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Abstract—Distributed Energy Resources (DERs) have valuable
flexibility to provide grid services. The Aggregated Feasible
Active Power Region (AFAPR) is useful for aggregating DERs
and reducing the computational burden in system-wide DER
scheduling. However, the uncertainty of DERs calls for a reliable
AFAPR. This paper proposes a novel surrogate polytope method
for deriving the inner approximation of the AFAPR that is
jointly reliable for all DER constraints and linear network
constraints across the scheduling period. Instead of directly
applying the chance constraints to the low-level DER constraints
and network constraints, the proposed method applies the
Wasserstein Distributionally Robust Joint Chance Constraint
(WDRJCC) to the surrogate polytope approximation of the
AFAPR, which is reformulated into a tractable set of Mixed
Integer Linear Programming (MILP) constraints. Our derived
inner approximation to the reliable AFAPR is less conservative
while still being reliable, as demonstrated by comparisons with
four benchmarks in extensive case studies, and with the nonlinear
Z-Bus power flow simulation applied to validate the satisfaction
of network constraints. The historical data size required is small,
making the proposed method easier to deploy. The scale of MILP
constraints is small and does not increase with the network size
nor with the number of DERs.

Index Terms—Distributed Energy Resources (DERs), flex-
ibility, Aggregated Feasible Active Power Region (AFAPR),
Wasserstein Distributionally Robust Joint Chance Constraint
(WDRJCC).

I. INTRODUCTION

THE penetration of Distributed Energy Resources (DERs),
including renewable generation, storage, electric heating

and electric vehicles, has been a growing trend in recent
years, and is anticipated to continue accelerating [1]. DERs’
flexibility can be used for network constraints management,
reserve provision, and frequency regulation [2]. However,
directly incorporating a large population of DERs in system-
wide scheduling introduces high computing efforts [3]. Dis-
tributed optimisation is a scalable approach for dispatching
DERs [4], which can be implemented by sharing limited
information while maintaining data privacy and decision-
making independence of each subsystem. However, the main
issue is its slow convergence time, especially when subsystems
have different characteristics and computing capabilities [5].
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Another promising solution is DER aggregation [5], which
requires the identification of the Aggregated Feasible Power
Region (AFPR). An AFPR describes all the aggregated active
and reactive power that DERs can achieve while respecting
the network constraints [2], [3]. The AFPR can be written as
a set of optimisation constraints and can be integrated into
upper-level scheduling problems that are more computation-
ally tractable than direct scheduling [5]. This paper specifically
focuses on the aggregation of active power (a sub-track of
the AFPR), which is denoted the Aggregated Feasible Active
Power Region (AFAPR) to distinguish it from the AFPR that
aggregates both active and reactive power (also referred to
the P-Q chart). Some existing work focused primarily on
the AFAPR as here, while others considered the AFPR. Our
literature review will include both tracks due to their close
relationship, and the methods may be migrated to each other.

AFPR identification is challenging due to the presence
of numerous network constraints and DER operational con-
straints, including time-coupling devices such as batteries [6],
contributing to the large problem scale. Therefore, approxima-
tions to the exact AFPR are necessary. Authors in [7] made an
approximation based on a geometric concept called homothet.
A random sampling method was applied in [8], where the
DER power trajectories were randomly drawn and only the
feasible ones were kept. Ref. [3] applied an optimisation-
based framework to maximise the volume of the AFAPR
approximation, with all the DERs’ operational constraints and
network constraints included in the formulation. There are
other topics similar to the AFPR where solution methods can
be adaptive. One is the feasible power region for the tie-line of
inter-connected systems [9]; the other is the Do-Not-Exceed
limit (DNE) that sets power limits for each node in the network
rather than the aggregated power [10].

The aforementioned studies [3], [6]–[8] assumed that future
DER power capabilities are known. However, DERs like
solar and wind generation are uncertain in the scheduling
phase, so a pressing need is to find an AFPR with a de-
sired reliability (probabilistic) guarantee. Ref. [11] proposed
a sampling method to find the reliable PQ chart but requiring
excessive computing time. Ref. [12] proposed a data-driven
method to learn the price response behaviour of a Distribution
Network Operator’s (DSO’s) aggregated power. Ref. [13] used
a sample-based method to tackle the uncertainty in AFAPR
considering non-convex DERs. However, their derived AF-
PRs/AFAPRs [12], [13] do not have an explicit probabilistic
guarantee. To reach this probabilistic guarantee, the optimi-
sation framework can be applied. Authors in [14] leveraged
Robust Optimisation (RO) to find the reliable AFAPR, but the
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use of RO may lead to over-conservativeness [15]. Works in
[6] and [16] applied the Chance Constraint (CC) to derive the
AFAPR, which can explicitly model the constraint satisfaction
probability and reduces the conservativeness compared to RO
[17]. However, the CC method assumes that the distribution
is known, which is not usually available in practice and leads
to bias [15]. The Distributionally Robust Chance Constraint
(DRCC) tackles this issue by considering the ambiguity of the
distribution. Refs. [18] and [19] applied DRCC to guarantee
the individual reliability of stochastic constraints in their
AFPR or AFAPR derivation.

In power system applications, it is desired to have a joint
reliability guarantee in which all constraints are met simultane-
ously with high probability [20], calling for a Joint CC (JCC)
approach. However, in the context of the AFPR identification,
there is a lack of work using JCC due to its intractability,
especially when a large number of DER constraints and
network constraints are involved. Therefore, aforementioned
studies in reliable AFPR or AFAPR [6], [16], [18], [19] applied
individual CC (ICC) or Distributionally Robust ICC (DRICC)
that controls the constraint violation probability individually.
ICC under the same violation rate as JCC leads to a less
reliable AFPR as the joint violation rate is not guaranteed.
To tackle the JCC for the energy uncertainty of individual
Electric Vehicles (EV) in the context of EV aggregation, [21]
applied a safe Bonferroni ICC approximation to the JCC by
setting a much lower violation probability, but the Bonferroni
method can lead to over-conservativeness [17].

When not considering the uncertainty, we notice that the
AFAPR admits a surrogate polytope approximation [6], [22],
which is essentially a small set of linear constraints for aggre-
gated power only while implicitly considering the DER con-
straints and network constraints. Therefore, a JCC formulation
starting from this surrogate polytope becomes more tractable.
By leveraging the Wasserstein Distributionally Robust Joint
Chance Constraint (WDRJCC) [23], the JCC based on the
surrogate polytope is exactly reformulated into a set of MILP
constraints with low complexity, which does not scale with the
number of DERs nor with the size of the network. Therefore,
our work differs from others using the exact JCC reformulation
technique like the virtual power plant scheduling in [24] and
DNE in [10] in that their reformulations are directly applied
to individual DERs, which may have scalability issues.

In summary, the contributions of this paper are as follows:
• We propose a novel surrogate polytope method to inner-

approximate the jointly reliable AFAPR over the entire
scheduling horizon, taking into account network con-
straints and DER constraints including time-coupling
effects. The inner approximation has a lower conserva-
tiveness due to the exact reformulation of JCC. The linear
distribution network model is applied for its tractabil-
ity in line with existing literature in DER aggregation
considering network constraints [3], [6], [14], [16], [18].
The nonlinear Z-Bus power flow simulation is applied in
case studies to verify the satisfaction of the exact network
constraints.

• We apply WDRJCC to the surrogate polytope, leading to
good performance achieved even with limited historical
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Figure 1. The scheduling process using the AFAPR.

data, which makes the proposed method easier to deploy.
• Our applied surrogate polytope tackles the intractability

issue of the large-size JCC. The derived jointly reliable
AFAPR is represented as a tractable set of MILP con-
straints, leading to computationally efficient upper-level
scheduling problems. The MILP size does not scale with
the number of DERs nor with the network size.

• Comparisons with benchmarks and comprehensive analy-
sis demonstrate the superior performance of the proposed
method. The benchmarks include two safe Bonfferoni
approximations to the JCC and two unsafe ICC models.

The manuscript is organised as follows. Section II introduces
the problem definition, and Section III describes our proposed
method. Case studies are carried out in Section IV while
Section V concludes the paper.

II. PROBLEM DEFINITION

The process of DER scheduling via aggregation is depicted
in Fig. 1. An aggregator manages a set of DERs including
PhotoVoltaic units (PV), Wind Turbines (WT), Energy Storage
(ES), and Controllable Loads (CL) in a distribution network,
which connects to the upper-level system through the Point
of Common Coupling (PCC). The aggregator collects infor-
mation about these DERs, and we assume that the aggregator
has access to distribution network information, authorised by
the DSO under some contracted conditions [25]. This access
is important in the aggregation process to ensure reliable dis-
tribution network operation, and this importance can facilitate
the collaboration between aggregators and the DSO. Also, the
aggregator role may be done by the DSO itself to facilitate
the TSO-DSO coordination [26]. When the aggregator and
the DSO are two separate entities, there could be conflicting
objectives. For example, the aggregator seeks maximum profit
while the DSO aims at minimising operational cost. In this
case, additional coordination strategies must be in place to
ensure fair consideration of different objectives [27], [28]. This
paper focuses primarily on the feasibility characterisation at
the PCC (the AFAPR) aggregating downstream DERs and the
network, which is a flexible and scalable concept that can
also be used for aggregation at different nodes or for different
parts of a distribution network [2], improving the computing
efficiency of the coordination strategies.

