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1 Introduction

As the highest energy scale probed directly in experiments, the electroweak scale is at the
edge of our knowledge of high energy physics. Further motivated by naturalness arguments,
new physics hiding around this scale is therefore a compelling possibility and represents an
important theoretical target, signals of which may be observed in next generation colliders.

Interestingly, the early universe can provide a complementary probe of this new physics.
In particular, the LISA observatory [1] has sensitivity at the right frequency to detect
gravitational waves (GWs) produced during a strongly first order electroweak phase transition
(EWPT) [2, 3]. While detailed studies on the lattice have shown that electroweak symmetry
breaking at finite temperature is a crossover within the standard model (SM) alone [4–9],
many extensions including new physics at the electroweak scale predict a first order transition
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(see, e.g. [10–14]). A first order EWPT may explain the observed baryon asymmetry of the
universe [15–17] and can produce an observable GW signal [18–21].1 This has motivated
in depth studies of these kinds of models in order to connect possible signals at LISA with
collider signatures such as deviations in the SM Higgs couplings [23–27].

Most studies to date have focused on electroweak phase transitions occurring in homo-
geneous space time. These are characterised by a uniform nucleation probability owing to
random thermal and quantum fluctuations of the fields [28–30]. However, this picture is
modified if impurities are present at the time of the transition [31–63]. Around the impu-
rities the barrier between the false and the true vacuum can be naturally smaller, and the
nucleation probability is consequently enhanced. This inhomogeneous, or seeded, transition
is typically exponentially faster than the homogeneous one (which can still occur away from
the impurities), and therefore dominates the phenomenology of the phase transition.

A particularly useful and minimal setup to study these effects is the SM extended with a
real scalar singlet (xSM) with Z2 symmetry, S [24, 64–85]. In this model, a strong first order
EWPT is typically realised in two steps.2 In the first step the Z2 symmetry is spontaneously
broken via a non-zero vacuum expectation value (vev) of S while electroweak symmetry
remains unbroken. The breaking of the Z2 symmetry leads to the formation of domain walls
via the Kibble-Zurek mechanism [88–90]. This phase is only metastable, however, and in the
second and final step of the transition the Higgs acquires its electroweak vacuum expectation
value (vev), vh, and the Z2 symmetry is restored. This second step can be strongly first order
and represents a promising scenario for obtaining a detectable signal in GWs.

For parameter choices in the xSM which predict a first order EWPT, the model is often
difficult to probe at the LHC. A Z2 symmetry of sufficient quality prevents higgs-singlet
mixing and for a singlet mass mS which satisfies mS > mh/2 there are no corrections to
higgs decays [73]. Bounds from phase transition dynamics and future GW experiments,
in particular LISA, offer the only ways to probe the model in large regions of parameter
space [24, 78], although the model generically predicts modified couplings which could be
observed at future colliders [91]. Given the importance of this model for studies of electroweak
baryogenesis [67, 71, 72, 77] and dark matter [64, 65], an accurate determination of the phase
transition dynamics is important in order to reliably test these models.

In this paper we continue the study of the seeded EWPT in the xSM initiated in ref. [61].
The catalysing impurities are the domain walls produced after the Z2 symmetry breaking in
the first step of the transition. If any explicit Z2 breaking terms are small (as required for
instance if S is to be a dark matter candidate), then the domain walls will survive until the
second step of the transition. The domain walls then catalyze the formation of Higgs bubbles
nucleated on the domain wall plane. These bubbles are not spherically symmetric due to
the presence of the wall, but are elliptical with a reduced O(2) symmetry, see figure 1 for a
cartoon of the seeded and homogeneous bubbles. ref. [61] showed that the seeded transition
is generically faster than the homogeneous one, and that regions of parameter space which
are naively ruled out (because the homogeneous one is suppressed) can become viable due
to the presence of domain walls acting as catalyzing seeds.

1See ref. [22] for a review.
2See also [86] for a lattice study of a two-step electroweak phase transition and [87] for an approach based

on dimensional reduction.
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Figure 1. Cartoon of the seeded and homogeneous bubbles. Elliptical bubbles with an O(2) symmetry
are nucleated on the domain walls, while spherical bubbles with O(3) symmetry are nucleated in the
homogeneous spacetime far from the domain walls.

The analysis in ref. [61] was carried out in the high-temperature limit. In addition, the
seeded tunnelling probability was evaluated either in the thin wall limit, or within the lower
dimensional theory on the domain wall after integrating out the Kaluza-Klein states along the
orthogonal direction. While these methods provide a new qualitative picture of the seeded
tunnelling, in certain temperature ranges neither of these approximations can be applied,
leaving a gap in calculability. This prevents an accurate determination of thermodynamical
quantities such as the latent heat and the nucleation rate.

In this paper we overcome several limitations of the study in ref. [61] and provide a
state-of-the-art analysis of seeded vacuum decay including the full one-loop thermal potential.
The use of the mountain pass algorithm, first presented in ref. [60] for the case of monopole
catalysed tunnelling, allows us to numerically solve the equations of motion in the presence
of a domain wall background without resorting to an approximation scheme such as the
high temperature expansion or the thin wall limit.3 With these results we can determine
the regions of parameter space where the catalysed phase transition nucleates while the
homogeneous transition is too slow to complete. Even for parameters where the homogeneous
transition is cosmologically fast, we confirm that the catalysed transition is the dominant
process, being exponentially enhanced relative to the homogeneous decay.

A crucial quantity determining the phenomenology of a first order phase transition is
its duration or time scale, usually indicated by the dimensionless quantity β/H, with H

the Hubble rate. For a homogeneous transition this is controlled by the gradient of the
bounce action around the nucleation temperature. On the other hand, a catalysed transition
possesses two characteristic time scales: the first one is given by the inverse of the nucleation
rate around the impurity, and the second one relates to the average distance between the
impurities. In the following, we shall indicate by sparse a network in which the latter time
scale is much greater than the one from the intrinsic nucleation rate, whereas the network
will be referred to as dense in the opposite regime. In our analysis we will highlight the
differences between both networks and the homogeneous transition, with the most significant
distinction being the de-correlation between the latent heat and the average bubble size

3See appendix A for a comparison with the previous results of ref. [61].
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for sparse networks. We will additionally derive the conditions for successful percolation
for decays seeded by impurities of arbitrary codimension D by generalizing the results of
ref. [92] for point-like defects such as monopoles.

The GW spectrum from catalysed transitions is analysed for both sparse and dense
networks by using a thin wall approximation to the bounce action. This allows for an efficient
scan of the relevant parameter space, and we leave a more complete analysis for future work.
Generically, we find that when both processes are viable, the catalysed decay results in a
smaller signal amplitude as bubbles nucleate closer to the critical temperature and less energy
is released in the transition. However, the presence of defects allows the transition to complete
in new regions of parameter space which can lead to a large latent heat being released. For
the case of sparse networks the bubble size at collision is also significantly larger, leading to
the production of long-lasting sound waves. This results in an enhanced GW signal which is
peaked at lower frequencies than is typical of homogeneous transitions occurring at the same
temperature. This behaviour has been observed in simulations of the catalysed transition
from domain walls [93], allowing us to connect our analysis with the expected GW signal.

The rest of this paper is organised as follows. In section 2 we discuss the model parameter
space and the cosmological history of the model, focusing on the formation of domain walls
and the details of the electroweak phase transition for parameters where it is first order.
The details of the mountain pass algorithm and a comparison between the homogeneous
and seeded phase transition is presented in section 3. In section 4 we discuss the impact
of catalysing defects on the various thermodynamic quantities relevant for describing the
phenomenology of the transition. Finally, in section 5 we compare the features of the GW
signal between the homogeneous and catalysed transitions.

