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Abstract

This paper proposes a stochastic data-driven model for uncontrolled charging
that accurately captures diversity in individual consumer behaviour. This is
important because understanding the diversity between consumers is necessary
to accurately estimate the number of electric vehicles’ charging a distribution
network could support without reinforcements. The model combines readily
available travel survey data with high resolution data from an electric vehicle
trial, using clustering and conditional probabilities. We demonstrate through
a case study of UK residential charging that existing approaches may overes-
timate the increase in peak distribution network demand by 50%, which has
implications for assessing the cost of network investments required. We also
show that the peak charging demand varies regionally from 0.2–1.4 kW per
household, demonstrating the importance of using locally representative vehicle
usage data.

Keywords: Clustering, Demand forecasting, Electric vehicle charging,
Stochastic modelling

1. Introduction

This paper demonstrates the importance of accurately modelling diversity

in electric vehicle (EV) charging behaviour in order to determine the number

of EVs that a distribution network can support, using a novel model based on

conditional probabilities and clustering.

EVs represent a rapidly increasing share of the vehicle fleet; for example,

in the UK it is projected that there could be 36 million EVs on UK roads
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by 2040 [National Grid (2018)]. This will contribute significantly to the CO2

emissions reduction [Bishop et al. (2012)], which will be required to meet the

Paris Climate agreement [UNFCCC (2015)]. However, charging of EVs will

present challenges for the power system, as peak demand [Wu et al. (2011)],

system losses [Leou et al. (2014)], and voltage violations [Dubey and Santoso

(2015)] are all expected to rise as a result of the additional load. If these issues

are not appropriately mitigated, then the adoption of EVs may be impeded.

Various options have been proposed for managing the additional load, including:

time of use prices, localised smart charging, and intelligent upgrades to the

distribution network [Sohnen et al. (2015)]. To understand the extent to which

new strategies or upgrades will be required, it is important to accurately model

the charging behaviours of EV owners.

Power systems are designed to operate under variable loading, with a high

degree of confidence [Fulli (2016)]. Therefore, when planning for the future, it

is insufficient to estimate the average load due to EV charging, an upper bound

needs to be predicted. In the case of EV charging, there are two sources of

variability: the vehicle use, and the charging behaviour. The first describes

variations in travel behaviour, both between individual users and a single user

over different days. The second describes variations in the circumstances under

which a user will charge their vehicle. These must both be modelled in order

to fully capture the variability in charging. Underestimating the variability of

individual actors has the effect of overestimating the aggregated action. So in the

case of EV charging, underestimating the variability of individual vehicle owner’s

charging will result in an overestimate of the peak charging demand. This could

result in expensive network reinforcements being carried out unnecessarily.

A variety of methods for modelling the variability of EV charging have been

proposed, and they can be broadly divided into three groups: bottom-up charg-
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ing models applied to varied vehicle use, stochastic bottom-up charging models

applied to a fixed set of vehicle usage, and top down stochastic charging models.

The first group encompasses the majority of the early research in this area.

In these models, a set of deterministic rules are defined for charging. The most

common of these are that charging begins after completion of the final journey

of the day (e.g. Pashajavid and Golkar (2012)). However, other assumptions

include: anytime the vehicle is home (e.g. Wu et al. (2011)), arrives at the

destination (e.g. Arias and Bae (2016)), or as soon as a charger is available

(e.g. Olivella-Rosell et al. (2015)). However, some define more complicated rules

based on location [Hu et al. (2019)], distance to the nearest charger [Kontou et al.

(2019)], availability of chargers [Dong et al. (2014)], or whether the vehicle has

enough charge to make it to the next destination [Xing et al. (2019)]. In Zhang

et al. (2020) the decision to charge is formulated as an optimisation problem,

which balances maximising state of charge with minimising cost.

In all these models, variation in predicted charging is then due only to varied

vehicle use, which is captured by sampling either raw vehicle data (e.g. Hu et al.

(2019)), or probability distribution functions (PDFs) for energy use and arrival

times (e.g. Leou et al. (2014) or Hilton et al. (2018)). Providing the data source

is large and representative, these models will capture variability in vehicle use.

However, these models do not include variability introduced by users’ charging

decisions – all variability will be due to the distribution of arrival times, and

therefore these models are likely to overestimate the peak demand.

The second group of models take a given vehicle use and produce a stochastic

estimate of charging. Creating these models generally requires data in which

both the use and charging of EVs are recorded. Fuzzy logic models are used

in Shahidinejad et al. (2012) and Omran and Filizadeh (2014), where certain

combinations of input parameters result in a low, medium, or high probability of
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charging. In Shahidinejad et al. (2012), the vehicles’ state-of-charge (SOC) and

length of parking time are assumed to have an impact on the users’ decision

to charge, while Omran and Filizadeh (2014) also incorporates the distance

from home. Considering only three probability states limits the accuracy of

these models. However, more states introduce additional parameters. If highly

detailed vehicle use information is available (including the locations of all origin

and destination pairs) then more complicated models are available.