There may be more than one aggregator located in the
same downstream network. For each aggregator, the impact
on network constraints by the power of invisible DERs owned
by other aggregators can be modelled as uncertain non-
controllable loads, as will be described in Section II-A3. It is
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also possible that the DSO as mediator collects all the informa-
tion from the downstream aggregators and derives the reliable
AFAPR based on our proposed method to facilitate upper-
level scheduling and avoid the conservativeness to counter the
additional uncertainty.

Given the DER and the network information, the AFAPR
is derived and submitted to the upper-level system, which at
the same time receives the AFAPRs from other aggregators
for different DERs and networks, and performs a system-wide
scheduling on these AFAPRs. The use of AFAPRs reduces
computing efforts compared to directly scheduling all DERs of
all the aggregators. The private DER information and network
details are also preserved by each aggregator. As the next
step, each aggregator is informed of the scheduled aggregated
power, which is disaggregated to individual DERs in the real-
time implementation process. Our key focus is the derivation
of the reliable AFAPR for the aggregated active power; while
the reactive power aggregation, upper-level scheduling, and
disaggregation are not our main scope. Our proposed method
may be applied to the AFPR case as well, as will be discussed
in Remark 4 in Section II-C.

We will next present the mathematical details of the DERs,
network, and the jointly reliable AFAPR problem. The lower
letter a represents a scalar, the bold lower letter a represents
a vector, and the bold upper letter A represents a matrix.

A. DER Model
1) PV and WT: The PV operational power is modelled as

∀t ∈ [T ],∀iPV ∈ [NPV],

0 ≤ pPV, ψ
t,iPV

≤ pPV,ψ
t,iPV

(1)
(pPV,ψ
t,iPV

, qPV,ψ
t,iPV

) ∈ PQPV,ψ
t,iPV

(2)
WT has the same form of constraints which are not displayed.
pPV,ψ
t,iPV

is the maximum active power generation of the PV
connected to bus iPV at time step t, which depends on the
weather and the capacity limit and is uncertain. Here, ψ ∈ Ψ
represents the phase index, where Ψ comprises a, b, c for Wye
connections or ab, bc, ca for Delta connections. [NPV] collects
the buses connected with PVs. The actual PV generation pPV,ψ

t,iPV

can be scheduled to zero as Eq. (1). PV and WT can also
provide reactive power support qPV,ψ

t,iPV
and qWT,ψ

t,iPV
. Their reactive

power constraints are described by their PQ-charts [29] in
Eq. (2), which is illustrated as the area surrounded by the
capacity limit (green curves), active power limits (red curves),
and reactive power limits (blue curves) in Fig. 2. To address
nonconvexity in PQ charts, we convert them into sets of linear
constraints (grey areas) following [16].

2) ES: The operational power of an ES is modelled as:
∀t ∈ [T ],∀iES ∈ [NES]

pES,ψ
t,iES

= p̂ES,ψ
t,iES

+ qpES,ψ
t,iES

(3)
pES,ψ
iES

≤ qpES,ψ
t,iES

≤ 0 (4)

0 ≤ p̂ES,ψ
t,iES

≤ pES,ψ
iES

(5)

et,iES = et−1,iES +
∑

ψ
(p̂ES,ψ
t,iES

η̂ + qpES,ψ
t,iES

/qη) ·∆t (6)

eiES
≤ et,iES ≤ eiES (7)

(pES,ψ
t,iES

, qES,ψ
t,iES

) ∈ PQES,ψ
t,iES

(8)
Here, [NES] collects the buses connected with ESs and pES,ψ

t,iES
is

the power of the ES connected to bus iES at phase ψ and time
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Figure 2. The PQ capability chart [29] for (a) PV, (b) WT, and (c) ES.

step t. The ES has separately modelled charging power p̂ES,ψ
t,iES

and discharging power qpES,ψ
t,iES

, subject to the charging power
limit pES,ψ

iES
and discharging limit pES,ψ

iES
as Eqs. (4)-(5). The

charging and discharging affect the energy level et,iES as the
time-coupling constraint (6), which is subject to the charging
(discharging) efficiency η̂ (qη) due to the power loss. ∆t is the
length of one time step. The energy level of an ES is limited
within the maximum energy et,iES and the minimum energy
et,iES

(7). The ES’s PQ chart is also linearised in Fig. 2. Note
that simultaneous charging and discharging can be avoided
by adding a linear penalty term ωiES

∑
t,ψ,iES(p̂

ES,ψ
t,iES

− qpES,ψ
t,iES

)
to the scheduling objective with ωiES being a preset penalty
coefficient [30]. This penalty also represents the linear cost of
battery degradation w.r.t. the throughput. We model this cost
in both our aggregated cost function and the disaggregation
process in Section III-D. Ref. [31] proved this result for
∀ωiES > 0 in a DC OPF problem under some common power
system statuses via KKT conditions.

3) Load: We consider CLs that can adjust their power
within a continuous range modelled as

∀t ∈ [T ],∀iCL ∈ [NCL],

σminp̈
CL,ψ
t,iCL

≤ pCL,ψ
t,iCL

≤ σmaxp̈
CL,ψ
t,iCL

(9)∑T

t
pCL,ψ
t,iCL

=
∑T

t
p̈CL,ψ
t,iCL

(10)

qCL,ψ
t,iCL

= α · pCL,ψ
t,iCL

(11)
where p̈CL,ψ

t,iCL
is the uncertain base load of the CL without

any intervention. Eq. (10) ensures that the total consumed
energy equals the original energy consumption. We assume
the CL has a fixed power factor α as Eq. (11). There are also
uncertain Non-controllable Loads (NL) in the network with
σmin = σmax = 1. Note that this paper focuses on the case
where a single aggregator collects all the DER information and
the network information of a distribution network. However,
it is possible to extend to the multiple-aggregator-single-
network case, where other aggregators’ power scheduling can
be regarded as part of the uncertain NLs modelled here.

B. Network Model

Following Refs. [32] and [33], we consider a generic three-
phase distribution network with one slack bus (the PCC in Fig.
1) and NB three-phase PQ buses. Denote by sAgg

t the three-
phase complex power injection of the slack bus, by sYt the
three-phase complex power injection of all the PQ buses from
Wye sources, by sDt the three-phase complex power injection
of all the PQ buses from Delta sources, by v0

t the three-phase
complex nodal voltage of the slack bus, by vt the three-phase
complex nodal voltages of all the PQ buses, by it the phase
net current injections of all the PQ buses, and by iDt the phase-
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to-phase currents of all the PQ buses. Furthermore, denote the
complex three-phase bus admittance matrix as:

Y :=

[
Y 00 Y 0L

Y L0 Y LL

]
∈ C3(NB+1)×3(NB+1) (12)

where C is the complex domain. Y 00, Y 0L, Y L0, and
Y LL indicate self-/mutual- admittance matrices of/between
slack/non-slack buses. The bus admittance matrix Y can be
formed from the network topology, the π-model of the three-
phase power lines, and other passive elements, representing
the physical coupling of a three-phase distribution network.
Based on [32], the AC load-flow equations can be expressed
as:

diag(H⊤iDt )vt + sYt = diag(vt)it, (13)

sDt = diag(Hvt)i
D
t , (14)

it = Y L0v
0
t + Y LLvt, (15)

sAgg
t = diag(v0

t )(Y 00v0
t + Y 0Lvt) (16)

where iDt indicates conjugate, and diag(·) constructs a square
matrix with the elements of the vector inside as its diagonal.
H is a coefficient matrix. Refer to [32], [33] for a detailed
interpretation. Like [3] and [6], we apply the linear distribution
network model in [32]. By interpreting the fixed-point function
derived from the AC load-flow equations, [32] showed that
the three-phase voltage magnitudes |vt|, the three-phase line
current magnitudes |iLt |, and the aggregated active power at the
PCC pAgg

t (summing over the three phases) can be expressed
by linear functions w.r.t. the three-phase active (the real parts
of sYt and sDt ) and reactive (the imaginary parts of sYt and
sDt ) power injections of the NB PQ buses. Let xt collect the
active and reactive power of DERs (decision variables) plus
NLs (uncertain parameters) at all the connected phases and
buses at time step t:
xt := [pd, ψt,id , q

d, ψ
t,id

, p̈NL,ψ
t,iNL

, αp̈NL,ψ
t,iNL

] (17)
id ∈ [Nd], d ∈ {PV,WT,ES,CL}, iNL ∈ [NNL], ψ ∈ Ψ

By combining the linear relationship between xt and the real
and imaginary parts of sYt and sDt , we have the following
linear network model:

∀t ∈ [T ], |iLt | = J txt + j0t (18)
|vt| = Ktxt + k0

t (19)
pAgg
t = g⊤

t xt + g0t (20)
|iLmin| ≤ |iLt | ≤ |iLmax| (21)
|vmin| ≤ |vt| ≤ |vmax| (22)

where J t, j0t , Kt, k0
t , gt, g

0
t are linear coefficients derived

from a given operational point, a no-load case, and the three-
phase bus admittance matrix Y , leading to better global
performance than the first-order Taylor’s approximation [32].
Refer to [32] for a detailed mathematical deduction. Its global
performance is also theoretically analysed and verified through
extensive case studies in [32], [33], showing a less than 0.6%
(1.4%) voltage relative error for a 2000-node distribution
feeder (IEEE-8500 feeder, resp.) under a range of load in-
jections. Note that, in general, the accuracy of a single linear
network model only holds when the optimised operating point
is close to the given operating point used to derive the linear
model coefficients [33], [34], given the nonlinear nature of the
AC load flow equations. Iterative approaches can be necessary

to find accurate network solutions with updated linear model
coefficients in each iteration [34].

