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ABSTRACT

Video databases from the internet are a valuable source of
text-audio retrieval datasets. However, given that sound and
vision streams represent different “views” of the data, treat-
ing visual descriptions as audio descriptions is far from opti-
mal. Even if audio class labels are present, they commonly
are not very detailed, making them unsuited for text-audio re-
trieval. To exploit relevant audio information from video-text
datasets, we introduce a methodology for generating audio-
centric descriptions using Large Language Models (LLMs).
In this work, we consider the egocentric video setting and
propose three new text-audio retrieval benchmarks based on
the EpicMIR and EgoMCQ tasks, and on the EpicSounds
dataset. Our approach for obtaining audio-centric descrip-
tions gives significantly higher zero-shot performance than
using the original visual-centric descriptions. Furthermore,
we show that using the same prompts, we can successfully
employ LLMs to improve the retrieval on EpicSounds, com-
pared to using the original audio class labels of the dataset.
Finally, we confirm that LLMs can be used to determine the
difficulty of identifying the action associated with a sound.

Index Terms— text-audio retrieval, large language mod-
els, generated audio descriptions, egocentric data

1. INTRODUCTION

Searching the ever-expanding supply of audio and video
media hosted online has become a key technical challenge.
Concurrently, LLMs have become more powerful, exhibiting
early signs of commonsense reasoning and primitive world
modelling [2]. Given their extensive text-based knowledge
about the sensory world, in this work we ask whether LLMs
can improve search capabilities for other modalities such
as audio and video. In particular, we consider the task of
egocentric audio retrieval from text queries.

Our strategy is to employ text as an intermediate medium
for aligning vision and audio signals by leveraging the text-
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based knowledge that an LLM possesses about sight and
sound. Concretely, we use LLMs to generate plausible au-
dio descriptions for videos when given their visual descrip-
tions. To do so, we leverage the LLM’s in-context learn-
ing capability, and provide it with exemplars of the desired
mapping – pairs of visual-centric and corresponding audio-
centric descriptions. This few-shot shot approach is made
possible by the existence of a small collection of content
that has been annotated with both visual-centric and audio-
centric descriptions. In this work, we source these pairs
from overlapping samples between the Kinetics700-2020 [3]
and AudioCaps [4] datasets (we refer to these examples as
Kinetics ∩ AudioCaps). Fig. 1 shows examples of few-shot
generated audio descriptions produced with our approach.

With this “converter” in hand, we scale its application
to the conversion of full text-video datasets to text-audio
datasets. Specifically, we construct two text-audio datasets
derived from egocentric video retrieval tasks sourced from
EpicKitchens [5] and Ego4D [6], and demonstrate the value
of this data empirically. We additionally apply a similar
methodology to the audio class labels of EpicSounds to im-
prove retrieval results. We also demonstrate that LLMs can
usefully predict when the action within a video can be reli-
ably determined solely from its audio track, with applications
for curating new text-audio datasets.

2. RELATED WORK

Text-audio retrieval and LLMs. Text-audio retrieval en-
tails searching for the most appropriate audio file for a given
textual query. This task was popularised by [7, 8] (though
related themes were studied previously [9]), and has seen
recent improvements through the use of transformer-based
models [10]. In adjacent fields, there has been a surge of
efforts that harness LLMs, e.g. GPT-4 [11], Vicuna [12],
and Llama [13, 2], for multimodal tasks that require vision-
language [14, 15, 16, 17] and audio-language understand-
ing [18]. [17] and [16] demonstrate the benefits of using
LLM-generated textual class descriptions for zero-shot image
classification and open-vocabulary object detection respec-
tively. More closely related to our approach, [18] employ
ChatGPT [1] for standardizing audio descriptions across var-
ious audio-centric datasets. These refined text-audio pairs are
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Fig. 1. Frames from the EpicKitchens dataset together with the corresponding original visual descriptions from EpicMIR shown
above and those generated with our approach (using the ChatGPT LLM [1]) below.

then used to pretrain text-audio models. In contrast to prior
work which focuses predominantly on audio-centric datasets
(as characterized by the availability of audio descriptions or
labels), we focus on leveraging datasets that generally possess
only visual-centric descriptions.
Egocentric audio-visual understanding. While most video
datasets are captured from a third-person perspective, recent
research has shifted towards egocentric data, filmed from
a first-person viewpoint. The egocentric datasets, EpicK-
itchens [5] and Ego4D [6], have been used for various tasks,
such as action recognition [19, 20], moment localization and
video retrieval [21, 22, 23, 24] with a focus on the video
stream. We, however, focus specifically on their audio tracks.