In Daina et al. (2017), a utility function is defined which describes the value

of charging to a consumer (charging decisions are then taken so as to maximise

each consumer’s utility function). The function includes both deterministic pa-

rameters (e.g. cost and available energy) and stochastic parameters with proba-

bility distributions that must be determined. Alternative utility function models

are available which include, for example, variables for road conditions [ Yi et al.

(2020)], dwell time [ Wen et al. (2016)], and demographics [ Chakraborty et al.

(2019)]. In Daina et al. (2017), Chakraborty et al. (2019), and Wen et al. (2016)

the models are parameterised using stated preference survey data, while in Yi

et al. (2020) define their own parameters using a variety of studies.

Models falling into this second group could, in theory, be used to capture

both variability in use and charging, by using Monte Carlo simulations with

varied vehicle usage data. However, in order to do this there must be a vast set

of appropriate vehicle usage data available and the model needs to have a low

computational complexity (as thousands of runs of simulation are necessary).

Without using Monte Carlo simulations to vary vehicle usage, these models

will only capture variability in charging decisions, implicitly assuming that all

vehicles exhibit the usage of those producing the charging data. This means

that when individual predictions are aggregated the diversity between users is

likely to be underestimated, resulting in an overestimate for the peak aggregated
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charging demand.

The third group directly models charging, rather than the relationship be-

tween vehicle use and charging. In other words, these are top-down models

for EV charging. Sometimes standard probabilistic models are used: Gaussian

Mixture Models in Godde et al. (2015) and Quirós-Tortós et al. (2018a), and a

non-homogenous Markov Process in Rolink and Rehtanz (2013). In Marmaras

et al. (2017) an agent based model is proposed, where driving and charging

activities are randomly assigned to agents depending on their SOC and loca-

tion, allowing simultaneous modelling of traffic and charging. Random point

processes are used in Alizadeh et al. (2014) and Liang et al. (2014) to describe

EV arrivals, and queueing theory is used to model EV charging. However, this

approach is better suited to public charging, where the availability of chargers

is a limiting factor. These models likely capture the variability from their con-

stituent datasets, but also any sources of bias present in the data. This makes

it difficult to assess the number of EVs that a specific network could support,

because there is unlikely to be charging data available that is representative of

vehicles on that network. Another downside of these models is that, since their

parameters normally do not have a physical interpretation, they are hard to

generalise to a different set of vehicle usage.

In data-driven modelling there is a trade-off between the expressivity and

the adaptability of models. Expressivity describes the detail with which a pro-

cess is modelled; highly expressive models typically describe complex dynamics

use a large number of parameters. Adaptability describes how easily the model

can be adjusted to describe a slightly different process to that present in the

training data; adaptable models typically use a smaller number of parameters

that are easy to interpret, such that changes to their value can be reasonably

estimated. In the field of transportation modelling there exist higher fidelity
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stochastic models which model consumer behaviour in detail, e.g. in Brandstät-

ter et al. (2017) a stochastic model for vehicle use is developed using estimates

of individual journeys origin and destination pairs, and in An and Lo (2015) de-

mand is stochastically modelled by generating trips from a gravity distribution.

However, while these models have high expressivity, they require a large num-

ber of case specific parameters which are hard to obtain. On the other hand,

in the field of power systems modelling there are methods for modelling EV

charging that are very adaptable as they require little information to parame-

terise, e.g. in Sundstrom and Binding (2012) discrete probability distributions

are defined for arrival and departure times of all vehicles, and in He et al. (2012)

arrival times and state-of-charge are sampled from uniform distributions. How-

ever, these do not provide enough expressivity to accurately model the diversity

between consumers.

The models discussed here predominantly use one of two data sources. Those

incorporating only variability through vehicle use mainly use travel surveys (.e.g

Wu et al. (2011), Pashajavid and Golkar (2012)). Travel surveys are typi-

cally collected by governments or local authorities, and document the travel of

randomly selected households or consumers. These datasets are usually large,

and contain regional information – allowing geographic variation to be consid-

ered. However, they primarily describe conventional vehicles, so no charging

behaviour is recorded, and the accuracy of the data is limited by human error.

The second two groups require charging data, and therefore typically use data

from small scale EV trials (e.g. Quirós-Tortós et al. (2018a), Alizadeh et al.

(2014)). These trials are conducted in order to investigate consumer charging,

and typically involve recording the use and charging of a small group of EVs. As

these trials are opt-in, the participants are likely to be a biased set of drivers. In

Haustein and Jensen (2018), it is suggested that early EV adopters are likely to
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have high incomes and more than one vehicle, which would result in a narrower

range of vehicle use, and in Dixon and Bell (2020) it is demonstrated that vehicle

usage is dependant on population demographics. Therefore, extrapolating data

from these trials to represent the charging patterns of a larger fleet of vehicles is

unlikely to produce accurate results. Additionally, these trials are small and in

sparse geographic locations, so the regional variation in EV charging can not be

investigated. Therefore, using either of these data sources in isolation is likely

to overestimate the peak demand of a group of vehicles charging, and therefore

underestimate the number of vehicles that could be supported using the existing

infrastructure.

