We show that visual distractionwhile searching for task-
relevant objects in the environment leads to a subtle change in subsequent
sensorimnemonic decisions: when faced with high distraction, participants
were more likely to (re-)encode information about upcoming task-relevant
objects before search, compared to relying on information in memory.

Notably, the cumulative consequences of the focal effect of distraction
on sensorimnemonic decisions affected both overall WM usage and
encoding demands, ultimately changing how participants coordinated
sampling information from the environment and guiding behaviour
through information in memory. Specifically, participants used less WM,
instead encoding information from the environmentmoreoftenwhen faced
with high distraction during visual search. These changes in the coordina-
tion of encoding, visual search, andWMusage had critical consequences for
the overall task behaviour: participants made more errors, were slower to
complete the task, and had to perform more body movements when
encountering high distraction.Overall, our results illustrate that focal effects
of visual distraction (i.e., distraction was introduced at a specific, isolated
stage within the extended task) on memory-guided natural behaviour can
have downstream, cascading consequences on processes that are contingent
on the distraction-affected event42–45,47.

From related research on visual distraction in standard laboratory
tasks, we came to appreciate various proposed mechanisms of how dis-
traction interacts with WM. While it has been argued that WM is
remarkably robust in the face of distraction35,61,62, distraction during the
delay-period of WM tasks, both through perceptual input and interfering
tasks, has been shown to interferewithWMperformance4,6,63–65 (for a review
see ref. 35). Related, distraction has a more pronounced impact on WM
performance when response demands to the distracting input increase (e.g.,
passive viewing vs. dual-task scenarios like visual searching while simulta-
neously holding information in WM)3,9,66,67. Further, it is well established
that visual search is affected by target-distractor similarity57,58 – which
allowed us to reliably induce different levels of visual distraction during
search in our VR paradigm. While a separate line of research has also
explored the effects of visual search on concurrent WM, the precise
mechanisms underlying how visual search disruptsWMremain a subject of
ongoing debate59–61.

Our results suggest that visual distraction can also compromise WM
usage during natural behaviour, prompting participants to encode from the
external environment more frequently. In our task, however, WM usage
could have been impacted by both distraction interference (i.e., more fre-
quent encoding served to compensate for such interference) and/or
proactive shifts in the coordination of encoding and WM usage. A strong
example of a proactive shift in WM usage can be found in participant’s
response to increased movement effort, prompting participants both to
encodemore objects and subsequentially decrease their encoding frequency
through an increased reliance on WM (see ref. 42 for a more detailed
discussion). In contrast, the change in the coordination of WM usage and
encoding in response to distraction seems to have been reactive. Specifically,
distraction did not lead to a systematic change in how participants encoded
from the environment (i.e., the number of objects encoded, or time spent in
each encoding episode) but only how often participant referred to themodel
– particularly when behaviourmust be guided by information closely tied to
the present distraction. In line with existing research on reactive distraction
interference in WM34,35, an increase in encoding frequency could serve to
compensate for impaired content in WM. Alternatively, while using WM
necessitates the appropriate content to be present, additional factors may
influence the decision to act on it68–70. For instance, the prospect of a high
distraction search could subtly influence participants’ sensorimnemonic

decisions towards using less memory, without necessitating any substantial
strategic changes in encoding behaviour or impairedWM content. Further
research is required to distinguish between potential drivers of distraction-
induced changes in the balance of WM encoding and usage.

A related question is how to interpret the overall minimal reliance on
WM41,42 across all experimental conditions– evenwhendistractionwas low.
We propose that relying on WM less can carry strategic adaptative
advantages by dynamically reducing distractor interference (in line with
ref. 71). For example, when using a minimal memory strategy in our task,
less information inWMneeds to be selected for prioritisation and protected
from external sources of distraction35,72–75. Keeping the number of items in
WM at a minimum could additionally lessen internal inter-item competi-
tion between items held inWM concurrently76–78. In line with this proposal
– and further strengthening the assumption that changes inWMusage can
be associated with distraction interference instead of strategy changes – is
the finding that distraction decreasedWMusage more in conditions where
WM is used more (i.e., high movement effort). Flexibility in the coordina-
tion of encoding and WM usage during natural behaviour therefore
introduces opportunities to compensate for sources of distraction in our
environment and mind. Such flexibility, however, is often not captured by
highly controlled laboratory tasks used to uncover themechanisms that help
us handle distracting information. This highlights the importance of com-
plementing traditional laboratory studies with more ecologically valid tasks
in order to gain a fuller understanding of the consequences andmechanisms
of distraction on cognition and behaviour.

Limitations
Our findings bring the important realisation that effects of visual distraction
on memory-guided natural behaviour can be rather focal, but even then,
they can exert cascading consequences on processes that are contingent on
the distraction-affected event. Importantly, we do not wish to claim that the
particular pattern of consequences we observed holds for all forms of dis-
traction. For instance,weonlyfindevidence fordistraction interferencewith
identity-related sensorimnemonic decisions. Crucially, in thework reported
here, we introduced a specific source of visual distraction: we increased the
perceptual visual similarity between irrelevant objects and the encoded
identity information – known to contribute to the effect of distraction35,79 –
but did not manipulate the similarity of location information. Distraction
during natural behaviour, however, can take various forms: once we found
the sugar, we might find ourselves in front of multiple mixing bowls, only
some to which we need to add the sugar. In addition to visual distraction,
other forms of distractionmay also be present, such as auditory stimuli (e.g.,
hearing your dog bark)80–83 or interruptions through task-irrelevant events
(e.g., getting a call)3,66,67,84. Our study focused on one particularly powerful
form of distractor interference and future research is necessary to uncover
consequences of other types of distraction.

Conclusion
Using an immersive VR approach, we discovered that effects of visual dis-
traction on memory-guided naturally unfolding behaviour can be rather
focal but nevertheless have downstream, cascading consequences on pro-
cesses that are contingent on the distraction-affected event. Specifically,
distraction influenced sensorimnemonic decisions; resulting in changes to
the coordination of WM usage and encoding during extended behaviour,
which ultimately slowed down behaviour and increased costly body
movements. These results underscore the importance of considering
complex behaviour with high external validity85 to gain a comprehensive
understanding of the consequences of distraction on cognition and beha-
viour. Here, we demonstrate the potential of using VR paradigms to gen-
erate rich, multivariate behavioural data to achieve these aims.

Data availability
The post-processed data (segmented and summarised) are available at the
Open Science Framework: https://osf.io/ze5p3/. Raw data is available from
https://zenodo.org/records/11073009.
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Code availability
Code for all performed analyses is available at theOpen Science Framework:
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