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Abstract

Signature kernels are at the core of several machine learning algorithms for analysing
multivariate time series. The kernel of two bounded variation paths (such as piecewise
linear interpolations of time series data) is typically computed by solving a Goursat
problem for a hyperbolic partial differential equation (PDE) in two independent time
variables. However, this approach becomes considerably less practical for highly oscilla-
tory input paths, as they have to be resolved at a fine enough scale to accurately recover
their signature kernel, resulting in significant time and memory complexities. To miti-
gate this issue, we first show that the signature kernel of a broader class of paths, known
as smooth rough paths, also satisfies a PDE, albeit in the form of a system of coupled
equations. We then use this result to introduce new algorithms for the numerical approx-
imation of signature kernels. As bounded variation paths (and more generally geometric
p-rough paths) can be approximated by piecewise smooth rough paths, one can replace
the PDE with rapidly varying coefficients in the original Goursat problem by an explicit
system of coupled equations with piecewise constant coefficients derived from the first
few iterated integrals of the original input paths. While this approach requires solving
more equations, they do not require looking back at the complex and fine structure of
the initial paths, which significantly reduces the computational complexity associated
with the analysis of highly oscillatory time series.
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1 Introduction

Kernels are at the core of several well-established methods for classification [1], regression
[2, 3], novelty detection [4] and statistical hypothesis testing [5, 6]. Real-valued kernels,
defined as symmetric positive definite functions x : X x X — R, arise in Bayesian statistics
as covariance functions for Gaussian process priors [7] over real-valued functions f : X — R.
In deep learning, they have played a pivotal role in understanding the large-scale limits of
neural networks [8, 9]. They also underpin the construction of statistical scoring rules and
discrepancies for fitting the parameters of deep generative models [10-12]. They are useful
in mesh-free methods for solving partial differential equations and inverse problems [13, 14].
All these techniques are transferable to different input spaces in the sense that they can be
tailored to different data types by choosing a suitable kernel. A real-valued kernel can always
be represented as an inner product k(z,y) = (p(x),¢(y)) between some representations
of the inputs x and y in a Hilbert space H with inner product (-,-) via a feature map
¢ : X — H.Depending on the problem at hand, better results might be achieved by mapping
the inputs to a high-dimensional or even infinite-dimensional feature space. Numerically,



this is tractable if the inner product can be obtained without computing every individual
coordinate of ¢(z) and ¢(y), a strategy which is commonly referred to as a kernel trick.

In this article, we consider so-called signature kernels, a class of symmetric positive
definite functions defined on some spaces of paths, known for their effectiveness in time
series data analysis. These kernel functions have an explicit representation in terms of the
signature, a central map in stochastic analysis [15]. The latter maps any smooth path z :
[0,T] — F taking its values in a vector space E to the solution of a system of linear ordinary
differential equation driven by this path

7y =7, ® i (1)
and started at Zy = 1. At any time, the output Z; leaves in the space of tensor series over F,
T((E)) ={A = (ad",a®...) | a® €R,Vk >0, at € E®k}

which is an algebra endowed with the addition and multiplication operations + and ®
(defined in Section 2) and unitary element 1 := (1,0,0,...). The solution Z; can be expressed
explicitly in terms of the k-fold iterated integrals of the path x, that is, Z; = S(x)o, where

Sa)er = |1, /j;(f)dT, // (#(r) ® ... @ ()} dr ... dre, ...
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While the signature S(z) := S(x)o,r of a path is an infinite collection of summary statistics,
in machine learning applications, it is common practice to use the initial terms to embed
time series data into feature vectors that can then be integrated with various methods
from classical multivariate statistics [16-18]. In other words, each path z in a dataset is
mapped to the collection of features (1, 51(z),...,S™(x)), defined as the projection of S(z)
on T"(E) := @,_, E®* with the convention E®° = R.

If the state space E of the paths is endowed with an inner product (-, )1, and we denote
by (-, )1 the canonical (Hilbert-Schmidt) inner product on E®* derived from (-, -);, then an
inner product on T'(E)—the subalgebra of T'((F)) in which all but finitely many projections
are zero—can be defined for any A, B € T(E) by

(A,B) := i(d@,bm.

k=0

We note that other choices are possible [19] but will not be considered in this article. The
completion of T(E) with respect to (-,-) is a Hilbert space (H,(:,-)%), and the factorial
decay of the signature terms [20, Prop. 2.2] ensures that the signature of a path segment
S(x)s, actually takes its values in H C T'((E)). With this, a kernel can then be defined as

r(z,y) = (S(x), S(y)n = Y _ (5" (@), S*(y))r- (2)

k=0

These so-called signature kernels, originally introduced in [21], have found several applica-
tions in Bayesian modelling [22, 23], distribution regression [24-26], generative modelling
[27, 28], theoretical deep learning [29, 30] and numerical analysis [31].

The function in eq. (2) can be approximated by the inner product in the truncated tensor
algebra T™(FE) of the truncated signatures of the paths z and y. For smooth paths, the
approximation error decays factorially with the truncation level n

2eccn+1
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where the constant ¢ = max{||z||1, ||y|l1} depends on the 1-variation (see Definition 1) of
the input paths. The k-fold iterated integrals up to k& = n of piecewise linear paths taking
their values in a vector space E of dimension d € N can be efficiently computed using highly
optimized Python libraries [32-35]. However, the paths need to be of finite dimension and
the computational time and memory both increase exponentially with d. Alternatively, the
inner product in 7" (F) can be computed using a Horner scheme [21] which does not require
the explicit computation of iterated integrals; consequently it remains tractable for infinite
dimensional Hilbert-space valued paths (e.g. certain classes of spatiotemporal functions).
However, a high truncation level n might be necessary to obtain a sufficiently accurate
approximation if ¢ is large.