In a similar vein to [25], we analyse how to best exploit
the audio information in the egocentric video setting. Also
related, recent work introduced EpicSounds [26], an audio
classification benchmark on the EpicKitchens [5] dataset. In
contrast to these approaches, we consider the retrieval task
rather than classification and employ LLMs to automatically
generate additional audio descriptions for text-audio retrieval.

3. DATASETS AND APPROACH

We first summarise existing relevant datasets in Sec. 3.1.
Next, we detail our proposed method for employing Large
Language Models (LLMs) in two key areas: firstly, to bridge
the gap between visual and audio descriptions; and sec-
ondly, to create audio descriptions from audio labels. This
approach is aimed at improving text-audio retrieval in ego-
centric datasets, as discussed in Sec. 3.2. We introduce our
AudioEpicMIR, AudioEgoMCQ and EpicSoundsRet bench-
marks in Sec. 3.3. Lastly, we present our method for evaluat-
ing the level of informativeness of audio samples in Sec. 3.4.

3.1. Datasets and tasks

EpicKitchens [5] & EpicMIR [27]. EpicKitchens contains
100 hours of recordings filmed from first-person perspective.
The Multi-Instance Action Retrieval (EpicMIR) [27] task
based on EpicKitchens consists of finding the most relevant

video given a text query, and vice-versa. The test set contains
9,668 videos and corresponding visual descriptions in the
form verb/s + noun/s. The average number of words
per sentence is 2.93 with standard deviation 1.17.
Ego4D [6] & EgoMCQ [21]. Ego4D is the largest egocen-
tric dataset with over 3,670 video hours and accompanying
narrations. The EgoMCQ [21] task based on Ego4D consists
of 39,751 pairs containing one description and 5 video clips
each. It aims at finding the correct clip for a given description.
EpicSounds [26] is sourced from the EpicKitchens dataset. It
contains only those audio tracks that are useful for the audio
classification task as verified through manual annotations. 44
different classes are labelled for 10,276 test audio chunks.
Kinetics700-2020 [3] contains 10s clips from YouTube and
corresponding activity labels which are in the form verb/s
+ noun/s. The average word count is 2.09 with a standard
deviation of 0.79.
AudioCaps [4] is curated from YouTube and contains 10s au-
dio files and text descriptions. It serves as a common bench-
mark dataset for audio captioning and text-audio retrieval.

3.2. Audio description generation methodology

As noted in Sec. 1, we find that there are a number of clips in
common between Kinetics700-2020 [3] and AudioCaps [4]
(283 in total). We use example correspondences to condition
the LLM to generate audio descriptions in the style of Au-
dioCaps given access to visual verb-noun descriptions. This
approach is shown in Fig. 2, where we first give a general task
description, together with heuristic constraints that were ob-
tained by manual experimentation on a handful of samples (a
form of “prompt engineering”).

We combine these instructions with few-shot paired ex-
amples of visual descriptions and audio descriptions sampled
from Kinetics ∩ AudioCaps. In particular, we select 14 pairs
to balance sufficient examples while preserving the model’s
focus on the task prompt (step 2). Finally, we provide the
LLM with the visual descriptions or audio labels for which
we want to generate new audio descriptions (step 3). We de-
veloped this approach by experimenting with samples from



Fig. 2. Given visual-centric descriptions, we propose to use
an LLM (ChatGPT) to generate audio descriptions (step 3).
The LLM is prompted with a task description (step 1) and
few-shot paired examples of visual-centric and audio descrip-
tions (step 2).

EpicMIR, and apply the same strategy directly to EgoMCQ
and EpicSounds in Sec. 4.