2 The xSM and its thermal history

In this section we review the singlet-extended SM (xSM) and its thermal history in the Z2
symmetric limit, with an emphasis on domain wall formation and its consequences. The
tree-level scalar potential dictated by the Z2 symmetry under which S is odd and all other
fields are even is

V (h, S) = −µ2
h|H|2 + λ|H|4 − µ2

s

2 S2 + η

4S4 + κ|H|2S2, (2.1)

where the gauge is chosen such that the Higgs vev has the form ⟨H⟩ = (0, h)/
√
2. In the

regime of interest all parameters (η, λ, κ, µ2
h, µ2

s) are positive. We introduce the following
counterterms in the potential,

Vct = µ2
h,ct|H|2 + λct|H|4 + µ2

s,ctS
2 + ηctS

4, (2.2)

which are fixed by the requirement that at T = 0 the Higgs mass, the Higgs vev and the
singlet mass are unchanged from their tree-level values at the global minimum (h, S) = (vh, 0),
and that the vev of S in the false vacuum (h, S) = (0, vs) is the same as at tree level. The
renormalisation scale used in the one-loop Coleman-Weinberg potential [94],

VCW(h, S) =
∑

i=h,S

m4
i (h, S)
64π2

(
log

(
m2

i (h, S)
µ2

0

)
− 3

2

)
(2.3)

is taken to be µ0 = vh = 246GeV.
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In this paper we include thermal corrections within the truncated full dressing scheme
(see [76] for other possible schemes and related uncertainties). This amounts to substituting
thermal masses obtained at leading order in the high temperature expansion in the one-loop
effective potential,

m2
i → m2

i +Πi(T 2), (2.4)

where mi is the field-dependent mass for particle species i = h, S, and

Πh(T 2) = chT 2 ch = 2m2
W + m2

Z + m2
h + 2m2

t

4v2
h

+ κ

12

ΠS(T 2) = csT 2 cs = 4κ + 3η

12

(2.5)

Adopting this scheme, the 1-loop thermal corrections to the potential are given by:

VT (h, S;T ) =
∑

i=h,S

T 4

2π2 JB

(
m2

i (h, S) + Πi(T 2)
T 2

)
, (2.6)

JB(y2) =
∫ ∞

0
dx x2 log

[
1− exp

(
−
√

x2 − y2
)]

. (2.7)

The full thermal potential we use in our calculations is therefore:

Veff(h, S;T ) = V (h, S) + VCW(h, S) + VT (h, S;T ) (2.8)

after subtracting counterterms and making the substitution (2.4) in the thermal integral.
In some of the discussion which follows and for our results in appendix A we will keep

only the leading temperature corrections. In this limit the effective potential is

Vhigh-T(h, S;T ) = chT 2 − µ2
h

2 h2 + λ

4h4 + csT 2 − µ2
s

2 S2 + η

4S4 + κ

2h2S2 . (2.9)

Keeping only the leading temperature corrections is not in general a valid approximation,
but simplifies the discussion and allows some of the calculations to be done analytically.

With the effective thermal potential Veff(h, S;T ) at hand we can study the thermal
history of the xSM. After fixing the higgs mass and vev to the observed values, the model
is described by the three free parameters: {κ, η, mS}, where mS is the singlet mass in the
electroweak vacuum (at T = 0). The regime we are interested in is the one where the
electroweak phase transition is two step:

(h, S) = (0, 0) → (0,±vs) → (vh, 0) , (2.10)

which occurs for parameters such that

µ2
s

cs
= κv2

h − m2
S

cs
≳

µ2
h

ch
. (2.11)

Fixing mS to representative values, the two-step region appears then as a stripe in the
two dimensional plane parametrised by the portal coupling κ and the singlet self-quartic η.
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Figure 2. Parameter space for the electroweak phase transition in the xSM with Z2 symmetry. The
region between the solid gray lines indicates where a two-step phase transition takes place. In the
upper left corner the electroweak phase transition is second order, while the lower right corner is
unable to reproduce the correct electroweak vacuum at zero temperature. Above the red solid line
the homogeneous transition is cosmologically fast, but the catalyzed transition nucleates at higher
temperatures. Between the red and blue solid lines only the seeded transition can lead to successful
nucleation, while below the blue line the universe remains trapped in the false vacuum. Dotted lines
have the same meaning of the solid lines but are obtained within the high-temperature approximation
instead of the full one-loop thermal potential.

This parameter space is shown in figure 2 between the two grey solid lines for singlet mass
mS = 250GeV. In this region, the second step of the phase transition that breaks electroweak
symmetry, (0,±vs) → (vh, 0), is typically first order and the fate of the false vacuum depends
on whether the tunnelling process is fast compared to the Hubble rate.

The parameter space in which successful nucleation takes place has been identified in
previous works by considering the homogeneous vacuum decay process, namely the nucleation
of bubbles of true vacuum deep inside either the +vs or −vs domains. We show the parameter
space where this process is cosmologically fast by the lighter blue region in figure 2. As we
can see, there is a large part of the two-step parameter space where homogeneous nucleation
is too slow and the Universe remains trapped in the false vacuum.

However, this neglects the effect of the defects formed at domain boundaries in the
first step of the transition. In addition to the usual homogeneous false vacuum decay, the
second step of the transition can be catalyzed by the domain walls that are formed in the
first step [61]. The existence of this additional decay channel enlarges the viable parameter
space where the phase transition can complete, which is shown by the darker blue region
in figure 2. Additionally, in the parameter space where both the homogeneous and seeded
processes are possible, namely in the lighter blue region, the seeded process is always faster,4
and therefore dictates how the transition actually proceeds.

The region where only seeded nucleation is cosmologically fast is identified in this work by
taking into account thermal corrections beyond the leading high-T terms, and represents one

4This assumes at least one domain wall per Hubble volume, see section 2.3.
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of the main results of our paper. The details of our calculation are presented in section 2.3
as well as in section 3 where we discuss our numerical strategy with reference to specific
benchmark points BP1 and BP2 shown in figure 2.

2.1 Formation of domain walls

Due to the spontaneous Z2 symmetry breaking in the first step of eq. (2.10), domain walls
with a non trivial S profile will form according to the Kibble mechanism. These are solutions
of the classical equations of motion where S interpolates between the two different vacua
±vs related by the Z2. In the high temperature limit, a planar domain wall solution can
be obtained exactly considering the potential in eq. (2.9):

SDW(z) = vS(T ) tanh
(

η1/2vS(T )z√
2

)
, vS(T ) =

√
µ2

s − csT 2

η
, (2.12)

where z is the coordinate orthogonal to the wall.
Away from the high-T limit, the domain wall shape needs to be determined numerically

as the solution to

S′′(z) = ∂

∂S
Veff(0, S(z);T ), S(±∞) = ±vs(T ), (2.13)

where the effective potential is given in eq. (2.8) and we have taken h = 0 according to the
false vacuum configuration (h, S) = (0, vs(T )).

The solution to (2.13) can be efficiently obtained by using the following first integral:

I = −1
2S′(z)2 + Veff(0, S;T ) = Veff(0, vs;T ) (2.14)

which fixes the slope of the domain wall profile at the center, z = 0, as

S′(0) =
√
2(Veff(0, 0;T )− Veff(0, vs;T )), (2.15)

where we have used the fact that S(0) = 0 as the domain wall is odd for z → −z. The soliton
solution can then be simply obtained with the help of Mathematica by solving (2.13) with
the above initial conditions for S(0) and S′(0) without the need for shooting or relaxation
algorithms.

The domain wall tension is given by

σDW =
∫ ∞

−∞
dzS′2(z) =

∫ vs

−vs

dS
√
2 [Veff(0, S;T )− Veff(0, vs;T )]. (2.16)

In general one has σDW ∼ vs(T )3, and in the simplest ϕ4 theory σDW = 2
√
2ηv3

s/3.
If the Z2 symmetry is exact, the domain walls are absolutely stable and will therefore

survive until the second step of the phase transition takes place. However, if we allow for
explicit Z2 breaking terms in the theory, the S = ±vs vacua will no longer be degenerate.
This introduces a pressure on the walls that eventually annihilates the domains with higher
potential energy, leaving behind a homogeneous field configuration corresponding to the
true vacuum [95, 96]. Considering as an example the case in which the Z2 breaking comes
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from a Planck-suppressed dimension-5 operator cS5/MP , the domain walls will annihilate
at a temperature [61]

Tann ∼ vs

2
c1/2

ξ1/2η1/4 , (2.17)

where ξ is the mean separation between domain walls (in Hubble units). We then see that for
Z2 breaking due to gravity the symmetry can generically be of sufficient quality for domain
walls to be long-lived enough to be present at the electroweak phase transition. In this work we
consider the case of exact Z2 symmetry, neglecting any possible effects of small breaking terms.

2.2 Homogeneous false vacuum decay

When the temperature drops below the critical temperature Tc, the (vh, 0) vacuum becomes
the global minimum and tunnelling can take place from the false vacuum (0, vs). Far from
the domain walls, the nucleation rate can be found according to (euclidean) time independent
and spherically symmetric solutions to the equations of motion [28–30],

ϕ′′(r) + 2
r

ϕ′(r) = ∂

∂ϕ
Veff(h, S;T ), (2.18)

with ϕ = h, S, and boundary conditions

S(∞) = |vs(T )|, h(∞) = 0, S′(0) = 0, h′(0) = 0. (2.19)

Here r indicates the radial coordinate of the spherical bubble. The equations (2.18) & (2.19)
can be readily solved with the numerical methods implemented in FindBounce [97] and
CosmoTransitions [98]. After determining the tunnelling field profiles, the nucleation rate
per unit volume in the homogeneous false vacuum is given by

Γhom ≃ c T 4e−Bhom(T ) , (2.20)

where Bhom(T ) is the difference between the euclidean action evaluated on the field profiles
satisfying the equations of motion (2.18) and the false vacuum solution

Bhom(T ) = 4π

T

∫
r2dr [LE [h, S]− LE [0, vs(T )]] . (2.21)

In the following we shall set c = 1 for concreteness. This is justified as varying c causes a
logarithmic correction to the dominant suppression factor, Bhom, and so is a subleading effect.