Another promising track in network modelling is convex
relaxation. However, existing convex relaxation is only exact
for specific conditions that are unfortunately difficult to predict
in practice; when the conditions do not hold, there may be a
large optimality gap and it is difficult to reconstruct a feasible
solution [34]–[36]. In contrast, although there is no guarantee
of exactness as well, the linear network model is much more
computationally efficient given the current mature and reliable
linear programming solvers [35].

The line current and nodal voltage need to be constrained
within a given range as Eq. (21) and (22). Real-world distri-
bution networks are typically voltage-constrained and the line
current limits can be disregarded [4], especially for distribution
networks with long power lines [37], so we only consider the
three-phase nodal voltage limits as Eq. (22). Incorporating the
line current constraints is straightforward as it is also linear.

C. Problem Target: Jointly Reliable AFAPR
The outcome of a DER aggregation problem is the AFAPR

ΩAgg, which is a feasible region for the aggregated active
power pAgg := [pAgg

t=0, · · · , p
Agg
t=T ]. The aggregated power is

coupled with the individual DER power and NL power
x := [xt=0, · · · ,xt=T ] by Eq. (20), which are further subject
to the DER operational constraints and network constraints.
Therefore, we can define the AFAPR as:

ΩAgg = {pAgg ∃x, Eq. (1)-(22) ∀ψ, iD, t } (23)
Fig. 3(a) visualises our AFAPR definition. The feasible region
defined by all the DER constraints and network constraints
(1)-(22) for the [pAgg,x] space can be represented as the high-
dimension yellow polytope. Because the AFAPR ΩAgg in (23)
focuses on the aggregated power only, it can be represented
as the red projected polytope in the pAgg space in Fig. 3(a).
Note that (23) defines the AFAPR across T time steps rather
than for one time step only, which ensures the time-coupling
constraints of ESs and the energy requirements of CLs.

The uncertain DERs make the AFAPR ΩAgg uncertain in
the scheduling phase. Here, the uncertain parameters include
the maximum active power capability of PV pPV,ψ

t,iPV
and WT

pWT,ψ
t,iWT

, the base load of CL p̈CL,ψ
t,iCL

and NL p̈NL,ψ
t,iNL

, and thus
a part of x. For managing the risk, it is desired to find a
“jointly reliable AFAPR” ΩAgg(ϵ) such that any pAgg within
it can be implementable without violating any constraints for
the entire scheduling horizon [T ] with the desired probability
1− ϵ. JCC provides an explicit modelling of such probability.
Accordingly, we can define ΩAgg(ϵ) as:
ΩAgg(ϵ) = {pAgg|P(pAgg ∈ ΩAgg) ≥ 1− ϵ} =pAgg P

(
∃x, (1), (9), (10), (20), (21), (22)

∀t, ψ, iPV, iWT, iCL

)
≥ 1− ϵ,

(2), (3)-(8), (11), ∀t, ψ, iES


(24)

where the probability function P defines a JCC requiring
that all DER constraints and network constraints involving
uncertain parameters need to be met simultaneously with a
probability of at least 1 − ϵ. The power balance constraint
(20) is included as it involves x, which contains the uncertain
NL defined in (17). Constraints without uncertain parameters
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are listed out of the JCC. Eqs. (18) and (19) can be absorbed
to their line current limit (21) and voltage limit (22) by
changing variables and are thus omitted. Note that the equality
constraints (10) and (20) need further processing and will be
discussed in our benchmark setting in Section IV-B. Also, (21)
and (22) are in the vector expression so they are a set of
constraints for all phases and nodes.

The size of the JCC in the jointly reliable AFAPR ΩAgg(ϵ)
(24) is large as it contains constraints for all the time steps,
uncertain DERs, phases and nodes, so the exact reformulation
methods like [24] become less tractable. Note that the ICC
model used in existing AFPR or AFAPR work [6], [16],
[18], [19] is tractable, however, less reliable. Finding the
analytical expression of the jointly reliable AFAPR ΩAgg(ϵ)
is challenging, and thus approximations are necessary. For the
safety preference in power system operations, we specifically
focus on an inner approximation of the original ΩAgg(ϵ). In
other words, our objective is to find an approximated AFAPR
ΩAgg

Approx(ϵ) such that:
ΩAgg

Approx(ϵ) ⊆ ΩAgg(ϵ) in (24) (25)
We also require the derived approximation ΩAgg

Approx(ϵ) to have
a mild complexity when it is integrated into the upper-level
scheduling and be capable of most of the scheduling problems.
In addition, the inner approximation should not be overly
conservative: the Bonferroni approximation [21] is a tractable
inner approximation but it tends to be overly conservative
especially under the large-size JCC in ΩAgg(ϵ) (24) [20], [21].

Our AFAPR approximation problem can be alternatively
defined as maximising the volume of the approximator, with
(25) included in the constraints [3], [13], [14]. However, the
volume maximisation is hard to solve here, as our target,
namely the true jointly reliable AFAPR ΩAgg(ϵ) in (24), is
generally nonconvex and it is hard to find the analytic form
due to the joint probabilistic constraint [38]. In addition, even
though our target can be convex in rare cases, volume maximi-
sation problems are only solvable for specific approximators
like boxes [3], ellipsoids [14], or shifting and scaling prototype
polytopes, i.e., the homothet with the maximum volume [13].
Remark 1: It is important to ensure the reliability of AFAPR,
i.e., high probability of implementability, which is our main
focus. When a scheduled pAgg is not implementable, there can
be two implications: 1) DERs have enough power flexibility
but network constraints are violated, and/or 2) DERs do not
have enough power flexibility. The former case threatens the
network operation. The latter result may be compensated by
the transmission grid, which, however, would become less
viable when in the future the DSO plays a larger share in
the whole system.
Remark 2: Depending on specific problems, an AFAPR
containing less reliable power trajectories may still lead to
acceptably accurate scheduling; thus, one may explore the
application-oriented reliable AFAPR based on information
about the specific scheduling problems that will be carried
out. Nonetheless, our current focus ΩAgg(ϵ) is more universal
as any scheduling problems based on it can provide solutions
that are reliable. This is particularly beneficial in TSO-DSO
interactions where a DSO may not know the exact upper-level
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Figure 3. (a): The high-dimension yellow polytope represents the feasible
region of [pAgg,x] defined by all the DER constraints and network constraints.
Because the AFAPR ΩAgg in (23) focuses on the aggregated power only, it
can be represented as the red projected polytope in the pAgg space. (b): A
better inner approximation can be achieved by tuning the intercept of ΩAgg

Approx
with the same slope.

scheduling problem formulation after submitting the AFAPR.
Remark 3: Recently [39] proposed the concept of non-
anticipativity to handle uncertainties in multistage problems.
However, we aim to identify the region of the aggregated
power that is available with a high probability for the future
scheduling horizon. Chance constraints provide explicit mod-
elling of this probability and are therefore naturally applied.
Remark 4: Reactive power is another important dimension in
DER aggregation, that is, the AFPR or the PQ chart. Ref. [2]
provided a systematic framework for the aggregated PQ chart
at each time step. Note that, since the time-coupling constraints
of storage-like DERs couple the active power across time and
the active power couples the reactive power, it may be neces-
sary to have a time-coupled AFPR beyond the common single-
time-step PQ aggregation [2]. The time-coupled AFPR can be
defined by slightly modifying our AFAPR definition in (23)
and (24), where pAgg will be replaced with [pAgg, qAgg], and
qAgg := [qAgg

t=0, · · · , q
Agg
t=T ], which leads to a more complicated

setting. Future work can investigate whether our proposed
polytope-based method in Section III can be adaptable. In this
paper, our main focus is on the AFAPR of the active power.

III. PROPOSED METHOD

It is challenging to find a good inner approximation under
the large JCC in ΩAgg(ϵ) (24). However, starting from the
surrogate polytope inner approximation in a deterministic
setting, we instead apply the JCC to the surrogate polytope
and finally derive a tractable analytical expression for the inner
approximation of the jointly reliable AFAPR ΩAgg(ϵ).

