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Faithful transmission of genetic material is crucial for the survival of all
organisms. In many eukaryotes, a feedback control mechanism called the
spindle checkpoint ensures chromosome segregation fidelity by delaying
cell cycle progression until all chromosomes achieve proper attachment
to the mitotic spindle. Kinetochores are the macromolecular complexes
that act as the interface between chromosomes and spindle microtubules.
While most eukaryotes have canonical kinetochore proteins that are widely
conserved, kinetoplastids such as Trypanosoma brucei have a seemingly
unique set of kinetochore proteins including KKT1–25. It remains poorly
understood how kinetoplastids regulate cell cycle progression or ensure
chromosome segregation fidelity. Here, we report a crystal structure of the
C-terminal domain of KKT14 from Apiculatamorpha spiralis and uncover
that it is a pseudokinase. Its structure is most similar to the kinase domain
of a spindle checkpoint protein Bub1. In addition, KKT14 has a putative
ABBA motif that is present in Bub1 and its paralogue BubR1. We also
find that the N-terminal part of KKT14 interacts with KKT15, whose
WD40 repeat beta-propeller is phylogenetically closely related to a direct
interactor of Bub1/BubR1 called Bub3. Our findings indicate that KKT14–
KKT15 are divergent orthologues of Bub1/BubR1–Bub3, which promote
accurate chromosome segregation in trypanosomes.

1. Introduction
Accurate transmission of genetic material from mother to daughter cells is
essential for the survival of all organisms. Segregation of replicated chromo-
somes in eukaryotes is achieved by a macromolecular protein complex called
the kinetochore, which links centromeric DNA to microtubules [1,2]. Once
all chromosomes have achieved proper attachments, the multi-subunit E3
ubiquitin ligase complex called the anaphase-promoting complex/cyclosome
(APC/C) gets activated. This leads to the degradation of anaphase inhibitors
securin and cyclin B, triggering sister chromatid separation and exit from
mitosis [3,4].

The spindle checkpoint is a surveillance system that monitors defects in
kinetochore–microtubule attachments and delays the onset of anaphase [5].
It works by inhibiting the activity of the APC/C that is in complex with its
co-activator protein Cdc20. Spindle checkpoint components include Mps1,
Bub1, BubR1 (Mad3), Bub3, Mad1 and Mad2 [6–8]. The mitotic checkpoint
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complex is a potent inhibitor of APC/CCdc20, which in humans consists of Mad2, Cdc20, BubR1 and Bub3 [9]. Unattached
kinetochores recruit these checkpoint proteins to catalyse the formation of the mitotic checkpoint complex [10]. Kinetochore
recruitment of spindle checkpoint proteins therefore needs to be under tight control. Bub3, a WD40 repeat domain protein,
directs Bub1 and BubR1 (Mad3) to kinetochores by recognizing the Mps1-phosphorylated MELT motif of the outer kinetochore
protein KNL1 [11–15]. Bub1 and BubR1 are paralogous proteins [16], which have a kinase and pseudokinase domain in their
C-terminus, respectively, while Mad3, a Bub1 paralog in yeast, does not have a kinase domain. The kinase activity of Bub1 is
largely dispensable for its spindle checkpoint function [17,18]. The pseudokinase domain in human BubR1 is thought to play
a role in ensuring its protein stability [16]. Bub1, BubR1 and Mad3 carry the Gle2-binding sequence (GLEBS) motif that binds
Bub3 and the ABBA motif that interacts with Cdc20 [19–22].

Despite its importance in ensuring accurate chromosome segregation, some organisms (e.g. yeasts, fruit flies and human
HAP1 cells) do not require the spindle checkpoint for their proliferation or development under normal conditions [23–27]. It is
thought that these organisms do not require a feedback-induced mitotic delay because all chromosomes can establish proper
kinetochore–microtubule attachments before the APC/C gets fully activated. Furthermore, spindle checkpoint components
are apparently absent in some organisms, including Trypanosoma brucei, which cannot halt cell cycle progression in response
to spindle defects [28–32]. Trypanosoma brucei is an experimentally tractable parasite that belongs to kinetoplastids, a class
of unicellular flagellated eukaryotes that are highly divergent from traditional model eukaryotes [33–35]. They include the
parasitic order Trypanosomatida (e.g. T. brucei, Trypanosoma cruzi and Leishmania), free-living Bodonida (e.g. Bodo saltans),
both belonging to the subclass Metakinetoplastina, and the subclass Prokinetoplastina (e.g. Apiculatamorpha spiralis, Papus
ankaliazontas and Perkinsela) [36]. Very little is known about how kinetoplastids regulate cell cycle progression or ensure accurate
chromosome segregation without a functional spindle checkpoint.

Like spindle checkpoint components, kinetochore proteins are widely conserved among eukaryotes [37,38]. However, unique
kinetochore proteins called Kinetoplastid KineTochore 1–25 (KKT1–25) and KKT-Interacting Protein 1–12 (KKIP1–12) are
present in T. brucei [39–43]. These proteins are conserved among kinetoplastids but do not have a significant sequence similarity
to canonical kinetochore proteins, meaning that they are attractive drug targets against diseases caused by kinetoplastid
parasites [44,45]. Understanding the structure and function of kinetoplastid kinetochore proteins also has the potential to shed
light on fundamental requirements for the chromosome segregation machinery in eukaryotes.