For the homogeneous phase transition, the average number of bubbles at a temperature
T is given by

N hom(T ) =
∫ Tc

T

dT ′

T ′
Γhom(T ′)
H(T ′)4 , (2.22)

with Γhom given in eq. (2.20). This allows us to define the nucleation temperature, Tn, as the
temperature such that there is one bubble per hubble patch, N hom(Tn) = 1. For the present
case of a phase transition at the electroweak scale, one finds Bhom ≃ 140 as the nucleation
condition. A different value for c would shift this condition by ∼ log c.

– 8 –
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2.3 Catalysed false vacuum decay

The presence of domain walls introduces an additional channel for vacuum decay. Bubbles of
true vacuum can form centered on the domain wall with a significantly enhanced probability
compared to tunnelling inside the homogeneous false vacuum [61]. This process is governed
by field profiles h(ρ, z) and S(ρ, z) which satisfy

∂2ϕ

∂ρ2 + 1
ρ

∂ϕ

∂ρ
+ ∂2ϕ

∂z2 = ∂

∂ϕ
Veff(h, S;T ), (2.23)

with ϕ = h, S and boundary conditions

h(∞, z) = h(ρ,±∞) = 0, S(∞, z) = SDW(z), S(ρ,±∞) = ±vs, (2.24)

where SDW(z) is the domain wall configuration obtained by solving (2.13). Here ρ =
√

x2 + y2

is the radial coordinate on the domain wall plane, and z indicates the orthogonal direction.
A typical solution to (2.23) satisfying (2.24) is shown in figure 3.

As opposed to the system of equations describing the homogeneous transition (eq. (2.18)),
the profiles of the seeded bubbles do not respect the O(3) rotational symmetry due to the
presence of the wall in the x − y plane, reducing the symmetry of the problem to only
O(2). This fact considerably complicates the task of finding the saddle configuration for the
tunnelling process. The way we tackle this issue will be explained in section 3.

The bounce action for this tunnelling process is given by the euclidean action evaluated
on the solutions to equations (2.23) & (2.24), minus the action evaluated on the domain
wall solution,

BDW(T ) = 2π

T

∫
ρdρdz [LE [h, S]− LE [0, SDW(z)]] . (2.25)

The nucleation rate per unit surface for bubbles nucleated on domain walls is given by

ΓDW(t) ≃ σDWe−BDW(t) (2.26)

where we estimate the prefactor to be set by the domain wall tension, σDW ∼ v3
s .

For a seeded phase transition, the probability of nucleating a bubble per hubble volume
depends on the nucleation rate ΓDW in eq. (2.26) as well as on the average number of
domain walls inside the Hubble patch, ξ. Typically ξ ∼ O(1) if the domain wall network
has reached the scaling regime, but can be much larger in the immediate aftermath of a
second order Z2-breaking transition. The number of bubbles per hubble patch at temperature
T in general reads

NDW(T ) =
∫ Tc

T

dT ′

T ′
ξΓDW(T ′)

H(T ′)3 , (2.27)

where ξH−2(T ) is the average domain wall surface area in one Hubble patch. As in the
homogeneous case, we can define a nucleation temperature for the catalysed transition via
the condition NDW(Tn) = 1. This results in BDW ≃ 105 at the electroweak scale for ξ = 1
(with a weak logarithmic dependence on ξ).
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Let us finally emphasise that the nucleation temperature Tn defined through equa-
tions (2.22) and (2.27) indicate the temperature at which there is expected to be one bubble
in each hubble volume. By itself this condition being fulfilled does not guarantee that
the phase transition will actually complete in the expanding universe. This discussion on
percolation is postponed to section 4.2.

3 Numerical analysis of the catalysed transition

3.1 The mountain pass algorithm

Solving the system in (2.23) directly is challenging as the spherical symmetry in equation (2.18)
is broken by the presence of the domain wall. In ref. [61], this issue was circumvented by
employing a Kaluza-Klein (KK) decomposition along the z direction and reducing the 4d
theory to a 3d EFT written in terms of the KK modes. This reduces the problem of seeded
tunnelling to that of homogeneous tunnelling within a lower dimensional theory living on
the domain wall, which can be solved with standard techniques. However, this method
becomes technically more difficult to apply beyond the high-T approximation as there is
no analytical form for the domain wall profile or the KK modes. In addition, the effective
theory on the domain wall may not be under control in the whole temperature range relevant
for the tunnelling.

In order to determine the phase transition dynamics beyond the high-T expansion, and
to study all the relevant temperature range, we will here look for solutions of (2.23) by
following the strategy of ref. [60]. The algorithm presented in [60] is based on the mountain
pass theorem [99], which turns the issue of solving the PDEs into a minimization problem
that can be more easily tackled numerically.

The algorithm is initialized by constructing a path in field space that connects the false
vacuum configuration to a supercritical bubble profile with a smaller euclidean action. In
this case, the false vacuum is

Sfv(ρ, z) = SDW(z), hfv(ρ, z) ≡ 0 , (3.1)

and we use the following ansatz for the supercritical bubble:

Ssc(ρ, z) = 1
2 [SDW(z + f(ρ/R0)Z0) + SDW(z − f(ρ/R0)Z0)] , (3.2)

hsc(ρ, z) = vh

2

[
1− tanh

(
(ρ/R0)2 + (z/Z0)2 − 1

δ

)]
, (3.3)

where R0 sets the bubble radius in the r direction, Z0 sets the radius in the z direction and δ

sets the thickness of the higgs profile. The function f(x) we take to be equal to

f(x) = 1− tanh(x4) (3.4)

for parameters in the thin wall regime (tunnelling close to the critical temperature), or
f(x) = e−x2 at temperatures significantly below the critical temperature. In each case we
vary the parameters R0, Z0, δ to find a profile which gives an action smaller than the one
in the false vacuum.
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While in principle any bubble with negative action will work, in order for the algorithm
to complete most efficiently it helps to choose the smallest possible bubble which gives a
negative action. This allows to use a smaller grid size and means the algorithm takes less
steps to complete as the initial guess is closer to the true solution. The simple parametrisation
above, along with the choice of function f(x), allows us to modify just a few parameters
to optimise the starting point for the algorithm.

Here we describe the basic features of the mountain pass algorithm, but refer the reader
to ref. [60] for more details. After determining the false vacuum and supercritical profiles we
define a path in field space between the points (hfv, Sfv) and (hsc, Ssc). We find the profile
along the path which maximises the action, (hmax, Smax), then update the profiles using a
gradient descent algorithm to minimise a cost function. The cost function we choose is a
measure of how well the equations of motion are satisfied by the profiles (hmax, Smax):

C =
∑
ij

(
E[hmax(ρi, zj)]2 + E[Smax(ρi, zj)]2

)
, (3.5)

E[ϕ(ρ, z)] = ∂2ϕ

∂ρ2 + 1
ρ

∂ϕ

∂ρ
+ ∂2ϕ

∂z2 − ∂

∂ϕ
Veff(h, S;T ) , (3.6)

where the sum is over a grid of points (ρi, zj). We note that this differs from the implementation
of the algorithm in [60] where the cost function used was the action itself. It is possible to
use either C or the action as a cost function for the algorithm, and both decrease as the
algorithm converges to a solution. However, we chose C after comparing both choices and
finding that the algorithm converged more rapidly for some benchmark cases.

The cost function C is evidently minimised when (hmax, Smax) solve the equations of
motion, but there are many solutions: the domain wall profile, the constant solutions
(h, S) = (vh, 0) and (h, S) = (0, vs), the homogeneous tunnelling solution and the domain wall
bounce solution we are interested in. The use of the mountain pass algorithm ensures that
we find the domain wall bounce solution by restricting the field configurations considered
to lie on the path between (hfv, Sfv) and (hsc, Ssc). Examples of the field profiles for critical
bubbles found using the mountain pass algorithm are shown in figure 3 and display the
expected elliptical shape.

3.2 Results for the bounce action

With the numerical procedures described in the previous section we are now in a position
to compare the bounce solutions for the catalysed and homogeneous configurations. If we
restrict ourselves to the leading order in the high-T expansion we can crosscheck the results
previously presented in ref. [61] with the new ones obtained with the MPT. This is shown
in appendix A for a given benchmark point, and we find a very good agreement between
the various methods in their region of applicability.