A. Surrogate Polytope in the Deterministic Setting
When there is no uncertainty, we notice that the AFAPR

ΩAgg in Eq. (23) admits a polytope inner approximation
ΩAgg

Approx with a pre-selected shape [22], such that:
ΩAgg

Approx ⊆ ΩAgg, ΩAgg
Approx = {pAgg|ApAgg ≤ b} (26)

where the matrix A controls the slope of each facet of the
polytope, i.e., shape, and is pre-selected, and the vector b
determines the intercept of each facet and is to be inferred.
Fig. 3(b) shows that adjusting the intercept b while fixing
the shape A is able to achieve a good inner approximation
of the true AFAPR ΩAgg. The parameters of b for such an
inner polytope approximation can be inferred in a computa-
tionally affordable manner by methods in [6], [22], which also
empirically showed the good approximation accuracy. As the
network constraints and DER constraints are included in ΩAgg,
the polytope approximation also implicitly includes these low-
level constraints due to ΩAgg

Approx ⊆ ΩAgg.
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1) Virtual Battery Approximator: Here we specifically in-
troduce the Virtual Battery (VB) approximator in [6] as we
use this setting in our case studies. Note that our proposed
method works for any polytope approximator with pre-selected
slopes. A VB model is essentially a set of power constraints
and energy constraints making it look like a battery:

ΩAgg
Approx = {pAgg|AVBpAgg ≤ bVB} (27)

AVB = [I,−I,Λ,−Λ]⊤ (28)
bVB = [pVB

t=1, · · · , p
VB,
t=T ,−p

VB,
t=1

, · · · ,−pVB,
t=T

,

eVB
t=1, · · · , eVB

t=T ,−eVB
t=1, · · · ,−eVB

t=T ]
(29)

where I ∈ RT×T is the identity matrix and Λ ∈ RT×T is
a lower-triangle matrix with all non-zero elements equal to
1. bVB collects the VB parameters including the maximum
power pVB

t , minimum power pVB
t

, maximum energy eVB
t , and

minimum energy levels eVB
t at each time step t ∈ [T ].

The surrogate polytope constraints in (26) or the special
case (27) apply to pAgg only. The number of constraints in
(26) can be smaller than that in ΩAgg (23). Specifically, for the
VB polytope, the number of constraints is only 4T , leading to
tractable JCC reformulation as introduced next.
B. Extension to Jointly Reliable AFAPR Approximation

When considering the DERs’ uncertainty, similar to what
we did for the target jointly reliable AFAPR ΩAgg(ϵ) (24), we
can define a reliable polytope approximator ΩAgg

Approx(ϵ) as:
ΩAgg

Approx(ϵ) ={pAgg|Pb̃(p
Agg ∈ ΩAgg

Approx) ≥ 1− ϵ}
={pAgg|Pb̃(ApAgg ≤ b̃) ≥ 1− ϵ}

(30)

where Pb̃(ApAgg ≤ b̃) ≥ 1 − ϵ is called “surrogate polytope
JCC”. Pb̃ is the probability function for the true distribution of
b̃: since the slope A is pre-selected, our uncertainty towards
the approximated AFAPR (26) reduces to b only, which can be
modelled as a random vector b̃, highlighted by the overhead
“tilde”. However, the true distribution of b̃ is unknown and a
subjective assumption can lead to bias. To represent our am-
biguity towards the distribution of b̃, we replace the polytope
JCC in (30) with a distributionally robust form by WDRJCC;
hence our WDRJCC-based approximation to ΩAgg(ϵ), denoted
as ΩAgg

WDR(ϵ, θ), can be defined as:
ΩAgg

WDR(ϵ, θ) ={pAgg|P′
b̃
(pAgg ∈ ΩAgg

Approx) ≥ 1− ϵ,∀P′
b̃
∈ F(θ)}

={pAgg|P′
b̃
(ApAgg ≤ b̃) ≥ 1− ϵ, ∀P′

b̃
∈ F(θ)}

(31)
where F(θ) is the Wasserstein ambiguity set capturing all the
probability functions P′

b̃
for the distributions within the desired

Wasserstein distance (radius) θ to the empirical distribution,
whose probability function PE

b̃
is formed up by the historical

data. F(θ) is thus defined as F(θ) := {P′
b̃
: dW (PE

b̃
,P′

b̃
) ≤ θ},

with the distance function:
dW (PE

b̃
,P′

b̃
)

:= inf
Π


E(ξ,ξ′)∼Π[∥ξ − ξ′∥]
s.t. Π has marginal distributions
with probability functions PE

b̃
,P′

b̃
.

 (32)

Other forms of ambiguity set exist. We choose the Wasserstein
set for its rigorous out-of-sample guarantees [15].

C. Exact Reformulation

We next show our approximation ΩAgg
WDR(ϵ, θ) admits a

tractable reformulation. Suppose we have collected N real-

isations for the random vector b̃ ∈ RD and denote the dataset
for these realisations as D := {b1, · · · , bN}, where D is the
dimension of the random vector b̃ in Eq. (30). Let qd denote
the (⌊ϵN⌋ + 1)th greatest value of {−b1d, · · · ,−bNd }, where
⌊·⌋ is the floor function and bid denotes the dth entry of the ith

realisation bi of b̃. We further introduce the index set [N ]d as
[N ]d := {i ∈ [N ] : −bid > qd} with d ∈ [D].

Based on [23], the WDRJCC in (31) admits an exact refor-
mulation; thus our approximated reliable AFAPR ΩAgg

WDR(ϵ, θ)
can be equivalently written as a set of MILP constraints:

ΩAgg
WDR(ϵ, θ)

=



pAgg ∈ X :

∃z ∈ {0, 1}N , s ≥ 0, r ≥ 0, (a)

ϵs ≥ θ +
1

N

∑
i∈[N ]

ri, (b)

M(1− zi) ≥ s− ri, i ∈ [N ], (c)∑
i∈[N ]

zi ≤ ⌊ϵN⌋, (d)

bid − a⊤
d p

Agg + (−bid − qd)zi
≥ s− ri, i ∈ [N ]d, d ∈ [D],

(e)

− qd − a⊤
d p

Agg ≥ s, d ∈ [D] (f)


(33)

where z ∈ ZN , s ∈ R, r ∈ RN are auxiliary decision
variables, and ad is the dth row of the slope matrix A in
ΩAgg

Approx (26). X ⊂ RT is a compact domain for pAgg and
can be defined by the maximum and minimum aggregated
power of the network based on the installed capacity. M is a
sufficiently large constant and is suggested in [23] to be

M = max
pAgg∈X ,d∈[D]

{|bid − a⊤
d p

Agg|} (34)

Comparing the derived ΩAgg
WDR(ϵ, θ) in Eq. (33) to the polytope

approximation under no uncertainty in Eq. (26), we can see
that the MILP constraints introduce additional ancillary terms
in Eq. (33)(e) and (f) that tighten the original polytope con-
straints, which reflects the risk-averse attitude (ϵ) and hedges
the worst-case distribution in WDRJCC (θ) [23]. Since θ is
the radius of the Wasserstein ambiguity set F(θ), a larger θ
leads to a smaller reliable AFAPR by definition.

Furthermore, we can show the derived ΩAgg
WDR(ϵ, θ) in (33)

achieves our objective in Eq. (25):

Lemma 1. For our ΩAgg
WDR(ϵ, θ) defined in (33), if Pb̃ ∈ F(θ),

then ΩAgg
WDR(ϵ, θ) ⊆ ΩAgg(ϵ) in (24).

Proof. Note that ΩAgg
WDR(ϵ, θ) in (33) is equivalent to (31); thus

for ∀pAgg′ ∈ ΩAgg
WDR(ϵ, θ), we have

P′
b̃
(pAgg′ ∈ ΩAgg

Approx) ≥ 1− ϵ, ∀P′
b̃
∈ F(θ) (35)

Since Pb̃ ∈ F(θ), we further have Pb̃(p
Agg′ ∈ ΩAgg

Approx) ≥ 1−ϵ.
Finally, because ΩAgg

Approx ⊆ ΩAgg, a solution pAgg′ being within
ΩAgg

Approx with at least a probability 1 − ϵ will also belong to
ΩAgg with at least a probability 1− ϵ, i.e.,

P(pAgg′ ∈ ΩAgg) ≥ 1− ϵ⇔ pAgg′ ∈ ΩAgg(ϵ) in (24) (36)
We have proved ∀pAgg′ ∈ ΩAgg

WDR(ϵ, θ), p
Agg′ ∈ ΩAgg(ϵ), then

equivalently we have ΩAgg
WDR(ϵ, θ) ⊆ ΩAgg(ϵ).

In other words, when our Wasserstein ambiguity set F(θ)
covers the probability function Pb̃ for the true distribution of
b̃, Lemma 1 states that our proposed ΩAgg

WDR(ϵ, θ) (33) achieves
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our objective in (25). Lemma 1 also indicates that our proposed
ΩAgg

WDR(ϵ, θ) (33) considers the numerous network constraints
and DER constraints including the large JCC in (24), even
though these constraints are not explicitly modelled in (33).
Finally, as the WDRJCC in (31) is exactly reformulated,
our inner approximation ΩAgg

WDR(ϵ, θ) to the jointly reliable
AFAPR could achieve a lower conservativeness compared to
the Bonferroni approximation.

The low complexity of the approximation is also a part of
our objective. The reformulation in Eq. (33) introduces N bi-
nary variables and is composed of at most D+D⌊ϵN⌋+N+1
constraints (exclusive of the constraints for the type of decision
variables like integrity and non-negativity). The complexity of
(33) is low due to the use of surrogate polytope JCC and the
Wasserstein metric: as discussed in Section III-A, for the VB
polytope used in the case studies, the dimension of b̃, i.e., D,
is only 4T , not increasing with the number of DERs nor with
the size of the network. Also, the use of the Wasserstein metric
leads to a good out-of-sample performance even under a small
number of data samples (N ). Our case studies in Section IV
demonstrate the low complexity and the good performance for
scheduling problems based on the derived ΩAgg

WDR(ϵ) (33) with
N = 50 and T = 24. Note that modelling a single generation
unit needs T binaries or 3T binaries when the shut-down and
start-up statuses are explicitly modelled [40], which is close
to the N = 50 binaries of our proposed MILP-based AFAPR.