In this study, we focus on KKT14 and KKT15, proteins of unknown functions that localize at the kinetochore from G2 until
the end of anaphase in T. brucei [39]. Previous bioinformatics analysis using advanced hidden Markov model (HMM) searches
(e.g. HMMER and HHpred) of T. brucei KKT14 failed to identify any obvious conserved domain. KKT15 has WD40 repeats
that likely form a beta-propeller, a domain found in many different proteins, including Bub3, Cdc20 and mRNA export factor
Rae1/Gle2 [46]. Here, we discover that KKT14 has a pseudokinase domain in its C-terminus, which is most similar to the kinase
domain of Bub1. We also identify a putative ABBA motif in KKT14. The N-terminal part of KKT14 interacts with KKT15, which
we suggest to be a Bub3 orthologue. These results reveal that kinetoplastids possess divergent Bub1/BubR1 and Bub3 proteins.

2. Results
2.1. Crystal structure of KKT14 C-terminal domain reveals similarity to Bub1
To gain insights into the function and evolutionary origin of KKT14, we aimed to obtain its high-resolution structural infor-
mation. By screening four kinetoplastid species (T. brucei, T. cruzi, Paratrypanosoma confusum and Apiculatamorpha spiralis),
we succeeded in determining a 2.2 Å resolution crystal structure for the C-terminal domain of the KKT14 protein from the
prokinetoplastid A. spiralis (clone PhF-6) (figure 1a, table 1 and electronic supplementary material, table S1). Apiculatamorpha
spiralis KKT14365−640 crystallized with two molecules in an asymmetric unit. Both molecules were essentially identical except for
minor variations in flexible loops.

Interestingly, a structural homology search using the distance-matrix alignment (DALI) server [50] revealed similarity to a
protein kinase fold with an N-lobe and C-lobe (figure 1a and electronic supplementary material, table S2). The N-lobe contains a
five-stranded β-sheet, a helix termed the C-helix (αC), and loops that correspond to the catalytic loop and activation loop, while
the C-lobe comprises a bundle of α-helices (figure 1a). Although most protein kinases share a similar fold [51], we found that
the most similar structure of A. spiralis KKT14365−640 in the PDB database was the Bub1 kinase domain (figure 1b). Human Bub1
was the top hit in the DALI search with a Z-score of 15.5, while the next best hit was the MST3 kinase (Z-score 13.0) (electronic
supplementary material, table S2). We obtained a similar result for an AlphaFold2-predicted structure of T. brucei KKT14358–685

(electronic supplementary material, figure S1a), showing a Z-score of 15.9 for human Bub1 and 12.9 for the next best hit, the
PAK3 kinase (electronic supplementary material, table S2). Moreover, searches with Foldseek against the AlphaFold2-predicted
structure database [52] produced congruent results (see §4). The higher structural similarity of KKT14 to the kinase domain of
Bub1 rather than other kinases is owing to an N-terminal extension that is present in Bub1 and KKT14 (figure 1a–c; electronic
supplementary material, table S2) [47,48,53–55]. These results show that the C-terminal domain of KKT14 has a kinase fold with
the most similar structure being the Bub1 kinase domain, raising a possibility that KKT14 is a Bub1/BubR1 orthologue.

Besides a kinase/pseudokinase domain, Bub1 and BubR1 have various conserved domains and motifs [19,20,22,56]. We
identify a putative ABBA motif (consensus: Fx[ILV][FHY]x[DE]) in KKT14, which is highly conserved among trypanosomatids
(figure 2), as well as KEN boxes in some kinetoplastids (electronic supplementary material, figure S2). In contrast, other
domains such as a TPR, CDI or a KARD domain were not found. The presence of an ABBA motif and a C-terminal Bub1-like
kinase fold strongly supports the possibility that KKT14 is a divergent Bub1-like protein.
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2.2. KKT14 C-terminal domain is an inactive pseudokinase
Despite the structural similarity, however, a structure-based sequence alignment of KKT14 with Bub1 shows a lack of conserved
residues that play key roles in catalytically active protein kinases (figure 1c). Most notably, none of KKT14 orthologues in
kinetoplastids has a conserved β3 lysine (K821 in Bub1) (figure 3a), whose mutation results in an inactive kinase [57,58]. In
addition, KKT14 does not appear to have the Gly-rich motif (GxGxxG in most kinases, which is essential for stabilizing ATP
phosphates during catalysis), and the HRD motif in the catalytic loop (usually His-Arg-Asp: HGD in Bub1) is HGN in T. brucei
and HCA in A. spiralis (figure 3a). Furthermore, the DFG motif (usually Asp-Phe-Gly: DLG in Bub1), which is required for Mg2+

coordination, is HWE in T. brucei and CWD in A. spiralis KKT14 (figure 3a). Given that even a single amino acid change of key
residues in these motifs results in inactive kinases [59], these findings strongly suggest that the C-terminal domain of KKT14
is a catalytically inactive pseudokinase. Consistent with this possibility, KKT14 purified from trypanosomes did not have any
detectable auto-phosphorylation activity, while the KKT3 kinase did (figure 3b).