In this paper, we develop a stochastic model for EV charging which com-

bines the benefits of both data sources, by modelling the charging from an EV

trial but usage from travel survey vehicles. This allows the diversity of consumer

behaviour to be captured, while limiting the amount of data required fro param-

eterisation. The stochastic model is based on conditional probabilities, and uses

clustering to reduce the dimensionality of the vehicle use data. Using data from

the United Kingdom (UK) as a case study, we demonstrate the difference that

incorporating both sources of variability makes to predictions of peak demand.

The contributions of this paper can be broken down into methodological

contributions, and results based contributions. From a modelling perspective,

the proposed method incorporates variability into both charging behaviour and

vehicle use, without requiring EV specific data (e.g. historic charging data) to

make predictions. In contrast, existing models either only incorporate variabil-

ity into one of these aspects, or they require detailed EV specific parameters as

inputs. Additionally, the proposed method uses clustering to reduce the vehicle

use data to a single dimension. This significantly reduces the amount of data re-

quired to train the model, allowing the model to be built using existing datasets
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at low cost. From a results perspective, the case study in this paper quantifies

the difference that including both forms of variability makes to the estimated

aggregate charging demand of a group of vehicles. Simulations are also run us-

ing a variety of regional vehicle datasets, quantifying the impact of vehicle use

on the estimated charging demand. These results are important for transport

electrification policy, as the estimated charging demand of a group of vehicles

will dictate whether infrastructure upgrades will be necessary to support EV

charging.

Although the model accuracy and results in this paper are specific to the

UK, the model formulation is presented using generic parameters, allowing the

model to replicated for other areas providing sufficient data are available. The

results here also only consider domestic charging, however the formulation would

also hold for public charging, or an industrial fleet of vehicles.

The remainder of this paper is structured as follows. In Section 2, the data

used in this analysis are described, Section 3 describes the methodology for

both the clustering and the modelling. In Section 4, the proposed model is

parameterised for UK domestic charging and its accuracy is quantified. Results

and a comparison with existing methods are presented in Section 5 and Section

6 concludes the paper.

2. Required Vehicle Data

The proposed model combines two sources of data. In this section the data

requirements are explained and the specific datasets used for the main case

study in this paper are described.

2.1. Conventional Usage Data

A large set of vehicle usage data, recording the time and distance of trips,

is used as a model input. This paper will predominately focus on travel survey
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data, however other representative datasets that record trips could be used.

Travel surveys are carried out routinely by many countries and local authorities,

in order to understand the travel behaviour of their citizens. Households are

randomly selected and asked to record all of their trips undertaken during a

trial period. Providing the dataset is rigorously sampled and representative,

the behaviour captured should be representative of the population as a whole.

The main case study in this paper will use the UK National Travel Survey

(NTS) [Lepanjuuri et al. (2016)], which has been carried out annually since

2002. Participants record all of their journeys for a week and the trial periods

are staggered throughout the year. The full data set includes the time, distance,

purpose, and mode of transport of nearly 2 million journeys – from which more

than 100,000 vehicles’ usage can be extracted.

2.2. EV Trial Charging Data

Early scale EV trials have started to record the way consumers are actually

charging. These trials provide valuable information about charging behaviour,

but are small and typically opt-in – meaning that a sample bias is likely. The

proposed model requires both trip and charging information for a fleet of vehi-

cles. For trip data, distances, and start and end times of journeys are recorded

using either an on-board monitor or using a GPS device. For charging data, the

time and state-of-charge (SOC) of the vehicle at both the start and end of the

charge are required. In addition to including actual charging behaviour, this

data is likely to be more precise than travel survey data, as it is electronically

recorded. It should be noted that if the model is to capture the behaviour of

consumers on a tariff pricing structure, the trial participants need to be on this

tariff.

The main case study in this paper uses data from My Electric Avenue

(MEA) [Electric Nation (2016)], a UK trial which finished in 2016. During
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an 18 month trial period, 213 Nissan Leafs were loaned out to households, with

the condition that all of their vehicle use and charging would be recorded and

available for research purposes. For a more complete analysis of the data from

this trial, see Quirós-Tortós et al. (2018b).

3. Methodology

This section describes the methodology of the proposed stochastic charging

model. First, clustering is used to reduce the dimensionality of vehicle usage as

a model parameter. Then, a conditional probability model is formulated which

describes the probability of charging as a function of SOC, time, weekday, and

vehicle usage.

3.1. Clustering

Vehicle usage data, such as that recorded in travel surveys, is high dimen-

sional – as the timings and distance of a potentially large number of journeys

are recorded for each vehicle. Clustering allows data to be grouped, thereby

reducing the dimension to a single parameter – the cluster to which the vehicle

belongs. In Crozier et al. (2018a) the authors proposed clustering travel sur-

vey data to identify different types of vehicle owner. Since the objectives are

different, the clustering in this paper differs from this previous work in several

respects. Here, each vehicle-day is considered as a separate point, while the

previous analysis considered each vehicle as a single point. This means that

types of driving day are investigated, rather than types of vehicle ownership.