Leveraging the definition of the signature as the solution of the differential equation (1),
the signature kernel x(z,y) = u(7T,T) of the pair of paths (z,y) has been shown in [36] to
be the solution at final times (s,t) = (7, T) of the linear hyperbolic second-order PDE

0%u

@ =Uu- <i'sayt>17 (3)

with boundary conditions u(0,¢) = 1 and u(s,0) = 1. This result provides a second approach
for approximating the signature kernel of two paths x and y without computing their higher
order iterated integrals. For piecewise linear paths, the error now depends on the step size
AtAs of the numerical solver used to compute a numerical solution @ of the PDE in eq. (3)

|k(x,y) — a(T,T)| < ' AtAs,

where ¢’ is a function of SUP, 10,7 |{&s, ¥:)|. However, highly oscillatory input paths force
the use of small step sizes and the memory and time complexities become prohibitive. Opti-
mizing the cost of a single kernel evaluation is critical, as kernel methods typically involve
evaluations on multiple pairs of inputs to construct Gram matrices. Moreover, it is worth
noting that the broader class of weighted signature kernels introduced in [19], necessitate
solving multiple PDEs within a single kernel evaluation. One straightforward approach to
overcome this challenge is to subsample the input paths. However, this strategy fails when
the observations originate from the discretization of underlying continuous paths of large
(possibly unbounded) 1-variation. In such situations, it is crucial to ensure that the paths
are resolved at a fine enough scale to accurately recover their signature kernel.

Improving the scalability of kernel methods has been a long-standing challenge [37].
Recently, random approximation techniques for signature kernels have been proposed in [38]
and [30]. However, when the paths are highly oscillatory, as is often the case with real-
world sequential data, they may simply be better described as so-called rough paths [15].
These objects X can be seen as a path x augmented with a finite number of higher order
objects 22, ..., 2™, which locally, remove the need to look at the fine structure of the path.
Rough path theory guarantees that the signature kernel is still well-defined in this setting.
However, although Horner schemes converging to the kernels of geometric rough paths have
been designed [21], and these kernels have also been shown to satisfy an equation akin to
the integral form of eq. (3) in [25], effective algorithms for computing signature kernels of
rough paths, have been, to our knowledge, limited so far. The main difficulty in adapting
the aforementioned Horner schemes and the PDE (3) to rough paths lies in the fact that
their derivations both rely on the following property of the inner product

<A®ak7B®bk>H = <AaB>H<ak7bk>k7 (4)

where a* and b* are two elements of E®*. For example, the PDE in eq. (3) is derived by
taking k = 1 and replacing (A, B) with (S(x)o.s, S(y)o) and (a',b') with (i, 7;) € E x E.
As p-rough paths X = (1,2, ..., z?)) take their values in @}EP:JO E®*_ generalisations of the
previous ideas would involve terms of the form (A ® a*, B ® b%)3, with k # ¢ which do not
factor into two inner products as it is the case above.



1.1 Main results

In this article, we find that the trick to solve the aforementioned algebraic problem is to
rewrite these terms as (/(B)(A),r(a¥)(b9))y if & < q or ({(A)(B),r(b9)(a*))% otherwise.
We will give the precise definition of the maps £(A)(-) and r(A)(-) in Section 3. Furthermore,
we choose to study the kernels of smooth rough paths [39]. This choice is instrumental in
solving our computational problem: the numerical intractability of eq. (3).

First, it allows us to use classical calculus to show that the kernel of any pair of smooth
rough paths X = (1,z!,...,2™) and Y = (1,y',...,y"), also solves a linear PDE. However,
in general, it is not sufficient to solve a single PDE: as one adds more terms to describe the
input paths, one also needs to solve a larger system of coupled equations (Section 3.1). We
show that the additional variables to consider are the initial terms of ¢(S(X))(S(Y)) and
£(S(Y))(S(X)) both taking their values in H C T'((E)). Given that their scalar component
is the signature kernel (S(X), S(Y))%, it is not entirely surprising that the new system is
formulated in terms of these variables. Importantly, for any two smooth rough paths of finite
degrees m and n, these equations can be decomposed into two sets. The first set includes the
signature kernel and the lower-order terms of ¢(S(X))(S(Y)) and £(S(Y))(S(X)). Its size
is determined by m and n and it forms a closed system which can be solved independently
from the other. Once the values of the unknown variables within this set are obtained, the
complementary state can be subsequently determined. In other words, finitely many extra
state is needed to compute the signature kernel, and this extra state is enough to determine
all the higher order terms of £(S(X))(S(Y)) and £(S(Y))(S(X)).

Second, we use this new result to derive high order schemes for the numerical approx-
imation of signature kernels of arbitrary rough paths. Although the inner product of the
signatures of any pair of smooth paths solves a Goursat problem for a single PDE of type
eq. (3), obtaining an accurate numerical solution might require unacceptable amounts of
computational time and memory if the paths, hence the coefficients of the PDE, are too
oscillatory. This problem can be alleviated by approximating the inputs by suitable piecewise
smooth rough paths, termed piecewise log-linear paths [39] (a.k.a. piecewse abelian paths
[40] or pure rough paths [41]), whose kernel solves an augmented system of equations and
provides a good approximation of the kernel of the initial paths. We note that substituting
the path driving a differential equation by a piecewise log-linear approximation is classical
in the field of numerical analysis of rough differential equations [42-44], where it is known as
the log-ODE method, an approach which has recently found applications in deep learning
[45, 46]. A piecewise log-linear approximation is determined by two parameters: a partition
D={0=t <t <...<t, =T} of the time interval [0,T] and a degree, i.e. an integer
m > 1. In our case, we apply the approximation to two inputs. Degree-1 approximations cor-
respond to classical piecewise linear approximations, in which case the system collapses to
a scalar PDE of type eq. (3). By choosing higher degrees, the original PDE is replaced with
a bigger system of coupled equations. The new coefficients, which are piecewise constant,
are derived from the log-signatures of the original input paths, taken over each interval of
the partition. Ultimately, the discretization of these PDEs provides a numerical scheme for
computing the kernels of arbitrary rough paths without transitions back to the huge but
irrelevant fine structure.

1.2 Outline

In Section 2, we recall the concepts from rough path theory, including the definition of
smooth rough paths as introduced by [39], essential for the rest of the paper. In Section 3
we present our main results. First, we show that the signature kernel of two smooth rough
paths solves an augmented system of PDEs (Section 3.1) which generalizes the Goursat
problem of [36] to a broader class of inputs. Second, we leverage this result to derive new
numerical schemes for the efficient computation of signature kernels. The key idea is to
replace the inputs by piecewise log-linear paths, a natural extension of classical piecewise
linear approximations (Section 3.2). In Section 4, these findings are illustrated on simulated
data. Finally, in Section 5, we conclude and outline potential future work directions.



2 Preliminaries

In this section, we recall the notions from rough path theory necessary for Section 3.