Although KKT14 appears to be an inactive pseudokinase, features of active protein kinase conformations are found in its
structure. In the active conformation of protein kinases, the DFG motif and the C-helix have an ‘in’ conformation, where the

      --------ahFQSEIEENYE---AVGN---VVVDLMGgCEPTLRV-GRVQLGNDIFTLRE 411

      apnfivgnpwDDKLIFKLLSglsKPVSsypNTFEWQC-KLPAIKPkTEFQLGSKLVYVHH 791

      EIRateLKRVLYVGTTeGDEFpVVVYAWTNGNSYESAKAFVASQ------GLNVPCRIVG 465

      LLG-egAFAQVYEATQkNKQK-FVLKVQKPANPWEFYIGTQLMErlkpsmQHMFMKFYSA 855

      YRSYdkMSGYTAIIFpqgHVYSLRTFLQ-------rSVPTRATETALYYVAETLRSLCTR 518

      HLFQ--NGSVLVGEL--ySYGTLLNAINlykntpekVMPQGLVISFAMRMLYMIEQVHDC 911

      RIIHCALTPDNVFMYMD-STGA-----SLKTFPVCWDDCVDAAMFSerglKFVPslpvLM 572

      EIIHGDIKPDNFILGNGfLEQDdeddlSAGLALIDLGQSIDMKLFP--kgTIFT----AK 965

      RH-----------AVKEIdgSYIDFVSFCRMFRQIEN--------------------nCS 601

      CEtsgfqcvemlsNKPWN--YQIDYFGVAATVYCMLFgtymkvkneeckpeglfrrlpHL 1025

      AMCQKVAKM-KAPP---VVRMtdYTNIQTELT---------wDMDAVMNHFC-------- 640

      DMWNEFFHVmLNIPdchHLPS--LDLLRQKLKkvfqqhytnkIRALRNRLIVllleckrs 1083

Nb1 Na1 310

b1 b2

b1Nb3Nb2

b3 aC aCD b4

b4 b5 aD aE

b6 b7310 310 b8 b10310b9

b11aFaEF b12

aHaG aI

A.spiralis KKT14

H.sapiens  Bub1

A.spiralis KKT14

H.sapiens  Bub1

A.spiralis KKT14

H.sapiens  Bub1

A.spiralis KKT14

H.sapiens  Bub1

A.spiralis KKT14

H.sapiens  Bub1

A.spiralis KKT14

H.sapiens  Bub1

Catalytic loop Mg2+-binding
loop

Activation 
loop

Gly-rich loop K821 E830

(a) (b)

Apiculatamorpha spiralis

KKT14 365–640
Homo sapiens Bub1 kinase domain

(PDB ID 6F7B)

Nb2

Na1

Nb3

aC

(c)

P+1 loop

E446Y437

T476

C547
W548

b1
b2

b3
b5

b4

N-lobe

C-lobe
Catalytic loop

Activation loop

C-helix (aC)

P+1 loop

N-terminal extension

aC

b1

b2

b3

b5
b4

Nb2

Na1

Nb3

N-lobe

C-lobe

N

C

N

C

Figure 1. Crystal structure of A. spiralis KKT14 reveals similarity to the Bub1 kinase domain. (a,b) Cartoon representation of A. spiralis KKT14365–640 (a) and human Bub1
kinase domain (PDB accession 6F7B [47]) (b). The fold nomenclature of the N-terminal extension and the kinase domain of Bub1 is based on [48]. (c) Structure-based
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conserved phenylalanine or leucine of the DFG motif (L947 in Bub1) points out of the active site and the aspartic acid (D946 in
Bub1) faces the ATP-binding site (figure 3c) [57]. In addition, the β3 lysine (K821 in Bub1) forms a salt bridge with the glutamate
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Figure 2. KKT14 has a putative ABBA motif. Schematic of the T. brucei KKT14 protein and a multiple sequence alignment showing a putative ABBA motif (consensus
Fx[ILV][FHY]x[DE] based on [19]) conserved in trypanosomatid KKT14 proteins.

Table 1. Data collection and refinement statistics for Apiculatamorpha spiralis KKT14365−640.

data collection

beamline Diamond Light Source I03

wavelength (Å) 0.9763

space group (Z) P 1 21 1

unit cell 49.76 Å 87.58 Å 71.88 Å 90◦ 93.61◦ 90◦

resolution range (Å) 49.66–1.95 (1.95–1.99)

unique reflections 41 803 (2243)

completeness (%) 93.3 (100.0)

multiplicity 6.7 (6.7)

I/Iσ 6.9 (0.7)

Rmeas 0.188 (2.640)

CC1/2 1.0 (0.6)

Wilson B-factor (Å2) 30.14

refinement
no. reflections 28 797 (1146)

Rwork 0.22 (0.36)

Rfree 0.24 (0.40)

