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Abstract

With an increasing number of applications where data can be represented as graphs,
graph neural networks (GNNs) are a useful tool to apply deep learning to graph
data. Signed and directed networks are important forms of networks that are
linked to many real-world problems, such as ranking from pairwise comparisons,
and angular synchronization.

In this report, we propose two spatial GNN methods for node clustering in
signed and directed networks, a spectral GNN method for signed directed networks
on both node clustering and link prediction, and two GNN methods for specific
applications in ranking as well as angular synchronization. The methods are end-to-
end in combining embedding generation and prediction without an intermediate step.
Experimental results on various data sets, including several synthetic stochastic
block models, random graph outlier models, and real-world data sets at different
scales, demonstrate that our proposed methods can achieve satisfactory performance,
for a wide range of noise and sparsity levels. The introduced models also complement
existing methods through the possibility of including exogenous information, in
the form of node-level features or labels.

Their contribution not only aid the analysis of data which are represented by
networks, but also form a body of work which presents novel architectures and
task-driven loss functions for GNNs to be used in network analysis.
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1
Introduction

1.1 Motivation

With an increasing number of applications where data are generated from non-

Euclidean domains and are represented as graphs (e.g., social networks, citation

networks, and biochemical graphs), graph data, which contains rich relation

information, are related to many learning tasks [1, 2]. Tasks requiring learning

from graph data include, for example, predicting protein interfaces, classifying

diseases, learning molecular fingerprints, and modeling physics systems [2]. Although

traditional network analysis usually focuses on a single fixed simple network, which

could often be represented by a symmetric adjacency matrix with nonnegative

entries, more complex network types are often more realistic. In particular, signed

networks, which have positive or negative edge weights, have been of interest in

social network analysis and financial time-series clustering, with signs indicating

positive or negative sentiments [3]. Directed networks, with asymmetric sending

and receiving patterns, are also important with many applications such as clustering

time-series data with lead-lag relationships, and detecting influential groups in

social networks [4–6]. Dynamic networks have additionally a temporal factor, with

evolving network structure and/or (node) attributes [7].

1
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To tackle network inference tasks, graph neural networks (GNNs) are a useful

tool. In essence, GNNs apply deep learning to graph data. Deep learning is

very powerful in the sense that neural networks are trainable functions to make

predictions. Dedicated loss functions are often constructed based on the downstream

task, enabling the neural network parameters to be updated by optimizing the

loss function. Neural networks are hence often flexible to train and can often

attain satisfactory performance. Utilizing standard deep learning techniques such as

normalization, gradient descent, and parallel computation, GNNs can be trained just

like standard neural networks. By leveraging the network structure, GNNs are able to

retain information from the neighborhood of nodes with long-range dependencies [2].

GNNs have a wide range of applications, such as node clustering, node embedding,

link prediction, node classification, and spatial-temporal graph forecasting [1].

In this dissertation, we tackle network analysis problems in complex graphs,

addressing the domain-specific challenges by incorporating customizations of the

tasks at hand. By leveraging GNNs, we are able to build upon existing methods

via treating their outputs as our inputs or adding learnable parameters. In this

way, our GNNs can be viewed as refinements to non-GNN approaches, typically

spectral methods, which cannot naturally use external information.

Here, we introduce GNN methods for node embeddings and downstream tasks

such as node clustering and link prediction; for the analysis of networks, node

embeddings facilitate the dimensionality reduction task and the subsequent applica-

bility of standard machine learning methods. The new methods in this dissertation

are developed around such node embeddings.

For the methods we propose, we first generate node embeddings and then

transform the embeddings to fit downstream tasks, such as cluster assignment

probabilities. Unlike spectral clustering methods, which generate an embedding

and conduct downstream tasks such as clustering sequentially and separately, our

GNN models are trained in an end-to-end manner, combining embedding generation

and downstream task optimization in the same framework, with a differentiable

objective function guiding the training process. The use of GNN models is often
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advantageous over many spectral methods, due to the ability of GNNs to easily

incorporate node features. When input node features are not given, a GNN model

can also intake outputs from spectral methods as node features, such as stacking

the first eigenvectors of a suitably defined Laplacian matrix. In this way, a GNN

could borrow strength from such spectral methods. Another benefit of a GNN is

that it could readily exploit known labels by using a supervised or semi-supervised

training objective, while it is often nontrivial to incorporate supervision in spectral

methods [8]. In this way, GNNs complement other methods through the possibility

of incorporating exogenous information.

The proposed methods are assessed on typical tasks in network analysis. One

typical task is node clustering.

Related to node clustering in networks is the task of community detection. The

goal of community detection is to partition the node set of a network such that,

loosely speaking, nodes within a cluster should be similar to each other, while nodes

across clusters should be dissimilar [9]. Denote a (possibly signed, directed and

weighted) network with node attributes as G = (V , E , w, XV), where V is the set of

nodes, E is the set of (directed) edges or links, w ∈ (−∞,∞)|E| is the set of weights

of the edges. Here G could have self-loops but not multiple edges. A clustering into

K clusters is a partition of the node set into disjoint sets V = C0 ∪ C1 ∪ · · · ∪ CK−1.

In a semi-supervised setting, for each of the K clusters, a fraction of training

nodes are selected as seed nodes, for which the cluster membership labels are known

before training. The set of seed nodes is denoted as Vseed ⊆ Vtrain ⊂ V , where Vtrain

is the set of all training nodes. The goal is then to use the embedding for assigning

each node v ∈ V to a cluster containing known seed nodes. When no seeds are given,

we are in a self-supervised setting, where only the number of clusters, K, is given, and

the quality of the clustering may have to be judged using network information only.

The quality of a partition is often assessed through a modularity objective

function [10] which compares the partition to that expected under a null model

for the network, with the assumption that nodes within a cluster are relatively

more densely connected than nodes across clusters. However, depending on the
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task at hand, similarity could have different meanings. In a signed network with

positive and negative edges, similarity may relate to the neighborhood of a node

such as the proportion of shared friends or enemies, see Chapter 2. In a directed

network, nodes may be clustered together based on their propensity to point to

the same set of nodes, and be pointed by the same set of nodes, thus indicating

a similar role/function in the network, see Chapter 3.

In addition to the node clustering task, the second typical task in network

analysis is that of link prediction. Intuitively nodes that are close in the embedding

should be more likely to be connected than nodes that are distant in the embedding.

For signed and directed networks, we are faced with link prediction tasks that could

relate to both link sign and directionality, as proposed in Chapter 4.

Signal recovery from pairwise measurements is related to directed graphs and

could be solved by directed graph neural networks, in that the observed pairwise

comparison information could be encoded in a directed network. As one real-world

application of signal recovery, we are interested in recovering the global rankings

based on pairwise comparisons of some competitors, where comparisons could be

encoded in a directed graph. Recovering global rankings from pairwise comparisons

reflecting relative latent strengths or scores is a fundamental problem in information

retrieval [11, 12] and beyond. When analyzing large-scale data sets, one often seeks

various forms of rankings (i.e. orderings) of the data for the purpose of identifying

the most important entries, efficient computation of search & sort operations, or

extracting the main features. There is a swarm of applications employing ranking

techniques such as Amazon’s Mechanical Turk system for crowdsourcing [13], the

movie recommendation system provided by Netflix [14], and modeling outcomes of

football matches [15]. Previous methods, however, are not based on neural networks.

To utilize the powerful neural network architecture which is flexible to train with

learnable parameters and can often achieve satisfactory performance, we hence

propose a neural network method for the ranking problem. In particular, as the

input data structure has an intrinsic link to a directed graph, we propose a GNN

method for this real-world application, in Chapter 5.
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For another application of directed graph neural networks, the group synchroniza-

tion problem has received considerable attention in recent years, as a key building

block of many computational problems that involve pairwise measurements with

an underlying group structure. The goal of group synchronization is to estimate a

collection of group elements, given a small subset of potentially noisy measurements

of their pairwise ratios. An important special case is angular synchronization,

also referred to as phase synchronization, which can be viewed as the group

synchronization problem over the group SO(2). The angular synchronization

problem aims at obtaining an accurate estimation (up to a constant additive phase)

for a set of unknown angles θ1, . . . , θn ∈ [0, 2π) from m noisy measurements of their

pairwise offsets θi−θj mod 2π. This problem has a wide range of applications, such as

distributed clock synchronization over wireless networks [16], image reconstruction

from pairwise intensity differences [17, 18], phase retrieval [19, 20], and sensor

network localization (SNL) [21]. In Chapter 6, we propose a GNN method for the

angular synchronization problem as well as a heterogeneous extension.

For a GNN model, its objective plays an essential role in guiding the GNN

to learn. In a node clustering/classification task, when seed nodes with known

cluster labels are available, the cross-entropy loss function is usually applied. In

[22], a contrastive loss function based on triplets of the nodes is used to push

embeddings of nodes within clusters/classes to be closer to each other than those

across clusters/classes. For self-supervised tasks, however, objectives that are

independent of known labels are required. To train a GNN model, we devise

task-specific loss functions. The loss function is constructed to reflect violations of

rules about the data themselves: in signed clustering, positive edges should mainly

exist within clusters while negative edges should mainly exist across clusters; in

directed graph clustering, edges should try to adhere to the general flow in the

network; in ranking from pairwise comparisons, edges should point from better

players to weaker ones; in angular synchronization, edge weights should encode

pairwise angular offsets, and a noiseless observed network would adhere to the

cycle consistency constraint. As cluster assignment outputs can be probabilistic, a
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probabilistic version of the balanced normalized cut loss is proposed in Chapter 2,

while a probabilistic version of cut flow imbalance loss is introduced in Chapter 3.

For other tasks such as link prediction, the cross-entropy loss function, or binary

cross-entropy function, which is based on class assignment probabilities is often

employed, such as in Chapter 4. For ranking, upset loss functions are proposed

in Chapter 5. For angular synchronization, another upset loss function and a loss

function based on cycle consistency relation are proposed in Chapter 6.

For a node clustering problem, to compare partitions, as cluster indices could be

permuted, accuracy would not be an appropriate evaluation measure. Instead, the

Adjusted Rand Index (ARI) [23] is often chosen. Depending on the downstream

task, other measures could be used, such as the unhappy ratio from Chapter 2, and

the imbalance scores from Chapter 3. For link prediction, accuracy is usually applied

for evaluation, as in Chapter 4. For ranking, upset values could be considered

for evaluation when no ground truth is available, and Kendall tau [24] values can

be used if we have known rankings, in Chapter 5. For angular synchronization,

we evaluate performance using the Mean Square Error (MSE) in general, and the

Average Normalized Error (ANE) for SNL, in Chapter 6.

As for data sets to validate our proposed methods, we first generate representative

synthetic data, in the form of a signed/directed stochastic block model, with

possibly unequal cluster sizes but equal edge density to tackle the hardest problem

of classification, as well as a polarized signed stochastic block model for signed

clustering. We also propose random graph outlier models for ranking and angular

synchronization. This is a way to assess the behavior of the method under a range

of controlled scenarios. At the same time, we test the efficacy of our models

on real-world data sets.

We have proposed a number of GNN architectures based on the task at hand.

For semi-supervised node clustering in signed graphs, our method SSSNET, detailed

in Chapter 2, includes a novel signed mixed-path aggregation scheme and a novel

GNN architecture. For self-supervised directed graph node clustering, our approach

DIGRAC, described in Chapter 3, includes a directed mixed-path aggregation
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scheme. For a spectral GNN model for signed directed graphs, our model MSGNN,

presented in Chapter 4, is adapted from the MagNet [6] architecture using our novel

Laplacian matrix. For ranking from pairwise comparisons, our pipeline GNNRank,

established in Chapter 5, borrows strength from an existing ranking baseline called

SerialRank [25] and unfolds the Fiedler eigenvector computation steps. For angular

synchronization, our method GNNSync, elaborated in Chapter 6, adopts ideas

from GPM [26] to refine the initial angle guesses.

Theoretical guarantees provide users with a deeper understanding of the proposed

methods. In Chapter 3, a type of hypothesis testing is derived to determine whether

a pair of clusters is informative. In Chapter 4, we prove that our proposed magnetic

signed Laplacian matrix possesses satisfactory properties. In Chapter 5, we validate

the convergence of our proximal gradient steps. In Chapter 6, the behavior of

the loss functions is discussed.

1.2 Contributions

Fig. 1.1 is a sketch of my doctoral contributions. My work as a graduate stu-

dent includes applying GNNs to signed networks [3], directed networks [5, 6],

signed directed networks [27, 28], dynamic networks [7, 29], ranking [30], angular

synchronization [31], a transformer model based on energy diffusion [32], a graph

sampling and filtering approach for multi-scale disentangled representations [33], and

interdisciplinary collaborations including inferring metabolic states via geometric

deep learning [34] and community structures in chimpanzees (work in progress). My

accepted core first-author papers are: [3] by SDM 2022 on signed clustering (detailed

in Chapter 2), [5] by LoG 2022 on directed clustering (detailed in Chapter 3), [27]

on a spectral GNN on signed directed graphs by LoG 2022 (detailed in Chapter 4),

[28] by LoG 2023 on a library and comparative survey on signed directed GNNs, [30]

by ICML 2022 on recovering global rankings from pairwise comparisons (detailed

in Chapter 5, and [31] by ICLR 2024 on angular synchronization (detailed in

Chapter 6). In addition, I co-authored one second-author paper accepted by

NeurIPS 2021 on directed networks [6], one third-author paper on temporal event
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prediction accepted by LoG 2022 [29], a third-author paper on a graph sampling

and filtering approach for multi-scale disentangled representations accepted by KDD

2023 [33], a third-author paper on inferring metabolic states via geometric deep

learning accepted by RECOMB 2024 [34], a forth-author paper on a transformer

model based on energy diffusion accepted by ICLR 2023 [32], a co-first-author

paper on the generalization error of GNNs in the mean-field regime [35] accepted

by ICML 2024, and one third-author paper on a temporal GNN package accepted

by CIKM 2021 [7]. The temporal GNN package paper won the best paper award in

CIKM 2021. The signed clustering paper [3] was accepted for an oral presentation

at Complex Networks 2021. Fig. 1.1 relates different core first-author works and

links them to the theme of the dissertation.

SSSNET

GNNs for 
Network 
Analysis

DIGRAC

Chap. 3: 
GNNRank

Chap. 4: 
GNNSync

PyGSD

Chap. 2: 
MSGNN

directed clustering spectral GNN for 
signed directed graphs

GNN included in PyGSD

GNN included in PyGSD

signal recovery from 
pairwise measurements

Figure 1.1: Overview of my core first-author works (orange lines) and their link to the
dissertation title (blue lines).

1.3 Detailed Introduction to Doctoral Research
Contributions

Next, here are more detailed backgrounds and introductions to each of the five

projects presented in this thesis: SSSNET addresses the task of node clustering in

signed networks; DIGRAC tackles the directed clustering task; MSGNN is a spectral

GNN, designed for signed directed graphs, which is capable of solving node clustering

and link prediction tasks; GNNRank is a method for recovering global rankings from

pairwise comparisons; and GNNSync is an approach for angular synchronization.
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Positive link

Negative link

Friend to the 
source node

Enemy to the 
source node

Neutral to 
the source 
node

Source node

𝑠

𝑠

𝑠

𝑠

𝑠

𝑡

𝑡

𝑡

𝑡

𝑡

Figure 1.2: Example: five paths between the source (s) and target (t) nodes, and
resulting relationships. While we assume a neutral relationship on the last two paths,
social balance theory claims them as "friend" and "enemy", respectively.

1.3.1 SSSNET: Semi-Supervised Signed Network Clustering
(Chapter 2)

The main novelty of our approach for signed clustering is a new take on the role of

social balance theory for signed network embeddings. The standard heuristic for

justifying the criteria for the embeddings hinges on the assumption that in a social

network, balanced triangles are preferred; these are triangles such that either all

three nodes are friends, or two friends have a common enemy; otherwise it would

be viewed as unbalanced. More generally, all cycles are assumed to prefer to contain

either zero or an even number of negative edges. This hypothesis is supported

empirically for unsigned friendship networks, but is difficult to justify for general

signed networks. For example, the relationship between trust and distrust may

not be a simple negation; the enemies of enemies are not necessarily friends; an

example is the social network of relations between 16 tribes of the Eastern Central

Highlands of New Guinea. Besides, most state-of-the-art methods generating node

embeddings of signed networks focus on link sign prediction, and those that pertain

to node clustering are usually not GNN methods. In Chapter 2, we introduce a novel

probabilistic balanced normalized cut loss for training nodes in a GNN framework

for semi-supervised signed network clustering, called SSSNET. Figure 1.2 illustrates

Printed on June 7, 2024



1. Introduction 10

𝐂𝐭𝐫𝐚𝐧𝐬 𝐂𝐬𝐢𝐧𝐤

𝐏𝐝𝐨𝐰𝐧 𝐏𝐮𝐩

(a) A meta-graph which we
hypothesize to be present on

Telegram: there are much
more edge weights flow from
Ctrans to Csink than the other

direction.

−120 −110 −100 −90 −80 −70

25

30

35

40

45

50

0

1

2

3

L
ab

el

(b) Strongest imbalanced flow on Migration data, along with
the geographic locations of the counties and state boundaries

(in black): most edges flow from red (1) to blue (2).

Figure 1.3: Visualization of directed flow imbalance.

five different paths of length four, connecting the source and the target nodes. We

can also obtain the relationship of a source node to a target node within a path by

reversing the arrows in Figure 1.2. Note that it is possible for a node to be both a

“friend" and an “enemy" to a source node simultaneously, as there might be multiple

paths between them, with different resulting relationships. Our model aggregates

these relationships by assigning different weights to different paths connecting two

nodes. For example, the source node and target node may have all five paths shown

in Figure 2.2 connecting them. Since the last two paths are neutral paths and do

not cast a vote on their relationship, we only take the top three paths into account.

1.3.2 DIGRAC: Digraph Clustering Based on Flow Imbal-
ance (Chapter 3)

The main novelty of our directed clustering approach is an objective based on flow

imbalance. While most existing methods that could be applied to directed clustering

use local edge densities as the main signal and directionality as an additional signal,

we argue that even in the absence of any edge density differences, directionality

can play a vital role in directed clustering as it can reveal latent properties of

network flows. Therefore, instead of finding relatively dense groups of nodes in

digraphs that have a relatively small amount of flow between the groups, our main
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legend

(a) Signed Directed Stochastic Block Model
example 1.

𝐶𝐶0 𝐶𝐶1

𝐶𝐶3 𝐶𝐶2

+-
legend

(b) Signed Directed Stochastic Block Model
example 2.

Figure 1.4: This toy example models groups of athletes and sports fans on social media.
Here, signed, directed edges represent positive or negative mentions. Cluster C0: players
of a sports team; C1: a group of their fans who typically say positive things about the
players; C2: a group of fans of a rival team; C3: a group of fans of a third, less important
team.

goal is to recover clusters with strong and imbalanced flow among them, where

directionality is the main signal. In contrast to standard approaches focusing

on edge density, here edge directionality is not a nuisance but the main piece of

information to uncover the latent structure. Figure 3.1a plots a meta-graph which

we hypothesize to be present for Telegram [4], where most edge weights flow from

the core-transient cluster (Ctrans) to the core-sink cluster (Csink) than the other

direction. As another real-world example, Figure 3.1b shows the strongest flow

imbalances between clusters in a network of US migration flow [36]; most edges

flow from the red cluster (1) to the blue one (2).

1.3.3 MSGNN: A Spectral Graph Neural Network Based
on a Novel Magnetic Signed Laplacian (Chapter 4)

Signed and directed networks are ubiquitous in real-world applications. However,

there has been relatively little work proposing spectral GNN for such networks.

In [27] we introduce a signed directed Laplacian matrix, which we call the magnetic

signed Laplacian, as a natural generalization of both the signed Laplacian on

signed graphs and the magnetic Laplacian [6] on directed graphs. We then use

this matrix to construct a novel efficient spectral GNN architecture and conduct
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extensive experiments on both node clustering and link prediction tasks. In these

experiments, we consider tasks related to signed information, tasks related to

directional information, and tasks related to both signed and directional information.

We demonstrate that our proposed spectral GNN is effective for incorporating both

signed and directional information, and attains leading performance on a wide range

of data sets. Additionally, we provide a novel synthetic network model, which we

refer to as the Signed Directed Stochastic Block Model (SDSBM), and several novel

real-world data sets based on lead-lag relationships in financial time series.

Here we provide a toy example to better understand why considering both signed

and directional information is essential. In Figure 1.4(a), C0 are the players of a

sports team, C1 is a group of their fans who typically say positive things about the

players, and C2 is a group of fans of a rival team, who typically say negative things

about the players. Since they are fans of rival teams, the members of C1 and C2 both

say negative things about each other. In general, fans mention the players more

than players mention the fans, which leads to a net flow imbalance. In Figure 1.4(b),

we add in C3, a group of fans of a third, less important team. This group dislikes the

other two teams and disseminates negative content about C0, C1, and C2. However,

since this third team is quite unimportant, no one comments anything back.

Notably, in both examples, as the expected edge density is identical both within

and across clusters, discarding either signed or directional information will ruin

the clustering structure. For instance, in both examples, if we discard directional

information, then C0 will look identical to C1 in the resulting meta-graph. On

the other hand, if we discard signed information, C1 will look identical to C2.

This shows the necessity for a model to consider both signed and directional

information simultaneously.

1.3.4 Signal Recovery with Directed Graph Interpretations
(Chapter 5 and Chapter 6)

Given that pairwise comparisons could be encoded into a digraph, I have, with

my collaborators, introduced two deep learning methods based on directed graph
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neural networks for signal recovery problems starting from pairwise comparisons.

Ranking. Recovering global rankings from pairwise comparisons has wide

applications from time synchronization to sports team ranking. Pairwise comparisons

corresponding to matches in a competition can be construed as edges in a directed

graph, whose nodes represent e.g. competitors with an unknown rank. In Chapter 5,

we introduce neural networks into the ranking recovery problem by proposing the

so-called GNNRank, a trainable GNN-based framework with digraph embedding.

New objectives are devised to encode ranking upsets/violations. The framework

involves a ranking score estimation approach and adds an inductive bias by unfolding

the Fiedler vector computation of the graph constructed from a learnable similarity

matrix. Experimental results on extensive data sets show that our methods attain

competitive and often superior performance against baselines, as well as showing

promising transfer ability when applying the trained model to similar data sets.

Angular Synchronization. The angular synchronization problem aims to

accurately estimate (up to a constant additive phase) a set of unknown angles

θ1, . . . , θn ∈ [0, 2π) from m noisy measurements of their offsets θi − θj mod 2π.

Applications include, for example, sensor network localization, phase retrieval, and

distributed clock synchronization. An extension of the problem to the heterogeneous

setting (dubbed k-synchronization) is to estimate k groups of angles simultaneously,

given noisy observations (with unknown group assignment) from each group.

Existing methods for angular synchronization usually perform poorly in high-

noise regimes, which are common in applications. In Chapter 6, we leverage neural

networks for the angular synchronization problem, and its heterogeneous extension,

by proposing GNNSync, a theoretically-grounded end-to-end trainable framework

using directed graph neural networks. Novel loss functions are devised to encode

synchronization objectives. Experimental results on extensive data sets demonstrate

that GNNSync attains competitive, and often superior, performance against a

comprehensive set of baselines for the angular synchronization problem and its

extension, validating the robustness of GNNSync even at high noise levels.

Printed on June 7, 2024



1. Introduction 14

1.4 Dissertation Outline

The rest of the dissertation is organized as follows: In Chapter 2, a GNN framework

named SSSNET for signed network clustering is introduced. Chapter 3 details our

directed graph clustering GNN framework called DIGRAC. Chapter 4 presents a

spectral GNN method for signed directed networks. In Chapter 5, a GNN model

named GNNRank is described for ranking, while Chapter 6 details a GNN method

called GNNSync for angular synchronization. In Chapter 7, we briefly introduce

PyTorch Geometric Signed Directed, a Python library on signed directed GNNs

with a comparative survey; MagNet, a spectral GNN for directed graphs based on

a complex Hermitian matrix known as the magnetic Laplacian; PyTorch Geometric

Temporal, a deep learning framework combining state-of-the-art machine learning

algorithms for neural spatiotemporal signal processing; Difformer, a transformer

model based on energy diffusion; CEP3, an event prediction method on dynamic

graphs; PyGNN, a graph sampling and filtering approach for multi-scale disentangled

representations; GEFMAP, a method based on geometric deep learning for predicting

flux through reactions in a global metabolic network using transcriptomics data; as

well as a theoretical framework for assessing the generalization error of GNNs in

the over-parameterized regime. Lastly, Chapter 8 draws conclusions and discusses

future directions. The appendix (supplementary information) covers implementation

details, data description, variants of the models, and theoretical results, as well

as extended results in the main body of this dissertation.

Chapter 2, Chapter 3, Chapter 4, Chapter 5, and Chapter 6 are stand-alone

papers which are either published. The code for Chapter 2 is found at https:

//github.com/SherylHYX/SSSNET_Signed_Clustering, for Chapter 3 is found at

https://github.com/SherylHYX/DIGRAC_Directed_Clustering, for Chapter 4

is found at https://github.com/SherylHYX/MSGNN, for Chapter 5 is found at

https://github.com/SherylHYX/GNNRank, and for Chapter 6 is found at https:

//github.com/SherylHYX/GNN_Sync. References for these papers can be found

before the appendix.
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2
SSSNET: Semi-Supervised Signed Network

Clustering

2.1 Introduction

In social network analysis, signed network clustering is an important task. Signs of

edges in networks may indicate positive or negative sentiments, see for example [37].

Users may express trust-distrust or friendship-enmity. Review websites as well as

online news allow users to approve or denounce others [38]. Clustering time series

can be viewed as an instance of signed network clustering [39], with the empirical

correlation matrix being construed as a weighted signed network. Recommendation

systems provide another playground for signed networks; [40] introduced a principled

approach to capturing local and global information from signed social networks

mathematically, and proposed a novel recommendation framework. Furthermore,

there has been a recent growing interest on the topic of polarization in social media,

mainly fueled by a large variety of speeches and statements made in the pursuit

of public good, and their impact on the integrity of democratic processes [41]; our

work also contributes to the growing literature of polarization in signed networks.

Most competitive state-of-the-art methods generating node embeddings for

signed networks focus on link sign prediction [42–48], and those that pertain to node

clustering are not GNN methods [44, 49–52]. Here, we introduce a graph neural
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2. SSSNET: Semi-Supervised Signed Network Clustering 16

network (GNN) framework, called SSSNET, with a Signed Mixed-Path Aggregation

(SIMPA) scheme, to obtain node embeddings for signed clustering.

The main novelty of our approach is a new take on the role of social balance

theory for signed network embeddings. The standard heuristic for justifying the

criteria for the embeddings hinges on the assumption that “an enemy’s enemy is a

friend" [44, 48, 53–55]. This heuristic is based on social balance theory [56, 57], or

multiplicative distrust propagation as in [58], which asserts that in a social network,

in a triangle either all three nodes are friends, or two friends have a common

enemy; otherwise it would be viewed as unbalanced. More generally, all cycles are

assumed to prefer to contain either zero or an even number of negative edges. This

hypothesis has been supported for the analysis of unsigned friendship networks,

but is difficult to justify for general signed networks. For example, the relationship

between trust and distrust may not be a simple negation; the enemies of enemies

are not necessarily friends, see [58, 59]; an example is given by the social network

of relations between 16 tribes of the Eastern Central Highlands of New Guinea [60].

Hence, the present work takes a neutral stance on whether or not the enemy of an

enemy is a friend, thus generalizing the atomic propagation by [58].

MLP
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Figure 2.1: SSSNET overview: starting from feature matrix XV and adjacency matrix
A, we first compute the row-normalized adjacency matrices As+

, As−
, At+, At−

. We
then apply four separate MLPs on XV , to obtain hidden representations Hs+, Hs−, Ht+,
Ht−, respectively. Next, we compute their decoupled embeddings via Eq. (2.1) and its
equivalent for negative/target embeddings. The concatenated decoupled embeddings are
the final embeddings. We add another linear layer followed by a unit softmax function
to obtain the probability matrix P. Applying argmax to each row of P yields cluster
assignments for all nodes.
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From a method’s viewpoint, the neutral stance is reflected in the feature

aggregation in SIMPA, which provides the basis of the network embedding. Network

clustering is then carried out using the node embedding as input and a loss function

for training; see Figure 2.1 for an overview. To train SSSNET, the loss function

consists of a self-supervised novel probabilistic balanced normalized cut loss acting

on all training nodes, and a supervised loss which acts on seed nodes, if available.

Experimental results at different scales demonstrate that our method achieves state-

of-the-art performance on synthetic data, for a wide range of network densities, while

complementing other methods through the possibility of incorporating exogenous

information. Tested on real-world data for which ground truth is available, our

method outperforms its competitors in terms of the Adjusted Rand Index [23].

Main contributions. Our main contributions are as follows: • (1) We propose

an efficient end-to-end GNN for semi-supervised signed node clustering, based on

a new variant of social balance theory. To the best of our knowledge, this is the

first GNN-based method deriving node embeddings for clustering signed networks,

potentially with attributes. The advantage of the ability to handle features is that

we can incorporate eigen-features of other methods (such as eigenvectors of the

signed Laplacian), thus borrowing strength from existing methods. • (2) We

propose a Signed Mixed-Path Aggregation (SIMPA) framework based on our new

take on social balance theory. • (3) We propose a probabilistic version of balanced

normalized cut to serve as a self-supervised loss function for signed clustering.

• (4) We achieve state-of-the-art performance on various signed clustering tasks,

including a challenging version of a classification task, for which we customize

and adapt a general definition of polarized signed stochastic block models (Pol-

SSBM), to include an ambient cluster and multiple polarized SSBM communities,

not necessarily of equal size, but of equal density. Code and preprocessed data are

available at https://github.com/SherylHYX/SSSNET_Signed_Clustering.
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2.2 Related Work

2.2.1 Network Embedding and Clustering

We introduce a semi-supervised method for node embeddings, which uses the idea

of an aggregator and relies on powers of adjacency matrices for such aggregators.

The use of an aggregation function is motivated by [61]. The use of powers of

adjacency matrices for neighborhood information aggregation was sparked by a

mechanism for node feature aggregation, proposed in [22], with a data-driven

similarity metric during training.

Non-GNN methods have been employed for signed clustering. [50] utilizes the

signed Laplacian matrix and its normalized versions for signed clustering. [62]

clusters signed networks using the geometric mean of Laplacians. In [51], nodes are

clustered based on optimizing the Balanced Normalized Cut and the Balanced Ratio

Cut. [63] develops two normalized signed Laplacians based on so-called SNScut

and BNScut. [52] relies on a generalized eigenproblem and achieves state-of-the-art

performance on signed clustering. To conduct semi-supervised structural learning

on signed networks, [64] uses variational Bayesian inference and [65] devises an

MBO scheme. [66] tackles network sparsity. However, these prior works do not

take node attributes into account. [49] exploits the network structure and node

attributes simultaneously, but does not utilize known labels. [44] views relationship

formation between users as the comprehensive effects of latent factors and trust

transfer patterns, via social balanace theory.

Graph neural networks have also been utilized for signed network embedding

tasks, but not for signed clustering. SGCN [48] utilizes social balance theory to

aggregate and propagate the information across layers. Considering interactions

between positive and negative edges jointly is another main inspiration for our

method, but SSSNET is not driven by such social balance theory principles. Many

other GNNs [43, 45, 47, 54, 55] are also based on social balance theory, usually

applied to data with strong positive class imbalance. Numerous other signed network
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embedding methods [42, 44, 46, 53, 67] also do not explore the node clustering

problem. Hence we do not employ these methods for comparison.

2.2.2 Polarization

Opinion formation in a social network can be driven by a few small groups which

have a polarized opinion, in a social network in which many agents do not (yet)

have a strongly formed opinion. These small clusters could strongly influence the

public discourse and even threaten the integrity of democratic processes. Detecting

such small clusters of polarized agents in a network of ambient nodes is hence

of interest [41]. For a network with node set V, [41] introduces the notion of a

polarized community structure (C1, C2) within the wider network, as two disjoint

sets of nodes C1, C2 ⊆ V , such that • (1) there are relatively few (resp. many)

negative (resp. positive) edges within C1 and within C2; • (2) there are relatively

few (resp. many) positive (resp. negative) edges across C1 and C2; • (3) there are

relatively few edges (of either sign) from C1 and C2 to the rest of the graph. By

allowing a subset of nodes to be neutral with respect to the polarized structure,

[68] derives a formulation in which each cluster inside a polarized community is

naturally characterized by the solution to the maximum discrete Rayleigh’s quotient

(MAX-DRQ) problem. However, this model cannot incorporate node attributes.

Extending the approach in [69] and [52], here, a community structure (C1, C2) is

said to be polarized if (1) and (2) hold, while (3) is not required to hold. Moreover,

our model includes different parameters for the noise and edge probability.

2.3 The SSSNET Method

2.3.1 Problem Definition

Denote a signed (possibly directed and weighted) network with node attributes

as G = (V , E , w, XV), where V is the set of nodes, E is the set of (directed) edges

or links, w ∈ (−∞,∞)|E| is the set of weights of the edges. Here G could have

self-loops but not multiple edges. The total number of nodes is n = |V|, and

XV ∈ Rn×din is a matrix whose rows are node attributes (which could be generated
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from A). This network can be represented by the attribute matrix XV and the

adjacency matrix A = (Aij)i,j∈V , where Aij = wij, the edge weight, if there is an

edge between nodes vi and vj; otherwise Aij = 0. We decompose the adjacency

matrix A into positive and negative parts A+ and A−, where A+
ij = max(Aij, 0)

and A−
ij = −min(Aij, 0). A clustering into K clusters is a partition of the node

set into disjoint sets V = C0 ∪ C1 ∪ · · · ∪ CK−1. Intuitively, nodes within a cluster

should be similar to each other, while nodes across clusters should be dissimilar. In

a semi-supervised setting, for each of the K clusters, a fraction of training nodes are

selected as seed nodes, for which the cluster membership labels are known before

training. The set of seed nodes is denoted as Vseed ⊆ Vtrain ⊂ V , where Vtrain is the

set of all training nodes. For this task, the goal is to use the embedding for assigning

each node v ∈ V to a cluster containing known seed nodes. When no seeds are given,

we are in a self-supervised setting, where only the number of clusters, K, is given.

2.3.2 Path-Based Node Relationship

Methods based on social balance theory assume that, given a negative relationship

between v1, v2 and a negative relationship between v2, v3, the nodes v1 and v3 should

be positively related. This assumption may be sensible for social networks, but in

other networks such as correlation networks [39, 70], it is not obvious why it should

hold. Indeed, the column |∆u| in Table 2.1 counts the number of triangles with

an odd number of negative edges in eight real-world data sets and one synthetic

model. We observe that |∆u| is never zero, and that in some cases, the percentage of

unbalanced triangles (the last column) is quite large, such as in Sampson’s network

of novices and the simulated SSBM(n = 5000, K = 5, p = 0.1, ρ = 1.5) (“Syn"

in Table 2.1, SSBM is defined in Section 2.4.1). The relative high proportion of

unbalanced triangles sparks our novel approach. SSSNET holds a neutral attitude

towards the relationship between v1 and v3. In contrast to social balance theory,

our definition of “friends” and “enemies” is based on the set of paths within a given

length between any two nodes. For a target node vj to be a h-hop “friend" neighbor

of source node vi along a given path from vi to vj of length h, all edges on this
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path need to be positive. For a target node vj to be an h-hop “enemy" neighbor

of source node vi along a given path from vi to vj of length h, exactly one edge

on this path has to be negative. Otherwise, vi and vj are neutral to each other

on this path. For directed networks, only directed paths are taken into account,

and the friendship relationship is no longer symmetric.

Figure 2.2 illustrates five different paths of length four, connecting the source

and the target nodes. We can also obtain the relationship of a source node to

a target node within a path by reversing the arrows in Figure 2.2. Note that

it is possible for a node to be both a “friend" and an “enemy" to a source node

simultaneously, as there might be multiple paths between them, with different

resulting relationships. Our model aggregates these relationships by assigning

different weights to different paths connecting two nodes. For example, the source

node and target node may have all five paths shown in Figure 2.2 connecting them.

Since the last two paths are neutral paths and do not cast a vote on their relationship,

we only take the top three paths into account. We refer to the long-range neighbors

whose information would be considered by a node as the contributing neighbors

with respect to the node of interest.

Positive link

Negative link

Friend to the 
source node

Enemy to the 
source node

Neutral to 
the source 
node

Source node

𝑠

𝑠

𝑠

𝑠

𝑠

𝑡

𝑡

𝑡

𝑡

𝑡

Figure 2.2: Example: five paths between the source (s) and target (t) nodes, and
resulting relationships. While we assume a neutral relationship on the last two paths,
social balance theory claims them as "friend" and "enemy", respectively.
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2.3.3 Signed Mixed-Path Aggregation (SIMPA)

SIMPA aggregates neighbor information from contributing neighbors within h hops,

by a weighted average of the embeddings of the up-to-h-hop contributing neighbors of

a node, with the weights constructed in analogy to a random walk on the set of nodes.

SIMPA Matrices

First, we row-normalize the positive and negative parts of the adjacency matrix,

A+ and A−, to obtain matrices As+ and As−, respectively. Inspired by the

regularization discussed in [71], we add a weighted self-loop to each node and carry

out the normalization by setting As+ = (D̃
s+

)−1Ãs+, where Ãs+ = A+ + τ+I and

the diagonal matrix D̃s+(i, i) = ∑
j Ãs+(i, j), for some τ+ ≥ 0; similarly, we row-

normalize As− to obtain As− based on τ−. Next, we explore multi-hop neighbors by

taking powers or mixed powers of As+ and As−
. The h-hop “friend" neighborhood

can be computed directly from (As+)h, the h power of As+. Similarly, the h-hop

“enemy" neighborhood can be computed directly from the mixed powers of h− 1

terms of As+
, and exactly one term of As−

. As multiplication of As+ and As− may

not necessarily commute, we keep all h “enemy" neighborhood matrices to aggregate

“enemy" information. We denote the set of up-to-h-hop “friend" neighborhood

matrices as As+,h = {(As+)h1 : h1 ∈ {0, · · · , h}}, where (As+)0 = I, the identity

matrix, and the set of up-to-h-hop “enemy" neighborhood matrices as

As−,h =
{
(As+)h1 ·As− · (As+)h2 : h1, h2 ∈ H

}
with H = {(h1, h2) : h1, h2 ∈ {0, . . . , h − 1}, h1 + h2 ≤ h − 1}. With added

self-loops, any h-hop neighbor defined by our matrices aggregates beliefs from

nearby neighbors. Since a node is not an enemy to itself, we set τ− = 0. We

use τ+ = τ = 0.5 in our experiments.

When the signed network is directed, we additionally carry out ℓ1 row nor-

malization and calculate mixed powers for (A+)T and (A−)T . We denote the

row-normalized adjacency matrices for target positive and negative as At+ and

At−
, respectively. Likewise, we denote the set of up-to-h-hop target “friend" (resp.

“enemy") neighborhood matrices as At+,h (resp. At−,h).
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Feature Aggregation Based on SIMPA

Next, we define four feature-mapping functions for source positive, source negative,

target positive and target negative embeddings, respectively. A source positive

embedding of a node is the weighted combination of its contributing neighbors’

hidden representations, for neighbors up to h hops away. The source positive hidden

representation is denoted as Hs+
V ∈ Rn×d. Assume that each node in V has a

vector of features and summarize these features in the input feature matrix XV .

The source positive embedding Zs+
V is given by

Zs+
V =

∑
M∈As+,h

ωs+
M ·M ·Hs+

V ∈ Rn×d, (2.1)

where for each M, ωs+
M is a learnable scalar, and d is the embedding dimension. In

our experiments, we use Hs+
V = MLP(s+,l)(XV). The hyperparameter l controls the

number of layers in the multilayer perceptron (MLP) with ReLU activation; we fix

l = 2 throughout. Each layer of the MLP has the same number d of hidden units.

The embeddings Zs−
V , Zt+

V and Zt−
V for source negative embedding, target positive

embedding and target negative embedding, respectively, are defined similarly.

Different parameters for the MLPs for different embeddings are possible. We

concatenate the embeddings to obtain the final node embedding as a n×(4d) matrix

ZV = CONCAT
(
Zs+

V , Zs−
V , Zt+

V , Zt−
V

)
. The embedding vector zi for a node vi, is the

ith row of ZV , namely zi := (ZV)(i,:) ∈ R4d. Next we apply a linear layer to ZV so that

the resulting matrix has the same number of columns as the number K of clusters.

We apply the unit softmax function to map each row to a probability vector pi ∈ RK

of length equal to the number of clusters, with entries denoting the probabilities of

each node to belong to each cluster. The resulting probability matrix is denoted as

P ∈ Rn×K . If the input network is undirected, it suffices to find As+,h and As−,h,

and we obtain the final embedding as ZV = CONCAT
(
Zs+

V , Zs−
V

)
∈ Rn×(2d).

2.3.4 Loss, Overview & Complexity Analysis

Node clustering is optimized to minimize a loss function which pushes embeddings

of nodes within the same cluster close to each other, while driving apart embeddings
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of nodes from different clusters. We first introduce a novel self-supervised loss

function for node clustering, then discuss supervised loss functions when labels

are available for some seed nodes.

Probabilistic Balanced Normalized Cut Loss

For a clustering (C0, . . . CK−1), let {x0, · · · , xK−1} denote the cluster indicator vectors

so that xk(i) = 1 if node i is in cluster Ck, and 0 otherwise. Let L+ = D+ −A+

denote the unnormalized graph Laplacian for the positive part of A, where D+

is a diagonal matrix whose diagonal entries are row-sums of A+. Then xT
k L+xk

measures the total weight of positive edges linking cluster Ck to other clusters.

Further, xT
k A−xk measures the total weight of negative edges within cluster Ck.

Since D+ −A = D+ −A+ + A−, then xT
k (L+ + A−)xk = xT

k (D+ −A)xk measures

the total weight of the unhappy edges with respect to cluster Ck; “unhappy edges"

violate their expected signs (positive edges across clusters or negative edges within

clusters). The loss function in this paper is related to the (non-differentiable)

Balanced Normalized Cut (BNC) [51]. In analogy, we introduce the differentiable

Probabilistic Balanced Normalized Cut (PBNC) loss

LPBNC =
K∑

k=1

(P(:,k))T (D+ −A)P(:,k)

(P(:,k))T DP(:,k)
, (2.2)

where P(:,k) denotes the kth column of the probability matrix P and Dii = ∑n
j=1 |Aij|.

As column k of P is a relaxed version of xk, the numerator in Eq. (2.2) is a

probabilistic count of the number of unhappy edges.

Supervised Loss

When some seed nodes have known labels, a supervised loss can be added to the

loss function. For nodes in Vseed, we use as a supervised loss function similar to that

in [22], the sum of a cross-entropy loss LCE and a triplet loss. The triplet loss is

Ltriplet = 1
|T |

∑
(vi,vj ,vk)∈T

ReLU(CS(zi, zj)− CS(zi, zk) + α), (2.3)

where T ⊆ Vseed × Vseed × Vseed is a set of node triplets: vi is an anchor seed node,

and vj is a seed node from the same cluster as the anchor, while vk is from a different
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cluster. Here, CS(zi, zj) is the cosine similarity of the embeddings of nodes vi and

vj, chosen so as to avoid sensitivity to the magnitude of the embeddings. α ≥ 0

is the contrastive margin as in [22]. LCE + γtLtriplet forms the supervised part of

the loss function for SSSNET, for a suitable parameter γt > 0.

Overall Objective Function and Framework Overview

By combining LCE, Eq. (2.2), and Eq. (2.3), the objective function minimizes

L = LPBNC + γs(LCE + γtLtriplet), (2.4)

where γs, γt > 0 are weights for the supervised part of the loss and triplet loss,

respectively. The final embedding can then be used, for example, for node clustering.

A linear layer coupled with a unit softmax function turns the embedding into a

probability matrix. A node is assigned to the cluster for which its membership

probability is highest. Figure 2.1 gives an overview.

Complexity Analysis

The matrix operations in Eq. (2.1) appear to be computationally expensive and

space unfriendly. However, SSSNET resolves these concerns via a sparsity-aware

implementation, detailed in Algorithm 1 in SI A.3.1, without explicitly calculating

the sets of powers, maintaining sparsity throughout. Therefore, for input feature

dimension din and hidden dimension d, if d′ = max(din, d) ≪ n, time and space

complexity of SIMPA, and implicitly SSSNET, is O(|E|d′h2 + 4nd′K) and O(4|E|+

10nd′ + nK), respectively [72]. For large networks, SIMPA is amenable to a more

scalable version following [73].

2.4 Experiments

This section describes the synthetic and real-world data sets used in this study, and

illustrates the efficacy of our method. When ground truth is available, performance

is measured by the Adjusted Rand Index (ARI) [23]. When no labels are provided,

we measure performance by the ratio of number of “unhappy edges" to that of

all edges. Our self-supervised loss function is applied to the subgraph induced by
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all training nodes. We do not report Normalized Mutual Information (NMI) [74]

performance in Figure 2.5 (but reported in SI A.1.1 ) as it has some shortcomings

[75], and results from the ARI and NMI from our synthetic experiments indeed

yield almost the same ranking for the methods, with average Kendall tau 0.808

and standard deviation 0.233.

2.4.1 Data
Synthetic Data: Signed Stochastic Block Models (SSBM)

A Signed Stochastic Block Model (SSBM) for a network on n nodes with K blocks

(clusters), is constructed similar to [52] but with a more general cluster size definition.

In our experiments, we choose the number of clusters, the (approximate) ratio, ρ,

between the largest and the smallest cluster size, sign flip probability, η, and the

number, n, of nodes. To tackle the hardest clustering task, all pairs of nodes within

a cluster and those between clusters have the same edge probability, with more

details in SI A.2.1. Our SSBM model can be represented by SSBM(n, K, p, ρ, η).

Synthetic Data: Polarized SSBMs

In a polarized SSBM model, SSBMs are planted in an ambient network; each block

of each SSBM is a cluster, and the nodes not assigned to any SSBM form an

ambient cluster. The polarized SSBM model that creates communities of SSBMs, is

generated as follows: • (1) Generate an Erdős-Rényi graph with n nodes and edge

probability p, whose sign is set to ±1 with equal probability 0.5. • (2) Fix nc as the

number of SSBM communities, and calculate community sizes N1 ≤ N2 ≤ · · · ≤ Nr,

for each of the r communities as in Section 2.4.1, such that the ratio of the largest

block size to the smallest block size is approximately ρ, and the total number

of nodes in these SSBMs is N × nc. • (3) Generate r SSBM models, each with

Ki = 2, i = 1, . . . , r blocks, number of nodes according to its community size, with

the same edge probability p, size ratio ρ, and flip probability η. • (4) Place the

SSBM models on disjoint subsets of the whole network; the remaining nodes not

part of any SSBM are dubbed as ambient nodes.
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Figure 2.3: A polarized SSBM model with 1050 nodes, r = 3 polarized communities of
sizes 161, 197, and 242; ρ = 1.5, default SSBM community size N = 200, p = 0.5, η = 0.05,
and each SSBM has K1 = K2 = K3 = 2 blocks, rendering K = 7.

Therefore, while the total number of clusters in an SSBM equals the number

of blocks, the total number of clusters within a polarized SSBM model equals

K = 1 + ∑r
i=1 Ki = 1 + 2r. In our experiments, we also assume the existence

of an ambient cluster. The resulting polarized SSBM model is denoted as Pol-

SSBM (n, r, p, ρ, η, N). The setting in [69] can be construed as a special case

of our model, see SI B.2.

Figure 2.3 gives a visualization of a polarized SSBM model with 1050 nodes,

p = 0.5, η = 0.05, N = 200, with 3 SSBMs of K = 2 blocks each, ρ = 1.5. The

sorted adjacency matrix has its rows and columns sorted by cluster membership,

starting with the ambient cluster. With ρ = 1.5, the largest SSBM community

has size 242, while the smallest has size 161, as 242
161 ≈ 1.5 = ρ. For n = 1050, the

default size of a SSBM community is N = 200. For n = 5000 (resp, n = 10000)

we consider N = 500 (resp. N = 2000).

Real-World Data

We perform experiments on six real-world signed network data sets (Sampson [37],

Rainfall [76], Fin-YNet, S&P 1500 [77], PPI [78], and Wiki-Rfa [79]), summarized

in Table 2.1. Sampson, as the only data set with given node attributes (1D
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“Cloisterville" binary attribute), cover four social relationships, which are combined

into a network; Rainfall contains Australian rainfalls pairwise correlations; Fin-YNet

consists of 21 yearly financial correlation networks and its results are averaged;

S&P1500 is a correlation network of stocks during 2003-2005; PPI is a signed

protein-protein interaction network; Wiki-Rfa describes voting information for

electing Wikipedia managers.

We use labels given by each data set for Sampson (5 clusters), and sector

memberships for S&P 1500 and Fin-YNet (10 clusters). For Rainfall, with 6

clusters, we use labels from SPONGE as proxy for ground truth to carry out semi-

supervised learning. For other data sets with no “ground-truth" labels available,

we train SSSNET in a self-supervised manner, using all nodes to train. By

exploring performance on SPONGE, we set the number of clusters for Wiki-Rfa

as three, and similarly ten for PPI. Additional details concerning the data and

preprocessing steps are available in SI B.3.
Table 2.1: Summary statistics for the real-world networks and one synthetic model.
Here n is the number of nodes, |E+| and |E−| denote the number of positive and negative
edges, respectively. |∆u| counts the number of unbalanced triangles (with an odd number
of negative edges). The violation ratio |∆u|

|∆| (%) is the percentage of unbalanced triangles
in all triangles, i.e., 1 minus the Social Balance Factor from [80].

Data set n |E+| |E−| |∆u| |∆u|
|∆| (%)

Sampson 25 129 126 192 37.16
Rainfall 306 64,408 29,228 1,350,756 28.29
Fin-YNet 451 14,853 5,431 408,594 26.97
S&P 1500 1,193 1,069,319 353,930 199,839 28.15
PPI 3,058 7,996 3,864 94 2.45
Syn 5,000 510,586 198,6224 9,798,914 47.20
Wiki-Rfa 7,634 136,961 38,826 79,911,143 28.23

2.4.2 Experimental Results

In our experiments, we compare SSSNET against nine state-of-the-art spectral

clustering methods in signed networks mentioned in Sec. 2.2. These methods

are based on: (1) the symmetric adjacency matrix A∗ = 1
2(A + (A)T ), (2) the

simple normalized signed Laplacian L̄sns = D̄−1(D+−D−A∗) and (3) the balanced

normalized signed Laplacian L̄bns = D̄−1(D+ −A∗) [63], (4) the Signed Laplacian
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Figure 2.4: Hyperparameter analysis (a,b) and ablation study (c-f). Figures (a-e)
pertain to Pol-SSBM(n = 1050, r = 2, p = 0.1, ρ = 1.5), while Figure (f) is for
an SSBM(n = 1000, η = 0, p = 0.01, ρ = 1.5) model with changing K. Figure (d)
compares“unhappy ratio" while the others compare the test ARI.
matrix L̄ of A∗, (5) its symmetrically normalized version Lsym [50], and the two

methods from [51] to optimize the (6) Balanced Normalized Cut and the (7) Balanced

Ratio Cut, (8) SPONGE and (9) SPONGE_sym introduced in [52], where the

diagonal matrices D̄, D+ and D− have entries as row-sums of (A∗)+ + (A∗)−, (A∗)+

and (A∗)−, respectively. In our experiments, the abbreviated names of these

methods are A, sns, dns, L, L_sym, BNC, BRC, SPONGE, and SPONGE_sym,

respectively. The implementation details are in SI A.3.

Hyperparameter selection is done via greedy search. Figure 2.4 (a-b) compare

the performance of SSSNET on a Pol-SSBM(n = 1050, r = 2, p = 0.1, ρ = 1.5)

model under different settings. We conclude from (a) that as we increase the number

of hops to consider, performance drops, which might be explained by too much

noise introduced. From (b), we find that the best γt in our candidates is 0.1. See

also SI A.3.4. Our default setting is h = 2, d = 32, τ = 0.5, γs = 50, γt = 0.1, α = 0.

Unless specified otherwise, we use 10% of all nodes from each cluster as test

nodes, 10% as validation nodes to select the model, and the remaining 80% as

Printed on June 7, 2024



2. SSSNET: Semi-Supervised Signed Network Clustering 30

0.00 0.05 0.10 0.15 0.20
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

AR
I

SSBM n=1000.p=0.01.K=5. =1.5.

A
sns
dns
L
L_sym
BNC
BRC
SPONGE
SPONGE_sym
SSSNET

(a) SSBM(n =
1000, K = 5, p =

0.01, ρ = 1.5)

0.0 0.1 0.2 0.3
0.0

0.2

0.4

0.6

0.8

1.0

AR
I

SSBM n=5000.p=0.01.K=5. =1.5.

(b) SSBM(n =
5000, K = 5, p =

0.01, ρ = 1.5)

0.0 0.1 0.2 0.3 0.4

0.0

0.2

0.4

0.6

0.8

1.0

AR
I

SSBM n=10000.p=0.01.K=5. =1.5.

(c) SSBM(n =
10000, K = 5, p =

0.01, ρ = 1.5)

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0.0

0.2

0.4

0.6

0.8

1.0

AR
I

SSBM n=30000.p=0.001.K=5. =1.5.

(d) SSBM(n =
30000, K = 5, p =

0.001, ρ = 1.5)

0.00 0.05 0.10 0.15 0.20 0.25
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

AR
I

polarized n=1050.p=0.1.Nc=2. =1.

(e)
Pol-SSBM(n =
1050, r = 2, p =

0.1, ρ = 1)

0.00 0.05 0.10 0.15 0.20
0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

AR
I

polarized n=5000.p=0.1.Nc=3. =1.5.

(f)
Pol-SSBM(n =
5000, r = 3, p =

0.1, ρ = 1.5)

0.00 0.05 0.10 0.15 0.20 0.25
0.0

0.2

0.4

0.6

0.8

1.0

AR
I

polarized n=5000.p=0.1.Nc=5. =1.5.

(g)
Pol-SSBM(n =
5000, r = 5, p =

0.1, ρ = 1.5)

0.0 0.1 0.2 0.3 0.4
0.0

0.2

0.4

0.6

0.8

AR
I

polarized n=10000.p=0.01.Nc=2. =1.5.

(h)
Pol-SSBM(n =
10000, r = 2, p =

0.01, ρ = 1.5)
Figure 2.5: Node clustering test ARI comparison on synthetic data. Dashed lines
highlight SSSNET’s performance. Error bars indicate one standard error.

training nodes, 10% of which as seed nodes. We train SSSNET for at most 300

epochs with a 100-epoch early-stopping scheme. As Sampson is small, 50% nodes

are training nodes, 50% of which are seed nodes, and no validation nodes; we train 80

epochs and test on the remaining 50% nodes. For S&P 1500, Fin-YNet and Rainfall,

we use 90% nodes for training, 10% of which as seed nodes, and no validation nodes

for 300 epochs. If node attributes are missing, SSSNET stacks the eigenvectors

corresponding to the largest K eigenvalues of the symmetrized adjacency matrix
1
2(A + AT ) as XV for synthetic data, and the eigenvectors corresponding to the

smallest K eigenvalues of the symmetrically normalized Signed Laplacian [81] of
1
2(A + AT ) for real-world data. Numerical results are averaged over 10 runs; error

bars indicate one standard error.

Node Clustering Results on Synthetic Data

Figure 2.5 compares the numerical performance of SSSNET with other methods on

synthetic data. We remark that SSSNET gives state-of-the-art test ARIs on a wide

range of network densities and noise levels, on various network scales, especially for

polarized SSBMs. SI A.1.1 provides more results with different measures.
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Table 2.2: Clustering performance on real-world data sets; best is in bold red , and
2nd in underline blue . The first 3 rows are test ARIs, the 4th “ARI distance to best",
the rest are unhappy ratios (%).
Data set A sns dns L L_sym BNC BRC SPONGE SPONGE_sym SSSNET

Sampson 0.32±0.10 0.15±0.09 0.33±0.10 0.16±0.05 0.35±0.09 0.32±0.12 0.21±0.11 0.36±0.11 0.34±0.11 0.55±0.07
Rainfall 0.61±0.08 0.28±0.03 0.65±0.04 0.46±0.06 0.58±0.07 0.62±0.05 0.47±0.05 N/A 0.75±0.09 0.76±0.13

S&P 1500 0.21±0.00 0.00±0.00 0.05±0.01 0.06±0.00 0.24±0.00 0.04±0.00 0.00±0.00 0.30±0.00 0.34±0.00 0.66±0.00

Fin-YNet 0.22±0.09 0.37±0.12 0.32±0.10 0.33±0.10 0.22±0.09 0.32±0.09 0.33±0.11 0.20±0.08 0.16±0.07 0.00±0.00

PPI 57.59±0.5546.82±0.0146.79±0.0446.91±0.0347.05±0.0446.63±0.0452.11±0.42 47.57±0.00 46.39±0.10 17.64±0.84
Wiki-Rfa 50.05±0.0323.28±0.0023.28±0.0023.28±0.0036.95±0.0123.28±0.0023.49±0.00 29.63±0.01 23.26±0.00 23.27±0.14

Node Clustering Results on Real-World Data

As Table 2.2 shows, SSSNET yields the most accurate cluster assignments on S&P

1500, and Sampson in terms of test ARI, compared to baselines. When using labels

from SPONGE to conduct semi-supervised training, SSSNET also achieves the

most accurate test ARI. The N/A entry for SPONGE denotes that we use it as

“ground-truth", so do not compare SSSNET against SPONGE on Rainfall. “ARI

dist. to best" on Fin-YNet considers the average distance of test ARI performance

to the best average test ARI for each of the 21 years, and then obtains mean

and standard deviation over the 21 distances for each method. We conclude that

SSSNET produces the highest test ARI for all 21 years. For data sets without labels,

we compare SSSNET with other methods in terms of “unhappy ratio", the ratio

of unhappy edges. We conclude that SSSNET gives comparable and often better

results on these data sets, in a self-supervised setting. SI A.1.2 extends the results.

Ablation Study

In Figure 2.4, (c-e) rely on Pol-SSBM(n = 1050, r = 2, p = 0.1, ρ = 1.5), while (f)

is based on an SSBM(n = 1000, η = 0, p = 0.01, ρ = 1.5) model with varying K. (c)

explores the influence of increasing seed ratio, and validates our strength in using

labels. (d) assesses the impact of removing the self-supervised loss LPBNC from

Eq. (2.4). Lower values of the “unhappy ratio" with LPBNC reveal that including

the self-supervised loss in Eq. (2.4) can be beneficial.

Figure 2.4 (e) compares the performance for h = 2 by replacing SIMPA with

an aggregation scheme based on social balance theory, which also considers a

path of length two with pure negative links as a path of friendship. The ARI for
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SSSNET is larger than the one for the corresponding method which would adhere

to social balance theory, thus further validating our approach. Figure 2.4 (f) further

illustrates the influence of the violation ratio, as percentage (the last column in

Table 2.1) on the performance gap between a variant based on social balance theory

and our model. As K increases, the violation ratio grows, and we witness a larger

gap in test ARI performance, suggesting that social balance theory becomes more

problematic when there are more violations to its assumption that “an enemy’s

enemy is a friend". We conclude that this social balance theory modification not

only complicates the calculation by adding one more scenario of friendship, but

can also decrease the test ARI. Finally, as we increase the ratio of seed nodes, we

witness an increase in test ARI performance, as expected.

2.5 Conclusion and Future Work

SSSNET provides an end-to-end pipeline to create node embeddings and carry

out signed clustering, with or without available additional node features, and with

an emphasis on polarization. It would be interesting to apply the method to

more networks without ground truth, as is often done in community detection,

and relate the resulting clusters to exogenous information. As another future

direction, instead of specifying the number of clusters, we would like to extend

our framework to also detect the number of clusters, see e.g., [82]. Other future

research directions will address the performance in the very sparse regime, where

spectral methods underperform and various regularization techniques have been

proven to be effective both on the theoretical and experimental fronts; for example,

see the regularization in the sparse regime for the unsigned [83, 84] and signed

clustering settings [85]. Applying signed clustering to cluster multivariate time

series, and leveraging the uncovered clusters for the time series prediction task, by

fitting the model of choice for each individual cluster, as in [86], is a promising

extension. Finally, adapting our pipeline for constrained clustering, a popular task

in the semi-supervised learning [87], is worth exploring.
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3
DIGRAC: Digraph Clustering Based on

Flow Imbalance

3.1 Introduction

Revealing an underlying community structure of directed networks (digraphs) is

an important problem in many applications, see for example [88] and [89], such as

detecting influential social groups [4] and analyzing migration patterns [36]. While

most existing methods that could be applied to directed clustering use local edge

densities as main signal and directionality (i.e, edge orientation) as additional signal,

we argue that even in the absence of any edge density differences, directionality

can play a vital role in directed clustering as it can reveal latent properties of

network flows. The underlying intuition is that homogeneous clusters of nodes form

meta-nodes in a meta-graph, with the meta-graph directing the flow between clusters;

directed core-periphery structure is such an example [90]. Loosely speaking, a meta-

node is a collection of nodes, and a meta-graph is a graph on such meta-nodes, with

weighted edges collecting the overall sum of edge weights between the meta-nodes.

Fig. 3.1(a) is an example of flow imbalance between two clusters, here on an

unweighted network for simplicity: while 80% of the edges flow from the Transient

cluster to the Sink cluster, only 20% flow in the other direction. As a real-world

example, Fig. 3.1(b) shows the strongest flow imbalances between clusters detected
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Figure 3.1: Visualization of cut flow imbalance and meta-graph: (a) 80% of edges flow
from Transient to Sink, while 20% of edges flow in the opposite direction; (b) top pair
imbalanced flow on Migration data [36]: most edges flow from red (1) to blue (2); (c)
& (d) are for a Directed Stochastic Block Model with a cycle meta-graph with ambient
nodes, for a total of 5 clusters. Most edges flow in direction 0→ 1→ 2→ 3→ 0, while
few flow in the opposite direction. Cluster 4 is the ambient cluster. In (a) and (c), blue
lines indicate flows with random, equally likely directions; these flows do not exist in the
meta-graph adjacency matrix F. For (d), the lighter the color, the stronger the flow.

by our method in a network of US migration flow [36]; most edges flow from the

red cluster (label 1) to the blue one (label 2). Figures 3.1(c-d) show examples on a

synthetic meta-graph. We could also think of a social network in which a set of fake

accounts A have been created, and these target another subset B of real accounts

by sending them messages. Most likely, there would be many more messages from

A to B than from B to A, hinting that A is most likely comprised of fake accounts.

Thus, instead of finding relatively dense groups of nodes in digraphs with a

relatively small amount of flow between the groups, as in [91–96], our main goal is to

recover clusters with strongly imbalanced flow among them, in the spirit of [97, 98],

where directionality is the main signal. This task is not addressed by most methods

for node clustering in digraphs, including community detection methods. Those

methods that do lay emphasis on directionality are usually spectral methods, for

which incorporating features is non-trivial, or graph neural network (GNN) methods

that require labeling information. An exception is the network community detection

method InfoMap [99] which uses directed random walks; however, it still relies on

some edge density information within clusters, as a walk is more likely to happen
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when the density is higher. [100] and [101] employ Markov chains, but we pick

InfoMap as a representative for methods based on information theory/Markov chains.

Here we introduce DIGRAC, a GNN framework to obtain node embeddings for

clustering digraphs (allowing weighted edges and self-loops but no multiple edges).

In a self-supervised manner, a novel probabilistic imbalance loss is proposed to act

on the digraph induced by all training nodes. The global imbalance score, one minus

whom is the self-supervised loss function, is aggregated from pairwise normalized

cut imbalances. The method is end-to-end in combining embedding generation

and clustering without an intermediate step. To the best of our knowledge, this is

the first GNN method which derives node embeddings for digraphs that directly

maximizes flow imbalance between pairs of clusters. With an emphasis on the use of

a direction-based flow imbalance objective, experimental results on synthetic data

and real-world data at different scales demonstrate that our method can achieve

leading performance for a wide range of network densities and topologies.

DIGRAC’s main novelty is the ability to cluster based on direction-based flow

imbalance, instead of using classical criteria such as maximizing relative densities

within clusters. Compared with prior methods that focus on directionality, DIGRAC

can easily consider node features and also does not require known node clustering

labels. DIGRAC complements existing approaches in various aspects: (1) Our

results show that DIGRAC complements classical community detection by detecting

alternative patterns in the data, such as meta-graph structures, which are otherwise

not detectable by existing methods. This aspect of detecting novel structures

in directed graphs has also been emphasized in [97]. (2) DIGRAC complements

existing spectral methods, through the possibility of including exogenous information,

in the form of node-level features or labels, thus borrowing their strength. (3)

DIGRAC complements existing GNN methods by introducing an imbalance-based

objective. (4) DIGRAC introduces imbalance measures for evaluation when ground-

truth is unavailable.

DIGRAC’s applicability extends beyond settings where the input data is a

digraph: with time series data as input, the digraph construction mechanism
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can accommodate any procedure that encodes a pairwise directional association

between the corresponding time series, such as lead-lag relationships and Granger

causality [102], with applications such as in the analysis of information flow in brain

networks [103], biology [104], finance [105, 106] and earth sciences [107]. DIGRAC

could also facilitate tasks in ranking [30] and anomaly detection [108–110], as it

allows one to extrapolate from local pairwise (directed) interactions to a global

structure inference, in the high-dimensional low signal-to-noise ratio regime.

Main contributions. Our main contributions are as follows.

1. We propose a GNN framework for self-supervised end-to-end node clustering

on (possibly attributed and weighted) digraphs explicitly taking into account

the directed flow imbalance.

2. We propose a family of probabilistic global imbalance scores to serve as the

self-supervised loss function and evaluation objective, including one based on

hypothesis testing for directionality signal. To the best of our knowledge, this

is the first method directly maximizing flow imbalance for node clustering in

digraphs using GNNs.

3. We extend our method to the semi-supervised setting when label information

is available.

3.2 Related Work

Directed clustering has been explored by non-GNN methods. [111] performs directed

clustering that hinges on symmetrizations of the adjacency matrix, but is not

scalable as it requires large matrix multiplications. [112] proposes a spectral co-

clustering algorithm for asymmetry discovery that relies on in-degree and out-degree.

Whenever direction is the sole information, such as in a complete network with

a lead-lag structure derived from time series [105], a purely degree-based method

cannot detect the clusters. While [9] produces two partitions of the node set, one

based on out-degree and one based on in-degree, our partition simultaneously takes
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both directions into account. The directed graph Laplacians introduced by [89] are

only applicable to strongly connected digraphs, which is rarely the case in sparse

networks arising in applications. InfoMap by [99] assumes that there is a “map”

underlying the network, similar to a meta-graph in DIGRAC. InfoMap aims to

minimize the expected description length of a random walk and is recommended for

networks where edges encode patterns of movement among nodes. While related

to DIGRAC, InfoMap still relies on some amount of density-based signal being

present within each of the modules. [97] seeks to uncover clusters characterized

by a strongly imbalanced flow circulating among them, based on eigenvectors

of the Hermitian matrix (A − AT ) · i, where A is the (normalized) adjacency

matrix and i the imaginary unit. [97] is a purely spectral-based method and is

not able to naturally incorporate any available node features or label information;

in contrast, DIGRAC is a GNN-based method that is naturally able to account

for such information. Moreover, [97] is not driven by an optimization function,

but only proposes evaluation metrics that capture the imbalance of the pairs of

clusters. In contrast, inspired by [97], in DIGRAC a family of novel imbalance loss

functions is proposed, with a probabilistic interpretation, rendering DIGRAC a fully

trainable end-to-end pipeline. Furthermore, the rich class of imbalance evaluation

and training objectives/losses proposed in this paper go far beyond the evaluation

metrics considered in [97]. [98] uncovers higher-order structural information among

clusters in digraphs, while maximizing the imbalance of the edge directions, but its

definition of the flow ratio restricts the underlying meta-graph to a path.

GNNs have been applied to digraph node classification, which is similar to

digraph clustering but requires known clustering labels. [113] uses first and second-

order proximity, and constructs three Laplacians, but the method is space and speed-

inefficient. [114] simplifies [113], builds a directed Laplacian based on PageRank,

and aggregates information dependent on higher-order proximity. Building on

[97, 115], [6] constructs a Hermitian matrix that encodes undirected geometric

structure in the magnitude of its entries, and directional information in their phase.

[116] introduces a digraph data augmentation method called Laplacian perturbation
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and conducts digraph contrastive learning. [117] proposes a spectral-based graph

convolution network for digraphs, yet is restricted to strongly connected digraphs

that are usually not realistic. [118] utilizes convolution-like anisotropic filters based

on local subgraph structures (motifs) for semi-supervised node classification tasks in

digraphs, but relies on pre-defined structures and fails to handle complex networks.

In particular, [6, 113, 114, 116, 118] all require known labels, which are not

generally available for real-world data. [89, 97, 98, 111, 112] could not trivially

incorporate node attributes or node labels. In contrast, we propose an efficient

GNN-based method that maximizes a probablistic flow imbalance objective, in a self-

supervised manner, and which can naturally analyze attributed weighted digraphs.

To avoid potential misunderstanding, we briefly mention several related works

that we are aware of but do not compare against in our experiments in the main

text. While DIGRAC addresses the task of partitioning the nodes into disjoint

sets, [119] locates a certain community within a network. In particular, [119]

proposes a local algorithm while this paper proposes a global one. OSLOM by

[120] is very flexible but based on a density heuristic and hence a comparison to

DIGRAC on networks without density signal would not be fair, to begin with. [121]

introduces directionality in the Louvain algorithm. This algorithm optimizes a

modularity-type function that compares the number of edges within communities

to the expected number of edges under a specified model. It is thus an approach

that aims to find denser-than-expected groups of vertices. When all groups have

the same density, as in our synthetic data sets, and the only structure lies in the

directionality of the edges, this method simply cannot be expected to perform well.

The Leiden algorithm in [10] also builds on the Louvain method, again optimizing

a modularity-type function that compares the number of edges within communities

to the expected number of edges under a specified model. It is a powerful method

for that task, but cannot be fairly compared to DIGRAC which is tailored to find

imbalances. As confirmed by our experiments in Appendix (App.) B.5, comparing

these methods to DIGRAC is not appropriate.
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We also do not compare DIGRAC against graph pooling methods [122], which

are inspired by pooling in CNNs and developed to discard information that is

superfluous for the task at hand, as a partition of the nodes which can be interpreted

as clustering is only a byproduct. Moreover, graph pooling methods are usually

developed only for undirected networks. While graph matching as in [123–125] and

[126] can be viewed as a clustering method of networks, matching the graph of

interest to a disconnected graph by connecting each node in the observed graph

with an isolated node of the disconnected graph, this approach is not developed for

directed networks. The underlying idea of these papers is complementary to the

meta-graph idea which underpins DIGRAC; in the meta-graph, the components

are connected, and estimating the directionality of these connections is the main

focus. Hence this work addresses a very different task. We emphasize that these

are all excellent methods, but they address different objectives and tasks. DIGRAC

is tailored to detect an imbalance signal in directed networks, and such a signal

cannot be present in an undirected network. As it is based on imbalance, DIGRAC

will not be able to detect a signal in an undirected network, thus rendering it

not applicable to undirected networks.

3.3 The DIGRAC Framework

Problem definition. Denote a (possibly weighted) digraph with node attributes

as G = (V , E , w, X), with V the set of nodes, E the set of directed edges or links,

and w ∈ [0,∞)|E| the set of edge weights. G may have self-loops, but no multiple

edges. The number of nodes is n = |V|, and X ∈ Rn×din is a matrix whose rows

encode the nodes’ attributes. Such a network can be represented by the attribute

matrix X and the adjacency matrix A = (Aij)i,j∈V , with Aij = 0 if no edge exists

from vi to vj; if there is an edge e from vi to vj, we set Aij = we, the edge weight.

Digraphs often lend themselves to interpreting weighted directed edges as flows,

with a meta-graph on clusters of vertices describing the overall flow directions;

see Fig. 3.1. A clustering is a partition of the set of nodes into K disjoint sets

(clusters) V = C0 ∪ C1 ∪ · · · ∪ CK−1 (ideally, K ≥ 2). Intuitively, nodes within
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a cluster should be similar to each other with respect to flow directions, while

nodes across clusters should be dissimilar. In a self-supervised setting, only the

number of clusters K is given. In a semi-supervised setting, for each of the K

clusters, a fraction set Vseed ⊆ Vtrain ⊂ V of the set Vtrain of all training nodes

is selected to serve as the set of seed nodes, for which the cluster membership

labels are known before training. The goal of semi-supervised clustering is to

assign each node v ∈ V to a cluster containing some known seed nodes, without

knowledge of the underlying flow meta-graph. The corresponding self-supervised

clustering task does not use seed nodes.

3.3.1 Self-Supervised Loss for Clustering

Our self-supervised loss function is inspired by [97], aiming to cluster the nodes

by maximizing a normalized form of cut imbalance across clusters. We first define

probabilistic versions of cuts, imbalance flows, and probabilistic volumes. For K

clusters, the assignment probability matrix P ∈ Rn×K has as row i the probability

vector P(i,:) ∈ RK with entries denoting the probabilities of each node to belong

to each cluster; its kth column is denoted by P(:,k).

• ∀k, l ∈ {0, . . . , K − 1} where K ≥ 2, the probabilistic cut from cluster

Ck to Cl is defined as

W (Ck, Cl) =
∑
i,j

Ai,j ·Pi,k ·Pj,l = (P(:,k))T AP(:,l).

• The imbalance flow between Ck and Cl is defined as |W (Ck, Cl)−W (Cl, Ck)|.

For interpretability and ease of comparison, we normalize the imbalance flows to

obtain an imbalance score with values in [0, 1] as follows (we defer additional

details to App. B.2.2).

• The probabilistic volume for cluster Ck is defined as

V OL(Ck) = V OL(out)(Ck) + V OL(in)(Ck)

=
∑
i,j

(Aj,i + Ai,j) ·Pj,k
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Then V OL(Ck) ≥ W (Ck, Cl) for all l = 1, . . . , K − 1 and

min(V OL(Ck), V OL(Cl)) ≥ |W (Ck, Cl)−W (Cl, Ck)|. (3.1)

The imbalance term, which is used in most of our experiments, denoted

CIvol_sum, is defined as

CIvol_sum(k, l) = 2 |W (Ck, Cl)−W (Cl, Ck)|
V OL(Ck) + V OL(Cl)

∈ [0, 1]. (3.2)

In particular, for K = n, every node is a single cluster, and CIvol_sum(k, l) =1,

but then the partition is not informative. The aim is to find a partition that

maximizes the imbalance flow under the constraint that the partition has at least

two sets, to capture groups of nodes that could be viewed as representing clusters

in the meta-graph. The normalization by the volumes penalizes partitions that put

most nodes into a single cluster. The range [0, 1] follows from Eq. (3.1). Other

variants are discussed in App. B.2.3.

To obtain a global probabilistic imbalance score, based on CIvol_sum from

Eq. (3.2), we average over pairwise imbalance scores of different pairs of clusters.

Since the scores discussed are symmetric and the cut difference before taking

absolute value is skew-symmetric, we only need to consider the pairs in the set

T = {(Ck, Cl) : 0 ≤ k < l ≤ K − 1, k, l ∈ Z}.

A naive approach, which we call the “naive" variant, considers all possible(
K
2

)
pairwise cut imbalance values. However, due to potentially high noise levels

in certain data sets, one may only be interested in pairs that are not just noise

but exhibit true signals. To this end, we introduce a “std" variant, which only

considers pairwise cut imbalance values that are 3 standard deviations away from

the observed purely noisy imbalance values; the standard deviation is calculated

under the null hypothesis that the between-cluster relationship has no direction

preference, i.e. Fk,l = Fl,k (entries of the meta-graph adjacency matrix F to be

introduced later in this section), as follows.

Suppose two clusters Ck and Cl have only noisy links between them, with

no edge in the meta-graph F, i.e. Fkl = 0. Assume also that the underlying
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network is fixed in terms of the number of nodes and locations of edges; the

only randomness stems from the direction of the edges. Then we can provide

the following theoretical guarantee.