3.3. Our proposed text-audio retrieval benchmarks

We apply our approach for generating audio descriptions to
EpicMIR, EgoMCQ, and EpicSounds. As a result, we obtain
three new benchmarks, namely AudioEpicMIR, AudioMCQ,
and EpicSoundsRet. We refer to the original visual descrip-
tions/audio class labels for all benchmark datasets as Aud orig
and to our LLM-generated descriptions as Aud LLM.
AudioEpicMIR is curated from the EpicMIR task by extract-
ing the audio tracks of the EpicMIR videos and keeping their
original visual descriptions. Additionally, we generate audio-
centric descriptions using ChatGPT (GPT-3.5) [1] as the LLM
in our methodology, as described in Sec. 3.2.
AudioEgoMCQ is gathered based on the EgoMCQ task. We
observe that in this dataset, some of the videos do not have
an audio soundtrack at all. Therefore, to generate a text-
audio dataset, we need to exclude some of the original text-
video pairs. Specifically, for the intra-video task, we ex-
cluded all text-video pairs when the video corresponding to
the text query did not contain sound. For inter-video, we ad-
ditionally replaced clips without audio from the pairs by clips
with audio. Finally, we exclude text-video pairs if any of the
five videos have a silent soundtrack. This results in 23,121
text-audios pairs. The remaining original visual descriptions
contain an average of 8.15 words (with a standard deviation
of 3.01). We use our audio description generation approach
described in Sec. 3.2 to obtain audio-centric descriptions. As
before, we use ChatGPT (GPT-3.5) [1] as the LLM.
EpicSoundsRet differs from EpicMIR and EgoMCQ in that
it originally contains audio class labels, not visual descrip-
tions. For the retrieval task we use the audio class labels as
text queries together with the corresponding audio files. We
use our LLM prompts out of the box to generate audio de-
scriptions for EpicSounds starting from the audio labels.

3.4. Determining the audio relevancy using LLMs

We observe that many video clips contain audio that is too
noisy or generic to inform the text-audio retrieval process. An
example is ‘taking clothes from basket’ or ‘putting clothes in
basket’ which both have similar associated sounds that are
hard to differentiate. This prompts the question, can we iden-
tify such audio by looking only at the given visual descrip-
tion? To explore this, we tasked GPT-4 with splitting the orig-
inal visual text descriptions into three categories according to
the relevancy of the sound:
• High: audio is very informative for the visual task, e.g.

‘turning on tap’, ‘washing dishes’.
• Moderate: audio is informative but not enough information

is provided in the text description for it to be identifiable,
e.g. ‘putting a plate down’ has a different sound based on
if it is placed on a kitchen table or a sofa.

• Low: audio is not likely to be informative, e.g. ‘get carrot’.

4. EXPERIMENTS

Evaluation metrics. On AudioEpicMIR and EpicSound-
sRet, we report Mean Average Precision (mAP) and nor-
malised Discounted Cumulative Gain (nDCG) [28] following
[27]. nDCG measures the relevance of text descriptions in
response to a video query by positively acknowledging se-
mantically analogous descriptions in addition to the correct
pair. For AudioEgoMCQ, we report the Retrieval@1 score,
similar to [21]. We consider the following two tasks. For the
more challenging intra-video task we are given a text query
and aim to find the corresponding clip out of 5 clips selected
from the same video. In contrast, the inter-video task uses a
pool of 5 clips, each selected from a different video.
Models. We use two recent text-audio retrieval models,
namely LAION-Clap [10, 29] and WavCaps [18]. Both mod-
els were trained and/or finetuned on the audio-centric Audio-
Caps [4] and Clotho [30] datasets. We use these models to
assess zero-shot egocentric text-audio retrieval capabilities,
i.e. without any training on egocentric data.
Zero-shot egocentric text-audio retrieval. We evaluate the
audio-centric pre-trained LAION-Clap and WavCaps models
directly on the egocentric text-audio retrieval datasets (zero-
shot setting) and provide the results on AudioEpicMIR in
Tab. 1. We observe that the LLM-generated audio descrip-
tions yield a consistent boost. We hypothesize that this im-
provement stems both from aligning the style of descriptions
more closely with the training distribution for the models and
from the inclusion of more audio-centric content. We addi-
tionally report results for AudioEgoMCQ in Tab. 2 and Epic-
SoundsRet in Tab. 3. For AudioEgoMCQ, we observe that for
the intra-video task, using LLM descriptions provides con-
sistent improvements over using the original labels. For the
inter-video task we observe that the WavCaps model fine-
tuned on Clotho yields a small decrease in performance as
compared to using the original labels. We attribute the varia-