In this section we instead focus on the results obtained with the MPT with the full
1-loop thermal potential. To this end, we consider two benchmark points in parameter space,
indicated by the red and blue stars in figure 2. Benchmark 1 is the following choice of
parameters (corresponding to benchmark C in section 4.2.2 of [2]):

(κ, η, mS) = (1.5, 3.3, 250GeV) , (3.7)
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Figure 3. Field profiles showing the critical bubble nucleated on the domain wall for benchmark 1
(left) and benchmark 2 (right). The shading represents the value |S|/vS and black contours show lines
of constant h. The orange lines show the contours |S|/vS = 0.75.

and benchmark 2 is the choice:

(κ, η, mS) = (1.5, 2.3, 250GeV) . (3.8)

In figure 3 we show the critical bubbles at nucleation for both benchmarks.
In figure 4 the bounce action for the catalysed transition is compared to the homogeneous

bounce action for a range of temperatures for each benchmark. Also shown is a lower bound
on the bounce action derived within the thin wall approximation, and therefore reliable
for T ≈ Tc, as detailed in appendix B. For both benchmark points, the catalysed bounce
action is much smaller than the homogeneous bounce, BDW < Bhom. Given the exponential
dependence of the decay rate on the bounce action, at a given temperature the catalysed
process will dominate the homogeneous decay,

Γhom(T ) ≪ ξH(T )ΓDW(T ) . (3.9)

As the catalysed rate depends only linearly on the number of domain walls per hubble patch,
ξ, this is the case even for a sparse domain wall network (ξ ∼ 1).

For benchmark 1 the bounce action actually vanishes at low temperatures, meaning
that the barrier for the seeded tunneling is thermal and disappears around T/Tc ≃ 0.67 (as
indicated by the dashed vertical line by “3d rolling”). This temperature can be found by
referring to the mass of the lightest Higgs mode living on the wall, ω2

0 [61]. When thermal
corrections are included beyond the high-T expansion, ω2

0 can only be obtained numerically
by solving the eigenvalue equation

−ϕ′′
0(z) +

∂2Veff(h, SDW(z);T )
∂h2

∣∣∣∣
h=0

ϕ0(z) = ω2
0(T )ϕ0(z). (3.10)

The temperature for which the barrier disappears is then found by setting ω2
0(T ) = 0 so

that the domain wall is classically unstable.
Also shown in figure 4 are the nucleation conditions for the seeded and homogeneous

transitions (assuming radiation domination) identified in section 2. In both cases, this
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Figure 4. Comparison of the bounce actions for the homogeneous and catalysed transitions as
a function of temperature for both of the benchmark points. For benchmark 2 (right panel) the
homogeneous bounce action is not shown because the values are Bhom ∼ 800, far above the value
required for the phase transition to complete. The purple lines show a lower bound on the seeded
bounce action evaluated within the thin wall approximation, see appendix B.

condition identifies the temperature at which there is on average one bubble of true vacuum
per Hubble patch. As we can see, homogeneous nucleation barely occurs in benchmark 1,
and similarly for seeded nucleation in benchmark 2. These two benchmark points are also
shown in figure 2 and sit at the boundaries of the red and blue regions, respectively.

The two benchmark points represent examples of the different effects domain wall catalysis
can have on the phase transition. Benchmark 1 is a point where the homogeneous transition
only just completes (Γhom(T ) = H4(T ) at the minimum of B(T )) but the catalysed transition
happens much earlier. The presence of domain walls means Tn is much closer to the critical
temperature than in the homogeneous case. Benchmark 2 is an example case where the
homogeneous transition is too slow to complete (equation (2.22) is not satisfied) but the
catalysed process does finish. This point in parameter space would be naively ruled out by the
strongly suppressed homogeneous phase transition, but is viable if domain walls are present.

4 Phenomenology of the phase transition

In this section we discuss the different phenomenological properties of homogeneous and seeded
phase transitions in terms of the percolation conditions, size of bubbles and energy released
in the transition. These properties are related to (but also go beyond) the difference in the
nucleation temperature discussed in the previous section, and can have important implications
for the observational prospects in terms of gravitational waves, as we shall discuss in section 5.

4.1 Time scale

In the case where nucleation does occur for a homogeneous phase transition, we can define
a characteristic timescale, β−1, given by:

β = − dBhom
dt

∣∣∣∣
Tn

= HnTn
dBhom

dT

∣∣∣∣
Tn

, (4.1)

where Hn = H(Tn). This quantity sets the average time for two bubbles to collide after
they are nucleated.
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For a catalysed transition, a similar timescale can be calculated with BDW in place of
Bhom. However, for sparse domain wall networks (ξ ∼ 1) the time taken for two bubbles to
collide will instead be set by the average distance between the walls as (vwξHn)−1, where vw

is the bubble wall velocity. The effective inverse time scale for the catalysed phase transition
will then be given by the slowest (bottleneck) process, namely

βDW = min
(

dBDW
dt

∣∣∣∣
Tn

, vwξHn

)
. (4.2)

4.2 Percolation temperature

It is useful to define a percolation temperature, Tp, that captures the moment at which a
significant fraction of space is filled with the true vacuum and the transition is about to
complete. To this end, it is customary to refer to the probability p(T ) of finding a point that
still remains in the false vacuum at temperatures T below the critical temperature Tc [92, 100]:

p(T ) = e−I(T ), I(T ) = 4π

3

∫ Tc

T
dT ′ Γ(T ′)a(T ′)3r(T, T ′)3

H(T ′)T ′ , (4.3)

where Γ(T ) is a homogeneous nucleation rate per unit volume, and r(T, T ′) is the (co-moving)
size at the time t(T ) of a spherical bubble nucleated at the time t′(T ′),

r(T, T ′) =
∫ T ′

T

dT̃

T̃

vw

H(T̃ )a(T̃ )
. (4.4)

The quantity I(T ) corresponds to the total volume of spherical true vacuum bubbles (over-
counting overlapping regions) per unit comoving volume at the temperature T .

For the case of spherical bubbles in 3D space, percolation is assumed to occur when
I(Tp) = nc ≃ 0.34 and p(Tp) ≃ 0.71 [92, 100, 101]. For a homogeneous phase transition
the percolation temperature can then be evaluated straightforwardly according to (4.3) by
taking Γ = Γhom in (2.20).

For the catalyzed process the percolation temperature depends on which of the two
possible time scales in eq. (4.2) controls the duration of the transition. For a very dense
network with ξ ≫ 1, or a scenario in which the (seeded) bounce action is very flat around
the nucleation temperature, we expect the time scale of the transition to be set by the slope
of the bounce action. This makes the percolation condition for this scenario equivalent to
a homogeneous phase transition, and the percolation temperature may then be computed
according to (4.3) with the following identification:

Γ = ξHΓDW, (4.5)

where ΓDW is given in (2.26). We shall indicate by T 3D
p the percolation temperature obtained

in this way.
On the other hand, whenever the distance among domain walls sets the relevant time scale

(namely for sparse networks with ξ = O(1) or for very fast nucleation rate) the percolation
temperature can be derived from a purely geometrical argument, similarly to what has been
done for a distribution of monopoles [92]. In this case bubbles of true vacuum can be thought
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of growing instantaneously out of the domain walls at T ≃ Tn. From that moment on, the
amount of true vacuum volume per unit co-moving volume is given by

Iw(T ) = (ξHa)n · 2r(T, Tn), (4.6)

where (aH)−1
n is the co-moving Hubble radius at T = Tn. The probability of a point remaining

in the false vacuum is pw(T ) = e−Iw(T ), so that Iw(T ) is the equivalent of I(T ) for a domain-
wall seeded transition. The derivation of (4.6) is presented in appendix C, together with the
analogous derivation for a network of monopoles and strings acting as nucleation sites. The
percolation temperature for this case, T ξ

p , is then defined through Iw(T ξ
p ) = nc.5 Assuming

radiation domination, one finds

T ξ
p = 1

1 + nc
2ξvw

Tn, (4.7)

which for relativistic wall velocities and ξ ∼ 1 gives Tp ∼ 0.85Tn. In general, we define the
percolation temperature for the catalyzed transition as

Tp = min(T 3D
p , T ξ

p ). (4.8)

In the case of strong supercooling one needs to impose an additional condition on top of
percolation to make sure that the phase transition does actually complete. This condition
requires the physical volume that still remains in the false vacuum to decrease with time [101].
This requirement applies to both homogeneous and seeded phase transitions, and becomes
particularly relevant when percolation occurs close to the moment where the vacuum energy
of the false vacuum starts to dominate the energy budget of the universe. The condition
that the false vacuum volume decreases reads

3H − dI

dt
< 0 , (4.9)

where the appropriate I(T ) depends on the nature of the transition as discussed above. This
condition is usually checked at T = Tp, see e.g. [102].