Proposition 1. Suppose that Ck and Cl are two clusters of nk and nl nodes,

respectively, with m(k, l) edges between them, edge weights wij = wji ∈ [0, 1] and

edge direction drawn independently at random with equal probability 1
2 for each

direction. We assume that the edge weights satisfy maxe |we|(
∑

e w2
e)− 1

2 = o(m(k, l)).

Then W (Ck, Cl)−W (Cl, Ck) is approximately normally distributed with mean 0 and

variance ||w||2 as m(k, l)→∞.

A consequence of Proposition 1, which is proved in App. B.2.1, is that under

its assumptions, approximately 99.7 % of the observations fall within 3 standard

deviations from 0. While Proposition 1 makes many assumptions and ignores

reciprocal edges, the resulting threshold is still a useful guideline for restricting

attention to pairwise imbalance values which are very likely to capture a true signal.

In particular, we use it as motivation for our “std" variant to pick cluster pairs from

T that satisfy (W (Ck, Cl)−W (Cl, Ck))2 > 9 (W (Ck, Cl) + W (Cl, Ck)) .

As we are mainly concerned about the top pairs (i.e., those exhibiting the largest

imbalance flow), another option is the “sort" variant, which selects the largest β

pairwise cut imbalance values, where β is half of the number of nonzero entries in

the off-diagonal entries of the meta-graph adjacency matrix F, if the meta-graph

is known or can be approximated. For example, for a “cycle" meta-graph with

three clusters and no ambient nodes, β = 3. When the meta-graph is a “path"

with three clusters and ambient nodes, then β = 1. When considering the “sort"

variant, with T (β) = {(Ck, Cl) ∈ T : CIvol_sum(k, l) is among the top β values},

where 1 ≤ β ≤
(

K
2

)
, we set

Osort
vol_sum = 1

β

∑
(Ck,Cl)∈T (β)

CIvol_sum(k, l), and Lsort
vol_sum = 1−Osort

vol_sum, (3.3)

as the corresponding loss function. Definitions of meta-graph structures are

discussed in Section 3.4.1. For the other variants, the corresponding scores and loss

Printed on June 7, 2024



3. DIGRAC: Digraph Clustering Based on Flow Imbalance 44

functions are defined analogously. We apply the “std" variant when we have no

prior knowledge of the meta-graph structure during training, and the “sort" variant

when we have information on the number of pairs to count.

When using the “std" variant for training, for the initial 50 epochs, we apply

the “sort" variant with β = 3 for a reasonable starting clustering probability matrix

for training, as otherwise during the initial training epochs possibly no pairs could

be picked out. During the epochs actually utilizing this “std" variant, if no pairs

could be picked out, we temporarily switch to the “naive" variant for that epoch.

Regarding complexity, the objective mainly contains matrix-vector multiplica-

tions and element-wise matrix divisions, which are at most quadratic in the number

of nodes, but usually faster with our sparsity-aware implementation.

3.3.2 Instantiation of DIGRAC

𝑿𝑿
∈ ℝ𝑛𝑛×𝑑𝑑𝑖𝑖𝑖𝑖

Directed 
Graph 
Neural 

Network 
Aggregator

𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 −
𝒂𝒂𝑷𝑷𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂 −
𝒂𝒂𝒊𝒊𝒊𝒊

𝑷𝑷
∈ ℝ𝑛𝑛×𝐾𝐾

𝑨𝑨
∈ ℝ𝑛𝑛×𝑛𝑛

K ∈ ℤ+

Cluster 
assignment

argmax

Self-supervised imbalance 
loss functions

Evaluation: 
Imbalance 
objectives

𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆 − 𝐭𝐭𝐆𝐆𝐆𝐆𝐭𝐭𝐭𝐭
𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥

ARI, NMI etc.

Supervised loss𝑬𝑬𝑬𝑬𝑷𝑷𝒊𝒊 −
𝒅𝒅𝒅𝒅𝒂𝒂𝒅𝒅𝒅𝒅

𝒁𝒁
∈ ℝ𝑛𝑛×𝒅𝒅

Linear+
SoftMax

Figure 3.2: DIGRAC overview: from feature matrix X, adjacency
matrix A and number of clusters K, we first apply a directed GNN
aggregator to obtain the node embedding matrix Z, then apply a
linear layer followed by a unit softmax function to get the probability
matrix P. Applying argmax on each row of P yields node cluster
assignments. Green circles involve our proposed imbalance objective,
while the yellow circles can only be used when ground-truth labels
are provided.

To instantiate DI-

GRAC, any ag-

gregation scheme

able to take direc-

tionality into ac-

count could be in-

corporated into our

general framework,

as long as it can

output the node

embedding matrix

Z. Here, by de-

fault, we adapt the

Signed Mixed Path

Aggregation (SIMPA) scheme from [3]. We remove the signed parts and devise a

simple yet effective directed mixed path aggregation scheme, which we call Directed

Mixed Path Aggregation (DIMPA), to obtain the probability assignment matrix P
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by applying a linear layer followed by a unit softmax function to the embedding

generated, and feed it to the loss function. Details of DIMPA are provided in

App. B.1. A framework diagram is provided in Fig. 3.2, and an instantiation

using DIMPA is visualized in Fig. B.1.

3.4 Experiments

In our synthetic experiments, when by design ground truth is available, performance

is assessed by the Adjusted Rand Index (ARI) [23]. Normalized Mutual Information

(NMI) results give almost the same ranking for the best-performing methods as the

ARI, with an average Kendall tau value of 83.8% and standard deviation 24.9%, for

pairwise ranking comparison, on the methods compared in our experiments. We do

not focus on NMI in the main text due to its shortcomings [127], see also App. B.3.9.

Clustering tasks will have different ground truths, depending on the pattern they

are trying to detect. Many network clustering methods focus on detecting relatively

dense clusters, and try to optimize classical network clustering measures, such as di-

rected modularity or partition density. Ground truth for these clustering algorithms

then relates to relatively densely connected subgroups in the data. DIGRAC is a

novel method that addresses a novel task, namely that of detecting flow imbalances.

To the best of our knowledge, real-world data sets with ground-truth flow imbalances

are not available to date, and hence we introduce normalized imbalance scores

to evaluate clustering performance based on flow imbalance. As ARI and NMI

require ground-truth labels, they thus cannot be applied to the available real-world

data sets. To address this shortcoming, for the real-world data sets, in Table

3.1, we include three performance measures which we introduce in the paper, and

the appendix contains an additional 11 performance measures. Implementation

details are provided in App. B.3. Codes and preprocessed data are available at

https://github.com/SherylHYX/DIGRAC_Directed_Clustering and have been

included in the open-source library PyTorch Geometric Signed Directed [28].

We compare DIGRAC against the most recent related methods from the

literature for clustering digraphs. The 10 methods are • (1) InfoMap [99], •
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(2) Bibliometric and • (3) Degree-discounted introduced in [111], • (4) DI_SIM

[112], • (5) Herm and • (6) Herm_sym introduced in [97], • (7) MagNet

[6], • (8) DGCN [113], • (9) DiGCN [114], and • (10) DiGCL [116]. The

abbreviations of these methods, when reported in the numerical experiments, are

InfoMap, Bi_sym, DD_sym, DISG_LR, Herm, Herm_sym, MagNet, DGCN,

DiGCN, DiGCL, respectively. DGCN is the least efficient method in terms of speed

and space complexity, followed by DiGCN which involves the so-called inception

blocks. We use the same hyperparameter settings stated in these papers. Methods

(7), (8), (9), (10) are GNN methods which are trained with 80% nodes under label

supervision, while all the other methods are trained without label supervision.

DIGRAC further restricts itself to be trained on the subgraph induced by only the

training nodes. All methods are designed for directed graphs, and all except Infomap

require K to be known. Runtime comparison is provided in App. B.3.2, illustrating

that DIGRAC is among the fastest among competing GNNs. Implementation

details for competitors are provided in App. B.3.7.

3.4.1 Data Sets

Synthetic data: Directed Stochastic Block Models A standard directed

stochastic block model (DSBM) is often used to represent a network cluster structure,

see for example [88]. Its parameters are the number K of clusters and the edge

probabilities; given the cluster assignment of the nodes, the edge indicators are

independent. The DSBMs used in our experiments also depend on a meta-graph

adjacency matrix F = (Fk,l)k,l=0,...,K−1 and a filled version of it, F̃ = (F̃k,l)k,l=0,...,K−1,

and on a noise level parameter η ≤ 0.5. The meta-graph adjacency matrix F is

generated from the given meta-graph structure, called M. To include an ambient

background, the filled meta-graph adjacency matrix F̃ replaces every zero in F that

is not part of the imbalance structure by 0.5. The filled meta-graph thus creates a

number of ambient nodes which correspond to entries which are not part of M and

thus are not part of a meaningful cluster; this set of ambient nodes is also called the

ambient cluster. First, we provide examples of structures of F without any ambient
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nodes, where 1 denotes the indicator function.

• (1) “cycle": Fk,l = (1− η)1(l = ((k + 1) mod K)) + η1(l = ((k − 1) mod K)) +
1
21(l = k). • (2) “path": Fk,l = (1− η)1(l = k + 1) + η1(l = k − 1) + 1

21(l = k).

• (3) “complete": assign diagonal entries 1
2 . For each pair (k, l) with k < l, let Fk,l

be η and 1− η with equal probability, then assign Fl,k = 1− Fk,l.

• (4) “star", following [128]: select the center node as ω = ⌊K−1
2 ⌋ and set Fk,l =

(1−η)1(k = ω, l odd)+η1(k = ω, l even)+(1−η)1(l = ω, k odd)+η1(l = ω, l even).

When ambient nodes are present, the construction involves two steps, with

the first step the same as the above, but with the following changes: For “cycle"

meta-graph structure, Fk,l = (1− η)1(l = ((k + 1) mod (K − 1))) + η1(l = ((k− 1)

mod (K − 1))) + 0.51(l = k). The second step is to assign 0 (0.5, resp.) to the

last row and the last column of F (F̃, resp.). Figures 3.1(c-d) display a “cycle"

meta-graph structure with ambient nodes (in cluster 4). The majority of edges flow

in the form 0→ 1→ 2→ 3→ 0, while few flow from the opposite direction. Fig.

3.1(d) illustrates the meta-graph adjacency matrix corresponding to this F.

In our experiments, we choose the number of clusters, the (approximate) ratio,

ρ, between the largest and the smallest cluster size, and the number, n, of nodes. To

tackle the hardest clustering task and also focus on directionality, all pairs of nodes

within a cluster and all pairs of nodes between clusters have the same edge probability,

p. Note that forM =“cycle", even the expected in-degree and out-degree of all nodes

are identical. Our DSBM, which we denote by DSBM (M,1(ambient), n, K, p, ρ, η),

is built similarly to [97] but with possibly unequal cluster sizes, with more details

in App. B.3.3. For each node vi ∈ Ck, and each node vj ∈ Cl, independently sample

an edge from node vi to node vj with probability p · F̃k,l. The parameter settings

in our experiments are p ∈ {0.001, 0.01, 0.02, 0.1}, ρ ∈ {1, 1.5}, K ∈ {3, 5, 10},

1(ambient) ∈ {T, F} (True and False), n ∈ {1000, 5000, 30000}, and we also vary

the direction flip probability η from 0 to 0.45, with a 0.05 step size.

Real-world data We perform experiments on five real-world digraph data

sets with sizes ranging from 245 to over 2 million nodes: Telegram [4], Blog [129],

Migration [36], WikiTalk [38], and Lead-Lag [105], with details in App. B.3.3. We
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Figure 3.3: Test ARI comparison on synthetic data. Dashed lines highlight DIGRAC’s
performance. Error bars are given by one standard error.

Table 3.1: Performance comparison on real-world data sets. The best is marked in
bold red and the second best is marked in underline blue . The objectives are defined
in Section 3.3.1.

Metric Data set InfoMap Bi_sym DD_sym DISG_LR Herm Herm_rw DIGRAC

Osort
vol_sum

Telegram 0.04±0.00 0.21±0.0 0.21±0.0 0.21±0.01 0.2±0.01 0.14±0.0 0.32±0.01
Blog 0.07±0.00 0.07±0.0 0.0±0.0 0.05±0.0 0.37±0.0 0.0±0.0 0.44±0.0

Migration N/A 0.03±0.00 0.01±0.00 0.02±0.00 0.04±0.00 0.02±0.00 0.05±0.00
WikiTalk N/A N/A N/A 0.18±0.03 0.15±0.02 0.0±0.0 0.24±0.05
Lead-Lag N/A 0.07±0.01 0.07±0.01 0.07±0.01 0.07±0.02 0.07±0.02 0.15±0.03

Ostd
vol_sum

Telegram 0.01±0.00 0.26±0.00 0.26±0.00 0.26±0.01 0.25±0.02 0.35±0.00 0.28±0.01
Blog 0.00±0.00 0.07±0.00 0.00±0.00 0.05±0.00 0.37±0.00 0.00±0.00 0.44±0.00

Migration N/A 0.01±0.00 0.01±0.00 0.01±0.00 0.02±0.00 0.02±0.00 0.04±0.01
WikiTalk N/A N/A N/A 0.17±0.04 0.06±0.01 0.01±0.00 0.14±0.02
Lead-Lag N/A 0.04±0.01 0.04±0.01 0.04±0.01 0.04±0.01 0.04±0.01 0.12±0.03

Onaive
vol_sum

Telegram 0.01±0.00 0.26±0.0 0.26±0.0 0.26±0.01 0.25±0.02 0.23±0.0 0.27±0.01
Blog 0.00±0.00 0.07±0.0 0.0±0.0 0.05±0.0 0.37±0.0 0.0±0.0 0.44±0.0

Migration N/A 0.01±0.00 0.01±0.00 0.01±0.00 0.02±0.00 0.01±0.00 0.04±0.01
WikiTalk N/A N/A N/A 0.1±0.02 0.04±0.0 0.0±0.0 0.12±0.01
Lead-Lag N/A 0.30±0.06 0.28±0.06 0.27±0.06 0.29±0.05 0.29±0.05 0.32±0.11

set the number of clusters K to be 4, 2, 10, 10, 10, respectively, and values of

β to be 5, 1, 9, 10, 3, respectively. Note that Lead-Lag comprises of 19 separate

networks constructed from yearly financial time series, rendering a total of 23

real-world networks.
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Figure 3.4: Ablation study. (c-d) are on DSBM(“cycle", F, n = 1000, K = 5, p =
0.02, ρ = 1).

3.4.2 Experimental results
Training Set-Up

As training setup, we use 10% of all nodes from each cluster as test nodes, 10% as

validation nodes to select the model, and the remaining 80% as training nodes. In

each setting, unless otherwise stated, we carry out 10 experiments with different

data splits. Error bars are given by one standard error. When no node attributes are

given, the matrix X for DIGRAC is taken as the stacked eigenvectors corresponding

to the largest K eigenvalues of the random-walk symmetrized Hermitian matrix

used in the comparison method Herm_rw. The imbalance loss function acts on

the subgraph induced by the training nodes. To further clarify the training setup,

DIGRAC uses 0% of the labels in training. As DIGRAC is a self-supervised method,

in principle, we could use all nodes for training. However for a fair comparison with

other GNN methods we use only 80% of the nodes for training. For supervised

methods our split of 80% - 10% - 10% is a standard split. For the non-GNN methods,

all nodes are used for training. The default loss function for DIGRAC is Lsort
vol_sum.

Results on Synthetic Data

Fig. 3.3 compares the numerical performance of DIGRAC with other methods

on synthetic data. For this Fig. we generate 5 DSBM networks under each

parameter setting and use 10 different data splits for each network, then average
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over the 50 runs. Error bars are given by one standard error. App. B.3 provides

additional implementation details.

We conclude that DIGRAC compares favorably against state-of-the-art methods,

on a wide range of network densities and noise levels, on different network sizes,

and with different underlying meta-graph structures, with and without ambient

nodes. Being a self-supervised method, DIGRAC even attains comparable or

better performance than fully-supervised GNN competitors.

Results on Real-World Data

For our real-world data sets, the node in- and out-degrees may not be identical

across clusters. Moreover, as these data sets do not contain node attributes,

DIGRAC considers the eigenvectors corresponding to the largest K eigenvalues

of the Hermitian matrix from [97] to construct an input feature matrix. Table

3.1 reveals that DIGRAC provides competitive global imbalance scores in three

objectives discussed and across all real-world data sets, and outperforms all other

methods in 13 out of 15 instances, while attains the second-best performance for

the remaining two instances. The N/A entries for WikiTalk are caused by memory

error, and the N/A entries for InfoMap on Migration and Lead-Lag are due to

its prediction of only one single cluster. For Migration, as detailed in Fig. 3.1(b)

and App. B.4.4, DIGRAC is able to uncover nontrivial migration patterns, such

as migration from California to Arizona, as discovered by [36]. Lead-Lag results

in each year are averaged over ten runs, while the mean and standard deviation

values are calculated with respect to the 19 years. The experiments indicate

that edge directionality contains an important signal that DIGRAC is able to

capture. As App. B.4.2 illustrates, DIGRAC is able to provide comparable or

higher pairwise imbalance scores for the leading pairs. The fitted meta-graph plots

in App. B.4.3 reveal that DIGRAC is able to recover a directed flow imbalance

between clusters in all of the selected data sets. A comprehensive numerical

comparison in App. B.4 reveals similar conclusions.
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3.4.3 Ablation Study

Figures 3.4(a-b) compare the performance of DiGCN replacing the loss function

by Lsort
vol_sum from Eq. (3.3), indicated by “CI” (self-supervised loss only), or “LICE"

(sum of supervised and self-supervised loss), on two synthetic models. We find that

replacing the supervised loss function with Lsort
vol_sum leads to comparable results, and

that adding Lsort
vol_sum to the loss could be beneficial, indicating that the imbalance

objectives are more general than only applicable to DIMPA. Fig. 3.4(c) compares

the test ARI performance using three variants of loss functions on the same digraph.

The current choice “sort" performs best among these variants, indicating a benefit

in only considering top pairs of individual imbalance scores. The “std" variant

is comparable with the “sort" variant, but the “sort" variant performs the best

with prior knowledge on the network structure. More details on loss functions,

comparison with other variants, and evaluation on additional metrics are discussed

in App. B.2, with similar conclusions. As illustrated in Fig. 3.4(d), again on the

same digraph, we also experiment on adding seeds, with the seed ratio defined

as the ratio of the number of seed nodes to the number of training nodes. A

supervised loss, following [3], is then applied to these seeds; App. B.3.5 contains

additional details. In conclusion, seed nodes with a supervised loss function enhance

performance, and we infer that our model can further boost its performance when

additional label information is available.

3.5 Conclusion, Limitations and Outlook

DIGRAC provides an end-to-end pipeline to create node embeddings and perform

directed clustering, with or without available additional node features or cluster

labels. We illustrate DIGRAC on publicly available data without any personally

identifiable information. DIGRAC could potentially have societal impact, for

example, in detecting clusters of fake accounts in social networks. While we do not

envision our work to have any negative societal impact, vigilance is of course required.
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Current limitations that could be addressed by future work include detecting

the number of clusters [82, 95], instead of specifying it a-priori, as this is typically

not available in real-world applications. The relatively small sizes of the networks

used in the paper (the largest has 2 million nodes) also opens future direction in

adapting our pipeline to extremely large networks, possibly combined with sampling

methods or mini-batch [61], rendering DIGRAC applicable to large scale industrial

applications. We also intent to further explore the effect of normalization terms

in our objectives, and to design more powerful objectives that could explicitly

account for varying edge density.

Another future direction pertains to additional experiments in the semi-supervised

setting, when there exist seed nodes with known cluster labels, or when additional

information is available in the form of must-link and cannot-link constraints, popular

in the constrained clustering literature [130, 131]. Further research directions

will also address the performance in the sparse regime, where spectral methods

are known to underperform, and various regularizations have been proven to be

effective theoretically and empirically; e.g., see regularization in the sparse regime

for the undirected settings [83–85].
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4
MSGNN: A Spectral Graph Neural

Network Based on a Novel Magnetic
Signed Laplacian

4.1 Introduction

Graph Neural Networks (GNNs) have emerged as a powerful tool for extracting

information from graph-structured data and have achieved state-of-the-art perfor-

mance on a variety of machine learning tasks. However, compared to research on

constructing GNNs for unsigned and undirected graphs, and graphs with multiple

types of edges, GNNs for graphs where the edges have a natural notion of sign,

direction, or both, have received relatively little attention.

There is a demand for such tools because many important and interesting

phenomena are naturally modeled as signed and/or directed graphs, i.e., graphs in

which objects may have either positive or negative relationships, and/or in which

such relationships are not necessarily symmetric [28]. For example, in the analysis

of social networks, positive and negative edges could model friendship or enmity,

and directional information could model the influence of one person on another [132,

133]. Signed/directed networks also arise when analyzing time-series data with

lead-lag relationships [105], detecting influential groups in social networks [5], and
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computing rankings from pairwise comparisons [30]. Additionally, signed and

directed networks are a natural model for group conflict analysis [134], modeling

the interaction network of the agents during a rumor spreading process [135], and

maximizing positive influence while formulating opinions [136].

In general, most GNNs are either spectral or spatial. Spatial methods typically

define convolution on graphs as a localized aggregation whereas spectral methods

rely on the eigen-decomposition of a suitable graph Laplacian. Our goal is to

introduce a novel Laplacian and an associated GNN for signed directed graphs.

While several spatial GNNs exist, such as SDGNN [133], SiGAT [137], SNEA

[54], and SSSNET [3] for signed (and possibly directed) networks, this is one of

the first works to propose a spectral GNN for such networks. We devote special

attention to the concurrent preprint SigMaNet [138] which also constructs a spectral

GNN based on a different Laplacian.

A principal challenge in extending traditional spectral GNNs to this setting is

to define a proper notion of the signed, directed graph Laplacian. Such a Laplacian

should be positive semidefinite, have a bounded spectrum when properly normalized,

and encode information about both the sign and direction of each edge. Here, we

unify the magnetic Laplacian, which has been used in [6] to construct a GNN on an

(unsigned) directed graph, with a signed Laplacian which has been used for a variety

of data science tasks on (undirected) signed graphs [50, 62, 63, 85]. Importantly,

our proposed matrix, which we refer to as the magnetic signed Laplacian, reduces to

either the magnetic Laplacian or the signed Laplacian when the graph is directed,

but not signed, or signed, but not directed.

Although this magnetic signed Laplacian is fairly straightforward to obtain, it

is novel and surprisingly powerful: We show that our proposed Magnetic Signed

GNN (MSGNN) is effective for a variety of node clustering and link prediction

tasks. Specifically, we consider several variations of the link prediction task, some

of which prioritize signed information over directional information, some of which

prioritize directional information over signed information, while others emphasize the

method’s ability to extract both signed and directional information simultaneously.
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In addition to testing MSGNN on established data sets, we also devise a

novel synthetic model which we call the Signed Directed Stochastic Block Model

(SDSBM), which generalizes both the (undirected) Signed Stochastic Block Model

from [3] and the (unsigned) Directed Stochastic Block Model from [5]. Analogous

to these previous models, our SDSBM can be defined by a meta-graph structure

and additional parameters describing density and noise levels. We also introduce

a number of signed directed networks for link prediction tasks using lead-lag

relationships in real-world financial time series.

Main Contributions. The main contributions of our work are:

1. We devise a novel matrix called the magnetic signed Laplacian, which can

naturally be applied to signed and directed networks. The magnetic signed

Laplacian is Hermitian, positive semidefinite, and the eigenvalues of its

normalized counterpart lie in [0, 2]. Our proposed Laplacian matrix and

its counterpart reduce to existing Laplacians when the network is unsigned

and/or undirected.

2. We propose an efficient spectral graph neural network architecture, MSGNN,

based on this magnetic signed Laplacian, which attains leading performance

on extensive node clustering and link prediction tasks, including novel tasks

that consider edge sign and directionality jointly. To the best of our knowledge,

this is the first work to evaluate GNNs on tasks that are related to both edge

sign and directionality.1

3. We introduce a novel synthetic model for signed and directed networks, called

Signed Directed Stochastic Block Model (SDSBM), and also contribute a

number of new real-world data sets constructed from lead-lag relationships of

financial time series data.
1Some previous work, such as [133], evaluates GNNs on signed and directed graphs. However,

they focus on tasks where either only signed information is important, or where only directional
information is important.
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4.2 Related Work

In this section, we review related work constructing neural networks for directed

graphs and signed graphs. We refer the reader to [28] for more background informa-

tion.

Several works have aimed to define neural networks on directed graphs by

constructing various directed graph Laplacians and defining convolution as multi-

plication in the associated eigenbasis. [117] defines a directed graph Laplacian by

generalizing identities involving the undirected graph Laplacian and the stationary

distribution of a random walk. [113] uses a similar idea, but with PageRank in place

of a random walk. [114] constructs three different first- and second-order symmetric

adjacency matrices and uses these adjacency matrices to define associated Laplacians.

Similarly, [118] uses several different graph Laplacians based on various graph motifs.

Quite closely related to our work, [6] constructs a graph neural network using

the magnetic Laplacian. Indeed, in the case where all edge weights are positive,

our GNN exactly reduces to the one proposed in [6]. Importantly, unlike the other

directed graph Laplacians mentioned above, the magnetic Laplacian is a complex,

Hermitian matrix rather than a real, symmetric matrix. We also note [5], which

constructs a GNN for node clustering on directed graphs based on flow imbalance.

All of the above works are restricted to unsigned graphs, i.e., graphs with positive

edge weights. However, there are also a number of neural networks introduced

for signed (and possibly also directed) graphs, mostly focusing on the task of link

sign prediction, i.e., predicting whether a link between two nodes will be positive

or negative. SGCN by [48] is one of the first graph neural network methods to

be applicable to signed networks, using an approach based on balance theory [56].

However, its design is mainly aimed at undirected graphs. SiGAT [137] utilizes a

graph attention mechanism based on [139] to learn node embeddings for signed,

directed graphs, using a novel motif-based GNN architecture based on balance

theory and status theory [38]. Subsequently, SDGNN by [133] builds upon this work

by increasing its efficiency and proposing a new objective function. In a similar vein,

SNEA [54] proposes a signed graph neural network for link sign prediction based on
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a novel objective function. In a different line of work, [3] proposes SSSNET, a GNN

not based on balance theory designed for semi-supervised node clustering in signed

(and possibly directed) graphs. A concurrent preprint, SigMaNet [138], proposes

a signed magnetic Laplacian to construct a spectral GNN.2 Additionally, several

GNNs [141–143] have been introduced for multi-relational graphs, i.e., graphs with

different types of edges. In such networks, the number of learnable parameters

typically increases linearly with the number of edge types. Signed graphs, at least

if the graph is unweighted or the weighting function w only takes finitely many

values, can be thought of as special cases of multi-relational graphs. However, in

the context of (possibly weighted) signed graphs, there is an implicit relationship

between the different edge types, namely that a negative edge is interpreted as the

opposite of a positive edge and that edges with large weights are deemed more

important than edges with small weights. These relationships will allow us to

construct a network with significantly fewer trainable parameters than if we were

considering an arbitrary multi-relational graph.

4.3 Proposed Method

4.3.1 Problem Formulation

Let G = (V , E , w, XV) denote a signed, and possibly directed, weighted graph

with node attributes, where V is the set of nodes (or vertices), E is the set of

(directed) edges (or links), and w : E → (−∞,∞) \ {0} is the weighting function.

Let E+ = {e ∈ E : w(e) > 0} denote the set of positive edges and let E− = {e ∈

E : w(e) < 0} denote the set of negative edges so that E = E+ ∪ E−. Here, we

do allow self-loops but not multiple edges; if vi, vj ∈ V , there is at most one edge

e ∈ E from vi to vj. Let n = |V|, and let din be the number of attributes at

each node, so that XV is an n× din matrix whose rows are the attributes of each

node. We let A = (Aij)i,j∈V denote the weighted, signed adjacency matrix where

Ai,j = wi,j if (vi, vj) ∈ E , and Ai,j = 0 otherwise.
2After the initial submission of this work we became aware of a concurrent work [140] by

another research group which developed a network similar to ours independently at the same time.
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4.3.2 Magnetic Signed Laplacian

In this section, we define Hermitian matrices L(q)
U and L(q)

N which we refer to as the

unnormalized and normalized magnetic signed Laplacian matrices, respectively. We

first define a symmetrized adjacency matrix and an absolute degree matrix by

Ãi,j := 1
2(Ai,j + Aj,i), 1 ≤ i, j ≤ n, D̃i,i := 1

2

n∑
j=1

(|Ai,j|+ |Aj,i|), 1 ≤ i ≤ n,

with D̃i,j = 0 for i ̸= j. Importantly, the use of absolute values ensures that the

entries of D̃ are non-negative. Furthermore, it ensures that all D̃i,i will be strictly

positive if the graph is connected. This is in contrast to the construction in [138]

which will give a node degree zero if it has an equal number of positive and negative

neighbors (for unweighted networks). To capture directional information, we next

define a phase matrix Θ(q) by Θ(q)
i,j := 2πq(Ai,j −Aj,i), where q ∈ R is the so-called

“charge parameter." In our experiments, for simplicity, we set q = 0 when the task

at hand is unrelated to directionality, or when the underlying graph is undirected,

and we set q = q0 := 1/[2 maxi,j(Ai,j −Aj,i)] (so that Θ(q) has entries ∈ [−π, π])

for all the other tasks (except in an ablation study on the role of q). With ⊙

denoting elementwise multiplication, and i denoting the imaginary unit, we now

construct a complex Hermitian matrix H(q) by

H(q) := Ã⊙ exp(iΘ(q))

where exp(iΘ(q)) is defined elementwise by exp(iΘ(q))i,j := exp(iΘ(q)
i,j ).

Note that H(q) is Hermitian, as Ã is symmetric and Θ(q) is skew-symmetric. In

particular, when q = 0, we have H(0) = Ã. Therefore, setting q = 0 is equivalent

to making the input graph symmetric and discarding directional information. In

general, however, H(q) captures information about a link’s sign, through Ã, and

about its direction, through Θ(q).

We observe that flipping the direction of an edge, i.e., replacing a positive or

negative link from vi to vj with a link of the same sign from vj to vi corresponds

to complex conjugation of H(q)
i,j (assuming either that there is not already a link
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from vj to vi or that we also flip the direction of that link if there is one). We also

note that if q = 0.25, Ai,j = ±1, and Aj,i = 0, we have

H(0.25)
i,j = ± i

2 = −H(0.25)
j,i .

Thus, a unit-weight edge from vi to vj is treated as the opposite of a unit-weight

edge from vj to vi.

Given H(q), we next define the unnormalized magnetic signed Laplacian by

L(q)
U := D̃−H(q) = D̃− Ã⊙ exp(iΘ(q)), (4.1)

and also define the normalized magnetic signed Laplacian by

L(q)
N := I−

(
D̃−1/2ÃD̃−1/2

)
⊙ exp(iΘ(q)) . (4.2)

When the graph G is directed, but not signed, L(q)
U and L(q)

N reduce to the

magnetic Laplacians utilized in works such as [6, 144, 145] and [146]. Similarly,

when G is signed, but not directed, L(q)
U and L(q)

N reduce to the signed Laplacian

matrices considered in e.g., [50, 85] and [147]. Additionally, when the graph is neither

signed nor directed, they reduce to the standard normalized and unnormalized graph

Laplacians [148]. The following theorems show that L(q)
U and L(q)

N satisfy properties

analogous to the traditional graph Laplacians. The proofs are in Appendix C.1.

Theorem 1. For any signed directed graph G defined in Sec. 4.3.1, ∀q ∈ R, both

the unnormalized magnetic signed Laplacian L(q)
U and its normalized counterpart

L(q)
N are positive semidefinite.

Theorem 2. For any signed directed graph G defined in Sec. 4.3.1, ∀q ∈ R, the

eigenvalues of the normalized magnetic signed Laplacian L(q)
N are contained in the

interval [0, 2].

By construction, L(q)
U and L(q)

N are Hermitian, and Theorem 1 shows they are

positive semidefinite. In particular, they are diagonalizable by an orthonormal

basis of complex eigenvectors u1, . . . , un associated to real, nonnegative eigenvalues

λ1 ≤ . . . ≤ λn = λmax. Thus, similar to the traditional normalized Laplacian, we
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may factor L(q)
N = UΛU†, where U is an n × n matrix whose k-th column is uk,

for 1 ≤ k ≤ n, Λ is a diagonal matrix with Λk,k = λk, and U† is the conjugate

transpose of U. A similar formula holds for L(q)
U .

We conclude this subsection with a comparison to SigMaNet, proposed in the

concurrent preprint [138]. SigMaNet also constructs a GNN based on a signed

magnetic Laplacian, which is different from the magnetic signed Laplacian proposed

here. The claimed advantage of SigMaNet is that it does not require the tuning of

a charge parameter q and is invariant to, e.g., doubling the weight of every edge.

In our work, for the sake of simplicity, we usually set q = 0.25, except for when

the graph is undirected (in which case we set q = 0). However, a user may choose

to also tune q through a standard cross-validation procedure as in [6]. Moreover,

one can readily address the latter issue by normalizing the adjacency matrix via a

preprocessing step (e.g., [149]). In contrast to our magnetic signed Laplacian, in

the case where the graph is not signed but is weighted and directed, the matrix

proposed in [138] does not reduce to the magnetic Laplacian considered in [6].

For example, denoting the graph adjacency matrix by A, consider the case where

0 < Aj,i < Ai,j. Let m = 1
2(Ai,j + Aj,i), δ = Ai,j − Aj,i, and let i denote the

imaginary unit. Then the (i, j)-th entry of the matrix Lσ proposed in [138] is

given by Lσ
i,j = mi, whereas the corresponding entry of the unnormalized magnetic

Laplacian is given by (L(q)
U )i,j = m exp(2πiqδ). Moreover, while SigMaNet is in

principle well-defined on signed and directed graphs, the experiments in [138] are

restricted to tasks where only signed or directional information is important (but

not both). In our experiments, we find that our proposed method outperforms

SigMaNet on a variety of tasks on signed and/or directed networks. Moreover, we

observe that the signed magnetic Laplacian Lσ proposed in [138] has an undesirable

property when the graph is unweighted — a node is assigned to have degree zero

if it has an equal number of positive and negative connections. Our proposed

Laplacian does not suffer from this issue.
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4.3.3 Spectral Convolution via the Magnetic Signed Lapla-
cian

In this section, we show how to use a Hermitian, positive semidefinite matrix L

such as the normalized or unnormalized magnetic signed Laplacian introduced in

Sec. 4.3.2, to define convolution on a signed directed graph. This method is similar

to the ones proposed for unsigned (possibly directed) graphs in, e.g., [71, 148, 150]

and [6], but we provide details in order to keep our work reasonably self-contained.

Given L, let u1 . . . , un be an orthonormal basis of eigenvectors such that Luk =

λkuk, and let U be an n × n matrix whose k-th column is uk, for 1 ≤ k ≤ n.

For a signal x : V → C, we define its Fourier transform x̂ ∈ Cn by x̂(k) =

⟨x, uk⟩ := u†
kx, and equivalently, x̂ = U†x. Since U is unitary, we readily obtain

the Fourier inversion formula

x = Ux̂ =
n∑

k=1
x̂(k)uk . (4.3)

Analogous to the well-known convolution theorem in Euclidean domains, we define

the convolution of x with a filter y as multiplication in the Fourier domain,

i.e., ŷ ∗ x(k) = ŷ(k)x̂(k). By equation 4.3, this implies y ∗ x = UDiag(ŷ)x̂ =

(UDiag(ŷ)U†)x, where Diag(z) denotes a diagonal matrix with the vector z on its

diagonal. Therefore, we say that Y is a generalized convolution matrix if

Y = UΣU† , (4.4)

for a diagonal matrix Σ. This is a natural generalization of the class of convo-

lutions used in [151].

A main purpose of using a graph filter as in equation 4.4 is to reduce the number

of parameters while maintaining permutation invariance. Some potential drawbacks

exist when defining a convolution via equation 4.4. First, it requires one to compute

the eigen-decomposition of L which is expensive for large graphs. Second, the

number of trainable parameters equals the size of the graph (the number of nodes),

rendering GNNs constructed via equation 4.4 prone to overfitting. To remedy these

issues, we follow [148] (see also [150]) and observe that spectral convolution may
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also be implemented in the spatial domain via polynomials of L by setting Σ equal

to a polynomial of Λ. This reduces the number of trainable parameters from the

size of the graph to the degree of the polynomial and also enhances robustness

to perturbations [152]. As in [148], we let Λ̃ = 2
λmax

Λ − I denote the normalized

eigenvalue matrix (with entries in [−1, 1]) and choose Σ = ∑K
k=0 θkTk(Λ̃), for some

θ1, . . . , θk ∈ R where for 0 ≤ k ≤ K, Tk is the Chebyshev polynomials defined

by T0(x) = 1, T1(x) = x, and Tk(x) = 2xTk−1(x) + Tk−2(x) for k ≥ 2. Since U is

unitary, we have (UΛ̃U†)k = UΛ̃kU†, and thus, letting L̃ := 2
λmax

L− I, we have

Yx = U
K∑

k=0
θkTk(Λ̃)U†x =

K∑
k=0

θkTk(L̃)x . (4.5)

This is the class of convolutional filters we will use in our experiments. However,

one could also imitate Sec. 3.1 on [6] to produce a class of filters based on [71]

rather than [148].

It is important to note that L̃ is constructed so that, in equation 4.5, (Yx)i

depends on all nodes within K-hops from vi on the undirected, unsigned counterpart

of G, i.e. the graph whose adjacency matrix is given by A′
i,j = 1

2(|Ai,j|+ |Aj,i|).

Therefore, this notion of convolution does not favor “outgoing neighbors" {vj ∈

V : (vi, vj) ∈ E} over “incoming neighbors" {vj ∈ V : (vj, vi) ∈ E} (or vice versa).

This is important since for a given node vi, both sets may contain different, useful

information. Furthermore, since the phase matrix Θ(q) encodes an outgoing edge and

an incoming edge differently, the filter matrix Y is also able to aggregate information

from these two sets in different ways. Regarding computational complexity, we

note that while the matrix exp(iΘ(q)) is dense in theory, in practice, one only needs

to compute a small fraction of its entries corresponding to the nonzero entries

of Ã (which is sparse for most real-world data sets). Thus, the computational

complexity of the convolution proposed here is equivalent to that of its undirected,

unsigned counterparts.
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4.3.4 The MSGNN architecture

We now define our network, MSGNN. Let X(0) be an n × F0 input matrix with

columns x(0)
1 , . . . x(0)

F0 , and L denote the number of convolution layers. As in [6],

we use a complex version of the Rectified Linear Unit defined by σ(z) = z, if

−π/2 ≤ arg(z) < π/2, and σ(z) = 0 otherwise, where arg(·) is the complex

argument of z ∈ C. Let Fℓ be the number of channels in the ℓ-th layer. For

1 ≤ ℓ ≤ L, 1 ≤ i ≤ Fℓ, and 1 ≤ j ≤ Fℓ−1, let Y(ℓ)
ij be a convolution matrix defined

by equation 4.4 or equation 4.5. Given the (ℓ− 1)-st layer hidden representation

matrix X(ℓ−1), we define X(ℓ) columnwise by

x(ℓ)
j = σ

Fℓ−1∑
i=1

Y(ℓ)
ij x(ℓ−1)

i + b(ℓ)
j

 , (4.6)

where b(ℓ)
j is a bias vector with equal real and imaginary parts, Real(b(ℓ)

j ) =

Imag(b(ℓ)
j ). In matrix form we write X(ℓ) = Z(ℓ)

(
X(ℓ−1)

)
, where Z(ℓ) is a hidden

layer of the form equation 4.6. In our experiments, we utilize convolutions of the

form equation 4.5 with L = L(q)
N and set K = 1, in which case we obtain

X(ℓ) = σ
(
X(ℓ−1)W(ℓ)

self + L̃(q)
N X(ℓ−1)W(ℓ)

neigh + B(ℓ)
)

,

where W(ℓ)
self and W(ℓ)

neigh are learned weight matrices corresponding to the filter

weights of different channels and B(ℓ) = (b(ℓ)
1 , . . . , b(ℓ)

Fℓ
). After the convolutional

layers, we unwind the complex matrix X(L) into a real-valued n× 2FL matrix. For

node clustering, we then apply a fully connected layer followed by the softmax

function. By default, we set L = 2, in which case, our network is given by

softmax(unwind(Z(2)(Z(1)(X(0))))W(3)) .

For link prediction, we apply the same method, except we concatenate rows

corresponding to pairs of nodes after the unwind layer before applying the linear

layer and softmax.
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4.4 Experiments

4.4.1 Tasks and Evaluation Metrics

Node Clustering In the node clustering task, one aims to partition the nodes of

the graph into the disjoint union of C sets C0, . . . , CC−1. Typically in an unsigned,

undirected network, one aims to choose the Ci’s so that there are many links within

each cluster and comparably few links between clusters, in which case nodes within

each cluster are similar due to dense connections. In general, however, similarity

could be defined differently [153]. In a signed graph, clusters can be formed by

grouping together nodes with positive links and separating nodes with negative

links (see [3]). In a directed graph, clusters can be determined by a directed

flow on the network (see [5]). More generally, we can define clusters based on an

underlying meta-graph, where meta-nodes, each of which corresponds to a cluster in

the network, can be distinguished based on either signed or directional information

(e.g., flow imbalance [5]). This general meta-graph idea motivates our introduction

of a novel synthetic network model, which we will define in Sec. 4.4.2, driven by

both link sign and directionality. All of our node clustering experiments are done in

the semi-supervised setting, where one selects a fraction of the nodes in each cluster

as seed nodes, with known cluster membership labels. In all of our node clustering

tasks, we measure our performance using the Adjusted Rand Index (ARI) [23].

Link Prediction On undirected, unsigned graphs, link prediction is simply the

task of predicting whether or not there is a link between a pair of nodes. Here,

we consider five different variations of the link prediction task for signed and/or

directed networks. In our first task, link sign prediction (SP), one assumes that

there is a link from vi to vj and aims to predict whether that link is positive or

negative, i.e., whether (vi, vj) ∈ E+ or (vi, vj) ∈ E−. Our second task, direction

prediction (DP), one aims to predict whether (vi, vj) ∈ E or (vj, vi) ∈ E under

the assumption that exactly one of these two conditions holds. We also consider

three-, four-, and five-class prediction problems. In the three-class problem (3C),

the possibilities are (vi, vj) ∈ E , (vj, vi) ∈ E , or that neither (vi, vj) nor (vj, vi) are in
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E . For the four-class problem (4C), the possibilities are (vi, vj) ∈ E+, (vi, vj) ∈ E−,

(vj, vi) ∈ E+, and (vj, vi) ∈ E−. For the five-class problem (5C), we also add in the

possibility that neither (vi, vj) nor (vj, vi) are in E . For all tasks, we evaluate the

performance with classification accuracy. Notably, while (SP), (DP), and (3C) only

require a method to be able to extract signed or directed information, the tasks

(4C) and (5C) require it to be able to effectively process both sign and directional

information. Also, we discard those edges that satisfy more than one condition

in the possibilities for training and evaluation, but these edges are kept in the

input network which is observed during training.

4.4.2 Synthetic Data for Node Clustering

Established Synthetic Models We conduct experiments on the Signed Stochas-

tic Block Models (SSBMs) and polarized SSBMs (POL-SSBMs) introduced in [3],

which are signed but undirected. In the SSBM(n, C, p, ρ, η) model, n represents the

number of nodes, C is the number of clusters, p is the probability that there is a

link (of either sign) between two nodes, ρ is the approximate ratio between the

largest cluster size and the smallest cluster size, and η is the probability that an

edge will have the “wrong" sign, i.e., that an intra-cluster edge will be negative or

an inter-cluster edge will be positive. Pol-SSBM (n, r, p, ρ, η, N) is a hierarchical

variation of the SSBM model consisting of r communities, each of which is itself

an SSBM. We refer the reader to [3] for details of both models.

A novel Synthetic Model: Signed Directed Stochastic Block Model

(SDSBM) Given a meta-graph adjacency matrix F = (Fk,l)k,l=0,...,C−1, an edge

sparsity level p, a number of nodes n, and a sign flip noise level parameter 0 ≤

η ≤ 0.5, we defined a SDSBM model, denoted by SDSBM (F, n, p, ρ, η), as follows:

(1) Assign block sizes n0 ≤ n1 ≤ · · · ≤ nC−1 based on a parameter ρ ≥ 1, which

approximately represents the ratio between the size of largest block and the size

of the smallest block, using the same method as in [3]. (2) Assign each node to

one of the C blocks, so that each block Ci has size ni. (3) For nodes vi ∈ Ck, and
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vj ∈ Cl, independently sample an edge from vi to vj with probability p · |Fk,l|. Give

this edge weight 1 if Fk,l ≥ 0 and weight −1 if Fk,l < 0. (4) Flip the sign of all

the edges in the generated graph with sign-flip probability η.

In our experiments, we use two sets of specific meta-graph structures {F1(γ)}, {F2(γ)},

with three and four clusters, respectively, where 0 ≤ γ ≤ 0.5 is the directional

noise level. Specifically, we are interested in SDSBM (F1(γ), n, p, ρ, η) and SDSBM

(F2(γ), n, p, ρ, η) models with varying γ where

F1(γ) =

 0.5 γ −γ
1− γ 0.5 −0.5
−1 + γ −0.5 0.5

 , F2(γ) =


0.5 γ −γ −γ

1− γ 0.5 −0.5 −γ
−1 + γ −0.5 0.5 −γ
−1 + γ −1 + γ −1 + γ 0.5

 .

𝐶𝐶0 𝐶𝐶1

𝐶𝐶2+-
legend

(a) Three-cluster model F1.

𝐶𝐶0 𝐶𝐶1

𝐶𝐶3 𝐶𝐶2

+-
legend

(b) Four-cluster model F2.

Figure 4.1: SDSBM illustration.

To better understand the above SDSBM models, toy examples are provided. We

consider the following toy examples for our proposed synthetic data in Figure 4.1,

which models groups of athletes and sports fans on social media. Here, signed,

directed edges represent positive or negative mentions. In Figure 4.1(a), C0 are the

players of a sports team, C1 is a group of their fans who typically say positive things

about the players, and C2 is a group of fans of a rival team, who typically say negative

things about the players. Since they are fans of rival teams, the members of C1 and

C2 both say negative things about each other. In general, fans mention the players

more than players mention fans, which leads to net flow imbalance. In Figure 4.1(b),

we add in C3, a group of fans of a third, less important team. This group dislikes the

other two teams and disseminates negative content about C0, C1, and C2. However,

since this third team is quite unimportant, no one comments anything back.
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Notably, in both examples, as the expected edge density is identical both within

and across clusters, discarding either signed or directional information will ruin

the clustering structure. For instance, in both examples, if we discard directional

information, then C0 will look identical to C1 in the resulting meta-graph. On the

other hand, if we discard signed information, C1 will look identical to C2.

We also note that the SDSBM model proposed here is a generalization of both

the SSBM model from [3] and the Directed Stochastic Block Model from [5] when

we have suitable meta-graph structures.

4.4.3 Real-World Data for Link Prediction

Standard Real-World Data Sets We consider four standard real-world signed

and directed data sets. BitCoin-Alpha and BitCoin-OTC [132] describe bitcoin

trading. Slashdot [154] is related to a technology news website, and Epinions [155]

describes consumer reviews. These networks range in size from 3783 to 131580

nodes. Only Slashdot and Epinions are unweighted (|wi,j| = 1, ∀(vi, vj) ∈ E).

Novel Financial Data Sets from Stock Returns Using financial time series

data, we build signed directed networks where the weighted edges encode lead-lag

relationships inherent in the financial market, for each year in the interval 2000-2020.

The lead-lag matrices are built from time series of daily price returns.3 We refer to

these networks as our Fiancial Lead-Lag (FiLL) data sets. For each year in the

data set, we build a signed directed graph (FiLL-pvCLCL) based on the price return

of 444 stocks at market close times on consecutive days. We also build another

graph (FiLL-OPCL), based on the price return of 430 stocks from market open

to close. The difference between 444 versus 430 stems from the non-availability

of certain open and close prices on some days for certain stocks. The lead-lag

metric that is captured by the entry Ai,j in each network encodes a measure that

quantifies the extent to which stock vi leads stock vj , and is obtained by computing

the linear regression coefficient when regressing the time series (of length 245) of
3Raw CRSP data accessed through https://wrds-www.wharton.upenn.edu/.
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daily returns of stock vi against the lag-one version of the time series (of length

245) of the daily returns of stock vj. Specifically, we use the beta coefficient of

the corresponding simple linear regression, to serve as the one-day lead-lag metric.

The resulting matrix is asymmetric and signed, rendering it amenable to a signed,

directed network interpretation. The initial matrix is dense, with nonzero entries

outside the main diagonal, since we do not consider the own auto-correlation of

each stock. Note that an alternative approach to building the directed network

could be based on Granger causality [156, 157], or other measures that quantify the

lead-lag between a pair of time series, potentially while accounting for nonlinearity,

such as second-order log signatures from rough paths theory as in [105].

Next, we sparsify each network, keeping only 20% of the edges with the largest

magnitudes. We also report the average results across the all the yearly data sets

(a total of 42 networks) where the data set is denoted by FiLL (avg.). To facilitate

future research using these data sets as benchmarks, both the dense lead-lag matrices

and their sparsified counterparts have been made publicly available.

4.4.4 Experimental Results

We compare MSGNN against representative GNNs which are described in Section 4.2.

The six methods we consider are (1) SGCN [48], (2) SDGNN [133], (3) SiGAT [137],

(4) SNEA [54], (5) SSSNET [3], and (6) SigMaNet [138]. For all link prediction

tasks, comparisons are carried out on all baselines; for the node clustering tasks,

we only compare MSGNN against SSSNET and SigMaNet as adapting the other

methods to this task is nontrivial. In all of our experiments, we use the normalized

Magnetic signed Laplacian, Lq
N , unless otherwise stated. Implementation details

are provided in Appendix C.2, along with a runtime comparison which shows

that MSGNN is generally the fastest method, see Table C.1 in Appendix C.2.

Extended results are in Appendix C.3 and C.4. Code and preprocessed data are

available at https://github.com/SherylHYX/MSGNN and have been included in

the open-source library PyTorch Geometric Signed Directed [28].
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Node Clustering
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Figure 4.2: Node clustering test ARI comparison on synthetic data. Error bars indicate
one standard error. Results are averaged over ten runs — five different networks, each
with two distinct data splits.

Figure 4.2 compares the node clustering performance of MSGNN with two other

signed GNNs on synthetic data, and against variants of MSGNN on SDSBMs. For

signed, undirected networks q does not has an effect, and hence we only report one

MSGNN variant. Error bars are given by one standard error. We conclude that

MSGNN outperforms SigMaNet on all data sets and is competitive with SSSNET.

On the majority of data sets, MSGNN achieves leading performance, whereas on

some signed undirected networks (SSBM and Pol-SSBM) it is slightly outperformed

by SSSNET. On these relatively small data sets, MSGNN and SSSNET have

comparable runtime and are faster than SigMaNet. Comparing the MSGNN

variants, we conclude that the directional information in these SDSBM models

plays a vital role since MSGNN usually performs better with nonzero q.

Link Prediction

Our results for link prediction in Table 4.1 indicate that MSGNN is the top

performing method, achieving the highest accuracy in all 25 cases. SNEA is among
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Table 4.1: Test accuracy (%) comparison the signed and directed link prediction tasks
introduced in Sec. 4.4.1. The best is marked in bold red and the second best is marked
in underline blue .

Data Set Link Task SGCN SDGNN SiGAT SNEA SSSNET SigMaNet MSGNN

BitCoin-Alpha

SP 64.7±0.9 64.5±1.1 62.9±0.9 64.1±1.3 67.4±1.1 47.8±3.9 71.3±1.2
DP 60.4±1.7 61.5±1.0 61.9±1.9 60.9±1.7 68.1±2.3 49.4±3.1 72.5±1.5
3C 81.4±0.5 79.2±0.9 77.1±0.7 83.2±0.5 78.3±4.7 37.4±16.7 84.4±0.6
4C 51.1±0.8 52.5±1.1 49.3±0.7 52.4±1.8 54.3±2.9 20.6±6.3 58.5±0.7
5C 79.5±0.3 78.2±0.5 76.5±0.3 81.1±0.3 77.9±0.3 34.2±6.5 81.9±0.9

BitCoin-OTC

SP 65.6±0.9 65.3±1.2 62.8±1.3 67.7±0.5 70.1±1.2 50.0±2.3 73.0±1.4
DP 63.8±1.2 63.2±1.5 64.0±2.0 65.3±1.2 69.6±1.0 48.4±4.9 71.8±1.1
3C 79.0±0.7 77.3±0.7 73.6±0.7 82.2±0.4 76.9±1.1 26.8±10.9 83.3±0.7
4C 51.5±0.4 55.3±0.8 51.2±1.8 56.9±0.7 57.0±2.0 23.3±7.4 59.8±0.7
5C 77.4±0.7 77.3±0.8 74.1±0.5 80.5±0.5 74.0±1.6 25.9±6.2 80.9±0.9

Slashdot

SP 74.7±0.5 74.1±0.7 64.0±1.3 70.6±1.0 86.6±2.2 57.9±5.3 92.4±0.2
DP 74.8±0.9 74.2±1.4 62.8±0.9 71.1±1.1 87.8±1.0 53.0±4.0 93.1±0.1
3C 69.7±0.3 66.3±1.8 49.1±1.2 72.5±0.7 79.3±1.2 42.0±7.9 86.1±0.3
4C 63.2±0.3 64.0±0.7 53.4±0.2 60.5±0.6 72.7±0.6 25.7±8.9 78.2±0.3
5C 64.4±0.3 62.6±2.0 44.4±1.4 66.4±0.5 70.4±0.7 19.3±8.6 76.8±0.6

Epinions

SP 62.9±0.5 67.7±0.8 63.6±0.5 66.5±1.0 78.5±2.1 53.3±10.6 85.4±0.5
DP 61.7±0.5 67.9±0.6 63.6±0.8 66.4±1.2 73.9±6.2 49.0±3.2 86.3±0.3
3C 70.3±0.8 73.2±0.8 52.3±1.3 72.8±0.2 72.7±2.0 30.5±8.3 83.1±0.5
4C 66.7±1.2 71.0±0.6 62.3±0.5 69.5±0.7 70.2±5.2 29.9±6.4 78.7±0.9
5C 73.5±0.8 76.6±0.7 52.9±0.7 74.2±0.1 70.3±4.6 22.1±6.1 80.5±0.5

FiLL (avg.)

SP 88.4±0.0 82.0±0.3 76.9±0.1 90.0±0.0 88.7±0.3 50.4±1.8 90.8±0.0
DP 88.5±0.1 82.0±0.2 76.9±0.1 90.0±0.0 88.8±0.3 48.0±2.7 90.9±0.0
3C 63.0±0.1 59.3±0.0 55.3±0.1 64.3±0.1 62.2±0.3 33.7±1.3 66.1±0.1
4C 81.7±0.0 78.8±0.1 70.5±0.1 83.2±0.1 80.0±0.3 24.9±0.9 83.3±0.0
5C 63.8±0.0 61.1±0.1 55.5±0.1 64.8±0.1 60.4±0.4 19.8±1.1 64.8±0.1

the best performing methods, but is the least efficient in speed due to its use

of graph attention, see runtime comparison in Appendix C.2. Specifically, the

“avg." results for the novel financial data sets first average the accuracy values

across all individual networks (a total of 42 networks), then report the mean and

standard deviation over the five runs. Results for individual FiLL networks are

reported in Appendix C.4. Note that ±0.0 in the result tables indicates that the

standard deviation is less than 0.05%.

Ablation Study and Discussion

Table C.2 in Appendix C.3 compares different variants of MSGNN on the link

prediction tasks, with respect to (1) whether we set q = 0 or use a value q =

q0 := 1/[2 maxi,j(Ai,j −Aj,i)]) which strongly emphaszies directional information;

(2) whether to include sign in input node features (if False, then only in- and

out-degrees are computed like in [6] regardless of edge signs, otherwise features
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are constructed based on the positive and negative subgraphs separately); and (3)

whether we take edge weights into account (if False, we view all edge weights as

having magnitude one). Taking the standard errors into account, we find that

incorporating directionality into the Laplacian matrix (i.e., having nonzero q)

typically leads to slightly better performance in the directionality-related tasks

(DP, 3C, 4C, 5C). Although, for FiLL, the q = q0 values are within one standard

deviation of the q = 0 ones for (T,T). The only example where q = 0 is clearly

better is Epinions with (T,T) and task 4C. Hence, recommending q = q0 is sensible.

A further comparison of the role of q is provided in Table C.3 and shows that

nonzero q values usually deliver superior performance.

Moreover, signed features are in general helpful for tasks involving sign prediction.

For constructing weighted features we see no significant difference in simply summing

up entries in the adjacency matrix compared to summing the absolute values of

the entries. Besides, calculating degrees regardless of edge weight magnitudes could

be helpful for the first four data sets but not for FiLL. In the first four data sets

the standard errors are much larger than the averages of the sums of the features,

whereas in the FiLL data sets, the standard errors are much smaller than the

average, see Table C.16. Hence this feature may not show enough variability in

the FiLL data sets to be very informative. Treating negative edge weights as

the negation of positive ones is also not helpful (by not having separate degree

features for the positive and negative subgraphs), which may explain why SigMaNet

performs poorly in most scenarios due to its undesirable property. Surprisingly often,

including only signed information but not weighted features does well. To conclude,

constructing features based on the positive and negative subgraphs separately is

helpful, and including directional information is generally beneficial.

More discussions on using instead the unnormalized Laplacian, or including

more layers, and exploration of some properties of our proposed Laplacian, are

provided in Appendix C.3.
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4.5 Conclusion and Outlook

In this paper, we propose a spectral GNN based on a novel magnetic signed Laplacian

matrix, introduce a novel synthetic network model and new real-world data sets,

and conduct experiments on node clustering and link prediction tasks that are not

restricted to considering either link sign or directionality alone. MSGNN performs as

well or better than leading GNNs, while being considerably faster on real-world data

sets. Future plans include investigating more properties of the proposed Laplacian,

and an extension to temporal/dynamic graphs, where node features and/or edge

information could evolve over time [7, 158]. We are also interested in extending our

work to being able to encode nontrivial edge features, to develop objectives which

explicitly handle heterogeneous edge densities throughout the graph, and to extend

our approach to hypergraphs and other complex network structures.
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5
GNNRank: Learning Global Rankings

from Pairwise Comparisons via Directed
Graph Neural Networks

5.1 Introduction

Recovering global rankings from pairwise comparisons reflecting relative latent

strengths or scores is a fundamental problem in information retrieval [11, 12] and

beyond. When analyzing large-scale data sets, one often seeks various forms of

rankings (i.e. orderings) of the data for the purpose of identifying the most important

entries, efficient computation of search & sort operations, or for extracting the

main features. There is a swarm of applications employing ranking techniques

ranging from Amazon’s Mechanical Turk system for crowdsourcing [13] to the

movie recommendation system provided by Netflix [14], and modeling outcomes

of football matches [15].

A very rich literature on ranking traces back to [159], who studied recovering the

ranking of a set of players from pairwise comparisons reflecting a total ordering. The

last decades have seen a flurry of methods for ranking from pairwise comparisons,

mostly based on spectral methods leveraging the eigenvectors of suitably defined

matrix operators built directly from the data, which will be detailed in the related
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work. In particular, SerialRank [25] shows promising ability in ranking for a set of

totally ordered items without ties, by introducing a specific inductive bias from the

so-called seriation problem [160]: a Fiedler vector of a certain similarity matrix could

recover true rankings given enough pairwise comparisons in the noiseless setting.

The Fiedler value of a symmetric and nonnegative matrix (or a graph) is defined to

be the second smallest eigenvalue of the combinatorial Laplacian of the matrix [161],

and its corresponding eigenvector is called a Fiedler vector. The Fiedler vector is able

to encode useful information of a graph, such as bi-partitions of a graph [161] and

the seriation problem [160], and can be employed for partitioning hypergraphs [162].

Moreover, there has been promising progress on combinatorial optimization

in machine learning [163, 164], especially graph neural networks (GNNs) [1, 2],

due to their potential in data exploration. Compared with their great success in

many combinatorial tasks, the capability of GNNs in ranking tasks is not well

developed. The few existing works are restricted to specific settings e.g. top-n

personalized recommendations [163], and approximating centrality measures [164].

Another technical gap is the inability to learn a model by directly optimizing the

ranking objective, which we aim to fill in our work.

We propose GNNRank, an end-to-end ranking framework compatible with

existing GNN models e.g. [5, 114] that is able to learn directed graph (digraph) node

embeddings. We devise differentiable objectives to encode ranking upsets/violations.

Following the standard protocol in [165], an upset of an edge is a ranking violation;

the inferred relative ranking is in the opposite direction to what the original

measurement indicates. GNNRank consists of a family of ranking score estimation

techniques, and adds an inductive bias by unfolding the Fiedler vector computation

of the graph constructed from a learnable similarity matrix.

Our main contributions are as follows:

• To the best of our knowledge, this is the first neural network framework

(specifically GNN) to recover global rankings from pairwise comparisons

whereby a direct optimization of the ranking objectives is enabled, without

supervision. Our method differs from the learning-free methods including
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SerialRank because we design two novel differentiable losses tailored to neural

networks, while the metric Lupset,naive used in previous works is piecewise

constant and only used for post-evaluation instead of training the algorithms.

Along the way, we adapt the widely used Lupset,naive metric to a more fined-

grained evaluation method. Thus the motivation is also different from existing

works.

• For jointly solving global ranking and GNN training, we design and introduce

an inductive bias as achieved by the proximal gradient steps to our neural

network, as unfolded from the Fiedler vector calculation, as an effective way

of encoding latent orderings. The technique of constructing the Q matrix and

the transformation of the optimization problem for differentiable computation

of Fiedler eigenvectors as part of a deep learning model is nontrivial and, to

the best of our knowledge, novel.

• Our methods empirically attain competitive, and often superior, accuracy

compared to state-of-the-art methods, and its cost-effectiveness is especially

pronounced when the trained GNN model is transferred to new datasets

for ranking recovery. Compared to some existing methods e.g. Minimum

Violation Rank (MVR) [166] with expensive optimizations, our methods have

better asymptotic time complexity.

• From a computational perspective, when the data may have a temporal

dimension or when there are similarities across different data sets, one can

apply an already trained model to new data sets that are similar to the one

the model has been trained on.

• We provide theoretical convergence guarantees for our method, with a techni-

cally novel proof, which in our view is a considerable advantage compared to

other, ad-hoc, neural solvers.
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5.2 Related Work

Ranking Methods One of the most popular models in the ranking literature

is the Bradley-Terry-Luce (BTL) model [167], [168]. In its basic version, the

probability that player i beats player j is given by Pij = wi

wi+wj
, where the parameter

vector w ∈ Rn
+ is estimated from the data, and wi is a proxy for the strength

of player i. [169] facilitates the specification and fitting of Bradley-Terry logit

models to pairwise comparisons.

Employing the stationary distribution of a suitably defined Markov chain for

the ranking task traces its roots in early work on the topic of network centrality.

Such measures have been designed to quantify the extent to which nodes of the

graph (or other network structures) are most important [170]; see for example

[171], [172], and [173].

David’s Score [174] computes rankings from proportions of wins and losses.

Minimum Violation Rank (MVR) [166] encompasses a suite of methods that aim

to directly minimize certain penalty functions at the level of each upset. In our

experiments, we compare against the algorithm of [175], that considers a linear

relaxation of an integer program that minimizes a so-called agony loss. However,

MVR is computationally expensive as also will be shown in our experiments.

SyncRank [176] formulates the ranking problem with incomplete noisy pairwise

information as an instance of the group synchronization problem over the group

SO(2) of planar rotations [177], which has attracted significant attention in recent

years. The SpringRank algorithm of [178] borrows intuition from statistical physics,

and proposes to infer hierarchical rankings in directed networks by solving a

linear system of equations. [165] introduces simple algorithms for ranking and

synchronization based on singular value decompositions, with theoretical guarantees.

SerialRank [25] first computes the Laplacian from a certain similarity matrix S′.

The corresponding Fiedler vector of S′ then serves as the final ranking estimate.

The intuition is that the more similar two players are (in terms of the pattern

of incoming/outgoing edges), the more similar their ranking should be; indeed, if

two players defeat, and are defeated, by the same set of other players, then they
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are likely to have a similar ranking/strength. In this classical ordering problem

(called seriation [160]), one is given a similarity matrix between a set of items

and assumes that the items can be ordered along a chain such that the similarity

between items decreases with their distance in the chain.

Apart from the above classical learning-free optimizers for ranking problems,

there also exist learning-based (mostly neural) models for similar tasks. The early

work [179] applies a certain form of GNN to ranking web pages, while it requires

label supervision for ground-truth ranks for training. While the authors in [180]

propose the family of so-called RankGNNs, their competitors are graphs. [181]

applies a neural network approach for preference learning, [182] generalizes [183],

but these methods require queries as input, which solve a different problem from

ours. [164] proposes the first GNN-based model to approximate betweenness and

closeness centrality, facilitating locating influential nodes in the graphs in terms of

information spread and connectivity. The pairwise direction is rarely considered in

these works but it is important for the problem studied in this paper. Thus, our

task differs fundamentally from the (abundant) learning-to-rank literature.

Directed Graph Neural Networks Directed GNNs are useful in learning

digraph node embeddings. [114] builds aggregators based on higher-order proximity.

[6] constructs a complex Hermitian Laplacian matrix. [5] introduces imbalance

objectives for digraph clustering. In GNNRank, existing digraph neural networks

can be readily incorporated.

Unfolding Techiques Algorithm unfolding [184] was first introduced to unfold

the iterations as a cascade of layers while adding learnable parameters. The unfolding

idea has later been applied to problems such as semantic segmentation [185] and

efficient power allocation [186]. The work [187] discusses a new family of GNN layers

designed to mimic and integrate the update rules of classical iterative algorithms.

The unfolding idea inspires us to add a useful inductive bias from the calculation of

the Fiedler vector via our bi-level optimization pipeline [188]. Most importantly,

unfolding allows us to pass gradients through the optimization of a useful function.
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Figure 5.1: Overview of GNNRank based on directed graph neural networks and the
proximal gradient steps corresponding to Algo. 2: starting from an adjacency matrix A
which encodes pairwise comparisons, input feature matrix X and embedding dimension d,
GNNRank first applies a directed graph neural network model to learn node embeddings
Z for each competitor (node). Then it calculates the inner product or the similarity
score with respect to a learnable vector to produce non-proximal outcomes for ranking
scores (“innerproduct" or “dist"). Proximal variants start from a similarity matrix
constructed from the learnable embeddings Z, then utilize proximal gradient steps to
output ranking scores. Depending on the initial guess score vector r′, the proximal variants
have names “proximal innerproduct", “proximal dist" or “proximal baseline". Ordering
the scores in the score vector r induces the final ranking/ordering vector R ∈ Rn. The
loss function is applied to a variant’s output score vector r, given the input adjacency
matrix A, while the final evaluation is based on R and A. Red frames indicate trainable
tensors/vectors/matrices. Grey squares correspond to fixed inputs.

5.3 Approach

5.3.1 Problem Definition

Without loss of generality, we consider pairwise comparisons in a competition,

which can be encoded in a directed graph (digraph) G = (V , E), where the node

set V denotes competitors, and the edge set E represents pairwise comparisons.

The outcomes of the matches can be captured by the adjacency matrix A. A

single edge e ∈ E from node vi to node vj, with edge weight Ai,j ≥ 0 that is not

reciprocal, denotes that node vi is stronger than node vj by Ai,j For a reciprocal

edge, Ai,j and Aj,i could be different; they could denote the (sum of) match scores

for both competitors in matches between them, or the sum of absolute wins across

different matches between them, where Ai,j is the sum of absolute wins for vi.

Recovering global rankings from pairwise comparisons amounts to assigning an

integer Ri to each node vi ∈ V, denoting its position among competitors, where
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the lower the rank, the stronger the node is. To this end, many existing methods

(including our proposed methods) first learn a real-valued ranking score ri for vi,

where the higher the score, the stronger the node is. The scores are then ordered

to provide the final integer ranking.

5.3.2 Motivation and Connection to SerialRank

The whole GNNRank framework, described in Algo. 2, uses steps from Algo. 1 for the

lower-level optimization within the whole bi-level optimization pipeline; a diagram

is provided in Fig. 5.1. Details are provided later in this section.

Indeed, we highlight an intrinsic connection to SerialRank [25], which operates

by first computing the Laplacian from a certain similarity matrix S′ = 1
2(n11⊤ +

CC⊤), where C is the binary comparison matrix with Ci,j = sign(Ai,j − Aj,i),

and A the digraph adjacency matrix. The corresponding Fiedler vector of S′

then serves as the final ranking estimate, after a global sign reconciliation. While

often effective in practice, SerialRank is heavily dependent on the quality of the

underlying similarity matrix S′.

To address this issue, we introduce a parameterized GNN model that allows us

to compute trainable measures of similarity that are useful for subsequent ranking.

However, for training purposes, we of course need to somehow back-propagate

gradients through the computation of a Fiedler vector to update the GNN parameters.

Because it is generally difficult to directly pass gradients through eigenvector

computations, we instead express the Fiedler vector as the solution of a constrained

optimization problem. We then approximate the solution of this problem using

proximal gradient steps, each of which are themselves differentiable with respect to

the underlying optimization variables, and ultimately by the chain rule, the GNN

parameters. Note that Algo. 1 can be viewed as a differentiable function that inputs

r′ and L, and outputs r. Therefore, the gradients can backpropagate through Algo.

1 into L and r′, hence the similarity matrix S and the rest of the model parameters.

In broader contexts, this process is sometimes referred to as unfolded optimization

[184], and is applicable in situations whereby a high-level loss function (in our case
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a ranking loss) is defined with respect to the minimization of some lower-level,

parameter-dependent optimization problem (e.g., Fiedler vector computation) that

has been unfolded across differentiable iterations/updates. Within our proposed

framework, this process allows to combine the inductive bias of Fiedler-vector-based

rankings with the flexibility of GNNs for modeling relations between entities. Also,

SerialRank can be viewed as a special case of GNNRank; S′
i,j counts the number

of competitors that beat both vi and vj, plus that of competitors beaten by both

vi and vj, minus that of competitors beating one of vi and vj but beaten by the

other, plus half the number of nodes. Information from common neighbors could

be aggregated by directed GNNs, and a kernel such as a Gaussian RBF kernel

applied to the digraph embeddings could approximate S′.

5.3.3 Loss Functions and Objectives

Define the skew-symmetric matrix M′ = A − A⊤, and let t be the number of

nonzero elements in M′. For a vector r = [r1, . . . , rn]⊤ with real-valued ranking

scores (often viewed as skill levels) as entries, a naive upset is defined as the fraction

of relationships disagreeing with their expected sign, in the spirit of [165]. Formally,

let 1 be an all-one column vector, and define the matrix T′ = r1⊤ − 1r⊤ ∈ Rn×n.

Then we have T′
i,j = ri − rj,∀i, j ∈ {1, · · · , n}. To not penalize entries where the

initial pairwise rankings are not available, we only compare T′ with M′ at locations

where M′ has nonzero entries. A naive upset loss is defined as

Lupset, naive =
∑

i,j:M′
i,j ̸=0

(sign(T′
i,j) ̸= sign(M′

i,j))/t. (5.1)

Being piecewise constant, Lupset, naive is not useful in gradient descent. To account

for the difference in the scaling between the output scores and the input adjacency

matrix, we define element-wise divisions M = A−A⊤

A+A⊤ , and T = r1⊤−1r⊤

r1⊤+1r⊤ ∈ Rn×n.

Then Ti,j = ri−rj

ri+rj
,∀i, j ∈ {1, · · · , n}. Similarly, we only compare T with M at

locations where M has nonzero entries.

With T̃ where T̃i,j = Ti,j if Mi,j ̸= 0 and T̃i,j = 0 if Mi,j = 0, the differentiable

upset loss is then defined as
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Lupset, ratio =
∥∥∥T̃−M

∥∥∥2

F
/t(M), (5.2)

where the subscript F means Frobenius norm, and t(M) is the number of nonzero

elements in M.

Note that Lupset, ratio requires ri ≥ 0 for each ri to represent the skill level. Hence

we use transformations e.g. ri ← sigmoid(ri) for general ri ∈ R, and ri ← ri+1
2

when we know ri ≥ −1, e.g. when the score r = (ri) has unit norm.

Another choice is the margin loss Lupset, margin, with a tunable nonnegative

parameter ϵ ≥ 0 (default 0.01), defined as

Lupset, margin =
∑
i,j

(Mi,j + |Mi,j|) · ReLU(rj − ri + ϵ)/t(M), (5.3)

where ReLU is the Rectified Linear Unit.

The training loss used is either Lupset, ratio, Lupset, margin or their sum, where

the choice is set as a hyperparameter.

Evaluation. For evaluation, in addition to Lupset, naive, we introduce another

objective similar to Lupset, naive but penalizing predicted signs opposite to the actual

signs more than predicted signs being zero, i.e. we distinguish predictions as ties or

being opposite signs, which can also take integer rankings as input

Lupset, simple = ∥sign(T′)− sign(M′))∥2
F /t, (5.4)

where the sign function acts element-wise, and t is the number of nonzero elements

in M′. However, although Lupset, simple distinguishes ties and opposite signs, this loss

can easily be made equal to one by assigning the same score to all nodes (i.e., making

r a constant vector which corresponds to all ties), which means that whenever we

achieve a value larger than one, the model performs even worse than trivial guess.

When ground-truth rankings are available, we use the Kendall tau [24] values

for evaluation, and select the model based on the lowest Lupset, simple.
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5.3.4 Obtaining Directed Graph Embeddings

For obtaining a directed graph embedding, any GNN method which can take

into account directionality and output node embeddings could be applied, e.g.

DIMPA by [5], the inception block model (IB) [114], and MagNet [6]. In our

experiments, we employ DIMPA and IB, to aid in the ranking task. Denoting

the final node embedding by Z ∈ Rn×d, the embedding vector zi for a node vi

is zi = (Z)(i,:) ∈ Rd, the ith row of Z.

5.3.5 Obtaining Final Scores and Rankings

To obtain the final ranking score, we unfold the calculation of a Fiedler vector for

the graph constructed from our symmetric similarity matrix S with proximal

gradient steps.

Obtaining the similarity matrix. From the high-dimensional embedding matrix

Z, we calculate the symmetric similarity matrix S with Si,j = exp(−|zj−zi|22/(σ2d))

where σ ∈ R is the same trainable parameter as in “dist". Denote by D the

diagonal matrix with Di,i = ∑
j Si,j. We consider the unnormalized Laplacian

L = D− S, and apply proximal gradient to approximate a Fiedler vector of S,

which then serves as r.

Transformation of the Optimization Problem. Computing a Fiedler vector

of the similarity matrix S is equivalent to solving the optimization problem [189]

min
r

r⊤Lr s.t. ∥r∥2
2 = 1, r⊤1 = 0, (5.5)

where L is the graph Laplacian matrix. We observe that the constraints describe

an intersection of a unit sphere and a hyperplane. By rotating the problem and

the constraints so that the hyperplane becomes cardinal, we can effectively fix

one dimension to zero and solve

min
y

y⊤QLQ⊤y s.t. ∥y∥2
2 = 1, y1 = 0. (5.6)

Here Q is an orthogonal matrix. We choose a Q such that Q1 =
√

ne1, where

e1 =
[
1 0 · · · 0

]⊤
. Let y = Qr, and thus r = Q⊤y. The problem becomes
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min
y

y⊤QLQ⊤y

s.t. ∥r∥2
2 = 1 r⊤1 =

√
ny⊤e1 =

√
ny1 = 0.