Table 1. Zero-shot text-audio retrieval on AudioEpicMIR
with LLM-generated audio descriptions compared to using
visual descriptions. WavCaps-AC and WavCaps-Cl were fine-
tuned on AudioCaps and Clotho respectively.

Pre-trained
audio model

LLM-generated
audio descriptions mAP(%) nDCG(%)

A->T T->A AVG A->T T->A AVG

Random 5.6 6.4 6.0 10.7 12.3 11.5

LAION-Clap 8.9 8.4 8.6 15.3 17.0 16.2
LAION-Clap ✓ 10.0 9.3 9.6 17.2 18.2 17.7

WavCaps-AC 10.3 9.0 9.7 17.5 17.5 17.5
WavCaps-AC ✓ 11.2 10.4 10.8 18.9 20.0 19.4

WavCaps-Cl 10.9 9.5 10.2 18.3 18.2 18.2
WavCaps-Cl ✓ 11.5 10.4 10.9 19.2 20.2 19.7

Table 2. Zero-shot text-audio retrieval results on AudioE-
goMCQ with LLM-generated audio descriptions compared to
using visual descriptions. The data is filtered as per Sec. 3.3.

Pre-trained
audio model

LLM-generated
audio descriptions Intra-video(%) Inter-video(%)

Random 20.0 20.0

LAION-Clap 24.2 27.5
LAION-Clap ✓ 25.2 28.9

WavCaps-AC 24.1 30.9
WavCaps-AC ✓ 25.1 31.1

WavCaps-Cl 24.6 32.1
WavCaps-Cl ✓ 25.6 31.8

tion in task performance to the differing text queries and the
more visual-centric nature of Clotho descriptions compared
to AudioCaps. For EpicSoundsRet, using LLM descriptions
gives a significant improvement over using the original audio
class labels in most cases.
Evaluating text-audio retrieval on subsets with different
audio relevancy. We employ GPT-4 to split the audio tracks
in AudioEpicMIR into three subsets as described in Sec. 3.4.
The subsets are selected by the LLM based on how difficult it
is to identify the audio content solely from the sound. We
compare the performance of different models to a random
baseline on these newly created subsets in Tab. 4. The random
baseline has been obtained by providing randomly sampled
text descriptions as the ‘correct’ descriptions for a given au-

Table 3. Zero-shot text-audio retrieval on EpicSoundsRet
with LLM-generated audio descriptions compared to using
audio class labels.

Pre-trained
audio model

LLM-generated
audio descriptions mAP(%) nDCG(%)

A->T T->A AVG A->T T->A AVG

Random 8.7 2.8 5.7 1.8 1.9 1.9

WavCaps-Cl 24.3 12.0 18.1 11.0 13.6 12.3
WavCaps-Cl ✓ 30.2 11.3 20.8 14.8 13.7 14.3

LAION-Clap 28.5 8.2 18.3 16.1 9.5 12.8
LAION-Clap ✓ 29.9 11.7 20.8 16.3 14.3 15.3

WavCaps-AC 24.3 11.9 18.2 12.4 13.8 13.1
WavCaps-AC ✓ 31.2 11.9 21.5 16.9 14.3 15.6

Table 4. Zero-shot text-audio retrieval on different subsets
of AudioEpicMIR, split according to the informativeness of
audio files as judged by GPT-4. LLM-generated audio de-
scriptions give the best results across all subsets (Aud LLM),
compared to using the original visual descriptions (Aud orig).
WavCaps-Cl performs best when the audio files are consid-
ered to be highly informative.