For instance, in the case of a sparse network where I = Iw in (4.6), by evaluating
eq. (4.9) at percolation, we obtain

3− 2vwξ
H(Tn)
H(Tp)

Tp
Tn

< 0. (4.10)

If we further assume that percolation is happening sufficiently far from vacuum domination
we can use (4.7) for Tp, and the condition above simplifies to

2vwξ + nc > 3. (4.11)

As we can see, for ξ ≤ (3−nc)/2vw ≃ 1.33, the volume in the false vacuum may not decrease at
Tp, but only at some lower temperature (provided that vacuum domination has not set in yet).
In the following, we shall consider ξ ≥ 2 so that (4.10) is satisfied at Tp provided that vw ∼ 1.

5In the following, we shall keep nc = 0.34 also for the case of sparse networks, even though this value refers
to spherical bubbles with a homogeneous nucleation probability.
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4.3 Bubble sizes

The timescale of the phase transition sets the average size of bubbles at percolation, Rp. For
homogeneous transition we shall refer to the standard relation

R hom
p = −vw(8π)1/3

(
dBhom

dt

∣∣∣∣
Tp

)−1

. (4.12)

The properties of a seeded phase transition whose time scale is set by the slope of the bounce
action are indistinguishable from a homogeneous phase transition. The average bubble size
is then still given by (4.12) with Bhom replaced by BDW:

R 3D
p = −vw(8π)1/3

(
dBDW

dt

∣∣∣∣
Tp

)−1

. (4.13)

For sparse networks, however, the bubble size will be related to the average distance among
the walls at the nucleation temperature. We then find

R ξ
p = a(Tp)r(Tp, Tn) =

nc

2ξH(Tn)

(
1 + nc

2ξvw

)
, (4.14)

where in the last step we have used the percolation condition I(T ξ
p ) = nc together with the

relation (4.7), which assumes percolation during radiation domination. The last equality
may be modified close to vacuum domination.

Considering then both the possibility of sparse and dense networks, the appropriate
value of the bubble size for the catalyzed phase transition will be taken to be the largest
of (4.13) and (4.14),

R seed
p = Max(R 3D

p , R ξ
p ). (4.15)

4.4 Latent heat

Another important quantity that characterises the transition is the energy released in the
plasma, normalised to the radiation energy density at Tp. This quantity is usually denoted
by α and is given by (see e.g. [103])

α = 1
ρrad(Tp)

(
∆V − T

4
d∆V

dT

) ∣∣∣∣
T =Tp

, (4.16)

where ∆V is the difference in energy between the true and false vacua at T = Tp. The
relation in (4.16) applies both to homogeneous and catalyzed phase transitions.

4.5 A benchmark analysis

To make the discussion in the previous sections more concrete, we determine the quantities
discussed above for a representative set of parameters: η = 1, mS = 200GeV, with the
portal coupling κ free to vary, as considered also in ref. [102]. For simplicity we shall take
vw ∼ 1 throughout this section.

In order to efficiently scan different values of κ, we use the thin wall approximation
(whose details are presented in appendix B) to evaluate the seeded bounce action. As shown
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in figure 4, this approximation captures the overall qualitative behaviour of the bounce
action compared to the fully-numerical result. The thin wall approximation gives a good
approximation to the nucleation temperature when the transition completes close to Tc, but
becomes worse for more supercooled transitions. The thin wall approximation also predicts
a larger slope for the bounce action at the nucleation temperature, however, for sparse
domain wall networks this slope is irrelevant as the bubble size is set by the domain wall
separation. We then expect our results to give a good indication of the difference between
the catalysed and homogeneous transitions.

The nucleation and percolation temperatures for the second step of the phase transition,
(±vs, 0) → (0, vh), as a function of κ are shown in the left panel of figure 5, for homogeneous
and seeded nucleation by the dashed and solid lines, respectively. For the latter, different
numbers of domain walls per Hubble patch are considered, namely ξ = 2 and ξ = 5.

As we can see, the homogeneous phase transition becomes more and more supercooled
for larger κ, until it fails to complete for κ ≳ 0.90. On the other hand, we find successful
percolation for the seeded phase transition beyond this value of the portal up to κ ≈ 0.98,
in agreement with the general behaviour discussed around figure 2. As we are using the
thin wall approximation in this analysis, this value of the end point should however be
taken only as an indication.

Due to the weak logarithmic dependence on ξ, the nucleation temperature defined in
equation (2.27) is practically the same for all the considered values of ξ, and we then only
show the case of ξ = 2. On the other hand, the percolation temperature Tp has a relatively
stronger dependence on ξ as long as the network is sparse, ξ ∼ O(1), as shown explicitly
in figure 5 left. While the dependence of Tp on ξ is still mild, this can lead to a significant
change in other quantities such as α and Rp, as shown by the different trajectories in the
right panel of figure 5. For larger values of ξ, Tp and Tn are practically the same (as long as
the relevant time scale of the transition is set by the domain wall distance).

The bubble size, HRp, and latent heat, α, as κ is varied are shown in the right panel
of figure 5 for both the homogeneous and the seeded transition (by the dashed and solid
trajectories, respectively). The black dots indicate the sampled values of the portal coupling:
they are uniformly sampled with ∆κ = 0.01 within κ ∈ (0.865, 0.895) for the homogeneous
transition, and within κ ∈ (0.865, 0.985) for the seeded counterpart. The values of α and
Rp are evaluated according to section 4.3 and section 4.4.

As we can see, the trajectory for the homogeneous phase transition shows a strong
correlation between α and Rp, so that larger α implies larger bubbles, in agreement with
previous studies (see e.g. [102]). In this respect, the seeded phase transition shows a very
different behaviour, rooted in the fact that the relevant time scale may be set by the distance
among the walls rather than the slope of the bounce action. This is in fact the case for
ξ ≲ O(10) for all the relevant values of κ, and the bubble size is given by HRp ∝ 1/ξ

independently of α. This simple scaling with ξ is apparent for the trajectories with ξ = 2
and ξ = 5, and also for the flat section of the one with ξ = 102.

For larger values of ξ, the slope of the bounce action may set the time scale, so that
R 3D

p > R ξ
p in eq. (4.15). In this case the correlation between Rp and α typical of the

homogeneous phase transition is naturally recovered. For ξ = 102, this happens for κ ≳ 0.95
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Seeded PT

Homog. PT

←

←
Figure 5. Left. Nucleation and percolation temperature, Tn and Tp, for the homogeneous phase
transition (dashed) and the seeded phase transition (solid) for different values of ξ as a function of
the portal coupling κ fixing η = 1 and mS = 200GeV. The green line indicates the temperature at
which the vacuum energy begins to dominate. Right. Trajectories in the (α, HRp) plane by varying κ

according to the range in the left panel (κ increases moving from left to right) for the homogeneous
transition (dashed) and the seeded transition (solid) for different values of ξ. Also shown are contours
indicating the peak gravitational wave amplitude from sound waves, as well as the region where sound
waves can be long lasting (see section 5 for more details). The wall velocity has been fixed to vw ∼ 1
in both panels.

and determines the sharp turn in the right panel of figure 5. For the extreme case of ξ = 108,
corresponding to the densest possible domain wall network at the electroweak scale,6 the
time scale is always set by the slope of the bounce action for all the relevant values of κ.
The phenomenology of the seeded phase transition becomes then practically independent of
ξ, and indeed the trajectories for ξ = 102 and ξ = 108 approach each other in this regime.
The implications of this behaviour for the gravitational wave signal expected from a seeded
phase transition will be discussed in detail in the next section.

5 Gravitational wave signatures

In this section we discuss the gravitational wave signal from a seeded electroweak phase
transition, and outline the corresponding detection prospects at LISA.

5.1 Sound waves

The key parameters determining the gravitational wave signal from a first order phase
transition are its timescale, the latent heat, α, and the bubble wall velocity, vw. The first two
quantities have been discussed in section 4. As for the wall velocity, this is determined by
balancing the vacuum energy driving the expansion of the bubble with the friction coming
from the thermal plasma [105–109].