Since we fix y1 = 0, this is equivalent to

min
y′∈Rn−1

y′⊤
[
QLQ⊤

]
2:n,2:n

y′ s.t. ∥y′∥2
2 = 1, (5.7)

where [·]2:n,2:n represents the matrix with its first row and first column removed. To

illuminate this equivalence, since the constraint r⊤1 = 0 is equivalent to y1 = 0,

we need to ensure that y1 = 0 is maintained throughout. If we start with y ∈ Rn

where y1 = 0, and let y′ = [y2, . . . , yn]⊤ ∈ Rn−1 then

y⊤
[
QLQ⊤

]
1:n,1:n

y =
∑

1≤i≤n,1≤j≤n

[
QLQ⊤

]
i,j

yiyj

=
∑

2≤i≤n,2≤j≤n

[
QLQ⊤

]
i,j

yiyj = y′⊤
[
QLQ⊤

]
2:n,2:n

y′.

One possible Q, with details of the construction given in Appendix D.2, is the

following upper Hessenberg matrix, which can be efficiently precomputed

Qij =



√
1
n

i = 1
−
√

n−i+1
n−i+2 i ≥ 2, j = i− 1√

1
(n−i+1)(n−i+2) i ≥ 2, j ≥ i

0 otherwise.

Proximal Gradient Steps. To enforce a zero in the first entry of the initial

guess, we zero-center the input score vector, then left multiply it by Q, so this

resulting vector has 0 in its first entry. We then remove the first entry of the

resulting vector, and discard the first row and first column for the matrix QLQ⊤.

The gradient of the objective y⊤L̃y with respect to y is (L̃ + L̃⊤)y = 2L̃y since

L̃ is symmetric. We set the number of proximal steps as Γ = 5, and initial

learning rates inside proximal gradient steps αγ = 1, γ = 1, . . . , Γ. Define the

spherical projection operation PSn−1(·) : Rn → Rn by PSn−1(x) = x
∥x∥2

if x ̸= 0

and PSn−1(0) = e1, where 0 = [0, . . . , 0]⊤. Algo. 1 details the proximal gradient

steps, with proximal operator PSn−2 , which guarantees descent of the optimization

objective in equation 5.5 given suitable α’s (see Thm. 3).
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Algorithm 1: Proximal Gradient Steps
Input: Initial score r′ ∈ Rn, Laplacian L ∈ Rn×n and Q ∈ Rn×n

Parameter: (Initial) learning rate set {αγ > 0}Γγ=1 that could either be fixed or
trainable (default: trainable).

Output: Updated score vector r = [r1, . . . , rn]⊤.
1: Let y = r′ −

∑n
i=1 r′

i/n;
2: y← Q′y ∈ Rn−1 (Q′ is Q with the first row removed);
3: y← PSn−1(y) to have unit 2-norm;
4: L̃←

[
QLQ⊤

]
2:n,2:n

.

5: for γ < Γ do
6: y← y− αγ(2L̃)y/n;
7: y← PSn−2(y) to have unit 2-norm;
8: γ ← γ + 1.
9: end for

10: y← CONCAT(0, y) ∈ Rn;
11: r = Q⊤y
12: return r;

Algorithm 2: GNNRank: Proposed Ranking Framework
Input: Digraph adjacency matrix A ∈ Rn×n, node feature matrix X, variant name
var, (optional) initial guess from baseline r′.

Parameter: Learnable vector a ∈ Rn, b ∈ R, σ ∈ R, GNN parameters, parameters
from Algo. 1.

Output: Score vector r.
1: Z ∈ Rn×d = GNN(A, X);
2: if var ∈{“dist", “proximal dist"} then
3: Compute r : ri = exp(−|a − zi|22/(σ2d));
4: else if var ∈{“innerproduct", “proximal innerproduct"} then
5: Compute r : ri = sigmoid(zi · a + b);
6: end if
7: if var ∈{“proximal dist", “proximal innerproduct", “proximal baseline"} then
8: Compute S : Si,j = exp(−|zj − zi|22/(σ2d));
9: Compute Laplacian L and Q by Sec. 5.3.5;

10: if var =={“proximal baseline"} then
11: r = r′;
12: end if
13: r← Proximal Gradient Steps(r, L, Q) from Algo. 1;
14: end if
15: return r;

5.3.6 Initialization and Pretraining Considerations

Algo. 1 requires an initial guess r′ ∈ Rn. To achieve this, we introduce two non-

proximal variants, whose output score vector could serve as r′. These non-proximal
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variants are also evaluated in our experiments.

• (1) “innerproduct" variant: With a trainable vector a that has its dimension

equal to the embedding dimension, we obtain the scores by the inner product of

zi with a, plus a trainable bias b, followed by a sigmoid layer to force positive

score values: ri = sigmoid(zi · a + b).

• (2) “dist" variant: ri = exp(−|a − zi|22/(σ2d)) where a ∈ Rd, σ ∈ R are

trainable parameters. This variant applies a trainable Gaussian RBF kernel to

describe the scores.

For each non-proximal variant, the corresponding proximal variant is called • (3)

“proximal dist" or • (4) “proximal innerproduct". We can also adopt the initial guess

from a certain existing baseline’s output, with variant name • (5) “proximal baseline".

For a reasonable similarity matrix to start with, we apply some pretraining.

One option is to train the ranking model with a non-proximal variant, “dist" or

“innerproduct", for the early training epochs. As the proximal variants are inspired

by unfolding the Fiedler vector calculation introduced in SerialRank [25], another

option is to add a term to the loss function in early training epochs that compares

the similarity matrix constructed by Z using a GNN with the normalized version

(divided by the max entry so that the maximum is 1) of S′, the similarity matrix

from SerialRank. The corresponding additional term added to the loss function

Lupset, ratio from Eq. equation 5.2 or Lupset, margin from Eq. equation 5.3, or their

sum, is Lsimilarity = n−2∥S− S′/ max({S′
i,j})∥2

F .

5.3.7 Convergence Analysis

An analysis of the convergence of our proximal gradient steps is provided in

Appendix D.3, along with additional theoretical and practical considerations. We

summarize our main result below; the proof is available in Appendix D.3.

Theorem 3. Let {αγ > 0}Γ
γ=1 in Algo. 1 be fixed (equal to α) and let ρ be the

Fiedler eigenvalue of S. Denote a Fiedler eigenvector by r∗. Assume that r∗ is a

strict local minimizer of problem (5.5). If 0 < α < 1
4(n−1) , then with our definition

of S, Algo. 1 converges locally uniformly to r∗.
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5.4 Experiments

Implementation details are provided in Appendix D.1. Experiments were conducted

on a compute node with 8 Nvidia Tesla T4, 96 Intel Xeon Platinum 8259CL CPUs

@ 2.50GHz and 378GB RAM.

5.4.1 Data sets and Protocol

Real-World Data. We consider 10 real-world data sets (78 digraphs constructed

in total). Digraphs based on pairwise comparisons are constructed as follows in most

cases: for each match, an edge is added if the match result is not a tie, with the edge

weight the difference between scores (absolute wins, that is, the absolute difference

of the scores), and ties are treated the same as no match between the pair of players.

When raw data with individual match scores on both competitors are available,

we in addition construct a “finer" version which takes ties into account, as follows:

for each match, we have a reciprocal edge with potentially different weights on the

two directions. If there are multiple matches, weights are added. To distinguish

zero (a tie) from no game, for our methods, we add a small value (here 0.1)

to every existing edge.

Real-world data sets, detailed in Appendix D.4, include

• NCAA College Basketball1 (used to construct the networks Basketball and

Basketball finer) are the outcomes of US College basketball matches from

seasons 1985-2014. We construct two separate digraphs for each season, a

regular version and a “finer" version introduced in the last paragraph.

• England Football Premier League2 (Football and Football finer) are Premier

League football match results for six seasons, from 2009 to 2014, between 20

teams. As in NCAA College Basketball, we construct two separate digraphs

for each season.
1https://www.ncaa.com/sports/basketball-men/d1
2https://www.premierleague.com/

Printed on June 7, 2024

https://www.ncaa.com/sports/basketball-men/d1
https://www.premierleague.com/


5. GNNRank 89

Table 5.1: Summary statistics for the real-world networks.

Data n |E| density |Er| |Er|
|E| (%) K d

HeadToHead 602 5010 1.38e-02 464 9.26 48 32
Finance 1315 1729225 1.00e+00 1729225 100 20 64
Animal 21 193 4.60e-01 64 33.16 3 8
Faculty:Business 113 1787 1.41e-01 0 0.00 5 16
Faculty:CS 206 1407 3.33e-02 0 0.00 9 16
Faculty:History 145 1204 5.77e-02 0 0.00 12 16
Football(avg) 20 201 5.29e-01 71 32.17 9 8
Basketball(avg) 316 3506 3.51e-02 986 28.57 20 16
Football finer (avg) 20 367 9.65e-01 367 100 9 8
Basketball finer (avg) 316 6139 6.12e-02 6139 100 20 16

• The Animal Dominance Network (Animal) [190] describes the number of net

aggressive wins of 21 captive monk parakeets.

• Microsoft Halo 2 Tournament on Head-to-Head Games (HeadToHead) collects

game outcomes during the Beta testing period for the Xbox game Halo 23.

• Faculty Hiring Networks (Faculty: Business, Faculty: CS and Faculty:

History) [191] contains three North American academic hiring networks

tracking the flow of academics between universities.

• Lead-Lag Relationships on Stocks (Finance) [105] contains lead-lag relation-

ships on 1315 stocks from 2001-2019. An edge (i, j) in the digraph encodes

the t-value of the coefficient in the regression of the daily returns of stock i

on the lag-1 (previous day) returns of stock j.

Table 5.1 gives the number of nodes (n), the number of directed edges (|E|),

the number of reciprocal edges (|Er|) (self-loops are counted once and for u ̸= v,

a reciprocal edge u→ v, v → u is counted twice) and their percentage among all

edges, for the real-world networks, illustrating the variability in network size and

density (defined as |E|/[n(n− 1)]). When input features are unavailable, we stack

the real and imaginary parts of the top K eigenvectors of (A−A⊤) · i in line with

the protocol in [97] for GNNs. We report the embedding dimension d.
3Credits for using the Halo 2 Beta data set are given to Microsoft Research Ltd. and Bungie.
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Synthetic Data We perform experiments on graphs with n = 350 nodes for

Erdős-Rényi Outlier (ERO) models as in [165], with edge density p ∈ {0.05, 1},

noise level η ∈ {0, 0.1, . . . , 0.8} (corresponding to γ in [165]) and style “uniform"

or “gamma" depending on the distribution from which the ground-truth scores are

generated. 4 We fix K = 5, d = 16 for the ERO.

5.4.2 Main Experimental Results

In our numerical experiments, we compare against 11 baselines, where results are

averaged over 10 runs: • Eigenvector Centrality (Eig.Cent.) [172], • PageRank [171],

• Rank Centrality (RankCent.) [173], • Minimum Violation Rank (MVR) [166], •

SerialRank [25], • SyncRank [176], • SVD_NRS and SVD_RS by [165], • Bradley-

Terry-Luce (BTL) model [169], • David’s Score (DavidScore) [174], and • SpringRank

[178]. Models are selected based on the lowest Lupset, simple obtained without label

supervision, where non-proximal results (for “dist" and “innerproduct" variants)

are listed in the “GNNRank-N" column and proximal methods (for “proximal dist",

“proximal innerproduct" and “proximal baseline" variants) listed with “GNNRank-

P", in all tables. We report the best-performing variant for each data set within

GNNRank-N and GNNRank-P, respectively. Performance with respect to each

of the GNNRank variants, for each individual input digraph, and on different

objectives, are given in Appendix D.5. Table 5.2 compares our two groups of

methods against baselines on 10 real-world data sets, where basketball data sets

are averaged over 30 seasons, and football ones are averaged over 6 seasons. Our

best-performing variant of the proximal method also outperforms its inspiration

SerialRank [25] on all real-world data sets by including more trainable parameters.

Our proximal method achieves state-of-the-art performance when using a typically

good baseline, such as SyncRank, as an initial guess to the score vector before

applying proximal gradient steps.

Table 5.3 shows Kendall tau selected from the lowest Lupset, naive on synthetic

models. For some dense digraphs, SerialRank (which motivated our proximal
4This synthetic graph is an ER graph with tunable noise level, a test case which is informative

without being too unrealistic.
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Table 5.2: Performance on Lupset, simple (top half) and Lupset, naive (bottom half), averaged
over 10 runs with one standard deviation. “avg" for time series first average over all
seasons, then consider mean and standard deviation over the 10 averaged values. The
best is marked in bold red while the second best is in underline blue . When MVR
does not generate results after one week, we fill in “NAN".

Data SpringRank SyncRank SerialRank BTL DavidScore Eig.Cent. PageRank RankCent. SVD_RS SVD_NRS MVR GNNRank-N GNNRank-P
HeadToHead 1.00±0.00 1.94±0.00 2.01±0.00 1.12±0.01 1.16±0.00 1.47±0.00 1.36±0.00 2.00±0.02 1.79±0.00 1.42±0.00 nan±nan 0.99±0.00 0.96±0.00
Finance 1.63±0.00 1.98±0.00 1.61±0.00 1.78±0.01 1.63±0.00 1.74±0.00 1.75±0.00 1.88±0.00 1.64±0.00 1.64±0.00 nan±nan 1.00±0.00 1.00±0.00
Animal 0.50±0.00 1.62±0.24 1.98±0.48 0.45±0.00 0.33±0.00 0.55±0.00 0.63±0.00 1.96±0.00 1.03±0.00 0.53±0.00 2.02±0.32 0.41±0.09 0.25±0.00
Faculty: Business 0.41±0.00 0.83±0.00 1.19±0.00 0.41±0.01 0.49±0.00 0.49±0.00 0.49±0.00 2.01±0.03 0.68±0.00 0.46±0.00 0.78±0.05 0.38±0.01 0.36±0.00
Faculty: CS 0.33±0.00 0.98±0.10 1.40±0.00 0.34±0.01 0.61±0.00 0.51±0.00 0.44±0.00 1.99±0.27 0.93±0.00 0.58±0.00 0.87±0.09 0.33±0.03 0.32±0.00
Faculty: History 0.32±0.00 0.57±0.00 2.16±0.80 0.30±0.01 0.57±0.00 0.40±0.00 0.37±0.00 2.13±0.30 0.95±0.00 0.38±0.00 0.84±0.17 0.28±0.01 0.30±0.01
Basketball (avg) 0.78±0.00 1.72±0.00 1.98±0.00 0.91±0.03 0.79±0.00 0.88±0.00 0.88±0.00 1.95±0.00 0.99±0.00 0.89±0.00 nan±nan 0.80±0.00 0.73±0.00
Basketball finer (avg) 0.81±0.00 1.73±0.01 1.96±0.00 1.39±0.02 0.85±0.00 1.19±0.00 1.15±0.00 1.97±0.00 1.00±0.00 0.90±0.00 nan±nan 0.84±0.00 0.74±0.00
Football (avg) 0.91±0.00 1.63±0.12 1.20±0.00 0.94±0.02 0.94±0.00 1.07±0.00 1.08±0.00 1.78±0.03 1.00±0.00 0.90±0.00 1.72±0.09 0.81±0.03 0.78±0.02
Football finer (avg) 0.98±0.00 1.68±0.03 1.16±0.00 1.01±0.02 0.93±0.00 1.13±0.00 1.21±0.00 1.91±0.01 1.00±0.00 0.90±0.00 2.06±0.04 0.89±0.06 0.82±0.01

HeadToHead 0.25±0.00 0.48±0.00 0.50±0.00 0.28±0.00 0.29±0.00 0.37±0.00 0.34±0.00 0.50±0.01 0.45±0.00 0.36±0.00 nan±nan 0.27±0.00 0.24±0.00
Finance 0.41±0.00 0.50±0.00 0.40±0.00 0.45±0.00 0.41±0.00 0.44±0.00 0.44±0.00 0.47±0.00 0.41±0.00 0.41±0.00 nan±nan 0.41±0.00 0.40±0.00
Animal 0.13±0.00 0.40±0.06 0.58±0.11 0.11±0.00 0.08±0.00 0.14±0.00 0.16±0.00 0.49±0.00 0.26±0.00 0.13±0.00 0.50±0.08 0.10±0.02 0.06±0.00
Faculty: Business 0.10±0.00 0.21±0.00 0.30±0.00 0.10±0.00 0.12±0.00 0.12±0.00 0.12±0.00 0.50±0.01 0.17±0.00 0.12±0.00 0.19±0.01 0.10±0.00 0.09±0.00
Faculty: CS 0.08±0.00 0.24±0.02 0.35±0.00 0.08±0.00 0.15±0.00 0.13±0.00 0.11±0.00 0.50±0.07 0.23±0.00 0.15±0.00 0.22±0.02 0.08±0.01 0.08±0.00
Faculty: History 0.08±0.00 0.14±0.00 0.54±0.20 0.08±0.00 0.15±0.00 0.10±0.00 0.09±0.00 0.53±0.08 0.24±0.00 0.10±0.00 0.21±0.04 0.07±0.00 0.07±0.00
Basketball (avg) 0.20±0.00 0.43±0.00 0.49±0.00 0.23±0.01 0.20±0.00 0.22±0.00 0.22±0.00 0.49±0.00 0.25±0.00 0.22±0.00 nan±nan 0.20±0.00 0.18±0.00
Basketball finer (avg) 0.20±0.00 0.43±0.00 0.49±0.00 0.35±0.00 0.21±0.00 0.30±0.00 0.29±0.00 0.49±0.00 0.25±0.00 0.23±0.00 nan±nan 0.21±0.00 0.18±0.00
Football (avg) 0.23±0.00 0.41±0.03 0.30±0.00 0.23±0.01 0.24±0.00 0.27±0.00 0.27±0.00 0.44±0.01 0.25±0.00 0.22±0.00 0.43±0.02 0.22±0.01 0.21±0.00
Football finer (avg) 0.25±0.00 0.42±0.01 0.29±0.00 0.25±0.01 0.23±0.00 0.28±0.00 0.30±0.00 0.48±0.00 0.25±0.00 0.22±0.00 0.51±0.01 0.24±0.01 0.21±0.00

gradient steps) attains leading performance, while for some other cases it fails.

GNNRank-P outperforms across all synthetic models shown here. Full results

are in Appendix D.5.2.

We conclude that both non-proximal and proximal methods can achieve leading

performance on real-world data sets, while on the synthetic models listed here,

the best method in GNNRank-P performs much better than the best method

in GNNRank-N. Performance results for each of the variants are provided in

Appendix D.5.3; the individual variants also attain comparable and often superior

performance compared to the baselines.

We observe across all data sets that our proximal methods: • (1) can improve

on existing baseline methods when using them as initial guesses, and never perform

significantly worse than the corresponding baseline, hence they can be used to

enhance existing methods; • (2) do not rely on baseline methods for an initial guess

but can instead use GNNRank-N outcomes, such as “proximal dist" and “proximal

innerproduct”; • (3) can outperform SerialRank by unfolding its Fiedler vector

calculations with a trainable similarity matrix and proximal gradient steps.

5.4.3 Discussion

Ablation Study. Table 5.4 shows results on varying the current choices: • 1) For

GNNRank-N methods: forcing the loss to be the sum Lupset, simple + Lupset, margin,
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Table 5.3: Performance on Kendall Tau based on the lowest Lupset, naive on ERO models,
averaged over 10 runs with one standard deviation. “avg" for time series first average
over all seasons, then consider mean and standard deviation over the 10 averaged values.
The best is marked in bold red while the second best is in underline blue . As MVR
does not generate results after one week, we leave it out here.

Data SpringRank SyncRank SerialRank BTL DavidScore Eig.Cent. PageRank RankCent. SVD_RS SVD_NRS GNNRank-N GNNRank-P
ERO(p=0.05, style=uniform,η=0.1) 0.75±0.00 0.04±0.00 0.03±0.00 0.70±0.01 0.77±0.00 0.56±0.00 0.58±0.00 0.01±0.05 0.74±0.00 0.77±0.00 0.76±0.01 0.79±0.01
ERO(p=0.05, style=gamma,η=0.2) 0.61±0.00 0.01±0.00 -0.01±0.00 0.61±0.00 0.74±0.00 0.52±0.00 0.51±0.00 -0.01±0.01 0.45±0.00 0.64±0.00 0.52±0.01 0.77±0.00
ERO(p=0.05, style=uniform,η=0.3) 0.61±0.00 0.05±0.00 0.01±0.00 0.59±0.01 0.68±0.00 0.44±0.00 0.41±0.00 0.05±0.00 0.60±0.00 0.62±0.00 0.62±0.00 0.70±0.02
ERO(p=0.05, style=gamma,η=0.4) 0.51±0.00 0.08±0.00 -0.00±0.00 0.52±0.00 0.65±0.00 0.43±0.00 0.43±0.00 0.09±0.01 0.23±0.00 0.44±0.00 0.38±0.08 0.66±0.01
ERO(p=1, style=uniform,η=0.5) 0.85±0.00 0.07±0.00 0.92±0.00 0.81±0.03 0.91±0.00 0.80±0.00 0.73±0.00 0.24±0.00 0.89±0.00 0.87±0.00 0.90±0.01 0.92±0.00
ERO(p=1, style=gamma,η=0.6) 0.72±0.00 0.09±0.00 0.89±0.00 0.67±0.01 0.88±0.00 0.65±0.00 0.64±0.00 0.05±0.02 0.74±0.00 0.73±0.00 0.77±0.00 0.89±0.00

Table 5.4: Lupset, simple comparison for different variants on real-world data, averaged
over 10 runs, and plus/minus one standard deviation. The best for each group (GNNRank-
N or GNNRank-P) is marked in bold red while the second best is in underline blue .

Methods GNNRank-N GNNRank-P
Data/Variant loss sum Lupset,margin Lupset, ratio loss sum Lupset,margin Lupset, ratio no pretrain {αγ}Γ

γ=1not trainable Γ = 3 Γ = 7
Animal 0.43±0.06 0.59±0.08

0.41±0.09
0.25±0.00 0.25±0.00 0.25±0.01 0.25±0.00 0.25±0.00 0.25±0.00 0.25±0.00

Faculty: Business 0.40±0.02 0.49±0.16 0.38±0.01 0.36±0.00 0.36±0.00 0.36±0.00 0.36±0.00 0.36±0.00 0.36±0.00 0.36±0.00

Faculty: CS 0.35±0.01 0.36±0.01
0.33±0.03

0.32±0.00 0.32±0.00 0.32±0.00 0.33±0.00 0.32±0.00 0.32±0.00 0.32±0.00

Faculty: History 0.28±0.01 0.31±0.01 0.28±0.01 0.30±0.01 0.30±0.01 0.30±0.02 0.30±0.01 0.30±0.01 0.30±0.01 0.30±0.01

Football (avg) 0.82±0.01 0.84±0.03
0.82±0.05

0.78±0.02 0.78±0.01 0.79±0.01 0.79±0.02 0.79±0.02 0.77±0.01 0.78±0.02

Football finer (avg) 0.90±0.01 0.97±0.06 0.91±0.07 0.82±0.01 0.84±0.01 0.82±0.01 0.84±0.02 0.82±0.00 0.82±0.01 0.82±0.01

Lupset, simple only, or Lupset, margin, respectively; • 2) for GNNRank-P methods: in

addition to the variants for GNNRank-N methods, removing pretraining, fixing all αγ

in Algo. 1, and changing the number of Fiedler proximal steps from default 5 to 3 or 7.

It is shown that for GNNRank-N methods, using Lupset, margin usually harms

performance. For GNNRank-P methods, using Lupset, margin in addition to Lupset, ratio

usually boosts performance. Pretraining generally leads to better performance,

so does making {αγ}Γ
γ=1 trainable. The number of proximal gradient steps does

not need to be large probably due to fast convergence, so we use 5 throughout.

Full comparison tables are in Appendix D.5.4 including results on Lupset, naive,

with similar conclusions.

In addition, note that essentially we could use any neural network method to

obtain the node embeddings, yet digraph GNNs are natural to be employed given

the input data structure. To validate the benefit of using a digraph GNN, we

adopt a two-layer Multilayer perceptron to obtain node embeddings, but obtained

on average 2% worse Lupset,simple for both the non-proximal and proximal variants

across all real-world data sets, respectively.
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Inductive Learning. We observe that our proximal methods, if trained

only once and then applied to similar data sets, still perform comparably to

multiply trained analogs. This can save training time and validates the inductive

learning ability for our framework. To this end, Appendix D.5.5 shows results

on the performance of the “IB proximal baseline" variant, trained with “emb

baseline" on the Basketball finer data set. On average, directly applying gives

Lupset, simple = 0.75± 0.02 and Lupset, naive = 0.19± 0.01 while training specifically

for the season gives Lupset, simple = 0.74 ± 0.00 and Lupset, naive = 0.19 ± 0.00.

Variants and Hyperparameters. The results in Tables 5.2 and 5.3 are selected

within either non-proximal or proximal categories, depending on whether they have

proximal gradient steps within the architecture. They show the lowest reported

evaluation metric (except for Kendall tau, when we select variants based on the

lowest Lupset, naive) for all variants within the group. Appendix D.7 gives the variant

selected based on minimizing either Lupset, simple or Lupset, ratio for non-proximal

and proximal groups, respectively. We find that each variant has its scenarios

where it shows competitive or even outstanding performance; that “dist" seems

to outperform “innerproduct" within non-proximal methods; and that “proximal

baseline" is usually the best among proximal methods, with SyncRank output as

initial guess, pretrained with a SerialRank similarity matrix. This shows that our

proximal method, initialized with a good baseline, e.g. Sync-Rank, and pretrained

with information from SerialRank, can boost the corresponding baseline method

by using a learnable similarity matrix.

Boosting Baselines. Appendix D.6 shows improvements on Lupset,simple and

Lupset,naive by “proximal baseline" when setting a certain baseline as r′. Across all

data sets, “proximal baseline" improves the most (by 1.02 and 0.24, respectively)

with SyncRank as initial guess, while the average improvement for SpringRank,

SerialRank, BTL, Eig.Cent., PageRank and SVD_NRS are 0.07, 0.82, 0.22, 0.19,

0.21, and 0.12, respectively, for Lupset,simple, and for 0.00, 0.18, 0.04, 0.03, 0.03,

and 0.01, respectively, for Lupset,naive.
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5.5 Conclusion and Outlook

We have proposed a general framework based on directed graph neural networks

to recover global rankings from pairwise comparisons. Future directions include

learning a more powerful model to work for different input digraphs, minimizing

upsets under some constraints, training with some supervision of ground-truth

rankings, and exploring the interplay with low-rank matrix completion. Incor-

porating side information, in the form of node level covariates, and comparing

to the, currently rather limited, existing literature on ranking with covariates,

is another interesting direction.
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6
Robust Angular Synchronization Using

Directed Graph Neural Networks

6.1 Introduction
The group synchronization problem has received considerable attention in recent

years, as a key building block of many computational problems. Group synchro-

nization aims to estimate a collection of group elements, given a small subset

of potentially noisy measurements of their pairwise ratios Υi,j = gi g−1
j . Some

applications are • over the group SO(3) of 3D rotations: rotation-averaging in 3D

computer vision [192, 193] and the molecule problem in structural biology [194];

• over the group Z4 of the integers {0, 1, 2, 3} with addition mod 4 as the group

operation: solving jigsaw puzzles [195]; • over the group Zn, resp., SO(2): recovering

a global ranking from pairwise comparisons [30, 176], and, • over the Euclidean

group of rigid motions Euc(2) = Z2 × SO(2)× R2: sensor network localization [21].

(a) Low noise. (b) High noise.

Figure 6.1: Sensor network localization
map.

An important special case is angular

synchronization, also referred to as phase

synchronization, which can be viewed as

group synchronization over SO(2). The

angular synchronization problem aims

at obtaining an accurate estimation (up
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to a constant additive phase) for a set of unknown angles θ1, . . . , θn ∈ [0, 2π) from

m noisy measurements of their pairwise offsets θi − θj mod 2π. This problem has a

wide range of applications, such as distributed clock synchronization over wireless

networks [16], image reconstruction from pairwise intensity differences [17, 18],

phase retrieval [19, 20], and sensor network localization (SNL) [21]. In engineering,

the SNL problem seeks to reconstruct the 2D coordinates of a cloud of points

from a sparse set of pairwise noisy Euclidean distances; in typical divide-and-

conquer approaches that aid with scalability, one first computes a local embedding

of nearby points (denoted as patches) and is left with the task of stitching the

patches together in a globally consistent embedding [21]. Fig. 6.1 is an example

of SNL on the U.S. map, where our method recovers city locations (in blue) and

aims to match ground-truth locations (in red). Most works in the SNL literature

that focus on the methodology development consider only purely synthetic data

sets in their experiments; here we consider a real-world data set (actual 2D layout

with different levels of densities of cities across the U.S. map), and add synthetic

noise to perturb the local patch embeddings for testing the robustness to noise

of the angular synchronization component.

An extension of angular synchronization to the heterogeneous setting is k-

synchronization, introduced in [196], and motivated by real-world graph realization

problems (GRP) and ranking. GRP aims to recover coordinates of a cloud of points

in Rd, from a sparse subset (edges of a graph) of noisy pairwise Euclidean distances

(the case d = 2 is the above SNL problem). The motivation for k-synchronization

arises in structural biology, where the distance measurements between pairs of

atoms may correspond to k different configurations of the molecule, in the case

of molecules with multiple conformations. In ranking applications, the k = 2

sets of disjoint pairwise measurements may correspond to two different judges,

whose latent rankings we aim to recover.

A key limitation of existing methods for angular synchronization is their poor

performance in the presence of considerable noise. High noise levels are not unusual;

measurements in SO(3) can have large outliers in certain biological settings (cryo-EM
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and NMR spectroscopy), see for example [194]. Therefore, we need new methods

to push the boundary of signal recovery when there is a high level of noise. While

neural networks (NNs), in principle, could be trained to address high noise regimes,

the angular synchronization problem is not directly amenable to a standard NN

architecture due to the directed graph (digraph) structure of the underlying data

measurement process and the underlying group structure; hence the need for a

customized graph neural network (GNN) architecture and loss function for this task.

Here we propose a GNN method called GNNSync for angular synchronization, with

a novel cycle loss function, which downweights noisy observations, and explicitly

enforces cycle consistency as a quality measure. GNNSync’s novelty does not

lie in simply applying a data-driven NN to this task, but rather in proposing a

framework for handling the pairwise comparisons encoded in a digraph, accounting

for the underlying SO(2) group structure, and designing a loss function for increased

robustness to noise and outliers, with theoretical support.

Our main contributions are summarized as follows.

• We demonstrate how the angular synchronization problem can be recast as

a theoretically-grounded directed graph learning task by first incorporating the

inductive biases of classical estimators within the design of a more robust GNN

architecture, called GNNSync, and then pairing with a novel training loss that

exploits cycle consistency to help infer the unknown angles.

•We perform extensive experiments comparing GNNSync with existing state-of-the-

art algorithms from the angular synchronization and k-synchronization literature,

across a variety of synthetic outlier models at various density and noise levels, and

on a real-world application. GNNSync attains leading performance, especially in

high noise regimes, validating its robustness to noise.

6.2 Related work

6.2.1 Angular synchronization

The seminal work of [197] introduced spectral and semidefinite programming (SDP)

relaxations for angular synchronization. For the spectral relaxation, the estimated
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angles are given by the eigenvector corresponding to the largest eigenvalue of a

Hermitian matrix H, whose entries are given by Hi,j = exp(ιAi,j)1(Ai,j ≠ 0),

where ι is the imaginary unit, and Ai,j is the observed potentially noisy offset

θi − θj mod 2π. [197] also provided an SDP relaxation involving the same matrix

H, and empirically demonstrated that the spectral and SDP relaxations yield

similar experimental results. A row normalization was introduced to H prior

to the eigenvector computation by [21], which showed improved results. [194]

generalized this approach to the 3D setting Euc(3) = Z2 × SO(3) × R3, and

incorporated into the optimization pipeline the ability to operate in a semi-supervised

setting, where certain group elements are known a-priori. [196] extended the

angular synchronization problem to a heterogeneous setting, to the so-called k-

synchronization problem, whose goal is to estimate k sets of angles simultaneously,

given only the graph union of noisy pairwise offsets, which we also explore in our

experiments. The key idea in their work is to estimate the k sets of angles from

the top k eigenvectors of the angular embedding matrix H.

[26] modeled the angular (phase) synchronization problem as a least-squares non-

convex optimization problem, and proposed a modified version of the power method

called the Generalized Power Method (GPM), which is straightforward to implement

and free of parameter tuning. GPM often attains leading performance among

baselines in our experiments, and the iterative steps in the GPM method motivated

the design of the projected gradient steps in our GNNSync architecture. However,

GPM is not directly applicable to k-synchronization with k > 1 while GNNSync is.

For k = 1, GNNSync tends to perform significantly better than GPM at high noise

levels. [198] studied the tightness of the maximum likelihood semidefinite relaxation

for angular synchronization, where the maximum likelihood estimate is the solution

to a nonbipartite Grothendieck problem over the complex numbers. A truncated

least-squares approach was proposed by [199] that minimizes the discrepancy

between the estimated angle differences and the observed differences under some con-

straints. [200] tackled the angular synchronization problem with a multi-frequency

approach. [201] unified various group synchronization problems over subgroups of
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the orthogonal group. [202] provided recovery guarantees for eigenvector relaxation

and semidefinite convex relaxation methods for weighted angular synchronization.

[203] applied a message-passing procedure based on cycle consistency information,

to estimate the corruption levels of group ratios and consequently solve the

synchronization problem, but the method is focused on the restrictive setting

of adversarial or uniform corruption and sufficiently small noise. In addition, [203]

requires post-processing based on the estimated corruption levels to obtain the group

elements, while GNNSync is trained end-to-end. [204] utilized energy minimization

ideas, with a variant converging linearly to the ground truth rotations.

6.2.2 Directed graph neural networks

Digraph node embeddings can be effectively learned via directed graph neural

networks [28]. For learning such an embedding, [114] constructed a GNN using

higher-order proximity. [6] built a complex Hermitian Laplacian matrix and

proposed a spectral digraph GNN. [5] introduced imbalance objectives for digraph

clustering. Our GNNSync framework can readily incorporate any existing digraph

neural network.

6.2.3 Relationship with other group synchronization meth-
ods

Angular synchronization outputs can be used to obtain global rankings by using

a one-dimensional ordering. To this end, recovering rankings of n objects from

pairwise comparisons can be viewed as group synchronization over Zn. To recover

global rankings from pairwise comparisons, GNNRank [30] adopted an unfolding

idea to add an inductive bias from [25] to the NN architecture. Inspired by [30],

we adapt their framework to borrow strength from solving a related problem. We

adapt their “innerproduct" variant to k-synchronization, remove the 1D ordering

at the end of the GNNRank framework, and rescale the estimated quantities to

the range [0, 2π). We also borrow strength from the projected gradient steps in

GPM [26] and add projected gradient steps to our GNNSync architecture. Another
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key novelty is that we devise novel objectives, which reflect the angular structure

of the data, to serve as our training loss functions. The architectures are also

very different: While in GNNRank the proximal gradient steps play a vital role

from an unrolling perspective, and the whole architecture could be viewed as an

unrolling of the SerialRank algorithm, here, although we borrow strength from

the GPM method, the whole architecture is different from merely unrolling GPM.

Furthermore, the baselines serve as initial guesses for the “proximal baseline" variant

in GNNRank, but serve as input node features in our approach.

Other methods have been introduced for group synchronization, but mostly in

the context of SO(3). [205] proposed an efficient algorithm for synchronization over

SO(3) under high levels of corruption and noise. [206] provided a novel quadratic

programming formulation for estimating the corruption levels, but again its focus is

on SO(3). Unrolled algorithms (which are NNs) were introduced for SO(3) in [193].

While an adaptation to SO(2) may be possible in principle, as its objective functions

are based on the level of agreement between the estimated angles and ground-truth,

its experiments require ground-truth during training, usually not available in practice.

In contrast, our GNNSync framework can be trained without any known angles.

6.3 Problem definition

The angular synchronization problem aims at obtaining an accurate estimation (up

to a constant additive phase) for a set of n unknown angles θ1, . . . , θn ∈ [0, 2π) from

m noisy measurements of their offsets θi − θj mod 2π, for i, j ∈ {1, . . . , n}. We

encode the noisy measurements in a digraph G = (V , E), where each of the n elements

of the node set V has as attribute an angle θi ∈ [0, 2π). The edge set E represents

pairwise measurements of the angular offsets (θi−θj) mod 2π. The weighted directed

graph has a corresponding adjacency matrix A with Ai,j = (θi − θj) mod 2π ≥ 0.

Estimating the unknown angles from noisy offsets amounts to assigning an estimate

ri ∈ [0, 2π) to each node i ∈ V. For computational complexity considerations, we

randomly keep one of Ai,j and Aj,i as observed quantity and set the other of these
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to zero. Thus, at most one of Ai,j and Aj,i can be nonzero by construction; the

other original entry can be inferred from Ai,j + Aj,i = 0 mod 2π.

An extension of the above problem to the heterogeneous setting is the k-

synchronization problem, which is defined as follows. We are given only the

graph union of k digraphs G1, . . . ,Gk, with the same node set and disjoint edge

sets, which encode noisy measurements of k sets (θi,l − θj,l) mod 2π, for l ∈

{1, . . . , k}, i, j ∈ {1, . . . , n}, of angle differences modulo 2π. Its adjacency matrix

is denoted by A. The problem is to estimate these k sets of n unknown angles

θi,l ∈ [0, 2π),∀l ∈ {1, . . . , k}, i ∈ {1, . . . , n}, simultaneously. Note that we are given

only G = G1∪· · ·∪Gk and the value of k, and each edge in G belongs to exactly one of

G1, . . . ,Gk. To unify notations, we view the normal angular synchronization problem

as a special case of the more general k-synchronization problem where k = 1.

6.4 Loss and evaluation

6.4.1 Loss and evaluation for angular synchronization
For a vector r = [r1, . . . , rn]⊤ with estimated angles as entries, we define T =

[(r1⊤ − 1r⊤) mod 2π] ∈ Rn×n. Then Ti,j = (ri − rj) mod 2π estimates Ai,j. We

only compare T with A at locations where A has nonzero entries. We introduce

the residual matrix M with entries

Mi,j = min ((Ti,j −Ai,j) mod 2π, (Ai,j −Ti,j) mod 2π)

if Ai,j ̸= 0, and Mi,j = 0 if Ai,j = 0. Then our upset loss is defined as

Lupset = ∥M∥F /t, (6.1)

where the subscript F means Frobenius norm, and t is the number of nonzero

elements in A. Despite the non-differentiablility of the loss function, using the

concept of a limiting subdifferential from [207] we can give the following theoretical

guarantee on the minimization of eq. (6.1); its proof is in Appendix (App.) E.1.1,

where also the case of general k is discussed.

Proposition 2. Every local minimum of eq. (6.1) is a directional stationary point

of eq. (6.1).
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For evaluation, we employ a Mean Square Error (MSE) function with angle

corrections, considered in [208]. As the offset measurements are unchanged if we

shift all angles by a constant, denoting the ground-truth angle vector as R, this

evaluation function can be written as

DMSE(r, R) = min
θ0∈[0,2π)

n∑
i=1

[min(δi mod 2π, (−δi) mod 2π)]2, (6.2)

where δi = ri + θ0 − θi, ∀i = 1, . . . , n. Additional implementation details are
provided in App. E.3.4.

6.4.2 Cycle consistency relation

For noiseless observations, every cycle in the angular synchronization problem

(k = 1) or every cycle whose edges correspond to the same offset graph Gl (k > 1)

satisfy the cycle consistency relation that the angle sum mod 2π is 0. For 3-cycles

(i, j, q), such that Ai,j · Aj,q · Aq,i > 0, this leads to

(Ai,j + Aj,q + Aq,i) mod 2π = (θi − θj + θj − θq + θq − θi) mod 2π = 0,

as (a + b mod m) = {(a mod m) + (b mod m) mod m}. Hence we obtain

the 3-cycle condition

(Ai,j + Aj,q + Aq,i) mod 2π = 0,∀(i, j, q) such that Ai,j ·Aj,q ·Aq,i > 0. (6.3)

With T = {(i, j, q) : Ai,j ·Aj,q ·Aq,i > 0}, we define the cycle inconsistency level
1

|T|
∑

(i,j,q)∈T[(Ai,j + Aj,q + Aq,i) mod 2π]. We devise a loss function to minimize

the cycle inconsistency level with reweighted edges.

6.4.3 Loss and evaluation for general k-synchronization

The upset loss for general k is defined similarly as in Sec. 6.4.1. Recall that

the observed graph G has adjacency matrix A. Given k groups of estimated

angles {r1,l, . . . , rn,l}, l = 1, . . . , k, we define the matrix T(l) with entries T(l)
i,j =

(ri,l − rj,l) mod 2π, for i, j ∈ {1, . . . , n}, l ∈ {1, . . . , k}. We define M(l) by

M(l)
i,j = min((T(l)

i,j −Ai,j) mod 2π, (Ai,j −T(l)
i,j) mod 2π) if Ai,j ≠ 0, and M(l)

i,j = 0
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if Ai,j = 0. Define M by Mi,j = minl∈{1,...,k} M(l)
i,j . The upset loss is as in eq. (6.1),

Lupset = ∥M∥F /t.

In addition to Lupset, we introduce another option as a loss function based on the

cycle consistency relation from Sec. 6.4.2, which adds a regularization that helps in

guiding the learning process for certain challenging scenarios (e.g., with sparser G or

larger k). Since measurements are typically noisy, we first estimate the corruption

level by entries in M, and use them to construct a confidence matrix C̃ for edges in

G. We define the unnormalized confidence matrix C by Ci,j = 1
1+Mi,j

1(Ai,j ̸= 0),

then normalize the entries by C̃i,j = Ci,j

∑
u,v

Au,v∑
u,v

Au,v ·Cu,v
. The normalization is chosen

such that ∑i,j Ai,jC̃i,j = ∑
u,v Au,v. Keeping the sum of edge weights constant is

carried out in order to avoid reducing the cycle inconsistency level by only rescaling

edge weights but not their relative magnitudes. Based on the confidence matrix C̃,

we reweigh edges in G to obtain an updated input graph, whose adjacency matrix

is the Hadamard product A⊙ C̃. This graph attaches larger weights to edges Ai,j

for which T(l)
i,j is a good estimate when the edge (i, j) belongs to graph Gl. As the

graph assignment of an edge (i, j) is not known during training, we estimate it by

g(i, j) = arg min
l∈{1,...,k}

M(l)
i,j , and set g(j, i) = g(i, j), (6.4)

thus obtaining our estimated graphs G̃1, . . . , G̃k, which are also edge disjoint. Next,

aiming to minimize 3-cycle inconsistency of the updated input graph given our graph

assignment estimates, we introduce a loss function denoted as the cycle inconsistency

loss Lcycle; for simplicity, we only focus on 3-cycles (triangles). We interpret the

matrix Ã = (A⊙C̃−(A⊙C̃)⊤) mod 2π as the adjacency matrix of another weighted

directed graph G̃. The entry Ãi,j of the new adjacency matrix approximates angular

differences of a reweighted graph, with noisy observations downweighted. Note that

we only reweigh the adjacency matrix in the cycle loss definition, but do not update

the input graph. The underlying idea is that this updated denoised graph may

display higher cycle consistency than the original graph. From our graph assignment

estimates, we obtain estimated adjacency matrices Ã(l) for l ∈ {1, . . . , k}, where

Ã(l)
i,j = 1(g(i, j) = l)Ãi,j. Let T(l) = {(i, j, q) : Ã

(l)
i,j · Ã

(l)
j,q · Ã

(l)
q,i > 0} denote the set of

all triangles in G̃l, and set S
(l)
i,j,q = Ã(l)

i,j + Ã(l)
j,q + Ã(l)

q,i for (i, j, q) ∈ T(l). We define
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L(l)
cycle = 1

|T(l)|
∑

(i,j,q)∈T(l)

min(S(l)
i,j,q mod 2π, (−S

(l)
i,j,q) mod 2π) (6.5)

and set Lcycle = 1
k

∑k
l=1 L

(l)
cycle. The default training loss for k ≥ 2 is Lcycle or Lupset

alone; in the experiment section, we also report the performance of a variant

based on Lupset + Lcycle.

For evaluation, we compute DMSE with eq. (6.2), for each of the k sets of angles,

and consider the average. As the ordering of the k sets can be arbitrary, we consider

all permutations of {1, . . . , k}, denoted by perm(k). Denoting the ground-truth

angle matrix as R , whose (i, l) entry is the ground-truth angle θi,l, and the l-th

entry of the permutation pe by pe(l), the final MSE value is

DMSE(r, R) = 1
k

min
pe∈perm(k)

k∑
l=1
DMSE(r:,pe(l), R:,l). (6.6)

Note that the MSE loss is not used during training as we do not have any ground-

truth supervision; the MSE formulation in eq. (6.2) is only used for evaluation. The

lack of ground-truth information in the presence of noise is precisely what renders

this problem very difficult. If any partial ground-truth information is available,

then this can be incorporated into the loss function.

6.5 GNNSync architecture

𝑿𝑿 ∈ ℝ𝑛𝑛×𝑑𝑑𝑖𝑖𝑖𝑖

Directed Graph Neural Network

𝒁𝒁 ∈ ℝ𝑛𝑛×kd

𝑨𝑨 ∈ ℝ𝑛𝑛×𝑛𝑛

𝒓𝒓 ∈ ℝ𝑛𝑛×𝑘𝑘

Learnable
Vector(s)

Evaluation

𝑹𝑹
∈ ℝ𝑛𝑛×𝑘𝑘

Initial 𝒓𝒓(𝟎𝟎) ∈ ℝ𝑛𝑛×𝑘𝑘

Projected Gradient Steps

Loss Function

Figure 6.2: GNNSync overview: starting from an adjacency matrix
A encoding (noisy) pairwise offsets and an input feature matrix X,
GNNSync first applies a directed GNN to learn node embeddings Z.
It then calculates the inner product with a learnable vector (or k
learnable vectors for k > 1) to produce the initial estimated angles
r

(0)
i,l ∈ [0, 2π) for l ∈ {1, . . . , k}, after rescaling. It then applies several

projected gradient steps to the initial angle estimates to obtain the
final angle estimates, ri,l ∈ [0, 2π). Let the ground-truth angle matrix
be R ∈ Rn×k. The loss function is applied to the output angle matrix
r, given A, while the final evaluation is based on R and r. Orange
frames indicate trainable vectors/matrices, green squares fixed inputs,
the red square the final estimated angles (outputs), and the yellow
circles the loss function and evaluation.
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6.5.1 Obtaining directed graph embeddings

For obtaining digraph embeddings, any digraph GNN that outputs node embeddings

can be applied, e.g. DIMPA by [5], the inception block model by [114], and

MagNet by [6]. Here we employ DIMPA; details are in E.1.2. Denoting the final

node embedding matrix by Z ∈ Rn×kd, the embedding vector zi for a node i is

zi = (Z)(i,:) ∈ Rkd, the ith row of Z.

6.5.2 Obtaining initial estimated angles

To obtain the initial estimated angles for the angular synchronization problem, we

introduce a trainable vector a with dimension equal to the embedding dimension,

then calculate the unnormalized estimated angles by the inner product of zi with

a, plus a trainable bias b, followed by a sigmoid layer to force positive values, and

finally rescale the angles to [0, 2π); in short: r
(0)
i = 2π sigmoid(zi · a + b).

For general k-synchronization, we apply independent a, b values to obtain k

different groups of initial angle estimates based on different columns of the node

embedding matrix Z. In general, denote Zi,u:v as the (v − u + 1)-vector whose

entries are from the i-th row and the u-th to v-th columns of the matrix Z. With a

trainable vector a(l) for each l ∈ {1, . . . , k} with dimension equal to d, we obtain

the unnormalized estimated angles by the inner product of Zi,(l−1)d+1:ld with a(l),

plus a trainable bias bl, followed by a sigmoid layer to force positive angle values,

then rescale the angles to [0, 2π); in short: r
(0)
i,l = 2π sigmoid(zi,(l−1)d+1:ld · a(l) + bl).

6.5.3 Projected gradient steps for final angle estimates

Our final angle estimates are obtained after applying several (default: Γ = 5)

projected gradient steps to the initial angle estimates. In brief, projected gradient

descent for constrained optimization problems first takes a gradient step while

ignoring the constraints, and then projects the result back onto the feasible set

to incorporate the constraints. Here the projected gradient steps are inspired by

[26]. We construct H by Hi,j = exp(ιAi,j)1(Ai,j ≠ 0), and update the estimated

angles using Algo. 3, where r:,l denotes the l-th column of r. In Algo. 3 the gradient
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step is on line 6, while the projection step on line 7 projects the updated matrix

to elementwise angles. Fig. 6.2 shows the GNNSync framework.
Algorithm 3: Projected
Gradient Steps
Input: Initial angle estimates
r(0) ∈ Rn×k, Hermitian
matrix H ∈ Rn×n, number
of steps Γ (default: 5).

Parameter: (Initial)
parameter set {αγ ≥ 0}Γγ=1
that could either be fixed or
trainable (default: fixed
value 1).

Output: Updated angle
estimates r ∈ Rn×k.
1: l← 1;
2: for l ≤ k do
3: γ ← 1; y← r(0)

:,l ;
4: for γ ≤ Γ do
5: ỹ← exp(ιy);
6: ỹ← αγỹ + Hỹ;
7: y← angle(ỹ) to obtain

elementwise angles in
radians from complex
numbers;

8: γ ← γ + 1.
9: end for

10: r:,l ← y.
11: l← l + 1.
12: end for
13: return r.

If graph assignments can be estimated ef-

fectively right after the GNN, one can replace

H with H(l) for each l = 1, . . . , k separately,

where H(l)
i,j = exp(ιA(l)

i,j)1(A(l)
i,j ̸= 0), and A(l)

i,j =

1(g(i, j) = l)Ai,j is the estimated adjacency

matrix for graph Gl using network assignments

from g(i, j) from eq. (6.4) applied to the initial

angle estimates r(0). Yet, separate H(l)’s may

make the architecture sensitive to the accuracy

of graph assignments after the GNN, and hence

for robustness we simply choose a single H. We

also find in Sec. 6.6.4 that the use of H instead

of separate H(l)’s is essential for satisfactory

performance. Besides, it is possible to make

Algo. 3 parameter-free by further fixing the {αγ}

values (default: αγ = 1,∀γ); we find that using

fixed {αγ} does not strongly affect performance

in our experiments. GNNSync executes the

projected gradient descent steps at every training iteration as part of a unified

end-to-end training process, but one could also use Algo. 3 to post-process predicted

angles without putting the steps in the end-to-end framework. We find that putting

Algo. 3 in our end-to-end training framework is usually helpful.

6.5.4 Robustness of GNNSync

Measurement noise that perturbs the edge offsets can significantly impact the

performance of group synchronization algorithms. To this end, we demonstrate the

robustness of GNNSync to such noise perturbations, with the following theoretical

guarantee, proved and further discussed in App. E.1.2
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Proposition 3. For adjacency matrices A, Â, assume their row-normalized variants

As, Âs, At, Ât satisfy
∥∥∥As − Âs

∥∥∥
F

< ϵs and
∥∥∥At − Ât

∥∥∥
F

< ϵt, where subscripts s, t

denote source and target, resp. Assume further their input feature matrices X, X̂

satisfy
∥∥∥X− X̂

∥∥∥
F

< ϵf . Then their initial angles r(0), r̂(0) from a trained GNNSync

using DIMPA satisfy
∥∥∥r(0) − r̂(0)

∥∥∥
F

< Bsϵs + Btϵs + Bfϵf , for values Bs, Bt, Bf that

can be bounded by imposing constraints on model parameters and input.

6.6 Experiments

Implementation details are in App. E.3 and extended results in App. E.4.

6.6.1 Data sets and protocol

Previous works in angular synchronization typically only consider synthetic data sets

in their experiments, and those applying synchronization to real-world data do not

typically publish the data sets. To bridge the gap between synthetic experiments

and the real world, we construct synthetic data sets with both correlated and

uncorrelated ground-truth rotation angles, using various measurement graphs and

noise levels. In addition, we conduct sensor network localization on two data sets.

For synthetic data, we perform experiments on graphs with n = 360 nodes for

different measurement graphs, with edge density parameter p ∈ {0.05, 0.1, 0.15},

noise level η ∈ {0, 0.1, . . . , 0.9} for k = 1, and η ∈ {0, 0.1, . . . , 0.7} for k ∈ {2, 3, 4}.

The graph generation procedure is as follows (with further details in App. E.2.1): •

1) Generate k group(s) of ground-truth angles. One option is to generate each angle

from the same Gamma distribution with shape 0.5 and scale 2π. We denote this

option with subscript “1". As angles could be highly correlated in practical scenarios,

we introduce a more realistic but challenging option “2", with multivariate normal

ground-truth angles. The mean of the ground-truth angles is π, with covariance

matrix for each l ∈ {1, . . . , k} defined by ww⊤, where entries in w are generated

independently from a standard normal distribution. We explore two more options

in the SI. We then apply mod 2π to all angles. • 2) Generate a noisy background

adjacency matrix Anoise ∈ Rn×n. • 3) Construct a complete adjacency matrix where
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η portion of the entries are noisy and the rest represent true angular differences.

• 4) Generate a measurement graph and sparsify the complete adjacency matrix

by only keeping the edges in the measurement graph.

We construct 3 types of measurement graphs from NetworkX [209] and use the

following notations, where the subscript o ∈ {1, 2, 3, 4} is the option mentioned in

step 1) above:

• Erdős-Rényi (ER) Outlier model: denoted by EROo(p, k, η), using as the measure-

ment graph the ER model from NetworkX, where p is the edge density parameter

for the ER measurement graph;

• Barabasi Albert (BA) Outlier model: denoted by BAOo(p, k, η), where the

measurement graph is a BA model with the number of edges to attach from

a new node to existing nodes equal to ⌈np/2⌉, using the standard implementation

from NetworkX [209]; and

• Random Geometric Graph (RGG) Outlier model: denoted by RGGOo(p, k, η),

with NetworkX parameter “distance threshold value (radius)" 2p for the RGG

measurement graph. For k = 1, we omit the value k and subscript o in the notation,

as the two options coincide in this special case.

For real-world data, we conduct sensor network localization on the U.S. map

and the PACM point cloud data set [21] with a focus on the SO(2) component,

as follows, with data processing details provided in App. E.2.2. • 1) Starting

with the ground-truth locations of n = 1097 U.S. cities (resp., n = 426 points),

we construct patches using each city (resp., point) as a central node and add its

50 nearest neighbors to the corresponding patch. • 2) For each patch, we add

noise to each node’s coordinates independently. • 3) We then rotate the patches

using random rotation angles (ground-truth angles generated as in 1) for synthetic

models). For each pair of patches that have at least 6 overlapping nodes, we

apply Procrustes alignment [210] to estimate the rotation angle based on these

overlapping nodes and add an edge to the observed measurement adjacency matrix.

• 4) We perform angular synchronization to obtain the initial estimated angles

and update the estimated angles by shifting by the average pairwise differences
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between the estimated and ground-truth angles, to eliminate the degree of freedom

of a global rotation. • 5) Finally, we apply the estimated rotations to the noisy

patches and estimate node coordinates by averaging the estimated locations for

each node from all patches that contain this node.

6.6.2 Baselines

In our numerical experiments for angular synchronization, we compare against

7 baselines, where results are averaged over 10 runs: • Spectral Baseline (Spectral)

by [197], • Row-Normalized Spectral Baseline (Spectral_RN) by [21], • Generalized

Power Method (GPM) by [26], • TranSync by [199], • CEMP_GCW, • CEMP_MST

by [203], and • Trimmed Averaging Synchronization (TAS) by [204].

For more general k-synchronization, we compare against two baselines from [196],

which are based on the top k eigenvectors of the matrix H or its row-normalized

version. We use names • Spectral and • Spectral_RN to denote them as before.

To show that GNNSync (as well as the baselines) deviate from trivial or random

solutions, we include an additional baseline denoted “Trivial" for each k, where

all angles are predicted equal (with value 1, for simplicity).

6.6.3 Main experimental results
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Figure 6.3: MSE performance on angular synchronization (k = 1). Error bars indicate
one standard deviation. Dashed lines highlight GNNSync variants.

By default, we use the output angles of the baseline “Spectral_RN" as input

features for GNNSync, and thus din = k. The main experimental results are shown

in Fig. 6.3 for k = 1, and Fig. 6.4 for general k ∈ {2, 3, 4}, with additional results

reported in App. E.4. For k > 1, we use “GNNSync-cycle", “GNNSync-upset" and
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(b) RGGO2(p =
0.15, k = 2)
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(c) RGGO2(p =
0.05, k = 2)
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(d) RGGO2(p =
0.1, k = 2)
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(f) RGGO2(p =
0.15, k = 3)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

η

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

M
S

E

k3RGGOp5N360stylegamma

(g) RGGO1(p =
0.05, k = 3)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

η

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

3.50

M
S

E

k3RGGOp10N360stylegamma

(h) RGGO1(p =
0.1, k = 3)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

η

1.75

2.00

2.25

2.50

2.75

3.00

3.25

3.50

M
S

E

k4RGGOp15N360stylegamma

(i) RGGO1(p =
0.15, k = 4)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

η

0.5

1.0

1.5

2.0

2.5

M
S

E

k4RGGOp15N360stylemulti normal1

(j) RGGO2(p =
0.15, k = 4)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

η

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

3.50

M
S

E

k4EROp15N360stylegamma

(k) ERO1(p =
0.15, k = 4)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

η

1.5

2.0

2.5

3.0

3.5

M
S

E

k4BAOp15N360stylegamma

(l) BAO1(p =
0.15, k = 4)

Figure 6.4: MSE performance on k-synchronization for k ∈ {2, 3, 4}. p is the network
density and η is the noise level. Error bars indicate one standard deviation. Dashed lines
highlight GNNSync variants.

“GNNSync-sum" to denote GNNSync variants when considering the training loss

function Lcycle,Lupset, and Lupset + Lcycle, respectively.

From Fig. 6.3 (with additional figures in App. E.4 Fig. E.2–E.4), we conclude that

GNNSync produces generally the best performance compared to baselines, in angular

synchronization (k = 1). From Fig. 6.4 (see also App. E.4 Fig. E.5–E.13), we again

conclude that GNNSync variants attain leading performance for k > 1. The first

two columns of Fig. 6.4 compare the performance of the two options of ground-truth

angles on RGGO models. In columns 3 and 4, we show the effect of varying density

parameter p, and different synthetic models under various measurement graphs.

For k > 1, GNNSync-upset performs better than both baselines in most cases,

with Lupset simple yet effective to train. GNNSync-cycle generally attains the best

performance. As the problems become harder (with increasing η, decreasing p,

increasing k, more complex measurement graph RGG), GNNSync-cycle outperforms

both baselines and other GNNSync variants by a larger margin. The performance

of GNNSync-sum lies between that of GNNSync-upset and GNNSync-cycle, but
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is closer to that of GNNSync-upset, see App. E.4 for more discussions on linear

combinations of the two losses. We conclude that while GNNSync-upset generally

attains satisfactory performance, GNNSync-cycle is more robust to harder problems

than other GNNSync variants and the baselines. Accounting for the performance

of trivial guesses, we observe that GNNSync variants are more robust to noise,

and attain satisfactory performance even when the competitive baselines are

outperformed by trivial guesses. We highlight that there is a clear advantage

of using cycle consistency in the pipeline, especially when the problem is harder,

thus reflecting the angular nature of the problem. For 3-cycle consistency and the

cycle loss Lcycle, gradient descent in principle drives down the (non-negative) values

S of the sum of three predicted angular differences. To minimize the S values, we

encourage a reweighing process of the initial edge weights so that cycle consistency

roughly holds. Unlike Lupset which explicitly encourages small Mi,j values for all

edges, Lcycle only implicitly encourages small Mi,j values via the confidence matrix

reweighing process for edges with relatively small noise. In an ideal case, we only

have large Mi,j values on noisy edges. In this case, the reweighing process would

downweight these noisy edges, which results in a smaller value of the cycle loss

function. This is also the underlying reason why Lcycle is more robust to noise than

Lupset. For k > 1, we hence recommend using the more intricate Lcycle function as

the training loss function, and we will focus on GNNSync-cycle in the ablation study.

From Fig. 6.1 (see also App. E.4 Tab. E.1–E.4, Fig. E.14–E.23), we observe

that GNNSync is able to align patches and recover coordinates effectively, and is

more robust to noise than baselines. GNNSync attains competitive MSE values

and Average Normalized Error (ANE) results, where ANE (defined explicitly in

App. E.4.1) measures the discrepancy between the predicted locations and the

actual locations.

6.6.4 Ablation study and discussion

In this subsection, we justify several model choices for all k: • the use of the

projected gradient steps; • an end-to-end framework instead of training first
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without the projected gradient steps and then applying Algo. 3 as a post-processing

procedure; • fixed instead of trainable {αγ} values. For k > 1, we also justify

the use of the H matrix in Algo. 3 instead of separate H(l)’s based on estimated

graph assignments of the edges. To validate the ability of GNNSync to borrow

strength from baselines, we set the input feature matrix X as a set of angles that

is estimated by one of the baselines (or k sets of angles estimated by one of the

baselines for k > 1) and report the performance.

Due to space considerations, results for the ablation study are reported in

App. E.4. For k = 1, Fig. 22–24 report the MSE performance for different

GNNSync variants. Improvements over all possible baselines when taking their

output as input features for k = 1 are reported in Fig. 34–36. For k > 1, we report

the results when using Lcycle as the training loss function in Fig. 25–33. We conclude

that Algo. 3 is indeed helpful in guiding GNNSync to attain lower loss values (we

omit loss results for space considerations) and better MSE performance, and that

end-to-end training usually attains comparable or better performance than using

Algo. 3 for post-processing, even when there is no trainable parameter in Algo. 3.

Moreover, the baselines are still outperformed by GNNSync if we apply the same

number of projected gradient steps as in GNNSyc as fine-tuning post-processing to

the baselines, as illustrated in Fig. E.30 and E.31. We observe across all data sets,

that GNNSync usually improves on existing baselines when employing their outputs

as input features, and never performs significantly worse than the corresponding

baseline; hence, GNNSync can be used to enhance existing methods. Further,

setting {αγ} values to be trainable does not seem to boost performance much, and

hence we stick to fixed {αγ} values. For k > 1, using separate H(l)’s instead of the

whole H in Algo. 3 harms performance, which can be explained by the fact that

learning graph assignments effectively via GNN outputs is challenging.

6.7 Conclusion and outlook

This chapter proposed a general NN framework for angular synchronization and a

heterogeneous extension. As the current framework is limited to SO(2), we believe

Printed on June 7, 2024



6. Robust Angular Synchronization Using Directed Graph Neural Networks 114

that extending our GNN-based framework to the setting of other more general groups

is an exciting research direction to pursue, and constitutes ongoing work (for instance,

for doing synchronization over the full Euclidean group Euc(2) = Z2× SO(2)×R2).

We also plan to optimize the loss functions under constraints, train our framework

with supervision of ground-truth angles (anchor information), and explore the

interplay with low-rank matrix completion. Another interesting direction is to

extend our SNL example to explore the graph realization problem, of recovering

point clouds from a sparse noisy set of pairwise Euclidean distances.
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7
Other Works on GNNs

Here is a collection of abstracts from papers that I contributed to. They are also

related to my dissertation overall.

7.1 PyTorch Geometric Signed Directed: A Soft-
ware Package on Graph Neural Networks for
Signed and Directed Graphs

Networks are ubiquitous in many real-world applications (e.g., social networks

encoding trust/distrust relationships, correlation networks arising from time series

data). While many networks are signed or directed, or both, there is a lack of unified

software packages on graph neural networks (GNNs) specially designed for signed and

directed networks. In [28], we present PyTorch Geometric Signed Directed (PyGSD),

a software package which fills this gap. Along the way, we also provide a brief review

surveying typical tasks, loss functions and evaluation metrics in the analysis of signed

and directed networks, discuss data used in related experiments, provide an overview

of methods proposed, and evaluate the implemented methods with experiments.

The deep learning framework consists of easy-to-use GNN models, synthetic and

real-world data, as well as task-specific evaluation metrics and loss functions for

signed and directed networks. As an extension library for PyG, our proposed
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software is maintained with open-source releases, detailed documentation, continuous

integration, unit tests and code coverage checks. Our code is publicly available at

https://github.com/SherylHYX/pytorch_geometric_signed_directed.

This work is under review by a top journal in artificial intelligence.

7.2 MagNet: A Neural Network on Directed
Graphs

The prevalence of graph-based data has spurred the rapid development of graph

neural networks (GNNs) and related machine learning algorithms. Yet, despite the

many data sets naturally modeled as directed graphs, including citation, website,

and traffic networks, the vast majority of this research focuses on undirected graphs.

In [6], we propose MagNet, a spectral GNN for directed graphs based on a complex

Hermitian matrix known as the magnetic Laplacian. This matrix encodes undirected

geometric structure in the magnitude of its entries and directional information in

their phase. A "charge" parameter controls the extent to which we emphasize

directional information. We apply our network to a variety of directed graph node

classification and link prediction tasks showing that MagNet performs well on all

tasks and that its performance exceeds all other methods on a majority of such

tasks. The underlying principles of MagNet are such that it can be adapted to

other spectral GNN architectures.

This work has been accepted by NeurIPS 2021.

7.3 PyTorch Geometric Temporal: Spatial-temporal
Signal Processing with Neural Machine Learn-
ing Models

In [7], we present PyTorch Geometric Temporal, a deep learning framework

combining state-of-the-art machine learning algorithms for neural spatiotemporal

signal processing. The main goal of the library is to make temporal geometric

deep learning available for researchers and machine learning practitioners in a
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unified easy-to-use framework. PyTorch Geometric Temporal was created with

foundations on existing libraries in the PyTorch ecosystem, streamlined neural

network layer definitions, temporal snapshot generators for batching, and integrated

benchmark data sets. These features are illustrated with a tutorial-like case study.

Experiments demonstrate the predictive performance of the models implemented

in the library on real world problems such as epidemiological forecasting, ridehail

demand prediction and web-traffic management. Our sensitivity analysis of runtime

shows that the framework can potentially operate on web-scale data sets with

rich temporal features and spatial structure.

This work has been accepted by CIKM 2021 and won the best paper award.

7.4 Difformer: Scalable (graph) transformers in-
duced by energy constrained diffusion

Real-world data generation often involves complex inter-dependencies among in-

stances, violating the IID-data hypothesis of standard learning paradigms and posing

a challenge for uncovering the geometric structures for learning desired instance

representations. To this end, we introduce in [32] an energy constrained diffusion

model which encodes a batch of instances from a data set into evolutionary states

that progressively incorporate other instances’ information by their interactions.

The diffusion process is constrained by descent criteria w.r.t. a principled energy

function that characterizes the global consistency of instance representations over

latent structures. We provide rigorous theory that implies closed-form optimal

estimates for the pairwise diffusion strength among arbitrary instance pairs, which

gives rise to a new class of neural encoders, dubbed as DIFFormer (diffusion-based

Transformers), with two instantiations: a simple version with linear complexity

for prohibitive instance numbers, and an advanced version for learning complex

structures. Experiments highlight the wide applicability of our model as a general-

purpose encoder backbone with superior performance in various tasks, such as

node classification on large graphs, semi-supervised image/text classification, and

spatial-temporal dynamics prediction.
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This work has been accepted as a spotlight paper (notable-top-25%) at ICLR

2023.

7.5 CEP3: Community Event Prediction with
Neural Point Process on Graph

Many real-world applications can be formulated as event forecasting on Continuous

Time Dynamic Graphs (CTDGs) where the occurrence of a timed event between

two entities is represented as an edge along with its occurrence timestamp. However,

many previous works handle the problem in compromised settings, either formulating

it as a link prediction task on the graph given the event time, or a time prediction

problem for which event will happen next. In [29], we propose a novel model

combining Graph Neural Networks and Marked Temporal Point Process (MTPP)

that jointly forecasts multiple link events and their timestamps on communities over

a CTDG. Moreover, to scale our model to large graphs, we factorize the joint event

prediction problem into three easier conditional probability modeling problems. To

evaluate the effectiveness of our model and the rationale behind such a decomposition,

we establish a set of benchmarks and evaluation metrics. The experimental results

demonstrate the superiority of our model in terms of both accuracy and training

efficiency. All the source codes and data sets are available in a GitHub repository.

This work has been accepted by LoG 2022.

7.6 Pyramid Graph Neural Network: a Graph
Sampling and Filtering Approach for Multi-
scale Disentangled Representations

Despite their success, existing GNNs are shown prone to extracting low-frequency

information which may not always be pertinent to the task at hand. Though efforts

have been made to cover wider frequency profiles for graph filtering, it remains open

that how to disentangle the mixed multi-frequency information. Instead of directly

performing message passing on the whole graph, in this work (paper not yet public),
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we devise a framework called Pyramid Graph Neural Network (PyGNN) based on

an assumption that has been well studied from the graph signal processing literature:

bandlimited space of graph signals is able to recover the full signal from the subset of

vertices, thus we are able to build the connection between the spectral domain and

the vertex domain. Specifically, we develop an ω−bandlimited method for cascading

downsampling of the input graphs into a series of subgraphs that support signals at

various frequency spectra. These subgraphs are then fed into their own respective

GNN backbones for frequency profile-specific representation learning, whereby a

localized lightweight message passing scheme is performed that gradually filters

the respective frequency spectra in a pyramid manner. The spectra information is

disentangled in the final node representation with expressiveness. Results on node

classification on network data sets show its superiority over state-of-the-art methods.

This work has been accepted by KDD 2023.

7.7 Inferring Metabolic States from Single Cell
Transcriptomic Data via Geometric Deep Learn-
ing

The ability to measure gene expression at single-cell resolution has elevated our

understanding of how biological features emerge from complex and interdependent

networks at molecular, cellular, and tissue scales. As technologies have evolved

that complement scRNAseq measurements with things like single-cell proteomic,

epigenomic, and genomic information, it becomes increasingly apparent how much

biology exists as a product of multimodal regulation. Biological processes such as

transcription, translation, and post-translational or epigenetic modification impose

both energetic and specific molecular demands on a cell and are therefore implicitly

constrained by the metabolic state of the cell. While metabolomics is crucial for

defining a holistic model of any biological process, the chemical heterogeneity of the

metabolome makes it particularly difficult to measure, and technologies capable of

doing this at single-cell resolution are far behind other multiomics modalities. To

address these challenges, in [34], we present GEFMAP (Gene Expression-based Flux
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Mapping and Metabolic Pathway Prediction), a method based on geometric deep

learning for predicting flux through reactions in a global metabolic network using

transcriptomics data, which we ultimately apply to scRNAseq. GEFMAP leverages

the natural graph structure of metabolic networks to learn both a biological objective

for each cell and estimate a mass-balanced relative flux rate for each reaction in

each cell using novel deep learning models.

This work has been accepted by RECOMB 2024.

7.8 Generalization Error of Graph Neural Net-
works in the Mean-field Regime

[35] provides a theoretical framework for assessing the generalization error of graph

neural networks in the over-parameterized regime, where the number of parameters

surpasses the quantity of data points. We explore two widely utilized types of graph

neural networks: graph convolutional neural networks and message passing graph

neural networks. Prior to this study, existing bounds on the generalization error

in the over-parametrized regime were uninformative, limiting our understanding

of over-parameterized network performance. Our novel approach involves deriving

upper bounds within the mean-field regime for evaluating the generalization error

of these graph neural networks. We establish upper bounds with a convergence

rate of O(1/n), where n is the number of graph samples. These upper bounds

offer a theoretical assurance of the networks’ performance on unseen data in the

challenging over-parameterized regime and overall contribute to our understanding

of their performance.

This work has been accepted by ICML 2024.
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Conclusion and Future Work

8.1 Conclusion

Graph data are ubiquitous and have many applications. In this dissertation, the main

focus is on signed networks and directed networks, with application to signal recovery

from sparse noisy pairwise comparisons. In particular, we apply GNNs to signal

recovery tasks on recovering global rankings from pairwise comparisons, and angular

synchronization. With deep learning techniques and exploiting network features,

GNNs are powerful in the analysis of networks. SSSNET and DIGRAC tackle the

problem of node clustering, which aims at grouping together nodes that are similar.

The definition of similarity is heavily dependent on the downstream task at hand.

Our proposed methods achieve leading performance in signed and directed clustering

tasks, respectively. They complement existing non-GNN methods by the possibility

to include exogenous information such as node-level features and cluster labels. At

the same time, they can borrow strength from such spectral methods by treating the

embeddings from these methods as input node features. Compared with existing

GNN methods, SSSNET is the first GNN method for signed clustering that is not

based on social balance theory, while DIGRAC is the first GNN method for directed

clustering that is purely driven by directionality instead of edge density, MSGNN

is one of the first spectral GNN methods for signed directed networks, GNNRank
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is the first neural network method for recovering global rankings from pairwise

comparisons, and GNNSync is the first neural network for angular synchronization.

One central task during my doctoral studies is node clustering. [211] argues

that the major obstacle in comparing the quality of different clustering algorithms

is the difficulty in evaluating without considering the context, and we explicitly

quantify several concepts of similarity while proposing our clustering approaches.

For SSSNET, the clusters are defined such that node within clusters should be

mostly positively connected while nodes across clusters should be mostly negatively

connected. For DIGRAC, the clusters are detected based on network flows.

We have proposed a number of GNN architectures based on the task at hand.

For SSSNET, we propose a novel signed mixed-path aggregation scheme and

construct a novel GNN architecture for semi-supervised node clustering for signed

graphs. For DIGRAC, we devise a directed mixed-path aggregation scheme. For

MSGNN, we adopt the MagNet architecture but employ our novel Laplacian

matrix. In GNNRank, we borrow strength from an existing ranking baseline called

SerialRank [25] and unfold the Fiedler eigenvector computation steps. We also adopt

ideas from GPM [26] to refine our initial angle guesses in GNNSync. In particular,

for the GNN architecture, similar pipelines may be useful in different aspects. For

example, the basic mixed-path aggregation scheme is used in both SSSNET and

DIGRAC for node clustering. For both GNNRank and GNNSync, we first apply

a directed graph neural network architecture to obtain the node embeddings, and

then refine the embeddings by inductive biases based on the task at hand.

For a successful GNN model, the choice of the loss function is of great importance,

as it could affect the performance of downstream tasks. Differentiability of the

loss also requires careful consideration and design. Indeed, the design of the loss

function is important for all GNNs; in particular, it represents the core contribution

of our DIGRAC method and is essential for GNNRank and GNNSync.

Theoretical guarantees can guide users in better understanding the proposed

methods, and assessing their strengths and weaknesses in various settings. In
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DIGRAC, we derived hypothesis testing methods to determine clusters for consider-

ation. In MSGNN, we proved that our proposed magnetic signed Laplacian matrix

enjoys certain desirable properties. In GNNRank, we validate the convergence of our

proximal gradient steps. In GNNSync, the behavior of the loss functions is discussed.

8.2 Future Work

There are several limitations in our current contributions that naturally lead to

future directions. In addition, my doctoral research centers around methodological

design, but theoretical aspects and applications are also very important. On the

theoretical side, I plan to explore the role of graph convolution in graph-related

tasks such as node classification. Besides, I plan to design algorithms driven by

applications, for example, exploring chimpanzee activities. Specifically, I have

the following future research directions.

8.2.1 Future Directions Based on the Limitations of Our
Current Contributions

A current limitation in our work is scalability, and applying our GNNs to large-scale

networks will be of interest. Adaptations using mini-batch or sampling could be

helpful [73]. It might also be beneficial to borrow ideas from spectral sparsification,

to reduce the number of edges while retaining structural properties of the graphs,

such as preserving cuts [212].

GNNs are also not always preferred over simple spectral methods, as the training

process often takes more time than simply solving matrix problems, especially

when the networks are dense. In addition, compared to traditional approaches

like spectral methods, GNNs relying solely on local information are not capable

of computing several important graph properties such as shortest/longest cycle,

diameter, or certain motifs, which limits their expressiveness. This is because such

GNNs, including popular ones like GCN [71] and GAT [139], cannot distinguish

some simple non-isomorphic graphs. [213] Our methods in this dissertation take

into account information beyond simply edgewise unordered local information,
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such as by considering signed paths (Chap. 2) and cycle information (Chap. 6).

Based on our current contributions, another future direction is to incorporate more

global information into the framework, ideally in the architecture itself rather

than simply in the loss function.