Additionally, in the previous analysis, feature vectors were not normalised and

a different distance metric was used. Clustering of vehicle trajectories is a more

mature research topic (e.g. Atev et al. (2010)), however the aim of these works

is to identify common origin-destination pairs. Here, we consider the different
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problem of identifying days of vehicle use that are temporally similar - and

therefore likely to exhibit similar charging behaviour.

Clustering groups data points (each described by a feature vector) that are

similar according to some distance metric. Here, each vehicle-day is considered

as a separate data point, meaning that a single vehicle from the dataset can

belong to different clusters on consecutive days. This is consistent with the way

that vehicles are actually used (e.g. a vehicle could be used to commute on

one day, but not the next). The common practice of separating weekday and

weekend behaviour is also adopted [Agarwal (2004)].

Vehicles’ normalised velocity profiles are used as the feature vector. For each

time interval, the average velocity is found by dividing the distance travelled

during that period by the length of the period. The model formulation holds

for any time resolution, but a balance must be found between the training data

requirement and the model fidelity. Half-hourly resolution is suggested, in which

case there are 48 features, each representing the average velocity of the vehicle

in that half hour. For each data point (or each vehicle-day) the features are then

normalised, such that they sum to 1. Normalising sacrifices the total distance

travelled information, however vehicles travelling further are likely to be used for

longer, so this information is still captured indirectly. Normalising is a common

choice in profile clustering, as it tends to result in a more even distribution of

points between clusters.

Here we use K-means clustering, an algorithm that chooses clusters so as to

minimise the inter-cluster variance. Each cluster c′ is defined by a centroid y(c′)

that represents its average point and is given by:

y(c′) =
1

Nc′

Nc′∑
i

x
(c′)
i , (1)
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where x(c′)
i is the feature vector of the ith point belonging to cluster c′, and Nc′

are the total number of points in that cluster. Each point is assigned to the

cluster whose centroid is closest to it, as measured by Euclidean distance. The

algorithm finds the cluster centroids that minimise the inter-cluster variance (the

spread of points within a cluster). This is a common clustering method, largely

due to its computationally simplicity. More complex methods are available for

time series clustering (e.g. Paparrizos and Gravano (2016)), however the size of

typical travel survey datasets makes computational cost paramount.

One of the downsides of the K-means algorithm is that the number of clus-

ters, K, needs to be defined. Various metrics have been proposed to do this, and

here the elbow method is followed (e.g. Bholowalia and Kumar (2014)). This

method dictates that K is found by examining the variation of sum of squares

with number of clusters. Sum of squares is defined as:

SoS =

N∑
i

∥∥∥x(c)
i − y(c)

∥∥∥2 , (2)

where N is the total number of data points across all of the clusters. This is a

measure of inter-cluster variance, and will necessarily decrease as K is increased.

K is then chosen at the elbow (or the corner point) of this curve, where the

reduction in variance achieved by an additional cluster is no longer significant.

In this case, there is an implicit extra cluster containing vehicles that are not

used in that day; these all have zero feature vectors and are removed before the

clustering process.

3.2. Modelling Charging

The most prevalent assumption in the literature is that EV charging begins

immediately after the completion of the vehicle’s final journey of the day Huang

and Infield (2010); Darabi and Ferdowsi (2011); Yan et al. (2017); Barghi-Nia
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Table 1: The random variables included in the model

Variable States Description

c Z ∈ [0, 1] Describes whether a charge begins
j Z ∈ [0, 1] Describes whether a journey has just ended
d Z ∈ [0, 1] Describes if it is a weekend or weekday
k Z ∈ [1, . . .K] The usage cluster the vehicle belongs to on that day
t Z ∈ [1, . . . NT ] Time of day
s Z ∈ [1, . . . NS ] State of charge

and Sirios (2015); Pashajavid and Golkar (2012); Klayklueng et al. (2015); Ah-

madian et al. (2015). However, in practice charges begin at any time between

the arrival of the vehicle at home and its next departure. Therefore, two distinct

types of charging are modelled here: those taking place directly after the end of

a journey and those starting at unconnected times. Hereafter these are referred

to as after journey and independent charges. In order to incorporate both types

of charging a variable j is introduced to determine whether a journey has just

been completed.