For the case of the electroweak phase transition, vw will reach a terminal value due to
transition radiation emitted as the massive gauge bosons cross the bubble wall which grows
proportionally to the relativistic γ(vw) factor of the wall [109], see also refs. [110, 111] for

6This comes from a friction-dominated evolution of the network with σ
1/3
DW ∼ T ∼ 100 GeV, yielding

ξ ∼ (100 GeV/MPl)1/2 [104].
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recent studies. The main contribution to the gravitational waves comes then from sound
waves in the plasma. The gravitational wave spectrum in terms of the average bubble size,
HpR∗, and the latent heat α is given by [112–119]:

dΩgw ,0
d ln(f) = 4.13× 10−7 (HpR∗)

(
κswα

1 + α

)2 (100
g∗

)1/3
S(f/fp,0) ,

fp,0 ≃ 26
(

1
HpR∗

)(
Tp

100GeV

)(
g∗
100

)1/6
µHz ,

S(x) = x3
( 7
4 + 3x2

)7/2
,

(5.1)

where fp,0 is the peak frequency today. The factor K = κswα/(1 + α) is the kinetic energy
fraction of the fluid. It depends on the velocity profile of the fluid and is given by [120]

K = 4
3 Ū2

f , Ū2
f = 3

v3
w

∫ vw

cs

ξ2 v(ξ)2

1− v(ξ)2 dξ . (5.2)

The velocity profile v(ξ) is the solution of [121]

2v

ξ
= 1− ξv

1− v2

[
1
c2

s

(
ξ − v

1− ξv2

)2
− 1

]
dv

dξ
, (5.3)

where c2
s = 1/3 for a relativistic fluid, with the boundary condition

v(vw) =
3α

2 + 3α
. (5.4)

Equation (5.4) is only valid for relativistic wall velocities, vw ∼ 1, which is the case we
will consider in what follows.

The gravitational wave spectrum in (5.1) is accurate only when the time for shock
formation is larger than one Hubble time, namely if

HpR∗

Ūf

= HpR∗

√
4(1 + α)
3κswα

> 1. (5.5)

When this inequality is not satisfied, eq. (5.1) needs to include an additional suppression
factor given HpR∗/Ūf [102].7 The gravitational wave spectra presented above are strictly
valid for rather fast phase transitions where the Hubble expansion can be neglected, whereas
the signal from slower phase transitions may include additional suppression.

5.2 Gravitational waves from seeded phase transitions

Let us now apply the discussion of section 5.1 on the gravitational wave spectrum from a first
order phase transition to the case of a catalysed process. First, we notice that domain wall
catalysis is not expected to change the friction on the wall, so a difference in vw compared
to the homogeneous case can only be due to a possible difference in α.

For the typical bubble size R∗ entering (5.1), we use the size of bubbles at percolation,
Rp, defined in equations (4.12) and (4.15) for the homogeneous and catalysed transitions

7New contributions to the gravitational wave spectrum are then expected from the turbulent motion.
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respectively. For sparse networks, the connection between the correlation length of the
domain wall network, ξDW = (ξH)−1, and the effective size of the bubbles, eq. (4.14), has
actually been observed in the numerical simulation of ref. [93], where it was shown that
the sound wave contribution to the gravitational wave spectrum can be obtained with good
approximation by replacing the standard parameter β with 1/ξDW. This justifies the use
of R∗ = Rξ

p ≃ (ξH)−1 for sparse networks in our analysis.8
A novel aspect of seeded phase transitions is that the nucleated bubbles may deviate

significantly from spherical symmetry, see figure 3 and related discussion. This raises the
question of what impact non-spherical bubbles could have on the gravitational wave signal.
As the accelerated expansion of the bubble walls is driven by the vacuum energy released
in the transition, the bubbles become more spherical as they expand [122–124]. As the
gravitational wave signal is dominated by collisions between large (Hubble scale) bubbles
which have expanded to many orders of magnitude larger than their initial size, the initial
bubble profile has a negligible effect on the resulting gravitational wave signal.

However, the catalysed transition may lead to collisions of non-spherical bubbles as the
nucleated bubbles are no longer uniformly distributed. This effect is most significant for
sparse domain wall networks (small ξ), as bubbles are dominantly nucleated on domain walls
which occupy only a small fraction of a hubble patch. In this case, bubbles will first merge
to form a large, approximately planar, bubble before colliding with a bubble nucleated on
a neighbouring domain wall. The gravitational wave spectrum from sound waves in this
scenario was studied in ref. [93], where it was found that in fact the spectrum was unchanged
from the homogeneous transition after the identification R∗ = (ξH)−1.9

In the following we shall only consider the standard sound wave contribution in eq. (5.1)
and capture the effect of the seeded transition via the use of the appropriate bubble size
in eq. (4.15).

Some general implications of a seeded phase transition for the gravitational wave signal
can already be inferred from the right panel of figure 5. To each point in the (α, HR∗)
plane we can associate a gravitational wave peak amplitude according to eq. (5.1), and the
various contours of constant h2Ωpeak

GW are shown by the dotted black lines. As we can see,
this amplitude strongly depends on the number of domain walls per Hubble volume, ξ, with
larger ξ implying a weaker signal.

Smaller values of ξ result in larger bubbles and generically greater amplitudes. This,
together with the decorrelation between Rp and α, allows the region of parameter space
where sound waves are long lasting, i.e. where the inequality (5.5) is satisfied, to be populated.
The boundary of this region is indicated by the blue line in the right panel of figure 5.
This condition is typically not met for homogeneous transitions because HpR∗ and α both
increase as the transition becomes supercooled [102]. This can also be seen explicitly from
figure 5 as the homogeneous trajectory for our benchmark always lies below the line of
long-lasting sound waves.

8Notice that since the simulation is carried out assuming a negligible Hubble expansion, the application to
domain wall networks with ξ ≲ 10 requires extrapolation.

9A potential source of gravitational waves that this analysis neglects is a contribution from the acceleration
of domain wall bubbles before they collide, as they are highly non-spherical. However, we do not consider this
possibility in this work.
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Figure 6. Figures showing the gravitational wave signal for κ = 0.895 (left) and κ = 0.975 (right).
The orange curve, green, grey and blue curves show the catalysed transition for ξ = 1, 5, 102, 108

respectively. The red dashed curve shows the homogeneous transition, which only completes for
κ = 0.895. Blue shaded region shows the LISA sensitivity [3].

A detailed comparison of the gravitational wave spectrum from each type of phase
transition within the benchmark analysis of section 4.5 is shown in figure 6. The power-law
integrated sensitivity curves for LISA are shown in blue, computed using the procedure
outlined in ref. [125] for a signal to noise ratio (SNR) of 1. The left panel shows the spectra
for κ = 0.895, which is the largest κ value where the homogeneous transition still completes.
In this case the expected signal from a homogeneous transition is larger than the catalysed
transitions for all choices of ξ. This is because the catalysed transition percolates closer to the
critical temperature, leading to less energy being released in the transition. The signal from
a catalysed transition is larger for smaller ξ values as the bubbles are larger at percolation.
The ξ = 108 transition is not shown as the signal is negligible.

The right panel of figure 6 shows the signal for the catalysed transition at κ = 0.983,
where the homogeneous transition does not complete but the seeded process is still fast
enough. The signal for smaller ξ values is larger and peaked at lower frequencies. For
the ξ = 102, 108 transitions the bubble size is no longer set by the domain wall separation
but rather from the bubble nucleation rate, leading to a weaker signal peaked at higher
frequencies. The gravitational wave signal is very sensitive to the precise value of κ as we
are close to the limit of successful percolation.

The gravitational wave spectrum as a function of κ in the two-step parameter space
for our representative benchmark of section 4.5 can be summarised in figure 7, where we
also highlight the implications for a detection at LISA. The different trajectories (solid
and dashed for seeded and homogeneous phase transitions, respectively) are equivalent to
the ones shown in figure 5, but are now plotted in terms of peak frequency and amplitude
of the corresponding gravitational wave spectrum assuming again relativistic wall velocity.
The black dots show the sampled values of the portal coupling, where κ increases when
moving upwards along the curves.

The decorrelation of α and Rp for seeded transitions with small ξ manifests in figure 7
as almost vertical trajectories. This is as Rp is fixed by the domain wall separation, so the
peak frequency shifts only due to the change in Tp as κ is varied, while the peak amplitude
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Figure 7. Peak frequency and amplitude of the gravitational wave signal from the homogeneous and
catalysed transitions for the parameter points discussed in section 4.5. The solid lines indicate the
catalysed transitions for different ξ values and the dashed line shows the homogeneous transition. The
coloured contours indicate the signal to noise ratio in LISA.

increases as Ωgw ∝ α2Rp. This is in contrast to the homogeneous line and the transitions
for ξ = 102 where the timescale is set instead by the nucleation rate and the peak frequency
shifts more significantly due to the changing size of bubbles as they collide. Similarly to
figure 6, a smaller ξ generically leads to a larger signal amplitude. However, this does not
necessarily translate in a larger SNR because of the shift to lower frequencies where LISA
starts losing sensitivity. In this regard, future experiments such as µAres [126] could more
efficiently probe the gravitational background in the case of sparse networks.