number of atoms 4571

protein 4308

solvent 263

RMS bonds (Å) 0.009

RMS angles (◦) 1.23

Ramachandran favoured (%) 96.13

Ramachandran allowed (%) 3.87

Ramachandran outliers (%) 0.00

average B-factor (Å2) 39.00

Notes: Values in parentheses correspond to the highest resolution shell.
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(E830 in Bub1) in the C-helix (figure 3c). In the crystal structure of A. spiralis KKT14, W548 (the phenylalanine equivalent of the
DFG motif, which is CWD in A. spiralis KKT14), strictly conserved among kinetoplastids, faces away from the active site. Even
though KKT14 in almost all kinetoplastids has the conserved glutamate in the C-helix (E446 in A. spiralis), the position of β3
lysine has tyrosine (Y437 in A. spiralis). Nonetheless, the C-helix sits close to β3, mediated by apparent interactions among Y437,
E446 and T476 in β5. Similar interactions were observed in the AlphaFold2-predicted structure of T. brucei KKT14 (figure 3c),
and the threonine is strictly conserved among kinetoplastids (T501 in T. brucei) (figure 3a). We also note that the positions of
the N-terminal extension, C-helix, catalytic loop and Mg2+-binding loop are very similar in between the crystal structure of A.
spiralis KKT14 and the AlphaFold2-predicted structure of T. brucei KKT14 (electronic supplementary material, figure S1), despite
a limited similarity between the KKT14 sequences of the two species (20.1% identical, 31.5% similar). These findings suggest
that the catalytically inactive pseudokinase domain of KKT14 takes an active-like conformation of a kinase fold.
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2.3. KKT15 is a divergent Bub3 protein
Our previous sequence similarity searches were unsuccessful in finding homology between T. brucei KKT14 and Bub1/BubR1.
Using HHpred [60] with a sensitive alignment of KKT14 proteins from an extended kinetoplastid dataset (electronic supplemen-
tary material, table S3), we were now able to observe a link to human Bub1, albeit with a non-significant E-value (electronic
supplementary material, table S4). Owing to the low level of sequence similarities, conducting a phylogenetic analysis was not
feasible. In contrast, searches with a KKT15 alignment retrieved many WD40 domain proteins with highly significant E-values
and had Bub3 as its best hit (electronic supplementary material, table S4). The WD40 beta-propeller is a domain present in Bub3
and many other proteins [46]. To investigate to which WD40 group KKT15 might belong, we conducted a phylogenetic analysis
using two multiple sequence alignments of WD40 proteins (see §4). In both cases, KKT15 orthologues cluster with Bub3 and
Rae1, which are known to be closely related to one another [38]. One alignment yields all KKT15 orthologues as sisters to Bub3
and Rae1 (figure 4 and electronic supplementary material, figure S3a), whereas the other places only a particular subset, those
of B. saltans, A. spiralis and P. ankaliazontas, next to Bub3 and Rae1 (electronic supplementary material, figure S3b), suggesting
that trypanosomatid KKT15 sequences differ more from Bub3/Rae1 than those of bodonids and prokinetoplastids. Importantly,
KKT15 proteins do not cluster within Bub3 in either tree, so we cannot unequivocally designate them as Bub3 orthologues.
However, the fact that kinetoplastids have clear Rae1 orthologues (electronic supplementary material, figure S3a,b) [61], in
combination with KKT15’s kinetochore localization and interaction with KKT14 (see below), analogous to Bub1/BubR1-Bub3,
prompts us to propose that KKT15 is a Bub3 orthologue.

2.4. KKT14 interacts with KKT15
KKT14 and KKT15 localize at kinetochores from G2 to anaphase [39]. This localization pattern differs from the rest of transiently
localized kinetoplastid kinetochore proteins that start to localize at kinetochores from the S phase, suggesting that KKT14
and KKT15 may directly interact with each other. This possibility is supported by our mass spectrometry analysis (figure
5a). Although KKT14 does not appear to have a GLEBS motif present in the N-terminal region of Bub1/BubR1 that interacts
with Bub3 [12,21,62], AlphaFold2 predicted an interaction between the N-terminal region of KKT14 and KKT15 (figure 5b,c).
The region of KKT14 predicted to interact with KKT15 is well conserved among trypanosomatids (residues 2–111 in T. brucei)
(electronic supplementary material, figure S2). Interestingly, the confidence score (predicted local distance difference test:
pLDDT) for this region improved when predicted as a KKT14–KKT15 complex, compared with KKT14 alone (figure 5d),
implying that this region of KKT14 is more likely to form a secondary structure (α-helices) in the complex. These results
strongly support the idea that kinetoplastid kinetochore proteins KKT14 and KKT15 are divergent Bub1/BubR1 and Bub3
proteins, although they might have adopted a distinct interaction mode.

To better characterize KKT14, we ectopically expressed its fragments in trypanosomes. We found that KKT14N2–357 localized
at kinetochores from G2 to anaphase, while KKT14C358–685 only had diffuse nuclear signals (figure 6a). Immunoprecipitation of
these fragments revealed that KKT14N co-purified with many kinetochore proteins, including KKT15 (figure 6b and electronic
supplementary material, table S5). Furthermore, LacO/LacI-based tethering experiments show that KKT14N, not KKT14C, was
able to recruit KKT15 to an ectopic locus in vivo (figure 6c). These results suggest that the N-terminal region of KKT14 interacts
with KKT15, as predicted by AlphaFold2 (figure 5b).

2.5. KKT14 and KKT15 are required for accurate chromosome segregation
We next performed an RNAi-mediated knockdown of KKT14 and KKT15 to assess their function for chromosome segregation.
The RNAi construct for KKT14 is previously described [65], while that for KKT15 was established in this study (figure 7a–c).
We found that kinetochore localization of KKT14 and KKT15 are mutually co-dependent (figure 7d–g), further supporting the
notion that they form a complex. Although KKT14 depletion caused severe growth defects (figure 7h) [65], we failed to find
obvious cell cycle profile changes at 8 or 16 h after induction of KKT14 RNAi, apart from a moderate increase in anaphase cells
(figure 7i). In contrast, we observed lagging kinetochores in almost all anaphase cells even at 8 h post-induction (figure 7j,k).
These results show that KKT14 is essential for accurate chromosome segregation and cell growth.