In the proposed model, the variables considered to influence charging deci-

sion are: the vehicle’s SOC, the time, and the usage cluster that the vehicle

belongs to. SOC is discretised into NS states and time is discretised into NT

time periods. The variables and their possible states are described formally

in Table 1, where Z represents the set of integers. Now instead of considering

only the probability that a charge will occur, the joint probability distribution

of all variables must be considered. Every possible scenario is described by a

combination of these variables, meaning that:

∑
c,j,d,k,t,s

P (c, j, d, k, t, s) = 1, (3)

where P is the probability distribution function. The prediction problem be-

comes calculating the posterior probability that a charge begins, given the
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known values for the other variables. For after journey charges, this is writ-

ten as:

P (c = True | j = True, d, t, k, s), (4)

where | x implies that the value of x is known. This expression is a function of

the four variables (d, t, k, s) and so the probability distribution is defined over

2×NT ×K×NS possible scenarios. This discrete distribution can be populated

using the observed charging events from the trial data. For each (d, t, k, s), (4)

is approximated as the percentage of instances of those variables which resulted

in a charge. Note that, as we are only considering cases where j = True, only

times when a journey has just ended are considered.

Similar analysis can be performed for independent charges, such that a dis-

crete estimate is made of

P (c = True | j = False, d, t, k, s), (5)

These distributions can then be applied to the travel survey data, as (d, t, k) are

known and s can be estimated by assuming a battery capacity and a relationship

between energy consumption and distance. The simplest method is to use a

linear relationship, such that a constant coefficient maps the distance to an

energy consumption. If additional information were available, the relationship

of consumption on driving style and vehicle parameters could be incorporated

by altering the parameter according to the information. This allows a Monte

Carlo simulation to be set up, which is described by the flow chart in Figure 1.

For each vehicle, the cluster, k, type of day, d, state of charge, s, and time, t,

are initialised, then for incremental values of time, t:

• Determine whether a journey has just ended, j, and reduce the state of
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t	←	1,	j←	False,	s	←	NS

t	←	1
Update	k,	d

No

Journey	starts	
at	t?

p	~	P(c	|	t,	j,	d,	s,	k)

Yes

No

U(0,1)	<	p?

charge	←	False
t	←	t+	1
j	←	False

charge	←	True
s	←	s	+	scharge
t	←	t	+	tcharge
j	←	False

t	←	t	+	tjourney
s	←	s	-	sjourney

j	←	True
Yes

Yes

Reached	end
	of	data?

No

End

No

Yes t	>	NT	?

Figure 1: A flow chart describing the simulation process for one vehicle.

charge, s, by the required amount if j = True

• Sample the probability of charging P (c = True | j, d, t, k, s),.

• Sample the uniform distribution U(0, 1) and if it is less than the sampled

P , begin charging.

• Charging ends either when the battery is full, or the vehicle is next used

– whichever occurs first. Update the time, t, and state of charge, s, as

necessary.

Stepping through the data once will result in a single estimate of charging.

Stochasticity is captured by repeating the simulation, resulting in a distribution

of predicted charging. Variation in both charging and vehicle use can be incor-

porated by running further Monte Carlo simulations where the input vehicles

are randomly sampled from the travel survey.
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Figure 2: The variation of sum of squares with number of clusters for both the weekday and
weekend datasets.

4. Model Validation

In this section, the proposed model is parameterised using the NTS and

data from the EV trial ‘My Electric Avenue’ (MEA), both from the UK. The

accuracy with which the model predicts the charging of the MEA data is then

quantified using vehicles that were excluded from the training data.

4.1. Clustering Results

Clustering was performed on the NTS data in accordance with the procedure

described in Section 3.1. Figure 2 shows the variation of sum of squares with

the number of clusters for both weekend and weekday vehicle usage. An elbow

can be observed at K = 3 so this number of clusters was chosen for both

weekday and weekend datasets. Note that the variance in the weekend dataset

was significantly higher than in the weekday data, meaning we can expect these

days to be harder to model accurately.

The average velocity profile of the vehicles from each cluster is shown in

Figure 3. The mean values are shown with solid lines, and the shaded areas cover

90% of the data. Unlike the feature vectors, these profiles are not normalised, so

overlap between the profiles is to be expected. For weekdays, cluster 3 follows a

typical commuting pattern, 1 is dominated by evening use, and 2 by morning use.

For weekends, clusters 1 and 3 suggest a single short journey at different times,
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(a) Weekday clusters
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(b) Weekend clusters

Figure 3: The average speed profile of the vehicles in each cluster. The lines show the mean
values, and the shaded areas cover the 90% confidence interval. There is no significance to
the ordering of the clusters.
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Figure 4: The percentage of each cluster occurring on each weekday. The colours correspond
to those in Figure 3 except grey which indicates unuse.

while 2 shows more distributed use throughout the day. Figure 4 shows the

weekly composition of clusters, where the colours correspond to those in Figure

3. Vehicle use is fairly consistent across the weekdays, although commuting is

slightly less common on Mondays and Fridays. Overall vehicle usage is lower at

the weekends and lowest on Sunday.

MEA provides the best available evidence for EV user residential charging

behaviour in the UK. However, the vehicle use exhibited represents a biased set

of drivers – 67.3% of participants were male, and 41% were within the 40-49

age bracket. Quantifying this bias enables prediction of the likely error from
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Figure 5: A comparison of the cluster composition of the NTS and MEA data.

Table 2: The average distance travelled by each cluster (miles).