Definition 1 (p-variation). Let z : [0,T] — E be a continuous path valued in a normed
vector space (E, ||-||). Denoting 4, 4 x(t;)—x(ti+1), the p-variation of x on any interval
[s,t] C [0,T] is defined by

it1 T

127 e oy = sup{ S et I? ] D finite partition of [s,t]}.
t; €D

Any continuous path z : [0,7] — E of finite 1-variation can be canonically lifted to a
path Z : t — S(z)o,; with values in T'((E)), the space of tensor series over E, simply by
considering all its iterated (Riemann-Stieltjes) integrals. This space is endowed with two

internal operations: an addition and a product. For any two elements A = (a°, al,a?,...)

and B = (b%,b1,b2,...) in T((E)) and any scalar A € R,
M +B = (" +8°, Xa' +0',..))

n
A®B:(Co7cl7~-~) Wlth anzak®b’n—k.
k=0

The space T((F)) endowed with these operations is a (non-commutative) algebra with uni-
tary element 1 = (1,0,0,...). It is often important to look only at finitely many terms of
an element of T'((E)). To this aim, we define T™(FE) the truncated tensor algebra over E of
order n € N. More precisely, T"(E) is the quotient of T((E)) by the ideal 7" (E) defined by

T>"(E) = {A =(0,0,....,a"",...) | A€ T((E))}.

We denote by m, the quotient map from T((V)) to T™(V). We identify T™(E) with
@D,_, E®* equipped with the product (a®,al,... a") ®, (b°,b%,...,0") = (!, ... c")
with ¢! = Y, _, a* ® b'~*. With this identification 7, becomes a projection.

The unital associative algebra (T'((E)),+,®) carries a Lie bracket [-,:] defined by
[A,B] = A®B-B®A, and there are several canonical Lie algebras associated to T'((E)).

Definition 2 (Lie series). The space of Lie formal series over E, denoted as L((E)) is
defined as the following subspace of T((E))

LU(E)={L=(%'..))|Vk>0, I*¥€ L}

where Ly = 0, L1 = E, and Ly = [E, Ly], with [E, F] denoting the linear span of all
elements of the form le, f] where (e, f) € EXF for any two linear subspaces E, F of T((E)).

If x is a path segment, then log S(z) € L((E)) [47] where the logarithm map is defined for
any A € T”9(E) by

(=D gk
log(1+A) = Z TA .
E>1

We denote the space of Lie polynomials by £(FE). For any n > 1, the step-n free Lie algebra
is defined by L™(E) := m, (L((E))) with elements called Lie polynomials of degree n.
The map log,, associates to each A € m,(T>°(E)) the element of T"(E) defined as

n

(=D ek
log,(1+A) = ZTA .
k=1



Note that is satisfies 7, (log(1 + A)) = log,,(7,(1 + A)). Finally, we note that the path
signature Z actually takes its values in a curved subspace G(F) C T((E)) with a group
structure. It is given by G(E) = exp{L((E))} where

00 A®k
exp(A) = T .
k=0

For each n > 1, we denote G"(E) = m,(G(E)) and exp,,(A) = > 1_, %.

2.1 Rough paths

More generally, a path of bounded p-variation with values in G (F) has a canonical lift
to a path with values in G(E). In the sequel, denote by Ar the simplex Ar := {(s,t) €
[0,T)> | 0 < s <t<T} and we say that a continuous map w : Ap — [0, +00) is a control
function if it is super-additive, that is, w(s,t) + w(t,u) < w(s,u) forall 0 < s <t <u < T.

Definition 3 (Multiplicative functional). Let n > 1 be an integer. Let X : Ap — T"(E) be
a continuous map. For each (s,t) € Ar, denote by X, the image by X of (s,t) and write

Xt = (xg,tvmi,tv cee ,wg,t) €T (E).

s

The function X is called a multiplicative functional of degree n in E if
(i) 29, =1 for all (s,t) € Ap and
(i) Chen’s identity holds, that is,

Xeu®X,, =X,4, Vs,t,uec|0,T], s<u<t
Given a path Xy = (1,2},...,2}) in T"(E) we say that X , = X' ®X, is the multiplicative
functional determined by X. Conversely, given a multiplicative functional X, ; and a point

Xo € T"(E), we say that X; = Xo ® X, is the path starting at X, determined by X, ,.
The p-variation over [s,t] of a multiplicative functional X of degree |p] is defined by

1/p
p/k> (5)

where the supremum is taken over all finite partitions D of [s, t].

[1X |- = sup max | Y ok
p—var,|[s,t] pelo.r) 1<k<1p) = s,t

Definition 4 (p-rough path). Let p > 1 be a real number. A p-rough path X in E is a
multiplicative functional of degree |p| in E with finite p-variation.

Theorem 1 (Thm. 2.2.1 in [15])). Let p > 1 be a real number and n > 1 an integer.
Let X : Ap — T™(E) be a multiplicative functional with finite p-variation controlled by
a control w and assume that n > |p|. Then there exists a unique extension of X to a
multiplicative functional Ap — T((E)) which possesses finite p-variation. More precisely,
for every m > p + 1, there ewists a unique continuous function ™ : Ar — E®™ such that

(5,8) = (Lady,..ox® 2™, ) e T((E))

is a multiplicative functional with finite p-variation controlled by w. By this we mean that

[ ]l < %is(f/)p/; Vi > 1 and V(s,t) € Ar where B, = p* (1 + 30 TEQ(LPJJFI)/Z)).

If a p-rough path X controlled by w takes its values in G™(F), we say it is weakly geometric,

and we call its unique extension its signature S(X) : (s, ) — (1,zl,,... wLZJ, e Ty )



Definition 5 (Signature kernel). Let p > 1 and q¢ > 1 be two real numbers. The signature
kernel is the map defined for any two weakly geometric p- and q-rough paths X, Y by

R (X, Y) = (S(X), S(Y))y (6)
This kernel is well-defined [36] since (S(X)s, 55, S(Y)e, 000 = Dopo(@F, ops Ul 1))k which is

51,527
51,82)%/ P wy (t1,t2)*/9

[e%s} oo wx(
bounded by 337 [k, o, vk o, |l < S0 P 5 temmairar— < 00

2.2 Smooth rough paths

We now recall the definition of smooth rough paths. This section is based on [39].