Besides, the data representations using graphs are also not always ideal, as

the real world is often more complicated. For example, a collaboration involving

several authors cannot be completely represented via several separate edges but

rather better modeled with a hyperedge. This opens up research topics concerning

hypergraphs [8, 214, 215], with relationships more complex than just pairwise.

Furthermore, one aspect that is currently not well explored in our work is the

stability of the methods. Evaluating the stability in terms of performance is not

sufficient. A more detailed comparison of the outputs from the model under different

initial parameters or different random seeds would be helpful to tell which part of

the model prediction is the most sensitive. The changes in the output include, for

example, the change in the meta-graph structure or cluster assignments (pairwise

ARI values between predicted clustering results) for node clustering, the change in

individual rankings for GNNRank, and the change of misclassified nodes/edges. It

might also be beneficial to explore the parts of the output which are the most stable.

Moreover, in terms of benchmarks, it will be interesting to see whether the

network’s radius influences the performance significantly. To understand the limit

of the proposed framework, it might be useful to check whether the improvement

in the architecture (such as by improving the expressive power) can lead to the

improvement in the performance, or whether it is the data quality that has caused

imperfect performance. While designing synthetic data sets, we could explore the

possibility of designing a method that could potentially match the data generation

process and to obtain the possibly optimal solution.

Finally, as many networks are evolving, we aim to extend our work to temporal

settings, as another future direction, building upon our current contributions

such as [7] and [29].
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8.2.2 When and How can Graph Convolution Boost Node
Classification Accuracy

This project is inspired by [216] and the findings from our empirical analysis for

previous GNN projects. From our previous experiments, clustering performance

does not always increase as we increase the number of hops of neighbors to consider,

see Section A.3.4 and Section B.3.4. Indeed, the use of graph convolution could

help with node classification performance sometimes but not always, and it also

increases computational costs. Here, we want to explore when graph convolution

helps with node classification and how to use graph convolution effectively.

Here are some details. Suppose we have two classes: C0 and C1, with n0 = |C0|

and n1 = |C1| nodes. Assume that there are associated node features which are

encoded in the feature matrix X. We further assume for each class, node features

follow a Gaussian distribution: for the i-th row, Xi ∼ N (µ, d0I) if i ∈ C0 and

Xi ∼ N (ν, d1I) if i ∈ C1. The adjacency matrix A = (aij) is assumed to have

independent Bernoulli entries, so that aij ∼ Ber(p0) if i, j ∈ C0, aij ∼ Ber(p1) if

i, j ∈ C1 and aij ∼ Ber(q) if i, j are in distinct classes.

In more compact notation, let X ∈ Rn×d be a random matrix, whose rows

are conditional i.i.d. Gaussian from two (or in general, more) high-dimensional

normal distributions. Let Y = D−1(A + τI) ∈ Rn×n be a (normalized) graph

convolution matrix, where D is the degree matrix for A + τI, and A is the graph

adjacency matrix sampled from a conditional stochastic block model, τ ≥ 0 is a

regularizing weight for added self-loops. We are interested in the distribution of

YX, and how the distribution would affect node classification accuracy. Based

on the distribution of X and YX, we want to obtain the accuracy of the best-

performing linear classifier before and after graph convolution, respectively. Note

that YX corresponds to applying graph convolution once, but we are also interested

in applying graph convolution multiple times. Further, we aim for theoretical

insights which give guidance on the power of the convolution matrix which should

perform best for our classification tasks.
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8.2.3 Chimpanzee Activities and Community Structures

For most of my doctoral projects, we first create a GNN and then look for

applications. The chimpanzee project is motivated the other way around. In this

subsection, we explore the applicability of GNNs to specific aspects of our application.

We will determine the suitability of GNNs, explore potential methodologies for their

implementation, and discuss how these can be integrated with results obtained

from other network analysis methods.

This work, which is in progress, involves a chimpanzee data set. This data

set concerns wild chimpanzees in Uganda, made available by Aaron Sandel, an

Assistant Professor from the Department of Anthropology at the University of

Texas at Austin. The focus of this research is on social relationships.

The main question is how best to model networks across time. The chimpanzees

here have been studied for almost 30 years. Around 2015 the chimpanzees became

polarized, and by 2018 they were nearly completely separate groups. The research

question is how to best document this split, for example through clustering

or community detection, and determine when the schism started, and ideally,

incorporating covariates so as to assess possible correlates of the split.

We have constructed several types of networks based on their interactions and

activities, either monthly or yearly. Based on the graphs constructed, we conduct

exploratory data analysis using tools from network analysis. For example, we record

the betweenness centrality values for the individuals and aim to locate important

connectors, and we consider community structures for each time step by maximizing

modularity. To compare the communities across time, we analyze their pairwise

Adjusted Rand Index values, plot Sankey diagrams, and align the communities based

on a modified version of the Hungarian algorithm. We report information such as the

switching proportions of communities across time, the change in the observed number

of individuals, the change in modularity values, the change in the small world index,

and the eigenvalues of the Laplacian matrix. To incorporate community dynamics,

we consider two notions of similarities between the nodes: the counts of shared

communities across time, and the longest shared path of community identities.
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However, the current edge weights are determined based on heuristics without

optimization. One research question that may involve GNNs is to construct better

edge weights. Based on the different types of relationships in the data (different

proximity ranges, for example), we have constructed additional networks based on

single relationships, where every edge is given a unit edge weight for a single day,

and multiple occurrences for the same date are given a smaller addition each time to

the edge weight. After that, our plan is as follows. We will assign increasing (with

heuristically correct order) edge weights to combine the networks into one single

weighted network. We will then conduct temporal prediction tasks on these networks

and optimize the combination weights. One option is to employ the TGCN [217]

model as the temporal GNN model and conduct experiments for the period 1998 to

2013 (last prediction year 2013 and first start year 1998, before the split). Another

option is to investigate graph contrastive learning so that we are able to optimize

the graph weights using unsupervised learning [218, 219]. We will also incorporate

ideas from graph learning [220, 221]. The learned weights would be employed.

8.3 Summary and Outlook

To sum up, this dissertation centers around graph neural networks for network

analysis. The dissertation provides novel GNN algorithms for solving problems

in complex networks such as signed and directed graphs, with applications of

directed graphs to signal recovery problems. In the future, we will deepen our

contributions to the theoretical foundations of algorithm design and application-

driven methodologies.
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A
SSSNET: Semi-Supervised Signed Network

Clustering Supplementary Information

A.1 Additional Results

A.1.1 Additional Results on Synthetic Data
Figure A.1 provides further results on synthetic data. In addition to the ARI scores
for two more synthetic settings, SSBM(n = 1000, K = 20, p = 0.01, ρ = 1.5) and
SSBM(n = 1000, K = 2, p = 0.1, ρ = 2), we also report the NMI scores, Balanced
Normalized Cut values LBNC, and unhappy ratios, on some synthetic data used
in Figure 2.5 in the main text. From Figure A.1, we remark that SSSNET gives
comparable balanced normalized cut values and unhappy ratios in these regimes,
and leading performance in terms of both ARI and NMI.

A.1.2 Additional Results on Real-World Data
Discussion on Attributes for Sampson

On this data set, SSSNET with the ‘Cloisterville’ attribute achieves highest ARI.
When ignoring this attribute and instead using the identity matrix with 25 rows
as input feature matrix for Sampson, we achieve a test ARI 0.37±0.19, which
is much lower than SSSNET’s test ARI with 1-dimensional attributes, but still
higher than the other methods.

Extended Result Table for Fin-YNet
Table A.1 gives an extended comparison of different methods on the financial
correlation data set Fin-YNet. In the first panel of table the difference (± 1
s.e. when applicable) to the best-performing method is given; hence each row
will have at least one zero entry. We conclude that SSSNET attains the best
performance in terms of both ARI and NMI, with regards to both test nodes and
all nodes, in each of the 21 years.
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Figure A.1: Extended node clustering result comparison on synthetic data. Dashed lines
are added to SSSNET’s performance to highlight our result. Each setting is averaged
over ten runs. Error bars are given by standard errors. NMI and ARI results are on
test nodes only (the higher, the better), while LBNC and unhappy ratio results are on all
nodes in the signed network (the lower, the better).

Table A.1: Clustering performance comparison on Fin-YNet; the first panel shows
distance to the best performance and the second panel shows absolute performance. The
best is in bold red , and second best in underline blue . Standard deviations are not
shown due to space constraint.

Metric A sns dns L L_sym BNC BRC SPONGE SPONGE_sym SSSNET
test ARI dist. 0.22 0.37 0.32 0.33 0.22 0.32 0.33 0.20 0.16 0.00
all ARI dist. 0.27 0.43 0.37 0.38 0.27 0.37 0.38 0.24 0.2 0.00

test NMI dist. 0.11 0.53 0.39 0.39 0.14 0.39 0.40 0.12 0.09 0.00
all NMI dist. 0.17 0.44 0.35 0.36 0.19 0.35 0.35 0.12 0.11 0.00

test ARI 0.18 0.03 0.08 0.07 0.17 0.08 0.07 0.19 0.24 0.40
all ARI 0.19 0.03 0.09 0.08 0.19 0.09 0.08 0.22 0.26 0.46

test NMI 0.54 0.12 0.26 0.26 0.51 0.26 0.25 0.53 0.56 0.65
all NMI 0.38 0.11 0.20 0.19 0.36 0.20 0.19 0.42 0.44 0.55

GICS Alignments Plots on S&P1500

We remark that SSSNET (Figure A.2) uncovers several very cohesive clusters,
such as IT, Discretionary, Utility, and Financials. These recovered clusters are
visually more cohesive than those reported by SPONGE.
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Figure A.2: Alignment of SSSNET clusters with GICS sectors in S&P 1500; ARI=0.71.
Colors denote distinct sectors of the US economy, indexing the rows; the total area of a
color denotes the size of a GICS sector. Columns index the recovered SSSNET clusters,
with the widths proportional to cluster sizes.

A.2 Extended Data Description

A.2.1 SSBM Construction Details
A Signed Stochastic Block Model (SSBM) for a network on n nodes with K blocks
(clusters), is constructed similar to [52] but with a more general cluster size definition.
• (1) Assign block sizes n0 ≤ n1 ≤ · · · ≤ nK−1 with size ratio ρ ≥ 1, as follows. If
ρ = 1, then the first K − 1 blocks have the same size ⌊n/K⌋, and the last block has
size n − (K − 1)⌊n/K⌋. If ρ > 1, we set ρ0 = ρ

1
K−1 . Solving ∑K−1

i=0 ρi
0n0 = n and

taking integer value gives n0 =
⌊
n(1− ρ0)/(1− ρK

0 )
⌋

. Further, set ni = ⌊ρ0ni−1⌋,
for i = 1, · · · , K − 2 if K ≥ 3, and nK−1 = n−∑K−2

i=0 ni. Then, the ratio of the size
of the largest to the smallest block is approximately ρK−1

0 = ρ. • (2) Assign each
node to one of K blocks, so that each block has the allocated size. • (3) For each
pair of nodes in the same block, with probability pin = p, create an edge with +1 as
weight between them, independently of the other potential edges. • (4) For each
pair of nodes in different blocks, with probability pout = p, create an edge with −1
as weight between them, independently of the other potential edges. • (5) Flip the
sign of the across-cluster edges from the previous stage with sign flip probability
ηin = η, and ηout = η for edges within and across clusters, respectively.

As our framework can be applied to different connected components separately,
after generating the initial SSBM, we concentrate on the largest connected com-
ponent. To further avoid numerical issues, we modify the synthetic network by
adding randomly wired edges to nodes of degree 1 or 2.

The actual implementation of the above algorithm is given in https://github.
com/SherylHYX/SSSNET_Signed_Clustering/blob/main/src/utils.py, modified
from https://github.com/alan-turing-institute/SigNet/blob/master/signet/
block_models.py.

A.2.2 Discussion on POL-SSBM
Our generalizations are as follows: • (1) Our model allows for different sizes of
communities and blocks, governed by the parameter ρ, which is more realistic.
• (2) Instead of using a single parameter for the edge probability and sign flips,
we use two parameters p and η. We also assume equal edge sampling probability
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throughout the entire graph, as we want to avoid being able to trivially solve the
problem by considering the absolute value of the edge weights, and thus falling
back onto the standard community detection setting in unsigned graphs. • (3) We
consider more than two polarized communities, while also allowing for the existence
of ambient nodes in the graph, in the spirit of [41].

A.2.3 Real-World Data Description
We perform experiments on six real-world signed network data sets (Sampson [37],
Rainfall [76], Fin-YNet, S&P 1500 [77], PPI [78], and Wiki-Rfa [79]). Table 2.1
in the main text gives some summary statistics; here is a brief description of
each data set.
• The Sampson monastery data [37] were collected by Sampson while resident at
the monastery; the study spans 12 months. This data set contains relationships
(esteem, liking, influence, praise, as well as disesteem, negative influence, and
blame) between 25 novices in total, who were preparing to join a New England
monastery. Each novice was asked to rank their top three choices for each of
these relationships. Some novices gave ties for some of the choices, and nominated
four instead of three other novices. the positive attributes have values 1, 2 and
3 in increasing order of affection, whereas the negative attributes take values -1,
-2, and -3, in increasing order of dislike. The social relations were measured at
five points in time. Some novices had left the monastery during this process; at
time point 4, 18 novices are present. These novices possess as feature whether
or not they attended the minor seminary of ‘Cloisterville’ before coming to the
monastery. For the other 7 novices this information is not available. We combine
these relationships into a network of 25 nodes by adding the weights for each
relationship across all time points. Missing observations were set to 0. Based on his
observations and analyses, Sampson divided the novices into four groups: Young
Turks, Loyal Opposition, Outcasts, and an interstitial group; this division is taken
as ground truth. We use as node (novice) attribute whether or not they attended
‘Cloisterville’ before coming to the monastery.
• Rainfall [76] contains 64,408 pairwise correlations between n = 306 locations in
Australia, at which historical rainfalls have been measured.
• Fin-YNet consists of yearly correlation matrices for n = 451 stocks for 2000-2020
(21 distinct networks), using market excess returns. That is, we compute each
correlation matrix from overnight (previous close to open) and intraday (open-
to-close) price daily returns, from which we subtract the market return of the
S&P500 index for the same time interval. In other words, within a given year,
for each stock, we consider the time series of 500 market excess returns (there
are 250 trading days within a year, and each day contributes with two returns,
an overnight one and in intraday one). Each correlation network is built from
the empirical correlation matrix of the entire set of stocks. For this data set, we
report the results averaged over the 21 networks.
• S&P1500 [77] considers daily prices for n = 1, 193 stocks in the S&P 1500 Index,
between 2003 and 2015, and builds correlation matrices from market excess returns
(ie, from the return price of each financial instrument, the return of the market
S&P500 is subtracted). Since we do not threshold, the result is thus a fully-connected
weighted network, with stocks as nodes and correlations as edge weights.
• PPI [78] is a signed protein-protein interaction network between n = 3, 058 pro-
teins.
• Wiki-Rfa [79] is a signed network describing voting information for electing
Wikipedia managers. Positive edges represent supporting votes, while negative
edges represent opposing votes. We extract the largest connected component and
remove nodes with degree at most one, resulting in n = 7, 634 nodes for experiments.
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A.3 Implementation Details

A.3.1 Efficient Algorithm for SIMPA
An efficient implementation of SIMPA is given in Algorithm 4. We omit the subscript
V for ease of notation. The matrix operations described in Eq. equation 2.1 in the
main text appear to be computationally expensive and space unfriendly. However,
SSSNET resolves these concerns via an efficient sparsity-aware implementation
without explicitly calculating the sets of powers, such as As+,h. The algorithm also
takes sparse matrices as input, and sparsity is maintained throughout. Therefore, for
input feature dimension din and hidden dimension d, if d′ = max(din, d)≪ n, time
and space complexity of SIMPA, and implicitly SSSNET, is O(|E|d′h2 + 4nd′K)
and O(4|E|+10nd′ +nK), respectively [72, 222]. When the network is large, SIMPA
is amendable to a minibatch version using neighborhood sampling, similar to the
minibatch forward propagation algorithm in [61, 223]. SIMPA is also amenable to
an auto-scale version with theoretical guarantees, following [73].

Algorithm 4: Signed Mixed-Path Aggregation (SIMPA) algorithm for signed
directed networks
Input : (Sparse) row-normalized adjacency matrices As+

, As−
, At+

, At−;
initial hidden representations Hs+, Hs−, Ht+, Ht−; hop h; lists of
scalar weights Ωs+ = (ωs+

M , M ∈ As+,h), Ωs− = (ωs−
M , M ∈ As−,h),

Ωt+ = (ωt+
M , M ∈ At+,h), Ωt− = (ωt−

M , M ∈ At−,h).
Output : Vector representations zi for all vi ∈ V given by Z.
Zs+ ← Ωs+[0] ·Hs+; Zt+ ← Ωt+[0] ·Ht+; Zs−, Zt− ← 0;
X̃s+ ← Hs+, X̄s− ← Hs−, X̃t+ ← Ht+, X̄t− ← Ht−; j ← 0;
for i← 0 to h do

if i > 0 then
X̃s+ ← As+X̃s+; X̃t+ ← At+X̃t+ ;
Zs+ ← Zs+ + Ωs+[i] · X̃s+; X̄s− ← As+X̄s−;
Zt+ ← Zt+ + Ωt+[i] · X̃t+; X̄t− ← At+X̄t−;

end
if i ̸= h then

X̃s− ← As−X̄s−; X̃t− ← At−X̃t− ;
Zs− ← Zs− + Ωs−[j] · X̃s−;
Zt− ← Zt− + Ωt−[j] · X̃t−; j ← j + 1;
for k ← 0 to h− i− 2 do

X̃s− ← As+X̄s−; X̃t− ← At+X̃t− ;
Zs− ← Zs− + Ωs−[j] · X̃s−;
Zt− ← Zt− + Ωt−[j] · X̃t−; j ← j + 1;

end
end

end
Z = CONCAT (Zs+, Zs−, Zt+, Zt−);

Printed on June 7, 2024



A. SSSNET: Semi-Supervised Signed Network Clustering Supplementary
Information 154

A.3.2 Machines
Experiments were conducted on a compute node with 4 Nvidia RTX 8000, 48
Intel Xeon Silver 4116 CPUs and 1000GB RAM, a compute node with 3 NVIDIA
GeForce RTX 2080, 32 Intel Xeon E5-2690 v3 CPUs and 64GB RAM, a compute
node with 2 NVIDIA Tesla K80, 16 Intel Xeon E5-2690 CPUs and 252GB RAM,
and an Intel 2.90GHz i7-10700 processor with 8 cores and 16 threads. With the
above, most experiments can be completed within a day.

A.3.3 Data Splits and Input
For each setting of synthetic data and real-world data, we first generate five different
networks, each with two different data splits, then conduct experiments on them
and report average performance over these 10 runs.

For synthetic data, 10% of all nodes are selected as test nodes for each cluster
(the actual number is the ceiling of the total number of nodes times 0.1, so we would
not fall below 10% of test nodes), 10% are selected as validation nodes (for model
selection and early-stopping; again, we take the ceiling for the actual number),
while the remaining roughly 80% are selected as training nodes (the actual number
is bounded above by 80% since we take ceiling). For most real-world data sets,
we extract the largest weak connected component for experiments. For Wiki-Rfa,
we further rule out nodes that have degree less than two.

As for input features, we weigh the unit-length eigenvectors of the Signed
Laplacian or regularized adjacency matrix by their eigenvalues introduced in [81].
For the Signed Laplacian features, we divide each eigenvector by its corresponding
eigenvalue, since smaller eigenvectors are more likely to be informative. For
regularized adjacency matrix features, we multiply eigenvalues by eigenvectors,
since larger eigenvectors are more likely to be informative. After this scaling, there
are no further standardization steps before inputting the features to our model.
When features are available (in the case of Sampson data set), we standardize
the one-dimensional binary input feature, so that the whole vector has mean
zero and variance one.

For the sns and dns methods defined in Sec. 2.4.2 in the main text, we
stack the eigenvectors associated with the smallest K eigenvalues of the corre-
sponding Laplacians [63] to construct the feature matrix, then apply K-means to
obtain the cluster assignments. For the other implementations, we also take the
first K eigenvectors, either smallest or largest, following https://github.com/
alan-turing-institute/SigNet/blob/master/signet/cluster.py.

A.3.4 Hyperparameters
We conduct hyperparmeter selection via a greedy search manner. To explain the
details, consider for example the following synthetic data setting: polarized SSBMs
with 1050 nodes, nc = 2 SSBM communities, ρ = 1.5, N = 200, p = 0.1.

Recall that the the objective function minimizes

L = LPBNC + γs(LCE + γtLtriplet), (A.1)

where γs, γt > 0 are weights for the supervised part of the loss and triplet loss
within the supervised part, respectively.

Note that the cosine similarity (used in triplet loss Ltriplet) between two randomly
picked vectors in d dimensions is bounded by

√
ln(d)/d with high probability.

In our experiments d = 32, and
√

ln(2d)/(2d) ≈ 0.25,
√

ln(4d)/(4d) ≈ 0.19. In
contrast, for fairly uniform clustering, the cross-entropy loss grows like log n,
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which in our experiments ranges between 3 and 17. Thus some balancing of
the contribution is required.

Instead of a grid search, we tune hyperparameters according to what performs
the best in the current default setting. If two settings give similar results, we pick the
simpler setting, for example, the smaller hop size or the lower number of seed nodes.

When we reach a local optimum, we stop searching. Indeed, just a few iterations
(less than five) were required for us to find the current setting, as SSSNET tends
to be robust to most hyperparameters.
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Figure A.3: Hyperpameter analysis on polarized SSBMs with n = 1050 nodes, nc = 2
communites, ρ = 1.5, default community size N = 200, and p = 0.1.

Figure A.3 compares the performance of SSSNET on polarized SSBMs with
1050 nodes, nc = 2 SSBM communities, ρ = 1.5, N = 200, p = 0.1, under different
hyperparameter settings. By default, we use the loss function Eq. equation 2.4
in the main text with γt = 0.1, γs = 50, and d = 32, l = 2, τ = 0.5, h = 2, α = 0.
We use the default seed ratio as 0.1 (the ratio of the number of seed nodes to the
number of training nodes). We remark from (a) that as we increase the MLP hidden
dimension d, performance first improves then decreases, with 32 a desirable value.
As we increase the number of hops to consider, performance drops in (b). Therefore,
we would use the simplest, yet best choice, hop 2. The decrease in both cases might
be explained by too much noise introduced. For (c), the self-loop weight τ added to
the positive part of the adjacency matrix does not seem to affect performance much,
and hence we use 0.5 throughout. We conclude from (d) that it is recommended
to have γs > 1 so as to take advantage of labeling information. The best triplet
loss ratio in our candidates is γt = 0.1, based on (e). From (f), the influence of
α is not evident, and hence we use α = 0 throughout.
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A.3.5 Training
For all synthetic data, we train SSSNET with a maximum of 300 epochs, and
stop training when no gain in validation performance is achieved for 100 epochs
(early-stopping).

For real-world data, when “ground-truth" labels are available, we still have
separate test nodes. For S&P1500 data set, we do not have validation nodes, and
90% of all nodes are training nodes. For data sets with no “ground-truth" labels
available, we train SSSNET in a self-supervised setting, using all nodes to train.
We stop training when the training loss does not decrease for 100 epochs or when
we reach the maximum number of epochs, 300.

For the two-layer MLP, we do not have a bias term for each layer, and we
use a Rectified Linear Unit (ReLU), followed by a dropout layer with 0.5 dropout
probability between the two layers, following [22]. We use Adam as the optimizer,
and ℓ2 regularization with weight decay 5 · 10−4 to avoid overfitting.

Printed on June 7, 2024



B
DIGRAC: Digraph Clustering Based on

Flow Imbalance Supplementary
Information

B.1 Directed Mixed Path Aggregation (DIMPA)
To instantiate DIGRAC, we can employ any digraph aggregator that could generate
the probability matrix P. In this paper, we devise a simple yet effective directed
mixed path aggregation scheme, to obtain the probability assignment matrix P
and feed it to the loss function, as a special case of the successful SSSNET method
introduced by [3]. Thus, in order to build node embeddings, we capture local
network information by taking a weighted average of information from neighbors
within h hops. To this end, we row-normalize the adjacency matrix, A, to obtain
As. Similar to the regularization discussed in [71], we add a weighted self-loop to
each node and normalize by setting As = (D̃s)−1Ãs, where Ãs = A + τI, with
D̃s the diagonal matrix with entries D̃s(i, i) = ∑

j Ãs(i, j), and τ is a small value;
we take τ = 0.5; see Section B.3.4 for details.

The h-hop source matrix is given by (As)h. We denote the set of up-to-h-
hop source neighborhood matrices as As,h = {I, As

, . . . , (As)h}. Similarly, for
aggregating information when each node is viewed as a target node of a link, we
carry out the same procedure for AT which is the transpose of A. We denote the set
of up-to-h-hop target neighborhood matrices as At,h = {I, At

, . . . , (At)h}, where At

is the row-normalized target adjacency matrix calculated from AT . As convention,
the superscript s stands for source and the superscript t stands for target.

Next, we define two feature mapping functions for source and target embeddings,
respectively. Assume that for each node in V, a vector of features is available,
and summarize these features in the input feature matrix X. The source em-
bedding is given by

Zs =
 ∑

M∈As,h

ωs
M ·M

 ·Hs ∈ Rn×d, (B.1)
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where for each M, ωs
M is a learnable scalar, d is the dimension of this embedding,

and Hs = MLP(s,l)(X). Here, the hyperparameter l controls the number of layers
in the multilayer perceptron (MLP) with ReLU activation; we fix l = 2 throughout.
Each layer of the MLP has the same number d of hidden units. The target embedding
Zt is defined similarly, with s replaced by t in Eq. (B.1). Different parameters
for the MLPs for different embeddings are possible. After these two decoupled
aggregations, we concatenate the embeddings to obtain the final node embedding
as a n× (2d) matrix Z = CONCAT (Zs, Zt) . The embedding vector zi for a node
vi is the ith row of Z, zi := (Z)(i,:) ∈ R2d.

After obtaining the embedding matrix Z, we apply a linear layer (an affine trans-
formation) to Z, so that the resulting matrix has K columns. Next, we apply the
unit softmax function to the rows and obtain the assignment probability matrix
P. Fig. B.1 gives an overview of this implementation.
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Figure B.1: DIGRAC with DIMPA as aggregator overview: from feature matrix X and
adjacency matrix A, we first compute the row-normalized adjacency matrices As and
At

. Then, we apply two separate MLPs on X, to obtain hidden representations Hs and
Ht. Next, we compute their decoupled embeddings using Eq. (B.1), and its equivalent for
target embeddings. The concatenated decoupled embeddings are the final embeddings.
For node clustering tasks, we add a linear layer followed by a unit softmax to obtain the
probability matrix P. Applying argmax on each row of P yields node cluster assignments.

To avoid computationally expensive and space unfriendly matrix operations, as
described in Eq. B.1, DIGRAC uses an efficient sparsity-aware implementation,
described in Algorithm 5, without explicitly calculating the sets of powers As,h

and At,h. We omit the subscript V for ease of notation. The algorithm is efficient
in the sense that it takes sparse matrices as input, and never explicitly computes
a multiplication of two n × n matrices. Therefore, for input feature dimension
din and hidden dimension d, if d′ = max(din, d) ≪ n, time and space complexity
of DIMPA, and implicitly DIGRAC, is O(|E|d′h2 + 2nd′K) and O(2|E|+ 4nd′ +
nK), respectively [72, 222].

While it is a current shortcoming of DIGRAC that it does not scale well to
very large networks, this limitation is shared by all the GNN competitors compared
against in the paper, and some of the spectral methods. DIGRAC scales well in
the sense that when the underlying network is sparse, the sparsity is preserved
throughout the pipeline. In contrast, Bi_sym and DD_sym [111] construct derived
dense matrices for manipulation, rendering the methods no longer scalable. These
methods resulted in N/A values in Table 3.1 in the main text. For large-scale
networks, DIMPA is amenable to a minibatch version using neighborhood sampling,
similar to the minibatch forward propagation algorithm in [61, 223]. We are also
aware of a framework [73] for scaling up graph neural networks automatically, where
theoretical guarantees are provided, and ideas there will be exploited in future. We
expect that the theoretical guarantees could be adapted to our situation.
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Algorithm 5: Weighted Multi-Hop Neighbor Aggregation (DIMPA).
Input : (Sparse) row-normalized adjacency matrices As

, At; initial hidden
representations Hs, Ht; hop h(h ≥ 2); lists of scalar weights
Ωs = (ωs

M, M ∈ As,h), Ωt = (ωt
M, M ∈ At,h).

Output : Vector representations zi for all vi ∈ V given by Z.
X̃s ← AsHs; X̃t ← AtHt;
Zs ← Ωs[0] ·Hs + Ωs[1] · X̃s; Zt ← Ωt[0] ·Ht + Ωt[1] · X̃t;

for i← 2 to h do
X̃s ← AsX̃s; X̃t ← AtX̃t;
Zs ← Zs + Ωs[i] · X̃s; Zt ← Zt + Ωt[i] · X̃t;

end
Z = CONCAT (Zs, Zt);

B.2 Loss and Objectives

B.2.1 Proof of Proposition 1
Moreover, we clarify that we make an assumption on the limiting behavior of
the weights, namely that

maxe |we|√∑
e w2

e

= o(m(k, l))

where m(k, l) is the number of edges. This is a natural assumption: In the case
that all weights are equal in absolute value, this assumption is satisfied as then
maxe |we|√∑

e
w2

e

= 1√
m(k,l)

. The assumption is generally satisfied when there is not too
much variability in the weights. If for example all but one weight pair was equal
to 0, then the assumption would be violated, and also a normal approximation
would not hold as there would only be two non-zero observations.

Proposition 4. Suppose that Ck and Cl are two clusters of nk and nl nodes,
respectively, with m(k, l) edges between them, with symmetric edge weights wij =
wji ∈ [0, 1] and with edge direction drawn independently at random with equal
probability 1

2 for each direction. We assume that the edge weights satisfy maxe |we|√∑
e

w2
e

=
o(m(k, l)). Then W (Ck, Cl)−W (Cl, Ck) is approximately normally distributed with
mean 0 and variance ||w||2 as m(k, l)→∞.

Proof. For each edge between the two clusters Ck and Cl, the edge direction
is random, i.e. the edge is from Ck to Cl with probability 0.5, and Cl to Ck with
probability 0.5 also. Let Ek,l denote the set of m(k, l) > 0 edges between Ck and
Cl. For every edge e ∈ Ek,l, the edge direction is encoded by a Rademacher random
variable Xe with Xe = 1 if the edge is from Ck to Cl, and Xe = −1 otherwise. Then
(Xe + 1)/2 ∼ Ber(0.5) is a Bernoulli(0.5) random variable with mean 2×0.5−1 = 0
and variance 22 × 0.5 × (1 − 0.5) = 1. We have the representation

W (Ck, Cl)−W (Cl, Ck) =
∑

e∈Ek,l

Xewe
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as the sum of m(k, l) independent bounded random variables with finite third
moments. Moreover, W (Ck, Cl) −W (Cl, Ck) has mean 0 and variance ||w||2. The
assertion now follows from a version of the Central Limit Theorem, Theorem 3.4
in [224]; we repeat the relevant part here:
Theorem 4 (Extract from Theorem 3.4 in [224]). Let ξ1, . . . , ξn be independent
random variables with zero means satisfying ∑n

i=1 Var(ξi) = 1 and assume that there
is a δ > 0 such that |ξi| ≤ δ for 1 ≤ i ≤ n. Let Φ denote the cumulative distribution
function of the standard normal distribution. Then

sup
zinR

∣∣∣∣∣P
(

n∑
i=1

ξi ≤ z)− Φ(z)
)∣∣∣∣∣ ≤ 3.3δ.

We apply this theorem with n replaced by m(k, l), the number of edges, and
take ξe = Xewe√∑

e
w2

e

. Then ξe has mean zero and, using an enumeration of the edges,∑m(k,l)
e=1 Var(ξe) = 1. Moreover, |ξe| ≤ maxe |we|√∑

e
w2

e

=: δ holds for all e ∈ {1, . . . , m(k, l)}
and hence the theorem applies for the limit m(k, l)→∞. The stated result follows
from using that if Z/σ has the standard normal distribution then Z has the mean
zero normal distribution with variance σ2.

□

B.2.2 Additional Details on Probabilistic Cut and Volume
Recall that the probabilistic cut from cluster Ck to Cl is defined as

W (Ck, Cl) =
∑

i,j∈{1,...,n}
Ai,j ·Pi,k ·Pj,l = (P(:,k))T AP(:,l),

where P(:,k), P(:,l) denote the kth and lth columns of the assignment probability matrix
P, respectively. The imbalance flow between clusters Ck and Cl is defined as

|W (Ck, Cl)−W (Cl, Ck)|,

for k, l ∈ {0, . . . , K − 1}. The loss functions proposed in the main paper can be
understood in terms of a probabilistic notion of degrees, as follows. We define
the probabilistic out-degree of node vi with respect to cluster k by d̃

(out)
i,k =∑n

j=1 Ai,j · Pj,k = (AP(:,k))i
, where subscript i refers to the ith entry of the

vector AP(:,k). Similarly, we define the probabilistic in-degree of node vi with
respect to cluster k by d̃

(in)
i,k = (AT P(:,k))i

, where AT is the transpose of A. The
probabilistic degree of node vi with respect to cluster k is d̃i,k = d̃

(in)
i,k + d̃

(out)
i,k =

((AT + A)P(:,k))i
= ∑n

j=1(Ai,j + Aj,i) · Pj,k.
For comparisons and ease of interpretation, it is advantageous to normalize the

imbalance flow between clusters; for this purpose, we introduce the probabilistic
volume of a cluster, as follows. The probabilistic out-volume for cluster Ck is defined
as V OL(out)(Ck) = ∑

i,j Aj,i ·Pj,k, and the probabilistic in-volume for cluster Ck is
defined as V OL(in)(Ck)(AT P(:,k))i

, where AT is the transpose of A. These volumes
can be viewed as sum of probabilistic out-degrees and in-degrees, respectively; for
example, V OL(in)(Ck) = ∑n

i=1 d̃
(in)
i,k . Then, it holds true that

V OL(out)(Ck) =
∑
i,j

Ai,j ·Pi,k ≥
∑
i,j

Ai,j ·Pi,k ·Pj,l = W (Ck, Cl), (B.2)
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since entries in P are probabilities, which are in [0, 1], and all entries of A are
nonnegative. Similarly, V OL(in)(Ck) ≥ W (Cl, Ck).

The probabilistic volume for cluster Ck is defined as

V OL(Ck) = V OL(out)(Ck) + V OL(in)(Ck) =
∑
i,j

(Ai,j + Aj,i) ·Pj,k.

Then, it holds true that V OL(Ck) ≥ W (Ck, Cl) for all l ∈ {0, . . . , K − 1} and

min(V OL(Ck), V OL(Cl)) ≥ max(W (Ck, Cl), W (Cl, Ck)) ≥ |W (Ck, Cl)−W (Cl, Ck)|.
(B.3)

When there exists a strong imbalance, then |W (Ck, Cl)−W (Cl, Ck)| ≈ max(W (Ck, Cl), W (Cl, Ck)).
As an extreme case, if Pj,l = 1 for all nonnegative terms in the summations in
Eq. (B.2), and V OL(in)(Ck) = 0, then |W (Ck, Cl) −W (Cl, Ck)| = V OL(Ck).

B.2.3 Variants of Normalization
Recall that the imbalance term involved in most of our experiments, named
CIvol_sum, is defined as

CIvol_sum(k, l) = 2 |W (Ck, Cl)−W (Cl, Ck)|
V OL(Ck) + V OL(Cl)

∈ [0, 1]. (B.4)

An alternative, which does not take volumes into account, is given by

CIplain(k, l) =
∣∣∣∣∣W (Ck, Cl)−W (Cl, Ck)
W (Ck, Cl) + W (Cl, Ck)

∣∣∣∣∣ = 2
∣∣∣∣∣ W (Ck, Cl)
W (Ck, Cl) + W (Cl, Ck) −

1
2

∣∣∣∣∣ ∈ [0, 1].

(B.5)
We call this cut flow imbalance CIplain as it does not penalize extremely unbal-
anced cluster sizes.

To achieve balanced cluster sizes and still constrain each imbalance term to be
in [0, 1], one solution is to multiply the imbalance flow value by the minimum of
V OL(Ck) and V OL(Cl), and then divide by max(k′,l′)∈T (min(V OL(Ck′), V OL(Cl′))),
where T = {(Ck, Cl) : 0 ≤ k < l ≤ K − 1, k, l ∈ Z}. The reason for using T is that
CIplain(k, l) is symmetric with respect to k and l, and CIplain(k, l) = 0 whenever
k = l. Note that the maximum of the minimum here equals the second largest
volume among clusters. We then obtain CIvol_min as

CIvol_min(k, l) = CIplain(k, l)× min(V OL(Ck), V OL(Cl))
max(k′,l′)∈T (min(V OL(Ck′), V OL(Cl′)))

. (B.6)

Another potential choice, denoted CIvol_max, whose normalization follows from
the same reasoning as CIvol_sum, is given by

CIvol_max(k, l) = |W (Ck, Cl)−W (Cl, Ck)|
max(V OL(Ck), V OL(Cl))

∈ [0, 1]. (B.7)

Note that the current CIvol_sum(k, l) term can be reformulated as

CIvol_sum(k, l) = 2 |W (Ck, Cl)−W (Cl, Ck)|
V OL(Ck) + V OL(Cl)

= 2W (Ck, Cl) + W (Cl, Ck)
V OL(Ck) + V OL(Cl)

× CIplain(k, l),

(B.8)
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with the first term in the decomposition corresponding to the relative ratio of inter-
and intra-cluster edge density. For our synthetic data, this term is constant as
we have constant edge density across the graph. However, for certain real-world
data sets, one could also maximize this first term by increasing the inter-cluster
density while decreasing the intra-cluster density, which seems to be a side effect.
However, in our experiments, we also evaluate our results with different metrics,
including objectives without any normalization, and conclude that this side effect
does not create any issues in our data sets.

B.2.4 Selection of the Loss Function

Table B.1: Naming conventions for objectives and loss functions

Selection variant / CI CIvol_sum CIvol_min CIvol_max CIplain

sort Osort
vol_sum,Lsort

vol_sum Osort
vol_min,Lsort

vol_min Osort
vol_max,Lsort

vol_max Osort
plain,Lsort

plain
std Ostd

vol_sum,Lstd
vol_sum Ostd

vol_min,Lstd
vol_min Ostd

vol_max,Lstd
vol_max Ostd

plain,Lstd
plain

naive Onaive
vol_sum,Lnaive

vol_sum Onaive
vol_min,Lnaive

vol_min Onaive
vol_max,Lnaive

vol_max Onaive
plain ,Lnaive

plain

Table B.1 provides naming conventions of all the twelve pairs of variants of
objectives and loss functions used in this paper. We select the loss functions for
DIGRAC based on two representative models, and compare the performance of
different loss functions. We use DIMPA (introduced in B.1) as an instantiation
of DIGRAC’s aggregator, for which d = 32, hidden units, h = 2 hops, and no
seed nodes. Figures B.2(a) and B.3 compare twelve choices of loss combinations
on a DSBM with n = 1000 nodes, K = 5 blocks, ρ = 1, p = 0.02 without ambient
nodes, with a complete meta-graph structure. The subscript indicates the choice
of pairwise imbalance, and the superscript indicates the variant for selecting pairs.
Figures B.2(b) and B.4 are based on a DSBM with n = 1000 nodes, K = 5 blocks,
ρ = 1, p = 0.02 without ambient nodes, with a cycle meta-graph structure. For
these figures, dash lines highlight the “sort" variant as well as the “std" variant
based on CIvol_sum, which have been introduced in the main text.

We also plot the imbalance evolution curves for the above two synthetic models
when η = 0.05, for all the loss variants, in Figure B.5.

These figures indicate that the “sort" variant generally provides the best test
ARI performance and the best overall global imbalance scores, among which
using normalizations CIvol_sum and CIvol_max perform the best. The “std" variant
is comparable with the “sort" variant in many instances, but is less stable in
performance. We observe, however, from Figure B.5, that the “std" variants
normally converge much faster. Taking the above into account, if we have prior
knowledge of the network structure, or when we could conduct some prior analysis
on the value β to take, the “sort" variant should be the variant of choice. Further,
from Figure B.5, we observe that normalization in the loss function helps avoid
the degenerate situation that the loss does not decrease. Such degeneracy can
occur in the “plain” variants, raising issues about the practical usefulness of these
variants. We observe that Lsort

vol_min appears to behave worse than Lsort
vol_sum and

Lsort
vol_max, even when using the “sort" variant to select pairwise imbalance scores.

One possible explanation is that Lsort
vol_min does not penalize extreme volume sizes,

and that it takes minimum as well as maximum which, as functions of the data,
are not as smooth as taking a summation. Throughout our experiments in the
main text, we hence use the loss function Lsort

vol_sum.
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(a) DSBM(“complete", F,
n = 1000, K = 5, p = 0.02, ρ = 1)
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(b) DSBM(“cycle", F,
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Figure B.2: ARI comparison of loss functions on DSBM with 1000 nodes, 5 blocks,
ρ = 1, p = 0.02 without ambient nodes, of cycle (left) and complete (right) meta-graph
structures, respectively. The first component of the legend is the choice of pairwise
imbalance, and the second component is the variant of selecting pairs. The naming
conventions for the abbreviations in the legend are provided in Table B.1.
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Figure B.3: Imbalance scores comparison of loss functions on DSBM with 1000 nodes, 5
blocks, ρ = 1, p = 0.02 without ambient nodes, of the complete meta-graph structure.
The legend is the same as Fig. B.2(a).
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Figure B.4: Imbalance scores comparison of loss functions on DSBM with 1000 nodes, 5
blocks, ρ = 1, p = 0.02 without ambient nodes, of the cyclic meta-graph structure. The
legend is the same as Fig. B.2(a).

B.3 Implementation Details

B.3.1 Code
To fully reproduce our results, code and preprocessed data are available at https:
//github.com/SherylHYX/DIGRAC_Directed_Clustering.

B.3.2 Hardware
Experiments were conducted on a compute node with 8 Nvidia RTX 8000, 48
Intel Xeon Silver 4116 CPUs and 1000GB RAM, a compute node with 4 NVIDIA
GeForce RTX 2080, 32 Intel Xeon E5-2690 v3 CPUs and 64GB RAM, a compute
node with 2 NVIDIA Tesla K80, 16 Intel Xeon E5-2690 CPUs and 252GB RAM,
and an Intel 2.90GHz i7-10700 processor with 8 cores and 16 threads.

With this setup, all experiments for spectral methods, MagNet, DiGCL, and
DIGRAC can be completed within two days, including repeated experiments, to
obtain averages over multiple runs. DGCN, DiGCN, and MagNet have much longer
run time (especially DGCN, which is space-consuming, and we cannot run many
experiments in parallel), with a total of three days for them to finish. The slow
speed stems from the competitor methods; some of the other GNN methods take a
long time to run. Table 3.1 in the main text shows N/A values for Bi_sym and for
DD_sym exactly for this reason. Empirically, DIGRAC is among the fastest among
all GNN methods to which it is compared. In detail, Table B.2 reports the average
runtime for all GNN methods on a variety of DSBM models, and illustrates that
DIGRAC indeed takes the least or second least computational time per epoch. The
results are averaged over 10 runs for the first 200 epochs. DiGCL is also efficient
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(a) DSBM(“complete", F,
n = 1000, K = 5, p = 0.02, ρ = 1, η = 0.05) (b) DSBM(“cycle", F,

n = 1000, K = 5, p = 0.02, ρ = 1, η = 0.05)

Figure B.5: Imbalance loss evolution comparison of loss functions on DSBM with
1000 nodes, 5 blocks, ρ = 1, p = 0.02, η = 0.05 without ambient nodes, of cycle (left)
and complete (right) meta-graph structures, respectively. The first component of the
legend is the choice of pairwise imbalance, and the second component is the variant of
selecting pairs. The naming conventions for the abbreviations in the legend are provided
in Table B.1.

in running time, but with worse performance than DIGRAC even as a supervised
method, see the enlarged synthetic results in Sec. B.3.8 (Figure B.9). The total
number of epochs required until the validation loss does not decrease for 200 epochs
(or the maximum number of 1000 epochs is reached) varies for different data sets.

Table B.2: GNN average runtime (seconds per epoch) comparison. The results are
averaged over 10 runs for the first 200 epochs. The fastest is highlighted in bold red
while the second fastest is marked with underline blue .

Runtime (second per epoch on average)/GNN method DiGCL DGCN DiGCN MagNet DIGRAC
DSBM( “complete", T, n = 1000, K = 5, p = 0.1, ρ = 1.5, η = 0.1) 0.107 0.606 0.469 0.369 0.308
DSBM( “path", F, n = 1000, K = 5, p = 0.02, ρ = 1, η = 0.15) 0.061 0.227 0.212 0.238 0.201
DSBM( “star", F, n = 1000, K = 5, p = 0.02, ρ = 1, η = 0.3) 0.095 0.305 0.294 0.324 0.292
DSBM( “star", F, n = 5000, K = 5, p = 0.02, ρ = 1, η = 0.4) 0.222 0.966 0.276 0.116 0.101
DSBM( “cycle", F, n = 5000, K = 5, p = 0.01, ρ = 1.5, η = 0) 0.177 0.330 0.099 0.095 0.089
DSBM( “cycle", F, n = 30000, K = 5, p = 0.001, ρ = 1, η = 0) 0.070 0.868 0.208 0.183 0.156

B.3.3 Data
Data Splits and Preprocessing
The results comparing DIGRAC with other methods on synthetic data are averaged
over 50 runs, five synthetic networks under the same setting, each with 10 different
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data splits. For synthetic data, 10% of all nodes are selected as test nodes for each
cluster (the actual number is the ceiling of the total number of nodes times 0.1, to
avoid falling below 10% of test nodes), 10% are selected as validation nodes (for
model selection and early-stopping; again, we consider the ceiling for the actual
number), while the remaining roughly 80% are selected as training nodes (the actual
number can never be higher than 80% due to using the ceiling for both the test
and validation splits). To further clarify the training setup, we use 0% of the labels
in training. As DIGRAC is a self-supervised method, in principle, we could use all
nodes for training. However, for a fair comparison with other GNN methods, we use
only 80% of the nodes for training. For supervised methods our split of 80% - 10% -
10% is a standard split. For the non-GNN methods, all nodes are used for training.

For both synthetic and real-world data sets, we extract the largest weakly
connected component for experiments, as our framework could be applied to different
weakly connected components, if the digraph is disconnected. Isolated nodes do
not include any imbalance information. As customary in community detection,
they are often omitted in real networks. When “ground-truth" is given, test results
are averaged over 10 different data splits on one network. When no labels are
available, results are averaged over 10 different data splits.

Averaged results are reported with error bars representing one standard deviation
in the figures, and plus/minus one standard deviation in the tables.

Synthetic Data
Our synthetic data, DSBM, which we denote by DSBM (M,1(ambient), n, K, p, ρ, η),
is built similarly to [97] but with possibly unequal cluster sizes: • (1) Assign cluster
sizes n0 ≤ n1 ≤ · · · ≤ nK−1 with size ratio ρ ≥ 1 , as follows. If ρ = 1 then
the first K − 1 clusters have the same size ⌊n/K⌋ and the last cluster has size
n − (K − 1)⌊n/K⌋. If ρ > 1, we set ρ0 = ρ

1
K−1 . Solving ∑K−1

i=0 ρi
0n0 = n and

taking integer value gives n0 =
⌊
n(1− ρ0)/(1− ρK

0 )
⌋

. Further, set ni = ⌊ρ0ni−1⌋,
for i = 1, · · · , K − 2 if K ≥ 3, and nK−1 = n −∑K−2

i=0 ni. Then the ratio of the
size of the largest to the smallest cluster is approximately ρK−1

0 = ρ. • (2) Assign
each node randomly to one of K clusters, so that each cluster has the allocated
size. • (3) For node vi, vj ∈ Ck, independently sample an edge from node vi to
node vj with probability p · F̃k,k. • (4) For each pair of different clusters Ck, Cl

with k ̸= l, for each node vi ∈ Ck, and each node vj ∈ Cl, independently sample
an edge from node vi to node vj with probability p · F̃k,l.

Real-World Data
For real-world data sets, we choose the number K of clusters in the meta-graph
and the number β of edges between clusters in the meta-graph as follows. As they
are needed as input for DIGRAC, we resort to Herm_rw [97] as an initial view
of the network clustering. When a suitable meta-graph is suggested in a previous
publication, then we use that choice. Otherwise, the number K of clusters is
determined using the clustering from Herm_rw. First, we pick a range of K, and for
each K, we calculate the global imbalance scores and plot the predicted meta-graph
flow matrix F′ based on the clustering from Herm_rw. Its entries are defined as

F′(k, l) = 1(W (Ck, Cl) + W (Cl, Ck) > 0)× W (Ck, Cl)
W (Ck, Cl) + W (Cl, Ck) . (B.9)

These entries can be viewed as predicted probabilities of edge directions. Then, we
choose K from this range so that the predicted meta-graph flow matrix has the high-
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est imbalance scores and strong imbalance in the predicted meta-graph flow matrix.
The choice of β, which we assume should be equal to the number of edges in the

meta-graph, is as follows. We plot the ranked pairs of CIplain values from Herm_rw
and select the β which is at least as large as K − 2, to allow the meta-graph to
be connected, and which corresponds to a large drop in the plot.

Here we provide a brief description for each of the data sets; Table B.3 gives
the number, n, of nodes, the number, |E|, of directed edges, the number |Er|, of
reciprocal edges (self-loops are counted once and for u ≠ v, a reciprocal edge
u→ v, v → u is counted twice) as well as their percentage among all edges, for the
real-world networks, illustrating the variability in network size and density (defined
as |E|/[n(n− 1)]).
• Telegram [4] is a pairwise influence network between n = 245 Telegram channels
with |E| = 8, 912 directed edges. It is found in [4] that this network reveals a
core-periphery structure in the sense of [90]. A directed core-periphery structure
arises when there is a densely connected group of edges – a core – and sparsely
connected groups of peripheral nodes with edges leading into the core, as well as
sparsely connected groups of peripheral nodes with edges coming out of the core.
Following [4] we assume K = 4 clusters, and the core-periphery structures gives
β = 5.
• Blog [129] records |E| = 19, 024 directed edges between n = 1, 212 political
blogs from the 2004 US presidential election. In [129] it is found that there is an
underlying structure with K = 2 clusters corresponding to the Republican and
Democratic parties. Hence we choose K = 2 and β = 1.
•Migration [36] reports the number of people that migrated between pairs of counties
in the US during 1995-2000. It involves n = 3, 075 countries and |E| = 721, 432
directed edges after obtaining the largest weakly connected component. We choose
K = 10 and β = 9, following [97]. Since the original digraph has extremely large
entries, to cope with these outliers, we preprocess the input network by

Ai,j = Ai,j

Ai,j + Aj,i

1(Ai,j > 0),∀i, j ∈ {1, · · · , n}, (B.10)

which follows the preprocessing of [97]. The results for not doing this preprocessing
is provided in Table B.11.
• WikiTalk [38] contains all users and discussion from the inception of Wikipedia
until Jan. 2008. The n = 2, 388, 953 nodes in the network represent Wikipedia
users and a directed edge from node vi to node vj denotes that user i edited at least
once a talk page of user j. There are |E| = 5, 018, 445 edges. We choose K = 10
clusters among candidates {2, 3, 5, 6, 8, 10}, and β = 10.
• Lead-Lag [105] contains yearly lead-lag matrices from 269 stocks from 2001 to
2019. We choose K = 10 clusters based on the GICS industry sectors [225], and
choose β = 3 to emphasize the top three pairs of imbalance values. The lead-
lag matrices are built from time series of daily price log returns, as detailed in
[105]. The lead-lag metric for entry (i, j) in the network encodes a measure of the
extent to which stock i leads stock j, and is obtained by applying a functional
that computes the signed normalized area under the curve (auc) of the standard
cross-correlation function (ccf). The resulting matrix is skew-symmetric, and entry
(i, j) quantifies the extent to which stock i leads or lags stocks j, thus leading to
a directed network interpretation. Starting from the skew-symmetric matrix, we
further convert negative entries to zero, so that the resulting digraph can be directly
fed into other methods; note that this step does not throw away any information,
and is pursued only to render the representation of the digraph consistent with
the format expected by all methods compared, including DIGRAC. Note that the
statistics given in Table B.3 are averaged over the 19 years.
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Table B.3: Summary statistics for the real-world networks.

data set n |E| density weighted |Er| |Er|
|E| (%)

Telegram 245 8,912 1.28 · 10−2 True 1,572 17.64
Blog 1,222 19,024 1.49 · 10−1 True 4,617 24.27
Migration 3,075 721,432 7.63 · 10−2 True 351,100 48.67
WikiTalk 2,388,953 5,018,445 8.79 · 10−7 False 723,526 14.42
Lead-Lag 269 29,159 4.04 · 10−1 True 0.00 0.00

As input features, after obtaining eigenvectors from Hermitian matrices con-
structed as in [97], we standardize each column vector so that it has mean zero and
variance one. We use these features for all GNN methods except MagNet, since
MagNet has its own way of generating random features of dimension one.

B.3.4 Hyperparameter Selection for DIMPA
We conduct hyperparmeter selection via a greedy search, for DIGRAC implemented
with DIMPA as its aggregator. To explain the details, consider for example the
following synthetic data setting: DSBM with 1000 nodes, 5 clusters, ρ = 1, and
p = 0.02, without ambient nodes under different hyperparameter settings. By
default, we use the loss function Lsort

vol_sum, d = 32 hidden units, hop h = 2, and
no seed nodes. Instead of a grid search, we tune hyperparameters according to
what performs the best in the default setting of the respective GNN method. The
procedure starts with a random setting. For the next iteration, the hyperparameters
are set to the current best setting (based on the last iteration), independently. For
example, if we start with a = 1, b = 2, c = 3, and we find that under this default
setting, the best a (when fixing b = 2, c = 3) is 2 and the best b (when fixing
a = 1, c = 3) is 3, and the best c is 3 (when fixing a = 1, b = 2), then for the next
iteration, we set a = 2, b = 3, c = 3. If two settings give similar results, we choose the
simpler setting, for example, the smaller hop size. When we reach a local optimum,
we stop searching. Indeed, just a few iterations (less than five) were required for us
to find the current setting, as DIGRAC tends to be robust to most hyperparameters.

Fig. B.6, B.7 and B.8 are plots corresponding to the same setting but for
three different meta-graph structures, namely the complete meta-graph structure,
the cycle structure but with ambient nodes, and the complete structure with
ambient nodes, respectively.

In theory, more hidden units give better expressive power. To reduce complexity,
we use 32 hidden units throughout, which seems to have desirable performance.
We observe that for low-noise regimes, more hidden units actually hurt perfor-
mance. We can draw a similar conclusion about the hyperparameter selection. In
terms of τ, DIGRAC seems to be robust to different choices. Therefore, we
use τ = 0.5 throughout.

B.3.5 Use of Seed Nodes in a Semi-Supervised Manner
Supervised Loss

For seed nodes in Vseed, similar to the loss function in [3], we use as a supervised loss
function the sum of a cross-entropy loss and a triplet loss. The cross-entropy
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Figure B.6: Hyperparameter analysis on different hyperparameter settings on the
complete DSBM with 1000 nodes, 5 clusters, ρ = 1, and p = 0.02 without ambient
nodes.
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Figure B.7: Hyperparameter analysis on different hyperparameter settings on the
complete DSBM with 1000 nodes, 5 clusters, ρ = 1, and p = 0.02 with ambient nodes.

loss is given by

LCE = − 1
|Vseed|

∑
vi∈Vseed

K∑
k=1

1(vi ∈ Ck) log ((pi)k) , (B.11)

where 1 is the indicator function, Ck denotes the kth cluster, and (pi)k denotes
the kth entry of probability vector (pi). With the function L : R2 → R given by
L(x, y) = [x − y]+ (where the subscript + indicates taking the maximum of the
expression value and 0), the triplet loss is defined as

Ltriplet = 1
|S|

∑
(vi,vj ,vk)∈S

L(CS(zi, zj), CS(zi, zk), (B.12)

where S ⊆ Vseed × Vseed × Vseed is a set of node triplets: vi is an anchor seed node,
and vj is a seed node from the same cluster as the anchor, while vk is from a
different cluster; and CS(zi, zj) is the cosine similarity of the embeddings of nodes
vi and vj. We choose cosine similarity so as to avoid sensitivity to the magnitude
of the embeddings. The triplet loss is designed so that, given two seed nodes
from the same cluster and one seed node from a different cluster, the respective
embeddings of the pairs from different clusters should be farther away than the
embedding of the pair within the same cluster.

We then consider the weighted sum LCE + γtLtriplet as the supervised part of
the loss function for DIGRAC, for some parameter γt > 0. The parameter γt
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Figure B.8: Hyperparameter analysis on different hyperparameter settings on the cycle
DSBM with 1000 nodes, 5 clusters, ρ = 1, and p = 0.02 with ambient nodes.

arises as follows. The cosine similarity between two randomly picked vectors in
d dimensions is bounded by

√
ln(d)/d with high probability. In our experiments

d = 32, and
√

ln(2d)/(2d) ≈ 0.25. In contrast, for fairly uniform clustering, the
cross-entropy loss grows like log n, which in our experiments ranges between 3
and 17. Thus some balancing of the contribution is required. Following [3], we
choose γt = 0.1 in our experiments.

Overall Objective Function

By combining Eq. (B.11), Eq. (B.12), and Eq. (3.3)), our objective function for
semi-supervised training with known seed nodes minimizes

L = Lsort
vol_sum + γs(LCE + γtLtriplet), (B.13)

where γs, γt > 0 are weights for the supervised part of the loss and triplet loss
within the supervised part, respectively. We set γs = 50 as we want our model
to perform well on seed nodes. The weights could be tuned depending on how
important each term is perceived to be.

B.3.6 Training
For all synthetic data, we train DIGRAC with a maximum of 1000 epochs, and
stop training when no gain in validation performance is achieved for 200 epochs
(early-stopping). For real-world data, no “ground-truth" labels are available; we use
all nodes to train and stop training when the training loss does not decrease for
200 epochs, or when we reach the maximum number of epochs, 1000.

When using the “std" variant for training, for the initial 50 epochs, we apply
the “sort" variant with β = 3 for a reasonable starting clustering probability
matrix for training, as otherwise during the initial training epochs possibly no
pairs could be picked out. During the epochs actually utilizing this “std" variant,
if no pairs could be picked out, we temporarily switch to the “naive" variant to
count all the pairs for that epoch.

For the two-layer MLP, we do not have a bias term for each layer, and we
use Rectified Linear Unit (ReLU) followed by a dropout layer with 0.5 dropout
probability between the two layers, following [3]. We use Adam [226] as the
optimizer and ℓ2 regularization with weight decay 5 · 10−4 to avoid overfitting.
We use as learning rate 0.01 throughout.
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B.3.7 Implementation Details for the Comparison Methods
In our experiments, we compare DIGRAC against five spectral methods, InfoMap,
and four GNN-based supervised methods on synthetic data, and spectral methods
and InfoMap on real data. The reason we are not able to compare DIGRAC with
the other GNNs (namely, DGCN, DiGCN, MagNet, and DiGCL) on these data
sets is due to the fact that these data sets do not have labels, which are required
by the other GNN methods. We use the same hyperparameter settings stated in
these papers. Data splits for all models are the same; the comparison GNNs are
trained with 80% nodes under label supervision.

For MagNet, we use q = 0.25 for the phase matrix as in [6], because it
is mentioned that q = 0.25 lays the most emphasis on directionality, which
is our main focus in this paper. Code for MagNet is from https://github.
com/matthew-hirn/magnet. For DiGCN, we use the code from https://github.
com/flyingtango/DiGCN/blob/main/code/digcn_ib.py with option “adj_type"
equals “ib". As a recommended option in [114], we use three layers for DiGCN.
All other settings are the same as in the original paper [114]. Code for DiGCL
is from https://github.com/flyingtango/DiGCL, where we adopt the settings
for Cora_ML for hyperparameters.

B.3.8 Enlarged Synthetic Result Figures
Figure B.9 enlarges the results in the main text on synthetic data, with the
same conclusions to be drawn.

B.3.9 NMI Results Example and Reasons against Using
NMI

As NMI is an often used measure for assessing similarities between partitions,
Fig. B.10 provides NMI results on some synthetic models mentioned in the main
text. The results are qualitatively similar to the ARI results in Fig. 3.3.

We do not use NMI in the main text to evaluate results as NMI is known
to suffer from finite size effects [127, 227]. In particular NMI prefers a larger
number of partitions. Moreover it has been observed that the NMI between two
independent partitions can be much larger than zero. This feature makes NMI
more difficult to interpret than for example ARI.

B.4 Additional Results on Real-World Data

B.4.1 Extended Result Tables
Tables B.4, B.5, B.6 and B.7 provide a detailed comparison of DIGRAC with
spectral methods and InfoMap. Since no labeling information is available and all of
the other competing GNN methods require labels, we do not compare DIGRAC
with them on these real data sets.

In Tables B.4, B.5, B.6 and B.7, we report 12 combinations of global imbalance
scores by data set. The naming convention of these imbalance scores is provided
in Table B.1. To assess how balanced our recovered clusters are in terms of sizes,
we also report the size ratio, which is defined as the size of the largest predicted
cluster to the smallest one, and the standard deviation of sizes, size std, in order
to show how varied the sizes of predicted clusters are. For a relatively balanced
clustering, we expect the latter two terms to be small.
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Table B.4: Performance comparison on Telegram. The best is marked in bold red
and the second best is marked in underline blue .

Metric/Method InfoMap Bi_sym DD_sym DISG_LR Herm Herm_rw DIGRAC

Osort
vol_sum 0.04±0.00 0.21±0.00 0.21±0.00 0.21±0.01 0.20±0.01 0.14±0.00 0.32±0.01
Osort

vol_min 0.47±0.00 0.67±0.00 0.61±0.00 0.66±0.02 0.66±0.02 0.19±0.00 0.79±0.06
Osort

vol_max 0.03±0.00 0.20±0.00 0.20±0.00 0.20±0.01 0.19±0.01 0.12±0.00 0.29±0.01
Osort

plain 1.00±0.00 0.80±0.00 0.75±0.00 0.78±0.03 0.76±0.04 0.59±0.00 0.96±0.01
Ostd

vol_sum 0.01±0.00 0.26±0.00 0.26±0.00 0.26±0.01 0.25±0.02 0.35±0.00 0.28±0.01
Ostd

vol_min 0.16±0.00 0.84±0.00 0.76±0.00 0.82±0.03 0.82±0.03 0.49±0.00 0.73±0.03
Ostd

vol_max 0.01±0.00 0.25±0.00 0.25±0.00 0.25±0.01 0.24±0.02 0.29±0.00 0.25±0.01
Ostd

plain 0.68±0.00 1.00±0.00 0.94±0.00 0.98±0.04 0.95±0.04 0.99±0.00 0.90±0.05
Onaive

vol_sum 0.01±0.00 0.26±0.00 0.26±0.00 0.26±0.01 0.25±0.02 0.23±0.00 0.27±0.01
Onaive

vol_min 0.11±0.00 0.84±0.00 0.76±0.00 0.82±0.03 0.82±0.03 0.32±0.00 0.72±0.04
Onaive

vol_max 0.00±0.00 0.25±0.00 0.25±0.00 0.25±0.01 0.24±0.02 0.20±0.00 0.24±0.01
Onaive

plain 0.63±0.00 1.00±0.00 0.94±0.00 0.98±0.04 0.95±0.04 0.99±0.00 0.89±0.06
size ratio 24.750 242.000 242.000 242.000 242.00 53 3.090
size std 35.57 104.360 104.360 104.360 104.360 63.460 26.39

Table B.5: Performance comparison on Blog. The best is marked in bold red and
the second best is marked in underline blue .

Metric/Method InfoMap Bi_sym DD_sym DISG_LR Herm Herm_rw DIGRAC

Osort
vol_sum 0.07±0.00 0.07±0.00 0.00±0.00 0.05±0.00 0.37±0.00 0.00±0.00 0.44±0.00
Osort

vol_min 0.02±0.00 0.33±0.00 0.05±0.00 0.31±0.00 0.78±0.01 0.89±0.00 0.76±0.00
Osort

vol_max 0.05±0.00 0.05±0.00 0.00±0.00 0.04±0.00 0.26±0.00 0.00±0.00 0.40±0.00
Osort

plain 1.00±0.00 0.33±0.00 0.05±0.00 0.31±0.00 0.78±0.01 0.89±0.00 0.76±0.00
Ostd

vol_sum 0.00±0.00 0.07±0.00 0.00±0.00 0.05±0.00 0.37±0.00 0.00±0.00 0.44±0.00
Ostd

vol_min 0.00±0.00 0.33±0.00 0.05±0.00 0.31±0.00 0.78±0.01 0.89±0.00 0.76±0.00
Ostd

vol_max 0.00±0.00 0.05±0.00 0.00±0.00 0.04±0.00 0.26±0.00 0.00±0.00 0.40±0.00
Ostd

plain 0.73±0.00 0.33±0.00 0.05±0.00 0.31±0.00 0.78±0.01 0.89±0.00 0.76±0.00
Onaive

vol_sum 0.00±0.00 0.07±0.00 0.00±0.00 0.05±0.00 0.37±0.00 0.00±0.00 0.44±0.00
Onaive

vol_min 0.00±0.00 0.33±0.00 0.05±0.00 0.31±0.00 0.78±0.01 0.89±0.00 0.76±0.00
Onaive

vol_max 0.00±0.00 0.05±0.00 0.00±0.00 0.04±0.00 0.26±0.00 0.00±0.00 0.40±0.00
Onaive

plain 0.76±0.00 0.33±0.00 0.05±0.00 0.31±0.00 0.78±0.01 0.89±0.00 0.76±0.00
size ratio 1.270 8.700 2.450 6.100 11.93 44.26 1.860
size std 64.50 485 256.200 439 516.500 584 183.20

Tables B.4, B.5, B.6, B.7, B.8, B.9 and B.10 reveal that DIGRAC provides
competitive global imbalance scores in all of the 12 objectives introduced, and
across all the real data sets, usually outperforming all the other methods. Among
the tables, Table B.10 provides results in terms of the distance to the best yearly
performance, averaged across the 19 years; DIGRAC usually outperforms all the
other methods across all the years. Note that Bi_sym and DD_sym are not able to
generate results for WikiTalk, as large n×n matrix multiplication with its transpose
causes memory issue, when n = 2, 388, 953. Small values of the size ratio and size
standard deviation suggest that the normalization in the loss function penalizes
tiny clusters, and that DIGRAC tends to predict balanced cluster sizes.
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Table B.6: Performance comparison on Migration. The best is marked in bold red
and the second best is marked in underline blue . InfoMap results are omitted here as
it predicts a single huge cluster and could not generate imbalance results.

Metric/Method Bi_sym DD_sym DISG_LR Herm Herm_rw DIGRAC

Osort
vol_sum 0.03±0.00 0.01±0.00 0.02±0.00 0.04±0.00 0.02±0.00 0.05±0.00
Osort

vol_min 0.19±0.00 0.08±0.00 0.08±0.00 0.15±0.02 0.05±0.00 0.18±0.03
Osort

vol_max 0.03±0.00 0.01±0.00 0.01±0.00 0.03±0.00 0.02±0.00 0.04±0.00
Osort

plain 0.24±0.00 0.20±0.00 0.17±0.00 0.40±0.01 0.49±0.06 0.29±0.04
Ostd

vol_sum 0.01±0.00 0.01±0.00 0.01±0.00 0.02±0.00 0.02±0.00 0.04±0.01
Ostd

vol_min 0.10±0.00 0.05±0.00 0.05±0.00 0.08±0.01 0.04±0.00 0.16±0.03
Ostd

vol_max 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.03±0.01
Ostd

plain 0.13±0.00 0.12±0.00 0.11±0.00 0.20±0.01 0.20±0.01 0.26±0.01
Onaive

vol_sum 0.01±0.00 0.01±0.00 0.01±0.00 0.02±0.00 0.01±0.00 0.04±0.01
Onaive

vol_min 0.09±0.00 0.04±0.00 0.04±0.00 0.08±0.01 0.01±0.00 0.16±0.03
Onaive

vol_max 0.01±0.00 0.00±0.00 0.01±0.00 0.01±0.00 0.00±0.00 0.03±0.01
Onaive

plain 0.12±0.00 0.10±0.00 0.08±0.00 0.19±0.00 0.19±0.03 0.26±0.01
size ratio 7.780 6.070 4.360 36.05 1035.90 4.420
size std 135.210 132.76 103.43 335.790 353.060 264.500

Table B.7: Performance comparison on WikiTalk. The best is marked in bold red
and the second best is marked in underline blue . InfoMap results are omitted here as
its large number of predicted clusters leads to memory error in imbalance calculation.

Metric/Method DISG_LR Herm Herm_rw DIGRAC

Osort
vol_sum 0.18±0.03 0.15±0.02 0.00±0.00 0.24±0.05
Osort

vol_min 0.10±0.03 0.22±0.05 0.26±0.00 0.28±0.13
Osort

vol_max 0.16±0.03 0.09±0.01 0.00±0.00 0.19±0.04
Osort

plain 0.87±0.08 0.99±0.01 0.98±0.00 1.00±0.00
Ostd

vol_sum 0.17±0.04 0.06±0.01 0.01±0.00 0.14±0.02
Ostd

vol_min 0.09±0.02 0.09±0.02 0.27±0.00 0.18±0.08
Ostd

vol_max 0.15±0.04 0.04±0.00 0.00±0.00 0.11±0.02
Ostd

plain 0.72±0.03 0.70±0.05 0.98±0.00 0.84±0.06
Onaive

vol_sum 0.10±0.02 0.04±0.00 0.00±0.00 0.12±0.01
Onaive

vol_min 0.06±0.03 0.07±0.02 0.26±0.00 0.15±0.07
Onaive

vol_max 0.09±0.02 0.03±0.00 0.00±0.00 0.09±0.01
Onaive

plain 0.64±0.04 0.61±0.04 0.98±0.00 0.76±0.06
size ratio 1190162.25 2217434.50 250.48 71765.14
size std 713813.72 660060.33 657941.88 643220.37
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Figure B.9: Test ARI comparison on synthetic data. Dashed lines highlight DIGRAC’s
performance. Error bars are given by one standard error.
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Figure B.10: Test NMI comparison on some synthetic data. Dashed lines highlight
DIGRAC’s performance. Error bars are given by one standard error.

Table B.8: Performance comparison on Lead-Lag for year 2015. The best is marked
in bold red and the second best is marked in underline blue . InfoMap results are
omitted here as it usually predicts a single huge cluster and could not generate imbalance
results.

Metric/Method Bi_sym DD_sym DISG_LR Herm Herm_rw DIGRAC

Osort
vol_sum 0.07±0.00 0.07±0.00 0.06±0.00 0.07±0.00 0.06±0.01 0.15±0.00
Osort

vol_min 0.53±0.06 0.50±0.02 0.45±0.07 0.50±0.03 0.46±0.06 0.50±0.02
Osort

vol_max 0.07±0.00 0.06±0.00 0.06±0.00 0.06±0.00 0.06±0.00 0.15±0.01
Osort

plain 0.65±0.03 0.67±0.03 0.59±0.03 0.65±0.03 0.65±0.02 0.55±0.07
Ostd

vol_sum 0.04±0.00 0.04±0.00 0.04±0.00 0.04±0.00 0.04±0.00 0.11±0.02
Ostd

vol_min 0.27±0.03 0.27±0.02 0.24±0.02 0.27±0.02 0.26±0.04 0.35±0.04
Ostd

vol_max 0.03±0.00 0.03±0.00 0.03±0.00 0.03±0.00 0.03±0.00 0.10±0.02
Ostd

plain 0.39±0.02 0.39±0.01 0.37±0.02 0.39±0.02 0.40±0.02 0.38±0.04
Onaive

vol_sum 0.03±0.00 0.03±0.00 0.03±0.00 0.03±0.00 0.03±0.00 0.08±0.03
Onaive

vol_min 0.20±0.02 0.20±0.02 0.17±0.03 0.20±0.02 0.20±0.03 0.25±0.08
Onaive

vol_max 0.02±0.00 0.03±0.00 0.02±0.00 0.03±0.00 0.03±0.00 0.08±0.03
Onaive

plain 0.29±0.01 0.29±0.01 0.26±0.02 0.30±0.01 0.30±0.01 0.31±0.05
size ratio 3.070 3.110 3.060 2.89 2.95 15.640
size std 8.390 7.94 8.680 7.28 8.050 18.680
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Table B.9: Performance comparison on Lead-Lag. Results in each year is averaged
over ten runs. Mean and standard deviation (after ±) are calculated over the 19 years.
The best is marked in bold red and the second best is marked in underline blue .
InfoMap results are omitted here as it usually predicts a single huge cluster and could
not generate imbalance results.

Metric/Method Bi_sym DD_sym DISG_LR Herm Herm_rw DIGRAC

Osort
vol_sum 0.07±0.01 0.07±0.01 0.07±0.01 0.07±0.02 0.07±0.02 0.15±0.03
Osort

vol_min 0.51±0.10 0.48±0.09 0.47±0.10 0.51±0.11 0.50±0.10 0.47±0.09
Osort

vol_max 0.07±0.01 0.06±0.01 0.06±0.01 0.07±0.01 0.07±0.01 0.14±0.03
Osort

plain 0.66±0.09 0.64±0.08 0.63±0.08 0.66±0.09 0.65±0.09 0.53±0.09
Ostd

vol_sum 0.04±0.01 0.04±0.01 0.04±0.01 0.04±0.01 0.04±0.01 0.12±0.03
Ostd

vol_min 0.27±0.04 0.27±0.04 0.25±0.04 0.27±0.03 0.27±0.03 0.38±0.07
Ostd

vol_max 0.04±0.00 0.03±0.00 0.03±0.00 0.03±0.00 0.03±0.00 0.11±0.02
Ostd

plain 0.40±0.05 0.39±0.05 0.38±0.05 0.40±0.05 0.40±0.05 0.44±0.07
Onaive

vol_sum 0.03±0.01 0.03±0.01 0.03±0.01 0.03±0.01 0.03±0.01 0.08±0.04
Onaive

vol_min 0.20±0.05 0.19±0.05 0.18±0.05 0.19±0.04 0.19±0.04 0.26±0.10
Onaive

vol_max 0.03±0.01 0.02±0.01 0.02±0.01 0.02±0.00 0.02±0.00 0.08±0.03
Onaive

plain 0.30±0.06 0.28±0.06 0.27±0.06 0.29±0.05 0.29±0.05 0.32±0.11
size ratio 3.67 3.34 3.900 4.110 3.880 8.070
size std 9.31 9.14 10.090 10.490 10.360 17.060

Table B.10: Performance comparison on Lead-Lag, where we evaluate the performance
distance to the best one in each year. Results in each year is averaged over ten runs. Mean
and standard deviation (after ±) are calculated over the 19 years. The best is marked
in bold red and the second best is marked in underline blue . InfoMap results are
omitted here as it usually predicts a single huge cluster and could not generate imbalance
results.