NTS Cluster MEA Cluster
1 2 3 1 2 3

Weekday 25.42 25.41 27.17 28.83 29.33 29.70
Weekend 23.87 28.10 25.15 22.49 26.47 24.61

extrapolating this trial data to represent a large fleet of vehicles. This is achieved

by creating equivalent feature vectors from the MEA data and classifying points

according to the clusters defined from the NTS data. By comparing the cluster

composition of the datasets, modes of vehicle use that are over represented in

the trial data can be identified. Figure 5 shows the distribution of clusters for

both datasets and Table 2 shows the average daily distance travelled by vehicles

in each cluster. The cluster composition is broadly similar, although there is a

slight bias in the MEA data towards weekday commuters. However, distance

travelled varies more significantly – all weekday MEA clusters travel further

than the NTS clusters and all weekend clusters travel shorter distances. Overall

the average MEA driver travels 12% further than the average NTS driver on a

weekday. Therefore, using the MEA data to directly forecast future charging is

likely to overestimate demand.

4.2. Model Parameterisation

Examination of the MEA data showed that only 70% of charges took place

within 10 minutes of completing a journey. Although this is a majority, a signif-
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icant proportion of charging will not be captured if only after journey charging

is considered. This supports the proposed approach of modelling after journey

and random charges separately. Taking into account the size and resolution of

the MEA data, it was decided to use NT = 48 (half-hourly time resolution)

and NS = 6 (SOC to the nearest 4 kWh, given that the trial vehicles all had a

24 kWh capacity). Half-hourly time resolution aligns with the peak load rating

of distribution networks [Croucher (2011)], while six SOC units was found to

best balance the model’s expressivity with coverage of the probability distribu-

tion space. It should be noted that the parameterised model can be applied to

vehicles of any capacity, providing the SOC can be rounded to the nearest 1
6 .

However, the behaviour of drivers with much larger capacity vehicles may be

different to the 24 kWh vehicle drivers present in the trial, so results may be

less accurate where the vehicle capacity varies significantly from the trial. Fig-

ure 6 illustrates (5), the probability of an after journey charge beginning, using

heatmaps. A separate set of axes is used for each possible k and d combination,

with t on the horizontal axis and s on the vertical.

The fact that the distributions vary significantly with k supports its incor-

poration as a parameter; if EVs’ charging were independent of usage cluster,

the three heat maps would be identical. The peaks occur at low values of SOC

(as expected), in both the evening and early morning. Note that this does not

mean that all vehicles are likely to charge in the early hours, but that those

completing journeys at this time are.

For independent charging it was found that the vehicle usage had a negli-

gible effect on whether or not a charge was started. In fact, often these events

occurred on days where there was no vehicle use – and as a result no value of

k. Therefore it was assumed that P (ci) was independent of k, such that the
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Figure 6: The % probability that a charge will follow the completion of a journey, as a function
of both time and SOC, for each vehicle use cluster.

posterior distribution to be estimated becomes:

P (ci = True | t, d, s), (6)

Figure 7 illustrates this distribution. In this case there is not significant differ-

ence between weekend and weekdays, suggesting that d could also be excluded

from (6). However, as minor differences are observed in the early evening (which

is the time of greatest interest) the variable was kept in this analysis. The distri-

bution peak occurs shortly after midnight, which may be the result of Economy

7 (the UK’s dual tariff scheme, which means some consumers have seven hours

of cheaper electricity overnight).
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Figure 7: The % probability that a charge will start independent of a journey, as a function
of both time and SOC, for each vehicle use cluster.

4.3. Accuracy

The accuracy of the model proposed in Section 3.2 can be quantified by pre-

dicting the charging of the MEA vehicles from their usage data. It is important

to use different data to train the model and test its accuracy; otherwise the

model may be overfit – meaning it fits the training data with very high accu-

racy, but performs badly on unseen data. Given the limited amount of data

collected in MEA, significantly reducing the size of the training data is likely

to degrade the performance of the model. Therefore here we use leave-one-

out cross validation, where the algorithm is applied once for each vehicle, with

the remainder of the vehicles used as training data. This approach maintains

the lack of contamination between testing and training data, while maximis-

ing the available testing data. However, it has been shown that this approach

can lead to models with higher variance, particularly when training data points

are highly correlated [Bengio and Grandvalet (2004)]. Therefore, where larger

datasets are available for training, the more traditional k-fold cross validation

may be a better choice.

The proposed application of this model is in stochastically modelling the

charging of a fleet of vehicles based on their usage. This type of modelling is

paramount in planning future requirements for transmission and distribution

networks. Therefore, here we consider the accuracy with which the proposed
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method models the charging demand of a group of the vehicles from the trial.

The accuracy of the proposed method is compared to the standard assumption

that charging begins after the completion of a vehicle’s final journey. Although

there are more complex models available, standard charging assumptions are

the only directly comparable models as they can be applied directly to vehicle

usage data without additional parameterisation.