6 Conclusions & outlook

The xSM is a simple model which encapsulates new physics that can modify the EWPT,
possibly leading to an observable spectrum of GWs. The Z2 symmetric limit of this model has
been put forward as a test case for simple weak scale new physics that can remain hidden from
current collider and precision searches, although it may be within reach of future colliders.

We have shown that in a large part of the relevant parameter space, the phase transition
dynamics are modified due to the presence of domain walls. The decay of the false vacuum
proceeds through tunnelling catalyzed by domain walls, instead of through homogeneous
bubble nucleation. This changes the viability of specific parameter space points in the model
and qualitatively modifies the gravitational wave signal.

The calculation of the bounce action and other parameters relevant for determining
gravitational wave spectra for catalyzed transitions are difficult using standard techniques.
The breaking of rotational symmetry due to the presence of a catalysing defect complicates
the equations which determine the field profiles describing the critical bubble. To overcome
these difficulties we use the mountain pass algorithm, which is well-suited for finding saddle
points in phase transitions with reduced symmetry.

One of the parameters that is highly relevant for the phenomenology of the catalysed
transition is the number of domain walls per Hubble volume ξ at the onset of the catalysed
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transition. For sparse networks with ξ ≲ O(10) the bubble size is controlled by the correlation
length of the network, leading to larger bubbles and greater gravitational wave amplitude.
On the other hand, for dense networks with ξ ≳ O(100) the catalysed transition is expected
to resemble a homogeneous process. It will be very interesting to study the domain wall
network explicitly in this model through numerical simulations, possibly taking into account
friction effects, in order to predict the possible values of ξ.

Throughout our analysis, the breaking of rotational symmetry due to the presence of
the impurities has had only indirect consequences on the GW spectrum (namely by setting
the relevant thermodynamical quantities). However, few open questions remain on this
matter. For instance, it is not yet conclusive whether the elliptical shape of the critical
bubbles nucleated on the walls will be maintained in the growth to macroscopic size, even
though the approach to spherical shape is the most likely outcome. In addition, for sparse
networks seeding a phase transition with a runaway behaviour, the acceleration of planar
walls (as opposed to spherical bubbles) may contribute to the GW spectrum in a significant
way also before collision.

In summary, gravitational wave signatures of early universe phase transitions are a
promising future probe of fundamental physics. We have shown that just like everyday phase
transitions, it is possible that the EWPT is dominated by defects which are crucial for the
nucleation of bubbles. This mechanism is very general and applicable to other cosmological
phase transitions as well, where defects and impurities can play a decisive role in determining
the corresponding phenomenology.
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A Comparison to previous work

In this appendix, we provide a comparison between the results obtained within the domain wall
effective field theory (EFT) and the MPT algorithm by retaining only the leading terms in the
high-temperature approximation. This provides a non trivial cross check of our methods and
corroborates our strategy in view of generalising these results to full 1-loop thermal potentials.

In figure 8 we compare the tunneling action evaluated with the domain wall EFT
(described in further detail in ref. [61]) and the MPT algorithm, for the benchmark point
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Figure 8. Comparison of the homogeneous bounce action S3/T (red) in the leading high-temperature
approximation, and the seeded bounce action evaluated with the MPT (red diamonds) and within the
EFT within different approximations: zeroth order where KK states are neglected in green, O(1/m2

KK)
in orange and O(1/m4

KK) in blue. The purple line shows the seeded bounce action within the thin
wall approximation.

given by κ = 1.3, η = 1.6 and µs ≃ 127GeV leading to a singlet mass in the true vacuum mS =
250GeV at zero temperature. For this benchmark the critical temperature is Tc ≃ 110GeV.
At Tr ≃ 74GeV the tunnelling action approaches zero, signaling a classical instability of
the domain walls.

The temperature range where the EFT is supposed to provide reliable results for the
bounce action can be estimated by considering the ratio between the lightest Higgs zero mode
mass, ω2

0(T ) (see equation (3.10)), and the mass scale of the continuum KK states, m2
KK(T ).

When this ratio is small, integrating out the KK states is indeed justified and the expansion in
terms of the inverse KK mass is supposed to be converging. In practice, it is more convenient
to identify the range of validity by comparing the prediction for the bounce action keeping
different 1/m2

KK orders in the EFT. As we can see from figure 8, the EFT works very well
at lower temperatures close to the 3d rolling, where in fact ω2

0(T ≈ Tr) ≈ 0 and a large
hierarchy exists between the lightest Higgs mode and the KK states. The agreement between
the different predictions degrades for higher temperatures, and for T/Tc ≳ 0.9 the 1/m2

KK
expansion can be considered broken. This is shown in figure 8 by the dashed lines. The
high temperature region is in fact difficult to treat with the domain wall EFT, as the seeded
bubble tends to extend further in the direction orthogonal to the wall and this behaviour
can only be captured by including more and more KK states.

As shown in ref. [61], for temperatures close to Tc one can still rely on a thin wall
approximation for the seeded tunneling similarly to the homogenous case. Further details and
modifications compared to ref. [61] are discussed in appendix B. This calculation is limited
by the fact that away from T ≈ Tc the bubble wall becomes thick and this approximation
is no longer valid. The results from the thin wall limit are shown in figure 8 by the purple
line until T = 0.9Tc. As detailed in appendix B, the definition of our thin wall implies that
the resulting bounce action is actually a lower bound on the true one.
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Considering the limitation of the thin wall at low temperatures, and of the EFT at high
temperatures, there remains a gap in which the tunneling rate is not calculable. We can
however overcome these limitations by calculating the bounce action fully numerically via
the MPT algorithm presented in the main text. The results are shown by the red diamonds
in figure 8. The MPT calculation of the bounce action matches very precisely the EFT at
low temperatures, as well as the thin wall at high temperatures (consistently with the thin
wall providing a lower bound, as mentioned above), hence the MPT provides the correct
extrapolation in the intermediate temperature range.

B The thin wall approximation

In this appendix we review how to compute the bounce action for the seeded decay in the
thin tall approximation [61]. We first discuss the thin wall approximation to compute the
bounce action for the homogeneous decay of the false vacuum in a generic two field model.
Then we extend the same strategy to the false vacuum decay seeded by the domain walls.

Thin wall for homogeneous bounce in a two-field model. We would like to estimate
the O(3) symmetric bounce action in the thin wall (TW) regime for a model with two fields.
The equation of motions for the two fields are (notation ϕi = h, S)

d2ϕi

dr2 + 2
r

dϕi

dr
= ∂V

∂ϕi
(B.1)

We denote with ϕT
i and ϕF

i the true and false vacuum respectively. The boundary con-
ditions are

ϕi(r → ∞) → ϕF
i ϕ′

i(0) = 0. (B.2)

We define ∆V = V (ϕF
i ) − V (ϕT

i ) > 0 as the vacuum difference.
The bounce action is the action evaluated on the bubble solution, minus the action

evaluated in the false vacuum, where

SBubble = 4π

∫
r2dr

(
1
2
∑

i

(
dϕi

dr

)2)
+ V, Sfalse = 4π

∫
r2drV. (B.3)

The TW approximation captures the value of the bounce action in the limit where the two
minima are almost degenerate ∆V → 0 [28, 127]. In this limit, the energetically favourable
field configuration is such that the fields vary significantly only at the bubble wall, in a
region δR which is much smaller than the bubble radius R. In the region r > R + δR the
fields are in the false vacuum, while in the region r < R − δR they sit on release points
ϕ∗

i which lie between the false and the true vacuum. For this configuration it is a good
approximation to neglect the friction term in the equation (B.1). Working at leading order
in an expansion δR ≪ R the bounce action is

Sbounce ≃ 4πR2σB − 4
3πR3∆V, (B.4)
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where the bubble tension in the TW approximation is defined as

σB =
∫ R+δR

R−δR
dr

(
1
2
∑

i

(
dϕi

dr

)2
+ (V − V (ϕ∗

i ))
)

. (B.5)

Minimizing Sbounce with respect to the radius, one finds the usual formula [28, 30]

Sbounce =
16πσ3

B

3∆V 2 . (B.6)

The non-trivial step is to compute the bubble tension within the TW approximation
in the two field model. By employing the equation of motions in the TW approximation,
together with the boundary conditions (B.2), we obtain

∑
i

(
dϕi

dr

)2
= 2(V − V (ϕ∗

i )). (B.7)

With this equation we conclude that the tension is simply given by

σB =
∫ R+δR

R−δR
dr (2(V − V (ϕ∗

i ))) . (B.8)

We then change integration variable in the previous expression by using again (B.7). We
specialize to two fields. The field ϕ1 goes from ϕ1(0) = ϕ∗

1 to ϕ1(∞) = ϕF
1 . Given that ϕ1 is

the Higgs field, the first derivative of ϕ1 with respect to r is expected to be negative. We
parametrize the path in the field space with ϕ2 as a function of ϕ1 such that ϕ2(ϕ∗

1) = ϕ∗
2

and ϕ2(ϕF
1 ) = ϕF

2 . We can then use (B.7) to show that

dϕ1
dr

= −

√
2(V − V (ϕ∗

i ))√
1 +

(
dϕ2
dϕ1

)2
, (B.9)

where we choose the negative branch because of the previous argument. Given that ϕ1(R +
δR) = ϕF

1 and ϕ1(R − δR) = ϕ∗
1, we conclude that

σB =
∫ ϕ∗

1

ϕF
1

√
1 +

(
dϕ2
dϕ1

)2√
2(V − V (ϕ∗

i )). (B.10)

The minimal value for the tension is obtained when the integral extends the least on the ϕ1
range, namely for ϕ∗

1 = ϕc
1 where ϕc

1 is defined as the point in the field path on the descending
slope of the potential where V (ϕc

1) = V (ϕF
1 ). This is the prescription that we adopt in the

main text as well as in appendix A, implying that our thin wall results are supposed to be a
lower bound on the true bounce action (also for the seeded tunneling, as discussed below).