Metric/Method Bi_sym DD_sym DISG_LR Herm Herm_rw DIGRAC

Osort
vol_sum 0.07±0.02 0.08±0.02 0.08±0.02 0.07±0.02 0.07±0.02 0.00±0.00
Osort

vol_min 0.01±0.01 0.05±0.03 0.06±0.03 0.02±0.02 0.02±0.02 0.06±0.04
Osort

vol_max 0.07±0.02 0.07±0.02 0.07±0.02 0.07±0.02 0.07±0.02 0.00±0.00
Osort

plain 0.01±0.02 0.03±0.03 0.05±0.03 0.01±0.02 0.02±0.02 0.14±0.03
Ostd

vol_sum 0.08±0.02 0.08±0.02 0.08±0.02 0.08±0.02 0.08±0.02 0.00±0.00
Ostd

vol_min 0.10±0.05 0.11±0.04 0.13±0.05 0.11±0.05 0.11±0.05 0.00±0.00
Ostd

vol_max 0.07±0.02 0.08±0.02 0.08±0.02 0.08±0.02 0.08±0.02 0.00±0.00
Ostd

plain 0.04±0.03 0.05±0.04 0.06±0.04 0.04±0.04 0.04±0.03 0.00±0.00
Onaive

vol_sum 0.05±0.03 0.06±0.03 0.06±0.03 0.05±0.03 0.05±0.03 0.00±0.00
Onaive

vol_min 0.06±0.07 0.07±0.06 0.08±0.07 0.07±0.08 0.07±0.08 0.00±0.00
Onaive

vol_max 0.05±0.03 0.05±0.03 0.05±0.03 0.05±0.03 0.05±0.03 0.00±0.00
Onaive

plain 0.03±0.06 0.05±0.05 0.06±0.06 0.04±0.06 0.04±0.06 0.01±0.02
size ratio 1.04 0.71 1.270 1.480 1.250 5.440
size std 0.58 0.41 1.360 1.770 1.630 8.340
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Figure B.11: Ranked pairs of pairwise imbalance recovered by comparing methods for
different choices of normalization on the Telegram data set. Lines are used to highlight
DIGRAC’s performance.

B.4.2 Ranked Pairwise Imbalance Scores
We also plot the ranked pairwise imbalance scores for all data sets except Blog,
which has only one possible pairwise imbalance score. For Lead-Lag, we only plot
the year 2015 as an example; the plots for the other years are similar. Figures B.11,
B.12, B.13 and B.14 illustrate that DIGRAC is able to provide comparable or
higher pairwise imbalance scores for the leading pairs, especially on CIvol_min pairs.
We also observe that except for CIplain, DIGRAC has a less rapid drop in pairwise
imbalance scores after the first leading pair compared to Herm and Herm_rw, which
can have a few pairs with higher imbalance scores than DIGRAC.
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Figure B.12: Ranked pairs of pairwise imbalance recovered by comparing methods for
different choices of normalization on the Migration data set. Lines are used to highlight
DIGRAC’s performance. InfoMap results are omitted as it predicts one single huge
cluster and could not produce imbalance results.
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Figure B.13: Ranked pairs of pairwise imbalance recovered by comparing methods
for different choices of normalization on WikiTalk data set. Lines are used to highlight
DIGRAC’s performance. InfoMap results are omitted here because it triggers memory
error due to the large number of predicted clusters.
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Figure B.14: Ranked pairs of pairwise imbalance recovered by comparing methods
for different choices of normalization on Lead-Lag data set. Lines are used to highlight
DIGRAC’s performance. InfoMap results are omitted here because it only predicts a
single cluster.
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B.4.3 Predicted Meta-Graph Flow Matrix Plots
For each data set, we plot the predicted meta-graph flow matrix F′ defined in
Eq. (B.9).
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Figure B.15: Predicted meta-graph flow matrix from DIGRAC of five real-world data
sets.

From Fig. B.15, we conclude that DIGRAC is able to recover a directed flow
imbalance between clusters in all of the selected data sets. Fig. B.15a shows a
clear cut imbalance between two clusters, possibly corresponding to the Republican
and Democratic parties. Fig. B.15b plots imbalance flows in the real data set
Telegram, where cluster 3 is a core-transient cluster, cluster 0 is a core-sink cluster,
cluster 2 is a periphery-upstream cluster, while cluster 1 is a periphery-downstream
cluster [4, 90]. For WikiTalk, illustrated in Fig. B.15d, the lower-triangular part
entries are typically source nodes for edges, while the upper-triangular part are
target nodes. For Lead-Lag, taking the year 2015 as an example, DIGRAC is also
able to recover high imbalance in the data.

We also note that DIGRAC would not necessarily predict the same number
of clusters as assumed, so that we do not need to specify the exact number of
clusters before training DIGRAC; specifying the maximum number of possible
clusters suffices.

B.4.4 Migration Plots
We compare DIGRAC to five spectral methods for recovering clusters for the US
migration data set, and plot the recovered clusters on a map, in Fig. B.16.
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The visualization in Fig. (a-c) shows that clusters align particularly well with
the political and administrative boundaries of the US states, as previously observed
in [228]. This outcome is not deemed too insightful, as it trivially reveals the fact
there there is significant intra-state and inter-state migration, and does not uncover
any of the information on latent migration patterns between far-away states, and
more generally, between regions which are not necessarily geographically cohesive.
DIGRAC outcomes, however, reveal nontrivial migration patterns, for example
migration from New York to Florida, and from California to Arizona, which is
consistent with the patterns discovered by [36]. Fig. B.17 details on the top pair
migration patterns uncovered by DIGRAC.
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(b) DD_sym
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(c) DISG_LR
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(d) Herm
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(e) Herm_rw
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(f) DIGRAC

Figure B.16: US migration predicted clusters, along with the geographic locations of the
counties as well as state boundaries (in black). InfoMap results are omitted here because
it only produces one huge cluster. The input data is normalized, following Eq. (B.10).

B.4.5 Coping with Outliers
As mentioned in Section B.3.3, the preprocessing step to use ratio of migration
instead of absolute migration numbers is a way to cope with outliers (here, extremely
large entries in the original digraph) in Migration. To validate the effectiveness
of this approach to cope with outliers, Table B.11 provides imbalance results for
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(a) CIvol_sum: top pair
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(b) CIvol_sum: 2nd pair
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(c) CIvol_sum: 3rd pair
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(d) CIvol_min: top pair
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(e) CIvol_min: 2nd pair
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(f) CIvol_min: 3rd pair
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(g) CIvol_max: top pair
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(h) CIvol_max: 2nd pair
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(i) CIvol_max: 3rd pair
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(j) CIplain: top pair
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(k) CIplain: 2nd pair
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Figure B.17: US migration predicted cluster pairs with top imbalance, along with the
geographic locations of the counties as well as state boundaries (in black). Red (label 1)
is the sending cluster while blue (label 2) is the receiving cluster. Yellow (label 0) denotes
all the other locations being considered. Subcaptions show the imbalance score and the
rank based on that score.

Migration when we do not transform the nonzero entries into ratios. Comparing with
Table B.6, we witness an overall decrease in the performance. In this case InfoMap
no longer predicts a single huge cluster. However, its predicted number of clusters
is about 44, which is too large. This also implies that InfoMap is very sensitive to
the magnitude of digraph entries, while DIGRAC is not. Indeed, InfoMap gives
43 (too many) clusters for Blog, 19 (too many) for Telegram, 1 (too small) for
Migration, and 17498 (far too many) for WikiTalk.

We compare DIGRAC to five spectral methods as well as InfoMap for recovering
clusters for the US migration data set without the preprocessing step discussed
earlier, and plot the recovered clusters on a map in Fig. B.18. Note that all
methods, except DIGRAC, recover either clusters which are trivially small in size
or contain one very large dominant cluster (as in (a), (b), (e) and to some extent,
also (f)). The DISG_LR clustering and InfoMap clustering provide clear geographic
boundaries, but were not able to recover the imbalance among clusters. Other
spectral methods generally have a dominant cluster containing most of the nodes,
whereas DIGRAC has more balanced cluster sizes.
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Table B.11: Performance comparison on Migration (without preprocessing). The best is
marked in bold red and the second best is marked in underline blue .

Metric/Method InfoMap Bi_sym DD_sym DISG_LR Herm Herm_rw DIGRAC

Osort
vol_sum 0.02±0.00 0.03±0.00 0.01±0.00 0.01±0.00 0.07±0.00 0.01±0.00 0.04±0.00
Osort

vol_min 0.24±0.00 0.20±0.01 0.12±0.02 0.14±0.00 0.21±0.01 0.05±0.02 0.18±0.02
Osort

vol_max 0.02±0.00 0.03±0.00 0.01±0.00 0.01±0.00 0.06±0.00 0.00±0.00 0.04±0.00
Osort

plain 0.61±0.00 0.46±0.00 0.29±0.02 0.26±0.00 0.62±0.02 0.40±0.00 0.32±0.11
Ostd

vol_sum 0.00±0.00 0.01±0.00 0.00±0.00 0.00±0.00 0.02±0.00 0.00±0.00 0.03±0.01
Ostd

vol_min 0.03±0.00 0.09±0.00 0.04±0.01 0.05±0.00 0.08±0.01 0.02±0.01 0.11±0.03
Ostd

vol_max 0.00±0.00 0.01±0.00 0.00±0.00 0.00±0.00 0.01±0.00 0.00±0.00 0.02±0.01
Ostd

plain 0.19±0.00 0.23±0.00 0.14±0.01 0.12±0.00 0.32±0.01 0.25±0.01 0.21±0.03
Onaive

vol_sum 0.00±0.00 0.01±0.00 0.00±0.00 0.00±0.00 0.02±0.00 0.00±0.00 0.03±0.01
Onaive

vol_min 0.02±0.00 0.08±0.00 0.04±0.01 0.05±0.00 0.08±0.01 0.02±0.01 0.11±0.04
Onaive

vol_max 0.00±0.00 0.01±0.00 0.00±0.00 0.00±0.00 0.01±0.00 0.00±0.00 0.02±0.01
Onaive

plain 0.16±0.00 0.22±0.00 0.13±0.01 0.11±0.00 0.31±0.01 0.22±0.00 0.21±0.03
size ratio 8.500 3043.80 722.620 25.780 3059.20 415.880 203.230
size std 58.96 912.100 861.280 409.900 917.230 844.750 342.38

When employing methods that symmetrize the adjacency matrix (as in (a)
and (b)), the migration flows between counties in different states will be lost in
the process. Furthermore, the visualization in Fig. (c) shows that clusters align
particularly well with the political and administrative boundaries of the US states,
as previously observed in [228]. The same is for Fig. (d). This outcome is not
deemed very insightful, as it trivially reveals the fact that there is significant intra-
state and inter-state migration, and does not uncover any of the information on
latent migration patterns between far-away states, and more generally, between
regions which are not necessarily geographically cohesive.

Fig. B.17 further plots the top three pairs of clusters based on four different
imbalance scores given by DIGRAC. As shown in the figure, DIGRAC uncovers
the migration trend from coastal to interior, across states. This trend of the directed
flow agrees with that discussed in [36], with many people migrating from New York
and California to the interior states.

B.5 Discussion of Related Methods that are not
Compared against in the Main Text

To further emphasize the importance of directionality, our synthetic data sets have
no difference in density between clusters; their sole signal is in the directionality of
the edges. If all edge directions were to be removed, then no algorithm should be
available to detect the clusters. To further support our claim why some methods
mentioned in Section 3.2 in the main text are not appropriate for comparison, we
have applied the default setting versions of the Louvain method [121], the Leiden
algorithm [10] and OSLOM [120], to our synthetic data sets, and find that they do
not detect the structure in the data, with ARI and NMI values very close to zero, and
very low imbalance values. In particular, Louvain and Leiden tend to give a larger
number of clusters than the ground truth which is designed to have small cluster
sizes. OSLOM outputs clusters with extreme sizes, either a huge cluster containing
(almost always) all the nodes, or every node forming a cluster by itself. To further
demonstrate that comparing DIGRAC with density-based methods is unfair, We
report the test ARI results for Infomap, Louvain and Leiden in Figure B.19.We
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can see that Infomap, Louvain and Leiden normally produces nero-zero ARI values,
which are much worse than the results from DIGRAC given in Figure 3.3.

On the real-world data sets, these methods often give numbers of clusters that
do not match our expectations. (Blog has two underlying parties, Telegram has a
four-cluster core-periphery structure). Louvain clusters nodes from Blog into 8-13
clusters (too many), Telegram into 4-5 clusters (acceptable), Migration into 5-7
clusters (acceptable), WikiTalk into 150-219 clusters (too many), and Lead-Lag into
10-55 clusters (acceptable or a bit too many). Leiden gives 12 (too many) clusters
for Blog, 4-5 for Telegram, 5-6 for Migration, 170-248 (too many) for WikiTalk,
and 10-55 clusters (acceptable or a bit too many) for Lead-Lag. OSLOM gives 6
clusters for Blog (too many), 16 for Telegram (too many), and 46 for Migration
(too many). It could not generate results for WikiTalk after running for 12 hours,
and hence we omit its discussion here. On Lead-Lag, OSLOM places every node
in a single cluster for most of the years, and clusters the rest of the years into
either a huge single cluster or two clusters.

None of the methods outperform DIGRAC on our chosen performance measures
from Table 3.1 , except on the Lead-Lag data set (See Tables B.13, B.14, B.15
and B.16 for the other results). With regards to the 12 imbalance measures from
Appendix Table B.5, leaving out OSLOM as before, Louvain and Leiden perform
poorly on all of the real data sets, except on Lead-Lag. Indeed, for Lead-Lag,
the number of clusters we use for DIGRAC is ten according to the GICS sector
memberships. However, if we use the sector memberships as labels, the imbalance
values are poor, which implies that ten may not be a desirable choice of the number
of clusters. Further, DIGRAC usually clusters the nodes into smaller number of
clusters, while Louvain and Leiden usually cluster the nodes into a larger number
of clusters (usually around 30, and sometimes above 50 clusters).

Table B.12: Performance comparison on Lead-Lag, including Louvain and Leiden.
Results in each year is averaged over ten runs. Mean and standard deviation (after ±)
are calculated over the 19 years. The best is marked in bold red and the second best
is marked in underline blue . InfoMap results are omitted here as it usually predicts a
single huge cluster and could not generate imbalance results. Louvain and Leiden yield
essentially identical results and often attain the highest objectives, while DIGRAC almost
always places either first or second across all methods considered.

Metric/Method Louvain/Leiden Bi_sym DD_sym DISG_LR Herm Herm_rw DIGRAC

Osort
vol_sum 0.08±0.02 0.07±0.01 0.07±0.01 0.07±0.01 0.07±0.02 0.07±0.02 0.15±0.03
Osort

vol_min 0.15±0.04 0.51±0.10 0.48±0.09 0.47±0.10 0.51±0.11 0.50±0.10 0.47±0.09
Osort

vol_max 0.08±0.02 0.07±0.01 0.06±0.01 0.06±0.01 0.07±0.01 0.07±0.01 0.14±0.03
Osort

plain 0.15±0.04 0.66±0.09 0.64±0.08 0.63±0.08 0.66±0.09 0.65±0.09 0.53±0.09
Ostd

vol_sum 0.23±0.06 0.04±0.01 0.04±0.01 0.04±0.01 0.04±0.01 0.04±0.01 0.12±0.03
Ostd

vol_min 0.46±0.11 0.27±0.04 0.27±0.04 0.25±0.04 0.27±0.03 0.27±0.03 0.38±0.07
Ostd

vol_max 0.23±0.05 0.04±0.00 0.03±0.00 0.03±0.00 0.03±0.00 0.03±0.00 0.11±0.02
Ostd

plain 0.46±0.11 0.40±0.05 0.39±0.05 0.38±0.05 0.40±0.05 0.40±0.05 0.44±0.07
Onaive

vol_sum 0.23±0.06 0.03±0.01 0.03±0.01 0.03±0.01 0.03±0.01 0.03±0.01 0.08±0.04
Onaive

vol_min 0.46±0.11 0.20±0.05 0.19±0.05 0.18±0.05 0.19±0.04 0.19±0.04 0.26±0.10
Onaive

vol_max 0.23±0.05 0.03±0.01 0.02±0.01 0.02±0.01 0.02±0.00 0.02±0.00 0.08±0.03
Onaive

plain 0.46±0.11 0.30±0.06 0.28±0.06 0.27±0.06 0.29±0.05 0.29±0.05 0.32±0.11
size ratio 124.530 3.67 3.34 3.900 4.110 3.880 8.070
size std 47.960 9.31 9.14 10.090 10.490 10.360 17.060

Finally, we provide more examples/explanations on why these density-based
methods or even other methods that are based on random-walk should fail. We
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Table B.13: Performance comparison on Telegram, including Louvain and Leiden. The
best is marked in bold red and the second best is marked in underline blue .

Metric/Method Louvain/Leiden InfoMap Bi_sym DD_sym DISG_LR Herm Herm_rw DIGRAC

Osort
vol_sum 0.08±0.01 0.04±0.00 0.21±0.00 0.21±0.00 0.21±0.01 0.20±0.01 0.14±0.00 0.32±0.01
Osort

vol_min 0.39±0.07 0.47±0.00 0.67±0.00 0.61±0.00 0.66±0.02 0.66±0.02 0.19±0.00 0.79±0.06
Osort

vol_max 0.06±0.01 0.03±0.00 0.20±0.00 0.20±0.00 0.20±0.01 0.19±0.01 0.12±0.00 0.29±0.01
Osort

plain 0.71±0.05 1.00±0.00 0.80±0.00 0.75±0.00 0.78±0.03 0.76±0.04 0.59±0.00 0.96±0.01
Ostd

vol_sum 0.07±0.01 0.01±0.00 0.26±0.00 0.26±0.00 0.26±0.01 0.25±0.02 0.35±0.00 0.28±0.01
Ostd

vol_min 0.33±0.08 0.16±0.00 0.84±0.00 0.76±0.00 0.82±0.03 0.82±0.03 0.49±0.00 0.73±0.03
Ostd

vol_max 0.05±0.01 0.01±0.00 0.25±0.00 0.25±0.00 0.25±0.01 0.24±0.02 0.29±0.00 0.25±0.01
Ostd

plain 0.59±0.05 0.68±0.00 1.00±0.00 0.94±0.00 0.98±0.04 0.95±0.04 0.99±0.00 0.90±0.05
Onaive

vol_sum 0.06±0.02 0.01±0.00 0.26±0.00 0.26±0.00 0.26±0.01 0.25±0.02 0.23±0.00 0.27±0.01
Onaive

vol_min 0.28±0.11 0.11±0.00 0.84±0.00 0.76±0.00 0.82±0.03 0.82±0.03 0.32±0.00 0.72±0.04
Onaive

vol_max 0.04±0.01 0.00±0.00 0.25±0.00 0.25±0.00 0.25±0.01 0.24±0.02 0.20±0.00 0.24±0.01
Onaive

plain 0.56±0.01 0.63±0.00 1.00±0.00 0.94±0.00 0.98±0.04 0.95±0.04 0.99±0.00 0.89±0.06

Table B.14: Performance comparison on Blog, including Louvain and Leiden. The best
is marked in bold red and the second best is marked in underline blue .

Metric/Method Louvain/Leiden InfoMap Bi_sym DD_sym DISG_LR Herm Herm_rw DIGRAC

Osort
vol_sum 0.00±0.00 0.07±0.00 0.07±0.00 0.00±0.00 0.05±0.00 0.37±0.00 0.00±0.00 0.44±0.00
Osort

vol_min 0.01±0.01 0.02±0.00 0.33±0.00 0.05±0.00 0.31±0.00 0.78±0.01 0.89±0.00 0.76±0.00
Osort

vol_max 0.01±0.01 0.05±0.00 0.05±0.00 0.00±0.00 0.04±0.00 0.26±0.00 0.00±0.00 0.40±0.00
Osort

plain 1.00±0.00 1.00±0.00 0.33±0.00 0.05±0.00 0.31±0.00 0.78±0.01 0.89±0.00 0.76±0.00
Ostd

vol_sum 0.00±0.00 0.00±0.00 0.07±0.00 0.00±0.00 0.05±0.00 0.37±0.00 0.00±0.00 0.44±0.00
Ostd

vol_min 0.00±0.00 0.00±0.00 0.33±0.00 0.05±0.00 0.31±0.00 0.78±0.01 0.89±0.00 0.76±0.00
Ostd

vol_max 0.00±0.00 0.00±0.00 0.05±0.00 0.00±0.00 0.04±0.00 0.26±0.00 0.00±0.00 0.40±0.00
Ostd

plain 0.56±0.13 0.73±0.00 0.33±0.00 0.05±0.00 0.31±0.00 0.78±0.01 0.89±0.00 0.76±0.00
Onaive

vol_sum 0.00±0.00 0.00±0.00 0.07±0.00 0.00±0.00 0.05±0.00 0.37±0.00 0.00±0.00 0.44±0.00
Onaive

vol_min 0.00±0.00 0.00±0.00 0.33±0.00 0.05±0.00 0.31±0.00 0.78±0.01 0.89±0.00 0.76±0.00
Onaive

vol_max 0.00±0.00 0.00±0.00 0.05±0.00 0.00±0.00 0.04±0.00 0.26±0.00 0.00±0.00 0.40±0.00
Onaive

plain 0.76±0.00 0.76±0.00 0.33±0.00 0.05±0.00 0.31±0.00 0.78±0.01 0.89±0.00 0.76±0.00

would mainly like to point out a family of illustrative examples demonstrating
the subtle nuance concerning edge density.

Consider a meta graph with K = 3 nodes (clusters) A,B,C with directed edges
AB, BC, CA, hence a directed cycle (our "cycle" DSBM models). Each pair of
nodes (vi, vj) in the graph of size n is connected by an edge independently with
probability p (which can even be equal to 1, in the case of a complete graph),
hence the graph has the same density throughout. Now suppose we consider a
pair of nodes (vi, vj) such that vi belongs to cluster A, and vj to cluster B. Since
this edge is part of the metagraph, with probability 1-eta, it is directed from vi

to vj, and with probability eta, vj sends an edge to vi (here, eta is the noise level
parameter). Similar arguments can be made when vi (resp vj) belongs to cluster B
(resp C); and when vi (resp vj) belongs to cluster C (resp A). See Figure B.20 for
an illustration. We also see that when the network is complete (see Figure B.19 (g)
and Table B.8), InfoMap [99] fails empirically as it produces a single huge cluster.
As a method based on random walks, this failure might occur as the chain could
hardly be trapped inside a cluster as in the usual setting.

In such synthetic DSBM models with a "cycle" meta-graph structure, it can
be shown that all nodes have the same in-degree and out-degree in expectation.
Therefore, any density-based methods or modularity-based methods should fail. As
the simplest possible example, one could just consider K = 3 clusters as above,
without any noise (thus η = 0). InfoMap [99] tries to minimize the description
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Table B.15: Performance comparison on Migration, including Louvain and Leiden.
The best is marked in bold red and the second best is marked in underline blue
. InfoMap results are omitted here as it predicts a single huge cluster and could not
generate imbalance results.

Metric/Method Louvain/Leiden Bi_sym DD_sym DISG_LR Herm Herm_rw DIGRAC

Osort
vol_sum 0.01±0.00 0.03±0.00 0.01±0.00 0.02±0.00 0.04±0.00 0.02±0.00 0.05±0.00
Osort

vol_min 0.05±0.01 0.19±0.00 0.08±0.00 0.08±0.00 0.15±0.02 0.05±0.00 0.18±0.03
Osort

vol_max 0.01±0.00 0.03±0.00 0.01±0.00 0.01±0.00 0.03±0.00 0.02±0.00 0.04±0.00
Osort

plain 0.09±0.02 0.24±0.00 0.20±0.00 0.17±0.00 0.40±0.01 0.49±0.06 0.29±0.04
Ostd

vol_sum 0.00±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.02±0.00 0.02±0.00 0.04±0.01
Ostd

vol_min 0.04±0.01 0.10±0.00 0.05±0.00 0.05±0.00 0.08±0.01 0.04±0.00 0.16±0.03
Ostd

vol_max 0.00±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.03±0.01
Ostd

plain 0.07±0.01 0.13±0.00 0.12±0.00 0.11±0.00 0.20±0.01 0.20±0.01 0.26±0.01
Onaive

vol_sum 0.00±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.02±0.00 0.01±0.00 0.04±0.01
Onaive

vol_min 0.04±0.01 0.09±0.00 0.04±0.00 0.04±0.00 0.08±0.01 0.01±0.00 0.16±0.03
Onaive

vol_max 0.00±0.00 0.01±0.00 0.00±0.00 0.01±0.00 0.01±0.00 0.00±0.00 0.03±0.01
Onaive

plain 0.07±0.00 0.12±0.00 0.10±0.00 0.08±0.00 0.19±0.00 0.19±0.03 0.26±0.01

Table B.16: Performance comparison on WikiTalk, including Louvain and Leiden. The
best is marked in bold red and the second best is marked in underline blue . InfoMap
results are omitted here as its large number of predicted clusters leads to memory error
in imbalance calculation.

Metric/Method Louvain/Leiden DISG_LR Herm Herm_rw DIGRAC

Osort
vol_sum 0.01±0.00 0.18±0.03 0.15±0.02 0.00±0.00 0.24±0.05
Osort

vol_min 0.15±0.00 0.10±0.03 0.22±0.05 0.26±0.00 0.28±0.13
Osort

vol_max 0.01±0.00 0.16±0.03 0.09±0.01 0.00±0.00 0.19±0.04
Osort

plain 1.00±0.00 0.87±0.08 0.99±0.01 0.98±0.00 1.00±0.00
Ostd

vol_sum 0.00±0.00 0.17±0.04 0.06±0.01 0.01±0.00 0.14±0.02
Ostd

vol_min 0.01±0.00 0.09±0.02 0.09±0.02 0.27±0.00 0.18±0.08
Ostd

vol_max 0.00±0.00 0.15±0.04 0.04±0.00 0.00±0.00 0.11±0.02
Ostd

plain 0.42±0.00 0.72±0.03 0.70±0.05 0.98±0.00 0.84±0.06
Onaive

vol_sum 0.00±0.00 0.10±0.02 0.04±0.00 0.00±0.00 0.12±0.01
Onaive

vol_min 0.01±0.00 0.06±0.03 0.07±0.02 0.26±0.00 0.15±0.07
Onaive

vol_max 0.00±0.00 0.09±0.02 0.03±0.00 0.00±0.00 0.09±0.01
Onaive

plain 0.43±0.00 0.64±0.04 0.61±0.04 0.98±0.00 0.76±0.06

length, but as no description length difference occurs in the ground-truth clustering
structure for such "cycle" DSBMs, if we consider a brute-force optimization of
the map equation. Indeed, for any method that is based on a random walk, the
probability of the random walker going from one cluster to another is the same
as staying within the cluster. Therefore, we could hardly optimize anything if we
base our clustering structure on a random walker’s visit frequencies/path lengths.
Similarly, the Markov clustering algorithm [229] is based on the intuition that
higher-length paths would be relatively more likely to stay within clusters – an
assumption that is not warranted when there is no density difference. [100] and [101]
are two interesting Markov aggregation algorithms based on information theory
and automatic control ideas that might be able to cover the above example and
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may inspire some further comparison, but we omit comparison to them for now
as we already have more than ten comparison methods and that InfoMap shares
similar ideas to these two papers. As another example, as shown in [104], using
belief propagation, in our model community structure should not be detectible (the
right-hand side of (20) in [104] is zero for our "cycle" DSBMs). Therefore, at least
methods that rely on belief propagation will fail on our benchmark models.
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(a) Bi_sym
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(b) DD_sym
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(c) DISG_LR

−120 −110 −100 −90 −80 −70

25

30

35

40

45

50

0.0

4.4

8.8

13.2

17.6

22.0

26.4

30.8

35.2

39.6

44.0

L
ab

el

(d) InfoMap
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(e) Herm
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(f) Herm_rw
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(g) DIGRAC

Figure B.18: US migration predicted clusters, along with the geographic locations of
the counties as well as state boundaries (in black). The input digraph has extremely large
entries; unlike in Fig. B.16, we do not employ here the normalization given by Eq. (B.10).
Altogether, this demonstrates the robustness of DIGRAC to outliers in the data, which
is not a characteristic of other state-of-the-art methods such as Herm and Herm_rw.
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Figure B.19: Test ARI comparison on synthetic data for Infomap, Louvain and Leiden.
Error bars are given by one standard error.
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Figure B.20: An example of a "cycle" meta-graph.
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C.1 Proof of Theorems

C.1.1 Proof of Theorem 1

Proof. Let x ∈ Cn. Since L(q)
U is Hermitian, we have Imag(x†L(q)

U x) = 0. Next,
we note by the triangle inequality that D̃i,i = 1

2
∑n

j=1(|Ai,j|+ |Aj,i|) ≥
∑n

j=1 |Ãi,j|.
Therefore, we may use the fact that Ã is symmetric to obtain

2Real
(
x†L(q)

U x
)

=2
n∑

i=1
D̃i,i|x(i)|2 − 2

n∑
i,j=1

Ãi,jx(i)x(j) cos(Θ(q)
i,j )

≥2
n∑

i,j=1
|Ãi,j||x(i)|2 − 2

n∑
i,j=1
|Ãi,j||x(i)||x(j)|

=
n∑

i,j=1
|Ãi,j||xi|2 +

n∑
i,j=1
|Ãi,j||xj|2 − 2

n∑
i,j=1
|Ãi,j||xi||xj|

=
n∑

i,j=1
|Ãi,j| (|x(i)| − |x(j)|)2 ≥ 0.
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Thus, L(q)
U is positive semidefinite. For the normalized magnetic Laplacian, one may

verify
(
D̃−1/2ÃD̃−1/2

)
⊙ exp(iΘ(q)) = D̃−1/2

(
Ã⊙ exp(iΘ(q))

)
D̃−1/2, and hence

L(q)
N = D̃−1/2L(q)

U D̃−1/2. (C.1)

Thus, letting y = D̃−1/2x, the fact that D̃ is diagonal implies

x†L(q)
N x = x†D̃−1/2L(q)

U D̃−1/2x = y†L(q)
U y ≥ 0.

C.1.2 Proof of Theorem 2
Proof. By Theorem 1, it suffices to show that the lead eigenvalue, λn, is less than
or equal to 2. The Courant-Fischer theorem shows that

λn = max
x ̸=0

x†L(q)
N x

x†x
.

Therefore, using equation C.1 and setting y = D̃−1/2x, we have

λn = max
x ̸=0

x†D̃−1/2L(q)
U D̃−1/2x

x†x
= max

y ̸=0

y†L(q)
U y

y†D̃y
.

First, we observe that since D̃ is diagonal, we have

y†D̃y =
n∑

i,j=1
D̃i,jyiyj =

n∑
i=1

D̃i,i|y(i)|2 = 1
2

n∑
i,j=1

(|Ai,j|+ |Aj,i|)|y(i)|2.

The triangle inequality implies that |Ãi,j| ≤ 1
2(|Ai,j|+ |Aj,i|). Therefore, we may

repeatedly expand the sums and interchange the roles of i and j to obtain

y†L(q)
U y

≤1
2

n∑
i,j=1

(|Ai,j|+ |Aj,i|)|y(i)|2 + 1
2

n∑
i,j=1

(|Ai,j|+ |Aj,i|)|y(i)||y(j)|

=1
2

n∑
i,j=1
|Ai,j|(|yi|2 + |yj|2 + 2|yi||yj|)

=1
2

n∑
i,j=1
|Ai,j|(|y(i)|+ |y(j)|)2 ≤

n∑
i,j=1
|Ai,j|(|y(i)|2 + |y(j)|2)

=
n∑

i,j=1
(|Ai,j|+ |Aj,i|)|y(i)|2 = 2y†D̃y.

C.2 Implementation Details
Experiments were conducted on two compute nodes, each with 8 Nvidia Tesla T4, 96
Intel Xeon Platinum 8259CL CPUs @ 2.50GHz and 378GB RAM. Table C.1 reports
total runtime after data preprocessing (in seconds) on link tasks for competing
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Table C.1: Runtime (seconds) comparison on link tasks. The fastest is marked in bold
red and the second fastest is marked in underline blue .

Data Set Task SGCN SDGNN SiGAT SNEA SSSNET SigMaNet MSGNN

BitCoin-Alpha

SP 352 124 277 438 59 151 29
DP 328 196 432 498 78 152 37
3C 403 150 288 446 77 245 37
4C 385 133 293 471 57 143 36
5C 350 373 468 570 82 182 37

BitCoin-OTC

SP 340 140 397 584 68 222 30
DP 471 243 426 941 80 155 38
3C 292 252 502 551 92 230 37
4C 347 143 487 607 68 209 37
5C 460 507 500 959 86 326 38

Slashdot

SP 4218 3282 1159 5792 342 779 227
DP 4231 3129 1200 5773 311 817 222
3C 3686 6517 1117 6628 263 642 322
4C 4038 5296 948 7349 202 535 232
5C 4269 7394 904 8246 424 390 327

Epinions

SP 6436 4725 2527 8734 300 1323 370
DP 6437 4605 2381 8662 404 1319 369
3C 6555 8746 2779 10536 471 885 510
4C 6466 6923 2483 10380 272 727 384
5C 7974 9310 2719 11780 460 551 517

FiLL (avg.)

SP 591 320 367 617 61 63 32
DP 387 316 363 386 53 38 36
3C 542 471 298 657 79 114 43
4C 608 384 343 642 56 78 35
5C 318 534 266 521 63 66 44

methods. We conclude that for large graphs SNEA is the least efficient method in
terms of speed due to the attention mechanism employed, followed by SDGNN, which
needs to count motifs. MSGNN is generally the fastest. Averaged results are reported
with error bars representing one standard deviation in the figures, and plus/minus
one standard deviation in the tables. For all the experiments, we use Adam [226] as
our optimizer with a learning rate of 0.01 and employ ℓ2 regularization with weight
decay parameter 5·10−4 to avoid overfitting. We use the open-source library PyTorch
Geometric Signed Directed [28] for data loading, node and edge splitting, node
feature preparation, and implementation of some baselines. For SSSNET [3], we use
hidden size 16, 2 hops, and τ = 0.5, and we adapt the architecture so that SSSNET
is suitable for link prediction tasks. For SigMaNet [138], we use the code and
parameter settings from https://anonymous.4open.science/r/SigMaNet. We
set the number of layers to two for all methods.

C.2.1 Node Clustering
We conduct semi-supervised node clustering, with 10% of all nodes from each cluster
as test nodes, 10% as validation nodes to select the model, and the remaining 80%
as training nodes (10% of which are seed nodes). For each of the synthetic models,
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we first generate five different networks, each with two different data splits, then
conduct experiments on them and report average performance over these 10 runs.
To train the GNNs on the signed undirected data sets (SSBMs and POL-SSBMs),
we use the semi-supervised loss function L1 = LPBNC + γs(LCE + γtLtriplet) as in [3],
with the same hyperparameter setting γs = 50, γt = 0.1, where LPBNC is the self-
supervised probablistic balanced normalized cut loss function penalizing unexpected
signs. For these signed undirected graphs, we use validation ARI for early stopping.
For the SDSBMs, our loss function is the sum of L1 and the imbalance loss function
Lsort

vol_sum from [5] (absolute edge weights as input), i.e., L2 = Lsort
vol_sum + L1, and

we use the self-supervised part of the validation loss (LPBNC + Lsort
vol_sum) for early

stopping. We further restrict the GNNs to be trained on the subgraph induced by
only the training nodes while applying the training loss function. For MSGNN on
SDSBMs, we set q = 0.25 to emphasize directionality. The input node feature matrix
XV for undirected signed networks in our experiments is generated by stacking the
eigenvectors corresponding to the largest C eigenvalues of a regularized version of
the symmetrized adjacency matrix Ã. For signed, directed networks, we calculate
the in- and out-degrees based on both signs to obtain a four-dimensional feature
vector for each node. We train all GNNs for the node clustering task for at most
1000 epochs with a 200-epoch early-stopping scheme.

C.2.2 Link Prediction
We train all GNNs for each link prediction task for 300 epochs. We use the proposed
loss functions from their original papers for SGCN [48], SNEA [54], SiGAT [137],
and SDGNN [133], and we use cross-entropy loss LCE for SigMaNet [138], SSSNET
[3] and MSGNN. For all link prediction experiments, we sample 20% edges as
test edges, and use the rest of the edges for training. Five splits were generated
randomly for each input graph. We calculate the in- and out-degrees based on
both signs from the observed input graph (removing test edges) to obtain a four-
dimensional feature vector for each node for training SigMaNet [138], SSSNET
[3], and MSGNN, and we use the default settings from [28] for SGCN [48], SNEA
[54], SiGAT [137], and SDGNN [133].

C.3 Ablation Study and Discussion

Table C.2 compares different variants of MSGNN on the link prediction tasks
(Table C.9 reports runtime), with respect to whether we use a traditional signed
Laplacian that is initially designed for undirected networks (in which case we have
q = 0) and a magnetic signed Laplacian, with q = q0 := 1/[2 maxi,j(Ai,j −Aj,i)],
which strongly emphasizes directionality. We also assess whether to include sign in
input node features, and whether we take edge weights into account. Note that, by
default, the degree calculated given signed edge weights are net degrees, meaning
that we sum the edge weights up without taking absolute values, which means that
-1 and 1 would cancel out during calculation. The features that sum up absolute
values of edge weights are denoted with T’ in the table. Taking the standard
error into account, we find no significant difference between the two options T
and T ′ as weight features when signed features are not considered. We provide
a toy example here to help better understand what the tuples mean. Consider
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Table C.2: Link prediction test performance (accuracy in percentage) comparison for
variants of MSGNN. Each variant is denoted by a q value and a 2-tuple: (whether to
include signed features, whether to include weighted features), where “T" and “F" stand
for “True" and “False", respectively. “T" for weighted features means simply summing
up entries in the adjacency matrix while “T’" means summing the absolute values of
the entries. The best is marked in bold red and the second best is marked in
underline blue .

q value 0 q0 := 1/[2 maxi,j(Ai,j −Aj,i)]
Data Set Link Task (F, F) (F, T) (F, T’) (T, F) (T, T) (F, F) (F, T) (F, T’) (T, F) (T, T)

BitCoin-Alpha

SP 71.3±1.2 70.5±1.4 70.1±1.3 71.9±0.8 71.3±1.2 71.6±0.9 71.6±1.6 70.2±1.1 71.8±1.1 71.3±1.0
DP 73.8±1.5 72.5±0.8 73.5±0.7 73.2±1.4 69.9±1.6 74.8±1.0 71.8±1.6 71.6±1.8 75.3±1.3 72.5±1.5
3C 85.6±0.3 84.4±0.5 84.3±0.6 85.7±0.5 84.3±0.5 85.8±0.9 84.2±0.9 84.4±0.6 85.6±0.6 84.4±0.6
4C 59.3±2.4 56.4±2.2 56.5±1.9 58.6±1.0 58.9±0.6 58.8±1.1 55.2±2.3 56.6±1.6 59.4±1.4 58.5±0.7
5C 83.8±0.4 82.3±0.6 81.3±1.7 83.9±0.6 82.1±0.5 83.3±0.6 82.0±0.5 81.9±0.5 83.2±0.3 81.9±0.9

BitCoin-OTC

SP 74.0±0.6 72.9±0.9 71.8±1.9 73.7±1.2 73.0±1.4 73.7±1.5 73.0±0.6 73.3±0.8 74.1±1.1 72.1±2.5
DP 73.4±2.2 72.3±1.4 72.3±0.6 73.8±0.9 73.6±0.8 74.8±0.7 73.6±1.1 72.6±1.4 75.2±1.4 71.8±1.1
3C 83.7±0.8 82.9±0.7 82.4±1.0 84.2±0.4 83.0±0.6 85.0±0.5 83.9±0.4 83.3±1.0 84.8±0.9 83.3±0.7
4C 60.5±1.2 59.6±0.9 59.4±2.6 63.0±1.4 61.7±0.7 61.4±0.4 58.4±0.9 55.9±2.1 63.3±1.4 59.8±0.7
5C 81.1±0.6 79.8±0.6 79.0±0.9 82.4±0.3 80.0±1.3 82.4±0.8 78.0±2.5 80.0±0.7 82.6±0.7 80.9±0.9

Slashdot

SP 92.3±0.2 92.4±0.2 92.3±0.2 92.4±0.2 92.4±0.2 93.0±0.0 93.0±0.1 93.0±0.1 93.1±0.1 93.1±0.1
DP 92.2±0.3 92.3±0.2 92.4±0.2 92.4±0.2 92.4±0.2 93.1±0.1 93.1±0.1 93.1±0.1 93.0±0.1 93.1±0.1
3C 86.0±0.1 85.8±0.2 86.0±0.1 85.9±0.3 85.7±0.4 86.2±0.2 86.3±0.4 86.2±0.3 86.3±0.2 86.1±0.3
4C 77.1±0.6 76.9±0.7 76.3±0.8 78.1±0.4 77.7±0.5 70.3±1.1 71.5±1.1 70.7±1.2 77.9±0.6 78.2±0.3
5C 77.1±0.7 77.4±0.4 77.7±0.3 78.1±0.4 77.8±0.3 72.8±0.3 73.1±0.3 72.8±0.3 77.5±0.6 76.8±0.6

Epinions

SP 85.2±0.7 85.5±0.4 85.2±0.7 85.9±0.3 85.4±0.5 86.4±0.1 86.6±0.1 86.4±0.1 86.6±0.2 86.3±0.1
DP 85.1±0.8 85.3±0.7 85.4±0.4 85.0±0.5 85.3±0.7 86.2±0.2 86.1±0.7 86.1±0.4 86.3±0.1 86.3±0.3
3C 83.0±0.6 83.0±0.6 82.7±0.6 83.2±0.3 82.9±0.4 83.5±0.2 83.3±0.3 83.6±0.4 83.6±0.3 83.1±0.5
4C 78.3±0.6 78.2±1.6 79.1±1.2 79.7±1.2 80.0±1.0 76.6±1.3 76.7±1.5 76.5±1.5 79.3±0.5 78.7±0.9
5C 79.7±1.4 77.6±3.9 80.4±0.4 80.5±0.2 80.9±0.5 78.3±0.9 78.6±1.4 78.5±0.7 80.1±0.8 80.5±0.5

FiLL (avg.)

SP 74.0±0.1 75.5±0.1 75.5±0.1 75.1±0.1 76.2±0.1 73.8±0.1 75.5±0.0 75.5±0.1 75.1±0.1 76.1±0.1
DP 74.0±0.1 75.3±0.1 75.3±0.1 75.0±0.1 75.9±0.1 73.5±0.3 75.2±0.0 75.2±0.1 75.0±0.0 75.9±0.1
3C 74.1±0.1 75.5±0.0 75.6±0.0 75.2±0.1 76.2±0.1 73.8±0.1 75.4±0.1 75.5±0.1 75.1±0.0 76.1±0.0
4C 74.0±0.2 75.6±0.1 75.6±0.0 75.2±0.1 76.3±0.1 74.0±0.3 75.5±0.1 75.6±0.1 75.1±0.1 76.2±0.1
5C 75.0±0.1 76.4±0.1 76.4±0.1 76.0±0.1 77.0±0.1 74.6±0.3 76.3±0.1 76.2±0.2 75.8±0.2 77.0±0.1

a signed directed graph with adjacency matrix
0 0.5 −0.1 3
−3 0 0 3
3 0 0 0
0 −1 10 0


Corresponding to our tuple definition, we have, for the node corresponding to
the first row and first column, [2, 3] for (F,F), [0, 3.4] for (F,T), [6, 3.6] for (F,T‘),
[1, 2, 1, 1] for (T,F), and [3, 3.5, 3, 0.1] for (T,T).

To see the effect of using edge weights as input instead of treating all weights
as having unit-magnitude, we report the main results as well as ablation study
results correspondingly in Tables C.4,C.5 and C.6, and their runtimes are reported
in Tables C.11,C.12 and C.13. We conclude that using unit-magnitude weights
could be either beneficial or harmful depending on the data set and task at hand.
However, in general, edge weights are important for FiLL but might not be helpful
for the bitcoin data sets. Besides, we could draw similar conclusions as in Sec. 4.4.4
for the influence of input features as well as the q value.

Table C.7 compares tue performance of MSGNN with and without symmetric
normalization (i.e., whether we use L(q)

U or L(q)
N ) and Table C.8 shows how MSGNN’s

performance varies with the number of layers. The corresponding runtimes are
reported in Tables C.14 and C.15, respectively. In general, we see that there are
not significant differences in performance between normalizing and not normalizing;
and in the vast majority of cases these differences are less than one standard
deviation. We also note that in most cases, adding slightly more layers (from 2
to 4) yields a modest increase in performance. However, we again note that these
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Table C.3: Link prediction test performance (accuracy in percentage) comparison for
MSGNN with different q values (multiples of q0 := 1/[2 maxi,j(Ai,j −Aj,i)]). The best is
marked in bold red and the second best is marked in underline blue .

Data Set Link Task q = 0 q = 0.2q0 q = 0.4q0 q = 0.6q0 q = 0.8q0 q = q0

BitCoin-Alpha

SP 71.3±1.2 70.8±1.7 71.4±2.3 71.5±1.6 70.8±1.8 71.3±1.0
DP 69.9±1.6 72.3±2.7 71.1±2.4 72.4±1.6 72.1±1.7 72.5±1.5
3C 84.3±0.5 84.6±0.4 84.5±0.9 84.4±0.5 84.8±0.9 84.4±0.6
4C 58.9±0.6 55.7±1.8 58.1±1.2 58.5±1.5 59.0±1.3 58.5±0.7
5C 82.1±0.5 82.3±0.7 82.8±0.4 82.4±0.5 81.9±1.1 81.9±0.9

BitCoin-OTC

SP 73.0±1.4 70.9±2.2 72.9±1.4 72.6±1.2 72.9±0.8 72.1±2.5
DP 73.6±0.8 73.6±2.1 72.3±1.5 72.9±1.2 72.8±0.4 71.8±1.1
3C 83.0±0.6 83.7±0.5 83.5±0.4 83.1±0.6 83.6±0.6 83.3±0.7
4C 61.7±0.7 60.3±0.6 59.6±0.9 61.5±0.7 59.7±1.6 59.8±0.7
5C 80.0±1.3 81.1±1.3 80.9±0.8 81.0±0.8 81.1±0.6 80.9±0.9

Slashdot

SP 92.4±0.2 92.6±0.2 92.9±0.1 92.9±0.1 93.0±0.1 93.1±0.1
DP 92.4±0.2 92.7±0.1 92.9±0.1 92.9±0.1 93.1±0.1 93.1±0.1
3C 85.7±0.4 86.0±0.2 86.3±0.2 86.2±0.2 86.2±0.2 86.1±0.3
4C 77.7±0.5 77.7±0.3 77.9±0.4 78.5±0.4 78.6±0.2 78.2±0.3
5C 77.8±0.3 78.2±0.3 78.1±0.1 77.6±0.5 77.6±0.4 76.8±0.6

Epinions

SP 85.4±0.5 85.7±0.3 86.0±0.4 86.5±0.1 86.2±0.1 86.3±0.1
DP 85.3±0.7 85.9±0.3 86.2±0.1 86.2±0.1 86.5±0.2 86.3±0.3
3C 82.9±0.4 83.5±0.2 83.6±0.3 83.5±0.2 83.2±0.3 83.1±0.5
4C 80.0±1.0 80.8±0.5 81.1±0.5 80.1±0.8 79.7±0.7 78.7±0.9
5C 80.9±0.5 80.7±0.2 81.2±0.4 80.3±0.6 80.8±0.6 80.5±0.5

FiLL (avg.)

SP 76.2±0.1 76.2±0.1 76.2±0.1 76.1±0.0 76.1±0.0 76.1±0.1
DP 75.9±0.1 75.9±0.1 75.9±0.1 75.9±0.0 75.9±0.0 75.9±0.1
3C 76.2±0.1 76.2±0.0 76.2±0.0 76.1±0.0 76.1±0.1 76.1±0.0
4C 76.3±0.1 76.3±0.1 76.3±0.0 76.3±0.0 76.2±0.0 76.2±0.1
5C 77.0±0.1 77.0±0.1 77.0±0.1 77.0±0.1 77.0±0.1 77.0±0.1

Table C.4: Test accuracy (%) comparison the signed and directed link prediction tasks
introduced in Sec. 4.4.1 where all networks are treated as unweighted. The best is marked
in bold red and the second best is marked in underline blue .

Data Set Link Task SGCN SDGNN SiGAT SNEA SSSNET SigMaNet MSGNN

BitCoin-Alpha

SP 64.7±0.9 64.5±1.1 62.9±0.9 64.1±1.3 64.3±2.9 50.2±0.9 70.3±1.5
DP 60.4±1.7 61.5±1.0 61.9±1.9 60.9±1.7 71.8±1.3 51.9±5.6 74.7±1.5
3C 81.4±0.5 79.2±0.9 77.1±0.7 83.2±0.5 79.4±1.3 34.9±17.5 86.1±0.5
4C 51.1±0.8 52.5±1.1 49.3±0.7 52.4±1.8 56.3±1.4 28.6±7.6 59.5±2.2
5C 79.5±0.3 78.2±0.5 76.5±0.3 81.1±0.3 78.8±0.8 25.8±17.0 83.8±0.8

BitCoin-OTC

SP 65.6±0.9 65.3±1.2 62.8±1.3 67.7±0.5 68.3±2.5 50.4±5.4 73.7±1.3
DP 63.8±1.2 63.2±1.5 64.0±2.0 65.3±1.2 70.4±1.7 47.3±4.2 75.6±1.0
3C 79.0±0.7 77.3±0.7 73.6±0.7 82.2±0.4 78.0±0.5 35.3±15.3 85.3±0.4
4C 51.5±0.4 55.3±0.8 51.2±1.8 56.9±0.7 60.4±0.9 24.3±6.6 62.8±1.0
5C 77.4±0.7 77.3±0.8 74.1±0.5 80.5±0.5 76.8±0.5 18.9±11.1 83.0±0.9

FiLL (avg.)

SP 88.4±0.0 82.0±0.3 76.9±0.1 90.0±0.0 88.7±0.2 51.1±0.7 90.8±0.0
DP 88.5±0.1 82.0±0.2 76.9±0.1 90.0±0.0 86.9±0.6 50.7±1.1 90.9±0.0
3C 63.0±0.1 59.3±0.0 55.3±0.1 64.3±0.1 57.3±0.4 34.1±0.4 64.6±0.1
4C 81.7±0.0 78.8±0.1 70.5±0.1 83.2±0.1 76.8±0.1 25.5±1.3 82.1±0.1
5C 63.8±0.0 61.1±0.1 55.5±0.1 64.8±0.1 55.8±0.5 20.5±0.7 62.3±0.2
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Table C.5: Link prediction test performance (accuracy in percentage) comparison for
variants of MSGNN where input networks are treated as unweighted. Each variant is
denoted by a q value and a 2-tuple: (whether to include signed features, whether to
include weighted features), where “T" and “F" stand for “True" and “False", respectively.
“T" for weighted features means simply summing up entries in the adjacency matrix while
“T’" means summing the absolute values of the entries. The best is marked in bold red
and the second best is marked in underline blue .

q value 0 q0 := 1/[2 maxi,j(Ai,j −Aj,i)]
Data Set Link Task (F, F) (F, T) (F, T’) (T, F) (T, T) (F, F) (F, T) (F, T’) (T, F) (T, T)

BitCoin-Alpha

SP 72.0±0.9 70.2±1.1 70.9±1.4 72.1±0.4 70.3±1.5 72.0±1.2 70.4±0.6 70.2±2.0 72.2±1.2 70.9±1.7
DP 73.9±0.5 73.9±1.0 72.8±2.3 74.1±1.1 74.5±1.5 73.9±1.2 73.8±1.0 73.3±1.1 73.6±2.4 74.7±1.5
3C 85.4±0.5 85.4±0.3 85.2±0.8 85.5±0.5 85.7±0.3 85.9±0.4 85.9±0.5 85.9±0.5 86.0±0.4 86.1±0.5
4C 57.9±1.9 58.8±1.5 57.7±1.2 58.9±1.1 58.4±1.8 53.6±1.7 54.6±2.2 55.2±1.8 59.6±2.2 59.5±2.2
5C 83.4±0.3 83.1±0.3 83.5±0.5 84.2±0.5 83.7±0.5 82.6±0.6 82.8±0.5 82.8±0.7 83.7±0.4 83.8±0.8

BitCoin-OTC

SP 74.5±1.0 71.7±2.3 73.8±1.0 74.1±1.0 73.7±1.3 74.2±1.1 73.4±0.8 73.1±0.9 74.9±1.0 73.5±0.6
DP 75.0±0.5 75.2±1.8 74.7±1.1 75.2±1.4 74.8±2.1 75.6±1.4 75.2±1.1 75.7±0.9 74.8±0.8 75.6±1.0
3C 85.2±0.6 84.7±1.0 85.0±0.5 84.7±0.9 85.1±0.6 85.2±0.6 85.4±0.6 85.3±0.7 85.5±0.4 85.3±0.4
4C 61.0±1.1 61.4±1.9 60.6±1.7 64.5±2.4 63.7±1.8 57.8±1.5 56.8±1.4 55.6±1.1 63.3±0.5 62.8±1.0
5C 82.0±0.6 82.3±0.7 82.1±0.8 82.9±0.7 82.7±0.5 81.0±0.3 80.9±0.5 80.5±0.9 82.6±0.8 83.0±0.9

FiLL (avg.)

SP 74.1±0.2 74.0±0.3 74.0±0.4 75.2±0.1 75.2±0.1 69.3±0.6 69.6±0.2 69.6±0.5 74.8±0.2 74.8±0.2
DP 73.9±0.1 74.0±0.1 73.9±0.2 75.0±0.1 75.1±0.1 70.0±0.2 70.2±0.3 70.3±0.4 74.6±0.1 74.7±0.1
3C 74.1±0.1 74.1±0.1 74.0±0.2 75.3±0.1 75.2±0.1 69.8±0.3 69.5±0.4 69.4±0.5 74.8±0.1 74.8±0.1
4C 74.1±0.3 74.2±0.2 74.3±0.1 75.3±0.2 75.2±0.1 69.1±0.2 68.8±0.4 68.8±0.5 74.8±0.3 74.9±0.3
5C 75.1±0.1 75.1±0.2 75.0±0.2 76.1±0.1 76.2±0.1 70.0±0.2 70.1±0.5 70.3±0.3 75.7±0.2 75.6±0.3

Table C.6: Link prediction test performance (accuracy in percentage) comparison for
MSGNN with different q values (multiples of q0 := 1/[2 maxi,j(Ai,j −Aj,i)]) when input
networks are treated as unweighted. The best is marked in bold red and the second
best is marked in underline blue .

Data Set Link Task q = 0 q = 0.2q0 q = 0.4q0 q = 0.6q0 q = 0.8q0 q = q0

BitCoin-Alpha

SP 70.3±1.5 71.0±0.7 70.9±1.5 71.1±0.9 69.2±1.4 70.9±1.7
DP 74.5±1.5 74.0±1.7 74.3±1.2 74.0±1.6 74.7±0.7 74.7±1.5
3C 85.7±0.3 86.1±0.4 86.4±0.3 85.8±0.6 86.0±0.5 86.1±0.5
4C 58.4±1.8 59.1±2.0 60.0±1.4 60.2±1.3 60.1±1.2 59.5±2.2
5C 83.7±0.5 84.0±0.5 84.1±0.4 84.1±0.4 83.8±0.2 83.8±0.8

BitCoin-OTC

SP 73.7±1.3 73.2±0.7 73.7±0.9 73.0±1.5 73.3±1.1 73.5±0.6
DP 74.8±2.1 75.1±1.2 75.8±1.1 75.3±0.8 75.6±1.0 75.6±1.0
3C 85.1±0.6 85.1±0.5 85.3±0.5 85.3±0.8 85.3±0.6 85.3±0.4
4C 63.7±1.8 64.4±0.6 63.1±2.2 64.3±2.1 63.0±1.2 62.8±1.0
5C 82.7±0.5 82.8±0.9 82.7±0.7 83.2±0.8 82.7±0.9 83.0±0.9

FiLL (avg.)

SP 75.2±0.1 75.2±0.2 75.2±0.1 75.0±0.3 74.8±0.2 74.8±0.2
DP 75.1±0.1 75.0±0.2 74.9±0.1 74.9±0.1 74.6±0.1 74.7±0.1
3C 75.2±0.1 75.2±0.1 75.2±0.1 75.2±0.1 74.9±0.2 74.8±0.1
4C 75.2±0.1 75.3±0.1 75.2±0.1 75.1±0.2 74.9±0.2 74.9±0.3
5C 76.2±0.1 76.2±0.1 76.1±0.1 75.9±0.2 75.8±0.1 75.6±0.3

increases in performance are typically quite small and often less than one standard
deviation. When we further increase the number of layers (up to 10), performance
of MSGNN begin to drop slightly. Overall, we do not see much evidence of severe
oversmoothing. However, there does not seem to be significant advantages to very
deep networks. Therefore, in our experiments, to be both effective in performance
and efficient in computational expense we stick to two layers. (See Tables C.14
and C.15 for runtime comparison.)

It is of interest to explore the behavior of our proposed magnetic signed Laplacian
matrix further. Hence here we assess its capability of separating clusters based on
its top eigenvectors. Figures C.1 and C.2 show the top eigenvector of our proposed
magnetic signed Laplacian matrix with q = 0.25 and symmetric normalization,
where the x-axis denotes the real parts and the y-axis denotes the imaginary parts,
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Table C.7: Link prediction test performance (accuracy in percentage) comparison for
MSGNN with various number of layers. The better variant is marked in bold red and
the worse variant is marked in underline blue .

Data Set Link Task no normalization symmetric normalization

BitCoin-Alpha

SP 71.9±1.4 71.3±1.2
DP 73.4±1.0 72.5±1.5
3C 84.8±0.8 84.4±0.6
4C 57.9±2.2 58.5±0.7
5C 82.2±0.6 81.9±0.9

BitCoin-OTC

SP 74.1±0.7 73.0±1.4
DP 73.5±0.8 71.8±1.1
3C 83.5±0.7 83.3±0.7
4C 59.5±1.8 59.8±0.7
5C 80.4±0.8 80.9±0.9

Slashdot

SP 92.7±0.1 92.4±0.2
DP 92.8±0.1 93.1±0.1
3C 86.6±0.1 86.1±0.3
4C 77.9±0.9 78.2±0.3
5C 78.1±0.5 76.8±0.6

Epinions

SP 86.1±0.5 85.4±0.5
DP 85.8±0.2 86.3±0.3
3C 82.8±1.0 83.1±0.5
4C 79.7±1.1 78.7±0.9
5C 80.6±0.6 80.5±0.5

FiLL (avg.)

SP 76.2±0.1 76.1±0.1
DP 76.0±0.0 75.9±0.1
3C 76.2±0.1 76.1±0.0
4C 76.3±0.1 76.2±0.1
5C 77.0±0.1 77.0±0.1

Table C.8: Link prediction test performance (accuracy in percentage) comparison for
MSGNN with various number of layers. The best is marked in bold red and the
second best is marked in underline blue .

Data Set Link Task 2 layers 3 layers 4 layers 5 layers 6 layers 7 layers 8 layers 9 layers 10 layers

BitCoin-Alpha

SP 71.3±1.2 71.2±0.6 71.9±1.0 72.7±0.5 72.2±0.8 70.9±2.1 70.3±0.7 70.5±0.6 69.4±1.7
DP 72.5±1.5 72.0±0.9 73.4±1.0 73.4±1.6 71.0±2.6 70.6±1.2 70.4±1.5 68.3±1.7 69.8±1.7
3C 84.4±0.6 84.8±0.8 85.0±0.4 85.1±0.8 84.8±0.3 84.7±0.2 84.2±0.2 84.6±1.1 84.1±1.1
4C 58.5±0.7 58.2±2.0 59.8±2.3 58.9±1.5 58.5±1.9 58.2±1.2 57.5±2.0 57.7±1.3 57.0±2.0
5C 81.9±0.9 81.6±1.2 83.2±0.4 82.9±0.3 82.4±0.2 82.3±0.6 81.9±0.7 82.2±0.6 81.7±0.4

BitCoin-OTC

SP 73.0±1.4 71.5±1.3 74.1±1.1 73.2±1.4 73.2±2.2 71.3±1.1 71.6±0.9 70.3±1.0 69.2±1.9
DP 71.8±1.1 72.7±0.6 73.9±1.0 73.0±1.2 73.7±0.6 72.6±0.7 71.9±1.3 72.2±2.0 71.4±1.7
3C 83.3±0.7 82.5±1.1 83.4±0.5 83.2±0.8 83.2±0.8 83.0±0.7 83.0±0.5 83.0±1.0 82.8±0.2
4C 59.8±0.7 59.2±1.6 61.2±1.1 61.6±0.6 58.7±1.2 57.9±1.7 58.1±1.7 57.9±1.9 54.4±1.9
5C 80.9±0.9 80.1±0.8 80.8±0.6 80.3±1.0 79.9±0.5 79.4±0.9 79.7±0.3 79.5±0.5 79.6±0.5

Slashdot

SP 92.4±0.2 92.0±0.3 92.3±0.2 92.0±0.3 91.7±0.3 91.8±0.2 91.3±0.3 91.4±0.3 90.9±0.7
DP 93.1±0.1 93.0±0.1 93.2±0.1 93.1±0.1 93.0±0.2 92.9±0.1 93.1±0.1 93.0±0.2 93.0±0.2
3C 86.1±0.3 86.0±0.5 86.2±0.1 86.1±0.1 85.8±0.2 85.9±0.2 86.2±0.2 85.9±0.2 85.8±0.2
4C 78.2±0.3 78.2±0.4 78.5±0.5 78.0±0.2 77.7±0.3 76.9±0.3 77.4±1.1 77.6±0.7 76.9±0.7
5C 76.8±0.6 77.5±0.2 77.6±0.4 77.5±0.4 77.1±0.8 76.8±0.8 76.9±0.5 76.8±0.5 76.4±0.3

Epinions

SP 85.4±0.5 85.1±0.9 85.4±0.5 85.4±0.5 83.7±1.0 83.3±0.9 82.8±0.9 82.8±1.2 80.8±1.0
DP 86.3±0.3 86.1±0.2 86.7±0.1 86.5±0.1 86.7±0.2 86.5±0.4 86.6±0.2 86.7±0.1 86.5±0.1
3C 83.1±0.5 83.2±0.2 83.6±0.2 83.6±0.3 83.6±0.2 83.2±0.5 83.4±0.3 83.5±0.3 83.3±0.2
4C 78.7±0.9 79.8±0.3 79.3±1.2 80.1±0.4 80.1±0.5 79.0±0.8 79.6±0.5 79.8±0.5 78.8±1.1
5C 80.5±0.5 79.9±1.0 80.8±0.5 80.7±0.3 80.2±0.8 80.5±0.2 80.8±0.2 80.9±0.3 80.2±0.5

FiLL (avg.)

SP 76.1±0.1 76.2±0.0 76.4±0.0 76.2±0.1 76.0±0.1 76.0±0.1 76.0±0.0 76.0±0.1 75.8±0.1
DP 75.9±0.1 76.0±0.1 76.1±0.1 76.0±0.1 75.8±0.1 75.8±0.0 75.8±0.1 75.7±0.1 75.6±0.0
3C 76.1±0.0 76.2±0.1 76.4±0.1 76.2±0.0 76.0±0.0 76.0±0.0 76.0±0.1 75.9±0.1 75.8±0.1
4C 76.2±0.1 76.3±0.0 76.5±0.1 76.3±0.0 76.1±0.1 76.1±0.0 76.1±0.0 76.0±0.1 75.8±0.1
5C 77.0±0.1 77.0±0.1 77.2±0.1 77.0±0.1 76.9±0.1 76.8±0.1 76.9±0.1 76.7±0.1 76.6±0.1

Printed on June 7, 2024



C. MSGNN: A Spectral Graph Neural Network Based on a Novel Magnetic Signed
Laplacian Supplementary Information 199

Table C.9: Runtime (seconds) comparison on link tasks for variants of MSGNN. Each
variant is denoted by a q value and a 2-tuple: (whether to include signed features, whether
to include weighted features), where “T" and “F" stand for “True" and “False", respectively.
“T" for weighted features means simply summing up entries in the adjacency matrix while
“T’" means summing the absolute values of the entries. The fastest is marked in bold
red and the second fastest is marked in underline blue .

q value 0 q0 := 1/[2 maxi,j(Ai,j −Aj,i)]
Data Set Link Task (F, F) (F, T) (F, T’) (T, F) (T, T) (F, F) (F, T) (F, T’) (T, F) (T, T)

BitCoin-Alpha

SP 23 21 25 25 29 23 21 25 25 29
DP 26 25 26 25 26 36 38 37 37 37
3C 28 28 29 29 29 37 37 37 36 37
4C 25 25 24 26 25 36 36 36 36 36
5C 29 28 28 27 29 37 37 37 37 37

BitCoin-OTC

SP 26 27 27 28 30 26 27 27 28 30
DP 28 27 28 28 26 38 37 38 37 38
3C 33 32 32 33 30 38 38 38 39 37
4C 26 24 27 27 26 37 37 36 36 37
5C 32 30 31 31 29 38 38 38 37 38

Slashdot

SP 226 227 221 224 227 226 227 221 224 227
DP 223 223 222 227 222 223 223 222 227 222
3C 327 327 327 325 322 327 327 327 325 322
4C 231 227 232 229 232 232 227 232 229 232
5C 330 324 325 334 326 330 324 325 334 327

Epinions

SP 368 374 367 370 370 368 374 367 370 370
DP 363 366 364 376 369 364 365 364 376 369
3C 506 510 510 510 509 506 510 510 510 510
4C 374 377 382 381 384 374 376 382 380 384
5C 511 511 508 518 517 511 511 509 518 517

FiLL (avg.)

SP 36 36 35 36 32 36 36 35 36 32
DP 36 36 35 35 36 36 36 36 37 36
3C 44 42 43 42 43 43 44 44 44 43
4C 35 36 34 34 31 35 35 35 36 35
5C 43 45 43 43 43 44 44 44 45 44

for the two synthetic SDSBM models F1(γ) and F1(γ) from Subsection 4.4.2. Our
Laplacian clearly picks up a signal using the top eigenvector, but does not detect all
four clusters. Including information beyond the top eigenvector Figure C.3 reports
ARI values when we apply K-means algorithm to the stacked top eigenvectors for
clustering. Specifically, for F1 with three clusters, we stack the real and imaginary
parts of the top 3 + 1 = 4 eigenvectors as input features for K-means, while for F2
we employ the top 4 + 1 = 5 eigenvectors. We conclude that the top eigenvectors of
our proposed magnetic signed Laplacian can separate some of the clusters while it
confuses a pair, and that the separation ability decreases as we increase the noise
level (γ and/or η). In particular, simply using K-means on the top eigenvectors is
not competitive compared to the performance of MSGNN after training.

Table C.16 reports input feature sum statistics on real-world data sets: m1 and
s1 denote the average and one standard error of the sum of input features for each
node corresponding to the (T, F) tuple in Table C.2, respectively, while m2 and
s2 correspond to (T,T). We conclude that in the first four data sets the standard
errors are much larger than the averages of the sums of the features, whereas in
the FiLL data sets, the standard errors are much smaller than the average, see
Table C.16. Hence in the FiLL data sets these features may not show enough
variability around the average to be very informative.
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Table C.10: Runtime (seconds) comparison on link tasks for variants of MSGNN with
different q values (multiples of q0 := 1/[2 maxi,j(Ai,j −Aj,i)]). The fastest is marked in
bold red and the second fastest is marked in underline blue .

Data Set Link Task q = 0 q = 0.2q0 q = 0.4q0 q = 0.6q0 q = 0.8q0 q = q0

BitCoin-Alpha

SP 29 29 29 29 30 26
DP 26 31 31 31 33 37
3C 29 37 37 37 37 37
4C 25 31 31 32 32 36
5C 29 36 36 36 36 37

BitCoin-OTC

SP 30 30 30 27 27 27
DP 26 36 36 36 35 38
3C 30 45 45 45 45 37
4C 26 35 35 35 35 37
5C 29 45 45 45 45 38

Slashdot

SP 227 226 226 226 226 226
DP 222 222 222 222 222 222
3C 322 322 322 322 322 322
4C 232 232 232 232 232 232
5C 326 327 327 327 327 327

Epinions

SP 370 370 370 370 370 370
DP 369 369 369 369 369 369
3C 509 510 510 510 510 510
4C 384 384 384 384 384 384
5C 517 517 517 517 517 517

FiLL (avg.)

SP 32 36 36 36 36 36
DP 36 36 36 36 36 36
3C 43 44 44 43 42 43
4C 31 36 36 36 36 35
5C 43 45 45 44 44 44

C.4 Experimental Results on Individual Years
for FiLL

Table C.17, C.18, C.19 and C.20 provide full experimental results on financial
data sets for individual years for the main experiments, while Table C.21, C.22,
C.23, C.24, C.25, C.26, C.27 and C.28 contain individual results for the years
for the ablation study.

Printed on June 7, 2024



C. MSGNN: A Spectral Graph Neural Network Based on a Novel Magnetic Signed
Laplacian Supplementary Information 201

Table C.11: Runtime (seconds) comparison the signed and directed link prediction tasks
introduced in Sec. 4.4.1 where all networks are treated as unweighted. The fastest is
marked in bold red and the second fastest is marked in underline blue .

Data Set Link Task SGCN SDGNN SiGAT SNEA SSSNET SigMaNet MSGNN

BitCoin-Alpha

SP 352 124 277 438 49 56 32
DP 328 196 432 498 53 59 34
3C 403 150 288 446 50 64 40
4C 385 133 293 471 49 73 33
5C 350 373 468 570 45 60 40

BitCoin-OTC

SP 340 140 397 584 50 52 34
DP 471 243 426 941 48 77 36
3C 292 252 502 551 53 58 44
4C 347 143 487 607 47 77 35
5C 460 507 500 959 45 52 45

FiLL (avg.)

SP 591 320 367 617 99 122 36
DP 387 316 363 386 95 122 35
3C 542 471 298 657 76 76 43
4C 608 384 343 642 76 111 35
5C 318 534 266 521 108 119 44

Table C.12: Runtime (seconds) comparison for variants of MSGNN where input networks
are treated as unweighted. Each variant is denoted by a q value and a 2-tuple: (whether
to include signed features, whether to include weighted features), where “T" and “F" stand
for “True" and “False", respectively. “T" for weighted features means simply summing
up entries in the adjacency matrix while “T’" means summing the absolute values of
the entries. The fastest is marked in bold red and the second fastest is marked in
underline blue .

q value 0 q0 := 1/[2 maxi,j(Ai,j −Aj,i)]
Data Set Link Task (F, F) (F, T) (F, T’) (T, F) (T, T) (F, F) (F, T) (F, T’) (T, F) (T, T)

BitCoin-Alpha

SP 33 33 34 34 32 33 33 33 33 33
DP 34 34 34 34 32 34 34 34 35 34
3C 39 40 40 40 36 40 40 40 40 40
4C 33 33 33 33 31 33 34 33 34 33
5C 40 40 40 39 36 40 39 40 40 40

BitCoin-OTC

SP 33 34 33 34 34 33 34 34 34 35
DP 35 34 34 35 35 35 34 34 34 36
3C 41 41 40 41 40 41 40 41 41 44
4C 32 33 33 34 33 34 34 34 34 35
5C 40 41 41 40 41 41 41 41 41 45

FiLL (avg.)

SP 37 37 37 39 36 37 36 36 38 36
DP 41 37 37 37 35 41 36 37 37 35
3C 68 46 45 45 43 69 45 45 44 43
4C 36 36 36 37 35 35 35 35 36 35
5C 63 46 46 46 44 65 44 45 45 44
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Table C.13: Runtime (seconds) comparison for MSGNN with different q values (multiples
of q0 := 1/[2 maxi,j(Ai,j −Aj,i)]) when input networks are treated as unweighted. The
fastest is marked in bold red and the second fastest is marked in underline blue .

Data Set Link Task q = 0 q = 0.2q0 q = 0.4q0 q = 0.6q0 q = 0.8q0 q = q0

BitCoin-Alpha

SP 32 31 32 31 34 33
DP 32 32 32 32 33 34
3C 36 36 36 36 38 40
4C 31 32 32 31 33 33
5C 36 36 37 37 40 40

BitCoin-OTC

SP 34 33 35 34 36 35
DP 35 34 36 36 36 36
3C 40 41 43 44 45 44
4C 33 33 35 35 35 35
5C 41 41 45 44 45 45

FiLL (avg.)

SP 36 36 36 36 36 36
DP 35 36 36 35 36 35
3C 43 44 44 43 43 43
4C 35 36 36 34 35 35
5C 44 45 45 44 45 44

Table C.14: Runtime (seconds) comparison for MSGNN with various number of layers.
The faster variant is marked in bold red and the slower variant is marked in
underline blue .

Data Set Link Task no normalization symmetric normalization

BitCoin-Alpha

SP 46 29
DP 89 37
3C 101 37
4C 63 36
5C 81 37

BitCoin-OTC

SP 47 30
DP 158 38
3C 147 37
4C 63 37
5C 106 38

Slashdot

SP 1209 227
DP 1365 222
3C 1475 322
4C 1378 232
5C 1464 327

Epinions

SP 1095 370
DP 1103 369
3C 950 510
4C 956 384
5C 1194 517

FiLL (avg.)

SP 64 32
DP 76 36
3C 78 43
4C 60 35
5C 81 44
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Table C.15: Runtime (seconds) comparison for MSGNN with various number of layers.
The fastest is marked in bold red and the second fastest is marked in underline blue
.

Data Set Link Task 2 layers 3 layers 4 layers 5 layers 6 layers 7 layers 8 layers 9 layers 10 layers

BitCoin-Alpha

SP 29 33 36 52 46 50 54 58 61
DP 37 38 37 51 46 51 55 58 61
3C 37 32 38 46 44 52 57 60 61
4C 36 26 26 48 43 49 53 58 61
5C 37 32 38 50 47 52 57 60 61

BitCoin-OTC

SP 30 29 28 44 46 51 55 59 60
DP 38 31 37 43 46 48 55 59 61
3C 37 36 41 46 49 54 58 59 62
4C 37 27 29 45 45 49 56 60 61
5C 38 35 41 47 50 53 58 61 62

Slashdot

SP 227 360 374 403 403 500 501 608 610
DP 222 298 299 402 403 497 498 603 604
3C 322 399 399 497 497 597 599 707 708
4C 232 304 314 412 413 503 505 615 617
5C 327 399 402 504 504 600 601 711 713

Epinions

SP 370 524 536 696 704 822 837 980 987
DP 369 509 535 687 695 821 838 983 984
3C 510 647 650 814 819 962 968 1122 1127
4C 384 508 519 676 684 812 816 980 986
5C 517 649 655 810 813 967 985 1110 1110

FiLL (avg.)

SP 32 42 44 55 58 61 64 70 72
DP 36 43 45 55 59 62 65 70 72
3C 43 50 51 62 65 68 71 77 78
4C 35 41 43 54 57 60 64 70 71
5C 44 50 52 64 66 69 72 77 79
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Figure C.1: Real (x-axis) and imaginary parts (y-axis) of the top eigenvector of the
symmetric-normalized magnetic signed Laplacian with q = 0.25 versus clusters labels on
SDSBM(F1(γ), n = 1000,
p = 0.1, ρ = 1.5, η) with various γ and η values, where red, green, and orange denote C0,
C1, and C2, respectively.
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Figure C.2: Real (x-axis) and imaginary parts (y-axis) of the top eigenvector of the
symmetric-normalized magnetic signed Laplacian with q = 0.25 versus clusters labels on
SDSBM(F2(γ), n = 1000,
p = 0.1, ρ = 1.5, η) with various γ and η values, where red, green, orange, and blue denote
C0, C1, C2, and C3, respectively.
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Figure C.3: ARI using the proposed magnetic signed Laplacian’s top eigenvectors and
K-means.
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Table C.16: Input feature sum statistics: m1 and s1 denote the average and one standard
error of the sum of input features for each node corresponding to the (T, F) tuple in
Table C.2, respectively, while m2 and s2 correspond to (T,T).