It is also worth noting the possible computing challenges
when integrating our proposed MILP-based jointly reliable
AFAPR into the upper-level scheduling, although the number
of binaries introduced by our AFAPR is comparable to a
single generator. The upper-level scheduling problem may be
a large-scale multi-period AC optimal power flow problem
to accurately model network constraints, storage devices, and
generation ramping [41], which is already a computationally
challenging non-linear non-convex problem. The additional
binaries introduced by our AFAPR, especially when there
are several AFAPRs for several distribution networks, may
amplify the issue. Furthermore, our proposed AFAPR makes
scheduling problem at least a MILP, which is in theory NP-
hard and can be hard to solve in the worst cases even at a
small scale. Future work may explore the conditional value-
at-risk method [42] to derive a convex or even linear inner
approximation to the WDRJCC in (31), which in turn achieves
an inner approximation to our MILP-based jointly reliable
AFAPR in (33). A convex inner approximation would improve
tractability, but also bring conservativeness.

Finally, the proposed MILP-based AFAPR in (33) can be
integrated into any non-linear non-convex upper-level schedul-
ing problems performed on a closed and bounded domain [23].

Remark 5: The proposed MILP-based AFAPR (33) is based
on the inner polytope approximation in Section III-A. One may
also explore the inner ellipsoid {pAgg|pAgg = Eξ + e, ∥ξ∥ ≤
1} to approximate the AFAPR in a deterministic setting [14].
The vector ξ collects auxiliary decision variables. Both E and
e are parameters to be inferred [14] and are viewed as random
variables under our proposed method to derive the reliable
AFAPR as in Section III-B. However, since the random E is

multiplied with decision variables in ξ, the exact analytical
WDRJCCO reformulation in (33) is not applicable.

Remark 6: It is possible to integrate more general non-linear
but convex DER models and network models into our proposed
method. The key part of our proposed method that can be
affected by the general convex modelling is the derivation
of the inner polytope approximation in a deterministic set-
ting (Section III-A). To derive the VB-based polytope inner
approximation, our applied method in [6] is demonstrated
only in the linear setting in the original paper, but could
be extended to general convex cases since the derivation
is based on KKT conditions that hold for general convex
programmes. However, the method in [6] will finally introduce
binaries that make the solution process more complicated if a
convex but nonlinear network model is applied. The box-based
polytope inner approximation is demonstrated to be capable of
general convex constraints [3], but it can be less accurate in
approximating the AFAPR.

Remark 7: Lemma 1 indicates that our proposed AFAPR (33)
achieves an inner approximation to the true jointly reliable
AFAPR, indicating the under-utilisation of DERs’ flexibility to
some extent. In contrast, outer approximation [43] as another
paradigm in AFAPR approximation can fully exploits the
DERs’ flexibility. However, a downside of outer approximation
is the coverage of infeasible power profiles. As discussed in
Remark 1, the infeasibility may trigger severe impacts.

Remark 8: Although Wasserstein Distributionally Robust op-
timisation that minimises the worst-case expectation has a
linear reformulation for some cases [44], our reliable AFAPR
is defined as a set of reliable power profiles, which requires
a more complicated WDRJCC leading to our MILP reformu-
lation (33). To the best of our knowledge, there are no other
exact reformulations for our case that are linear or convex.

Remark 9: Our proposed method may tackle cases with more
significant changes including network reconfiguration and the
DER faults. Corresponding b̃ scenarios can be generated for
these cases and added to D in deriving our reliable AFAPR
(33) to improve the robustness. These require more case study
validations and are left as future work. Also, in this paper the
probability distribution of uncertain parameters are indepen-
dent on the DER scheduling (the decision variables), which is
commonly assumed in existing literature [6], [20]. There may
be specific cases with decision-dependent uncertainty where
our formulations would need to be extended to handle.

D. Cost and Disaggregation
The derived AFAPR only characterises the feasibility region

and is insufficient for economic upper-level system scheduling
[45], which requires a monetization function that maps the
aggregated power to the total DER operational costs for pro-
viding flexibility. Existing work derived the cost mapping by
characterising the cost zone [2], [26], in which the flexibility
cost is smaller than a certain threshold, or evaluating the
cost for each aggregated power sample with certain intervals
[46]. However, these works did not derive the analytical
cost curve, which is important to integrate efficiently into
optimisation-based scheduling tools [45]. In fact, because of
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the complicated constraints of heterogeneous DERs and the
network, the analytical cost curve is difficult to derive. Refs.
[16] and [45] proposed using a piecewise-linear approximation
to derive the analytical cost curve. However, as pointed out in
[47], there is still a gap in considering the intertemporality. In
general, monetization in DER aggregation remains a vital but
underexplored topic.

This work adopted the piecewise-linear approximation in
[16] to derive the analytical aggregated cost model associated
with the derived AFAPR for each time step respectively, which
neglects the intertemporality. However, it should be noted that
our case studies evaluate the proposed method using the exact
low-level DER operational costs instead of the approximated
aggregated cost. This paper considers the following DER
operational cost:

C(x) =ωES∆t
∑

t,ψ,iES
(p̂ES,ψ
t,iES

− qpES,ψ
t,iES

)

+ ωCL∆t
∑

t,ψ,iCL
max{(p̈CL,ψ

t,iCL
− pCL,ψ

t,iCL
), 0}

(37)

where the first term is the charging and discharging costs of
ES, and the second term models the load curtailment costs. ωES

and ωCL are the corresponding cost coefficients. Renewable
generation is considered cost-free. Then, for each time step
t we find the piecewise-linear function that fits the minimum
achievable total DER cost for each aggregated power pAgg

t ,
with the fitting procedure detailed in [16]. We use the forecast
mean values of uncertain DERs in calculating the aggregated
cost model denoted as C′(pAgg), which will be submitted
together with the AFAPR for upper-level system scheduling
to respect the DER operation costs.

After the upper-level scheduling, the aggregator will be
informed of the scheduled aggregated power pAgg*, which is
disaggregated to each DER. For each realisation of uncertain
DERs, the disaggregation process can be formulated as:

min
x

C(x) + τ(x)

s.t. Eq. (1) − (22)
(38)

where C(x) is the DER operation cost in (37), and τ(x)
penalises the nodal voltage estimated by the linear network
model being close to the limit, which is to offset the inaccuracy
of the linear network constraints. An alternative could be a
re-dispatch based on the updated linear network model. We
do not additionally include a penalty for the ES simultaneous
charging and discharging, because our modelled ES charging
cost in C(x) has the same form of the proposed penalty term
in [30], [31] explained in Section II-A2. Note that, as stated
in Section II, the aggregated cost and the disaggregation are
not the main scope of this paper, and the gradually revealed
uncertainty over the disaggregation phase is not considered
and is left for future work.

E. Overall Framework

Algorithm 1 summarises the steps for using our proposed
method with a detailed description given below. The aggrega-
tor derives the jointly reliable AFAPR ΩAgg

WDR(ϵ, θ) and submits
it to the upper-level system for the central scheduling. The
aggregator first collects the dataset D that contains possible
realisations of the random vector b̃ in (30) in an offline
process, which is then used in the scheduling stage.

Algorithm 1 Using the Proposed Jointly Reliable AFAPR
Offline Dataset Gathering Stage

Aggregator:
1: for each historical horizon i do
2: Infer bifore,hist and bihist based on historical DER fore-

casts and true values;
3: Push bierror = bihist − bifore, hist to Derror;
4: end for

Scheduling Stage
Aggregator:

1: Infer bfore based on forecasts of uncertain DERs in the
horizon to be scheduled;

2: Get D as Eq. (40);
3: Derive ΩAgg

WDR(ϵ, θ) as Eq. (33) and submit;
Upper-level System:

4: Solve scheduling problems like Eq. (43) and the solution
will meet the desired 1− ϵ reliability level.

1) Offline Dataset Gathering: The dataset D should contain
possible realisations of b̃ for the future horizon. We decompose
b̃ into a deterministic part bfore plus a random part b̃error:

b̃ = bfore + b̃error (39)
Such decomposition captures the random variable’s depen-
dency on the scheduled day by bfore, which is commonly used
in current research [20]. During the ith historical operation
horizon, the decision-maker runs a method to find b (e.g.,
[6]) based on forecasts of uncertain DERs and the real values
after the uncertainty is revealed. We denote the one based
on forecasts as bifore, hist and the other as bihist. The quantity
bierror = bihist − bifore, hist is added to Derror as the ith scenario of
the random part b̃error.

In real-world applications, the data collection process can
run parallel to the operation. A new data sample will be added
to Derror every time an operation horizon ends. Additionally,
our proposed method does not have stringent requirements for
the size of the dataset, reducing the efforts on data collection.
Our case studies in Section IV-F2 demonstrate that a Derror
with data size 50 can achieve good performance for a day-
ahead 24-hour scheduling problem with hourly resolution.