Definition 6 (m-smooth geometric rough path). A level-m smooth geometric rough path
(m-sgrp) over E is any path X : [0,T] — G™(E) such that for any word w of length |w| < m,
the map t — (Xy,w) is smooth. A smooth geometric rough path (sgrp) over E is any path
X :[0,T] = G(E) such that for any word w, the map t — (X, w) is smooth.

Definition 7 (m-smooth geometric rough model). A level-m smooth geometric rough model
(m-sgrm) over E is any non-zero map X : Ar — G™(E) such that
(i) Chen’s relation holds, that is, for any s,t,u € [0,T)] such that s <u <t

Xs,u ®m Xu,t = Xs,t
(i) For any word w of length |w| < m, the map t — (X ,,w) is smooth for one s € [0,T].
A smooth geometric rough model (in short: sgrm) is a map with values in G(E) such that

(1) and (ii) hold with all restrictions on the word’s length omitted and &, replaced with ®.

Any m-sgrp X : [0,T] — G™(E) induces an m-sgrm X : Ap — G™(E) defined by X,; =
X '®mX;. Conversely, an m-sgrm X induces an m-sgrp X : [0, 7] — G™(E) with X; = Xq ;.

Definition 8 (Extension of m-sgrp). A sgrp Z is called extension of some m-sgrp X if
(Zy,w)y = (X4, w), forallte0,T] and word w of length |w| <m
if this holds for a m'-sgrp Z with m < m’ < oo, we call is m’-extension of X.
Definition 9 (Extension of m-sgrm). A sgrm Z is called extension of some m-sgrm X if
(Zg4,w) = (X ,w),  forall s,t €[0,T] and word w of length |w| < m
if this holds for a m'-sgrm Z with m < m' < oo, we call is m’-extension of X.

Whenever dim(E) > 1, extensions are non unique. However, analogously to [15, Thm. 2.2.1],
one can enforce a condition to guarantee the uniqueness of the extension [39].

Definition 10 (Diagonal derivative and signature of an m-smooth rough path). Given an
m-sgrm X for some m € N, there exists a unique sgrm extension Z of X which is minimal
in the sense that for all s € [0,T] one has

Zs := Onln=0Zs o4 € LT (E) C L((E)).

We call Z the diagonal derivative of Z. It satisfies 25 = k5. For a fized interval [s,t] C [0,T],
Zg, only depends on {X,, , : s <u <wv <t} and the signature of X on [s,t] is defined by

S(X)sp =2, € G(E). (7)
To compute the signature of an m-sgrp X, it suffices to solve

Zi =17, @@, started at Zo=1¢c G(E). (8)



3 Main results

Before stating the first result of the article, we recall the definitions of the adjoints of the
linear maps of left and right tensor multiplication by an element of .

Definition 11 (Adjoint of left tensor multiplication). Let A, B, C be three elements of H.
Denote by ¢(A) : H — H the adjoint of left multiplication by A, defined by

(C,A@B) = ({(A)(C),B), (9)
which can be written as ((A)(C) =, (A eu) >, (C,euv)en.

Definition 12 (Adjoint of right tensor multiplication). Let A, B, C be three elements of H.
Denote by r(B) : H — H the adjoint of right multiplication by B, defined by

(C,A®B)=(r(B)(C),A), (10)
which can be written as r(B)(C) =, (B, ey) >, (C, euv)en.
Proposition 2. Let A be a tensor in H. Let b € E®P and ¢ € E®? with p < q. One has
r(B)(A®C)=A®rB)(C) (11)
where B and C are the embeddings of b and ¢ into H.

In the following section, we will establish that the signature kernel (S(X),S(Y))y of
two m- amd n-smooth rough paths X and Y solves an augmented system of PDEs which
generalises the original Goursat problem (retrieved when m = n = 1). In the general case,
the dynamics of the kernel might be influenced by the first degrees of extra state defined in
terms of £(S(Y))(S(X)) and £(S(X))(S(Y)). This will be the case when at least one of X or Y
is not given by the minimal extension of a 1-smooth rough path. We note that the first scalar
components of £(S(Y))(S(X)) and £(S(X))(S(Y)) are equal to the kernel (S(X),S(Y))x.

3.1 The signature kernel of smooth rough paths solves a PDE

We choose to work in the smooth setting of [39], as this allows us to use classical calculus
and focus on linear algebra aspects to extend the results from [36].

Theorem 3. Let X and Y be two m- and n-smooth geometric rough paths on the intervals
I = [a,b] and J = [c,d] respectively. Let &5 and §; be their diagonal derivatives,

Xy = Oylv=sX,, € LT(E)
yt = 8v|v:th,U S En(E>

which are valued in the Lie polynomials of degree less equal m and n respectively.

The real-valued functions indexed on the plane u : I x J — R and the two tensor-valued
functions indexed on the plane ¢" : I x J — m,(T>°(E)) and ™ : I x J — 7, (T>°(E))
defined for all (s,t) € I x J by

u(s,t) == (S(X)a,s, S(Y)e,t)n
¢"(5,t) := 10 (L(S(Y)e,t) (S(X)a,s) —uls,t) - 1)
Y7 (s,t) 1= T (E(S(X)a,s) (S(Y)e,e) — uls,t) - 1)

solve the following system of linear PDE

9%u B
dsot

w (@, Ye) + (0", (@) (Ge)) + (™, 7(Ge) (5)) (12)



op"

0s =u- 7T”(ZbS) + ¢n Qn Wn(fbs) + E(i/)m)(ccs) — <1/}m77rm(ms)> . ]-n (13)
3;/)7;" =u- Wm(yt) + U™ @ Wm(yt) + g(¢n)(yt) _ ((b”mn(yt» 1, (14)

with boundary conditions

u(0,t) =1, (0,t) = 7T7U(Yc,t —1), ¢(0,t) = 0,,

L ¢(5,0) = o (X, s — 1), ¥(s5,0) = 0yp,.
For notational convenience we used (2, ;) := > poy (2%, F )k, the arguments of the adjoints
are canonically embedded into H, and we don’t write that r(&;)(y:) and r(y:)(@&s) are
projected onto T"(E) and T™(E) respectively in eq. (20).