Data Set m1 s1
m1
s1

m2 s2
m2
s2

BitCoin-Alpha 29.076 84.322 0.345 12.787 34.446 0.152
BitCoin-OTC 30.564 102.996 0.297 12.104 38.299 0.118

Slashdot 13.372 44.756 0.299 13.372 44.756 0.299
Epinions 12.765 60.549 0.211 12.765 60.549 0.211

FiLL-pvCLCL (2000) 29.878 9.906 3.016 177.599 40.650 17.928
FiLL-OPCL (2000) 28.182 8.834 3.190 172.000 38.860 19.471

FiLL-pvCLCL (2001) 31.404 11.624 2.702 177.599 44.367 15.278
FiLL-OPCL (2001) 30.026 10.243 2.931 172.000 40.412 16.792

FiLL-pvCLCL (2002) 32.865 19.055 1.725 177.599 64.000 9.320
FiLL-OPCL (2002) 30.154 15.255 1.977 172.000 59.662 11.275

FiLL-pvCLCL (2003) 28.622 12.286 2.330 177.599 59.288 14.456
FiLL-OPCL (2003) 27.085 11.552 2.345 172.000 55.738 14.889

FiLL-pvCLCL (2004) 26.031 8.965 2.904 177.599 45.693 19.810
FiLL-OPCL (2004) 24.633 8.222 2.996 172.000 43.912 20.921

FiLL-pvCLCL (2005) 26.047 8.885 2.932 177.599 47.953 19.988
FiLL-OPCL (2005) 23.884 7.106 3.361 172.000 40.651 24.206

FiLL-pvCLCL (2006) 28.621 11.214 2.552 177.599 50.197 15.837
FiLL-OPCL (2006) 26.219 8.764 2.992 172.000 43.565 19.626

FiLL-pvCLCL (2007) 33.365 18.674 1.787 177.599 80.030 9.510
FiLL-OPCL (2007) 30.564 14.449 2.115 172.000 60.453 11.904

FiLL-pvCLCL (2008) 45.040 31.693 1.421 177.599 97.070 5.604
FiLL-OPCL (2008) 42.205 26.869 1.571 172.000 84.361 6.401

FiLL-pvCLCL (2009) 43.435 31.176 1.393 177.599 109.911 5.697
FiLL-OPCL (2009) 36.304 19.429 1.869 172.000 75.508 8.853

FiLL-pvCLCL (2010) 25.883 14.252 1.816 177.599 67.060 12.461
FiLL-OPCL (2010) 26.908 12.924 2.082 172.000 61.325 13.309

FiLL-pvCLCL (2011) 41.301 31.316 1.319 177.604 116.559 5.671
FiLL-OPCL (2011) 36.046 26.133 1.379 172.000 102.552 6.582

FiLL-pvCLCL (2012) 29.015 13.159 2.205 177.599 54.519 13.496
FiLL-OPCL (2012) 26.120 9.786 2.669 172.000 46.006 17.576

FiLL-pvCLCL (2013) 26.538 13.247 2.003 177.599 69.771 13.407
FiLL-OPCL (2013) 25.754 13.107 1.965 172.000 53.168 13.123

FiLL-pvCLCL (2014) 25.220 9.101 2.771 177.599 48.146 19.514
FiLL-OPCL (2014) 25.366 10.319 2.458 172.000 50.838 16.668

FiLL-pvCLCL (2015) 25.859 14.186 1.823 177.599 57.031 12.519
FiLL-OPCL (2015) 27.853 15.188 1.834 172.000 63.501 11.325

FiLL-pvCLCL (2016) 30.540 18.321 1.667 177.599 54.241 9.694
FiLL-OPCL (2016) 29.418 18.629 1.579 172.000 48.518 9.233

FiLL-pvCLCL (2017) 28.700 10.860 2.643 177.599 39.566 16.353
FiLL-OPCL (2017) 27.020 9.549 2.830 172.000 33.605 18.012

FiLL-pvCLCL (2018) 25.543 10.128 2.522 177.599 51.628 17.535
FiLL-OPCL (2018) 25.859 11.772 2.197 172.000 64.979 14.611

FiLL-pvCLCL (2019) 28.781 13.533 2.127 177.599 47.949 13.123
FiLL-OPCL (2019) 26.188 11.474 2.282 172.000 43.134 14.990
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Table C.17: Full link prediction test accuracy (%) comparison for directions (and signs)
on FiLL-pvCLCL data sets on individual years 2000-2010. The best is marked in bold
red and the second best is marked in underline blue . The link prediction tasks are
introduced in Sec. 4.4.1.

Year Link Task SGCN SDGNN SiGAT SNEA SSSNET SigMaNet MSGNN

2000

SP 87.3±0.3 78.2±2.0 70.9±0.6 88.9±0.2 87.3±2.1 59.1±11.8 89.0±0.4
DP 87.1±0.2 78.6±1.1 70.6±0.7 88.9±0.3 87.7±0.9 53.5±9.4 89.1±0.5
3C 59.8±0.4 53.0±1.2 47.9±0.5 60.8±0.5 58.5±2.2 31.9±7.4 61.5±0.7
4C 71.1±0.4 66.4±1.3 56.5±0.4 72.5±0.5 69.0±1.2 23.6±8.0 71.9±0.5
5C 53.6±0.3 49.8±0.8 43.5±0.2 54.0±0.3 51.3±1.5 20.7±7.6 53.9±0.4

2001

SP 88.0±0.3 80.2±1.4 71.5±1.0 90.3±0.2 85.5±3.4 46.2±10.7 90.7±0.2
DP 88.3±0.2 78.9±2.6 70.6±0.5 90.2±0.3 88.4±1.3 47.1±5.6 90.7±0.1
3C 60.3±0.3 54.1±1.0 48.6±0.6 61.7±0.3 58.8±4.8 35.9±6.6 63.1±0.5
4C 74.1±0.3 69.7±1.5 58.4±0.9 76.4±0.4 72.1±0.9 23.2±7.9 75.7±0.3
5C 55.9±0.3 52.5±0.3 45.2±0.4 57.0±0.2 54.5±1.4 16.4±4.6 56.8±0.2

2002

SP 88.7±0.2 83.8±1.2 79.1±0.5 90.7±0.2 89.1±1.3 48.4±7.6 91.4±0.2
DP 88.8±0.2 84.4±0.9 78.9±0.7 90.7±0.3 89.8±1.1 51.8±11.7 91.5±0.2
3C 62.1±0.4 60.6±0.6 56.3±0.8 64.2±0.4 63.8±0.2 31.0±1.8 66.2±0.2
4C 84.3±0.5 82.8±0.7 75.3±0.7 85.6±0.3 80.0±2.4 19.7±4.1 85.7±0.4
5C 65.7±0.3 64.2±0.1 58.0±0.9 67.1±0.1 57.4±3.4 21.5±3.6 66.7±0.4

2003

SP 86.7±0.6 80.7±1.1 76.4±0.7 87.9±0.5 86.6±1.3 54.8±7.7 89.5±0.4
DP 87.2±0.4 80.9±1.1 76.9±0.6 88.6±0.4 87.6±1.3 44.4±5.4 89.6±0.4
3C 59.5±0.3 56.6±0.9 53.2±0.5 61.1±0.6 58.0±2.2 35.1±7.1 63.1±0.5
4C 80.9±0.3 78.4±0.8 69.6±0.4 82.2±0.3 77.9±3.0 28.9±9.3 82.7±0.4
5C 61.4±0.1 59.6±0.4 53.4±0.6 62.5±0.1 56.4±1.3 17.9±7.3 62.7±0.4

2004

SP 86.3±0.3 76.8±2.7 72.4±0.5 88.0±0.3 86.2±1.7 46.3±9.6 88.7±0.3
DP 86.1±0.4 75.2±1.5 72.8±0.5 87.9±0.5 87.2±0.8 50.0±6.7 88.8±0.3
3C 58.7±0.2 50.8±1.2 49.1±0.3 59.7±0.4 59.5±0.9 34.4±2.1 61.6±0.4
4C 77.1±0.3 71.9±1.6 61.1±1.4 78.9±0.4 75.9±0.9 19.9±2.1 78.7±0.4
5C 57.7±0.4 53.8±1.0 47.9±0.6 58.8±0.4 55.0±0.7 21.7±3.4 58.7±0.6

2005

SP 85.1±0.2 76.3±1.4 74.9±0.6 86.5±0.6 85.5±1.5 53.0±13.7 87.8±0.4
DP 84.9±0.3 76.3±2.3 74.1±0.7 86.7±0.3 85.9±0.9 47.8±5.2 87.8±0.4
3C 57.1±0.2 53.3±1.2 50.1±0.5 59.1±0.3 57.9±1.0 30.7±4.4 60.9±0.6
4C 79.2±0.4 75.3±1.0 67.4±0.3 80.5±0.1 77.6±0.7 20.3±7.3 80.5±0.2
5C 60.4±0.5 57.6±0.4 52.2±0.2 61.4±0.4 57.8±1.0 21.1±5.6 61.0±0.2

2006

SP 88.7±0.2 82.7±1.2 75.1±1.0 90.4±0.1 90.0±0.7 38.8±6.5 91.0±0.2
DP 88.8±0.3 83.2±0.9 75.7±0.7 90.6±0.5 89.1±1.2 46.4±7.6 91.1±0.1
3C 61.9±0.3 56.9±1.4 52.8±0.4 63.1±0.4 61.5±1.9 37.4±7.1 64.1±0.3
4C 81.2±0.2 77.8±0.9 66.9±0.6 83.0±0.4 80.6±0.4 25.7±7.3 83.1±0.4
5C 62.1±0.4 58.4±0.7 53.2±0.2 63.3±0.1 58.7±1.8 16.2±7.3 62.8±0.3

2007

SP 87.8±0.3 83.9±0.8 79.2±0.3 89.4±0.3 89.3±0.5 55.4±13.3 90.4±0.5
DP 88.3±0.4 83.6±0.4 79.7±0.4 89.7±0.4 88.4±2.0 42.0±12.9 90.6±0.4
3C 65.4±0.6 64.0±0.8 60.6±0.2 67.0±0.4 66.5±0.6 29.6±6.9 69.0±0.3
4C 86.5±0.4 84.2±0.9 77.5±0.2 87.7±0.3 86.2±0.9 23.6±5.9 88.4±0.2
5C 68.8±0.4 66.9±0.6 61.5±0.5 69.8±0.1 65.7±2.3 25.5±11.1 69.7±0.2

2008

SP 94.9±0.2 92.5±0.8 83.4±0.8 95.7±0.3 94.2±2.1 45.0±16.6 96.4±0.2
DP 95.2±0.2 93.2±0.4 82.2±0.3 95.9±0.1 95.1±0.8 39.9±18.4 96.3±0.2
3C 75.4±0.5 76.6±0.5 68.3±0.5 77.2±0.5 73.3±3.2 22.4±9.5 78.9±0.2
4C 95.7±0.3 95.5±0.3 87.0±1.0 96.2±0.2 95.4±0.4 25.0±16.6 96.2±0.3
5C 80.9±0.2 80.4±0.4 71.1±0.4 81.9±0.1 75.0±4.4 19.4±10.4 82.0±0.4

2009

SP 96.0±0.3 91.2±1.4 87.0±0.5 96.9±0.2 96.3±1.1 45.9±13.0 97.8±0.2
DP 96.3±0.3 91.6±0.5 87.2±0.5 97.2±0.1 96.5±0.6 43.0±14.2 97.6±0.1
3C 75.3±0.2 73.1±0.5 70.0±0.3 76.5±0.2 74.5±2.1 37.3±8.5 78.6±0.3
4C 94.1±0.3 92.4±0.4 87.7±0.9 94.8±0.2 93.4±0.4 30.2±10.5 95.0±0.2
5C 78.8±0.3 77.0±0.4 72.8±0.4 79.5±0.3 74.6±3.2 16.7±11.3 79.8±0.2

2010

SP 90.9±0.4 85.1±0.7 79.2±0.9 92.1±0.3 90.4±2.4 52.5±10.5 92.8±0.3
DP 91.0±0.2 86.0±1.1 78.4±0.8 91.9±0.3 90.5±0.8 45.8±6.1 92.7±0.4
3C 64.5±0.3 63.1±0.6 56.2±0.9 65.7±0.3 61.6±2.3 33.8±2.2 68.5±0.4
4C 89.8±0.2 88.3±0.4 79.6±0.9 90.3±0.3 87.0±1.2 28.4±5.5 91.1±0.4
5C 71.5±0.3 69.7±0.4 62.6±0.8 72.3±0.2 68.1±1.1 17.8±5.7 72.4±0.1
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Table C.18: Full link prediction test accuracy (%) comparison for directions (and signs)
on FiLL-pvCLCL data sets on individual years 2011-2020. The best is marked in bold
red and the second best is marked in underline blue . The link prediction tasks are
introduced in Sec. 4.4.1.

Year Link Task SGCN SDGNN SiGAT SNEA SSSNET SigMaNet MSGNN

2011

SP 97.3±0.2 94.5±0.9 89.3±0.3 97.7±0.2 98.3±0.1 66.2±16.0 98.7±0.2
DP 97.4±0.3 95.4±0.9 89.8±0.5 97.8±0.2 98.1±0.2 45.0±20.6 98.7±0.1
3C 84.3±0.2 82.0±0.4 77.7±0.4 84.7±0.3 82.3±3.1 33.0±17.4 86.2±0.3
4C 97.2±0.1 96.7±0.5 90.0±0.3 97.7±0.1 98.1±0.2 13.9±7.9 98.3±0.2
5C 84.9±0.3 83.2±0.8 78.2±0.4 85.5±0.2 82.0±3.6 18.6±12.3 87.2±0.4

2012

SP 90.9±0.4 83.4±1.3 74.5±1.1 92.7±0.2 89.0±4.3 42.3±6.0 92.7±0.3
DP 90.8±0.2 83.7±1.8 72.8±1.2 92.8±0.1 91.1±1.4 38.1±9.7 92.6±0.3
3C 64.4±0.2 58.6±1.3 52.1±0.8 65.9±0.3 62.7±0.7 33.1±5.0 67.4±0.3
4C 86.1±0.3 82.0±0.6 69.8±1.2 87.2±0.4 85.2±0.4 26.7±19.2 86.9±0.4
5C 66.2±0.3 62.4±0.7 53.7±0.8 67.2±0.5 63.7±1.9 15.2±2.7 67.0±0.2

2013

SP 88.1±0.2 82.1±0.8 80.7±0.4 89.2±0.3 88.8±1.0 43.5±9.2 90.5±0.3
DP 87.5±0.4 82.4±0.7 80.6±0.6 88.7±0.4 87.7±0.6 56.6±14.4 90.4±0.3
3C 63.2±0.2 61.5±0.7 59.1±0.3 64.5±0.2 64.7±0.8 33.1±2.8 66.1±0.3
4C 84.6±0.3 81.6±0.4 75.8±0.4 85.5±0.4 84.2±0.4 26.1±19.6 86.1±0.3
5C 65.7±0.2 64.0±0.4 59.9±0.2 66.5±0.2 64.0±0.6 16.3±7.7 66.8±0.3

2014

SP 84.5±0.2 75.9±1.7 70.4±0.6 86.4±0.4 85.5±1.2 49.5±6.1 87.3±0.2
DP 84.3±0.5 75.3±1.2 70.9±0.6 86.4±0.1 84.8±1.6 42.7±11.6 87.2±0.3
3C 57.5±0.2 53.3±0.5 48.7±0.5 59.6±0.3 57.8±2.0 31.6±2.5 60.6±0.2
4C 77.9±0.2 74.5±0.9 63.7±0.8 79.9±0.1 76.3±1.2 29.2±7.7 80.2±0.2
5C 58.7±0.5 56.1±0.9 50.1±1.0 60.1±0.5 56.2±0.8 16.6±4.0 60.3±0.4

2015

SP 87.0±0.3 81.6±1.3 75.2±0.8 88.2±0.4 84.5±2.8 50.1±8.5 89.1±0.4
DP 86.9±0.3 80.8±1.4 74.6±0.7 88.0±0.3 86.3±1.4 49.1±12.6 89.3±0.3
3C 60.1±0.2 57.5±0.8 51.8±0.8 60.1±0.8 61.0±1.2 32.6±6.2 63.8±0.4
4C 83.1±0.4 81.0±0.7 69.6±1.0 84.7±0.5 79.0±1.8 25.5±11.1 84.4±0.5
5C 64.6±0.2 62.8±0.5 55.1±0.3 65.9±0.1 57.1±5.4 16.7±3.4 65.7±0.4

2016

SP 87.9±0.5 81.6±1.8 73.5±0.9 89.7±0.5 86.5±2.5 49.0±6.5 90.2±0.5
DP 87.4±0.4 81.1±1.4 73.1±0.9 89.6±0.3 87.0±2.7 56.2±6.7 90.0±0.5
3C 60.6±0.3 57.2±0.5 50.9±0.9 62.4±0.4 59.0±1.3 34.4±4.0 63.9±0.2
4C 80.7±0.6 77.5±0.8 67.5±0.3 82.2±0.6 74.1±4.8 24.3±3.8 82.1±0.5
5C 60.8±0.2 58.0±0.8 52.0±0.5 62.6±0.3 54.8±2.7 19.7±4.0 62.0±0.4

2017

SP 87.7±0.4 81.7±1.2 78.0±0.4 89.8±0.3 88.3±1.5 57.8±6.8 90.2±0.3
DP 87.5±0.3 82.0±1.2 77.6±0.3 89.8±0.2 87.6±1.7 50.2±4.8 90.2±0.3
3C 59.7±0.4 56.2±0.4 52.8±0.1 61.1±0.3 59.9±0.5 31.3±4.6 62.3±0.4
4C 68.3±0.5 65.4±0.6 59.1±0.6 70.5±0.3 66.4±0.5 28.6±7.0 69.6±0.4
5C 51.7±0.6 50.1±1.0 45.8±0.5 53.4±0.4 50.1±1.4 22.3±3.8 53.2±0.1

2018

SP 83.6±0.3 78.7±1.1 72.6±0.5 86.2±0.3 84.3±1.7 47.9±4.2 87.0±0.4
DP 83.7±0.5 78.8±0.8 72.7±0.7 86.3±0.2 84.9±1.9 44.1±5.0 87.0±0.4
3C 57.7±0.3 54.4±0.8 50.7±0.5 58.9±0.6 56.9±2.7 33.4±4.0 61.4±0.3
4C 77.0±0.4 75.8±0.7 65.7±0.7 79.5±0.4 77.3±0.6 23.5±5.7 79.5±0.5
5C 59.4±0.1 57.6±0.6 51.6±0.7 61.0±0.4 56.4±1.7 21.8±4.8 60.5±0.3

2019

SP 88.5±0.4 80.6±2.0 73.3±0.4 90.3±0.3 87.6±1.6 52.0±10.8 90.8±0.3
DP 88.6±0.4 81.5±1.0 72.6±1.3 90.6±0.1 88.7±0.9 46.4±4.9 90.9±0.3
3C 61.1±0.4 56.0±1.5 50.1±0.9 63.0±0.2 59.6±2.3 33.2±3.1 64.3±0.2
4C 75.3±0.4 71.8±1.2 62.1±0.4 78.0±0.4 74.3±1.1 23.1±7.8 77.5±0.4
5C 57.9±0.3 54.9±0.8 48.1±0.4 59.6±0.5 54.3±1.5 21.5±2.6 58.7±0.2

2020

SP 95.7±0.2 93.5±0.8 90.4±0.5 95.6±0.4 96.2±0.5 50.9±27.3 97.3±0.2
DP 95.9±0.1 92.6±1.2 90.2±0.4 95.5±0.4 95.7±0.7 37.1±13.3 97.2±0.1
3C 81.9±0.3 77.8±1.0 76.3±0.3 81.4±0.2 76.0±6.1 43.2±8.1 82.9±0.5
4C 95.1±0.2 93.0±0.9 90.5±0.5 94.7±0.3 95.6±0.5 44.1±20.8 96.5±0.1
5C 82.1±0.2 77.8±1.1 76.4±0.7 81.4±0.4 77.8±3.8 21.4±16.7 82.8±0.4
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Table C.19: Full link prediction test accuracy (%) comparison for directions (and signs)
on FiLL-OPCL data sets on individual years 2000-2010. The best is marked in bold
red and the second best is marked in underline blue . The link prediction tasks are
introduced in Sec. 4.4.1.

Year Link Task SGCN SDGNN SiGAT SNEA SSSNET SigMaNet MSGNN

2000

SP 85.7±0.4 77.1±3.1 69.0±1.0 87.5±0.5 87.1±0.5 49.5±8.1 87.9±0.5
DP 85.6±0.2 77.2±1.5 68.4±1.4 87.4±0.6 87.0±0.4 53.6±12.4 87.9±0.6
3C 58.6±0.5 50.7±1.6 46.6±0.8 59.8±0.3 58.9±0.8 32.9±4.9 60.7±0.4
4C 70.2±0.5 65.2±0.8 54.7±1.0 71.8±0.4 68.7±0.9 34.8±4.0 71.3±0.3
5C 52.5±0.5 47.9±0.6 42.8±0.5 53.3±0.7 51.2±0.9 22.6±5.2 53.4±0.5

2001

SP 87.6±0.3 79.6±1.8 69.9±1.6 89.8±0.3 88.2±0.9 60.3±6.6 90.0±0.5
DP 87.3±0.5 81.2±1.1 69.6±0.8 89.3±0.5 86.9±2.8 44.0±14.9 90.2±0.3
3C 59.4±0.4 54.8±0.7 47.4±0.3 61.0±0.3 60.5±1.2 32.5±3.6 62.2±0.4
4C 74.2±0.5 69.2±1.7 57.5±0.9 76.0±0.3 70.6±2.6 20.8±5.0 75.4±0.6
5C 54.5±0.2 51.1±0.2 44.5±0.5 55.9±0.1 51.4±2.5 18.8±3.8 55.8±0.4

2002

SP 87.3±0.4 82.4±0.3 75.5±0.6 89.6±0.2 85.4±3.2 49.9±12.3 90.5±0.2
DP 87.2±0.2 82.4±1.2 75.8±0.4 89.3±0.3 85.5±3.7 49.1±7.1 90.5±0.3
3C 60.9±0.4 59.4±0.9 53.1±0.8 63.0±0.5 60.5±3.2 35.9±2.8 65.0±0.4
4C 82.7±0.3 81.1±0.3 70.9±0.7 84.1±0.2 80.7±1.9 24.1±7.6 84.5±0.5
5C 63.9±0.4 62.6±0.7 55.4±0.5 65.1±0.2 58.9±2.2 23.0±7.0 65.5±0.2

2003

SP 86.0±0.6 80.2±1.3 74.5±0.3 87.7±0.3 87.6±0.3 47.7±8.0 89.1±0.3
DP 85.8±0.4 77.1±1.8 75.3±0.3 87.7±0.4 85.8±2.5 50.3±5.9 89.2±0.5
3C 58.4±0.5 55.7±1.1 51.0±0.6 60.2±0.3 60.2±1.1 33.4±2.4 62.7±0.4
4C 80.3±0.5 78.2±1.3 68.5±0.8 81.9±0.5 79.4±0.6 24.0±10.1 82.5±0.3
5C 60.7±0.4 59.1±0.5 52.1±0.4 61.8±0.3 58.5±1.3 23.7±5.8 62.3±0.4

2004

SP 85.2±0.3 74.0±2.4 71.8±0.8 86.8±0.3 86.4±0.9 52.3±8.0 87.4±0.3
DP 85.4±0.4 76.3±2.2 71.9±0.8 87.2±0.2 86.5±0.8 51.0±8.2 87.4±0.2
3C 57.5±0.5 50.8±1.7 48.6±0.6 58.4±0.5 57.0±2.2 33.9±3.7 60.1±0.7
4C 76.8±0.5 72.5±1.7 61.8±0.7 78.6±0.3 73.0±2.9 20.1±6.2 78.3±0.3
5C 57.6±0.3 53.9±0.8 47.5±0.5 58.4±0.2 54.0±2.6 18.1±3.6 57.9±0.3

2005

SP 83.8±0.3 73.4±1.1 71.0±1.0 85.4±0.4 85.4±0.4 53.4±7.4 86.4±0.3
DP 83.7±0.6 73.0±2.2 71.8±0.5 85.4±0.6 85.6±0.7 52.9±4.7 86.4±0.3
3C 56.4±0.3 49.7±1.3 48.1±0.4 57.2±0.5 57.3±1.1 32.4±1.9 59.5±0.6
4C 77.3±0.3 72.9±1.0 65.8±0.4 79.2±0.5 75.6±1.3 21.6±5.9 79.5±0.3
5C 58.2±0.4 55.3±0.7 51.3±0.7 59.4±0.4 56.0±2.3 12.9±3.1 58.8±0.5

2006

SP 87.7±0.3 77.2±3.2 73.9±1.2 89.2±0.4 88.4±1.0 47.9±7.7 89.9±0.5
DP 87.6±0.4 76.6±2.3 74.1±0.7 89.1±0.3 89.1±0.3 57.0±11.9 90.1±0.4
3C 59.8±0.4 52.5±0.7 51.0±0.4 61.1±0.5 56.7±2.9 33.4±1.5 63.0±0.5
4C 80.5±0.2 74.9±1.4 67.0±0.6 81.8±0.2 78.5±1.0 24.7±2.8 81.6±0.3
5C 60.7±0.5 55.6±0.8 51.4±0.6 61.7±0.3 58.0±0.8 21.7±6.9 60.8±0.6

2007

SP 85.4±0.4 77.8±1.3 75.3±0.7 86.7±0.4 85.7±1.4 58.3±7.1 88.0±0.2
DP 86.0±0.3 77.5±1.5 75.5±0.9 86.9±0.4 85.9±1.6 55.1±10.4 88.0±0.3
3C 59.1±0.6 56.4±0.9 53.4±0.8 61.0±0.2 57.8±4.5 30.5±3.2 63.7±0.5
4C 81.6±0.2 78.4±0.7 69.9±0.7 82.5±0.2 79.5±0.7 23.1±9.2 83.0±0.2
5C 63.1±0.3 60.5±0.5 54.9±0.5 63.7±0.5 60.5±0.4 19.4±8.4 64.1±0.4

2008

SP 94.7±0.4 92.2±0.6 85.3±0.3 95.6±0.4 95.1±0.4 53.5±15.7 96.5±0.3
DP 94.4±0.4 93.0±0.9 85.4±0.6 95.3±0.2 94.6±1.7 34.1±11.4 96.6±0.2
3C 74.1±0.3 74.1±0.1 67.8±0.5 75.3±0.3 71.7±4.0 36.8±5.9 76.7±0.2
4C 95.0±0.1 94.3±0.4 88.3±0.8 95.6±0.2 94.3±0.4 11.4±5.2 95.4±0.5
5C 78.4±0.3 77.6±0.3 70.6±0.6 79.4±0.1 76.1±2.7 13.6±6.6 78.9±0.7

2009

SP 93.4±0.3 83.9±1.9 79.4±0.9 94.4±0.2 93.7±1.1 47.6±9.4 95.2±0.2
DP 93.5±0.2 84.0±2.2 80.0±0.5 94.4±0.3 93.7±0.5 42.0±11.9 95.2±0.2
3C 67.6±0.3 62.6±1.5 56.1±0.4 69.2±0.3 62.4±4.1 38.0±6.2 70.5±0.2
4C 90.3±0.2 86.9±0.5 80.3±0.3 91.1±0.1 88.4±1.4 30.5±13.0 91.4±0.3
5C 72.5±0.4 68.5±0.4 62.7±0.5 73.3±0.2 68.0±1.4 21.7±8.9 73.2±0.2

2010

SP 90.5±0.6 85.9±0.6 80.4±0.4 91.8±0.3 90.3±1.1 46.3±11.7 92.5±0.3
DP 90.5±0.6 85.1±0.6 80.0±0.9 91.5±0.3 90.4±1.2 48.7±6.7 92.5±0.4
3C 63.9±0.4 62.6±0.3 57.8±0.6 65.4±0.3 60.7±2.9 33.5±6.7 67.1±0.5
4C 88.3±0.5 85.8±1.0 78.4±0.3 88.8±0.3 85.5±0.8 21.5±3.9 89.3±0.3
5C 69.2±0.6 67.3±1.0 60.6±0.7 69.9±0.5 65.8±0.7 19.8±5.2 69.9±0.3
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Table C.20: Full link prediction test accuracy (%) comparison for directions (and signs)
on FiLL-OPCL data sets on individual years 2011-2020. The best is marked in bold
red and the second best is marked in underline blue . The link prediction tasks are
introduced in Sec. 4.4.1.

Year Link Task SGCN SDGNN SiGAT SNEA SSSNET SigMaNet MSGNN

2011

SP 94.6±0.2 92.2±0.6 84.2±0.2 95.2±0.3 95.4±1.1 39.3±10.0 96.2±0.3
DP 94.9±0.1 91.5±1.3 83.9±0.6 95.4±0.3 95.1±1.1 35.0±16.7 96.3±0.3
3C 75.8±0.4 75.0±0.5 70.1±0.4 76.6±0.3 72.2±6.5 37.1±7.9 78.6±0.4
4C 94.4±0.2 93.6±0.4 85.1±0.4 95.0±0.4 94.2±0.6 33.6±9.6 95.5±0.3
5C 79.7±0.3 78.2±0.4 71.9±0.4 80.2±0.3 77.7±1.9 17.1±8.7 80.6±0.3

2012

SP 89.2±0.3 80.9±1.1 80.2±0.3 90.3±0.2 90.3±0.2 45.5±12.5 91.1±0.2
DP 89.4±0.4 82.4±1.0 80.2±0.7 90.3±0.2 89.8±0.5 50.1±6.9 91.2±0.2
3C 61.8±0.3 57.0±1.2 56.2±0.5 62.5±0.2 62.3±0.9 34.5±5.6 64.4±0.5
4C 80.3±0.4 75.9±0.6 71.2±0.6 81.0±0.3 79.1±0.8 28.9±9.9 81.5±0.4
5C 60.9±0.3 57.1±0.5 54.5±0.4 61.4±0.3 57.3±4.0 20.1±6.5 61.5±0.3

2013

SP 86.5±0.6 82.3±1.0 79.7±0.3 88.1±0.3 88.0±0.9 52.8±10.0 89.5±0.3
DP 86.9±0.2 81.5±1.4 79.2±0.3 87.9±0.3 86.9±1.9 63.3±13.4 89.3±0.2
3C 61.4±0.4 59.4±0.6 57.7±0.4 61.9±0.2 61.4±1.6 31.4±11.8 64.3±0.3
4C 82.0±0.3 80.3±0.6 72.1±0.4 83.0±0.2 80.3±1.2 27.0±16.0 82.8±0.8
5C 62.6±0.3 61.3±0.4 56.9±0.2 63.2±0.4 60.9±0.9 23.2±6.7 63.9±0.4

2014

SP 85.4±0.4 76.8±1.9 72.3±0.6 86.9±0.2 86.1±1.2 50.4±2.4 87.7±0.4
DP 85.2±0.5 76.5±0.7 72.2±0.4 86.7±0.3 84.7±2.5 51.2±6.0 87.9±0.4
3C 58.3±0.5 54.1±1.8 50.3±0.2 59.7±0.8 59.5±0.8 37.2±3.9 61.9±0.2
4C 79.4±0.2 76.0±0.6 68.0±1.0 81.3±0.2 78.9±0.7 21.9±9.0 81.2±0.2
5C 60.4±0.5 57.9±0.4 53.1±0.4 61.7±0.2 58.7±1.0 18.9±4.5 61.8±0.3

2015

SP 87.0±0.4 81.5±0.6 78.5±0.7 88.6±0.3 87.0±2.8 41.9±7.1 89.8±0.3
DP 87.2±0.3 81.5±1.0 78.7±0.9 88.8±0.2 85.5±3.0 49.8±5.1 89.8±0.3
3C 60.0±0.2 59.6±0.6 54.4±0.5 61.3±0.4 59.8±2.6 33.9±5.0 64.1±0.2
4C 83.1±0.2 80.3±0.5 72.9±0.6 84.4±0.3 80.8±0.9 20.9±3.7 84.8±0.2
5C 63.7±0.3 62.3±0.6 56.4±0.4 65.0±0.3 59.4±2.5 20.7±9.1 64.8±0.5

2016

SP 86.4±0.5 79.1±0.7 75.9±0.6 88.0±0.3 86.6±1.1 58.6±10.2 89.0±0.2
DP 86.5±0.5 78.2±1.0 76.3±0.4 88.2±0.5 86.6±2.3 53.0±2.9 88.9±0.3
3C 59.6±0.6 54.1±0.6 52.6±0.5 60.6±0.3 59.0±1.5 31.5±3.9 62.2±0.5
4C 74.9±0.4 71.0±1.0 64.2±0.3 76.5±0.3 71.5±2.0 24.9±3.8 76.7±0.5
5C 56.5±0.4 54.0±0.7 49.8±0.2 57.0±0.2 50.7±2.1 20.4±6.0 58.1±0.3

2017

SP 86.4±0.2 79.3±1.9 75.8±0.3 88.9±0.2 87.9±1.0 53.2±7.6 89.3±0.3
DP 86.3±0.4 78.4±1.6 75.9±1.1 89.1±0.2 88.4±0.4 45.2±9.4 89.5±0.2
3C 58.6±0.2 53.6±0.6 51.5±0.2 60.4±0.2 57.7±1.7 30.0±4.1 61.3±0.2
4C 67.0±0.5 63.2±1.3 56.4±0.4 69.3±0.3 63.8±2.8 26.1±5.3 69.4±0.4
5C 50.2±0.3 47.2±0.9 43.9±0.3 51.7±0.2 49.0±0.8 19.8±5.2 51.8±0.3

2018

SP 84.5±0.6 79.3±1.7 69.2±0.6 87.3±0.4 87.0±0.5 59.1±13.4 88.2±0.4
DP 84.7±0.5 77.9±1.0 70.3±0.6 87.4±0.5 87.1±0.5 50.8±6.3 88.1±0.4
3C 59.6±0.3 55.1±1.3 48.6±0.7 61.4±0.5 59.0±3.0 33.2±2.6 64.0±0.6
4C 80.2±0.7 76.3±1.4 63.4±0.7 83.2±0.6 78.9±1.2 30.4±7.7 83.0±0.7
5C 62.4±0.3 58.1±0.7 50.5±0.5 63.9±0.3 58.4±4.9 23.2±6.9 63.7±0.5

2019

SP 86.4±0.3 80.8±1.0 77.3±0.3 88.5±0.3 85.8±2.8 41.7±9.4 89.3±0.4
DP 86.5±0.3 80.0±1.3 77.3±0.6 88.7±0.2 88.1±1.1 51.4±8.5 89.3±0.2
3C 59.5±0.4 55.0±0.4 53.4±0.5 60.8±0.2 58.9±2.4 33.6±5.8 62.4±0.5
4C 71.2±0.5 68.1±0.5 63.1±0.4 74.3±0.3 68.9±2.2 26.8±9.5 74.3±0.4
5C 54.4±0.3 52.0±0.5 48.8±0.3 56.2±0.3 52.7±0.5 21.8±7.1 56.0±0.2

2020

SP 89.8±0.3 84.4±0.7 84.6±0.4 90.9±0.3 90.4±0.7 53.9±16.9 92.3±0.1
DP 90.1±0.2 85.4±0.7 84.7±0.4 91.0±0.3 89.6±1.2 53.5±14.0 92.1±0.1
3C 66.8±0.4 62.3±0.4 62.4±0.4 67.8±0.2 63.6±4.1 41.5±4.6 69.2±0.4
4C 84.0±0.4 81.5±0.5 78.5±0.4 85.1±0.3 82.6±1.2 16.3±9.3 84.8±0.4
5C 66.8±0.5 63.6±0.6 61.1±0.2 68.1±0.4 64.2±1.3 24.4±10.1 67.3±0.6
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Table C.21: Link prediction test performance (accuracy in percentage) comparison
for variants of MSGNN for individual years 2000-2010 of the FiLL-pvCLCL data set.
Each variant is denoted by a q value and a 2-tuple: (whether to include signed features,
whether to include weighted features), where “T" and “F" stand for “True" and “False",
respectively. “T" for weighted features means simply summing up entries in the adjacency
matrix while “T’" means summing the absolute values of the entries. The best is marked
in bold red and the second best is marked in underline blue .

q value 0 q0 := 1/[2 maxi,j(Ai,j −Aj,i)]
Year Link Task (F, F) (F, T) (F, T’) (T, F) (T, T) (F, F) (F, T) (F, T’) (T, F) (T, T)

2000

SP 89.0±0.4 89.0±0.5 89.0±0.4 89.0±0.4 89.0±0.4 88.9±0.6 88.9±0.4 88.9±0.3 88.7±0.4 88.8±0.5
DP 88.9±0.4 89.0±0.5 89.0±0.5 89.0±0.4 89.1±0.4 89.1±0.4 89.1±0.4 89.1±0.4 89.1±0.6 89.1±0.5
3C 60.7±0.6 61.1±0.7 61.0±0.5 60.7±0.7 61.3±0.4 60.4±0.4 61.0±0.4 61.4±0.8 60.6±0.6 61.5±0.7
4C 68.7±0.8 71.0±0.5 70.9±0.7 70.7±0.6 72.3±0.5 67.9±2.3 70.5±0.7 70.8±0.8 71.2±0.6 71.9±0.5
5C 49.9±2.3 53.1±0.2 52.7±0.7 51.7±0.5 54.0±0.4 50.4±0.7 52.9±0.4 52.6±0.5 51.4±2.5 53.9±0.4

2001

SP 90.6±0.4 90.7±0.3 90.7±0.1 90.3±0.2 90.7±0.2 90.4±0.2 90.5±0.2 90.5±0.2 90.0±0.5 90.7±0.2
DP 90.6±0.4 90.5±0.2 90.6±0.2 90.4±0.3 90.7±0.2 90.7±0.4 90.7±0.3 90.7±0.2 90.6±0.3 90.7±0.1
3C 62.0±0.4 62.3±0.1 62.4±0.2 61.9±0.3 62.6±0.2 62.1±0.3 62.6±0.4 62.5±0.3 62.2±0.4 63.1±0.5
4C 71.9±1.0 74.6±0.4 74.6±0.5 74.6±0.6 75.8±0.3 72.2±1.2 74.5±0.7 74.4±0.5 74.9±0.6 75.7±0.3
5C 52.0±0.6 55.7±0.3 55.3±1.0 55.4±1.1 56.7±0.4 51.5±1.4 55.4±0.6 56.0±0.3 53.7±1.8 56.8±0.2

2002

SP 91.4±0.3 91.4±0.2 91.5±0.2 91.4±0.2 91.4±0.2 91.1±0.3 91.2±0.1 91.2±0.2 91.0±0.3 91.2±0.3
DP 91.1±0.5 91.4±0.2 91.5±0.2 91.3±0.2 91.5±0.1 91.5±0.3 91.3±0.1 91.5±0.2 91.3±0.2 91.5±0.2
3C 64.7±0.3 65.5±0.5 65.5±0.5 64.6±0.6 66.2±0.4 64.2±0.7 65.7±0.3 65.4±0.4 65.2±0.1 66.2±0.2
4C 83.4±1.1 84.4±0.3 84.7±0.4 84.4±0.6 85.7±0.5 83.3±1.0 84.7±0.2 84.6±0.4 84.6±0.8 85.7±0.4
5C 60.8±4.3 65.5±0.4 65.6±0.3 65.6±0.5 66.8±0.4 63.7±1.1 65.8±0.3 65.2±0.2 64.8±0.8 66.7±0.4

2003

SP 89.3±0.5 89.3±0.3 89.4±0.3 89.3±0.4 89.5±0.4 89.3±0.3 89.3±0.3 89.3±0.4 88.9±0.4 89.3±0.4
DP 89.4±0.4 89.4±0.4 89.5±0.4 89.4±0.5 89.6±0.4 89.5±0.5 89.4±0.2 89.5±0.4 89.6±0.3 89.6±0.4
3C 60.2±1.0 62.4±0.8 62.3±1.0 61.4±0.6 63.2±0.5 61.2±1.1 62.9±0.7 62.9±0.5 61.7±0.4 63.1±0.5
4C 80.3±0.6 81.9±0.2 81.9±0.3 81.5±0.6 82.6±0.4 79.7±0.8 81.8±0.5 81.6±0.2 81.4±0.9 82.7±0.4
5C 57.0±2.0 61.9±0.3 61.5±0.5 60.0±0.6 62.6±0.2 57.4±1.4 61.4±0.3 61.5±0.3 61.2±0.5 62.7±0.4

2004

SP 88.6±0.4 88.6±0.4 88.7±0.2 88.6±0.2 88.7±0.3 88.4±0.6 88.7±0.3 88.6±0.3 88.3±0.3 88.8±0.3
DP 88.5±0.2 88.8±0.3 88.8±0.2 88.7±0.3 88.8±0.3 88.8±0.3 88.7±0.4 88.7±0.3 88.7±0.2 88.8±0.3
3C 60.2±0.7 61.4±0.4 61.3±0.6 60.5±0.3 61.6±0.5 59.4±1.0 61.6±0.5 61.3±0.3 60.4±0.5 61.6±0.4
4C 75.5±0.9 78.0±0.3 77.7±0.6 77.3±0.6 78.8±0.6 75.9±0.5 77.5±0.7 77.6±0.5 77.4±0.4 78.7±0.4
5C 55.5±0.7 58.1±0.6 58.0±0.3 55.8±2.8 58.7±0.3 53.8±0.8 57.3±0.5 57.5±0.3 55.5±2.4 58.7±0.6

2005

SP 87.7±0.4 87.7±0.5 87.6±0.5 87.5±0.5 87.8±0.4 87.5±0.4 87.7±0.6 87.6±0.5 87.3±0.5 87.7±0.4
DP 87.6±0.5 87.8±0.4 87.7±0.6 87.5±0.5 87.9±0.4 87.3±0.8 87.8±0.4 87.8±0.5 87.8±0.4 87.8±0.4
3C 59.2±0.7 60.3±0.3 60.3±0.5 59.6±0.8 61.2±0.2 59.3±0.4 60.8±0.5 60.7±0.6 59.6±0.3 60.9±0.6
4C 78.2±0.4 79.7±0.3 79.7±0.4 79.0±1.2 80.8±0.2 78.1±0.4 79.1±0.5 79.4±0.3 80.3±0.3 80.5±0.2
5C 57.1±1.3 60.1±0.3 60.1±0.3 59.3±0.9 61.3±0.4 55.1±1.6 59.4±0.5 59.4±0.4 59.6±0.4 61.0±0.2

2006

SP 90.9±0.2 90.9±0.1 91.0±0.1 90.9±0.2 91.0±0.2 90.5±0.2 90.6±0.3 90.5±0.4 90.5±0.1 90.6±0.1
DP 90.8±0.2 90.9±0.1 91.0±0.2 91.0±0.2 91.1±0.2 91.0±0.1 91.2±0.1 91.0±0.2 91.0±0.1 91.1±0.1
3C 63.2±0.3 63.4±0.4 63.5±0.3 63.2±0.3 64.0±0.3 61.8±2.0 64.1±0.4 64.0±0.4 63.0±0.4 64.1±0.3
4C 80.1±0.8 81.2±0.3 81.4±0.6 81.5±0.7 82.9±0.2 79.8±0.5 81.0±0.7 81.4±0.5 81.7±0.9 83.1±0.4
5C 58.1±0.7 61.6±0.3 61.6±0.5 61.3±0.7 62.6±0.3 59.4±1.1 61.1±0.7 61.4±0.3 61.5±0.7 62.8±0.3

2007

SP 90.2±0.4 90.3±0.3 90.3±0.4 90.4±0.3 90.4±0.5 89.7±0.1 89.9±0.2 90.0±0.2 89.6±0.4 90.0±0.4
DP 90.3±0.3 90.4±0.3 90.2±0.3 90.3±0.4 90.4±0.3 90.2±0.4 90.4±0.3 90.3±0.3 90.4±0.4 90.6±0.4
3C 66.1±1.4 68.2±0.4 68.4±0.2 67.0±0.4 69.0±0.4 64.8±1.0 69.0±0.4 68.3±0.7 65.1±2.2 69.0±0.3
4C 85.3±0.5 87.3±0.3 86.9±0.5 87.4±0.6 88.1±0.2 85.5±0.4 87.3±0.1 86.7±0.7 86.9±0.8 88.4±0.2
5C 66.4±1.5 69.3±0.4 69.3±0.3 68.1±1.0 69.9±0.5 64.2±0.6 68.1±1.0 68.3±0.6 68.2±1.2 69.7±0.2

2008

SP 96.1±0.1 96.2±0.2 96.1±0.2 96.2±0.3 96.4±0.2 95.4±0.2 95.6±0.2 95.5±0.2 95.5±0.1 95.7±0.3
DP 96.3±0.1 96.3±0.1 96.1±0.2 96.2±0.3 96.4±0.1 96.2±0.1 96.4±0.1 96.3±0.2 96.2±0.2 96.3±0.2
3C 76.7±1.3 78.8±0.3 78.7±0.5 77.7±0.7 79.3±0.7 76.0±1.5 78.2±0.3 78.4±0.6 76.9±0.7 78.9±0.2
4C 94.5±1.1 95.6±0.2 95.4±0.3 95.9±0.3 96.1±0.2 93.6±0.8 95.1±0.4 94.4±1.3 95.3±0.2 96.2±0.3
5C 78.7±0.5 81.1±0.5 80.8±0.5 79.3±1.0 82.4±0.4 78.1±0.8 79.4±0.8 79.7±0.5 79.9±0.7 82.0±0.4

2009

SP 97.5±0.2 97.5±0.2 97.6±0.2 97.7±0.2 97.8±0.2 96.9±0.1 96.7±0.2 96.6±0.7 97.0±0.4 97.1±0.3
DP 97.5±0.2 97.6±0.1 97.6±0.2 97.6±0.1 97.8±0.1 97.5±0.2 97.6±0.2 97.6±0.2 97.5±0.2 97.6±0.1
3C 75.9±1.2 77.2±0.7 78.3±0.2 76.9±0.4 78.4±0.4 76.5±1.0 77.8±0.6 77.7±0.4 77.5±0.3 78.6±0.3
4C 93.5±0.5 94.6±0.2 94.7±0.2 94.0±0.5 95.2±0.3 93.7±0.3 94.6±0.2 94.4±0.3 94.2±0.2 95.0±0.2
5C 77.9±0.5 79.2±0.2 79.4±0.6 78.3±0.6 79.9±0.2 76.6±0.6 78.1±0.8 77.4±1.6 78.2±0.6 79.8±0.2

2010

SP 92.4±0.4 92.7±0.3 92.6±0.3 92.7±0.4 92.8±0.3 92.1±0.3 92.5±0.2 92.5±0.3 92.0±0.4 92.3±0.3
DP 92.5±0.3 92.7±0.2 92.7±0.3 92.7±0.4 92.6±0.3 92.7±0.4 92.8±0.4 92.6±0.3 92.6±0.3 92.7±0.4
3C 66.3±0.4 67.9±0.3 67.6±0.6 66.3±1.0 68.3±0.2 66.2±0.7 67.9±0.2 67.7±0.5 65.7±1.6 68.5±0.4
4C 88.8±0.6 90.4±0.2 90.4±0.3 90.1±0.5 90.9±0.4 89.2±0.8 90.0±0.4 90.3±0.4 90.3±0.2 91.1±0.4
5C 67.5±1.3 71.4±0.3 71.4±0.5 70.1±1.2 72.5±0.4 68.5±2.3 71.1±0.5 71.1±0.6 71.5±0.2 72.4±0.1
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Table C.22: Link prediction test performance (accuracy in percentage) comparison
for variants of MSGNN for individual years 2011-2020 of the FiLL-pvCLCL data set.
Each variant is denoted by a q value and a 2-tuple: (whether to include signed features,
whether to include weighted features), where “T" and “F" stand for “True" and “False",
respectively. “T" for weighted features means simply summing up entries in the adjacency
matrix while “T’" means summing the absolute values of the entries. The best is marked
in bold red and the second best is marked in underline blue .

q value 0 q0 := 1/[2 maxi,j(Ai,j −Aj,i)]
Year Link Task (F, F) (F, T) (F, T’) (T, F) (T, T) (F, F) (F, T) (F, T’) (T, F) (T, T)

2011

SP 98.4±0.3 98.7±0.2 98.6±0.1 98.6±0.1 98.7±0.2 97.8±0.5 98.0±0.2 98.0±0.2 98.3±0.2 98.3±0.3
DP 98.6±0.2 98.5±0.3 98.5±0.3 98.6±0.1 98.7±0.2 98.5±0.1 98.7±0.2 98.6±0.1 98.8±0.1 98.7±0.1
3C 84.5±1.4 86.7±0.2 86.4±0.4 84.0±1.2 86.5±0.2 83.8±1.1 85.5±1.5 85.9±0.4 84.2±0.8 86.2±0.3
4C 97.7±0.6 98.2±0.3 98.1±0.2 98.1±0.2 98.3±0.3 97.7±0.2 98.1±0.2 98.0±0.3 97.9±0.4 98.3±0.2
5C 85.3±0.8 87.0±0.4 87.4±0.4 86.0±0.9 87.4±0.3 83.2±2.3 86.6±0.4 86.8±0.5 85.6±0.8 87.2±0.4

2012

SP 92.4±0.3 92.6±0.3 92.6±0.4 92.5±0.4 92.7±0.3 92.4±0.4 92.5±0.3 92.4±0.3 92.2±0.5 92.4±0.3
DP 92.5±0.4 92.4±0.4 92.5±0.4 92.5±0.4 92.6±0.2 92.5±0.2 92.5±0.4 92.5±0.4 92.4±0.2 92.6±0.3
3C 65.8±0.3 66.6±0.3 66.5±0.1 66.5±0.5 67.1±0.2 65.2±1.1 66.5±0.2 66.8±0.5 66.2±0.2 67.4±0.3
4C 84.9±0.7 85.9±0.7 85.9±0.4 85.6±0.8 87.0±0.5 84.4±0.7 86.1±0.3 86.1±0.6 85.8±0.6 86.9±0.4
5C 63.4±0.5 65.7±0.3 65.5±0.4 65.7±0.9 66.8±0.1 62.8±1.2 65.6±0.5 66.0±0.3 64.4±1.5 67.0±0.2

2013

SP 90.3±0.3 90.3±0.2 90.3±0.4 90.4±0.2 90.5±0.3 90.0±0.2 90.1±0.2 90.3±0.3 89.8±0.3 90.3±0.1
DP 90.2±0.4 90.4±0.3 90.3±0.3 90.3±0.3 90.3±0.3 90.2±0.2 90.5±0.3 90.5±0.3 90.5±0.2 90.4±0.3
3C 64.7±0.7 66.3±0.2 66.5±0.3 65.4±0.5 66.9±0.2 62.0±2.6 65.9±0.5 66.0±0.5 64.4±0.9 66.1±0.3
4C 83.4±0.8 85.0±0.2 85.0±0.4 85.3±0.6 85.9±0.3 83.4±1.0 84.3±1.0 84.9±0.1 85.3±0.6 86.1±0.3
5C 62.5±1.9 66.2±0.3 66.3±0.3 65.3±0.7 67.0±0.3 62.1±0.7 65.6±0.4 65.6±0.6 64.5±1.0 66.8±0.3

2014

SP 87.3±0.3 87.3±0.3 87.3±0.2 87.2±0.2 87.3±0.2 86.9±0.3 87.1±0.2 87.0±0.2 86.8±0.4 87.1±0.2
DP 87.1±0.4 87.1±0.3 87.2±0.3 87.2±0.2 87.3±0.2 87.1±0.2 87.0±0.1 87.2±0.2 87.2±0.3 87.2±0.3
3C 59.6±0.6 60.3±0.2 60.4±0.1 59.8±0.5 60.8±0.3 59.4±0.2 60.2±0.2 60.3±0.4 59.7±0.6 60.6±0.2
4C 77.5±0.7 79.0±0.2 79.0±0.2 79.0±0.8 80.2±0.3 77.5±0.6 79.1±0.3 79.0±0.4 79.0±0.4 80.2±0.2
5C 57.0±0.6 59.2±0.2 59.3±0.3 58.9±1.0 60.3±0.4 56.8±0.9 59.6±0.4 59.3±0.2 57.7±1.2 60.3±0.4

2015

SP 89.0±0.3 89.2±0.3 89.1±0.4 89.1±0.3 89.1±0.4 88.9±0.2 88.7±0.2 88.7±0.2 88.7±0.3 88.8±0.2
DP 89.2±0.3 89.2±0.3 89.1±0.4 89.3±0.4 89.2±0.4 89.0±0.2 89.2±0.4 89.2±0.4 89.2±0.4 89.3±0.3
3C 62.3±0.4 63.4±0.3 63.2±0.3 63.0±0.7 63.5±0.5 62.5±0.4 63.3±0.2 63.4±0.3 62.9±0.3 63.8±0.4
4C 82.3±0.5 83.5±0.5 83.2±0.6 84.0±0.7 84.6±0.5 81.7±1.2 83.3±0.4 83.6±0.3 84.1±0.4 84.4±0.5
5C 61.2±1.5 64.3±0.4 63.8±0.5 63.2±1.2 65.6±0.4 61.4±0.8 64.2±0.4 64.0±0.4 63.8±0.8 65.7±0.4

2016

SP 90.0±0.4 89.9±0.4 90.0±0.4 90.1±0.4 90.2±0.5 89.9±0.2 89.2±1.2 89.7±0.4 89.8±0.3 89.7±0.5
DP 89.9±0.6 90.0±0.4 89.9±0.4 90.1±0.5 90.1±0.5 90.1±0.5 90.0±0.4 90.0±0.5 90.1±0.4 90.0±0.5
3C 62.9±0.5 63.7±0.1 63.6±0.4 62.4±0.8 64.0±0.3 62.5±0.7 63.5±0.4 63.5±0.2 62.8±0.7 63.9±0.2
4C 78.9±0.5 80.7±0.5 80.5±0.6 80.9±0.3 82.0±0.5 77.9±2.2 80.8±0.5 80.6±0.6 81.0±1.1 82.1±0.5
5C 56.9±2.5 60.8±0.5 60.8±0.4 60.8±1.0 62.2±0.3 57.8±1.7 61.1±0.3 61.1±0.3 60.8±0.7 62.0±0.4

2017

SP 90.1±0.5 89.9±0.5 90.1±0.4 90.2±0.3 90.2±0.3 89.9±0.5 89.6±1.2 90.1±0.4 89.6±0.6 90.0±0.3
DP 90.0±0.4 90.1±0.4 90.1±0.3 90.1±0.3 90.1±0.2 90.2±0.4 90.2±0.4 90.1±0.3 90.2±0.4 90.2±0.3
3C 61.4±0.6 62.0±0.4 62.1±0.3 61.6±0.2 62.0±0.1 61.1±0.8 62.3±0.4 62.4±0.5 62.2±0.5 62.3±0.4
4C 65.4±0.8 68.2±0.5 68.5±0.4 68.6±0.3 70.1±0.5 66.4±1.3 68.7±0.4 68.8±0.2 68.7±0.7 69.6±0.4
5C 50.1±0.5 52.3±0.4 52.8±0.4 51.5±0.7 53.4±0.2 46.0±4.7 52.6±0.5 52.6±0.2 51.3±0.8 53.2±0.1

2018

SP 86.9±0.4 86.8±0.5 86.9±0.4 86.8±0.4 87.0±0.4 86.6±0.7 86.5±0.3 86.5±0.4 86.5±0.5 86.6±0.8
DP 86.9±0.5 86.8±0.4 86.8±0.4 86.7±0.4 86.9±0.4 86.7±0.3 86.9±0.4 86.9±0.5 86.8±0.5 87.0±0.4
3C 59.7±1.3 60.9±0.5 61.0±0.6 60.3±0.5 61.5±0.4 60.0±0.5 61.3±0.3 61.5±0.5 60.8±0.3 61.4±0.3
4C 75.8±1.2 78.4±0.5 78.5±0.6 78.4±1.2 79.7±0.4 75.4±3.1 78.2±0.4 78.1±0.6 78.0±0.9 79.5±0.5
5C 57.5±0.8 59.2±0.4 59.3±0.2 58.7±1.9 60.9±0.4 56.2±1.4 59.4±0.2 59.3±0.8 59.1±0.5 60.5±0.3

2019

SP 90.8±0.3 90.8±0.4 90.8±0.3 90.9±0.3 90.8±0.3 90.6±0.5 90.6±0.4 90.6±0.4 90.4±0.1 90.6±0.4
DP 90.8±0.3 90.8±0.3 90.8±0.2 90.7±0.3 90.9±0.3 90.6±0.3 90.8±0.3 90.7±0.3 90.9±0.3 90.9±0.3
3C 63.1±0.7 63.9±0.3 64.0±0.2 63.4±1.2 64.6±0.2 63.5±0.3 64.2±0.2 64.2±0.2 63.4±0.6 64.3±0.2
4C 74.3±0.8 76.1±0.3 76.1±0.3 77.1±0.6 77.9±0.3 75.0±0.4 76.3±0.5 76.5±0.4 77.1±0.3 77.5±0.4
5C 55.2±1.8 58.0±0.3 57.9±0.5 57.8±0.8 59.0±0.2 54.5±2.9 57.8±0.4 57.6±0.5 55.6±1.9 58.7±0.2

2020

SP 97.1±0.2 97.1±0.2 97.2±0.1 97.3±0.2 97.3±0.2 96.4±0.2 96.4±0.1 96.4±0.2 96.7±0.1 96.6±0.2
DP 97.3±0.1 97.2±0.1 97.1±0.1 97.3±0.2 97.3±0.2 97.2±0.1 97.1±0.2 97.1±0.2 97.1±0.1 97.2±0.1
3C 81.8±0.6 83.2±0.1 83.1±0.2 81.6±1.5 82.8±1.3 80.1±1.4 82.8±0.6 82.6±0.6 82.2±0.4 82.9±0.5
4C 96.2±0.2 96.2±0.2 96.5±0.2 96.4±0.5 96.4±0.2 96.0±0.2 96.1±0.6 96.1±0.2 96.2±0.2 96.5±0.1
5C 80.3±1.6 82.9±0.3 82.9±0.3 82.1±0.5 83.2±0.4 78.8±3.8 82.6±0.6 82.7±0.2 82.1±0.5 82.8±0.4
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Table C.23: Link prediction test performance (accuracy in percentage) comparison for
variants of MSGNN for individual years 2000-2010 of the FiLL-OPCL data set. Each
variant is denoted by a q value and a 2-tuple: (whether to include signed features, whether
to include weighted features), where “T" and “F" stand for “True" and “False", respectively.
“T" for weighted features means simply summing up entries in the adjacency matrix while
“T’" means summing the absolute values of the entries. The best is marked in bold red
and the second best is marked in underline blue .

q value 0 q0 := 1/[2 maxi,j(Ai,j −Aj,i)]
Year Link Task (F, F) (F, T) (F, T’) (T, F) (T, T) (F, F) (F, T) (F, T’) (T, F) (T, T)

2000

SP 87.5±0.5 87.6±0.5 87.7±0.5 87.7±0.6 87.9±0.5 87.2±0.5 87.6±0.6 87.6±0.5 87.4±0.5 87.6±0.5
DP 87.6±0.6 87.6±0.6 87.5±0.5 87.7±0.5 87.9±0.5 87.6±0.6 87.8±0.5 87.9±0.6 87.7±0.4 87.9±0.6
3C 59.5±0.9 60.0±0.4 60.2±0.5 59.6±0.8 60.7±0.3 59.4±1.2 60.6±0.6 60.6±0.4 59.7±0.5 60.7±0.4
4C 68.4±1.2 69.9±0.4 70.1±0.3 70.3±0.8 71.3±0.3 68.1±0.8 70.0±0.6 70.0±0.5 70.5±0.5 71.3±0.3
5C 49.8±2.1 52.3±0.4 52.4±0.5 51.1±1.0 53.5±0.4 49.0±1.6 52.4±0.6 52.1±0.3 51.6±1.0 53.4±0.5

2001

SP 89.7±0.4 89.9±0.4 89.9±0.3 89.9±0.3 90.0±0.5 89.7±0.5 89.8±0.4 89.8±0.3 89.4±0.4 89.9±0.4
DP 89.9±0.3 89.9±0.4 90.0±0.3 89.9±0.3 90.0±0.3 89.8±0.4 90.1±0.3 90.0±0.4 89.9±0.3 90.2±0.3
3C 60.4±0.5 61.6±0.4 61.5±0.4 61.2±0.6 61.9±0.3 61.1±0.3 61.8±0.5 62.0±0.4 61.2±0.5 62.2±0.4
4C 71.9±0.6 74.3±0.7 74.1±0.6 74.5±0.9 75.5±0.3 71.9±1.4 74.3±0.7 74.0±0.9 73.6±1.4 75.4±0.6
5C 52.1±0.7 54.7±0.5 54.6±0.4 53.7±0.6 55.8±0.4 49.4±2.0 54.8±0.7 54.6±0.6 54.7±0.8 55.8±0.4

2002

SP 90.3±0.2 90.4±0.3 90.4±0.2 89.9±0.3 90.5±0.2 89.7±0.7 90.2±0.3 90.2±0.3 89.6±0.3 90.0±0.4
DP 90.2±0.3 90.3±0.3 90.3±0.4 90.3±0.2 90.3±0.2 90.4±0.3 90.4±0.3 90.4±0.2 90.3±0.2 90.5±0.3
3C 63.0±1.1 64.7±0.3 64.5±0.5 64.4±0.4 65.1±0.7 62.8±1.0 64.6±0.6 64.6±0.7 64.0±0.4 65.0±0.4
4C 82.3±0.7 83.0±0.5 83.3±0.6 83.5±0.6 84.5±0.5 82.4±0.8 83.4±0.5 83.2±0.7 83.4±0.5 84.5±0.5
5C 61.8±1.1 64.2±0.3 64.4±0.4 64.4±0.7 65.4±0.3 60.4±3.0 64.5±0.3 64.7±0.2 64.4±1.1 65.5±0.2

2003

SP 88.8±0.2 89.1±0.4 88.9±0.2 88.9±0.2 89.1±0.3 88.7±0.1 88.9±0.2 88.9±0.2 88.6±0.3 88.9±0.3
DP 89.1±0.2 89.1±0.4 89.0±0.2 88.8±0.4 89.2±0.5 88.9±0.1 89.0±0.5 89.1±0.4 89.0±0.4 89.2±0.5
3C 60.9±0.3 61.9±0.2 62.0±0.2 61.3±0.5 62.5±0.5 59.7±2.3 62.4±0.4 62.4±0.4 61.2±0.7 62.7±0.4
4C 80.1±0.8 81.8±0.3 81.6±0.4 81.4±0.7 82.2±0.4 80.6±0.5 81.3±0.6 81.6±0.6 81.5±0.7 82.5±0.3
5C 57.6±1.8 61.5±0.5 61.6±0.4 60.4±1.5 62.4±0.3 55.8±4.4 61.2±0.5 61.4±0.3 61.1±0.7 62.3±0.4

2004

SP 87.5±0.4 87.4±0.3 87.4±0.3 87.5±0.5 87.4±0.3 87.4±0.4 87.5±0.4 87.4±0.3 87.2±0.3 87.4±0.4
DP 87.4±0.2 87.2±0.5 87.5±0.3 87.3±0.3 87.4±0.3 87.4±0.3 87.4±0.3 87.4±0.3 87.3±0.4 87.4±0.2
3C 59.4±0.3 59.9±0.4 60.0±0.3 59.2±0.8 60.3±0.4 59.0±0.5 60.3±0.6 60.2±0.3 59.6±0.5 60.1±0.7
4C 76.3±0.6 77.7±0.4 77.7±0.5 77.3±1.1 78.3±0.3 75.9±0.6 77.6±0.3 76.9±0.4 77.7±0.5 78.3±0.3
5C 55.2±0.8 57.1±0.3 57.4±0.2 56.6±0.7 57.9±0.4 55.3±0.6 56.7±0.8 56.7±0.5 55.9±0.4 57.9±0.3

2005

SP 86.2±0.4 86.3±0.4 86.3±0.3 86.1±0.7 86.4±0.3 85.9±0.6 86.2±0.4 86.3±0.4 85.7±0.4 86.1±0.4
DP 86.3±0.4 86.5±0.3 86.5±0.4 86.1±0.4 86.4±0.3 86.5±0.4 86.3±0.4 86.4±0.4 86.3±0.4 86.4±0.3
3C 58.3±0.8 59.0±0.4 59.2±0.5 58.7±0.6 59.5±0.6 58.5±0.5 59.7±0.4 59.3±0.4 58.6±0.4 59.5±0.6
4C 76.2±1.1 78.6±0.2 78.5±0.2 78.2±0.6 79.6±0.2 77.3±0.9 78.5±0.4 78.4±0.6 78.8±0.4 79.5±0.3
5C 54.3±1.8 58.1±0.4 58.0±0.4 57.0±0.6 59.0±0.4 53.8±2.1 57.8±0.5 57.8±0.3 57.1±0.8 58.8±0.5

2006

SP 89.8±0.4 89.6±0.4 89.9±0.4 89.8±0.4 89.9±0.5 89.5±0.4 89.6±0.4 89.7±0.4 89.3±0.6 89.7±0.4
DP 89.7±0.4 89.6±0.5 89.8±0.4 89.6±0.7 89.9±0.4 89.8±0.5 89.9±0.4 90.1±0.5 89.8±0.3 90.1±0.4
3C 61.5±0.5 62.1±0.3 62.2±0.4 61.9±0.5 62.8±0.6 61.6±0.4 62.5±0.6 62.6±0.4 60.7±2.6 63.0±0.5
4C 78.1±0.9 80.7±0.3 80.6±0.6 80.9±0.5 81.6±0.2 78.5±0.9 80.0±0.4 80.0±0.5 80.1±0.4 81.6±0.3
5C 57.5±0.7 59.9±0.5 60.0±0.4 59.3±1.4 60.9±0.4 56.4±2.2 59.3±0.5 59.7±0.4 59.5±0.5 60.8±0.6

2007

SP 87.8±0.3 88.0±0.3 87.9±0.3 87.8±0.1 88.0±0.2 87.7±0.3 87.8±0.3 87.9±0.3 87.4±0.2 87.8±0.2
DP 87.7±0.4 87.8±0.2 87.9±0.2 87.8±0.2 88.0±0.2 88.0±0.1 88.0±0.2 87.8±0.2 87.9±0.3 88.0±0.3
3C 61.6±0.6 63.2±0.6 62.9±0.9 62.3±0.4 63.4±0.6 61.4±0.4 63.2±0.1 63.4±0.6 61.9±0.7 63.7±0.5
4C 79.6±0.6 81.7±0.6 81.8±0.7 81.7±0.8 83.1±0.2 79.1±1.0 82.0±0.6 82.0±0.3 82.1±0.5 83.0±0.2
5C 60.4±1.0 62.8±0.3 62.6±0.3 61.8±0.6 63.7±0.4 60.2±1.5 62.9±0.5 62.9±0.6 62.5±0.5 64.1±0.4

2008

SP 96.1±0.3 96.4±0.3 96.2±0.4 96.4±0.3 96.5±0.3 95.6±0.2 95.5±0.3 95.5±0.4 95.5±0.5 95.7±0.2
DP 96.4±0.3 96.2±0.4 96.3±0.3 96.5±0.3 96.6±0.3 96.2±0.3 96.5±0.3 96.4±0.3 96.3±0.4 96.6±0.2
3C 75.4±1.0 76.8±0.3 77.0±0.2 75.4±1.5 77.6±0.1 73.2±1.0 75.9±0.8 76.0±0.2 74.5±0.9 76.7±0.2
4C 93.9±0.3 94.8±0.4 95.1±0.2 95.0±0.5 95.7±0.2 92.7±0.6 94.0±0.4 94.3±0.2 94.5±0.4 95.4±0.5
5C 74.7±4.0 78.8±0.3 78.7±0.4 77.8±0.8 79.8±0.3 74.8±0.9 77.4±0.8 76.6±2.2 76.7±1.2 78.9±0.7

2009

SP 94.9±0.2 95.1±0.1 95.0±0.2 95.0±0.2 95.2±0.2 94.7±0.1 94.7±0.1 94.7±0.3 94.5±0.3 94.5±0.2
DP 94.9±0.1 95.1±0.1 95.0±0.2 95.0±0.2 95.3±0.1 95.1±0.1 95.1±0.1 95.1±0.2 95.1±0.2 95.2±0.2
3C 68.1±0.6 70.4±0.1 70.8±0.3 69.9±0.6 70.8±0.4 69.2±0.5 70.3±0.4 70.5±0.4 70.0±0.4 70.5±0.2
4C 88.9±1.2 90.5±0.4 90.8±0.3 91.2±0.4 91.6±0.3 89.9±0.2 90.8±0.4 90.6±0.4 90.9±0.3 91.4±0.3
5C 69.7±0.8 72.5±0.3 72.4±0.3 72.2±0.3 73.5±0.4 69.9±0.6 72.1±0.2 72.4±0.3 71.9±0.4 73.2±0.2

2010

SP 92.3±0.4 92.4±0.4 92.4±0.3 92.3±0.3 92.5±0.3 92.0±0.5 92.2±0.4 92.1±0.4 91.9±0.3 92.2±0.2
DP 92.1±0.5 92.4±0.4 92.4±0.3 92.3±0.3 92.4±0.4 92.4±0.3 92.5±0.3 92.5±0.3 92.3±0.4 92.5±0.4
3C 63.7±1.8 66.5±0.7 66.4±0.4 66.0±0.4 67.2±0.3 64.1±0.8 66.7±0.7 66.6±0.5 65.5±0.4 67.1±0.5
4C 87.5±1.0 88.3±0.5 88.6±0.4 88.4±0.6 89.4±0.4 86.9±1.1 88.1±0.3 88.1±0.4 88.7±0.4 89.3±0.3
5C 67.1±0.7 68.8±0.5 68.9±0.1 67.8±1.0 69.8±0.2 66.1±1.4 68.6±0.6 68.6±0.3 67.7±0.8 69.9±0.3
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Table C.24: Link prediction test performance (accuracy in percentage) comparison for
variants of MSGNN for individual years 2011-2020 of the FiLL-OPCL data set. Each
variant is denoted by a q value and a 2-tuple: (whether to include signed features, whether
to include weighted features), where “T" and “F" stand for “True" and “False", respectively.
“T" for weighted features means simply summing up entries in the adjacency matrix while
“T’" means summing the absolute values of the entries. The best is marked in bold red
and the second best is marked in underline blue .

q value 0 q0 := 1/[2 maxi,j(Ai,j −Aj,i)]
Year Link Task (F, F) (F, T) (F, T’) (T, F) (T, T) (F, F) (F, T) (F, T’) (T, F) (T, T)

2011

SP 96.0±0.4 96.1±0.3 96.1±0.3 96.2±0.2 96.2±0.3 95.4±0.4 95.5±0.5 95.5±0.3 95.7±0.3 95.9±0.2
DP 95.5±0.9 96.0±0.4 96.0±0.2 96.3±0.4 96.3±0.2 96.0±0.2 96.1±0.3 96.2±0.2 96.2±0.3 96.3±0.3
3C 77.2±0.4 78.3±0.6 78.7±0.1 77.9±0.4 79.0±0.2 76.8±0.8 78.5±0.6 78.7±0.4 76.7±1.8 78.6±0.4
4C 94.3±0.4 94.9±0.3 95.0±0.2 95.0±0.3 95.4±0.2 93.9±0.6 94.8±0.2 94.7±0.2 95.1±0.2 95.5±0.3
5C 77.5±1.3 80.2±0.6 80.2±0.4 79.3±0.5 80.9±0.4 77.6±1.7 79.7±0.6 79.8±0.5 79.8±0.4 80.6±0.3

2012

SP 91.0±0.5 91.1±0.3 91.1±0.2 90.9±0.4 91.1±0.2 90.6±0.4 90.7±0.6 90.8±0.4 90.6±0.2 90.8±0.5
DP 90.9±0.4 91.1±0.3 91.0±0.2 91.0±0.3 91.2±0.3 91.0±0.3 91.2±0.3 91.1±0.4 91.0±0.2 91.2±0.2
3C 63.1±0.8 64.1±0.4 63.6±0.4 63.4±0.4 64.2±0.4 63.4±0.3 64.0±0.7 64.2±0.6 63.3±1.2 64.4±0.5
4C 78.6±0.9 80.6±0.2 80.6±0.3 80.9±0.6 81.7±0.4 78.0±1.5 80.6±0.4 80.4±0.3 80.5±0.5 81.5±0.4
5C 57.2±1.3 60.6±0.0 60.7±0.5 60.0±0.7 61.6±0.5 55.8±3.1 60.5±0.5 60.3±0.3 60.2±0.5 61.5±0.3

2013

SP 89.1±0.2 89.3±0.2 89.3±0.3 89.3±0.3 89.5±0.3 88.9±0.3 88.9±0.3 89.0±0.2 88.9±0.2 89.4±0.2
DP 89.0±0.3 89.3±0.2 89.2±0.3 89.1±0.3 89.4±0.3 89.1±0.2 89.3±0.2 89.2±0.3 89.2±0.2 89.3±0.2
3C 63.3±0.2 63.8±0.4 63.9±0.2 63.2±0.4 64.3±0.4 62.8±0.4 63.9±0.3 64.1±0.3 63.0±0.5 64.3±0.3
4C 79.8±1.6 82.0±0.4 81.8±0.4 82.6±0.6 83.3±0.3 80.8±1.4 82.3±0.3 82.0±0.5 81.7±1.0 82.8±0.8
5C 61.5±0.5 63.1±0.4 63.0±0.5 61.9±1.6 64.2±0.3 60.7±0.8 62.5±0.7 63.1±0.6 62.4±0.8 63.9±0.4

2014

SP 87.7±0.3 87.8±0.4 87.6±0.3 87.6±0.3 87.7±0.4 87.5±0.4 87.3±0.7 87.5±0.3 87.3±0.5 87.5±0.3
DP 87.6±0.4 87.6±0.3 87.7±0.3 87.7±0.5 87.7±0.5 87.6±0.3 87.6±0.3 87.6±0.4 87.7±0.5 87.9±0.4
3C 60.5±0.6 61.2±0.5 61.2±0.7 60.9±0.3 61.8±0.7 60.6±0.5 61.7±0.4 61.6±0.2 61.1±0.3 61.9±0.2
4C 78.3±1.6 80.1±0.2 80.4±0.3 80.3±0.4 81.3±0.3 78.5±0.3 80.6±0.2 80.4±0.3 80.9±0.4 81.2±0.2
5C 58.4±1.1 61.0±0.4 61.2±0.4 60.5±0.5 61.9±0.3 58.2±1.0 60.5±0.3 60.9±0.3 59.0±1.6 61.8±0.3

2015

SP 89.5±0.4 89.6±0.3 89.7±0.3 89.5±0.4 89.8±0.3 89.1±0.2 89.1±0.4 89.2±0.5 89.0±0.5 89.6±0.4
DP 89.5±0.2 89.7±0.3 89.5±0.3 89.7±0.3 89.9±0.3 89.6±0.2 89.6±0.3 89.7±0.3 89.6±0.2 89.8±0.3
3C 62.2±0.6 63.5±0.6 63.7±0.5 62.7±0.8 64.1±0.4 62.0±1.0 63.8±0.3 63.7±0.5 62.8±0.2 64.1±0.2
4C 82.1±0.5 83.6±0.4 83.5±0.2 83.7±0.6 84.7±0.3 82.8±0.4 83.6±0.4 83.6±0.3 83.8±0.5 84.8±0.2
5C 61.9±0.5 63.8±0.5 63.9±0.6 63.5±0.7 64.9±0.4 61.5±0.5 63.7±0.5 63.7±0.8 63.4±1.1 64.8±0.5

2016

SP 88.9±0.4 88.9±0.3 88.9±0.3 88.8±0.4 89.0±0.2 88.7±0.2 88.8±0.3 88.5±0.3 88.7±0.4 88.7±0.3
DP 88.9±0.3 88.7±0.3 88.6±0.4 88.8±0.4 88.9±0.2 88.6±0.6 88.9±0.2 88.8±0.3 88.7±0.3 88.9±0.3
3C 61.4±0.6 62.4±0.6 61.9±0.3 61.6±0.5 62.5±0.2 61.5±0.6 61.8±0.5 62.0±0.4 61.4±0.5 62.2±0.5
4C 72.6±1.7 75.2±0.4 74.4±0.2 76.2±0.6 76.8±0.2 73.6±1.0 75.0±0.7 74.9±0.1 75.6±0.6 76.7±0.5
5C 54.7±1.0 56.8±0.7 56.6±0.5 56.4±1.0 57.9±0.3 51.4±1.6 56.9±0.8 57.1±0.7 56.2±0.6 58.1±0.3

2017

SP 89.2±0.2 89.4±0.2 89.2±0.2 89.2±0.2 89.3±0.3 89.1±0.2 89.3±0.2 89.3±0.3 88.9±0.3 89.4±0.3
DP 89.3±0.2 89.2±0.3 89.2±0.2 89.4±0.1 89.3±0.3 89.4±0.1 89.4±0.2 89.3±0.3 89.3±0.2 89.5±0.2
3C 60.4±0.6 61.0±0.3 61.1±0.2 60.7±0.3 61.3±0.3 60.9±0.5 61.4±0.3 61.3±0.2 60.7±0.3 61.3±0.2
4C 65.8±0.4 68.4±0.6 68.3±0.3 68.9±0.8 69.5±0.5 64.9±2.9 68.4±0.8 68.6±0.5 68.1±0.7 69.4±0.4
5C 49.2±0.5 51.0±0.3 51.1±0.6 49.9±1.3 52.0±0.4 47.9±1.2 51.1±0.6 51.4±0.4 49.7±0.8 51.8±0.3

2018

SP 88.0±0.5 88.0±0.4 88.0±0.4 88.0±0.3 88.2±0.4 87.3±0.5 87.8±0.5 87.8±0.6 87.4±0.6 87.7±0.6
DP 87.7±0.7 88.0±0.6 88.0±0.4 88.1±0.4 88.1±0.4 88.0±0.6 88.1±0.5 88.0±0.4 87.8±0.6 88.1±0.4
3C 61.1±0.4 63.1±0.5 63.1±0.5 62.5±0.6 63.7±0.3 61.3±1.3 63.8±0.4 63.8±0.5 62.0±0.7 64.0±0.6
4C 80.6±0.5 82.1±0.3 82.0±0.4 82.1±0.6 83.0±0.4 79.6±0.6 81.1±0.5 81.3±0.3 81.6±1.2 83.0±0.7
5C 61.1±0.9 62.8±0.5 62.7±0.5 62.2±0.5 63.8±0.5 58.3±5.1 62.3±0.4 62.4±0.5 61.9±0.9 63.7±0.5

2019

SP 89.2±0.2 89.1±0.3 89.2±0.5 89.1±0.4 89.3±0.4 88.6±1.1 89.1±0.2 89.0±0.2 88.6±0.3 89.1±0.5
DP 89.0±0.4 89.2±0.2 89.3±0.2 89.1±0.2 89.4±0.2 89.3±0.3 89.3±0.2 89.3±0.4 89.2±0.4 89.3±0.2
3C 61.3±0.3 62.0±0.4 61.9±0.2 61.6±0.3 62.2±0.2 60.4±0.8 62.3±0.5 62.2±0.5 62.1±0.5 62.4±0.5
4C 70.8±1.0 72.4±0.4 72.8±0.3 73.2±0.5 74.5±0.2 71.6±0.8 72.9±0.3 72.9±0.2 73.1±0.6 74.3±0.4
5C 51.4±2.0 55.0±0.3 55.2±0.2 53.7±0.9 56.0±0.3 52.4±1.3 55.1±0.3 55.2±0.2 53.3±2.3 56.0±0.2

2020

SP 92.0±0.1 91.8±0.4 91.8±0.2 92.2±0.2 92.3±0.1 91.5±0.2 91.4±0.2 91.3±0.2 91.6±0.2 91.5±0.1
DP 91.8±0.2 91.7±0.3 92.0±0.3 92.2±0.1 92.2±0.1 91.7±0.3 92.0±0.2 91.9±0.1 92.0±0.2 92.1±0.1
3C 66.5±0.7 69.0±0.3 68.6±0.5 68.2±1.0 69.2±0.3 66.0±1.2 69.2±0.3 69.0±0.4 67.3±0.7 69.2±0.4
4C 83.0±0.9 84.0±0.4 84.0±0.3 84.8±0.3 85.4±0.2 81.4±1.4 83.1±0.5 83.1±0.7 84.1±1.0 84.8±0.4
5C 64.2±1.7 66.5±0.5 66.6±0.7 66.3±0.6 67.8±0.2 62.5±0.5 65.1±1.0 65.6±1.4 65.3±1.2 67.3±0.6
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Table C.25: Link prediction test performance (accuracy in percentage) comparison for
MSGNN with different q values for individual years 2000-2010 of the FiLL-pvCLCL data
set. The best is marked in bold red and the second best is marked in underline blue
.