Thin wall for the seeded bounce action. The O(3) bounce action at finite temperature
can be interpreted as the energy difference between the bubble of radius R and the false
vacuum [30]. In the presence of the DW, this difference involves an extra piece with respect
to equation (B.4) corresponding to the fact that a portion of the original DW is removed
inside the bubble [61]:

Sbounce ≃ 4πR2σB − 4
3πR3∆V − 4πR2σDW (B.11)
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where σDW is the DW tension. In deriving (B.11) we assumed O(3) symmetry so that the
portion of DW removed in the tunneling is a disk of radius R, and also that the bubble tension
σB in the seeded bounce is well approximated by the bubble tension of the homogeneous
bubble in (B.10). These are robust assumptions far from the DW, so we expect (B.11) to
be a good approximation if the bubble radius is much larger than the DW width.10 By
minimizing (B.11) with respect to the bubble radius, we derive

SDW
bounce =

16π (σB − σDW/4)3

3∆V 2 (B.12)

which is the formula of [61] and the one employed in our analysis. Note that in order to evaluate
σB in (B.12) according to its expression in (B.10), one only needs to know the path in field
space for the homogeneous tunneling solution. We have used the public code Findbounce [97]
to obtain the path profile and compute the bubble tension with the prescription discussed
below (B.10), so that (B.12) can be considered a lower bound on the seeded bounce action.

C Percolation in the presence of monopoles, strings and walls

In this appendix we collect some results regarding percolation in the presence of defects
of various codimensions. This analysis applies to sparse networks in which the distance
among the defects sets the time scale for percolation, so that we can assume that at the
same nucleation time tn all the defects become unstable and start expanding converting
the space to the true vacuum.

Our strategy is to generalize the expression for percolation valid for homogeneous phase
transitions to the case of impurities. We start from the definition [92] adapted to a general
D-dimensional space:

ID(t) ≡
∫ t

tc

dt′Γ(t′) aD(t′)V (t, t′), (C.1)

where V (t, t′) is the D-dimensional co-moving volume converted to the true vacuum at the
time t considering a nucleation event at the time t′. Γ(t) is as usual the nucleation rate per
unit time per unit (physical) volume. The integral in (C.1) is related to the probability of a
point being in the false vacuum at the time t as p(t) = e−ID(t). Eq. (4.3) is related to (C.1)
by assuming the nucleation of spherical bubbles in a 3D space.

Let us now apply (C.1) to the case of monopoles acting as nucleation sites.11 We then
consider a sharply peaked nucleation rate around the monopoles at the time tn (which could be
interpreted as the time when their cores become unstable), and a finite density of monopoles
nm(t). This leads to the following nucleation rate per unit volume:

Γ3(t) = δ(t − tn)nm(t) = δ(t − tn)ξm(t)H3(t), (C.2)

where we have introduced the parameter ξm(t) as the number of monopoles per Hubble
volume, including a possible time dependence encoding the dynamics of the network, and the

10In [61] the possibility of a O(2) symmetric TW bounce was considered. However, this possibility did not
lead to significant changes in the bounce estimate, and hence here we stick to the O(3) case.

11The original result can be found in ref. [92].
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suffix indicates the codimension D = 3 of monopoles. Plugging this back in (C.1) one obtains

Im(t) = ξm(tn)H(tn)3 · 4π

3

[∫ t

tn
vw

a(tn)
a(t̃) dt̃

]3
, (C.3)

where we have used that bubbles around monopoles are 3D spheres. This result agrees
with eq. (7.3) in ref. [92].

In order to apply the same analysis to a network of strings or walls, one has to take
into account the different codimension of these defects. Let us first consider the case of
strings, whose codimension is D = 2, and idealize the network as a collection of straight,
infinite strings parallel to the z axis. The number of such strings per Hubble volume will
be denoted by ξs(t). When nucleation occurs, the string core starts to expand in the radial
direction at every point along the string. Considering a slice of space z = z0 orthogonal to
the strings, the progress of the transition can be measured by looking at the disks of true
vacuum that are expanding from the points where the strings pierce our two-dimensional
slice. The number of such points is determined by ξs(tn), and we can therefore consider the
following nucleation rate per unit surface in 2D:

Γ2(t) = δ(t − tn) ξs(t)H2(t), (C.4)

where the factor ξs(t)H2(t) stands for the number of string-crossing points per unit surface.
Substituting this back in (C.1) with D = 2 one obtains:

Is(t) = ξs(tn)H2(tn) · π

[∫ t

tn
vw

a(tn)
a(t̃) dt̃

]2
. (C.5)

Finally, let us apply the same reasoning to a network of domain walls seeding the phase
transition, whose codimension is D = 1. Consider a network of walls parallel to the x–y

plane. The number of walls in one Hubble volume will be indicated by ξw(t) as usual. The
progress of the transition can be measured by considering straight lines orthogonal to the
walls (parallel to the z axis in this case). Such straight lines intersect the walls in a given
number of points depending on ξw(t), from which the conversion to the true vacuum begins.
Along the lines orthogonal to the walls, the transition proceeds with nucleation rate given by

Γ1(t) = δ(t − tn) ξw(t)H(t). (C.6)

Referring to (C.1) with D = 1, one then finds

Iw(t) = ξw(tn)H(tn) · 2
∫ t

tn
vw

a(tn)
a(t̃) dt̃, (C.7)

which corresponds to eq. (4.6) presented in the main text.
We can summarize our results for the probability of a point to be in the false vacuum

during a phase transition seeded by a sparse network of defects with codimension D as

p(t) = e−ID(t), ID(t) = ξ(tn)HD(tn)
πD/2

Γ
(

D
2 + 1

) [a(tn) r(t, tn)]D , (C.8)
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where D = 1, 2, 3 corresponds to domain walls, cosmic strings, and monopoles, respectively, ξ

indicates the number of defects per Hubble patch (ξ ∼ 1 for sparse networks), and r(t, t′) is
given in (4.4). Notice that ID(t) depends on the time t only through r(t, tn).

Given (C.8) one can define the time of percolation as ID(tp) = nc, where nc is the
percolation threshold. In the main text we use nc = 0.34 both for homogeneous and
domain-wall seeded phase transitions.

Let us finally discuss the condition for the decrease of the physical volume in the false
vacuum as the phase transition progresses, which is given by

Vfalse(t) ∝ a3(t) e−ID(t). (C.9)

Notice that, independently of the defect codimension, the volume in the false vacuum still
increases as ∝ a3, since this only depends on the embedding 3D space. The condition for
volume decrease then simply reads

1
Vfalse

d
dt

Vfalse = 3H(t)− dID(t)
dt

< 0. (C.10)

We can evaluate the condition above analytically by considering the universe to be
radiation dominated at percolation, defined for all codimesions as ID(tp) = nc. In the case
of monopoles, or in general point-like defects, we find that

3Hp − dIm(t)
dt

∣∣∣∣
t=tp

= Hp

(
3− 3nc − 3vw

(4π

3 n2
c ξm

)1/3
)

< 0. (C.11)

For strings, one has

3Hp − dIs(t)
dt

∣∣∣∣
t=tp

= Hp
(
3− 2nc − 2vw (π nc ξs)1/2

)
< 0, (C.12)

and finally for domain walls

3Hp − dIw(t)
dt

∣∣∣∣
t=tp

= Hp (3− nc − 2vwξw) < 0, (C.13)

as presented in the main text.
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any medium, provided the original author(s) and source are credited.
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