Remark 1. This theorem states that the signature kernel of two m- and n-smooth geometric
rough paths is the first component of a system of linear PDEs. Furthermore, the additional
variables ¢™ and ™ take their values in truncated tensor algebras. Note that in eq. (20),
the PDE for the kernel, the n*" degree of r(&,)(%;) and the m!"* degree of r(¢;)(x,) are
both zero. Therefore, the inner products involving them can be rewritten as

(@, r(@s)(Ge) = (" o1 (@) (Ge)
(@, r(Ge) (@) = ("7 1 (r(9e) (5))).

This means that the dynamics of u only depend on degrees of the adjoint variables lower than
n — 1 and m — 1 respectively. This is in line with the previous results on signature kernels,
since for two 1-smooth rough paths, with diagonal derivatives &, = (0, &) and g, = (0, 9;)
the reader can check that the system, written component-wise, would read as

T = (oo i (19
%f =0 (16)
aaiqp: =0 (17)
ag;’ﬂ =i for all k € {1,...,d} (18)
&gik) =u- gt for all k € {1,...,d}. (19)

Since the states ¢*) and ¥*) do not influence the dynamics of u, to compute the signature
kernel, we can discard the equations for the adjoint variables of degree greater than 1 and
solve eq. (15) which corresponds to solving the original Goursat PDE problem eq. (3).

Remark 2. If we consider the minimal extensions of X and Y to two n-smooth geometric
rough paths for some 1 > max{m,n}, then their diagonal derivatives would both take their
values in L"(F). For notational convenience we keep denoting them by @s and g;. Then,
their signature kernel and signature adjoints solve the following system

5;5; — - (g, Go) + (07, 7() (50)) + (W7, (1) () (20)
% =u-my(&s) + " @y my(&s) + L") (@5) — (Y7, mh(25)) - 1 (21)
% =u- m,(yt) + 9" ®y, Fn(yt) + (") () — <¢7]77T77(y't)> 1, (22)

complemented by appropriate boundary conditions. As n > max{m,n}, we have more
equations than in theorem 3. However, for @ all degrees greater than m + 1 are zero, and



similarly for gy, all degrees greater than n + 1 are zero. If we project the solution of this
system U" = (u, ¢",9") and consider UP™ = (u, m,(¢"), 7 (¢")) we have UP™ = U™™,
where U™ := (u, ¢", ™) denotes the solution of the system in theorem 3. In other words,
when minimally extending the input smooth rough paths to higher degrees, we write a big-
ger set of equations, but if we solve them and project the solution, we get the same state
as if we had solved the reduced set of equations, which shows consistency. To fix ideas, let’s
continue the example in the previous remark. If we extend the 1-sgrp to 2-sgrp, then we get

gjgt =u- (&5, Ye)1 (23)
6?;:6) _ uxgk) for all k € {1,...,d} (24)
%?Zu-yt(k) for all k € {1,...,d} (25)
a(ba(im — ™ .5 for all k,p € {1,...,d} (26)
(’)w(;’zvm — y®) g for all k.p e {1....d) o

For 1-sgrps or any minimal extensions of 1-sgrps, the dynamics of u are independent from
any other state. Otherwise, we need more equations to get u.

Remark 3. Let X and Y be two good sgrps with diagonal derivatives

Ts 1= Oplo=sX, € L(E)
Yi = Oylv=tY,,, € L(E)
valued in the space of Lie polynomials £(E). The real-valued function indexed on the plane

w: I xJ — R and the two tensor-valued functions ¢,¢ : I x J — T>°(E) defined for all
(s,t) €I x J by

solve the following system of linear PDE

0%u

% =u-Bs + PR Ts +L(Y)(Xs) — (P, Bs)p - 1 (29)
%f =G+ DY+ D) () — (b G)p - 1 (30)

with boundary conditions

u(0,t) =1, ¥(0,t) =Y., -1, ¢(0,t) =0,
'LL(S,O) =1, ¢(870) = Xa,s - 17 ¢(Sa0) 0.

As we consider good smooth rough paths, there is some 7 € N so that ¥ = ¢* = 0 for all
k > n, and there is a particular structure in the coupling of the equations. As aforementioned,
the dynamics for v only depend on the degrees k = 1,...,n of ¢ and 1 because the action
of the adjoint r(@s) and r(y;) can only decrease the maximum degree (in fact there are
also independent from the degree n of ¢ and 1, because the degree 1 of r(&s)(y:) is given
by r(29) (7)) = r(0)(5)) = 0). Futhermore, the system (u, ¢",9") is closed because the
dynamics of ¢"7 and " do not depend on degrees strictly higher than n of ¢ and .
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3.2 Numerical Method: Application to Piecewise Log-Linear Paths

Having shown that the signature kernel of two smooth rough paths X and Y, augmented
with additional bilinear functions in S(X) and S(Y) solves a system of linear PDEs, we now
explain how this result provides a high order numerical method for computing signature
kernels of p-rough paths, including those which solve the Goursat problem eq. (3). The idea
is to approximate each input path by piecewise log-linear paths, which are piecewise smooth
rough paths, and generalize the classical piecewise linear approximation.

By reparametrising the paths by 7(¢) = Cw(0,t) with C € (0, +00) we can assume that
they are controlled by C~1(t — s).

Definition 13 (piecewise log-linear approximation). Let p > 1 be a real number and let X be
a p-rough path. Let D = {0 =t; <ty < ...<t, =T} be a partition of [0,T], and m > |p|
an integer. We call X™P the piecewise log-linear approximation of X of Lie degree m on D,
the piecewise log-linear path defined for any t; < s <t < t;41 for any t;,t;v1 € D by

D t—s
X:}t = exp,, (t- t,logm(Xt'i7ti+l)> (31)
+1 — U3

and extended to be multiplicative on s,t € [0, T].

Note that the paths t — 7, (S(X)o ) and ¢t — ng;D agree on D when m = |p|. Furthermore,

for all ¢ € [t;,t;41], the diagonal derivative of XQ};D is expressed in terms of the log-signature

. 1
iy o= Oy loe Xy = — log,, (X 1) (82)
tiy1 — ¢

In Lemma 3, we show that Xgij D is controlled by t—s. Furthermore, its signature is given by

t—s

tiv1 —t;

for any t; < s <t <t;41 for any ¢;,¢;41 € D. Importantly, the results from Section 3.1 apply
to these piecewise log-linear paths, which are special types of piecewise smooth rough paths.
The explicit form of the diagonal derivatives gives us the coefficients of the PDE. We also
have the following bound (proved in Appendix B) on the approximation of the signature of
a p-rough path by the signature of a piecewise log-linear approximation.