AudioEpicMIR subset Descriptions mAP(%) nDCG(%)

AVG δ to rand. perf. AVG δ to rand. perf.

Low
Random perf. 12.8 - 24.4 -

Aud orig 15.5 2.7 28.2 3.8
Aud LLM 15.6 2.8 27.9 3.5

Moderate
Random perf. 7.2 - 13.0 -

Aud orig 11.5 4.3 19.1 6.1
Aud LLM 12.4 5.2 20.2 7.2

High
Random perf. 5.7 - 9.7 -

Aud orig 14.0 8.3 21.0 11.3
Aud LLM 15.2 9.5 23.7 14.0

Table 5. Zero-shot text-audio retrieval on different subsets
of AudioEgoMCQ, split according to the informativeness of
audio files as judged by GPT-4. WavCaps-Cl performs best
for highly informative audio files. Random values for both
tasks are 20.0.

AudioEgoMCQ subset Descriptions Intra-video(%) Inter-video(%)

Low Aud orig 21.7 28.2
Aud LLM 22.6 26.9

Moderate Aud orig 25.0 32.7
Aud LLM 26.8 34.2

High Aud orig 30.3 39.0
Aud LLM 30.8 39.1

dio. The audio retrieval model employed is WavCaps-Cl. We
observe that for the subset deemed to have ‘low’ audio rel-
evance, the random performance more than doubles in com-
parison to the random evaluation on the full test set. This is
a result of the subset’s pool of text descriptions being fairly
repetitive. Hence, to ensure a more equitable comparison of
model performance across the subsets, we consider the incre-
mental improvement of each model from its initial random
metrics (δ to rand. perf.). The accuracy increases as we go
from the ‘low’ to the ‘high’ subset. At the same time, the in-
cremental improvement over the random performance is most
significant for the ’high’ subset. We perform the same exper-
iment on the AudioEgoMCQ subsets and observe that GPT-4
is indeed capable of selecting videos for which the audio is
more likely to have informative content (Tab. 5).

5. CONCLUSION

In this study, we introduced three new benchmarks for ego-
centric text-audio retrieval. We proposed a methodology of
generating audio descriptions using an LLM starting from
visual-centric descriptions and audio class labels. Lastly, we
have shown that we can use guidance from an LLM to filter
out noisy audio content extracted from video datasets. We
believe these contributions can apply beyond the egocentric
setting and hope they will improve text-audio understanding.
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A. SUPPLEMENTARY MATERIAL:
A SOUND APPROACH: USING LARGE LANGUAGE
MODELS TO GENERATE AUDIO DESCRIPTIONS

FOR EGOCENTRIC TEXT-AUDIO RETRIEVAL

In this supplementary material, we will provide further exper-
imental results and details regarding the pre-trained models
that we used. In Sec. A.1, we present additional information
and analysis of the EpicSoundsRet benchmark based on the
EpicSounds [26] dataset. For completeness, we include the
prompts for generating audio descriptions in Sec. A.2. In
Sec. A.3, we evaluate the impact of additionally using the
audio modality for the text-video retrieval task. We provide
more insight into the differences between the Clotho and Au-
dioCaps finetuned checkpoints used in our work in Sec. A.4.
In Sec. A.5 we briefly expand on the results obtained on
the AudioEgoMCQ task whilst in Sec. A.6 we provide more
experiments on the AudioEgoMCQ benchmark. Lastly, we
compare the relative performance differences of the models
used for the experiments in the paper on multiple benchmarks
in Sec. A.7.

A.1. EpicSounds

In our experiments with the AudioEpicMIR and AudioE-
goMCQ benchmarks, we generated audio descriptions using
LLMs starting from visual class labels. For EpicSounds, we
have access to audio class labels. As a result, our prompts
are not necessarily optimal when using audio class labels
as inputs. Nevertheless, despite being created from a set of
prompts that might not be ideal, the audio descriptions still
perform better in the retrieval task compared to the original
audio labels as can be seen in Tab. 3 in the main paper.