3. Discussion
Previous studies have shown that T. brucei has a Mad2-like protein, Cdc20 and components of the APC/C [66,67]. However,
the Mad2-like protein localizes near basal bodies, not kinetochores, while Cdc20 lacks a well-conserved Mad2-interacting motif,
suggesting that these proteins are unable to play a role in the canonical spindle checkpoint control [68,69]. Indeed, trypanosome
cells cannot halt cell cycle progression in response to spindle defects [70]. By contrast, forced stabilization of cyclin B or
treatment with proteasome inhibitors cause the nucleus to arrest in metaphase [70,71], raising a possibility that trypanosomes
may possess an intrinsic mechanism that regulates the timing of nuclear division by controlling the APC/CCdc20 activity in a
Mad2-independent manner.

In this study, we propose that the kinetoplastid kinetochore proteins KKT14 and KKT15 are divergent Bub1/BubR1 and
Bub3 orthologues, respectively. The discovery of a kinase fold in KKT14 was surprising because our previous sequence-based
approach or a previous study that comprehensively catalogued pseudokinases failed to identify KKT14 as a pseudokinase
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[59]. In other words, KKT14’s pseudokinase domain is highly divergent from other kinases or pseudokinases. It is therefore
remarkable that KKT14 retains significant structural similarities to the kinase domain of Bub1, including its N-terminal
extension. In human Bub1, this N-terminal extension acts as a ‘minicyclin’ by making extensive contacts with the N-lobe of
the kinase domain and thereby promoting an active conformation [48]. Similarly, in both the crystal structure of A. spiralis
KKT14 and the AlphaFold2-predicted structure of T. brucei KKT14, the N-terminal extension makes extensive contacts with the
N-lobe, which may stabilize the pseudokinase structure. Although the function of the KKT14 pseudokinase domain remains
unclear, it is striking that all known KKT14 orthologs in kinetoplastids conserved it.

In contrast to KKT14, KKT15 has a readily discernible, common protein fold, namely a WD40 repeat beta-propeller. Our
phylogenetic analysis places KKT15 close to Bub3. Taking into account also its interaction with the divergent Bub1/BubR1
protein KKT14, we propose that KKT15 is a Bub3 orthologue. Yet, its sequence is quite divergent from Bub3, particularly in
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Rae1 (incl. Kinetoplastida)
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Support UFBOOT (1000x) > = 90%

Tree scale: 1

Figure 4. Phylogeny of KKT15 and related WD40 repeat proteins. Subtree of the full phylogeny presented in electronic supplementary material, figure S3a. Note that in
the alignment approach applied here, KKT15 proteins were prompted to form a single group (see §4).
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trypanosomatids. In humans, Bub3 localizes at kinetochores by recognizing the phosphorylated KNL1 protein, which is not
found in kinetoplastids. Furthermore, it remains unclear whether KKT15 binds a phosphorylated peptide because the regions of
Bub3 that bind KNL1’s phosphorylated MELT motif [12] are not well conserved in KKT15 (electronic supplementary material,
figures S4 and S5). It therefore remains unknown how the KKT14–KKT15 complex is recruited to kinetochores. Depletion
of KKT2 disrupts KKT14 localization, suggesting that KKT14 and KKT15 are downstream of KKT2 [65]. Although our mass
spectrometry data support a possibility that KKT14 and/or KKT15 directly interact with KKT2, AlphaFold2 fails to predict
interactions between them. It will be important to identify direct interaction partners for KKT14 and KKT15 to reveal how these
proteins function at kinetoplastid kinetochores.

In humans and C. elegans, some of the ABBA motifs in Bub1/BubR1 function by promoting kinetochore localization of
Cdc20 and contribute to the strength of the checkpoint [19,72–75]. In trypanosomes, kinetochore localization of Cdc20 has
not been reported [61] (and our unpublished data), and it remains unclear if, how, when, and where the ABBA motif of
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KKT14 may regulate the activity of Cdc20 and contribute to the cell cycle control. Addressing these questions will be key to
understanding how KKT14 and KKT15 contribute to accurate chromosome segregation in trypanosomes that lack a canonical
spindle checkpoint.

4. Material and methods
4.1. Trypanosomes and microscopy
All trypanosome cell lines used in this study were derived from T. brucei SmOxP927 procyclic form cells (TREU 927/4 expressing
T7 RNA polymerase and the tetracycline repressor to allow inducible expression) [76] and are listed in electronic supplementary
material, table S1. Cells were grown at 28°C in SDM-79 medium supplemented with 10% (v/v) heat-inactivated foetal calf
serum, 7.5 µg ml−1 hemin [77], and appropriate drugs. Endogenous YFP tagging was performed using the pEnT5-Y vector [78]
or a PCR-based method [79]. Endogenous 3FLAG-6HIS-YFP tagging was performed using pBA106 [70], while endogenous
tdTomato tagging was performed using pBA892 [80]. LacO-LacI tethering experiments were performed as described previously
using the LacO array inserted at the rDNA locus [80,81]. Inducible expression of GFP-NLS fusion and GFP-NLS-LacI fusion
proteins was carried out using pBA310 [42] and pBA795 [80], respectively. Cell growth was monitored using a CASY cell
counter (Roche). Expression of GFP fusion proteins and RNAi were induced with doxycycline at a final concentration of 10 ng 
ml−1 and 1 µg ml−1, respectively. All plasmids were linearized by NotI and transfected into trypanosomes by electroporation.
Transfected cells were selected by the addition of 30 µg ml−1 G418 (Sigma), 50 µg ml−1 hygromycin (Sigma), 5 µg ml−1 phleomycin
(Sigma) or 10 µg ml−1 blasticidin S (Insight Biotechnology).