Lemma 1. Let X be a weakly geometric p-rough path defined on [0, T] with values in E. Let
D={0=ty<...<t, =T} be a regular partition of [0,T] and m = |p|. Denote by X™P
the piecewise log-linear approzimation of X of degree m on D. We have

15(X)o,r — S(Xm’D)o,TH < Cpw(0,T) exp(w(0,T); p)* (w(?l’T)> e

where C,, only depends on p and exp(a;p) == > oo a®/?/(k/p)!.
A similar type of estimate can be obtained for the inner product of signatures, that is, for
the signature kernel. Let X be a weakly geometric p-rough path on [0,5] and Y a weakly

geometric g-rough path on [0, T]. Let D and D’ be a partition of [0,.S] and [0, T'] respectively.
Assume m = |p| and n = |¢]. It suffices to use the identity

(S(X), S(Y)) — (S(X™P), S(Y™P")) = (S(X) — S(X™P), S(Y™P)) + (S(Y) — S(Y"P"), S(X)),

11



and then apply Cauchy-Schwarz

A(X,Y) = (S(X™P), S(Y™P))| < [(S(X) = SG™P), SR )| + [(S(Y) = S(¥"P"), S(X))
< IS(X) = SE™P) - S| + [S(Y) = SOr2)]| - [SX)

The final step to produce a numerical scheme for approximating the signature kernel
is to discretize the PDEs. To maintain the rate of convergence, this discretization must
yield an accurate enough approximation of the solution. A discretization method is given in
Algorithm 1, where for simplifity, we take m = n and a single step for each PDE. We leave
as future work the verification that the chosen discretization ensures that the convergence
rate remains optimal.

Algorithm 1 PDE discretization method

1: Input: Truncated log-signatures over a partition ; € £™(R9) for i = 1,..., N, and
y; € L™(RY) for j =1,..., N,. Initial conditions uq,., u. o, ¢o,., d. 0, Yo,., . 0.

2: foriin 0,...,N, — 1 do

3: for jin0,...,N,—1do

b A o (), T (3))

5: // Update the adjoint states

6: Gig1 41 < Pijp1 +uig - B+ By i1 @ BN+ L( 1) (&) — (i, 2P)
7: Yig1 1 Yir1g +uig 7+ i @ YT+ Uit ) (@5) — (Bivry 97)
8: // Intermediate states

o fr= i (@, Y5) + (g () (95)) + (i, r(Y5) (42))

10: fo = v jn (@0, Y5) + (Dijt, 7(80)(95)) + (Wi, 7(95)(&4))

11 fo = wiga g (@0, Y5) + (Divr, 7(#:)(95)) + (i, 7(95)(&:))

12: uP = U1+ Ui g1 — Ui+ f1

13: fo P (@i, 95) + (Digr g1, (@) (95)) + it g, 7(95)(:))

14: // Update the kernel state

15: Uig1j1 = Uikl + Uigr1 — Ui + (L/4) x (fi + fa+ fa + fa)

16: end for

17: end for

18: return uy, n,-

If the data takes the form of time series z1,...,z, with 2; € R? one first needs to
construct the higher order description. In this case, the input of Algorithm 1 might be
obtained by embedding the data into a continuous path z : [0, 7] — R? and then computing
a sequence of log-signatures log,, S(x)s,,s,,, over a partition {0 = s9 < ... < sy, = T}.
Such constructions are straightforward using Python packages such as esig, iisignature,
signatory, signax [32-34, 48] or RoughPy [35]. It is worth noting that that for small degrees
m = 1 and m = 2, the equations can still be described in terms of matrix-vector products
and dot products, and the numerical schemes can be implemented using native Python and
NumPy functions. However, packages designed for working with fundamental objects from
free non-commutative algebra (see lines 6 — 14 in Algorithm 1) such as RoughPy, significantly
streamline the implementation and offer a seamless transition between different schemes.
An implementation of the newly proposed methods for computation of signature kernels is
made accessible at https://github.com/maudl3116/high-order-sigkernel.
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4 Numerical Illustration

To fix ideas, let’s consider an example where we have two multivariate Brownian motion
sample paths W and V on [0,T]. Almost surely W and V have infinite two-variation and
finite p-variation for every p > 2. Therefore, it is a priori not possible to define their signature
kernel as the solution of the PDE in eq. (3). However, the PDE is satisfied by the kernel
of any two piecewise linear approximations w and v of W and V associated with any two
partitions D and D’ of [0,T]. The solution at final times u(T,T) = u P (T, T) of

9%y
0sot

(s:8) = u(s,t) - (ws) "0 (33)

with boundary conditions u(0,¢) = 1 and u(s,0) = 1, converges to the signature kernel of W
and V as the mesh sizes of D and D’ tend to 0, since the signatures of w and v converge to
the Stratonovich signatures of W and V' [20, Sec. 3.3.2]. Since w and v are piecewise linear,
we solve a sequence of PDEs with constant coefficient of the form

9%u
9551 (s,t) = u(s,t) - ¢ (34)
fors; <s<s;p1andt; <t <tjpq wherec;; = WshslHVtthl. This procedure we have just

described, corresponds to the case where we use a piecewise log-linear paths approximation
of degree 1 for both input paths. For the first path (and similarly for the second) this
approximation is given on each [s;, s;+1] by

w(s) = (0, Wy, 5,,,) € RO R?