Year Link Task q = 0 q = 0.2q0 q = 0.4q0 q = 0.6q0 q = 0.8q0 q = q0

2000

SP 89.0±0.4 89.1±0.3 88.9±0.5 88.9±0.4 88.7±0.6 88.8±0.5
DP 89.1±0.4 89.1±0.4 89.1±0.3 89.1±0.4 89.1±0.4 89.1±0.5
3C 61.3±0.4 61.3±0.4 61.3±0.5 61.3±0.5 61.5±0.5 61.5±0.7
4C 72.3±0.5 72.1±0.5 72.1±0.7 72.1±0.5 72.2±0.6 71.9±0.5
5C 54.0±0.4 53.9±0.4 54.0±0.5 53.9±0.6 53.8±0.5 53.9±0.4

2001

SP 90.7±0.2 90.5±0.3 90.4±0.2 90.6±0.3 90.4±0.3 90.7±0.2
DP 90.7±0.2 90.7±0.1 90.7±0.2 90.7±0.2 90.7±0.2 90.7±0.1
3C 62.6±0.2 62.6±0.2 62.6±0.3 62.7±0.2 62.6±0.2 63.1±0.5
4C 75.8±0.3 75.8±0.4 75.7±0.3 76.1±0.3 75.9±0.4 75.7±0.3
5C 56.7±0.4 56.8±0.2 56.7±0.3 56.8±0.3 56.8±0.3 56.8±0.2

2002

SP 91.4±0.2 91.0±0.3 91.1±0.2 90.9±0.4 91.2±0.3 91.2±0.3
DP 91.5±0.1 91.5±0.1 91.4±0.3 91.5±0.2 91.4±0.1 91.5±0.2
3C 66.2±0.4 66.0±0.2 66.0±0.4 66.1±0.2 65.9±0.4 66.2±0.2
4C 85.7±0.5 85.7±0.5 85.5±0.3 85.5±0.3 85.6±0.4 85.7±0.4
5C 66.8±0.4 66.8±0.4 66.7±0.5 66.7±0.3 66.8±0.3 66.7±0.4

2003

SP 89.5±0.4 89.0±0.4 89.4±0.3 89.2±0.4 89.2±0.3 89.3±0.4
DP 89.6±0.4 89.5±0.4 89.5±0.4 89.5±0.4 89.6±0.4 89.6±0.4
3C 63.2±0.5 62.9±0.5 63.3±0.3 63.2±0.4 63.2±0.5 63.1±0.5
4C 82.6±0.4 82.8±0.3 82.9±0.2 82.8±0.2 82.9±0.2 82.7±0.4
5C 62.6±0.2 62.7±0.3 62.8±0.3 62.8±0.4 62.4±0.4 62.7±0.4

2004

SP 88.7±0.3 88.2±0.8 88.7±0.3 88.7±0.3 88.6±0.2 88.8±0.3
DP 88.8±0.3 88.7±0.3 88.7±0.4 88.8±0.4 88.7±0.2 88.8±0.3
3C 61.6±0.5 61.7±0.5 61.8±0.5 61.7±0.2 61.8±0.3 61.6±0.4
4C 78.8±0.6 78.7±0.4 78.9±0.5 78.6±0.4 78.7±0.5 78.7±0.4
5C 58.7±0.3 58.7±0.4 58.8±0.5 58.8±0.5 58.8±0.3 58.7±0.6

2005

SP 87.8±0.4 87.4±0.6 87.4±0.4 87.7±0.5 87.7±0.3 87.7±0.4
DP 87.9±0.4 87.7±0.5 87.8±0.5 87.8±0.4 87.8±0.4 87.8±0.4
3C 61.2±0.2 61.2±0.2 61.0±0.4 60.9±0.3 61.1±0.2 60.9±0.6
4C 80.8±0.2 80.7±0.4 80.8±0.2 80.8±0.2 80.6±0.2 80.5±0.2
5C 61.3±0.4 61.3±0.3 61.2±0.3 61.3±0.2 61.1±0.2 61.0±0.2

2006

SP 91.0±0.2 90.7±0.4 90.7±0.2 91.0±0.3 90.6±0.1 90.6±0.1
DP 91.1±0.2 91.0±0.2 91.1±0.1 91.0±0.1 90.9±0.2 91.1±0.1
3C 64.0±0.3 64.3±0.4 64.2±0.4 64.0±0.4 64.0±0.2 64.1±0.3
4C 82.9±0.2 82.8±0.2 83.0±0.3 82.9±0.2 82.9±0.3 83.1±0.4
5C 62.6±0.3 62.6±0.2 62.6±0.4 62.6±0.2 63.0±0.3 62.8±0.3

2007

SP 90.4±0.5 90.3±0.4 90.0±0.3 90.3±0.3 90.1±0.3 90.0±0.4
DP 90.4±0.3 90.5±0.4 90.4±0.4 90.4±0.3 90.5±0.4 90.6±0.4
3C 69.0±0.4 69.0±0.7 69.2±0.3 69.1±0.3 69.0±0.2 69.0±0.3
4C 88.1±0.2 88.3±0.4 88.2±0.4 88.1±0.3 88.4±0.2 88.4±0.2
5C 69.9±0.5 69.9±0.6 70.0±0.5 69.7±0.4 69.7±0.5 69.7±0.2

2008

SP 96.4±0.2 95.8±0.2 95.9±0.1 95.7±0.3 95.5±0.4 95.7±0.3
DP 96.4±0.1 96.5±0.2 96.5±0.1 96.5±0.1 96.3±0.4 96.3±0.2
3C 79.3±0.7 79.0±0.2 79.2±0.3 79.1±0.1 78.5±0.3 78.9±0.2
4C 96.1±0.2 96.5±0.2 96.3±0.3 96.2±0.2 96.1±0.5 96.2±0.3
5C 82.4±0.4 82.2±0.6 82.2±0.7 82.2±0.6 82.1±0.4 82.0±0.4

2009

SP 97.8±0.2 97.2±0.1 97.3±0.2 97.3±0.2 97.1±0.2 97.1±0.3
DP 97.8±0.1 97.7±0.1 97.8±0.2 97.8±0.2 97.8±0.2 97.6±0.1
3C 78.4±0.4 78.6±0.4 78.5±0.2 78.5±0.5 78.4±0.4 78.6±0.3
4C 95.2±0.3 95.3±0.3 95.1±0.4 95.1±0.3 94.8±0.3 95.0±0.2
5C 79.9±0.2 79.9±0.3 79.8±0.2 79.9±0.4 79.6±0.6 79.8±0.2

2010

SP 92.8±0.3 92.0±0.2 92.5±0.2 92.4±0.3 92.4±0.3 92.3±0.3
DP 92.6±0.3 92.7±0.3 92.7±0.3 92.6±0.4 92.8±0.4 92.7±0.4
3C 68.3±0.2 68.4±0.2 68.4±0.4 68.4±0.3 68.6±0.3 68.5±0.4
4C 90.9±0.4 90.9±0.3 91.0±0.4 90.9±0.3 91.0±0.4 91.1±0.4
5C 72.5±0.4 72.5±0.3 72.4±0.3 72.5±0.3 72.4±0.3 72.4±0.1
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Table C.26: Link prediction test performance (accuracy in percentage) comparison for
MSGNN with different q values for individual years 2011-2020 of the FiLL-pvCLCL data
set. The best is marked in bold red and the second best is marked in underline blue
.

Year Link Task q = 0 q = 0.2q0 q = 0.4q0 q = 0.6q0 q = 0.8q0 q = q0

2011

SP 98.7±0.2 98.4±0.3 98.3±0.2 98.5±0.2 98.2±0.5 98.3±0.3
DP 98.7±0.2 98.7±0.1 98.7±0.1 98.7±0.1 98.7±0.1 98.7±0.1
3C 86.5±0.2 86.6±0.1 86.1±0.5 86.4±0.2 86.2±0.3 86.2±0.3
4C 98.3±0.3 98.4±0.1 98.4±0.2 98.3±0.4 98.3±0.2 98.3±0.2
5C 87.4±0.3 87.3±0.3 87.5±0.3 87.3±0.4 87.2±0.6 87.2±0.4

2012

SP 92.7±0.3 92.1±0.8 92.4±0.3 92.4±0.4 92.5±0.3 92.4±0.3
DP 92.6±0.2 92.6±0.2 92.7±0.3 92.7±0.4 92.7±0.3 92.6±0.3
3C 67.1±0.2 67.5±0.4 67.1±0.2 67.2±0.4 67.1±0.3 67.4±0.3
4C 87.0±0.5 86.9±0.4 87.1±0.5 87.0±0.5 87.0±0.5 86.9±0.4
5C 66.8±0.1 66.9±0.1 66.8±0.3 66.8±0.3 66.9±0.1 67.0±0.2

2013

SP 90.5±0.3 90.0±0.2 90.2±0.4 90.1±0.2 90.3±0.3 90.3±0.1
DP 90.3±0.3 90.5±0.2 90.4±0.1 90.3±0.3 90.4±0.2 90.4±0.3
3C 66.9±0.2 66.3±0.4 66.3±0.4 66.4±0.4 66.3±0.4 66.1±0.3
4C 85.9±0.3 86.1±0.2 86.1±0.3 86.1±0.2 86.0±0.3 86.1±0.3
5C 67.0±0.3 66.9±0.2 67.0±0.4 67.1±0.2 67.0±0.1 66.8±0.3

2014

SP 87.3±0.2 86.8±0.2 87.2±0.2 87.0±0.3 86.9±0.3 87.1±0.2
DP 87.3±0.2 87.2±0.2 87.2±0.2 87.2±0.3 87.2±0.2 87.2±0.3
3C 60.8±0.3 60.5±0.2 60.8±0.1 60.8±0.2 60.8±0.2 60.6±0.2
4C 80.2±0.3 80.1±0.2 80.2±0.3 80.3±0.3 80.1±0.4 80.2±0.2
5C 60.3±0.4 60.4±0.2 60.5±0.2 60.4±0.4 60.3±0.3 60.3±0.4

2015

SP 89.1±0.4 87.7±1.0 88.9±0.1 88.8±0.4 88.8±0.1 88.8±0.2
DP 89.2±0.4 89.2±0.4 89.2±0.3 89.2±0.4 89.4±0.4 89.3±0.3
3C 63.5±0.5 63.9±0.3 64.1±0.2 63.7±0.3 63.7±0.4 63.8±0.4
4C 84.6±0.5 84.5±0.5 84.6±0.3 84.5±0.3 84.7±0.4 84.4±0.5
5C 65.6±0.4 65.9±0.3 65.8±0.2 65.5±0.4 65.4±0.3 65.7±0.4

2016

SP 90.2±0.5 89.7±0.4 89.6±0.4 89.8±0.5 89.7±0.5 89.7±0.5
DP 90.1±0.5 90.2±0.4 90.2±0.4 90.2±0.4 90.0±0.4 90.0±0.5
3C 64.0±0.3 64.0±0.3 63.9±0.2 63.9±0.3 64.1±0.3 63.9±0.2
4C 82.0±0.5 81.8±0.5 81.7±0.6 82.2±0.6 81.8±0.6 82.1±0.5
5C 62.2±0.3 62.1±0.3 62.0±0.4 62.1±0.5 61.9±0.4 62.0±0.4

2017

SP 90.2±0.3 89.8±0.4 89.8±0.9 89.9±0.4 90.0±0.3 90.0±0.3
DP 90.1±0.2 90.2±0.3 90.2±0.3 90.0±0.4 90.1±0.3 90.2±0.3
3C 62.0±0.1 62.4±0.4 62.4±0.3 62.5±0.4 62.4±0.2 62.3±0.4
4C 70.1±0.5 70.0±0.5 70.1±0.5 70.0±0.2 69.9±0.5 69.6±0.4
5C 53.4±0.2 53.2±0.2 53.4±0.1 53.3±0.2 53.3±0.3 53.2±0.1

2018

SP 87.0±0.4 86.7±0.4 85.8±1.8 86.8±0.6 86.7±0.3 86.6±0.8
DP 86.9±0.4 87.0±0.5 86.8±0.4 87.0±0.5 87.0±0.5 87.0±0.4
3C 61.5±0.4 61.5±0.6 61.8±0.3 61.8±0.5 61.7±0.3 61.4±0.3
4C 79.7±0.4 79.8±0.4 79.5±0.4 79.7±0.4 79.7±0.5 79.5±0.5
5C 60.9±0.4 60.8±0.5 60.7±0.5 60.7±0.7 60.6±0.5 60.5±0.3

2019

SP 90.8±0.3 90.4±0.2 90.3±0.2 90.6±0.3 90.4±0.3 90.6±0.4
DP 90.9±0.3 90.9±0.2 90.8±0.3 90.8±0.2 90.8±0.2 90.9±0.3
3C 64.6±0.2 64.5±0.3 64.3±0.3 64.3±0.2 64.4±0.2 64.3±0.2
4C 77.9±0.3 77.9±0.3 77.9±0.3 77.8±0.5 77.6±0.7 77.5±0.4
5C 59.0±0.2 58.8±0.2 59.0±0.4 58.9±0.4 59.0±0.3 58.7±0.2

2020

SP 97.3±0.2 96.8±0.2 96.7±0.2 96.5±0.2 96.6±0.1 96.6±0.2
DP 97.3±0.2 97.4±0.2 97.3±0.1 97.3±0.2 97.3±0.1 97.2±0.1
3C 82.8±1.3 82.7±1.0 83.2±0.5 82.7±0.8 82.8±0.5 82.9±0.5
4C 96.4±0.2 96.6±0.2 96.5±0.1 96.4±0.1 96.4±0.3 96.5±0.1
5C 83.2±0.4 83.0±0.3 82.9±0.5 83.1±0.2 83.0±0.4 82.8±0.4
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Table C.27: Link prediction test performance (accuracy in percentage) comparison for
MSGNN with different q values for individual years 2000-2010 of the FiLL-OPCL data
set. The best is marked in bold red and the second best is marked in underline blue
.

Year Link Task q = 0 q = 0.2q0 q = 0.4q0 q = 0.6q0 q = 0.8q0 q = q0

2000

SP 87.9±0.5 87.4±0.6 87.6±0.5 87.5±0.5 87.6±0.4 87.6±0.5
DP 87.9±0.5 87.9±0.4 87.7±0.7 88.0±0.5 87.9±0.6 87.9±0.6
3C 60.7±0.3 60.8±0.4 60.7±0.3 60.2±0.4 60.7±0.5 60.7±0.4
4C 71.3±0.3 71.3±0.4 71.3±0.4 71.5±0.3 71.4±0.4 71.3±0.3
5C 53.5±0.4 53.2±0.5 53.4±0.4 53.4±0.4 53.4±0.5 53.4±0.5

2001

SP 90.0±0.5 89.9±0.3 89.9±0.4 89.6±0.5 89.8±0.5 89.9±0.4
DP 90.0±0.3 90.1±0.4 90.2±0.2 90.1±0.4 90.1±0.3 90.2±0.3
3C 61.9±0.3 62.1±0.7 61.9±0.5 62.2±0.4 62.0±0.5 62.2±0.4
4C 75.5±0.3 75.2±0.3 75.6±0.5 75.5±0.3 75.6±0.6 75.4±0.6
5C 55.8±0.4 55.8±0.4 55.6±0.4 55.7±0.3 55.8±0.4 55.8±0.4

2002

SP 90.5±0.2 90.1±0.1 90.2±0.3 90.0±0.2 90.0±0.3 90.0±0.4
DP 90.3±0.2 90.5±0.3 90.4±0.3 90.4±0.2 90.5±0.3 90.5±0.3
3C 65.1±0.7 65.1±0.5 65.3±0.3 65.4±0.5 65.5±0.3 65.0±0.4
4C 84.5±0.5 84.3±0.4 84.3±0.5 84.5±0.4 84.4±0.3 84.5±0.5
5C 65.4±0.3 65.6±0.5 65.4±0.7 65.5±0.5 65.4±0.4 65.5±0.2

2003

SP 89.1±0.3 89.0±0.3 89.1±0.3 89.1±0.3 88.8±0.3 88.9±0.3
DP 89.2±0.5 89.2±0.3 89.0±0.2 89.3±0.4 89.1±0.4 89.2±0.5
3C 62.5±0.5 62.7±0.3 62.5±0.5 62.5±0.5 62.5±0.5 62.7±0.4
4C 82.2±0.4 82.3±0.3 82.4±0.5 82.3±0.4 82.3±0.4 82.5±0.3
5C 62.4±0.3 62.3±0.4 62.4±0.4 62.3±0.4 62.6±0.2 62.3±0.4

2004

SP 87.4±0.3 87.0±0.4 87.3±0.2 87.4±0.4 87.5±0.3 87.4±0.4
DP 87.4±0.3 87.5±0.3 87.3±0.3 87.5±0.4 87.5±0.3 87.4±0.2
3C 60.3±0.4 60.6±0.5 60.5±0.5 60.0±0.4 60.7±0.3 60.1±0.7
4C 78.3±0.3 78.6±0.2 78.3±0.3 78.4±0.4 78.2±0.2 78.3±0.3
5C 57.9±0.4 57.9±0.4 58.1±0.3 57.8±0.1 57.9±0.5 57.9±0.3

2005

SP 86.4±0.3 86.3±0.3 86.0±0.4 86.2±0.3 86.2±0.5 86.1±0.4
DP 86.4±0.3 86.5±0.3 86.4±0.3 86.5±0.3 86.4±0.3 86.4±0.3
3C 59.5±0.6 59.6±0.3 59.6±0.6 59.6±0.3 59.5±0.4 59.5±0.6
4C 79.6±0.2 79.5±0.4 79.5±0.3 79.6±0.3 79.7±0.4 79.5±0.3
5C 59.0±0.4 59.0±0.2 59.0±0.4 59.1±0.3 59.0±0.4 58.8±0.5

2006

SP 89.9±0.5 89.5±0.4 89.2±1.2 89.6±0.6 89.7±0.5 89.7±0.4
DP 89.9±0.4 89.9±0.4 90.1±0.4 90.0±0.4 90.1±0.4 90.1±0.4
3C 62.8±0.6 62.7±0.4 62.7±0.6 62.7±0.4 63.0±0.5 63.0±0.5
4C 81.6±0.2 81.4±0.4 81.5±0.3 81.2±0.4 81.4±0.3 81.6±0.3
5C 60.9±0.4 60.9±0.6 60.9±0.5 61.0±0.4 60.9±0.4 60.8±0.6

2007

SP 88.0±0.2 87.7±0.2 87.8±0.3 87.9±0.2 87.8±0.2 87.8±0.2
DP 88.0±0.2 87.9±0.3 88.0±0.3 88.0±0.3 88.1±0.3 88.0±0.3
3C 63.4±0.6 63.8±0.4 63.7±0.6 63.9±0.5 63.8±0.4 63.7±0.5
4C 83.1±0.2 83.4±0.4 83.1±0.3 83.3±0.6 83.1±0.4 83.0±0.2
5C 63.7±0.4 64.0±0.2 64.0±0.4 64.0±0.4 63.8±0.4 64.1±0.4

2008

SP 96.5±0.3 96.0±0.4 95.9±0.3 95.8±0.4 95.7±0.4 95.7±0.2
DP 96.6±0.3 96.5±0.2 96.5±0.2 96.4±0.2 96.4±0.3 96.6±0.2
3C 77.6±0.1 76.6±0.6 76.7±0.4 77.0±0.3 76.6±0.5 76.7±0.2
4C 95.7±0.2 95.6±0.2 95.7±0.2 95.6±0.2 95.7±0.3 95.4±0.5
5C 79.8±0.3 79.7±0.4 79.8±0.3 79.5±0.2 79.4±0.1 78.9±0.7

2009

SP 95.2±0.2 94.8±0.2 94.6±0.2 94.7±0.2 94.5±0.4 94.5±0.2
DP 95.3±0.1 95.1±0.1 95.2±0.1 95.2±0.2 95.1±0.2 95.2±0.2
3C 70.8±0.4 70.9±0.4 70.5±0.3 70.6±0.4 70.7±0.2 70.5±0.2
4C 91.6±0.3 91.5±0.3 91.6±0.2 91.6±0.1 91.7±0.3 91.4±0.3
5C 73.5±0.4 73.4±0.3 73.5±0.2 73.5±0.5 73.3±0.4 73.2±0.2

2010

SP 92.5±0.3 92.2±0.4 92.1±0.3 91.3±1.0 92.2±0.3 92.2±0.2
DP 92.4±0.4 92.5±0.3 92.5±0.3 92.5±0.3 92.4±0.4 92.5±0.4
3C 67.2±0.3 67.0±0.4 67.0±0.5 67.0±0.4 67.0±0.3 67.1±0.5
4C 89.4±0.4 89.2±0.4 89.0±0.2 88.9±0.4 89.2±0.4 89.3±0.3
5C 69.8±0.2 69.8±0.3 70.0±0.4 69.9±0.3 69.7±0.4 69.9±0.3
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Table C.28: Link prediction test performance (accuracy in percentage) comparison for
MSGNN with different q values for individual years 2011-2020 of the FiLL-OPCL data
set. The best is marked in bold red and the second best is marked in underline blue
.

Year Link Task q = 0 q = 0.2q0 q = 0.4q0 q = 0.6q0 q = 0.8q0 q = q0

2011

SP 96.2±0.3 96.0±0.2 96.0±0.2 95.9±0.3 96.0±0.2 95.9±0.2
DP 96.3±0.2 96.4±0.3 96.3±0.2 96.3±0.3 96.3±0.2 96.3±0.3
3C 79.0±0.2 78.8±0.4 79.1±0.3 79.0±0.3 79.0±0.2 78.6±0.4
4C 95.4±0.2 95.4±0.3 95.5±0.2 95.5±0.3 95.4±0.2 95.5±0.3
5C 80.9±0.4 81.0±0.6 80.8±0.3 80.8±0.3 80.7±0.6 80.6±0.3

2012

SP 91.1±0.2 91.0±0.4 90.8±0.3 90.8±0.4 90.8±0.5 90.8±0.5
DP 91.2±0.3 91.2±0.3 91.2±0.3 91.2±0.2 91.2±0.4 91.2±0.2
3C 64.2±0.4 64.6±0.5 64.6±0.5 64.5±0.4 64.5±0.3 64.4±0.5
4C 81.7±0.4 81.6±0.5 81.7±0.5 81.4±0.4 81.5±0.5 81.5±0.4
5C 61.6±0.5 61.7±0.4 61.6±0.4 61.7±0.3 61.6±0.3 61.5±0.3

2013

SP 89.5±0.3 88.8±0.4 89.2±0.4 89.3±0.2 89.3±0.2 89.4±0.2
DP 89.4±0.3 89.4±0.1 89.3±0.2 89.4±0.2 89.4±0.2 89.3±0.2
3C 64.3±0.4 64.4±0.2 64.4±0.1 64.2±0.2 64.4±0.3 64.3±0.3
4C 83.3±0.3 83.4±0.1 83.4±0.3 83.4±0.4 83.5±0.1 82.8±0.8
5C 64.2±0.3 64.1±0.2 64.0±0.3 64.1±0.4 64.0±0.3 63.9±0.4

2014

SP 87.7±0.4 87.0±0.6 87.5±0.5 87.7±0.4 87.4±0.5 87.5±0.3
DP 87.7±0.5 87.9±0.5 87.9±0.4 87.8±0.3 87.8±0.4 87.9±0.4
3C 61.8±0.7 62.0±0.5 61.8±0.3 61.8±0.3 61.7±0.3 61.9±0.2
4C 81.3±0.3 81.5±0.2 81.4±0.2 81.4±0.3 81.3±0.2 81.2±0.2
5C 61.9±0.3 62.0±0.3 61.9±0.3 61.8±0.4 61.9±0.4 61.8±0.3

2015

SP 89.8±0.3 89.3±0.4 89.4±0.5 89.4±0.3 89.4±0.2 89.6±0.4
DP 89.9±0.3 89.7±0.3 89.6±0.5 89.7±0.4 89.7±0.4 89.8±0.3
3C 64.1±0.4 64.0±0.4 64.3±0.2 64.2±0.2 64.2±0.3 64.1±0.2
4C 84.7±0.3 84.6±0.4 84.8±0.2 84.8±0.1 84.7±0.2 84.8±0.2
5C 64.9±0.4 64.8±0.6 64.8±0.5 64.6±0.7 64.8±0.5 64.8±0.5

2016

SP 89.0±0.2 88.7±0.2 88.7±0.3 88.8±0.5 88.5±0.8 88.7±0.3
DP 88.9±0.2 89.0±0.3 88.9±0.4 88.8±0.3 89.0±0.3 88.9±0.3
3C 62.5±0.2 62.2±0.5 62.4±0.5 62.4±0.3 62.4±0.3 62.2±0.5
4C 76.8±0.2 76.9±0.4 76.8±0.4 76.6±0.4 76.7±0.5 76.7±0.5
5C 57.9±0.3 58.0±0.4 58.0±0.6 58.0±0.7 57.9±0.5 58.1±0.3

2017

SP 89.3±0.3 89.1±0.3 89.3±0.2 89.2±0.3 89.4±0.2 89.4±0.3
DP 89.3±0.3 89.4±0.2 89.4±0.4 89.4±0.2 89.4±0.1 89.5±0.2
3C 61.3±0.3 61.3±0.3 61.2±0.4 61.4±0.4 61.3±0.3 61.3±0.2
4C 69.5±0.5 69.5±0.5 69.4±0.5 69.3±0.7 69.3±0.6 69.4±0.4
5C 52.0±0.4 51.8±0.5 51.8±0.4 51.6±0.5 51.9±0.6 51.8±0.3

2018

SP 88.2±0.4 87.6±0.6 87.8±0.6 87.8±0.6 87.9±0.4 87.7±0.6
DP 88.1±0.4 88.0±0.4 88.1±0.4 88.2±0.4 88.1±0.4 88.1±0.4
3C 63.7±0.3 64.1±0.6 64.2±0.7 63.7±0.7 64.0±0.5 64.0±0.6
4C 83.0±0.4 82.7±0.4 83.0±0.4 83.1±0.4 83.0±0.5 83.0±0.7
5C 63.8±0.5 63.7±0.4 63.7±0.6 63.6±0.5 63.6±0.5 63.7±0.5

2019

SP 89.3±0.4 88.7±0.4 89.0±0.3 88.7±0.6 89.1±0.3 89.1±0.5
DP 89.4±0.2 89.3±0.4 89.4±0.2 89.2±0.3 89.2±0.1 89.3±0.2
3C 62.2±0.2 62.4±0.5 62.3±0.7 62.2±0.6 62.4±0.3 62.4±0.5
4C 74.5±0.2 74.5±0.4 74.1±0.3 74.4±0.2 74.2±0.3 74.3±0.4
5C 56.0±0.3 55.9±0.3 56.1±0.4 56.1±0.4 55.8±0.3 56.0±0.2

2020

SP 92.3±0.1 91.8±0.1 91.5±0.3 91.7±0.2 91.6±0.1 91.5±0.1
DP 92.2±0.1 92.2±0.1 92.2±0.1 92.1±0.2 92.2±0.1 92.1±0.1
3C 69.2±0.3 69.6±0.6 69.8±0.3 68.8±0.4 69.0±0.7 69.2±0.4
4C 85.4±0.2 85.5±0.2 85.2±0.8 85.2±0.5 85.1±0.4 84.8±0.4
5C 67.8±0.2 67.8±0.6 67.5±0.7 67.4±0.5 67.3±0.6 67.3±0.6
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D.1 Implementation Details

D.1.1 Setup
We use all data for training for at most 1000 epochs, and stop early if the loss does
not decrease for 200 epochs. For proximal variants, we use 50 epochs for pretraining.
We use Adam [226] and Stochastic Gradient Descend (SGD) as the optimizers
and ℓ2 regularization with weight decay 5 · 10−4 to avoid overfitting. We use as
learning rate 0.01 throughout for GNNRank-N methods as well as pretraining with
Adam, and 10 times that of pretraining learning rate for GNNRank-P methods
with SGD. We run a grid search on hyperparameters.

For real-world data sets, we conduct 10 repeated runs, while for synthetic data,
we generate 5 synthetic networks under the same setting, each with 2 repeated runs.

Note that we do not evaluate our method by the loss which is used to devise
the method, as that would not be fair; instead we employ Lupset,naive or Lupset,simple

which are never used in training. Thus, the comparison is fair. When ground truths
are given, we follow [165] to use Kendall Tau values for comparison.

D.1.2 Codes, Data and Hardware
To fully reproduce our results, codes and preprocessed data are available at https:
//github.com/SherylHYX/GNNRank. Experiments were conducted on a compute
node with 8 Nvidia Tesla T4, 96 Intel Xeon Platinum 8259CL CPUs @ 2.50GHz
and 378GB RAM. Most experiments can be completed within a week, including all
variants, hyperparameter searches and ablation studies, except for those on MVR.
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The data sets considered here are relatively small and the same applies to
GNNRank’s competitive papers. However, even a network with 100 nodes has more
than 10157 possible rankings; this large scale task needs efficient methods. Although
each individual task does not require much resource (often < 5min/run), for the
paper we have 78 real-world and 18 synthetic data sets, each requires 10 runs for
each of the 36 (proximal innerproduct, proximal dist) + 126 (proximal baseline) +
12 (non-proximal) = 174 variants, thus 167,040 runs, plus an extra ablation study.

D.2 Details on Finding Q for Proximal Gradient
Steps

There are infinitely many choices of valid Q; here we construct one of the special Q’s
for which we can compute QL efficiently. Since Q⊤e1 = 1/

√
n, we can construct

R = Q⊤ as a series of matrix multiplication of (n − 1) rotation matrices on
two adjacent axes

R = Rn−1Rn−2 · · ·R2R1

where Rk is defined by:

[Rk]ij =



√
1

n−k
i = k, j = k or i = k + 1, j = k + 1

−
√

n−k−1
n−k

i = k, j = k + 1√
n−k−1

n−k
i = k + 1, j = k

1 i = j, and i, j ̸= k or k + 1
0 otherwise.

To explain this construction, starting from e1 =
[
1 0 · · · 0

]⊤
, we carry out

a rotation on the first and second axis to make the first element
√

1/n. The
rotation matrix is

R1 =



√
1
n
−
√

n−1
n

· · ·√
n−1

n

√
1
n

· · ·
1 · · ·

1 · · ·
... ... ... ... . . . ...

1


We observe that

R1e1 =
[√

1
n

√
n−1

n
0 0 · · · 0

]⊤
.

The second rotation occurs on the second and third axis to render R2R1e1 =
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1
n

√
1
n

√
n−2

n
0 · · · 0

]⊤
; this R2 is

R2 =



1 · · ·√
1

n−1 −
√

n−2
n−1 · · ·√

n−2
n−1

√
1

n−1 · · ·
1 · · ·

... ... ... ... . . . ...
1


The general matrices Rk are obtained by continuing this construction.

The matrix R is

√
1
n

−
√

n−1
n

· · ·√
1
n

√
1

n(n−1) −
√

n−2
n−1 · · ·√

1
n

√
1

n(n−1)

√
1

(n−1)(n−2) −
√

n−3
n−2 · · ·√

1
n

√
1

n(n−1)

√
1

(n−1)(n−2)

√
1

(n−2)(n−3) · · ·

...
...

...
...

. . .
...√

1
n

√
1

n(n−1)

√
1

(n−1)(n−2)

√
1

(n−2)(n−3) · · ·
√

1
2


We then put Q = R⊤.

The resulting Q is the following upper Hessenberg matrix, which is independent
of model parameters and can be efficiently precomputed

Qij =



√
1
n

i = 1
−
√

n−i+1
n−i+2 i ≥ 2, j = i− 1√

1
(n−i+1)(n−i+2) i ≥ 2, j ≥ i

0 otherwise.

The computation of QL takes O(n2) time since Q is a summation of (1) an upper-
triangular matrix U with the same non-zero value on the same row, and (2) a shift
matrix V (with negative subdiagonal). Then UL is essentially a cumulative sum from
the bottom row to the top row, followed by a row-wise multiplication of the diagonal
of U, and VL is essentially a combination of row-wise multiplication and indexing.

D.3 Theoretical Analysis and Practical Consid-
erations on Convergence of the Proximal
Gradient Steps

First we prove a theorem useful for the main result.

Theorem 5. Let {αγ > 0}Γ
γ=1 in Algo. 1 be fixed and equal to α. Let ρ be the

Fiedler eigenvalue of S, i.e., the second smallest eigenvalue of L. Let r∗ be a
Fiedler eigenvector corresponding to ρ, let y∗ = [Qr∗]2:n and L̃ =

[
QLQ⊤

]
2:n,2:n

.

Let λ1 ≥ λ2 · · · ≥ λn−1 = 0 be the eigenvalues of PL̃P, where P = I− y∗y∗⊤. Let
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ρα = max1≤i≤n−2
|1−2αλi|
1−2αρ

. If r∗ is a strict local minimum of problem (5.5), and if
ρα < 1 and α(λ1 + ρ) < 1, then Algo. 1 converges locally uniformly to r∗.

Proof. Our problem (5.7) is a special case of the problem (2) in [230] (henceforth
equation D.1 further below, of minimizing a quadratic over a sphere), where our fixed
point y∗ is determined by fα(x) = PSn−2(−α(2L̃x)) = x. Recall that the spherical
projection operator PSn−2(·) : Rn−1 → Rn−1 is defined to be PSn−2(x) = x

∥x∥2
if

x ̸= 0, and PSn−2(0) = [1, 0, . . . , 0]⊤, where 0 = [0, . . . , 0]⊤. It is shown in Lemma 1
of [230] (henceforth Lemma 7 further below) that y∗ with ||y∗|| = 1 being a solution
of (5.7) is equivalent to the existence of a constant ρ(x) such that

L̃y∗ = ρ(y∗) · y∗,

rendering ρ(y∗) to be an eigenvalue of L̃. Theorem 1 in [230] (henceforth Theorem
9 below) states that with an initial step size α > 0, such that 2α(ρ(y∗) + λ1) < 2, as
long as ρα = max1≤i≤n−2

|1−2αλi|
1−2αγ(y∗ ) < 1, the proximal gradients steps will converge

to a local minimum.
Note that problem (5.5) and problem (5.7) are equivalent, and there is a one-

to-one correspondence between r∗ and y∗, namely, y∗ = [Qr∗]2:n ∈ Rn−1, and
r∗ = CONCAT(0,

[
Q⊤r∗

]
) ∈ Rn. Hence, since r∗ is a strict local minimum of

problem (5.5), we have that y∗ is a strict local minimum of problem (5.7).
By Lemma 7 from [230], we have ρ < λn−2, since y∗ is a strict local minimum.

In particular, by Theorem 9 in [230], when y∗ is a strict local minimum to problem
equation D.1, if 2α(ρ + λ1) < 2, i.e., α(ρ + λ1) < 1, there is a constant M such that

||yγ − y∗|| ≤M ||y0 − y∗||(ρα + o(1))γ,

where y0 is the initial guess at proximal gradient step 0, and γ denotes the step
number. As ρα < 1 is assumed, convergence follows.

For convergence, it suffices to ensure that ρα < 1, i.e. to have 2αγ(x) < 1,
|1−2αλ1| < 1−αγ(x) and |1−2αλn−2| < 1−2αγ(x). In particular, in our problem
we take ρ(x) = ρ, which is also the smallest eigenvalue of L̃, so ρ < λn−2 ≤ λ1.
To apply Theorem 5 in order to obtain a convergence guarantee in Algo. 1, as
λn−2 > ρ, (which is equivalent to r∗ being a strict local minimum) it remains to use
an α value such that 2αλ1 < 1. Lemma 8 of [230] also suggests that if 2αλ1 < 1,
then we indeed have r∗ as a global minimizer to problem (5.5).

Finally we have the ingredients to prove the main result.

Theorem 6. Let {αγ > 0}Γ
γ=1 in Algo. 1 be fixed (equal to α) and let ρ be the

Fiedler eigenvalue of S. Denote a Fiedler eigenvector by r∗. Assume that r∗ is a
strict local minimizer of problem (5.5). If 0 < α < 1

4(n−1) , then with our definition
of the similarity matrix, Algo. 1 converges locally uniformly to r∗.

Proof. Via our similarity matrix construction process, entries in S are upper-bounded
by 1, so the degree matrix D has entries bounded above by n, the number of nodes,
and lower bounded by 0, and that L is positive semi-definite. We thus have that
the eigenvalues of L are in [0, (n− 1) + (n− 1)× 1] by the Gershgorin disc theorem.
Since Q is orthogonal, we have that eigenvalues of L̃ are also within the range
[0, 2(n− 1)]. To see this, suppose x is an eigenvector of L with eigenvalue λ, i.e.,
Lx = λx, so QLQ⊤(Qx) = QL(Q⊤Q)x = QLx = Q(Lx) = Qλx = λ(Qx).
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Therefore, the values {λi}n−2
i=1 in Theorem 5 are bounded above by 2(n− 1). Thus,

we have that ρ + λ1 ≤ 2(n− 1) + 2(n− 1) = 4(n− 1).
For convergence, it suffices to ensure that ρα = max1≤i≤n−2

|1−2αλi|
1−2αρ

< 1, i.e. to
have 2αρ < 1, |1− 2αλ1| < 1− 2αρ, and |1− αλn−2| < 1− 2αρ.

Thus, since we have λn−2 > ρ by Lemma 8 from [230] and the proof of Theorem 5,
it remains to use an α value such that 2αλ1 < 1, then 2αρ < 2αλ1 < 1, and
0 < 1−2αλ1 = |1−2αλ1| ≤ 1−2αλn−2 = |1−2αλn−2| < 1−2αρ. With α < 1

4(n−1) ,

we indeed have 2αλ1 < 2× 1
4(n−1) × 2(n− 1) = 1.

Our current setting is to initialize all α values to be 1
n−1 . Note that within

Algo. 1, the α values are fixed. Although not guaranteed to converge with the
initial α, they could be adapted by our outer training loop, i.e. by optimization
over the ranking loss function. [230] also suggests the value of the optimal step size
to be 2

λ1+λn−2
, which during training our method could in principle reproduce if the

optimal step size is actually important for making accurate final rankings.
We remark that real-world weighted networks have the corresponding Fiedler

eigenvalue of multiplicity 1; this multiplicity is larger than 1, only for special classes
of graphs that exhibit certain symmetries. Our pragmatic assumption that the
Fiedler eigenvalue has multiplicity 1, which thus means r∗ being a strict local
minimum of problem 5.5, is not a very restrictive one.

For completeness, the remainder of this section recalls the setup and main
results from [230]. The problem considered therein is that of minimizing a quadratic
form over the sphere

min
x

x⊤Bx− b⊤x s.t. ∥x∥2
2 = 1 (D.1)

with the matrix B ∈ Rm×m assumed symmetric but not positive semi-definite, hence
a non-convex objective function. Upon considering the corresponding Lagrangian
function, with ν denoting the Lagrange multiplier, the authors prove the following
results, which also constitute building blocks in our analysis. The eigenvalues of
A are given by λmin(B) ≤ λm−1 ≤ . . . ≤ λ1 ≤ λmax(B).

Lemma 7 (Lemma 1 from [230]). (Stationary conditions). The vector x∗ is a
stationary point of problem equation D.1 if and only if x∗ ∈ Sm−1 = {x ∈ Rm :
∥x∥ = 1} and there exists a constant ν(x∗) such that r∗ = Ax∗ − b = ν(x∗) · x∗.

Lemma 8 (Lemma 2 from [230]). A stationary point x∗ of problem equation D.1
is a strict local minimum if and only if ν(x∗) < λm−1(x∗). Furthermore, x∗ is a
global minimizer of problem equation D.1 if and only if ν(x∗) ≤ λmin(B).

The following result establishes the result that Projected Gradient Descent
(PGD) converges to a local minimum at an asymptotic linear rate ρβ.

Theorem 9 (Theorem 1 from [230])). The vector x∗ is a strict local minimum of
problem equation D.1, i.e. ν < λm−1, if and only if there exists β > 0 such that
Algorithm 1 [Projected Gradient Descent (PGD)] with step size α converges locally
uniformly to x∗. Furthermore, for any step size β > 0 such that β(λ1 + ν) < 2, the
sequence {x(t)} satisfies

∥x(t) − x∗∥ ≤M∥x(0) − x∗∥ (ρα + o(1))t ,

for some constant M > 0 and ρβ = max1≤i≤m−1
|1−βλi|
1−βν

.
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D.4 Detailed Summary Statistics
Table D.1 gives the number of nodes (n), the number of directed edges (|E|), the
number of reciprocal edges (|Er|) (self-loops are counted once and for u ̸= v, a
reciprocal edge u→ v, v → u is counted twice) as well as their percentage among
all edges, for the real-world networks, illustrating the variability in network size
and density (defined as |E|/[n(n− 1)]). As we do not have input features available,
we use the eigengap of the Hermitian matrix (A−A⊤) · i, where A is the adjacency
matrix and i the imaginary unit, introduced in [97], to determine the value K, which
is assumed to be the number of clusters if we are solving a clustering problem. We
then stack the real and imaginary parts of the top K eigenvectors of (A−A⊤) ·i into
2K-dimensional input features for GNNs. We also report the embedding dimension
d used in the experiments, for each of the data sets.

D.5 Full Result Tables

D.5.1 Results on Individual Digraphs and Lupset, ratio

Tables D.2, D.3 and D.4 provide detailed comparison on both Lupset, simple, Lupset, naive
and Lupset, ratio for all time-series match data, where Table D.4 additionally provides
Lupset, ratio results on other real-world data sets. Again the best-performing variants
of the non-proximal and of the proximal method are reported. The proximal method
does not perform as well as the non-proximal method in terms of Lupset, ratio, perhaps
partially due to the fact that outputs from SerialRank [25] do not align well with
skill level but rather relate to relative ordering. It is also natural for GNNRank-N
methods that are not motivated by SerialRank to perform well on this metric as
Lupset, ratio is in the training loss function. Therefore, here we only present the results
on Lupset, ratio but do not draw conclusions on which method outperforms others.

D.5.2 Full Results on Synthetic Data
Table D.5 shows Kandall Tau values and corresponding Lupset, naive on ERO models,
extending the results of Table 5.3 in the main text.

D.5.3 Results on Different Variants
Tables D.6, D.7 and D.8 compare different variants in the proposed GNNRank
framework with themselves, together with the best and the worst baseline method,
across all real-world data sets. Again, Lupset, ratio results are only shown to illustrate
the performance in terms of minimizing the loss function Lupset, ratio, but are not used
to compare methods. We conclude that “proximal baseline" with IB as aggregation
GNN usually performs the best among the variants. Compared with baselines,
our different variants can attain comparable and often superior performance, and
are never strongly outperformed.

D.5.4 Ablation Study Full Tables
Tables D.9, D.10 and D.11 extend results of the ablation study to all seasons, and
additionally report Lupset, ratio and Lupset, naive results. Again, Lupset, ratio results are
only shown to illustrate the performance in terms of minimizing the loss function
Lupset, ratio, but are not used to compare methods.
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D.5.5 Inductive Learning Full Tables
Tables D.12 and D.14 contain results on the performance of the “IB proximal baseline"
variant, trained with the “emb baseline" on the Basketball finer data set. The second
to last column contains results of directly applying the model trained for season 1985
without further training, while the last column is the result for the model specifically
trained for that season. For each year we have 10 runs, and we average over the total
of 30 years for each run. On average, directly applying the original trained model
gives Lupset, simple = 0.75±0.02, Lupset, naive = 0.19±0.01 and Lupset, ratio = 0.01±0.00,
while training specifically for the that season gives Lupset, simple = 0.74 ± 0.00,
Lupset, naive = 0.19 ± 0.00 and Lupset, ratio = 0.01 ± 0.00. Thus, in this example,
applying the general model produces almost the same superior performance.

D.6 Improvement on Baselines when Employed as
Initial Guess for “Proximal Baseline" Variant

Table D.15 shows improvements on Lupset,simple by “proximal baseline" when setting
a certain baseline as r′. Across all data sets, “proximal baseline" improves the
most, by 1.02, with SyncRank as initial guess, while the average improvement
for SpringRank, SerialRank, BTL, Eig.Cent., PageRank and SVD_NRS are 0.07,
0.82, 0.22, 0.19, 0.21, and 0.12, respectively.

Table D.16 shows improvements on Lupset,naive by “proximal baseline" when
setting a certain baseline as r′. Across all real data sets, “proximal baseline"
improves the most, by 0.24, again with SyncRank as initial guess, while the
average improvement for SpringRank, SerialRank, BTL, Eig.Cent., PageRank
and SVD_NRS are 0.00, 0.18, 0.04, 0.03, 0.03, and 0.01, respectively.

D.7 Variant and Hyperparameter Selection
The results reported in the main text are selected within either non-proximal or
proximal categories depending on whether they have proximal gradient steps within
the architecture. All selections are carried out via the lowest Lupset, simple or the
lowest Lupset, naive or the lowest Lupset, ratio depending on our objective. “–" in the
tables in this section means “not applicable". There are a total of two variants for
non-proximal variants and three for proximal variants for score generation, and
each can be coupled with one of DIMPA [5] and the inception block model (ib)
[114] (or others like MagNet [6], not tested here) for digraph embedding learning.
We fix the learning rate to be 0.01, and vary the the method of pretraining, the
coefficient for Lupset, margin in training, the coefficient for Lupset, ratio in training,
and the baseline selected for “proximal baseline" variant. Choices are SyncRank,
SpringRank, SerialRank, BTL, Eig.Cent., PageRank and SVD_NRS for real-world
data sets, and SpringRank, BTL, SerialRank for synthetic data. We consider these
choices to demonstrate that our “proximal baseline" has the ability to improve
over initial guess vectors coming from different types of baselines. See Sec. D.6
for more details on improvements over baselines.
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Table D.1: Summary statistics for the real-world networks.

Data n |E| density |Er| |Er|
|E| (%) K d

HeadToHead 602 5010 1.38e-02 464 9.26 48 32
Basketball (1985) 282 2904 3.66e-02 998 34.37 20 16
Basketball finer (1985) 282 4814 6.08e-02 4814 100.00 20 16
Basketball (1986) 283 2937 3.68e-02 1014 34.53 20 16
Basketball finer (1986) 283 4862 6.09e-02 4862 100.00 20 16
Basketball (1987) 290 3045 3.63e-02 1012 33.23 20 16
Basketball finer (1987) 290 5088 6.07e-02 5088 100.00 20 16
Basketball (1988) 290 3099 3.70e-02 1034 33.37 20 16
Basketball finer (1988) 290 5170 6.17e-02 5170 100.00 20 16
Basketball (1989) 293 3162 3.70e-02 1014 32.07 20 16
Basketball finer (1989) 293 5318 6.22e-02 5318 100.00 20 16
Basketball (1990) 292 3192 3.76e-02 1042 32.64 20 16
Basketball finer (1990) 292 5350 6.30e-02 5350 100.00 20 16
Basketball (1991) 295 3218 3.71e-02 1018 31.63 20 16
Basketball finer (1991) 295 5420 6.25e-02 5420 100.00 20 16
Basketball (1992) 298 3238 3.66e-02 1036 32.00 20 16
Basketball finer (1992) 298 5444 6.15e-02 5444 100.00 20 16
Basketball (1993) 298 3088 3.49e-02 1024 33.16 20 16
Basketball finer (1993) 298 5160 5.83e-02 5160 100.00 20 16
Basketball (1994) 301 3144 3.48e-02 1044 33.21 20 16
Basketball finer (1994) 301 5252 5.82e-02 5252 100.00 20 16
Basketball (1995) 302 3182 3.50e-02 1034 32.50 20 16
Basketball finer (1995) 302 5336 5.87e-02 5336 100.00 20 16
Basketball (1996) 305 3256 3.51e-02 1026 31.51 20 16
Basketball finer (1996) 305 5498 5.93e-02 5498 100.00 20 16
Basketball (1997) 305 3333 3.59e-02 1044 31.32 20 16
Basketball finer (1997) 305 5628 6.07e-02 5628 100.00 20 16
Basketball (1998) 306 3321 3.56e-02 966 29.09 20 16
Basketball finer (1998) 306 5684 6.09e-02 5684 100.00 20 16
Basketball (1999) 310 3385 3.53e-02 998 29.48 20 16
Basketball finer (1999) 310 5788 6.04e-02 5788 100.00 20 16
Basketball (2000) 318 3475 3.45e-02 852 24.52 20 16
Basketball finer (2000) 318 6274 6.22e-02 6274 100.00 20 16
Basketball (2001) 318 3405 3.38e-02 904 26.55 20 16
Basketball finer (2001) 318 6116 6.07e-02 6116 100.00 20 16
Basketball (2002) 321 3505 3.41e-02 976 27.85 20 16
Basketball finer (2002) 321 6192 6.03e-02 6192 100.00 20 16
Basketball (2003) 327 3560 3.34e-02 954 26.80 20 16
Basketball finer (2003) 327 6356 5.96e-02 6356 100.00 20 16
Basketball (2004) 326 3527 3.33e-02 952 26.99 20 16
Basketball finer (2004) 326 6316 5.96e-02 6316 100.00 20 16
Basketball (2005) 330 3622 3.34e-02 946 26.12 20 16
Basketball finer (2005) 330 6476 5.96e-02 6476 100.00 20 16
Basketball (2006) 334 3695 3.32e-02 924 25.01 20 16
Basketball finer (2006) 334 6680 6.01e-02 6680 100.00 20 16
Basketball (2007) 336 3974 3.53e-02 976 24.56 20 16
Basketball finer (2007) 336 7186 6.38e-02 7186 100.00 20 16
Basketball (2008) 342 4051 3.47e-02 972 23.99 20 16
Basketball finer (2008) 342 7386 6.33e-02 7386 100.00 20 16
Basketball (2009) 347 4155 3.46e-02 1046 25.17 20 16
Basketball finer (2009) 347 7478 6.23e-02 7478 100.00 20 16
Basketball (2010) 347 4133 3.44e-02 916 22.16 20 16
Basketball finer (2010) 347 7538 6.28e-02 7538 100.00 20 16
Basketball (2011) 345 4086 3.44e-02 950 23.25 20 16
Basketball finer (2011) 345 7504 6.32e-02 7504 100.00 20 16
Basketball (2012) 345 4126 3.48e-02 950 23.02 20 16
Basketball finer (2012) 345 7580 6.39e-02 7580 100.00 20 16
Basketball (2013) 347 4153 3.46e-02 960 23.12 20 16
Basketball finer (2013) 347 7616 6.34e-02 7616 100.00 20 16
Basketball (2014) 351 4196 3.42e-02 1008 24.02 20 16
Basketball finer (2014) 351 7650 6.23e-02 7650 100.00 20 16
Football (2009) 20 215 5.66e-01 78 36.28 9 8
Football finer (2009) 20 380 1.00e+00 380 100.00 9 8
Football (2010) 20 219 5.76e-01 86 39.27 9 8
Football finer (2010) 20 380 1.00e+00 380 100.00 9 8
Football (2011) 20 226 5.95e-01 92 40.71 9 8
Football finer (2011) 20 380 1.00e+00 380 100.00 9 8
Football (2012) 20 216 5.68e-01 86 39.81 9 8
Football finer (2012) 20 380 1.00e+00 380 100.00 9 8
Football (2013) 20 222 5.84e-01 82 36.94 9 8
Football finer (2013) 20 380 1.00e+00 380 100.00 9 8
Football (2014) 20 107 2.82e-01 0 0.00 9 8
Football finer (2014) 20 300 7.89e-01 300 100.00 9 8
Football(avg) 20 201 5.29e-01 71 32.17 9 8
Basketball(avg) 316 3506 3.51e-02 986 28.57 20 16
Football finer(avg) 20 367 9.65e-01 367 100 9 8
Basketball finer(avg) 316 6139 6.12e-02 6139 100 20 16
Animal 21 193 4.60e-01 64 33.16 3 8
Finance 1315 1729225 1.00e+00 1729225 100 20 64
Faculty:Business 113 1787 1.41e-01 0 0.00 5 16
Faculty:CS 206 1407 3.33e-02 0 0.00 9 16
Faculty:History 145 1204 5.77e-02 0 0.00 12 16

Printed on June 7, 2024
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Table D.2: Result table on Lupset, simple for individual directed graphs, averaged over 10
runs, and plus/minus one standard deviation. The best is marked in bold red while
the second best is highlighted in underline blue . When MVR could not generate results
after a week, we omit the results and fill in “NAN" here.

Data SpringRank SyncRank SerialRank BTL DavidScore Eig.Cent. PageRank RankCent. SVD_RS SVD_NRS MVR GNNRank-N GNNRank-P
HeadToHead 1.00±0.00 1.94±0.00 2.01±0.00 1.12±0.01 1.16±0.00 1.47±0.00 1.36±0.00 2.00±0.02 1.79±0.00 1.42±0.00 nan±nan 0.99±0.00 0.96±0.00
Finance 1.63±0.00 1.98±0.00 1.61±0.00 1.78±0.01 1.63±0.00 1.74±0.00 1.75±0.00 1.88±0.00 1.64±0.00 1.64±0.00 nan±nan 1.00±0.00 1.00±0.00
Animal 0.50±0.00 1.62±0.24 1.98±0.48 0.45±0.00 0.33±0.00 0.55±0.00 0.63±0.00 1.96±0.00 1.03±0.00 0.53±0.00 2.02±0.32 0.41±0.09 0.25±0.00
Faculty: Business 0.41±0.00 0.83±0.00 1.19±0.00 0.41±0.01 0.49±0.00 0.49±0.00 0.49±0.00 2.01±0.03 0.68±0.00 0.46±0.00 0.78±0.05 0.38±0.01 0.36±0.00
Faculty: CS 0.33±0.00 0.98±0.10 1.40±0.00 0.34±0.01 0.61±0.00 0.51±0.00 0.44±0.00 1.99±0.27 0.93±0.00 0.58±0.00 0.87±0.09 0.33±0.03 0.32±0.00
Faculty: History 0.32±0.00 0.57±0.00 2.16±0.80 0.30±0.01 0.57±0.00 0.40±0.00 0.37±0.00 2.13±0.30 0.95±0.00 0.38±0.00 0.84±0.17 0.28±0.01 0.30±0.01
Basketball(1985) 0.76±0.00 1.62±0.00 2.11±0.00 0.93±0.08 0.75±0.00 0.89±0.00 0.91±0.00 1.92±0.00 1.00±0.00 0.86±0.00 nan±nan 0.77±0.01 0.71±0.00
Basketball(1986) 0.78±0.00 1.79±0.00 1.99±0.00 0.96±0.02 0.78±0.00 0.89±0.00 0.88±0.00 1.96±0.00 1.09±0.00 0.86±0.00 nan±nan 0.78±0.01 0.69±0.00
Basketball(1987) 0.82±0.00 1.79±0.00 1.88±0.00 0.99±0.02 0.85±0.00 0.99±0.00 0.90±0.00 1.94±0.00 0.99±0.00 0.91±0.00 nan±nan 0.84±0.01 0.77±0.01
Basketball(1988) 0.74±0.00 1.66±0.00 1.91±0.00 0.92±0.03 0.77±0.00 0.87±0.00 0.85±0.00 1.93±0.00 0.97±0.00 0.83±0.00 nan±nan 0.76±0.01 0.70±0.00
Basketball(1989) 0.75±0.00 1.74±0.00 1.86±0.00 0.94±0.02 0.77±0.00 0.82±0.00 0.85±0.00 1.87±0.00 0.98±0.00 0.90±0.00 nan±nan 0.78±0.02 0.70±0.00
Basketball(1990) 0.75±0.00 1.68±0.00 1.94±0.00 0.89±0.08 0.78±0.00 0.90±0.00 0.88±0.00 1.95±0.00 0.91±0.00 0.85±0.00 nan±nan 0.77±0.02 0.70±0.00
Basketball(1991) 0.80±0.00 1.80±0.00 2.03±0.00 0.92±0.07 0.77±0.00 0.86±0.00 0.84±0.00 1.95±0.00 1.00±0.00 0.90±0.00 nan±nan 0.78±0.01 0.70±0.00
Basketball(1992) 0.75±0.00 1.74±0.00 1.89±0.00 0.86±0.10 0.72±0.00 0.84±0.00 0.80±0.00 2.00±0.00 0.96±0.00 0.84±0.00 nan±nan 0.74±0.01 0.67±0.00
Basketball(1993) 0.75±0.00 1.68±0.00 2.04±0.00 0.88±0.06 0.74±0.00 0.83±0.00 0.85±0.00 1.93±0.00 0.99±0.00 0.86±0.00 nan±nan 0.76±0.02 0.68±0.01
Basketball(1994) 0.74±0.00 1.67±0.00 2.00±0.00 0.77±0.09 0.74±0.00 0.82±0.00 0.83±0.00 2.04±0.00 0.90±0.00 0.84±0.00 nan±nan 0.75±0.01 0.69±0.00
Basketball(1995) 0.77±0.00 1.78±0.00 1.88±0.00 0.84±0.10 0.78±0.00 0.83±0.00 0.87±0.00 2.02±0.00 0.94±0.00 0.86±0.00 nan±nan 0.78±0.01 0.72±0.01
Basketball(1996) 0.82±0.00 1.67±0.00 2.05±0.00 0.96±0.07 0.81±0.00 0.90±0.00 0.92±0.00 2.05±0.00 1.08±0.00 0.95±0.00 nan±nan 0.84±0.01 0.77±0.01
Basketball(1997) 0.81±0.00 1.72±0.00 1.95±0.00 0.97±0.02 0.83±0.00 0.91±0.00 0.90±0.00 1.89±0.00 0.96±0.00 0.92±0.00 nan±nan 0.83±0.01 0.76±0.01
Basketball(1998) 0.77±0.00 1.69±0.00 1.91±0.00 0.96±0.03 0.79±0.00 0.90±0.00 0.85±0.00 1.92±0.00 0.96±0.00 0.89±0.00 nan±nan 0.80±0.01 0.74±0.01
Basketball(1999) 0.83±0.00 1.56±0.00 2.02±0.00 0.97±0.06 0.81±0.00 0.93±0.00 0.94±0.00 1.90±0.00 1.16±0.00 0.95±0.00 nan±nan 0.84±0.01 0.74±0.00
Basketball(2000) 0.84±0.00 1.77±0.00 1.97±0.00 0.98±0.02 0.86±0.00 0.91±0.00 0.91±0.00 1.91±0.00 1.11±0.00 0.94±0.00 nan±nan 0.82±0.01 0.77±0.00
Basketball(2001) 0.75±0.00 1.73±0.00 2.03±0.00 0.91±0.07 0.78±0.00 0.88±0.00 0.84±0.00 2.00±0.00 1.05±0.00 0.94±0.00 nan±nan 0.77±0.01 0.71±0.00
Basketball(2002) 0.80±0.00 1.69±0.00 1.91±0.00 0.92±0.05 0.80±0.00 0.85±0.00 0.91±0.00 1.94±0.00 1.06±0.00 0.88±0.00 nan±nan 0.80±0.01 0.73±0.00
Basketball(2003) 0.81±0.00 1.85±0.00 2.05±0.00 0.95±0.07 0.80±0.00 0.94±0.00 0.94±0.00 1.93±0.00 0.99±0.00 0.94±0.00 nan±nan 0.83±0.01 0.78±0.00
Basketball(2004) 0.75±0.00 1.67±0.00 2.00±0.11 0.89±0.07 0.75±0.00 0.85±0.00 0.87±0.00 1.95±0.00 0.92±0.00 0.86±0.00 nan±nan 0.77±0.01 0.69±0.00
Basketball(2005) 0.78±0.00 1.78±0.01 1.98±0.05 0.98±0.02 0.81±0.00 0.85±0.00 0.91±0.00 1.87±0.00 1.05±0.00 0.92±0.00 nan±nan 0.81±0.02 0.73±0.00
Basketball(2006) 0.81±0.00 1.78±0.00 2.00±0.00 0.84±0.08 0.77±0.00 0.86±0.00 0.89±0.00 1.99±0.00 1.03±0.00 0.91±0.00 nan±nan 0.82±0.01 0.74±0.00
Basketball(2007) 0.79±0.00 1.87±0.00 1.94±0.08 0.94±0.01 0.84±0.00 0.89±0.00 0.89±0.00 1.94±0.00 0.92±0.00 0.89±0.00 nan±nan 0.83±0.01 0.77±0.00
Basketball(2008) 0.82±0.00 1.75±0.00 2.01±0.00 0.90±0.07 0.80±0.00 0.90±0.00 0.93±0.00 1.92±0.00 0.98±0.00 0.90±0.00 nan±nan 0.83±0.01 0.78±0.00
Basketball(2009) 0.78±0.00 1.74±0.00 2.02±0.00 0.94±0.02 0.76±0.00 0.85±0.00 0.86±0.00 1.89±0.00 0.95±0.00 0.88±0.00 nan±nan 0.78±0.01 0.72±0.01
Basketball(2010) 0.79±0.00 1.55±0.00 1.97±0.00 0.85±0.10 0.77±0.00 0.92±0.00 0.91±0.00 2.03±0.00 0.93±0.00 0.91±0.00 nan±nan 0.82±0.01 0.71±0.00
Basketball(2011) 0.81±0.00 1.63±0.00 1.96±0.00 0.85±0.08 0.79±0.00 0.88±0.00 0.89±0.00 2.03±0.00 0.95±0.00 0.87±0.00 nan±nan 0.80±0.01 0.74±0.00
Basketball(2012) 0.76±0.00 1.81±0.00 1.97±0.00 0.88±0.08 0.77±0.00 0.85±0.00 0.84±0.00 1.96±0.00 0.90±0.00 0.85±0.00 nan±nan 0.78±0.01 0.69±0.00
Basketball(2013) 0.80±0.00 1.71±0.00 1.99±0.05 0.95±0.06 0.80±0.00 0.90±0.00 0.87±0.00 1.95±0.00 1.00±0.00 0.90±0.00 nan±nan 0.81±0.01 0.76±0.00
Basketball(2014) 0.80±0.00 1.72±0.00 2.06±0.00 0.87±0.09 0.79±0.00 0.88±0.00 0.91±0.00 1.94±0.00 1.01±0.00 0.87±0.00 nan±nan 0.83±0.01 0.75±0.00
Basketball finer(1985) 0.76±0.00 1.63±0.00 1.96±0.10 1.46±0.05 0.83±0.00 1.18±0.00 1.16±0.00 1.97±0.00 1.00±0.00 0.87±0.00 nan±nan 0.79±0.01 0.71±0.00
Basketball finer(1986) 0.77±0.00 1.81±0.00 1.99±0.00 1.42±0.06 0.84±0.00 1.16±0.00 1.15±0.00 1.99±0.00 1.09±0.00 0.86±0.00 nan±nan 0.81±0.01 0.69±0.00
Basketball finer(1987) 0.82±0.00 1.79±0.00 1.87±0.00 1.41±0.06 0.89±0.00 1.17±0.00 1.21±0.00 1.95±0.00 0.99±0.00 0.91±0.00 nan±nan 0.86±0.02 0.77±0.01
Basketball finer(1988) 0.78±0.00 1.79±0.00 1.90±0.00 1.43±0.10 0.84±0.00 1.23±0.00 1.19±0.00 1.97±0.00 0.97±0.00 0.83±0.00 nan±nan 0.80±0.01 0.70±0.01
Basketball finer(1989) 0.77±0.00 1.67±0.00 1.86±0.00 1.43±0.05 0.83±0.00 1.13±0.00 1.14±0.00 1.94±0.00 0.99±0.00 0.90±0.00 nan±nan 0.82±0.02 0.70±0.00
Basketball finer(1990) 0.79±0.00 1.67±0.00 1.93±0.00 1.45±0.05 0.82±0.00 1.28±0.00 1.17±0.00 1.98±0.00 0.91±0.00 0.84±0.00 nan±nan 0.80±0.02 0.71±0.00
Basketball finer(1991) 0.81±0.00 1.83±0.00 2.03±0.00 1.36±0.06 0.83±0.00 1.38±0.00 1.31±0.00 1.97±0.00 0.99±0.00 0.89±0.00 nan±nan 0.83±0.01 0.71±0.00
Basketball finer(1992) 0.73±0.00 1.72±0.00 1.88±0.00 1.33±0.06 0.77±0.00 1.26±0.00 1.21±0.00 1.87±0.00 0.95±0.00 0.84±0.00 nan±nan 0.75±0.02 0.67±0.00
Basketball finer(1993) 0.75±0.00 1.66±0.00 2.03±0.00 1.35±0.05 0.78±0.00 1.18±0.00 1.10±0.00 1.97±0.00 0.98±0.00 0.86±0.00 nan±nan 0.80±0.01 0.68±0.01
Basketball finer(1994) 0.74±0.00 1.69±0.00 2.01±0.00 1.35±0.08 0.78±0.00 1.23±0.00 1.10±0.00 1.94±0.00 0.90±0.00 0.83±0.00 nan±nan 0.77±0.01 0.67±0.00
Basketball finer(1995) 0.79±0.00 1.78±0.00 1.89±0.00 1.35±0.06 0.83±0.00 1.19±0.00 1.13±0.00 1.92±0.01 0.95±0.00 0.87±0.00 nan±nan 0.78±0.01 0.72±0.01
Basketball finer(1996) 0.81±0.00 1.67±0.00 1.95±0.00 1.44±0.06 0.88±0.00 1.22±0.00 1.20±0.00 1.94±0.00 1.08±0.00 0.95±0.00 nan±nan 0.86±0.01 0.77±0.00
Basketball finer(1997) 0.83±0.00 1.77±0.00 1.94±0.00 1.40±0.04 0.86±0.00 1.19±0.00 1.16±0.00 2.05±0.00 0.96±0.00 0.92±0.00 nan±nan 0.85±0.01 0.75±0.01
Basketball finer(1998) 0.78±0.00 1.70±0.00 1.92±0.00 1.36±0.07 0.83±0.00 1.14±0.00 1.13±0.00 1.91±0.00 0.97±0.00 0.90±0.00 nan±nan 0.82±0.02 0.73±0.01
Basketball finer(1999) 0.81±0.00 1.64±0.00 2.02±0.00 1.38±0.07 0.86±0.00 1.17±0.00 1.11±0.00 1.99±0.00 1.17±0.00 0.94±0.00 nan±nan 0.86±0.01 0.73±0.00
Basketball finer(2000) 0.84±0.00 1.75±0.00 1.97±0.00 1.39±0.05 0.90±0.00 1.26±0.00 1.18±0.00 1.92±0.00 1.12±0.00 0.95±0.00 nan±nan 0.88±0.01 0.78±0.00
Basketball finer(2001) 0.81±0.00 1.69±0.00 2.06±0.00 1.41±0.06 0.86±0.00 1.25±0.00 1.18±0.00 2.03±0.00 1.08±0.00 0.97±0.00 nan±nan 0.86±0.01 0.73±0.00
Basketball finer(2002) 0.87±0.00 1.75±0.00 1.86±0.00 1.43±0.08 0.89±0.00 1.20±0.00 1.13±0.00 2.03±0.00 1.07±0.00 0.92±0.00 nan±nan 0.83±0.01 0.77±0.01
Basketball finer(2003) 0.87±0.00 1.78±0.00 1.98±0.07 1.46±0.09 0.91±0.00 1.18±0.00 1.14±0.00 2.00±0.00 1.02±0.00 0.95±0.00 nan±nan 0.88±0.02 0.78±0.00
Basketball finer(2004) 0.77±0.00 1.71±0.06 1.87±0.00 1.41±0.06 0.80±0.00 1.17±0.00 1.13±0.00 1.98±0.02 0.95±0.00 0.88±0.00 nan±nan 0.84±0.01 0.71±0.01
Basketball finer(2005) 0.84±0.00 1.82±0.00 1.93±0.00 1.38±0.06 0.88±0.00 1.14±0.00 1.09±0.00 2.00±0.00 1.08±0.00 0.95±0.00 nan±nan 0.86±0.01 0.75±0.01
Basketball finer(2006) 0.86±0.00 1.76±0.00 1.97±0.00 1.40±0.07 0.85±0.00 1.21±0.00 1.11±0.00 1.96±0.00 1.06±0.00 0.94±0.00 nan±nan 0.88±0.02 0.76±0.00
Basketball finer(2007) 0.86±0.00 1.85±0.00 1.97±0.14 1.39±0.05 0.93±0.00 1.15±0.00 1.09±0.00 1.92±0.00 0.95±0.00 0.93±0.00 nan±nan 0.87±0.01 0.80±0.01
Basketball finer(2008) 0.85±0.00 1.72±0.00 1.98±0.00 1.36±0.08 0.88±0.00 1.20±0.00 1.13±0.00 1.96±0.00 0.99±0.00 0.91±0.00 nan±nan 0.86±0.02 0.78±0.00
Basketball finer(2009) 0.84±0.00 1.71±0.00 2.00±0.04 1.37±0.04 0.90±0.00 1.17±0.00 1.12±0.00 2.06±0.00 0.99±0.00 0.91±0.00 nan±nan 0.85±0.01 0.75±0.00
Basketball finer(2010) 0.82±0.00 1.68±0.00 1.98±0.00 1.34±0.06 0.84±0.00 1.10±0.00 1.13±0.00 1.97±0.00 0.94±0.00 0.92±0.00 nan±nan 0.85±0.01 0.75±0.00
Basketball finer(2011) 0.85±0.00 1.65±0.00 1.96±0.00 1.36±0.06 0.87±0.00 1.12±0.00 1.14±0.00 2.01±0.00 0.96±0.00 0.89±0.00 nan±nan 0.87±0.01 0.77±0.00
Basketball finer(2012) 0.80±0.00 1.68±0.00 1.97±0.00 1.37±0.07 0.83±0.00 1.17±0.00 1.10±0.00 1.91±0.00 0.93±0.00 0.89±0.00 nan±nan 0.83±0.01 0.74±0.01
Basketball finer(2013) 0.83±0.00 1.73±0.00 2.06±0.00 1.37±0.07 0.88±0.00 1.15±0.00 1.13±0.00 1.97±0.00 1.01±0.00 0.92±0.00 nan±nan 0.85±0.00 0.78±0.01
Basketball finer(2014) 0.84±0.00 1.77±0.19 2.07±0.00 1.42±0.09 0.86±0.00 1.18±0.00 1.13±0.00 1.97±0.00 1.02±0.00 0.88±0.00 nan±nan 0.87±0.01 0.78±0.00
Football(2009) 0.61±0.00 1.44±0.44 0.93±0.00 0.67±0.07 0.80±0.00 0.93±0.00 1.05±0.00 1.80±0.09 0.80±0.00 0.66±0.00 1.55±0.16 0.75±0.06 0.61±0.00
Football(2010) 1.19±0.00 1.81±0.15 1.54±0.00 1.18±0.04 1.29±0.00 1.34±0.00 1.37±0.00 1.84±0.13 1.24±0.00 1.17±0.00 1.94±0.20 0.90±0.02 0.95±0.05
Football(2011) 0.80±0.00 1.57±0.37 0.95±0.00 0.86±0.04 0.87±0.00 0.99±0.00 1.02±0.00 1.60±0.00 0.92±0.00 0.85±0.00 1.80±0.19 0.83±0.03 0.80±0.01
Football(2012) 0.97±0.00 1.50±0.03 1.41±0.00 0.99±0.05 0.89±0.00 0.94±0.00 0.99±0.00 1.65±0.00 1.02±0.00 0.86±0.00 1.73±0.18 0.75±0.03 0.80±0.08
Football(2013) 0.75±0.00 1.64±0.10 0.78±0.00 0.77±0.05 0.68±0.00 0.92±0.00 0.87±0.00 1.93±0.09 0.90±0.00 0.75±0.00 1.59±0.11 0.64±0.04 0.56±0.00
Football(2014) 1.12±0.00 1.81±0.18 1.57±0.00 1.16±0.01 1.09±0.00 1.27±0.00 1.20±0.00 1.83±0.11 1.12±0.00 1.08±0.00 1.72±0.20 0.96±0.12 0.96±0.07
Football finer(2009) 0.71±0.00 1.78±0.00 0.93±0.00 0.79±0.10 0.71±0.00 1.05±0.00 1.10±0.00 1.89±0.05 0.80±0.00 0.66±0.00 1.91±0.17 0.76±0.18 0.65±0.02
Football finer(2010) 1.29±0.00 1.63±0.02 1.44±0.00 1.31±0.09 1.29±0.00 1.37±0.00 1.49±0.00 1.96±0.00 1.24±0.00 1.17±0.00 2.11±0.01 1.00±0.01 0.99±0.02
Football finer(2011) 0.87±0.00 1.58±0.02 1.07±0.00 0.93±0.04 0.92±0.00 1.02±0.00 1.14±0.00 1.87±0.00 0.92±0.00 0.85±0.00 2.14±0.02 0.92±0.16 0.84±0.02
Football finer(2012) 0.97±0.00 1.76±0.18 1.10±0.00 0.99±0.05 0.92±0.00 1.10±0.00 1.20±0.00 2.03±0.06 1.02±0.00 0.86±0.00 2.15±0.01 0.93±0.07 0.86±0.03
Football finer(2013) 0.90±0.00 1.57±0.01 0.87±0.00 0.85±0.06 0.73±0.00 0.99±0.00 1.07±0.00 2.01±0.00 0.90±0.00 0.75±0.00 1.94±0.14 0.73±0.19 0.57±0.01
Football finer(2014) 1.16±0.00 1.74±0.04 1.57±0.00 1.19±0.04 1.05±0.00 1.23±0.00 1.23±0.00 1.68±0.00 1.12±0.00 1.08±0.00 2.09±0.17 1.00±0.00 1.00±0.03
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Table D.3: Result table on Lupset, naive for individual directed graphs, averaged over 10
runs, and plus/minus one standard deviation. The best is marked in bold red while
the second best is highlighted in underline blue . When MVR could not generate results
after a week, we omit the results and fill in “NAN" here.