The WavCaps model finetuned on Clotho performs slightly
worse on the text-audio task when using LLM-generated de-
scriptions on EpicSounds than when using the original audio
labels. However, we do not see this behaviour when using
models finetuned on AudioCaps. This discrepancy likely
arises because Clotho descriptions often include substantial
visual details in addition to audio content, leading to a sig-
nificant style difference in our audio-focused descriptions.
However, regardless of the model used, LLM-generated de-
scriptions overall yield better results than using class labels,
particularly in the audio-to-text retrieval direction.

We employed the same retrieval metrics for AudioEpicMIR
and EpicSoundsRet. This required constructing a relevancy
matrix (more information on this is available here [31, 27]).
This relevancy matrix takes into account that for one given
description, multiple audio files can be equally relevant.
On AudioEpicMIR, the relevancy matrix would look at all
unique text descriptions, and depending on how many nouns
and verbs the other descriptions would have in common, it
would assign values between 0 and 1 to these similar descrip-
tions. For EpicSoundsRet we start with audio class labels as

‘descriptions’ and assign a score of 1 to all audios and text
descriptions where the text description belongs to the same
class. We use the same relevancy matrix to calculate the
retrieval scores for the Aud orig and Aud LLM descriptions.
This also applies to AudioEpicMIR.

A.2. Prompts

We use LLMs, specifically GPT3.5, to generate audio de-
scriptions starting from visual class labels. Tab. 6 shows the
prompts we used.

Furthermore, we used GPT4 to decide the difficulty of
identifying the action associated with a sound. The prompt
we used for that is provided in Tab. 7.

A.3. Multimodal text-video retrieval

In this section, we show that text-video retrieval benefits from
jointly using the audio and visual modalities. We report text-
video retrieval results on the EpicMIR task in Tab. 8. The
joint multimodal evaluation is carried out via late fusion of
the outputs of the text-audio and text-video retrieval models.
Boosts in performance for the multimodal evaluation com-
pared to the unimodal models (i.e. audio only and visual only)
are observed both when using the original descriptions (Joint
w. Aud orig) and when using the original descriptions for the
visual model together with the LLM-generated ones for the
audio model (Joint w. Aud LLM).

Additionally, we investigate how text-video retrieval per-
forms on the same audio relevancy subsets investigated in
Tab. 4. Results are provided in Tab. 9 and follow a similar
trend as for the audio only experiments. More specifically, the
multimodal text-video retrieval performs best on the ‘high’
subset. We also notice that text-video retrieval when only us-
ing the visual modality also exhibits stronger performance on
subsets with higher audio relevancy. We hypothesise that this
is because the more audio significant actions tend to also be
more common, or easier to identify for visual models.

For the text-video retrieval experiments, we used the
EgoVLP [21] codebase. More precisely, we take the pro-
vided pre-trained EgoVLP [32] model and evaluate it in a
zero-shot fashion. This model processes the clips by ran-
domly selecting a number of frames. We set the number of
frames to 16 in our experiments. Additionally, we do not
use the dual_softmax evaluation approach used in the code-
base [32] but instead leverage the standard similarity matrix
at evaluation time. This is consistent with how the underlying
EgoVLP model was trained [32].

A.4. Leveraging models finetuned on Clotho for tasks
with original visual descriptions

The Clotho [30] dataset was collected by providing annota-
tors with audio files and asking them to generate descriptions
of the audio sound. However, by looking at descriptions, we



Table 6. Overview of the methodology for bridging the gap between visual classes/descriptions and video soundtrack descrip-
tions using LLMs. The process includes setting the scene, few-shot prompting with examples, and generating audio descriptions
from video descriptions.

Index Prompts

1. You are an expert in audio and visual description of videos. You have seen the AudioCaps and Clotho
datasets and know how to generate relevant audio descriptions using simple terms. You will help me generate
audio descriptions that can match the audio content of a video for which the video description is provided.
Avoid the use of object or actions that cannot be inferred from the audio signal alone. Try to create proper
short sentences when generating the audio descriptions. When multiple audio descriptions can be possible,
provide one that best generalises the sounds.Try to avoid generating audio descriptions in the form of ’sound
of [visual object/action]’ and instead use the actual noise or sound that object/action can make. If unsure, you
can provide multiple possible sounds. To help you understand the sort of descriptions I am looking for, in
the next prompt I will provide you a few pairs of video descriptions and the corresponding audio descriptions
as an example. Please remember this prompt and the examples whenever generating new audio descriptions.
Then I will ask you to generate audio descriptions given new video descriptions.