4.2. Immunoprecipitation
For each experiment, 400 ml cultures of asynchronously growing cells (unless otherwise indicated) were grown to ~1 × 107 cells 
ml−1 and harvested. Ectopic expression of GFP-tagged KKT14N2–357 and KKT14C358–685 in T. brucei was induced with 10 ng ml−1

doxycycline for 24 h. YFP-KKT14 and YFP-KKT22 were expressed from the endogenous locus. Where indicated, 10 µM MG132
(to arrest cells prior to anaphase) or 2 µM 1NM-PP1 (to inhibit the AUK1 kinase activity) were added for 4 h prior to harvesting
the cells. Note that there was no noticeable change in the amount of co-purifying proteins in these conditions, so we pooled
all results for the volcano plot analysis (figure 5a and electronic supplementary material, table S5). Immunoprecipitation of GFP/
YFP-tagged proteins was performed with anti-GFP antibodies (11814460001, Roche) using a method we previously described
[80]. 3FLAG-6HIS-YFP-tagged proteins expressed from the endogenous locus were immunoprecipitated using anti-FLAG M2
antibodies (F3165, Sigma) [82] and eluted with 0.5 mg ml−1 3×FLAG peptide (F4799, Sigma) in BH0.15 (25 mM HEPES pH 8.0,
2 mM MgCl2, 0.1 mM EDTA pH 8.0, 0.5 mM EGTA pH 8.0, 1% NP-40, 150 mM KCl and 15% glycerol) supplemented with
protease inhibitors (10 µg ml−1 leupeptin, 10 µg ml−1 pepstatin, 10 µg ml−1 E-64 and 0.2 mM PMSF) and phosphatase inhibitors
(1 mM sodium pyrophosphate, 2 mM Na-β-glycerophosphate, 0.1 mM Na3VO4, 5 mM NaF and 100 nM microcystin-LR) with
agitation for 25 min at room temperature. FLAG eluates were run on an SDS-PAGE gel, which was stained with Sypro-Ruby
(Thermo Fisher).

4.3. In vitro kinase assay
To examine auto-phosphorylation activities in the immunoprecipitated 3FLAG-6HIS-YFP-KKT3/4/14/15 samples, 10 µl of FLAG
eluates were mixed with 2.5 µl of 10× kinase buffer (500 mM Tris–HCl pH 7.4, 10 mM DTT, 250 mM β-glycerophosphate, 50 mM
MgCl2, 50 µCi [32P] ATP and 100 µM ATP) in 25 µl volumes. The mixture was incubated at 30°C for 30 min, and the reaction
was stopped by the addition of the LDS sample buffer (Thermo Fisher). The samples were run on an SDS-PAGE gel and stained
with Coomassie Brilliant Blue R-250 (Bio-Rad) (not shown), which was subsequently dried and used for autoradiography using
a phosphorimager screen. The signal was detected by an FLA 7000 scanner (GE Healthcare).

4.4. Mass spectrometry
Reduction of disulfide bridges in cysteine-containing proteins was performed with 10 mM DTT dissolved in 50 mM HEPES,
pH 8.5 (56°C, 30 min). Reduced cysteines were alkylated with 20 mM 2-chloroacetamide dissolved in 50 mM HEPES, pH 8.5
(room temperature, in the dark, 30 min). Mass spectrometry samples were prepared using the SP3 protocol [83], and trypsin
(Promega) was added in a 1:50 enzyme-to-protein ratio for overnight digestion at 37°C. Next day, peptide recovery was done
by collecting supernatant on a magnet and combining with a second elution of beads with 50 mM HEPES, pH 8.5. For a further
sample clean up, an OASIS HLB µElution Plate (Waters) was used. The samples were dissolved in 10 µl of reconstitution
buffer (96:4 water:acetonitrile, 1% formic acid) and analysed by LC-MS/MS using QExactive (Thermo Fisher) in the proteomics
core facility at EMBL Heidelberg (https://www.embl.org/groups/proteomics/). Peptides were identified by searching tandem
mass spectrometry spectra against the T. brucei protein database with MaxQuant (v. 2.0.1) with carbamidomethyl cysteine set
as a fixed modification and oxidization (Met), phosphorylation (Ser, Thr and/or Tyr) and acetylation (N-term and Lys) set
as variable modifications. Up to two missed cleavages were allowed. The first peptide tolerance was set to 10 ppm (protein
FDR 1%). Proteins identified with at least two peptides were considered significant and reported in electronic supplementary
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material, table S5. All raw mass spectrometry files and the custom database file used in this study have been deposited to the
ProteomeXchange Consortium via the PRIDE partner repository [84,85] with the dataset identifier PXD047806.

Differential enrichment analysis of YFP-KKT14 versus YFP-KKT22 was performed on iBAQ values using the DEP package in
R [86] (electronic supplementary material, table S5). Reverse hits and contaminants were removed, and results were filtered for
proteins that were identified in all replicates of at least one condition. The data were background corrected and normalized by
variance stabilizing transformation (vsn). Missing values were imputed using the k-nearest neighbour approach (knn). Potential
interactors were determined using t-tests, with threshold values set to lfc = 2 and alpha = 0.05. The volcano plot shown was
constructed using the EnhancedVolcano package [87].