In order to test the proposed method 50 vehicle-days were randomly selected

from the MEA dataset and their charging individually forecast then aggregated.

This process was repeated using a Monte Carlo simulation with 2000 runs, in

order to generate a distribution of charging power for each time interval. Figure

8a shows the predicted profile, compared to the actual charging observed in

the trial, and that obtained used after journey charging. It can be seen that

the proposed method follows a similar shape to the observed data, while the

after journey charging significantly over-estimates demand in the early evening.

This means that, even if the prediction of individual vehicles charging is not

highly accurate, the model accurately captures the statistical behaviour of fleet

charging.

This can be seen more clearly in 8b which shows the mean and variance of

each method super-imposed to the observed mean and variance. Apart from

a minor bias towards mid-day charging, the proposed method closely follows

the observed charging, while the after journey method over-estimates the peak

demand by more than 50%. The variance is also modelled accurately, which is

important because networks need to be designed to an upper bound rather than

the average loading.

Overall, accuracy demonstrated here suggests that the proposed method can

be used to accurately model the charging of a fleet of vehicles stochastically.
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Figure 8: The charging demand predicted from a group of 50 vehicles from the MEA dataset.
The solid line shows the mean prediction and the shaded area covers one standard deviation
either side.

5. UK Domestic Charging Case Study

In this section a domestic charging case study is used to demonstrate the

difference with using the proposed approach over traditional methods. Here we

consider the aggregated charging of 50 households’ vehicles. This is represen-

tative of charging in a low voltage (LV) distribution network, where 100% of

vehicles are electric. Simulations of this kind are important, because we need to

understand how diversity between vehicles is likely to manifest at low levels of

aggregation. If all the vehicles on a residential network charged simultaneously

then the network’s limits would likely be violated. However there are existing

appliances (e.g. kettles or showers) which would cause overload if all households

used them simultaneously; in reality natural diversity between users renders this

situation extremely unlikely. As EV adoption increases, accurately modelling

the diversity of EV charging will be crucial in predicting the peak demand.

Initially vehicle data was taken from NTS households in North Lincolnshire

(a county in the North East of England). Households were selected at random,

regardless of the number of vehicles the household owned (which could be zero).

This means that the number of EVs charging on the network depends on the
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Figure 9: Aggregated charging of 50 households’ vehicles under both: (a) the assumption that
charging always begins after a vehicle’s final journey, and (b) the proposed model. The top
plot shows the result for one set of vehicles, and the bottom takes into account variation is
vehicles as well as charging. The shaded area covers the 90% confidence interval of simulation
results.

vehicle ownership of the selected households. Based off the analysis in Crozier

et al. (2018b) conversion factors of 0.26 and 0.35 kWh /mile were used for

vehicles from rural and urban areas respectively and 24 kWh batteries were

assumed. These numbers are based on the Nissan Leaf, which was the vehicle

model used in the MEA trial. Therefore these values were chosen in order to

maximise the relevance of the charging data. It was assumed that chargers were

rated at 3.5 kW and had an efficiency of 90%.

A week long simulation was run (the maximum length available from the

NTS data) but the Wednesday results were isolated for analysis. This day

was chosen to investigate typical weekday behaviour, while minimising the edge

effects of the simulation. Monte Carlo simulations were constructed to estimate

the average and variance of the predicted charging profile. Two simulations were

carried out, one considering only variation in charging, and one considering both

variation in vehicle use and charging. In the first, a single set of 50 households

was chosen from the data, and in the second, the 50 households were allowed to

varied between runs of the Monte Carlo simulation.

The simulation results are shown in Figure 9, using both the proposed model
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Table 3: The peak power and energy demand of 50 vehicles’ charging using various methods.

MEA NTS with after journey NTS with proposed

Peak Power 73.5 kW 52.5 kW 35.7 kW
Energy Demand 805 kWh 453 kWh 453 kWh

and the assumption that vehicles charge after their final journey. The latter

was chosen for comparison because of its prevalence in the literature, providing

insight into how the proposed methodology would alter existing results. Ad-

ditionally, it was one of the only directly comparable models – as it could be

applied to usage data without requiring any additional parameters. In the single

set simulation, there is no variation using this assumption as it is deterministic.

When the set of vehicles is varied, stochasticity is introduced via the vehicle

use. In both simulations, the peak demand predicted by the new model is lower

than that predicted by assuming charging begins after the final journey. This

is significant because it suggests that existing predictions of the impact of EV

charging on distribution networks are overestimates.

This is further demonstrated in Table 3, which shows the average charging

energy and peak demand of 50 households’ vehicles, using three methods: (1)

sampling from the MEA data, (2) sampling from the NTS and assuming charg-

ing occurs after finals journey, (3) sampling from the NTS and applying the

proposed model. Using the MEA data directly results in significant overesti-

mates for both energy consumption and power demand. The predicted energy

consumption is the same for both the NTS cases, but the proposed model in-

troduces diversity to the charging behaviour, resulting in a reduction in peak

demand.