2) Scheduling Stage: In the operational stage, the aggre-
gator first makes forecasts of all the uncertain DERs for the
horizon to be scheduled, which is a common step in power
system scheduling problems. bfore is derived based on these
forecasts, after which we add each element in Derror to bfore
to get the desired D as

D = {bfore + bierror|b
i
error ∈ Derror} (40)

based on which the MILP expression (33) for ΩAgg
WDR(ϵ, θ) can

be derived, which is then submitted for upper-level system
scheduling (a simple example is (43)). The scheduled aggre-
gated power will be implementable without violating any DER
constraints or network constraints for the entire horizon [T ]
with joint probability 1−ϵ. Note that the derived ΩAgg

WDR(ϵ, θ) is
for the entire horizon [T ] rather than for a single time step. The
aggregator can also calculate the aggregated cost associated
with the AFAPR and submit them to the upper-level system;
the dispatched aggregated power is finally disaggregated to
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individual DERs as described in Section III-D.
3) Complexity Analysis: Over the online Steps 1-3 to

derive the proposed jointly reliable AFAPR ΩAgg
WDR(ϵ, θ) (33)

in Algorithm 1, the only computationally demanding step is
the derivation of bfore (Step 1) based on forecasts of uncertain
DERs, by using existing methods that derive the inner polytope
approximation of the AFAPR in a deterministic setting. The
main aim of our paper is to improve these existing methods to
have a jointly reliable probabilistic guarantee, namely Steps 2
and 3, which involve only basic algebra operations given the
collected b̃error scenarios offline and are computationally triv-
ial. Therefore, the proposed online process to derive the jointly
reliable AFAPR does not change the order of complexity
compared with existing methods that derive the inner polytope
approximation of the AFAPR in a deterministic setting.

The existing methods in Step 1 involve optimisation prob-
lems with complexity dependent on the number of DERs
and the network sizes. These methods are shown to be com-
putationally tractable in the respective references [22], [48],
and our Algorithm 1 is capable of more efficient methods
to perform Step 1. In addition, another option is to derive
a data-driven way of generating the b̃ scenarios in D directly,
bypassing Step 1 in calculating bfore and possibly leading to
improved accuracy given a sufficient amount of historical data.
Our later visualisation of b̃ scenarios in Fig. 7 explained in
Section IV-C suggests good predictability, possibly because
the high stochasticity of individual DERs offset each other in
reaching the aggregation parameters in b.

IV. CASE STUDY

A. Network and DER Settings
Our case studies are based on the IEEE-123 distribution

feeder [49] modelled in OPEN [50]. DERs include 10 ESs, 20
PVs, 20 WTs, and 30 CLs. There are also 65 NLs. The DER
location and connected phases are shown in Fig. 4. The red
colour is for phase a or ab, the green colour represents phase
b or bc, and the blue colour is for the rest. The UK power
demand is estimated to have 20%-40% curtailment potential
by 2050 [1]. We use an intermediate and symmetric setting:
we assume the CLs are controllable with a ±30% range. We
set the voltage limits in Eq. (22) to be 0.95 to 1.05 p.u. as [16].
The DER cost coefficients ωES

iES
and ωCL

iCL
are both set to 8p/kWh

as [24]. The sum of the peak load for the whole network is
about 3500 kW. To fully validate the proposed framework, we
consider three case studies with different renewable energy
source (RES) settings: 1) LowRES with an 800 kW total PV
capacity and an 800 kW WT capacity; 2) HighWT, in which
the total WT capacity increases to 5600 kW; and 3) HighPV, in
which the total PV capacity increases to 7000 kW. For all three
case studies, the total ES size is 1800 kWh and the setting
for CLs and NLs is kept unchanged. All three case studies
have stressful initial network conditions. Fig. 5 illustrates the
nodal voltages for the three case studies under an ‘unregulated’
profile, where RESs are fully utilised with unity power factors,
CLs are maintained at the base levels, and ESs are controlled to
minimise their own energy costs. Under-voltage issues occur
in the ‘LowRES’ case due to the peak network load. Both
over-voltage and under-voltage issues exist in the ‘HighPV’

PCC

Bus
NL
CL
ESS
PV
WT

Figure 4. DER locations on IEEE-123 distribution network: red for phase a
or ab, green for phase b or bc, and blue for the remaining phases.

Figure 5. Nodal voltages for all phases at all nodes under an unregulated
baseline profile, where RESs are fully utilized with unity power factors, CLs
are maintained at the base levels, and ESs are controlled to minimize their
own energy costs. Dashed lines are the voltage limits set in the case studies.

case due to the peak solar generation at some nodes and the
high demand at other nodes far away from PVs. Finally, in
‘HighWT’, severe over-voltage issues occur in the morning
and at night due to the low demand but high wind availability.

As mentioned in Section II-C, the base load for CL and
NL, and the maximum PV and WT generation are considered
uncertain. To verify the solution reliability of the proposed
method, we generate a set of possible DER power scenarios.
Each of the scenarios is generated from a deterministic base
curve (forecast) plus a forecasting error scenario with hourly
granularity. The base curve for RES comes from the real-world
dataset in [51], and the base curve for network load is scaled
from the load data for US commercial buildings [52].

The RES forecasting error scenarios come from real-world
forecasting error statistics in [53]–[55], which is set the same
for all RES in our case study considering a relatively small
coverage of a distribution grid. We plot the WT and PV
error histogram data in Fig. 6, which shows a non-Gaussian
pattern. The error scenario for the network load is the only
one synthesised from Gaussian distribution with zero mean
and a standard deviation 5% of the base curves, which is at a
magnitude in day-ahead commercial or industrial building load
forecasting errors [56]. Ref. [57] showed that the Gaussian
distribution can fit the load forecasting error well. We set
the correlation of the load forecasting error among buses as
0.5. In the ‘LowRES’ case the Gaussian error of load can be
dominant, but the real-world non-Gaussian RES error data will
be dominant in the ‘HighPV’ and ‘HighWT’ cases.

Based on the forecasting error statistics, we generate 500
samples per time step of the scheduling horizon [T ] as our
training set, which is for constructing our proposed jointly
reliable AFAPR and other benchmarks. Note that our proposed
method (D in the ‘Offline Dataset Gathering Stage’) is imple-
mented based on part of the training set, e.g., only randomly
picked 50 in Section IV-F2. We further generate a test set
containing 300 samples per time step for the out-of-sample
cost and reliability evaluation of different models.
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Figure 6. Histogram of the real-world wind and solar forecasting error.

B. Benchmark Models

The benchmarks start from the original form of the reliable
AFAPR ΩAgg(ϵ) in (24). The JCC in (24) has a large size, so
the known exact reformulation technique like [24] becomes
intractable. Bonferroni approximation is commonly applied in
the existing literature [4], [20] to approximate the intractable
JCC by ICCs with a lower risk level ϵI = ϵ/NJ , where
NJ is the number of constraints in the JCC. Note that the
equality constraints (10) and (20) in the JCC will lead to a zero
constraint satisfaction probability when the random variables
have a probability density function (PDF) with respect to the
Lebesgue measure (e.g., the Gaussian PDF). To deal with
the ill-posed equality constraints in the JCC, we replace the
involved uncertain variables with their deterministic forecasts
and hereby lift (10) and (20) out of the JCC. Our benchmark
1 (B1) used this setting under the Bonferroni approximation.

Our benchmark 2 (B2) follows [16]. The equality constraint
(20) is tackled the same as B1. To reduce the size of JCC
and take the randomness of NL on the aggregated power into
account, [16] proposed replacing the uncertain parameters in
the individual DER active power constraints (1) and (9) with
their forecasts and hereby lift them out of the JCC; then the
following two constraints for the summed power of uncertain
DERs and NLs are added into the JCC:
Nd′∑
id′ ,ψ

pd
′

t −
NNL∑
iNL,ψ

p̈NL,fore
t ≤

NDR∑
idR ,ψ

pdR
t −

NCL∑
iCL,ψ

σminp̈
CL
t −

NNL∑
iNL,ψ

p̈NL
t

(41)
Nd′∑
id′ ,ψ

pd
′

t −
NNL∑
iNL,ψ

p̈NL,fore
t ≥

NCL∑
iCL,ψ

σmaxp̈
CL
t −

NNL∑
iNL,ψ

p̈NL
t (42)

where we have d′ ∈ [PV,WT,CL] and dR ∈ [PV,WT]. The
phase index ψ and bus index i are hidden for simplicity.
Constraint (41) means the summed power scheduling of all
the uncertain DERs plus the forecasted NL should be smaller
than the case when the generation reaches the maximum and
the load reaches the minimum (these maximum and minimum
are uncertain parameters); constraint (42) is for the other side.
The Bonferroni approximation is then applied to convert the
JCC with ICCs under ϵI , which is less conservative than B1
since the size of JCC in (24) is reduced due to the removal of
individual uncertain DERs’ active power constraints.

We also include benchmarks converting the JCC in (24) into
ICCs with the same risk level ϵ, which could lead to unreliable
results. B1 and B2 under the direct ICC modelling with the
risk level ϵ are denoted as B1unsafe and B2unsafe.

Among all benchmark models, the Gaussian distribution is
used to model the uncertain parameters (even for our non-
Gaussian RES distribution). This Gaussian setting is common
as it enables an efficient transformation of ICCs into solvable
counterparts based on the corresponding percentiles. All 500
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Figure 7. Visualisation of VB parameters of 5 of the b̃

VB
scenarios in D in

the ‘LowRES’ case.

training data are used to estimate the Gaussian distribution for
different uncertain parameters in the benchmark models.