4.5. Expression and purification of Apiculatamorpha spiralis KKT14C
To make pBA2356 (6HIS-KKT14365–640 from Apiculatamorpha spiralis (clone PhF-6)), the DNA was amplified from BAG142 (a
synthetic DNA that encodes A. spiralis KKT14, codon optimized for expression in E. coli) with primers BA3187/BA3188 and
cloned into RSFDuet-1 using BamHI/EcoRI sites with the NEBuilder HiFi DNA Assembly kit (NEB) (electronic supplementary
material, table S1). Escherichia coli BL21(DE3) cells were transformed with ~100 ng of plasmid DNA (pBA2356) and inoculated
into 50 ml of 2×TY medium containing 50 µg ml−1 kanamycin and grown overnight at 37°C. The next morning, 6 l of 2×TY
medium with 50 µg ml−1 of kanamycin was warmed at 37°C, and 5 ml of the overnight culture was inoculated into each litre.
Cells were grown at 37°C with shaking (200 rpm) until the OD600 reached ~0.6. Protein expression was induced with 0.2 mM
IPTG for 16 h at 20°C. Cells were spun down at 3400g at 4°C and resuspended in 200 ml of lysis buffer (50 mM sodium
phosphate, pH 7.5, 500 mM NaCl and 10% glycerol) supplemented with protease inhibitors (20 µg ml−1 leupeptin, 20 µg ml−1

pepstatin, 20 µg ml−1 E-64 and 0.4 mM PMSF), benzonase nuclease (500 U per 1 l culture) and 0.5 mM TCEP. All subsequent
steps were performed at 4°C. Bacterial cultures were mechanically disrupted using a French press (1 passage at 20 000 psi) and
the soluble fraction was separated by centrifugation at 48 000g for 30 min. Supernatants were loaded on 5 ml of TALON beads
(Takara Bio) pre-equilibrated with the lysis buffer. Next, the beads were washed with 300 ml of the lysis buffer with 0.5 mM
TCEP, and proteins were eluted with 50 mM sodium phosphate pH 7.5, 500 mM NaCl, 10% glycerol, 250 mM imidazole and
0.5 mM TCEP. To cleave off the His-tag, samples were incubated with TEV protease in 1:50 (w/w) ratio overnight while being
buffer-exchanged into 25 mM sodium phosphate, 250 mM NaCl, 5% glycerol, 5 mM imidazole and 0.5 mM TCEP by dialysis.
To increase the sample purity and remove the His-tag, samples were re-loaded on TALON beads pre-equilibrated with the
dialysis buffer and the flow-through was collected. Next, the sample was concentrated using 10-kD MW Amicon concentrator
(Millipore), and loaded on Superdex 75 16/600 (GE Healthcare) columns to further purify and buffer exchange into 25 mM
HEPES pH 7.5, 150 mM NaCl with 0.5 mM TCEP. Fractions containing the protein of interest were pooled, concentrated to 15.1
mg ml−1 using a 10-kD MW Amicon concentrator (Millipore), and flash-frozen in liquid nitrogen for −80°C storage.

4.6. Crystallization trials and structural determination
All crystals were obtained in sitting drop vapour diffusion experiments in 96-well plates, using drops of overall volume 200
nl, mixing protein and mother liquor in a 1:1 (v/v) ratio. Crystals of A. spiralis KKT14365−640 (15.1 mg ml−1) were grown at 4°C in
MIDAS HT-96 B1 solution (Molecular Dimensions) containing 0.1 M sodium formate and 20% (w/v) SOKALAN CP 45. Crystals
were briefly transferred into mother liquor prepared with the addition of 25% glycerol prior to flash-cooling by plunging into
liquid nitrogen. Data collection and model-building X-ray diffraction data from A. spiralis KKT14365−640 were carried out at the I03
beamline at the Diamond Light Source (Harwell, UK). The structure was solved using the AlphaFold2-predicted structure of A.
spiralis KKT14398−640 as a model with a molecular replacement software, PHASER [88], followed by initial model building with
BUCCANEER [89]. The data were scaled to 2.2 Å based on I/Iσ parameters (I/Iσ value of 2.0 was used as a threshold). Further
manual model building and refinement were completed iteratively using COOT [90] and PHENIX [91]. All images were made
with PyMOL (v. 2.5.2, Schrödinger). Protein coordinates have been deposited in the RCSB protein data bank with the accession
number 8QOH.