2. Here are some examples in the form of (video description: audio description) and examples are separated
by semicolon. (’burping’, ’A man giving out a loud burp’);(’sneezing’, ’Someone sneezes’);(’washing
dishes’, ’Metal clinking and clanging occur’);(’washing dishes’, ’Water splashing and glasses clanging to-
gether then more clanging ending with glass squeaking sound’);(’opening door’, ’Door handle continuously
clicking then being pushed open’);(’spray painting’, ’Powerful bursts of spraying’);(’crying’, ’A baby cries
and screams’);(’opening door’, ’Hissing then creaking as a door is opened’);(’applauding’, ’A large num-
ber of people clap, cheer, and shout’);(’closing door’, ’Metal clings followed by rumbling and metal slid-
ing’);(’whistling’, ’A person is whistling a tune’);(’shearing sheep’, ’Sheep bleat quietly’);(’washing hair’,
’Water running while the stream is interrupted at times’);(’sawing wood’, ’Rubbing and sawing of wood’). I
want you to learn from them and not generate descriptions for this prompt.

3. Generate an audio description for each of the following enumerated video descriptions separated by semi-
colon. Try to avoid generating audio descriptions in the form of ’sound of [visual object/action]’ and instead
use the actual noise or sound that object/action can make. If unsure, you can provide multiple possible sounds.
Remember the original prompt. Provide your answers in the form [description index. video description: gen-
erated audio description].
<Add the list of visual labels separated by ; here>

Table 7. Prompts used for employing LLMs in assessing the likelihood of identifying video actions solely through audio tracks.

Index Prompts

1. You have a lot of experience with video and audio descriptions. You are working with videos that have an
associate audio file. You only have descriptions of the visual content. Some videos are highly correlated
with the audio content, such as those depicting someone cutting vegetables. Other videos have very generic
audios and if only given the audio content, the video content might not be easy to figure out. I want you
to tell me if a video description is relevant for the possible associated audio content. I want you to provide
your answers in the form of a dictionary where the key is the description I am giving you and the value is the
relevance. Relevance should be high if the sound associated is easy to assume. Relevance should be moderate
if the associated sounds can be more than one. Relevance should be low if it’s unlikely to hear any specific
sounds. Process each entry individually. Input descriptions will be given in the form of a list. Do not provide
additional comments, just the relevance.



Table 8. Zero-shot capabilities of text-audio (audio only) and
text-video (video only) retrieval models compared to the joint
evaluation with late fusion on EpicMIR. ∗ Numbers are ob-
tained using the text-video retrieval model from [21].

EpicMIR mAP(%) nDCG(%)

A->T T->A AVG A->T T->A AVG

Random [21] 5.7 5.6 5.7 10.8 10.9 10.9

Audio only (WavCaps-Cl w. Aud LLM) 11.5 10.5 11.0 19.2 20.3 19.7

Video only (EgoVLP∗) 24.7 18.4 21.6 27.4 24.6 26.0

Joint w. Aud orig 25.4 19.3 22.4 28.7 26.0 27.3

Joint w. Aud LLM 25.8 19.9 22.8 29.1 26.9 28.0

Table 9. Zero-shot multimodal text-video retrieval on differ-
ent subsets of AudioEpicMIR, split according to the informa-
tiveness of audio files as judged by GPT-4. LLM-generated
audio descriptions give the best results across all subsets (Aud
LLM), compared to using the original visual descriptions
(Aud orig). The joint model performs best when the audio
files are considered to be highly informative.

AudioEpicMIR subset Descriptions mAP(%) nDCG(%)

AVG δ to rand. perf. AVG δ to rand. perf.