C. Settings of the Proposed Method

As our DERs only have energy and power constraints, the
VB polytope approximator is applied. The bound shrinking
method in [6] is used to obtain the VB parameters as described
in Section III-A1. We then collect D based on the process
in Algorithm 1: 50 randomly selected data samples from the
training set are used to generate bVB,i

hist with i ∈ {1, · · · , 50},
simulating those collected over 50 historical operation hori-
zons. We use the forecasts of uncertain DERs to derive bVB

fore
for the scheduled horizon and bVB,i

fore, hist for historical horizons.
The subtraction between those bVB,i

hist and bVB,i
fore, hist lead to the 50

historical b̃
VB
error scenarios (Derror), which, combined with bVB

fore,
results in D. Fig. 7 displays 5 of the collected b̃

VB
scenarios in

D for the ‘LowRES’ case. A b̃
VB

scenario consists of power
and energy boundary parameters as (29). Each pair of the
‘Pmax’ and ‘Pmin’ are the power boundaries of aggregated
active power that can be adjusted within for each time step,
while each pair of ‘Emax’ and ‘Emin’ represents the energy
bounds for the accumulated aggregated active power. Unlike a
real battery, the energy boundaries of VB are derived to closely
capture the accumulated energy generation and consumption
of aggregated DERs; thus display an increasing pattern.

The bound shrinking method [6] requires solving a series
of MILPs, which could be time-consuming when the problem
scale is large. In addition, our case studies simulate the
entire scenario generation process (mentioned above) that is
carried out offline in the real-world implementation. To reduce
simulation efforts, we relax the stopping bound and set the
maximum solution time of each bound shrinking MILP to 40s
in case studies for scheduling evaluation after Section IV-F,
where we have T = 24 and a large number of DERs.

The radius θ in our proposed WDRJCC reformulation needs
to be set prior to solving the problem. A larger θ leads to a
larger ambiguity set and thus a more conservative AFAPR,
so the selection criterion can be finding the smallest θ while
providing a reliable solution, by 5-fold cross-validation (CV).
For each fold, 20% data in D is held out and a solution is
derived based on the remaining 80% data. The reliability score
in this fold is estimated by the proportion of the held-out b̃

VB

scenarios whose corresponding polytope ΩAgg
Approx (27) contains

the solution. The 20% percentile of the 5 reliability scores after
the CV run for a θ candidate is its final reliability score. The
smallest θ with a score no less than the desired reliability level
is selected as the best radius. Finally, to reduce the effect of
randomness, all the subsequent results of our proposed method
are averaged over 5 random runs.
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Figure 8. The projected 10,000 Monte-Carlo uniform samples of the proposed
MILP-based AFAPR in (33).
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Figure 9. Evaluation for the whole AFAPR in conservativeness and inner-
approximation. The black horizontal line is the desired reliability level 1− ϵ.

D. Visualisation of the AFAPR
To facilitate understanding, we uniformly sampled 10,000

points from the proposed AFAPR in Eq. (33) with T = 24
and visualised them in Fig. 8. Each point corresponds to a
24-dim vector pAgg representing the aggregated power across
T = 24 time steps. To visualise these high-dimension points,
we project them to two adjacent time steps in Fig. 8. The
varying density of points suggest that our proposed MILP-
based AFAPR defines a region more complicated than boxes.
This shape can be attributed to the VB polytope (Section
III-A1) we applied, which involves energy constraints that cut
the high-dimensional boxes defined by the power constraints.
At the same time, all these projections seem to be convex, par-
tially explaining the computational tractability of our proposed
MILP-based AFAPR in Eq. (33).

E. Evaluation of the Whole AFAPR
Recall our objective (25) is to find a less conservative

inner approximation to ΩAgg(ϵ); thus, this case study evaluates
the conservativeness and whether the inner approximation is
achieved from the perspective of the whole AFAPR. We first
use the Monte Carlo method to uniformly sample 100 points
from ΩAgg(ϵ) (constructed by out-of-sample DER scenarios)
and 100 points from the proposed AFAPR ΩAgg

WDR(ϵ, θ) in (33)
and the other four benchmarks. Each point corresponds to a
possible pAgg, i.e., the aggregated power across the scheduling
horizon [T ]. We then define two metrics: 1)‘Coverage’: the
proportion of samples from the true ΩAgg(ϵ) that are covered
by the proposed method and benchmarks. A higher coverage
indicates a lower conservativeness; 2) ‘Reliability’: if the
proposed method and benchmarks contain “unsafe points”
outside the true ΩAgg(ϵ). The inner approximation is achieved
only if there are no “unsafe points”.

The applied linear network model may have limited ac-
curacy, especially because the AFAPR represents the power
range under various operating conditions. Therefore, the Z-
Bus nonlinear power flow simulation [58] is used to check
the violation of network constraints over the sampling from
ΩAgg(ϵ) and the evaluation of “Reliability”. Results under
‘HighWT’ and ϵ=0.2 for various T are given in Fig. 9. Note

that the coverage (corresponding to volume) changes exponen-
tially with the increase of T , so a decreasing trend can still be
observed even when there is a high approximation accuracy for
each dimension; we therefore plot the T th-root of the coverage.
We can see that the proposed method has a T th-root of the
coverage rate around 90% for all T , significantly higher than
B1 and B2; from the right column of the figure, we see that
all samples from the proposed method have reliability above
the desired 80% (ϵ=0.2), meaning that our proposed method
achieves the objective: a less conservative inner approximation
to ΩAgg(ϵ). Although B1unsafe and B2unsafe lead to around
100% coverage, they cover less reliable pAgg samples, i.e.,
“unsafe points” outside ΩAgg(ϵ).

F. Scheduling Evaluation
1) An Alternative Metric: In many power system schedul-

ing problems, the scheduling horizon can be long, e.g., 24
time steps with an hourly resolution for day-ahead scheduling.
The evaluation method in the previous section cannot be used
for long time horizons due to the excessive complexity of
Monte Carlo sampling. Note that the reliable AFAPR is used
for scheduling problems, and a better AFAPR approximation
tends to yield scheduling solutions with better optimality
(less conservative) while still ensuring the desired solution
reliability. Therefore, to assess the approximation quality, we
can evaluate the performance of the optimal solution pAgg*

to the following DA cost minimisation problem with hourly
resolution and T = 24 under the UK DA market price πDA:

pAgg* = argmin πDA⊤
pAgg + C′(pAgg)

s.t. pAgg ∈ ΩAgg
WDR(ϵ, θ) in (33)

(43)

where C′(pAgg) is the aggregated DER cost derived by a
piecewise-linear method in Section III-D. Based on [3], one
can also co-optimise the profit on reserve provision by adding
r⊤(pAgg − pAgg) + r⊤(pAgg − pAgg) to the objective and
pAgg,pAgg ∈ ΩAgg

WDR to the constraints. r and r are the
reward coefficients for the upward and downward flexibility
reserve for [T ]. pAgg and pAgg are the maximum and minimum
available power defining the size of the reserve.

We evaluate the performance of the optimal DA scheduling
pAgg* from two perspectives: 1) Out-of-sample reliability:
The disaggregation problem (38) is performed under each of
the 300 out-of-sample DER scenarios. The nonlinear Z-Bus
power flow simulation is implemented to check the network
constraints of the disaggregated results. The out-of-sample
reliability is defined as the proportion of the 300 out-of-sample
DER scenarios where the disaggregation is successful and no
network constraints are violated. As our scheduling horizon is
for the next whole day, 300 scenarios correspond to roughly
one-year running. The DA scheduling pAgg* is considered
reliable as long as the out-of-sample reliability is greater than
or equal to the desired level 1−ϵ. 2) Out-of-sample cost: After
solving the disaggregation problem (38) under each of the 300
out-of-sample DER scenarios, we can get the actual cost as
πDA⊤

pAgg* + C(x). The out-of-sample cost is the average of
these actual costs over the 300 out-of-sample scenarios.

2) Results: We plot the out-of-sample cost and out-of-
sample reliability results under four desired reliability levels
(1 − ϵ) in Fig. 10. For all three RES settings and all the
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Figure 11. Successfully disaggregated DER power and nodal voltages (by
Z-Bus nonlinear power flow) for the next T=24 scheduling horizon.

desired reliability levels, our proposed method achieves lower
costs than B1 and B2, and our proposed method meets the
reliability requirement. On the other hand, B1unsafe and
B2unsafe have lower costs than our proposed method but fail
to meet reliability requirements for all cases. Overall, we see
that our proposed method leads to less conservativeness while
meeting the desired reliability.

We also plot a successful disaggregation result, i.e., the DER
trajectories across [T ] reaching the scheduled pAgg*, in Fig.
11: there is no simultaneous charging and discharging power
for ES. Also, all active power, reactive power, and network
voltages (by the Z-Bus power flow) are within the limits.
G. Sensitivity Analysis

1) Size of Storage: The time-coupling DERs increase the
approximation difficulties of ΩAgg

Approx [6], which may affect the
performance of our proposed method. Therefore, we evaluate
our proposed method under three ES sizes: total size being 500
kWh (E500), 1800 kWh (E1800), and 3600 kWh (E3600). The
maximum stored energy in the last setting can roughly support
our evaluated IEEE-123 grid for one hour under the peak load
time, so it is considered a large ES setting.