4.7. Bioinformatic analysis of KKT14 and KKT15
The protein sequences for KKT14 and KKT15 were retrieved from the TriTryp database [92] or published studies [93,94].
Searches for their homologous proteins were done using BLAST in the TriTryp database [92] or manual searches using
hmmsearch (HMMER v. 3.0) on predicted proteomes using manually prepared hmm profiles [95]. Multiple sequence align-
ments were performed with MAFFT (L-INS-i method, v. 7) [96] and visualized with the clustalx colouring scheme in Jalview
(v. 2.11) [97]. The pairwise sequence identity and similarity between A. spiralis KKT14365−640 and T. brucei KKT14358–685 were
calculated using EMBOSS Needle [98]. Structures and interactions were predicted with AlphaFold2-Multimer-v. 2.3.1 [99,100]
through ColabFold v. 1.5.3 using MMseqs2 with 24 recycles (UniRef + Environmental) [101]. The rank 1 model, predicted
aligned error and pLDDT plots for each prediction are provided in the electronic supplemental material (dataset S1–S4). In all
cases, similar results were obtained for five predictions. All structure figures were made using PyMOL v. 2.5.2 (Schrödinger,
LLC). The following command was used to map the pLDDT score onto the AlphaFold2-predicted structure models: spectrum
b, rainbow_rev, maximum = 100, minimum = 50. Foldseek searches were carried out using the Web server against AlphaFold2-
predicted structure databases covering UniProt50, Swiss-Prot and Proteome (v. 4, Mode 3Di/AA) (https://search.foldseek.com/
search) [52,102].
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4.8. Phylogenetic analysis of KKT15 and related WD40 repeat-containing proteins
To conduct a phylogenetic analysis to determine to which WD40 repeat proteins KKT15 proteins are closely related, we selected
the 30 best EggNOG KOG/COG hits resulting from online HHpred [60,103] of our best, most sensitive KKT15 multiple sequence
alignment. The latter was obtained by iterative profile HMM searches combined with phylogenetic analysis among a local
database of euglenozoa and some other eukaryotic protein sequences, as well as a local eukaryote-wide dataset [104] (electronic
supplementary material, table S3). The trusted list of KKT15 orthologues across these euglenozoa was aligned using MAFFT
(v. 7.505, option L-INS-i, alignment and profile HMM are included in electronic supplementary material, dataset S5) [96] and
submitted to online HHpred to search in its COG_KOG_v. 1.0 database. Among these 30 best hits, there were only KOG
families, and one duplicate, which we removed (electronic supplementary material, table S4). We collected the corresponding
profile HMMs of these KOGs from EggNOG (v. 5.0) [105] and added our initial KKT15 HMM. We then executed hmmscan
(hmmer.org) of these HMMs versus a subsampled (49 diverse eukaryotes) version of our local eukaryotic database, applying an
E-value cut-off of 1 × 10–5. We assigned the retrieved eukaryotic proteins to their respective KOG (or KKT15), and appended the
original euglenozoan KKT15 orthologues to that family as well. We subsequently, again for all KOGs/KKT15, used hmmsearch
among the assigned hits, in order to be able to retrieve the 100 best hits per KOG/KKT15, and gathered of these 100 hits only
the domain that was hit by the HMM (the putative WD40 repeat). For Rae1 (KOG0647), we also included the hit regions of some
additional Discoba orthologue candidates, because these were not part of the 49 species selection but potentially informative in
placing KKT15. Except for KKT15 and these additional Discoba sequences, we subjected the KOG sequence selections to CD-hit
(v. 4.8.1, identity cut-off 70%) [106], in order to facilitate the phylogenetic analysis and interpretation. We then removed all
sequences across all KOGs that were shorter than 50 amino acids (i.e. this was not applied to KKT15). Each KOG was separately
aligned using MAFFT (L-INS-i).

We then employed two different strategies to combine all sequences into a single alignment, resulting in two different
phylogenies (referred to as tree 1 and tree 2, found in electronic supplementary material, figure S3a,b, respectively). For tree 1,
we similarly aligned KKT15, and subsequently used MAFFT’s –merge option to combine all individual alignments into a single
alignment (parameters: --localpair --maxiterate 100 --merge). We also had identified five additional, potentially close KKT15
homologues of different species, which cannot be evidently classified as a particular WD40 repeat protein. We added them to
the alignment using MAFFT option –add (parameters: --maxiterate 1000 --add). For tree 2, we used MAFFT –merge (parameters:
--localpair --maxiterate 100 –merge) on just the KOG’s individual alignments, and subsequently used MAFFT –add (parameters:
--maxiterate 1000 –add) to add KKT15 orthologues and the sequences of unknown identity to it. The alignments for tree 1 and
tree 2 hence differ in the way the KKT15 sequences are aligned: either first among one another (tree 1), or only through adding
the sequences to the already existing (merged) alignment of the KOGs. The first approach forces the KKT15 sequences to be
monophyletic in the tree, while the second approach does not. We trimmed both alignments using trimAl [107] (v. 1.4.rev15,
option -gappyout) and removed sequences with >85% gaps. We used the alignments to infer a maximum likelihood phylogeny
with IQ-TREE (v. 2.0.3) [108], applying an evolutionary model selected by ModelFinder [109], also allowing for complex mixture
(C-series) models to be selected. Branch support was estimated through ultrafast bootstraps (1000 replicates) [110]. The tree
with the highest likelihood, either the maximum likelihood tree or the consensus tree, was selected for visualization in iTOL
[111]. The phylogenies were initially rooted in a well-supported clade with a relatively long branch, which was not closely
associated with Rae1, Bub3 or KKT15 (KOG2111). The phylogenies were annotated using, if available, the name of the human
protein belonging to each KOG. If not available, the budding yeast protein name was used. The multiple sequence alignments
and raw IQ-TREE output can be found in electronic supplementary material, dataset S5. The full, uncollapsed phylogenies can
be inspected on iTOL: https://itol.embl.de/tree/62145194227274281702966749 (tree 1, associated with electronic supplementary
material, figure S3a) and https://itol.embl.de/tree/62145194227421141702968325 (tree 2, associated with electronic supplementary
material, figure S3b). Note that alongside KKT15, we performed a similar online HHpred search for a refined KKT14 multiple
sequence alignment, the results of which are also reported in electronic supplementary material, table S4. The alignments used
as input for these searches can be found in electronic supplementary material, dataset S6.
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