Increasing the degree of the approximation consists in adding terms on top of the increment.
For example, when m = 2 (and similarly n = 2) the approximation is given by

w(s) = (O’ Wsi,3i+l ’ AS@'7S¢+1) € R EB Rd EB [Rd’ Rd]?

where the additional term is the Lévy area given for all p,q =1,...,d by

s,8

1 S/ O'/
AP — = / / odW®) (5) 0dW @ (5") — odW D () 0dW P (¢).

The signature kernel of these piecewise differentiable paths is the first component of the
solution of the linear system of 2d 4+ 1 partial differential equations

82
Y cij+ qu BEP ) k) gk yP)

658t titj+1 SiySi+1 Si,8i4+1 ti,ti+1
k,p=1
9ok)
L +zw> APD k=1,

(k) i
O VS B, k=1,
p=1

where the coefficient ¢; ; is now given by the inner product in 72(R%) of w(s) and ¥(t), i.e.

d

o E ® P 2 : (p,k) (P k)
Ci,j = WSu Sit1 tJ7tJ+l + ASI, 7,+1 titj41”
k=1 k,p=1

The dynamics of u(s,t) are now forced by the additional state variables ¢(*)(s,t) and
PpF)(s,t) for k=1,...,d.
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Using the notion of piecewise log-linear approximation of degree m on a partition D we
have unified the original PDE method for computing signature kernels [36] with the newly
derived schemes in this article. Now, we want to compare these different schemes on this
Brownian motion example. In each case, we will need an estimator of the error

E = [a™(1,1) = Uo(1,1)| (35)

where @fi"® denotes the numerical solution (obtained with Algorithm 1) of the one-
dimensional Goursat problem obtained by approximating the inputs by piecewise log-linear
paths of degree 1 on a regular partition of small mesh size At = 1/n; and Uy is the first coor-
dinate of numerical solution of the PDE system obtained by approximating the inputs by
piecewise log-linear paths of degree m on a regular partition of mesh size At = k/n. For the
experiment, we consider 2-dimensional Brownian motion, and construct the fine grid with
n = 1024. Figure 1 shows the error as a function of the mesh size coarsening factor k for
different degrees m € {1,2,3,4}. The experiment is repeated on 100 pairs of sample paths
from R%-valued Brownian motion on the unit time interval [0, 1], and the dots on Figure 1
correspond to the mean of the errors calculated according to eq. (35). We see that, for any
fixed partitioning of the interval [0, 1], the error decreases with the degree m. As expected,
for any degree m, the error also decreases with the mesh size.

T T T T
m
o 1
* 2
3
5 ¢ 4
@
o]
=) -
3104 """""""""""
(%]
QO
<
1075
10°6

Fig. 1 Approximation of the signature kernel of two BM sample paths.

5 Conclusion

In this paper we show that the signature kernel of smooth rough paths solves a system of
PDEs, thereby extending the results of [36] to a broader class of paths. Highly oscillatory
inputs may now be described by piecewise log-linear paths which can be thought of a gen-
eralization of piecewise linear interpolations. In light of our result, their similarity measure
can be computed by solving the associated PDEs using state-of-the-art software packages
such as RoughPy.

Possible extensions of this work include developing similar schemes for so-called weighted
signature kernels [19] and developing adaptive versions, where the partition size and the
degree of the piecewise log-linear paths are adjusted instead of being fixed at the beginning,
possibly building on [44].
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Appendix A Proof of Theorem 3

A.1 Equation for the kernel

Let X and Y be two smooth rough paths and denote by & and 9 their diagonal derivatives
in L(E). By bilinearity of the inner product and the definition of the signature, we have

u(s,t) —u(o,t) —u(s,7) +u(o,7) = (S(X)o,s — S(X)o,6, S(Y)ot — S(Y)o,r)

s t
y / S(X)o.s ® By ds, / S(Y)ow ® gedt)
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and

S

u(s,t) = u(o,t) +u(s, 7) —u(o,7) + </ (S(X)o,sr ® 47) ds’,/ (S(Y)or @ yy)dt’).

o T

Expanding the inner product term, we obtain

oo s t
u(s,t) = u(o,t) +u(s,7) —u(o,7) + Z/ / u(s',t') - (@5, gk pds'dat’
k=077 J7

s t
+ Z Z/ / <S(X)0,s/ ® &k, S(Y)or ® y§,>H ds'dt’

T

o0 [e's) s t
> > / /t (5(X)o. ® &k, S(Y)op @ Gfh),, ds'dt’
S; j

k=0 g=k+1

This is not an integral equation yet. The first step towards obtaining an integral equation
is to rewrite the integrands of the last two integrals. By Theorem 2,

(S(X)o,0 @k, S(YV)or @ g7, ), = (L(S(Y)0,0)(S(X)o,s), (]
(S(X)o,e ® &k, S(YV)owr @), = (US(X)0,s)(S(Y)o,e),

And introduce the following T>°(E)-valued state variables

¢(s,t) = £(S(Y)o,)(S(X)o,s) — uls,t)
P(s,t) = £(S(X)0,s)(S(Y)o,e)) — uls, 1)

With these, we have

u(s,t) = u(o,t) + u(s, 7) —u(o,7) —i—/ / u(s', t') - (&g, Yp )nds'dt!

g

+O5 [[ wertaph) asar

k=1g=0v9 YT

+Z Z /78 /t <¢(S/,t’),7“(m"§/)(yf/)>ds’dt’

k=0 q=k+1" 5

We have (¢(s',t),r(yd) (%)) = 0 for ¢ >

t k and Vg when & = 0. This comes from
(W(s',1),e0) = 0 (case k = q), 7(y})(@h)

0 (case ¢ > k), and 2 = 0 (case k = 0).
Therefore,
oo k—1 s t oo 00 s t
> / / (s, ), r(gl) @)y ds'dt' => > / / (s, 8), r(G%)(&5)) ds'dt’
k=1g=0v0 YT o Jr

k=0 q=0

= /0 /: (W(s', ), r(ge) (&) ds'dt!

Similarly, using the fact that (&% )(yf) = 0 for k > g and (¢(s',t),e,) = 0 and y° = 0,

Y s ¢(S'at/),r(:b§/)('f,) ds'dt’ = 5 [ ¢(8/,t/),r(a’:§,)(';},) ds'dt’
I;quk;rl/si /ta< i) Zz/s/tj< 7))

k=0 q=0
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-/ / (6658, (o ) (g )) d'

With this, we get the first equation (in integral form)

u(s,t) = u(o,t) + u(s,7) —u(o,7) + /S/ u(s',t") - (T, Yo )peds’dt’
[ [ s 0t o) asar
[ 00t asar

A.2 Equation for the adjoints
Now, we derive the equation for ¢,, for any non empty word w.
<¢(Sv t) - ¢(U7 t)7 ew> = <S<X)O,s - S(X)07U) S(Y)O,t 02y ew>