Due to the abundance of travel survey data available, it is possible to com-

pare the likely impact of EV charging in different areas, assuming that electri-

fication does not cause a significant change in driving patterns. This section
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Figure 10: The peak charging demand varied across GB

uses the NTS data combined with the charging data from MEA to estimate the

regional variation in the impact of EV charging on LV distribution networks.

Figure 10a shows the expected peak demand of 50 households’ EV charging

on a residential network for each local authority in Great Britain, assuming a

penetration of 100% EVs. It can be seen that the value varies significantly, due

to varied travel distance and vehicle availability. The increase in peak demand

of a 50 household network varies from 10–70 kW, giving an expected increase

of approximately 0.2–1.4 kW per household.

It is notable that the increase is very low in both central and outer London.

In central London vehicle ownership is low, and therefore the average number of

vehicles owned by 50 random households is likely to be small. In outer London

vehicle ownership is high, but the average distance driven is small, meaning that

the energy demand of the 50 households’ vehicles will be relatively small. The
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highest increases in demand are seen in rural southern parts of the UK, where

both vehicle ownership and driven distance are high.

Figure 10b shows the peak charging demand per local authority, i.e. the

previous result scaled by the number of households in that area. This demon-

strates the geographic distribution of additional peak load on the national power

system. Of particular note is Cornwall on the most southwest point of GB; the

peak demand per 50 household network is average, while it has the highest to-

tal additional demand. This demonstrates the importance of considering the

impact on both local and national networks.

These results could be extended to consider the impact that charging will

have on the transmission network. In order to perform this analysis the loads

should be aggregated according to the locations of the grid supply points. Given

the need for additional network and population data, this analysis is left as

further work.

6. Conclusion

In this paper a stochastic model for EV charging was presented that is trained

using real charging data, but can be adapted to any vehicle usage data (includ-

ing from conventional vehicles). The model is based on conditional probability

distributions and incorporates random variables for vehicle usage, SOC, time,

and type of day. K-means clustering was used to reduce the dimensionality of

vehicle usage to a single parameter, reducing the complexity of the probabil-

ity distribution – and hence the required amount of training data. Clusters

are identified from the larger survey dataset, but the EV trial data is used to

formulate the discrete probability distributions.

A domestic charging case study was constructed using the UK National

Travel Survey and the EV trial ‘My Electric Avenue’. Assuming charging began
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immediately after completion of the final journey (the traditional assumption)

overestimated demand in the early evening by 50%, whereas the proposed model

showed no significant bias at any time of day. It was also shown that the trial

EVs travelled further on average than those documented in the travel survey,

demonstrating the importance of being able to generalise charging models to

vehicle usage not present in the trial. This simulation was repeated for each

local authority in Great Britain to demonstrate the large geographic variation

in future EV charging demand.

This case study demonstrated the importance of accurately capturing diver-

sity between consumers’ charging demands. Diversity plays a large role in the

stability of small networks, which rely on cancellation between consumers to

keep peak demand below the network limits. Traditional methods overestimate

the aggregated charging demand of EVs, and this could lead to networks being

un-necessarily upgraded at high cost. This result demonstrates the importance

of accurately modelling vehicle usage in making intelligent upgrade decisions.

It was also demonstrated that there is a large variation in predicted demand

across the UK; the peak demand of 50 vehicles varied from 10 to 70 kW. This

shows the importance of using local travel information to estimate network ca-

pacity; using one set of parameters to model vehicle use across a whole country

would under-estimate demand in some areas, and over-estimate in others. If

possible, distribution network operators should gather data describing the ve-

hicle use of customers on the specific network they are considering upgrading.

The results in this paper focus on domestic charging is the UK, however the

methodology could be applied to scenarios providing the following two types

of data are available. First, the vehicle usage and charging data from a trial,

which will be used for clustering and populating the conditional probability

distributions. If the study being carried out focuses on domestic charging for
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countries with a broadly similar work and life culture to the UK (e.g. in Europe

or US), then the data utilised in this paper could be used – as differences in

trip distance and timings will be offset by the second dataset. However, for

industrial fleet charging or domestic charging in countries will vastly different

working patterns, a separate trial will be required. Second, a set of highly

representative vehicle usage data, which will dictate the timings and volume of

charging modelled. This data can be captured using surveys, so is very cheap

to collect, but needs to be diverse and representative of the population being

modelled.

Although this model shows improved results compared to existing methods,

there are a couple of limitations to this approach. First, that charging is assumed

to be only a function of SOC, time, whether a journey has just ended, and the

vehicle usage cluster. These reduced set of parameters were required in order to

parameterise the model with the available data, however it means the model does

not capture the dependance on other variables e.g. the weather. Second, that

a large amount of charging data is still required to operate the modelSecond,

that a large amount of charging data is still required to operate the model;

the success of the model is dependant on the availability a small but detailed

charging dataset which also records the driving behaviour of the vehicles. While

such datasets exist, this means the method may not be suited for estimating

charging behaviour in settings that have not been experimentally studied.
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