Low

Random perf. vid. 12.5 - 23.4 -
Vid orig 23.3 10.8 30.8 7.4
Aud orig 23.7 11.2 32.1 8.7

Aud LLM 23.4 10.9 32.1 8.7

Moderate

Random perf. vid. 7.2 - 12.2 -
Vid orig 27.3 20.1 28.0 15.8
Aud orig 27.7 20.5 29.1 16.9

Aud LLM 28.5 21.3 29.7 17.5

High

Random perf. vid. 5.8 - 9.1 -
Vid orig 32.9 27.1 36.0 26.9
Aud orig 33.6 27.8 37.1 28.0

Aud LLM 34.6 28.8 38.3 29.2

observe that the annotators tended to provide plausible vi-
sual descriptions of the sounds rather than describe the actual
sound. Some examples are “A group is in a carriage that is
being drawn by a horse on a paved road." or “A man moves
from the basement to upstairs, moving a heavy metal object
with him.". Such visual details cannot be inferred just by lis-
tening to an audio. Therefore, this dataset matches better our
setting of generating audio descriptions starting from visual
descriptions since, when no obvious audio description can be
generated, the output description often contains a reworded
version of the provided visual input. In contrast, AudioCaps
descriptions are shorter and more audio focused e.g. “Speech
in the distance with a bleating sheep nearby." or “Food and
oil sizzling followed by a woman speaking.". Furthermore,
the WavCaps model has been finetuned on the Clotho data,
which contains 25 times fewer training examples than Audio-
Caps. This could mean that the model finetuned on Clotho
retains more generality which can be useful in settings with
new audio content that the LLM might generate.

A.5. Intra-video vs inter-video results

When using the WavCaps-Cl model, we notice in Tab. 2 that
the inter-video task performs slightly better when using orig-

Table 10. Zero-shot text-audio retrieval on different subsets
of AudioEgoMCQ, split according to the informativeness of
audio files as judged by GPT-4. WavCaps-AC performs best
for highly informative audio files. Random values for both
tasks are 20.0.

AudioEgoMCQ subset Descriptions Intra-video(%) Inter-video(%)

Low Aud orig 21.0 27.0
Aud LLM 22.4 26.9

Moderate Aud orig 26.2 32.7
Aud LLM 26.6 33.2

High Aud orig 28.7 37.0
Aud LLM 29.1 37.4

inal descriptions compared to using the LLM-generated ones.
Based on our analysis, we believe that this is due to the dif-
ferent distribution of text queries between the two tasks (i.e.
intra-video and inter-video).

A.6. Evaluation on different subsets of AudioEgoMCQ
according to informativeness

We additionally evaluate the WavCaps model finetuned on
AudioCaps on the low, moderate, and high subsets of Au-
dioEgoMCQ in Tab. 10. We notice that when using this
checkpoint, the inter-video LLM performance is higher on
the moderate and high and just a bit lower on the low subset.
This is in accordance with results in Tab. 5 where the check-
point used was finetuned on Clotho. However, when using
the AudioCaps finetuned model with LLM descriptions, the
decrease on the low subset is much lower than when using
the Clotho finetuned model. We believe that this is related
to Clotho being more visual based as described in A.4. As a
result, when using AudioCaps finetuned models, the overall
retrieval performance is better for the LLM descriptions than
when using Clotho based models.

A.7. Why does WavCaps-Cl give better results on Au-
dioEpicMIR and AudioEgoMCQ whilst the WavCaps-AC
model is better on EpicSoundsRet?

We found that the WavCaps model, when finetuned with
AudioCaps, performs best for EpicSounds. In contrast, for
the other two datasets, the top-performing model is Wav-
Caps finetuned on Clotho. This variation in performance is
linked to the nature of the input labels provided to the LLM.
Specifically, EpicSounds uses only audio inputs, while Au-
dioEpicMIR and AudioEgoMCQ rely solely on visual inputs.
LLMs tend to merge the visual and audio information in the
same sentence, especially when the input leans more towards
visual content. As AudioCaps descriptions primarily focus
on audio, whereas Clotho provides a balanced mix of both
audio and visual details. Tasks that are more audio-centric
benefit significantly from models finetuned on AudioCaps.
Conversely, tasks with a visual emphasis favour models fine-
tuned on Clotho, due to their original labels being more
visual-centric.
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