= </ S(X)o,s @ xgds’, S(Y)o @ ew>
= / (S(X>O7s’ ® Ci35/7 S(Y)O,t X ew>d8/

Writing k = |w| and rewriting the integrand

(S(X)o,e @ 2o, S(YV)o.t @ ew) = ul(s',1)(25, ey)
k_

D US(Y)0,.0)(S(X)o,), (&%) (ew))

q=0

+
-

®

S

q=k+1

Putting everything together, we get
s k-1 s
(00,0 c0) = (0lort)en) + [ us )@k cnlds’ + 3 [ (0005w (ew))ds
o q=0"7

p> / 8. (o) @)

q=k+1 g

And using (¢, eg) = (1, e5) = 0 and 7(2?,)(e,y) = 0 for ¢ > k and r(ey,) (%) =0 for ¢ < k
(0050w = (600 0se0) + [ uls' O ealas’ + [ (600,00 eu))as
+f (S 1), (o) (@) d'

Now, our goal is to find an equation in T'(F) for the tensor ¢

Bs,t) =0-eg+ Y > (B(s,1), ew)ew

k=1 w:|w|=k
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Plugging in the above,

é(s,t) =0- €¢+Z Z @(0,1), ew ew—l—z Z / s )(ew))ds ey

k=1 w:|w|=k k=1 w:|w|=k

Y / cw)(@))ds'c,

k=1 w:|w|=k

The penultimate term can be rewritten as

Z > / o(s' 1), r(Tsr)(ew))ds ey = Z > / @) (ew))ds ew

k=1 w:|w|=k k=0 w:|w|=k

fz Z / S t ®m9/76w>d5 Cw

k=0 w:|w|=k

:/ (s’ t) @ xgds’

where the first equality comes from the fact that (¢(s’,t),e,) = 0 and the second equal-
ity from the definition of the right adjoint. For the last term, using (¥(s,t),r(ey)(@s)) =
(¥(s',t),&5), and adjoint operations, we obtain

> ¥ / (), rlen) @ s =30 Y / ew)(@s))ds e,

k=1 w:|lw|=k k=0 w:|w|=k

- / Sw(s’,t),abs»ds'e@
_Z Z / (s',t) @ ey, g )ds ey

k=0 w:|w|=k

- / (', 1), Bar)ds'es

—Z ) / e, L', 1)) (@) dS e
k=0 w:|w|=k

-/ Sw(s’,t),ms»ds'e@
~ [ @i - [ a.aaase,

Therefore,

o(5.0) = 8(0.0)+ T 65, 0) @ dbyds’ + / U 1)) () — / (), ) ey
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Appendix B Numerical Analysis

Lemma 2. Suppose X and Y are p-rough paths then, for any 8 > 0 there exists a common
control w so that for all s,t € [0,T] and for any degree k > 1 we have

w(sat)k/p k w(sat)k/p
|2k || < =2 and Yol < .
N P] 9l = 3/
we note that by reparametrizing X and Y by a common reparametrization 7(t) = w(0,t) of

X and Y, we can take w(s,t) =t — s.
Lemma 3. Suppose that X is a weakly geometric p-rough path defined on [0, T] with values

in E and that m = |p|. Suppose that X is controlled by w/C'. That is to say, for all s, t and
all E < m we have
w(s, t)k/p

||xs t” — Ok/p/@ (k/p)
Let X, be the tensor exp,, (r log X&t) where 0 < r < 1 then for all k > 1

k| o (s, )"
=+l < =5, o

Proof. Working in the tensor algebra truncated at level m,

X, = <1+ Z xft>
1=1...m
(r—1) i (r=1)...(r—(m 1) "
r(r — rir—1)...(r — (m —
— 1 +7r < Z x§7t> + 2' ( zf,t) to.t m' ( x];’t)
i : i=1...m : i=1...m

=1l...m

For any k£ > 1

7“—1 rir—1)...(r—(m—1 ; ;
k= rak, 4 Z el ( ) 7(n' ( ) Z ol .l
Ji+ije=k ’ 1. +ja=k

where all j; > 1. Estimating this with the neoclassical inequality we get

w(s, t)k/»
7]l < rCrp =
Recall that » < 1 and k/p <1 so that
k W(S7t)k/p
o] < rc, 20
(rw(s, t))k/P
S rCkr—Grp

c p/k
Now set C' = max (%) | K <mp then we have
, .

H kH (TW (s, t))k/p_
= Bp(k/p)!
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Lemma 4. Assume p € [1,+00) and a > 0, then

ak/P

where exp(a,p) is the Mittag-Leffler function exp(a;p) := Zk>0 DI
Proof. Using T'(x + )I'(y+ 1) < T(z+y + 1) for any x,y > 0, we have

i a i a(ker)/p
k:m ! k:O k+m /p
o k/p
— om/p a
=a
kzo<<k+m>/p>!

-~ (k/p){(m/p)! ak/
B m/p'z k+m/p (k/p)!

am/r
m/p )! Z k/p)

B.1 Proof of Lemma 1

Let X = (1,2, ..., z?]) be a weakly geometric p-rough path defined on [0, 7] with values
in E and let m = |p|. Let X" be the piecewise log-linear approximation of X of degree m
on a partition D ={0=ty < ... <t, =T} of [0,T]. For any ¢ =0,...,n — 1, by Lemma 3
and Lemma 2, we have

oo
.D
||S(X)ti7ti+1 - S(Xm7D)tmti+1 ” < Z ||x?i,ti+1 - (X:?,ti+1)k||
k=0
o0

k D Nk
S Z ‘lxti,ti+1 - (X?Z,ti+1) ||
k=m+1
w(ts, tiy1)*/P
Bp(k/p)!

<2
k=m+1

where we have used the fact that qu‘,ytiﬁ—l Xy tD+1)k for all k¥ < m. Then, we have

n—1

SX)or = SX™P)or =D SEX™)os, @ (SX)titipr = SE™P)titi41) @ Sty
1=0

and taking the norm and applying Lemma 4, we get

n—1

1S (X)o,r — S(X™P)o,r|| < Z IS(X™ P,

(X)ti,tiJrl - S(XM7D)ti,ti+1 || ||S(X)ti+1’ n

= (w(0,T)/n)/P w(0,T)*/P
(Z e )(2” 2 5 )(Z B,(k/p)] )

k=m+1

n (w ) (m+1)/p w
Sﬂg( (?(’TZL/ 1))/p)! eXp< ((:;T>;p> (exp(w(0,T);p))*

2 0T euto Typey (2D ) (HOD)
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