The out-of-sample reliability results are given in Fig. 12,
which indicates that our proposed method is reliable under all
ES sizes. Note that we use the inner polytope approximation,
so a larger ES size leads to a more conservative approximation,
thus increasing the test reliability. However, this increased
conservativeness is minor compared to the reduced conser-
vativeness by exactly reformulating the JCC in (33): Fig. 13
displays the out-of-sample costs of our proposed method, B1,
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and B2 when increasing the ES size. Results for B1unsafe and
B2unsafe are omitted as they are unreliable. We can see that
our proposed method is still superior for all ES sizes.

2) Size of D: This section evaluates the impact of the num-
ber of b̃

VB
scenarios in D, i.e., the size of D or equivalently the

number of binaries N of our proposed MILP-based AFAPR
(33). Fig. 14 shows the out-of-sample cost, reliability, and
the computing time of the scheduling problem (43) for the
‘HighWT’ case when the desired reliability is 80%. The costs
of the reliable B1 and B2 are plotted for comparison. We see
that an overly small number of b̃

VB
scenarios, i.e., 5, can lead

to low cost but can be less reliable as shown in the reliability
plot. Increasing the number of b̃

VB
scenarios from 80 to 120

results in no cost reduction (even a 2% increase) but a 1.7×
increase in computing time. Overall, based on Fig. 14, setting
the number of b̃

VB
scenarios (the number of binaries N ) to

within 30-80 may be more practical in use. We observe the
same conclusion in both ‘HighPV’ and ‘LowRES’ cases as
well.

It is worth noting the theoretical result in [44] that provides a
priori lower-bound estimate of the probability that the true data
distribution can be covered by the ambiguity set F(θ) in (31),
as a function of N (the size of D) and the Wasserstein radius θ.
However, in practice, setting N and θ based on the theoretical
result can lead to over-conservativeness. It is still suggested
to use hold-out method or the cross-validation method (as we
did in Section IV-C) to make a prudent setting [44].

There is a also trade-off in choosing the polytope approx-
imation in (26). A polytope with more edges, i.e., a larger
Dim(b)= D, can have a higher approximation accuracy to the
true AFAPR but also lead to more constraints in our MILP-
based AFAPR 33. A sensitivity analysis for the performance
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versus the computing time can be performed to select the best
polytope for specific applications. In general, our selected VB
approximator has a good performance and low complexity for
DERs with only power and energy constraints as demonstrated
in our case studies and other related literature [6].

H. Scalability Test
We test the model performance under varying numbers of

DERs from 50 to 180. We carry out the same cost-reliability
analysis for ‘highWT’ under ϵ = 0.05 (first row) and ϵ = 0.2
(second row) in Fig. 15. The total capacity for each type of
DERs is kept consistent for a better comparison. For the out-
of-sample cost in the first column, our method consistently
outperforms B1 and B2. Although B1unsafe and B2unsafe dis-
play lower costs, they fail to meet the desired reliability lines
(dark horizontal lines) in the middle-column plot. Conversely,
our method consistently yields reliable solutions, suggesting
that our proposed method retains its superiority across different
problem scales. We also plot the scheduling time, namely
the time of solving the scheduling problem (43), using our
proposed method and the benchmarks in the right-most column
of Fig. 15. We can see that the complexity of our method is
not affected by the number of DERs and the scheduling time
is within seconds. The results suggest that our proposed jointly
reliable AFAPR inner-approximation ΩAgg

WDR(ϵ) (33) can lead
to computationally efficient upper-level scheduling problems.
I. Computing Time of the AFAPR Derivation

This section displays the computing time of the online
process used to derive the reliable AFAPR (33) as shown in
Algorithm 1. As discussed in Section III-E3, the only computa-
tionally demanding step is the derivation of bfore (Step 1) based
on forecasts of uncertain DERs, by using existing methods that
derive the inner polytope approximation of the AFAPR in a
deterministic setting; other steps involve only simple algebra
operations given the collected b̃error scenarios offline and are

computationally trivial. The bound shrinking method in [6]
is applied to obtain bfore, which involves solving a series of
MILPs. Based on our relaxed MILP criterion described in
Section IV-C, the total computing time in Step 1 is 150 to
300 seconds for DER numbers of 50 to 180 with an AMD
Ryzen 9 5900X CPU. Note that our Algorithm 1 is capable of
more efficient methods to perform Step 1; a possible choice is
Ref. [48] that proposed a decomposition-based method that
significantly accelerated the process in obtaining the inner
polytope approximation with better performance than [6].
More importantly, as analysed in Section III-E3, our proposed
online process to derive the jointly reliable AFAPR does
not change the order of complexity compared with existing
methods used to derive the inner polytope approximation of
the AFAPR in a deterministic setting.

As discussed in Section III-D, it is important to derive the
aggregated cost function. The piecewise-linear method [16]
applied to derive the aggregate cost mapping involves solving
T ×NP independent (parallelisable) linear programmes (LP),
where NP = 5 is the number of segments in the piecewise-
linear function. Each LP only takes 1.5-4 seconds for DER
numbers of 50 to 180, which is computationally tractable.

V. CONCLUSION

This paper proposes a novel surrogate polytope method for
modelling the jointly reliable AFAPR over the entire schedul-
ing horizon, taking into account linear network constraints
and DER constraints including time-coupling effects. The
proposed method starts from the polytope inner approximation
with a fixed slope in a deterministic setting. The Wasserstein
Distributional Robust Joint Chance Constraint (WDRJCC) is
applied to the surrogate polytope rather than the low-level
DER constraints and network constraints, leading to an exact
reformulation as a tractable set of MILP constraints. We prove
that the derived MILP constraints are an inner approximation
to the original intractable jointly reliable AFAPR; we further
show that our proposed method leads to a less conservative but
still reliable AFAPR, by comparisons with four benchmarks
under various case studies, with the nonlinear Z-Bus power
flow simulation applied to validate the satisfaction of network
constraints. The historical data size required is small, making
the proposed method easy to deploy. The complexity of our
MILP formulation is low, leading to computationally efficient
upper-level scheduling. The size of the MILP does not increase
with the network size nor with the number of DERs. Consid-
ering the possible intractability of MILPs in the worst cases,
future work may explore convex but inner-approximation of
the MILP formulation to further improve tractability. Finally,
the linear network model is only accurate for certain operating
conditions. There is space for an AFAPR that fully captures
nonlinear network constraints or incorporates linearisations for
multiple network conditions.
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tionally robust chance-constrained programs with rhs uncertainty under
wasserstein ambiguity,” Mathematical Programming, 2021.

[24] H. Liu, J. Qiu, and J. Zhao, “A data-driven scheduling model of virtual
power plant using wasserstein distributionally robust optimization,”
International Journal of Electrical Power & Energy Systems, 2022.

[25] H. Früh et al., “Coordinated vertical provision of flexibility from
distribution systems,” IEEE Trans. on Power Systems, 2023.

[26] J. Silva et al., “Estimating the active and reactive power flexibility area
at the tso-dso interface,” IEEE Trans. on Power Systems, 2018.

[27] M. Zhang, Y. Xu, and H. Sun, “Optimal coordinated operation for a
distribution network with virtual power plants considering load shaping,”
IEEE Transactions on Sustainable Energy, 2023.

[28] Z. Yi, Y. Xu, J. Zhou, W. Wu, and H. Sun, “Bi-level programming for
optimal operation of an active distribution network with multiple virtual
power plants,” IEEE Transactions on Sustainable Energy, 2020.

[29] M. Braun, Provision of ancillary services by distributed generators:
Technological and economic perspective. Fraunhofer IWES, 01 2009.

[30] X. Chen and N. Li, “Leveraging two-stage adaptive robust optimization
for power flexibility aggregation,” IEEE Trans. on Smart Grid, 2021.

[31] K. Garifi, K. Baker, D. Christensen, and B. Touri, “Convex relaxation
of grid-connected energy storage system models with complementarity
constraints in dc opf,” IEEE Trans. on Smart Grid, 2020.

[32] A. Bernstein and E. Dall’Anese, “Linear power-flow models in multi-
phase distribution networks,” in ISGT-Europe. IEEE, 2017.

[33] A. Bernstein et al., “Load flow in multiphase distribution networks:
Existence, uniqueness, non-singularity and linear models,” IEEE Trans-
actions on Power Systems, 2018.

[34] M. Cai, R. Yang, and Y. Zhang, “Iteration-based linearized distribution-
level locational marginal price for three-phase unbalanced distribution
systems,” IEEE Transactions on Smart Grid, 2021.

[35] S. Mhanna and P. Mancarella, “An exact sequential linear programming
algorithm for the optimal power flow problem,” IEEE Transactions on
Power Systems, vol. 37, no. 1, pp. 666–679, 2021.

[36] Z. Yang et al., “A linearized opf model with reactive power and
voltage magnitude: A pathway to improve the mw-only dc opf,” IEEE
Transactions on Power Systems, vol. 33, no. 2, pp. 1734–1745, 2018.

[37] C. Heinrich, P. Fortenbacher, A. Fuchs, and G. Andersson, “Pv-
integration strategies for low voltage networks,” in ENERGYCON, 2016.
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