Data SpringRank SyncRank SerialRank BTL DavidScore Eig.Cent. PageRank RankCent. SVD_RS SVD_NRS MVR GNNRank-N GNNRank-P
HeadToHead 0.25±0.00 0.48±0.00 0.50±0.00 0.28±0.00 0.29±0.00 0.37±0.00 0.34±0.00 0.50±0.01 0.45±0.00 0.36±0.00 nan±nan 0.27±0.00 0.24±0.00
Finance 0.41±0.00 0.50±0.00 0.40±0.00 0.45±0.00 0.41±0.00 0.44±0.00 0.44±0.00 0.47±0.00 0.41±0.00 0.41±0.00 nan±nan 0.41±0.00 0.40±0.00
Animal 0.13±0.00 0.40±0.06 0.58±0.11 0.11±0.00 0.08±0.00 0.14±0.00 0.16±0.00 0.49±0.00 0.26±0.00 0.13±0.00 0.50±0.08 0.10±0.02 0.06±0.00
Faculty: Business 0.10±0.00 0.21±0.00 0.30±0.00 0.10±0.00 0.12±0.00 0.12±0.00 0.12±0.00 0.50±0.01 0.17±0.00 0.12±0.00 0.19±0.01 0.10±0.00 0.09±0.00
Faculty: CS 0.08±0.00 0.24±0.02 0.35±0.00 0.08±0.00 0.15±0.00 0.13±0.00 0.11±0.00 0.50±0.07 0.23±0.00 0.15±0.00 0.22±0.02 0.08±0.01 0.08±0.00
Faculty: History 0.08±0.00 0.14±0.00 0.54±0.20 0.08±0.00 0.15±0.00 0.10±0.00 0.09±0.00 0.53±0.08 0.24±0.00 0.10±0.00 0.21±0.04 0.07±0.00 0.07±0.00
Basketball(1985) 0.19±0.00 0.40±0.00 0.53±0.00 0.23±0.02 0.19±0.00 0.22±0.00 0.23±0.00 0.48±0.00 0.25±0.00 0.22±0.00 nan±nan 0.19±0.00 0.18±0.00
Basketball(1986) 0.19±0.00 0.45±0.00 0.50±0.00 0.24±0.01 0.19±0.00 0.22±0.00 0.22±0.00 0.49±0.00 0.27±0.00 0.21±0.00 nan±nan 0.20±0.00 0.17±0.00
Basketball(1987) 0.21±0.00 0.45±0.00 0.47±0.00 0.25±0.00 0.21±0.00 0.25±0.00 0.22±0.00 0.48±0.00 0.25±0.00 0.23±0.00 nan±nan 0.21±0.00 0.19±0.00
Basketball(1988) 0.19±0.00 0.42±0.00 0.48±0.00 0.23±0.01 0.19±0.00 0.22±0.00 0.21±0.00 0.48±0.00 0.24±0.00 0.21±0.00 nan±nan 0.19±0.00 0.17±0.00
Basketball(1989) 0.19±0.00 0.44±0.00 0.47±0.00 0.24±0.01 0.19±0.00 0.20±0.00 0.21±0.00 0.47±0.00 0.25±0.00 0.23±0.00 nan±nan 0.19±0.00 0.17±0.00
Basketball(1990) 0.19±0.00 0.42±0.00 0.48±0.00 0.22±0.02 0.20±0.00 0.23±0.00 0.22±0.00 0.49±0.00 0.23±0.00 0.21±0.00 nan±nan 0.19±0.00 0.17±0.00
Basketball(1991) 0.20±0.00 0.45±0.00 0.51±0.00 0.23±0.02 0.19±0.00 0.22±0.00 0.21±0.00 0.49±0.00 0.25±0.00 0.22±0.00 nan±nan 0.19±0.00 0.18±0.00
Basketball(1992) 0.19±0.00 0.43±0.00 0.47±0.00 0.21±0.02 0.18±0.00 0.21±0.00 0.20±0.00 0.50±0.00 0.24±0.00 0.21±0.00 nan±nan 0.18±0.00 0.17±0.00
Basketball(1993) 0.19±0.00 0.42±0.00 0.51±0.00 0.22±0.02 0.19±0.00 0.21±0.00 0.21±0.00 0.48±0.00 0.25±0.00 0.21±0.00 nan±nan 0.19±0.00 0.17±0.00
Basketball(1994) 0.19±0.00 0.42±0.00 0.50±0.00 0.19±0.02 0.18±0.00 0.20±0.00 0.21±0.00 0.51±0.00 0.23±0.00 0.21±0.00 nan±nan 0.19±0.00 0.17±0.00
Basketball(1995) 0.19±0.00 0.44±0.00 0.47±0.00 0.21±0.02 0.19±0.00 0.21±0.00 0.22±0.00 0.50±0.00 0.24±0.00 0.22±0.00 nan±nan 0.19±0.00 0.18±0.00
Basketball(1996) 0.21±0.00 0.42±0.00 0.51±0.00 0.24±0.02 0.20±0.00 0.23±0.00 0.23±0.00 0.51±0.00 0.27±0.00 0.24±0.00 nan±nan 0.21±0.00 0.19±0.00
Basketball(1997) 0.20±0.00 0.43±0.00 0.49±0.00 0.24±0.01 0.21±0.00 0.23±0.00 0.23±0.00 0.47±0.00 0.24±0.00 0.23±0.00 nan±nan 0.21±0.00 0.19±0.00
Basketball(1998) 0.19±0.00 0.42±0.00 0.48±0.00 0.24±0.01 0.20±0.00 0.22±0.00 0.21±0.00 0.48±0.00 0.24±0.00 0.22±0.00 nan±nan 0.20±0.00 0.18±0.00
Basketball(1999) 0.21±0.00 0.39±0.00 0.50±0.00 0.24±0.02 0.20±0.00 0.23±0.00 0.24±0.00 0.47±0.00 0.29±0.00 0.24±0.00 nan±nan 0.21±0.00 0.18±0.00
Basketball(2000) 0.21±0.00 0.44±0.00 0.49±0.00 0.25±0.01 0.21±0.00 0.23±0.00 0.23±0.00 0.48±0.00 0.28±0.00 0.23±0.00 nan±nan 0.21±0.00 0.19±0.00
Basketball(2001) 0.19±0.00 0.43±0.00 0.51±0.00 0.23±0.02 0.19±0.00 0.22±0.00 0.21±0.00 0.50±0.00 0.26±0.00 0.23±0.00 nan±nan 0.19±0.00 0.18±0.00
Basketball(2002) 0.20±0.00 0.42±0.00 0.48±0.00 0.23±0.01 0.20±0.00 0.21±0.00 0.23±0.00 0.49±0.00 0.26±0.00 0.22±0.00 nan±nan 0.20±0.00 0.18±0.00
Basketball(2003) 0.20±0.00 0.46±0.00 0.51±0.00 0.24±0.02 0.20±0.00 0.24±0.00 0.23±0.00 0.48±0.00 0.25±0.00 0.23±0.00 nan±nan 0.21±0.00 0.19±0.00
Basketball(2004) 0.19±0.00 0.42±0.00 0.50±0.03 0.22±0.02 0.19±0.00 0.21±0.00 0.22±0.00 0.49±0.00 0.23±0.00 0.22±0.00 nan±nan 0.19±0.00 0.17±0.00
Basketball(2005) 0.19±0.00 0.45±0.00 0.49±0.01 0.24±0.01 0.20±0.00 0.21±0.00 0.23±0.00 0.47±0.00 0.26±0.00 0.23±0.00 nan±nan 0.20±0.00 0.18±0.00
Basketball(2006) 0.20±0.00 0.44±0.00 0.50±0.00 0.21±0.02 0.19±0.00 0.22±0.00 0.22±0.00 0.50±0.00 0.26±0.00 0.23±0.00 nan±nan 0.21±0.00 0.19±0.00
Basketball(2007) 0.20±0.00 0.47±0.00 0.48±0.02 0.24±0.00 0.21±0.00 0.22±0.00 0.22±0.00 0.49±0.00 0.23±0.00 0.22±0.00 nan±nan 0.21±0.00 0.19±0.00
Basketball(2008) 0.20±0.00 0.44±0.00 0.50±0.00 0.22±0.02 0.20±0.00 0.22±0.00 0.23±0.00 0.48±0.00 0.24±0.00 0.23±0.00 nan±nan 0.21±0.00 0.20±0.00
Basketball(2009) 0.19±0.00 0.43±0.00 0.51±0.00 0.24±0.00 0.19±0.00 0.21±0.00 0.21±0.00 0.47±0.00 0.24±0.00 0.22±0.00 nan±nan 0.19±0.00 0.18±0.00
Basketball(2010) 0.20±0.00 0.39±0.00 0.49±0.00 0.21±0.02 0.19±0.00 0.23±0.00 0.23±0.00 0.51±0.00 0.23±0.00 0.23±0.00 nan±nan 0.21±0.00 0.18±0.00
Basketball(2011) 0.20±0.00 0.41±0.00 0.49±0.00 0.21±0.02 0.20±0.00 0.22±0.00 0.22±0.00 0.51±0.00 0.24±0.00 0.22±0.00 nan±nan 0.20±0.00 0.18±0.00
Basketball(2012) 0.19±0.00 0.45±0.00 0.49±0.00 0.22±0.02 0.19±0.00 0.21±0.00 0.21±0.00 0.49±0.00 0.22±0.00 0.21±0.00 nan±nan 0.19±0.00 0.17±0.00
Basketball(2013) 0.20±0.00 0.43±0.00 0.50±0.01 0.24±0.02 0.20±0.00 0.22±0.00 0.22±0.00 0.49±0.00 0.25±0.00 0.23±0.00 nan±nan 0.20±0.00 0.19±0.00
Basketball(2014) 0.20±0.00 0.43±0.00 0.52±0.00 0.22±0.02 0.20±0.00 0.22±0.00 0.23±0.00 0.48±0.00 0.25±0.00 0.22±0.00 nan±nan 0.21±0.00 0.19±0.00
Basketball finer(1985) 0.19±0.00 0.41±0.00 0.49±0.02 0.36±0.01 0.21±0.00 0.29±0.00 0.29±0.00 0.49±0.00 0.25±0.00 0.22±0.00 nan±nan 0.20±0.00 0.18±0.00
Basketball finer(1986) 0.19±0.00 0.45±0.00 0.50±0.00 0.36±0.02 0.21±0.00 0.29±0.00 0.29±0.00 0.50±0.00 0.27±0.00 0.21±0.00 nan±nan 0.20±0.00 0.17±0.00
Basketball finer(1987) 0.20±0.00 0.45±0.00 0.47±0.00 0.35±0.01 0.22±0.00 0.29±0.00 0.30±0.00 0.49±0.00 0.25±0.00 0.23±0.00 nan±nan 0.21±0.01 0.19±0.00
Basketball finer(1988) 0.19±0.00 0.45±0.00 0.48±0.00 0.36±0.03 0.21±0.00 0.31±0.00 0.30±0.00 0.49±0.00 0.24±0.00 0.21±0.00 nan±nan 0.20±0.00 0.18±0.00
Basketball finer(1989) 0.19±0.00 0.42±0.00 0.46±0.00 0.36±0.01 0.21±0.00 0.28±0.00 0.29±0.00 0.49±0.00 0.25±0.00 0.23±0.00 nan±nan 0.20±0.01 0.18±0.00
Basketball finer(1990) 0.20±0.00 0.42±0.00 0.48±0.00 0.36±0.01 0.21±0.00 0.32±0.00 0.29±0.00 0.50±0.00 0.23±0.00 0.21±0.00 nan±nan 0.20±0.01 0.18±0.00
Basketball finer(1991) 0.20±0.00 0.46±0.00 0.51±0.00 0.34±0.02 0.21±0.00 0.35±0.00 0.33±0.00 0.49±0.00 0.25±0.00 0.22±0.00 nan±nan 0.21±0.00 0.18±0.00
Basketball finer(1992) 0.18±0.00 0.43±0.00 0.47±0.00 0.33±0.01 0.19±0.00 0.31±0.00 0.30±0.00 0.47±0.00 0.24±0.00 0.21±0.00 nan±nan 0.19±0.00 0.17±0.00
Basketball finer(1993) 0.19±0.00 0.42±0.00 0.51±0.00 0.34±0.01 0.20±0.00 0.29±0.00 0.27±0.00 0.49±0.00 0.25±0.00 0.21±0.00 nan±nan 0.20±0.00 0.17±0.00
Basketball finer(1994) 0.18±0.00 0.42±0.00 0.50±0.00 0.34±0.02 0.19±0.00 0.31±0.00 0.27±0.00 0.49±0.00 0.22±0.00 0.21±0.00 nan±nan 0.19±0.00 0.17±0.00
Basketball finer(1995) 0.20±0.00 0.44±0.00 0.47±0.00 0.34±0.02 0.21±0.00 0.30±0.00 0.28±0.00 0.48±0.00 0.24±0.00 0.22±0.00 nan±nan 0.20±0.00 0.18±0.00
Basketball finer(1996) 0.20±0.00 0.42±0.00 0.49±0.00 0.36±0.02 0.22±0.00 0.30±0.00 0.30±0.00 0.49±0.00 0.27±0.00 0.24±0.00 nan±nan 0.22±0.00 0.19±0.00
Basketball finer(1997) 0.21±0.00 0.44±0.00 0.49±0.00 0.35±0.01 0.21±0.00 0.30±0.00 0.29±0.00 0.51±0.00 0.24±0.00 0.23±0.00 nan±nan 0.21±0.00 0.19±0.00
Basketball finer(1998) 0.20±0.00 0.42±0.00 0.48±0.00 0.34±0.02 0.21±0.00 0.29±0.00 0.28±0.00 0.48±0.00 0.24±0.00 0.22±0.00 nan±nan 0.20±0.00 0.18±0.00
Basketball finer(1999) 0.20±0.00 0.41±0.00 0.50±0.00 0.34±0.02 0.22±0.00 0.29±0.00 0.28±0.00 0.50±0.00 0.29±0.00 0.24±0.00 nan±nan 0.21±0.00 0.18±0.00
Basketball finer(2000) 0.21±0.00 0.44±0.00 0.49±0.00 0.35±0.01 0.23±0.00 0.32±0.00 0.30±0.00 0.48±0.00 0.28±0.00 0.24±0.00 nan±nan 0.22±0.00 0.19±0.00
Basketball finer(2001) 0.20±0.00 0.42±0.00 0.51±0.00 0.35±0.01 0.21±0.00 0.31±0.00 0.30±0.00 0.51±0.00 0.27±0.00 0.24±0.00 nan±nan 0.21±0.00 0.18±0.00
Basketball finer(2002) 0.22±0.00 0.44±0.00 0.47±0.00 0.36±0.02 0.22±0.00 0.30±0.00 0.28±0.00 0.51±0.00 0.27±0.00 0.23±0.00 nan±nan 0.21±0.00 0.19±0.00
Basketball finer(2003) 0.22±0.00 0.45±0.00 0.50±0.02 0.36±0.02 0.23±0.00 0.29±0.00 0.29±0.00 0.50±0.00 0.26±0.00 0.24±0.00 nan±nan 0.22±0.00 0.19±0.00
Basketball finer(2004) 0.19±0.00 0.43±0.01 0.47±0.00 0.35±0.01 0.20±0.00 0.29±0.00 0.28±0.00 0.49±0.00 0.24±0.00 0.22±0.00 nan±nan 0.21±0.00 0.18±0.00
Basketball finer(2005) 0.21±0.00 0.46±0.00 0.48±0.00 0.34±0.01 0.22±0.00 0.29±0.00 0.27±0.00 0.50±0.00 0.27±0.00 0.24±0.00 nan±nan 0.21±0.00 0.19±0.00
Basketball finer(2006) 0.21±0.00 0.44±0.00 0.49±0.00 0.35±0.02 0.21±0.00 0.30±0.00 0.28±0.00 0.49±0.00 0.27±0.00 0.23±0.00 nan±nan 0.22±0.01 0.19±0.00
Basketball finer(2007) 0.21±0.00 0.46±0.00 0.49±0.03 0.35±0.01 0.23±0.00 0.29±0.00 0.27±0.00 0.48±0.00 0.24±0.00 0.23±0.00 nan±nan 0.22±0.00 0.20±0.00
Basketball finer(2008) 0.21±0.00 0.43±0.00 0.49±0.00 0.34±0.02 0.22±0.00 0.30±0.00 0.28±0.00 0.49±0.00 0.25±0.00 0.23±0.00 nan±nan 0.21±0.00 0.20±0.00
Basketball finer(2009) 0.21±0.00 0.43±0.00 0.50±0.01 0.34±0.01 0.22±0.00 0.29±0.00 0.28±0.00 0.52±0.00 0.25±0.00 0.23±0.00 nan±nan 0.21±0.00 0.19±0.00
Basketball finer(2010) 0.20±0.00 0.42±0.00 0.49±0.00 0.33±0.02 0.21±0.00 0.28±0.00 0.28±0.00 0.49±0.00 0.24±0.00 0.23±0.00 nan±nan 0.21±0.00 0.19±0.00
Basketball finer(2011) 0.21±0.00 0.41±0.00 0.49±0.00 0.34±0.01 0.22±0.00 0.28±0.00 0.28±0.00 0.50±0.00 0.24±0.00 0.22±0.00 nan±nan 0.22±0.00 0.19±0.00
Basketball finer(2012) 0.20±0.00 0.42±0.00 0.49±0.00 0.34±0.02 0.21±0.00 0.29±0.00 0.28±0.00 0.48±0.00 0.23±0.00 0.22±0.00 nan±nan 0.21±0.00 0.18±0.00
Basketball finer(2013) 0.21±0.00 0.43±0.00 0.52±0.00 0.34±0.02 0.22±0.00 0.29±0.00 0.28±0.00 0.49±0.00 0.25±0.00 0.23±0.00 nan±nan 0.21±0.00 0.20±0.00
Basketball finer(2014) 0.21±0.00 0.44±0.05 0.52±0.00 0.36±0.02 0.22±0.00 0.30±0.00 0.28±0.00 0.49±0.00 0.26±0.00 0.22±0.00 nan±nan 0.22±0.00 0.20±0.00
Football(2009) 0.15±0.00 0.36±0.11 0.23±0.00 0.17±0.02 0.20±0.00 0.23±0.00 0.26±0.00 0.45±0.02 0.20±0.00 0.16±0.00 0.39±0.04 0.19±0.01 0.15±0.00
Football(2010) 0.30±0.00 0.45±0.04 0.39±0.00 0.30±0.01 0.32±0.00 0.34±0.00 0.34±0.00 0.46±0.03 0.31±0.00 0.29±0.00 0.49±0.05 0.30±0.01 0.29±0.00
Football(2011) 0.20±0.00 0.39±0.09 0.24±0.00 0.22±0.01 0.22±0.00 0.25±0.00 0.25±0.00 0.40±0.00 0.23±0.00 0.21±0.00 0.45±0.05 0.22±0.01 0.20±0.00
Football(2012) 0.24±0.00 0.38±0.01 0.35±0.00 0.25±0.01 0.22±0.00 0.24±0.00 0.25±0.00 0.41±0.00 0.25±0.00 0.22±0.00 0.43±0.04 0.20±0.02 0.21±0.00
Football(2013) 0.19±0.00 0.41±0.03 0.19±0.00 0.19±0.01 0.17±0.00 0.23±0.00 0.22±0.00 0.48±0.02 0.22±0.00 0.19±0.00 0.40±0.03 0.16±0.01 0.14±0.00
Football(2014) 0.28±0.00 0.45±0.05 0.39±0.00 0.29±0.00 0.28±0.00 0.32±0.00 0.30±0.00 0.46±0.03 0.28±0.00 0.27±0.00 0.43±0.05 0.24±0.01 0.26±0.01
Football finer(2009) 0.18±0.00 0.45±0.00 0.23±0.00 0.20±0.03 0.18±0.00 0.26±0.00 0.27±0.00 0.47±0.01 0.20±0.00 0.16±0.00 0.48±0.04 0.19±0.05 0.16±0.01
Football finer(2010) 0.32±0.00 0.41±0.01 0.36±0.00 0.33±0.02 0.32±0.00 0.34±0.00 0.37±0.00 0.49±0.00 0.31±0.00 0.29±0.00 0.53±0.00 0.31±0.02 0.29±0.00
Football finer(2011) 0.22±0.00 0.40±0.01 0.27±0.00 0.23±0.01 0.23±0.00 0.25±0.00 0.28±0.00 0.47±0.00 0.23±0.00 0.21±0.00 0.53±0.00 0.23±0.04 0.21±0.01
Football finer(2012) 0.24±0.00 0.44±0.04 0.27±0.00 0.25±0.01 0.23±0.00 0.27±0.00 0.30±0.00 0.51±0.01 0.25±0.00 0.22±0.00 0.54±0.00 0.24±0.02 0.21±0.01
Football finer(2013) 0.22±0.00 0.39±0.00 0.22±0.00 0.21±0.02 0.18±0.00 0.25±0.00 0.27±0.00 0.50±0.00 0.22±0.00 0.19±0.00 0.49±0.04 0.18±0.05 0.14±0.00
Football finer(2014) 0.29±0.00 0.44±0.01 0.39±0.00 0.30±0.01 0.26±0.00 0.31±0.00 0.31±0.00 0.42±0.00 0.28±0.00 0.27±0.00 0.52±0.04 0.27±0.01 0.27±0.02
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Table D.4: Result table on Lupset, ratio for individual directed graphs as input, averaged
over 10 runs, and plus/minus one standard deviation. The best is marked in bold red
while the second best is highlighted in underline blue . MVR could not generate scores,
so we omit the results.

Data SpringRank SyncRank SerialRank BTL DavidScore Eig.Cent. PageRank RankCent. SVD_RS SVD_NRS GNNRank-N GNNRank-P
HeadToHead 0.86±0.00 0.97±0.00 0.97±0.00 0.71±0.01 0.89±0.00 0.98±0.04 0.83±0.00 1.19±0.09 1.14±0.00 0.95±0.00 0.68±0.00 0.94±0.00
Finance 0.26±0.00 0.27±0.00 0.27±0.00 0.28±0.00 0.64±0.00 0.27±0.00 0.26±0.00 0.59±0.00 0.26±0.00 0.26±0.00 0.26±0.00 0.27±0.00
Animal 0.42±0.00 0.80±0.02 0.88±0.00 0.22±0.00 0.41±0.00 0.43±0.14 0.50±0.00 1.34±0.00 0.62±0.00 0.42±0.00 0.24±0.03 0.66±0.00
Faculty: Business 0.67±0.00 0.98±0.00 0.99±0.00 0.34±0.00 0.52±0.00 0.74±0.25 0.47±0.00 1.40±0.13 0.64±0.00 0.62±0.00 0.31±0.00 0.89±0.00
Faculty: CS 0.65±0.00 0.99±0.00 1.00±0.00 0.28±0.00 0.51±0.00 0.63±0.24 0.42±0.00 1.33±0.16 0.73±0.00 0.72±0.00 0.26±0.02 0.86±0.00
Faculty: History 0.61±0.00 0.99±0.00 1.00±0.00 0.23±0.00 0.49±0.00 0.60±0.28 0.37±0.00 1.35±0.11 0.68±0.00 0.72±0.00 0.21±0.00 0.84±0.02
Basketball(1985) 0.67±0.00 0.86±0.00 0.86±0.00 0.54±0.04 0.62±0.00 0.67±0.17 0.55±0.00 1.32±0.00 0.67±0.00 0.63±0.00 0.46±0.01 0.82±0.00
Basketball(1986) 0.69±0.00 0.85±0.00 0.86±0.00 0.54±0.01 0.61±0.00 0.73±0.16 0.54±0.00 1.30±0.00 0.75±0.00 0.63±0.00 0.42±0.00 0.81±0.00
Basketball(1987) 0.71±0.00 0.86±0.00 0.86±0.00 0.57±0.01 0.65±0.00 0.67±0.15 0.56±0.00 1.37±0.00 0.70±0.00 0.68±0.00 0.48±0.01 0.82±0.00
Basketball(1988) 0.65±0.00 0.86±0.00 0.86±0.00 0.53±0.01 0.59±0.00 0.70±0.17 0.54±0.00 1.33±0.00 0.70±0.00 0.63±0.00 0.45±0.01 0.82±0.00
Basketball(1989) 0.71±0.00 0.87±0.00 0.87±0.00 0.55±0.01 0.63±0.00 0.77±0.15 0.55±0.00 1.34±0.00 0.70±0.00 0.66±0.00 0.46±0.01 0.83±0.00
Basketball(1990) 0.67±0.00 0.86±0.00 0.87±0.00 0.51±0.05 0.62±0.00 0.74±0.16 0.55±0.00 1.35±0.00 0.65±0.00 0.62±0.00 0.44±0.01 0.82±0.00
Basketball(1991) 0.67±0.00 0.86±0.00 0.87±0.00 0.53±0.03 0.64±0.00 0.74±0.16 0.55±0.00 1.34±0.00 0.68±0.00 0.63±0.00 0.45±0.00 0.82±0.00
Basketball(1992) 0.69±0.00 0.87±0.00 0.87±0.00 0.50±0.06 0.59±0.00 0.73±0.17 0.54±0.00 1.35±0.00 0.70±0.00 0.61±0.00 0.43±0.00 0.83±0.00
Basketball(1993) 0.67±0.00 0.86±0.00 0.86±0.00 0.51±0.03 0.60±0.00 0.79±0.11 0.52±0.00 1.28±0.00 0.68±0.00 0.62±0.00 0.44±0.01 0.82±0.00
Basketball(1994) 0.56±0.00 0.86±0.00 0.86±0.00 0.43±0.05 0.59±0.00 0.64±0.19 0.53±0.00 1.35±0.00 0.61±0.00 0.60±0.00 0.42±0.00 0.82±0.00
Basketball(1995) 0.67±0.00 0.85±0.00 0.86±0.00 0.47±0.06 0.59±0.00 0.58±0.16 0.53±0.00 1.36±0.00 0.64±0.00 0.61±0.00 0.44±0.00 0.81±0.00
Basketball(1996) 0.68±0.00 0.86±0.00 0.87±0.00 0.55±0.03 0.65±0.00 0.57±0.13 0.56±0.00 1.35±0.00 0.74±0.00 0.68±0.00 0.48±0.00 0.82±0.00
Basketball(1997) 0.71±0.00 0.86±0.00 0.86±0.00 0.56±0.00 0.63±0.00 0.71±0.16 0.56±0.00 1.30±0.00 0.69±0.00 0.68±0.00 0.48±0.00 0.82±0.00
Basketball(1998) 0.70±0.00 0.88±0.00 0.88±0.00 0.56±0.01 0.64±0.00 0.71±0.17 0.56±0.00 1.36±0.00 0.70±0.00 0.67±0.00 0.46±0.00 0.84±0.00
Basketball(1999) 0.60±0.00 0.87±0.00 0.88±0.00 0.55±0.03 0.65±0.00 0.68±0.17 0.57±0.00 1.32±0.00 0.80±0.00 0.66±0.00 0.48±0.00 0.83±0.00
Basketball(2000) 0.70±0.00 0.90±0.00 0.90±0.00 0.58±0.01 0.65±0.00 0.77±0.16 0.59±0.00 1.40±0.01 0.77±0.00 0.67±0.00 0.50±0.00 0.86±0.00
Basketball(2001) 0.70±0.00 0.89±0.00 0.89±0.00 0.55±0.04 0.64±0.00 0.72±0.18 0.56±0.00 1.40±0.00 0.74±0.00 0.67±0.00 0.47±0.00 0.85±0.00
Basketball(2002) 0.70±0.00 0.88±0.00 0.88±0.00 0.56±0.03 0.66±0.00 0.65±0.17 0.58±0.00 1.33±0.00 0.77±0.00 0.68±0.00 0.48±0.01 0.84±0.00
Basketball(2003) 0.72±0.00 0.88±0.00 0.89±0.00 0.56±0.04 0.68±0.00 0.67±0.16 0.59±0.00 1.40±0.00 0.73±0.00 0.71±0.00 0.51±0.00 0.85±0.00
Basketball(2004) 0.68±0.00 0.88±0.00 0.89±0.00 0.54±0.04 0.64±0.00 0.64±0.18 0.56±0.00 1.35±0.00 0.67±0.00 0.64±0.00 0.46±0.00 0.85±0.00
Basketball(2005) 0.73±0.00 0.89±0.00 0.89±0.00 0.57±0.01 0.65±0.00 0.69±0.18 0.58±0.00 1.29±0.01 0.73±0.00 0.68±0.00 0.49±0.01 0.85±0.00
Basketball(2006) 0.73±0.00 0.89±0.00 0.90±0.00 0.50±0.05 0.65±0.00 0.69±0.18 0.58±0.00 1.36±0.00 0.76±0.00 0.69±0.00 0.49±0.01 0.85±0.00
Basketball(2007) 0.72±0.00 0.90±0.00 0.90±0.00 0.57±0.00 0.65±0.00 0.62±0.16 0.57±0.00 1.41±0.00 0.67±0.00 0.67±0.00 0.49±0.00 0.86±0.00
Basketball(2008) 0.74±0.00 0.90±0.00 0.90±0.00 0.55±0.04 0.65±0.00 0.73±0.17 0.58±0.00 1.33±0.01 0.70±0.00 0.67±0.00 0.51±0.01 0.86±0.00
Basketball(2009) 0.70±0.00 0.90±0.00 0.90±0.00 0.57±0.01 0.65±0.00 0.65±0.18 0.56±0.00 1.24±0.00 0.69±0.00 0.66±0.00 0.47±0.00 0.86±0.00
Basketball(2010) 0.74±0.00 0.91±0.00 0.91±0.00 0.52±0.06 0.66±0.00 0.71±0.18 0.58±0.00 1.35±0.00 0.69±0.00 0.67±0.00 0.49±0.00 0.87±0.00
Basketball(2011) 0.73±0.00 0.90±0.00 0.90±0.00 0.52±0.05 0.66±0.00 0.63±0.16 0.58±0.00 1.34±0.00 0.70±0.00 0.68±0.00 0.49±0.00 0.86±0.00
Basketball(2012) 0.73±0.00 0.90±0.00 0.91±0.00 0.54±0.05 0.64±0.00 0.73±0.19 0.56±0.00 1.42±0.00 0.66±0.00 0.64±0.00 0.48±0.01 0.86±0.00
Basketball(2013) 0.74±0.00 0.90±0.00 0.91±0.00 0.58±0.03 0.67±0.00 0.70±0.17 0.59±0.00 1.34±0.00 0.73±0.00 0.70±0.00 0.51±0.01 0.86±0.00
Basketball(2014) 0.72±0.00 0.90±0.00 0.90±0.00 0.52±0.06 0.66±0.00 0.65±0.18 0.58±0.00 1.41±0.00 0.72±0.00 0.67±0.00 0.49±0.01 0.86±0.00
Basketball finer(1985) 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.47±0.00 0.01±0.00 0.01±0.00 0.57±0.00 0.46±0.00 0.46±0.00 0.00±0.00 0.01±0.00
Basketball finer(1986) 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.49±0.00 0.01±0.00 0.01±0.00 0.60±0.00 0.48±0.00 0.49±0.00 0.00±0.00 0.01±0.00
Basketball finer(1987) 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.51±0.00 0.01±0.00 0.01±0.00 0.58±0.00 0.46±0.00 0.48±0.00 0.00±0.00 0.01±0.00
Basketball finer(1988) 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.52±0.00 0.01±0.00 0.01±0.00 0.57±0.00 0.56±0.00 0.52±0.00 0.00±0.00 0.01±0.00
Basketball finer(1989) 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.49±0.00 0.01±0.00 0.01±0.00 0.56±0.00 0.49±0.00 0.49±0.00 0.00±0.00 0.01±0.00
Basketball finer(1990) 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.49±0.00 0.01±0.00 0.01±0.00 0.55±0.00 0.48±0.00 0.49±0.00 0.00±0.00 0.01±0.00
Basketball finer(1991) 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.49±0.00 0.01±0.00 0.01±0.00 0.54±0.00 0.49±0.00 0.47±0.00 0.00±0.00 0.01±0.00
Basketball finer(1992) 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.49±0.00 0.01±0.00 0.01±0.00 0.55±0.00 0.44±0.00 0.49±0.00 0.00±0.00 0.01±0.00
Basketball finer(1993) 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.51±0.00 0.01±0.00 0.01±0.00 0.58±0.00 0.47±0.00 0.49±0.00 0.00±0.00 0.01±0.00
Basketball finer(1994) 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.49±0.00 0.01±0.00 0.01±0.00 0.58±0.00 0.46±0.00 0.49±0.00 0.00±0.00 0.01±0.00
Basketball finer(1995) 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.50±0.00 0.01±0.00 0.01±0.00 0.55±0.00 0.47±0.00 0.49±0.00 0.00±0.00 0.01±0.00
Basketball finer(1996) 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.48±0.00 0.01±0.00 0.01±0.00 0.56±0.00 0.45±0.00 0.47±0.00 0.01±0.00 0.01±0.00
Basketball finer(1997) 0.04±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.50±0.00 0.01±0.00 0.01±0.00 0.56±0.00 0.48±0.00 0.47±0.00 0.01±0.00 0.01±0.00
Basketball finer(1998) 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.50±0.00 0.01±0.00 0.01±0.00 0.56±0.00 0.47±0.00 0.45±0.00 0.01±0.00 0.01±0.00
Basketball finer(1999) 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.50±0.00 0.01±0.00 0.01±0.00 0.57±0.00 0.48±0.00 0.46±0.00 0.01±0.00 0.01±0.00
Basketball finer(2000) 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.51±0.00 0.01±0.00 0.01±0.00 0.55±0.00 0.50±0.00 0.47±0.00 0.01±0.00 0.01±0.00
Basketball finer(2001) 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.51±0.00 0.01±0.00 0.01±0.00 0.59±0.00 0.51±0.00 0.47±0.00 0.01±0.00 0.01±0.00
Basketball finer(2002) 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.51±0.00 0.01±0.00 0.01±0.00 0.57±0.00 0.51±0.00 0.50±0.00 0.01±0.00 0.01±0.00
Basketball finer(2003) 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.50±0.00 0.01±0.00 0.01±0.00 0.58±0.00 0.47±0.00 0.48±0.00 0.01±0.00 0.01±0.00
Basketball finer(2004) 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.52±0.00 0.01±0.00 0.01±0.00 0.57±0.00 0.45±0.00 0.47±0.00 0.01±0.00 0.01±0.00
Basketball finer(2005) 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.51±0.00 0.01±0.00 0.01±0.00 0.60±0.00 0.43±0.00 0.47±0.00 0.01±0.00 0.01±0.00
Basketball finer(2006) 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.51±0.00 0.01±0.00 0.01±0.00 0.57±0.00 0.46±0.00 0.48±0.00 0.01±0.00 0.01±0.00
Basketball finer(2007) 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.53±0.00 0.01±0.00 0.01±0.00 0.53±0.00 0.49±0.00 0.48±0.00 0.01±0.00 0.01±0.00
Basketball finer(2008) 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.51±0.00 0.01±0.00 0.01±0.00 0.59±0.00 0.47±0.00 0.47±0.00 0.01±0.00 0.01±0.00
Basketball finer(2009) 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.52±0.00 0.01±0.00 0.01±0.00 0.57±0.00 0.50±0.00 0.49±0.00 0.01±0.00 0.01±0.00
Basketball finer(2010) 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.52±0.00 0.01±0.00 0.01±0.00 0.58±0.00 0.48±0.00 0.47±0.00 0.01±0.00 0.01±0.00
Basketball finer(2011) 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.52±0.00 0.01±0.00 0.01±0.00 0.59±0.00 0.46±0.00 0.47±0.00 0.01±0.00 0.01±0.00
Basketball finer(2012) 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.52±0.00 0.01±0.00 0.01±0.00 0.57±0.00 0.48±0.00 0.48±0.00 0.01±0.00 0.01±0.00
Basketball finer(2013) 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.52±0.00 0.01±0.00 0.01±0.00 0.56±0.00 0.46±0.00 0.48±0.00 0.01±0.00 0.01±0.00
Basketball finer(2014) 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.53±0.00 0.01±0.00 0.01±0.00 0.56±0.00 0.48±0.00 0.47±0.00 0.00±0.00 0.01±0.00
Football(2009) 0.64±0.00 0.79±0.03 0.73±0.00 0.48±0.02 0.55±0.00 0.63±0.09 0.60±0.00 1.16±0.05 0.49±0.00 0.49±0.00 0.46±0.01 0.69±0.00
Football(2010) 0.73±0.00 0.80±0.04 0.81±0.01 0.66±0.02 0.76±0.00 0.75±0.04 0.74±0.00 1.25±0.01 0.74±0.00 0.73±0.00 0.65±0.00 0.73±0.01
Football(2011) 0.66±0.00 0.79±0.01 0.70±0.00 0.53±0.02 0.70±0.00 0.65±0.08 0.60±0.00 1.17±0.00 0.59±0.00 0.58±0.00 0.53±0.01 0.69±0.00
Football(2012) 0.58±0.00 0.81±0.00 0.83±0.00 0.53±0.03 0.60±0.00 0.68±0.09 0.63±0.00 1.18±0.00 0.58±0.00 0.58±0.00 0.51±0.01 0.71±0.00
Football(2013) 0.66±0.00 0.81±0.00 0.73±0.00 0.48±0.04 0.59±0.00 0.64±0.10 0.62±0.00 0.94±0.00 0.56±0.00 0.53±0.00 0.46±0.01 0.71±0.00
Football(2014) 0.85±0.00 0.95±0.01 0.97±0.01 0.74±0.01 0.98±0.00 0.83±0.07 0.81±0.00 1.49±0.00 0.84±0.00 0.82±0.00 0.69±0.01 0.85±0.00
Football finer(2009) 0.22±0.00 0.27±0.00 0.23±0.00 0.17±0.01 0.38±0.00 0.23±0.03 0.22±0.00 0.73±0.04 0.21±0.00 0.21±0.00 0.17±0.00 0.21±0.00
Football finer(2010) 0.20±0.00 0.23±0.00 0.21±0.00 0.18±0.01 0.56±0.00 0.22±0.01 0.22±0.00 0.67±0.00 0.24±0.00 0.22±0.00 0.17±0.00 0.18±0.00
Football finer(2011) 0.19±0.00 0.25±0.00 0.23±0.00 0.17±0.00 0.49±0.00 0.22±0.02 0.21±0.00 0.58±0.00 0.22±0.00 0.22±0.00 0.17±0.00 0.19±0.00
Football finer(2012) 0.19±0.00 0.23±0.04 0.21±0.01 0.16±0.00 0.48±0.00 0.19±0.02 0.19±0.00 0.66±0.04 0.18±0.00 0.17±0.00 0.15±0.00 0.17±0.00
Football finer(2013) 0.24±0.00 0.30±0.00 0.29±0.01 0.21±0.01 0.43±0.00 0.27±0.03 0.26±0.00 0.52±0.00 0.24±0.00 0.22±0.00 0.19±0.04 0.24±0.01
Football finer(2014) 0.36±0.00 0.45±0.00 0.45±0.00 0.35±0.00 0.62±0.00 0.40±0.03 0.39±0.00 0.98±0.00 0.37±0.00 0.37±0.00 0.34±0.00 0.38±0.00
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Table D.5: Performance on Kendall Tau (top half) based on the lowest Lupset, naive
(bottom half for corresponding values) on ERO models, averaged over 10 runs with one
standard deviation. “avg" for time series first average over all seasons, then consider mean
and standard deviation over the 10 averaged values. The best is marked in bold red
while the second best is in underline blue . As MVR does not generate results after one
week, we leave it out here.

Data SpringRank SyncRank SerialRank BTL DavidScore Eig.Cent. PageRank RankCent. SVD_RS SVD_NRS GNNRank-N GNNRank-P
ERO(p=0.05, style=uniform,η=0) 0.86±0.00 0.06±0.00 0.03±0.00 0.79±0.05 0.80±0.00 0.91±0.00 0.87±0.00 0.02±0.09 0.78±0.00 0.83±0.00 0.88±0.00 0.86±0.00
ERO(p=0.05, style=gamma,η=0) 0.81±0.00 0.06±0.00 0.00±0.00 0.87±0.01 0.81±0.00 0.92±0.00 0.90±0.00 -0.00±0.01 0.58±0.00 0.79±0.00 0.87±0.00 0.84±0.01
ERO(p=0.05, style=uniform,η=0.1) 0.75±0.00 0.04±0.00 0.03±0.00 0.70±0.01 0.77±0.00 0.56±0.00 0.58±0.00 0.01±0.05 0.74±0.00 0.77±0.00 0.76±0.01 0.79±0.01
ERO(p=0.05, style=gamma,η=0.1) 0.69±0.00 0.04±0.00 0.01±0.00 0.68±0.00 0.78±0.00 0.58±0.00 0.60±0.00 0.06±0.00 0.52±0.00 0.72±0.00 0.61±0.01 0.81±0.01
ERO(p=0.05, style=uniform,η=0.2) 0.68±0.00 0.07±0.00 0.03±0.00 0.64±0.01 0.73±0.00 0.50±0.00 0.48±0.00 0.02±0.04 0.67±0.00 0.70±0.00 0.68±0.01 0.76±0.01
ERO(p=0.05, style=gamma,η=0.2) 0.61±0.00 0.01±0.00 -0.01±0.00 0.61±0.00 0.74±0.00 0.52±0.00 0.51±0.00 -0.01±0.01 0.45±0.00 0.64±0.00 0.52±0.01 0.77±0.00
ERO(p=0.05, style=uniform,η=0.3) 0.61±0.00 0.05±0.00 0.01±0.00 0.59±0.01 0.68±0.00 0.44±0.00 0.41±0.00 0.05±0.00 0.60±0.00 0.62±0.00 0.62±0.00 0.70±0.02
ERO(p=0.05, style=gamma,η=0.3) 0.56±0.00 0.11±0.00 -0.00±0.00 0.56±0.01 0.71±0.00 0.46±0.00 0.44±0.00 0.11±0.00 0.34±0.00 0.56±0.00 0.43±0.03 0.72±0.00
ERO(p=0.05, style=uniform,η=0.4) 0.55±0.00 0.08±0.00 0.01±0.00 0.54±0.04 0.63±0.00 0.40±0.00 0.35±0.00 0.02±0.00 0.51±0.00 0.54±0.00 0.52±0.00 0.62±0.02
ERO(p=0.05, style=gamma,η=0.4) 0.51±0.00 0.08±0.00 -0.00±0.00 0.52±0.00 0.65±0.00 0.43±0.00 0.43±0.00 0.09±0.01 0.23±0.00 0.44±0.00 0.38±0.08 0.66±0.01
ERO(p=0.05, style=uniform,η=0.5) 0.47±0.00 0.08±0.00 0.01±0.00 0.47±0.05 0.57±0.00 0.37±0.00 0.32±0.00 0.04±0.00 0.25±0.00 0.36±0.00 0.42±0.02 0.56±0.00
ERO(p=0.05, style=gamma,η=0.5) 0.44±0.00 0.07±0.00 0.01±0.00 0.45±0.01 0.58±0.00 0.37±0.00 0.37±0.00 0.04±0.00 0.22±0.00 0.23±0.00 0.22±0.01 0.59±0.02
ERO(p=0.05, style=uniform,η=0.6) 0.39±0.00 0.03±0.00 -0.00±0.00 0.39±0.06 0.48±0.00 0.31±0.00 0.27±0.00 -0.03±0.00 0.15±0.00 0.15±0.00 0.33±0.00 0.46±0.00
ERO(p=0.05, style=gamma,η=0.6) 0.36±0.00 0.03±0.00 0.01±0.00 0.37±0.01 0.49±0.00 0.31±0.00 0.33±0.00 0.01±0.00 0.14±0.00 0.09±0.00 0.24±0.03 0.50±0.01
ERO(p=0.05, style=uniform,η=0.7) 0.31±0.00 0.08±0.00 -0.01±0.00 0.31±0.06 0.38±0.00 0.26±0.00 0.23±0.00 0.04±0.00 0.07±0.00 0.06±0.00 0.23±0.01 0.39±0.03
ERO(p=0.05, style=gamma,η=0.7) 0.29±0.00 -0.00±0.00 0.02±0.00 0.29±0.01 0.39±0.00 0.25±0.00 0.28±0.00 -0.00±0.00 0.02±0.00 0.03±0.00 0.05±0.02 0.39±0.02
ERO(p=0.05, style=uniform,η=0.8) 0.21±0.00 0.02±0.00 -0.02±0.00 0.22±0.07 0.25±0.00 0.20±0.00 0.15±0.00 -0.03±0.00 0.00±0.00 0.01±0.00 0.11±0.00 0.27±0.04
ERO(p=0.05, style=gamma,η=0.8) 0.18±0.00 0.07±0.00 0.00±0.00 0.18±0.01 0.24±0.00 0.16±0.00 0.19±0.00 -0.02±0.02 0.03±0.00 -0.03±0.00 0.05±0.02 0.27±0.03
ERO(p=1, style=uniform,η=0) 1.00±0.00 0.08±0.00 1.00±0.00 0.85±0.05 1.00±0.00 1.00±0.00 1.00±0.00 -0.00±0.06 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00
ERO(p=1, style=gamma,η=0) 1.00±0.00 0.08±0.00 1.00±0.00 0.95±0.00 1.00±0.00 1.00±0.00 1.00±0.00 0.01±0.09 1.00±0.00 0.99±0.00 1.00±0.00 1.00±0.00
ERO(p=1, style=uniform,η=0.1) 0.94±0.00 0.05±0.00 0.98±0.00 0.85±0.04 0.98±0.00 0.86±0.00 0.63±0.00 0.52±0.00 0.97±0.00 0.94±0.00 0.93±0.01 0.98±0.00
ERO(p=1, style=gamma,η=0.1) 0.88±0.00 0.10±0.00 0.98±0.00 0.85±0.00 0.98±0.00 0.72±0.00 0.57±0.00 0.38±0.00 0.92±0.00 0.90±0.00 0.89±0.01 0.98±0.00
ERO(p=1, style=uniform,η=0.2) 0.91±0.00 0.07±0.00 0.97±0.00 0.84±0.03 0.96±0.00 0.85±0.00 0.69±0.00 0.33±0.09 0.95±0.00 0.93±0.00 0.91±0.00 0.97±0.00
ERO(p=1, style=gamma,η=0.2) 0.85±0.00 0.05±0.00 0.97±0.00 0.83±0.00 0.96±0.00 0.71±0.00 0.60±0.00 0.28±0.00 0.89±0.00 0.87±0.00 0.86±0.00 0.97±0.00
ERO(p=1, style=uniform,η=0.3) 0.89±0.00 0.09±0.00 0.96±0.00 0.84±0.03 0.94±0.00 0.83±0.00 0.71±0.00 0.29±0.00 0.94±0.00 0.91±0.00 0.90±0.01 0.96±0.00
ERO(p=1, style=gamma,η=0.3) 0.82±0.00 0.06±0.00 0.95±0.00 0.80±0.00 0.95±0.00 0.70±0.00 0.64±0.00 0.32±0.00 0.85±0.00 0.84±0.00 0.85±0.00 0.95±0.00
ERO(p=1, style=uniform,η=0.4) 0.88±0.00 0.06±0.00 0.94±0.00 0.83±0.03 0.93±0.00 0.83±0.00 0.73±0.00 0.11±0.00 0.92±0.00 0.90±0.00 0.91±0.01 0.94±0.00
ERO(p=1, style=gamma,η=0.4) 0.79±0.00 0.04±0.00 0.94±0.00 0.78±0.00 0.93±0.00 0.69±0.00 0.65±0.00 0.14±0.00 0.83±0.00 0.82±0.00 0.83±0.01 0.94±0.00
ERO(p=1, style=uniform,η=0.5) 0.85±0.00 0.07±0.00 0.92±0.00 0.81±0.03 0.91±0.00 0.80±0.00 0.73±0.00 0.24±0.00 0.89±0.00 0.87±0.00 0.90±0.01 0.92±0.00
ERO(p=1, style=gamma,η=0.5) 0.76±0.00 0.03±0.00 0.92±0.00 0.74±0.01 0.90±0.00 0.68±0.00 0.66±0.00 0.16±0.01 0.79±0.00 0.78±0.00 0.81±0.01 0.92±0.00
ERO(p=1, style=uniform,η=0.6) 0.83±0.00 0.08±0.00 0.89±0.00 0.78±0.04 0.88±0.00 0.78±0.00 0.73±0.00 -0.00±0.00 0.86±0.00 0.85±0.00 0.87±0.01 0.89±0.00
ERO(p=1, style=gamma,η=0.6) 0.72±0.00 0.09±0.00 0.89±0.00 0.67±0.01 0.88±0.00 0.65±0.00 0.64±0.00 0.05±0.02 0.74±0.00 0.73±0.00 0.77±0.00 0.89±0.00
ERO(p=1, style=uniform,η=0.7) 0.77±0.00 0.08±0.00 0.80±0.00 0.72±0.05 0.83±0.00 0.74±0.00 0.70±0.00 0.18±0.00 0.80±0.00 0.79±0.00 0.83±0.01 0.83±0.00
ERO(p=1, style=gamma,η=0.7) 0.67±0.00 0.02±0.00 0.75±0.00 0.61±0.01 0.83±0.00 0.62±0.00 0.61±0.00 0.09±0.00 0.67±0.00 0.67±0.00 0.71±0.00 0.83±0.00
ERO(p=1, style=uniform,η=0.8) 0.68±0.00 0.06±0.00 0.11±0.00 0.62±0.05 0.75±0.00 0.65±0.00 0.62±0.00 0.15±0.00 0.67±0.00 0.66±0.00 0.70±0.01 0.74±0.01
ERO(p=1, style=gamma,η=0.8) 0.57±0.00 0.06±0.00 0.04±0.00 0.51±0.01 0.75±0.00 0.55±0.00 0.55±0.00 0.04±0.00 0.54±0.00 0.54±0.00 0.56±0.00 0.74±0.00
ERO(p=0.05, style=uniform,η=0) 0.06±0.00 0.47±0.00 0.47±0.00 0.09±0.03 0.06±0.00 0.03±0.00 0.05±0.00 0.49±0.03 0.10±0.00 0.07±0.00 0.04±0.00 0.05±0.00
ERO(p=0.05, style=gamma,η=0) 0.08±0.00 0.48±0.00 0.51±0.00 0.04±0.00 0.05±0.00 0.02±0.00 0.03±0.00 0.50±0.00 0.20±0.00 0.09±0.00 0.04±0.00 0.04±0.01
ERO(p=0.05, style=uniform,η=0.1) 0.13±0.00 0.46±0.00 0.47±0.00 0.15±0.01 0.11±0.00 0.22±0.00 0.21±0.00 0.50±0.01 0.16±0.00 0.14±0.00 0.13±0.01 0.09±0.00
ERO(p=0.05, style=gamma,η=0.1) 0.16±0.00 0.49±0.00 0.51±0.00 0.16±0.00 0.11±0.00 0.22±0.00 0.21±0.00 0.47±0.00 0.24±0.00 0.15±0.00 0.19±0.00 0.09±0.00
ERO(p=0.05, style=uniform,η=0.2) 0.18±0.00 0.48±0.00 0.50±0.00 0.20±0.01 0.15±0.00 0.25±0.00 0.27±0.00 0.49±0.01 0.21±0.00 0.19±0.00 0.19±0.00 0.13±0.00
ERO(p=0.05, style=gamma,η=0.2) 0.21±0.00 0.49±0.00 0.52±0.00 0.21±0.00 0.15±0.00 0.28±0.00 0.27±0.00 0.51±0.01 0.30±0.00 0.21±0.00 0.24±0.00 0.14±0.00
ERO(p=0.05, style=uniform,η=0.3) 0.22±0.00 0.46±0.00 0.51±0.00 0.23±0.01 0.20±0.00 0.28±0.00 0.31±0.00 0.47±0.00 0.26±0.00 0.24±0.00 0.23±0.00 0.18±0.01
ERO(p=0.05, style=gamma,η=0.3) 0.25±0.00 0.48±0.00 0.51±0.00 0.26±0.00 0.20±0.00 0.32±0.00 0.33±0.00 0.46±0.00 0.37±0.00 0.26±0.00 0.31±0.01 0.19±0.00
ERO(p=0.05, style=uniform,η=0.4) 0.26±0.00 0.48±0.00 0.51±0.00 0.27±0.01 0.23±0.00 0.31±0.00 0.34±0.00 0.50±0.00 0.31±0.00 0.28±0.00 0.28±0.00 0.23±0.01
ERO(p=0.05, style=gamma,η=0.4) 0.29±0.00 0.47±0.00 0.51±0.00 0.28±0.00 0.24±0.00 0.34±0.00 0.34±0.00 0.48±0.01 0.43±0.00 0.32±0.00 0.34±0.04 0.23±0.01
ERO(p=0.05, style=uniform,η=0.5) 0.29±0.00 0.48±0.00 0.51±0.00 0.30±0.01 0.27±0.00 0.34±0.00 0.36±0.00 0.49±0.00 0.40±0.00 0.35±0.00 0.32±0.00 0.27±0.00
ERO(p=0.05, style=gamma,η=0.5) 0.32±0.00 0.48±0.00 0.49±0.00 0.33±0.00 0.28±0.00 0.37±0.00 0.37±0.00 0.48±0.00 0.43±0.00 0.43±0.00 0.38±0.01 0.27±0.01
ERO(p=0.05, style=uniform,η=0.6) 0.32±0.00 0.47±0.00 0.51±0.00 0.33±0.01 0.31±0.00 0.37±0.00 0.39±0.00 0.51±0.00 0.44±0.00 0.42±0.00 0.35±0.00 0.30±0.00
ERO(p=0.05, style=gamma,η=0.6) 0.35±0.00 0.48±0.00 0.50±0.00 0.35±0.00 0.32±0.00 0.40±0.00 0.40±0.00 0.48±0.00 0.47±0.00 0.46±0.00 0.40±0.01 0.30±0.01
ERO(p=0.05, style=uniform,η=0.7) 0.34±0.00 0.48±0.00 0.49±0.00 0.35±0.01 0.34±0.00 0.39±0.00 0.40±0.00 0.49±0.00 0.48±0.00 0.47±0.00 0.38±0.01 0.32±0.00
ERO(p=0.05, style=gamma,η=0.7) 0.36±0.00 0.49±0.00 0.50±0.00 0.37±0.01 0.35±0.00 0.42±0.00 0.40±0.00 0.49±0.00 0.49±0.00 0.49±0.00 0.43±0.01 0.33±0.01
ERO(p=0.05, style=uniform,η=0.8) 0.36±0.00 0.48±0.00 0.49±0.00 0.37±0.00 0.36±0.00 0.40±0.00 0.41±0.00 0.51±0.00 0.50±0.00 0.49±0.00 0.42±0.00 0.34±0.00
ERO(p=0.05, style=gamma,η=0.8) 0.38±0.00 0.48±0.00 0.50±0.00 0.39±0.01 0.36±0.00 0.42±0.00 0.41±0.00 0.50±0.01 0.49±0.00 0.50±0.00 0.43±0.02 0.34±0.01
ERO(p=1, style=uniform,η=0) 0.00±0.00 0.46±0.00 0.00±0.00 0.07±0.02 0.00±0.00 0.00±0.00 0.00±0.00 0.50±0.03 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
ERO(p=1, style=gamma,η=0) 0.00±0.00 0.46±0.00 0.00±0.00 0.02±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.50±0.05 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
ERO(p=1, style=uniform,η=0.1) 0.08±0.00 0.48±0.00 0.06±0.00 0.12±0.02 0.06±0.00 0.11±0.00 0.21±0.00 0.27±0.00 0.06±0.00 0.08±0.00 0.08±0.00 0.06±0.00
ERO(p=1, style=gamma,η=0.1) 0.10±0.00 0.46±0.00 0.06±0.00 0.11±0.00 0.06±0.00 0.18±0.00 0.24±0.00 0.33±0.00 0.09±0.00 0.09±0.00 0.10±0.00 0.06±0.00
ERO(p=1, style=uniform,η=0.2) 0.13±0.00 0.47±0.00 0.11±0.00 0.16±0.01 0.12±0.00 0.16±0.00 0.22±0.00 0.37±0.04 0.12±0.00 0.13±0.00 0.14±0.00 0.11±0.00
ERO(p=1, style=gamma,η=0.2) 0.16±0.00 0.48±0.00 0.11±0.00 0.17±0.00 0.12±0.00 0.21±0.00 0.26±0.00 0.39±0.00 0.14±0.00 0.15±0.00 0.15±0.00 0.11±0.00
ERO(p=1, style=uniform,η=0.3) 0.19±0.00 0.47±0.00 0.16±0.00 0.21±0.01 0.17±0.00 0.21±0.00 0.25±0.00 0.40±0.00 0.17±0.00 0.18±0.00 0.18±0.00 0.16±0.00
ERO(p=1, style=gamma,η=0.3) 0.21±0.00 0.48±0.00 0.16±0.00 0.21±0.00 0.17±0.00 0.25±0.00 0.27±0.00 0.39±0.00 0.20±0.00 0.20±0.00 0.20±0.00 0.16±0.00
ERO(p=1, style=uniform,η=0.4) 0.23±0.00 0.48±0.00 0.21±0.00 0.25±0.01 0.22±0.00 0.25±0.00 0.28±0.00 0.47±0.00 0.22±0.00 0.23±0.00 0.23±0.00 0.21±0.00
ERO(p=1, style=gamma,η=0.4) 0.26±0.00 0.49±0.00 0.22±0.00 0.26±0.00 0.22±0.00 0.29±0.00 0.30±0.00 0.46±0.00 0.25±0.00 0.25±0.00 0.25±0.00 0.22±0.00
ERO(p=1, style=uniform,η=0.5) 0.28±0.00 0.49±0.00 0.27±0.00 0.30±0.01 0.27±0.00 0.30±0.00 0.31±0.00 0.44±0.00 0.27±0.00 0.28±0.00 0.27±0.00 0.27±0.00
ERO(p=1, style=gamma,η=0.5) 0.30±0.00 0.49±0.00 0.27±0.00 0.31±0.00 0.27±0.00 0.32±0.00 0.33±0.00 0.46±0.00 0.30±0.00 0.30±0.00 0.29±0.00 0.27±0.00
ERO(p=1, style=uniform,η=0.6) 0.33±0.00 0.48±0.00 0.32±0.00 0.34±0.01 0.32±0.00 0.34±0.00 0.35±0.00 0.50±0.00 0.32±0.00 0.33±0.00 0.32±0.00 0.32±0.00
ERO(p=1, style=gamma,η=0.6) 0.35±0.00 0.48±0.00 0.32±0.00 0.36±0.00 0.32±0.00 0.36±0.00 0.36±0.00 0.49±0.00 0.34±0.00 0.34±0.00 0.34±0.00 0.32±0.00
ERO(p=1, style=uniform,η=0.7) 0.38±0.00 0.49±0.00 0.37±0.00 0.39±0.01 0.37±0.00 0.38±0.00 0.39±0.00 0.47±0.00 0.37±0.00 0.38±0.00 0.37±0.00 0.37±0.00
ERO(p=1, style=gamma,η=0.7) 0.39±0.00 0.50±0.00 0.38±0.00 0.40±0.00 0.37±0.00 0.40±0.00 0.40±0.00 0.49±0.00 0.39±0.00 0.39±0.00 0.38±0.00 0.37±0.00
ERO(p=1, style=uniform,η=0.8) 0.42±0.00 0.49±0.00 0.49±0.00 0.43±0.00 0.42±0.00 0.43±0.00 0.43±0.00 0.48±0.00 0.42±0.00 0.42±0.00 0.42±0.00 0.41±0.00
ERO(p=1, style=gamma,η=0.8) 0.43±0.00 0.49±0.00 0.49±0.00 0.44±0.00 0.42±0.00 0.43±0.00 0.43±0.00 0.50±0.00 0.43±0.00 0.43±0.00 0.43±0.00 0.41±0.00
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Table D.6: Performance on Lupset, simple for each variant in the proposed GNNRank
framework, compared with the worst and the best baseline method, averaged over 10 runs,
and plus/minus one standard deviation. “avg" for time series data sets first average over
all seasons, then consider mean and standard deviation over the 10 averaged values. The
best is marked in bold red while the second best is highlighted in underline blue .

Type Baselines DIMPA IB
Data worst baseline best baseline dist innerproduct proximal dist proximal innerproduct proximal baseline dist innerproduct proximal dist proximal innerproduct proximal baseline
HeadToHead 2.01±0.00 1.00±0.00 1.07±0.01 1.07±0.01 1.12±0.01 1.09±0.01 0.97±0.00 0.99±0.00 0.99±0.00 0.99±0.00 0.99±0.00 0.96±0.00
Finance 1.98±0.00 1.61±0.00 1.63±0.00 1.63±0.00 1.63±0.00 1.63±0.00 1.61±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.61±0.00
Animal 2.02±0.32 0.33±0.00 0.41±0.09 0.48±0.19 0.41±0.05 0.42±0.05 0.42±0.05 0.61±0.07 0.57±0.08 0.90±0.33 0.83±0.13 0.25±0.00
Faculty: Business 2.01±0.03 0.41±0.00 0.41±0.02 0.38±0.01 0.42±0.02 0.47±0.03 0.39±0.01 0.92±0.15 0.94±0.07 0.89±0.02 0.90±0.04 0.36±0.00
Faculty: CS 1.99±0.27 0.33±0.00 0.33±0.03 0.34±0.01 0.38±0.01 0.36±0.01 0.33±0.01 0.92±0.01 0.95±0.06 0.92±0.03 0.92±0.03 0.32±0.00
Faculty: History 2.16±0.80 0.30±0.01 0.30±0.01 0.28±0.01 0.30±0.01 0.31±0.01 0.30±0.01 0.92±0.01 0.94±0.08 0.93±0.06 0.90±0.06 0.30±0.01
Basketball(1985) 2.11±0.00 0.75±0.00 0.77±0.01 0.80±0.09 0.85±0.02 0.81±0.02 0.71±0.01 0.94±0.01 1.04±0.02 0.95±0.01 1.12±0.13 0.71±0.00
Basketball(1986) 1.99±0.00 0.78±0.00 0.79±0.01 0.78±0.01 0.83±0.02 0.82±0.01 0.70±0.00 0.90±0.02 1.01±0.02 0.92±0.02 1.02±0.03 0.69±0.00
Basketball(1987) 1.94±0.00 0.82±0.00 0.86±0.01 0.84±0.01 0.90±0.02 0.89±0.02 0.77±0.01 0.93±0.01 1.05±0.04 0.96±0.02 1.08±0.04 0.77±0.00
Basketball(1988) 1.93±0.00 0.74±0.00 0.76±0.01 0.78±0.08 0.81±0.02 0.80±0.01 0.70±0.01 0.91±0.01 1.01±0.01 0.95±0.03 1.02±0.02 0.70±0.00
Basketball(1989) 1.87±0.00 0.75±0.00 0.78±0.02 0.81±0.08 0.85±0.03 0.82±0.01 0.71±0.01 0.94±0.02 1.00±0.01 0.93±0.02 1.02±0.02 0.70±0.00
Basketball(1990) 1.95±0.00 0.75±0.00 0.77±0.02 0.81±0.01 0.84±0.02 0.81±0.02 0.70±0.01 0.93±0.02 1.01±0.03 0.95±0.02 1.02±0.03 0.70±0.00
Basketball(1991) 2.03±0.00 0.77±0.00 0.80±0.02 0.78±0.01 0.85±0.03 0.83±0.02 0.73±0.01 0.93±0.01 1.01±0.02 0.97±0.01 1.03±0.03 0.70±0.00
Basketball(1992) 2.00±0.00 0.72±0.00 0.76±0.01 0.74±0.01 0.80±0.01 0.78±0.02 0.69±0.01 0.93±0.01 1.02±0.02 0.97±0.02 1.05±0.04 0.67±0.00
Basketball(1993) 2.04±0.00 0.74±0.00 0.76±0.02 0.76±0.01 0.83±0.02 0.81±0.02 0.68±0.01 0.91±0.03 1.01±0.02 0.95±0.03 1.05±0.06 0.68±0.00
Basketball(1994) 2.04±0.00 0.74±0.00 0.76±0.02 0.75±0.01 0.82±0.02 0.80±0.02 0.71±0.01 0.90±0.02 1.02±0.03 0.94±0.01 1.08±0.08 0.69±0.00
Basketball(1995) 2.02±0.00 0.77±0.00 0.79±0.01 0.78±0.01 0.83±0.02 0.81±0.02 0.72±0.01 0.93±0.02 1.03±0.02 0.96±0.01 1.05±0.03 0.72±0.00
Basketball(1996) 2.05±0.00 0.81±0.00 0.84±0.01 0.84±0.01 0.92±0.01 0.89±0.01 0.77±0.01 0.92±0.02 1.03±0.05 0.94±0.01 1.09±0.08 0.77±0.00
Basketball(1997) 1.95±0.00 0.81±0.00 0.84±0.01 0.83±0.01 0.90±0.02 0.87±0.02 0.76±0.01 0.94±0.01 1.05±0.04 0.96±0.01 1.11±0.09 0.77±0.00
Basketball(1998) 1.92±0.00 0.77±0.00 0.81±0.02 0.80±0.01 0.88±0.02 0.84±0.02 0.74±0.01 0.90±0.02 1.01±0.01 0.94±0.02 1.04±0.06 0.75±0.00
Basketball(1999) 2.02±0.00 0.81±0.00 0.84±0.01 0.86±0.06 0.91±0.02 0.88±0.03 0.76±0.01 0.96±0.01 1.01±0.01 0.98±0.01 1.03±0.02 0.74±0.00
Basketball(2000) 1.97±0.00 0.84±0.00 0.84±0.01 0.82±0.01 0.92±0.01 0.90±0.02 0.77±0.01 0.94±0.01 1.01±0.01 0.95±0.02 1.04±0.04 0.77±0.00
Basketball(2001) 2.03±0.00 0.75±0.00 0.78±0.02 0.77±0.01 0.87±0.02 0.83±0.02 0.71±0.01 0.96±0.02 1.01±0.01 0.95±0.01 1.03±0.03 0.71±0.00
Basketball(2002) 1.94±0.00 0.80±0.00 0.81±0.01 0.80±0.01 0.86±0.02 0.84±0.03 0.73±0.01 0.91±0.01 1.02±0.02 0.93±0.03 1.06±0.11 0.73±0.00
Basketball(2003) 2.05±0.00 0.80±0.00 0.85±0.02 0.83±0.01 0.91±0.02 0.88±0.02 0.78±0.01 0.92±0.01 1.00±0.01 0.95±0.03 1.01±0.02 0.78±0.00
Basketball(2004) 2.00±0.11 0.75±0.00 0.77±0.01 0.78±0.01 0.84±0.02 0.81±0.02 0.70±0.01 0.93±0.01 0.99±0.01 0.96±0.01 1.05±0.15 0.69±0.00
Basketball(2005) 1.98±0.05 0.78±0.00 0.82±0.01 0.81±0.02 0.88±0.02 0.86±0.01 0.73±0.00 0.91±0.01 1.02±0.03 0.95±0.02 1.08±0.08 0.74±0.00
Basketball(2006) 2.00±0.00 0.77±0.00 0.82±0.01 0.83±0.01 0.90±0.02 0.88±0.02 0.75±0.01 0.94±0.02 1.01±0.02 0.95±0.01 1.04±0.05 0.74±0.00
Basketball(2007) 1.94±0.00 0.79±0.00 0.84±0.01 0.83±0.01 0.88±0.01 0.87±0.02 0.77±0.01 0.93±0.01 1.00±0.01 0.95±0.01 1.02±0.02 0.77±0.00
Basketball(2008) 2.01±0.00 0.80±0.00 0.83±0.01 0.84±0.04 0.88±0.02 0.86±0.01 0.79±0.01 0.92±0.02 1.00±0.01 0.95±0.02 1.01±0.04 0.78±0.00
Basketball(2009) 2.02±0.00 0.76±0.00 0.78±0.00 0.78±0.01 0.83±0.01 0.83±0.01 0.72±0.01 0.93±0.01 1.00±0.01 0.93±0.02 1.01±0.02 0.72±0.00
Basketball(2010) 2.03±0.00 0.77±0.00 0.83±0.01 0.82±0.01 0.89±0.01 0.86±0.01 0.73±0.01 0.89±0.01 1.01±0.02 0.92±0.02 1.01±0.02 0.71±0.00
Basketball(2011) 2.03±0.00 0.79±0.00 0.82±0.01 0.80±0.01 0.86±0.01 0.85±0.01 0.75±0.00 0.91±0.02 1.00±0.01 0.93±0.02 1.00±0.01 0.74±0.00
Basketball(2012) 1.97±0.00 0.76±0.00 0.78±0.02 0.78±0.01 0.84±0.02 0.83±0.02 0.70±0.01 0.90±0.03 1.00±0.01 0.94±0.03 1.01±0.01 0.69±0.00
Basketball(2013) 1.99±0.05 0.80±0.00 0.81±0.01 0.83±0.06 0.87±0.03 0.85±0.01 0.76±0.00 0.94±0.01 1.00±0.01 0.94±0.01 1.01±0.01 0.77±0.00
Basketball(2014) 2.06±0.00 0.79±0.00 0.84±0.01 0.83±0.01 0.89±0.02 0.88±0.01 0.75±0.00 0.94±0.02 1.01±0.01 0.97±0.01 1.02±0.02 0.76±0.00
Basketball finer(1985) 1.97±0.00 0.76±0.00 0.81±0.02 0.79±0.01 0.80±0.02 0.79±0.01 0.72±0.01 1.00±0.00 1.09±0.06 1.00±0.00 1.21±0.11 0.71±0.00
Basketball finer(1986) 1.99±0.00 0.77±0.00 0.84±0.02 0.81±0.01 0.91±0.03 0.81±0.01 0.69±0.01 1.00±0.00 1.11±0.06 1.00±0.00 1.19±0.10 0.69±0.00
Basketball finer(1987) 1.95±0.00 0.82±0.00 0.86±0.02 0.90±0.01 0.87±0.03 0.90±0.01 0.77±0.01 1.00±0.00 1.09±0.06 1.00±0.00 1.23±0.09 0.77±0.00
Basketball finer(1988) 1.97±0.00 0.78±0.00 0.81±0.01 0.80±0.01 0.81±0.01 0.80±0.01 0.70±0.01 1.00±0.00 1.10±0.11 1.00±0.00 1.22±0.14 0.70±0.00
Basketball finer(1989) 1.94±0.00 0.77±0.00 0.82±0.02 0.82±0.01 0.82±0.02 0.82±0.01 0.73±0.05 1.00±0.00 1.07±0.06 1.00±0.00 1.19±0.08 0.70±0.00
Basketball finer(1990) 1.98±0.00 0.79±0.00 0.80±0.02 0.80±0.01 0.81±0.02 0.81±0.01 0.72±0.01 1.00±0.00 1.10±0.06 1.00±0.00 1.20±0.12 0.71±0.00
Basketball finer(1991) 2.03±0.00 0.81±0.00 0.83±0.01 0.84±0.01 0.83±0.07 0.84±0.01 0.72±0.01 1.00±0.00 1.11±0.06 1.00±0.00 1.20±0.11 0.71±0.00
Basketball finer(1992) 1.88±0.00 0.73±0.00 0.75±0.02 0.76±0.01 0.75±0.02 0.76±0.01 0.68±0.01 1.00±0.00 1.08±0.06 1.00±0.00 1.21±0.07 0.67±0.00
Basketball finer(1993) 2.03±0.00 0.75±0.00 0.80±0.01 0.80±0.01 0.81±0.06 0.80±0.01 0.68±0.01 1.00±0.00 1.08±0.06 1.00±0.00 1.22±0.08 0.69±0.00
Basketball finer(1994) 2.01±0.00 0.74±0.00 0.77±0.01 0.78±0.01 0.77±0.01 0.78±0.01 0.69±0.01 1.00±0.00 1.10±0.06 1.00±0.00 1.21±0.06 0.67±0.00
Basketball finer(1995) 1.92±0.01 0.79±0.00 0.82±0.09 0.78±0.01 0.82±0.07 0.78±0.01 0.72±0.01 1.00±0.00 1.08±0.03 1.00±0.00 1.19±0.07 0.73±0.00
Basketball finer(1996) 1.95±0.00 0.81±0.00 0.86±0.01 0.90±0.01 0.87±0.01 0.90±0.01 0.77±0.00 1.00±0.00 1.07±0.04 1.00±0.00 1.15±0.08 0.77±0.00
Basketball finer(1997) 2.05±0.00 0.83±0.00 0.85±0.01 0.86±0.01 0.86±0.01 0.86±0.01 0.75±0.01 1.00±0.00 1.06±0.05 1.00±0.00 1.21±0.11 0.77±0.00
Basketball finer(1998) 1.92±0.00 0.78±0.00 0.82±0.02 0.86±0.01 0.86±0.02 0.86±0.01 0.73±0.01 1.00±0.00 1.08±0.05 1.00±0.00 1.23±0.07 0.74±0.00
Basketball finer(1999) 2.02±0.00 0.81±0.00 0.86±0.01 0.86±0.01 0.87±0.02 0.86±0.01 0.74±0.01 1.00±0.00 1.06±0.04 1.00±0.00 1.18±0.07 0.73±0.00
Basketball finer(2000) 1.97±0.00 0.84±0.00 0.88±0.01 0.90±0.01 0.88±0.01 0.90±0.01 0.78±0.01 1.00±0.00 1.09±0.06 1.00±0.00 1.24±0.03 0.78±0.00
Basketball finer(2001) 2.06±0.00 0.81±0.00 0.86±0.01 0.87±0.00 0.86±0.01 0.87±0.00 0.73±0.01 1.00±0.00 1.08±0.05 1.00±0.00 1.18±0.09 0.73±0.00
Basketball finer(2002) 2.03±0.00 0.87±0.00 0.83±0.01 0.84±0.01 0.83±0.02 0.84±0.01 0.77±0.01 1.00±0.00 1.06±0.04 1.00±0.00 1.18±0.07 0.78±0.00
Basketball finer(2003) 2.00±0.00 0.87±0.00 0.88±0.02 0.89±0.01 0.89±0.02 0.89±0.01 0.79±0.00 1.00±0.00 1.08±0.06 1.00±0.00 1.18±0.10 0.78±0.00
Basketball finer(2004) 1.98±0.02 0.77±0.00 0.84±0.01 0.84±0.01 0.93±0.01 0.84±0.01 0.71±0.01 1.00±0.00 1.04±0.04 1.00±0.00 1.19±0.09 0.72±0.00
Basketball finer(2005) 2.00±0.00 0.84±0.00 0.86±0.01 0.87±0.01 0.87±0.01 0.87±0.01 0.75±0.01 1.00±0.00 1.08±0.08 1.00±0.00 1.17±0.08 0.75±0.00
Basketball finer(2006) 1.97±0.00 0.85±0.00 0.88±0.02 0.90±0.01 0.88±0.02 0.90±0.00 0.77±0.01 1.00±0.00 1.08±0.05 1.00±0.00 1.21±0.08 0.76±0.00
Basketball finer(2007) 1.97±0.14 0.86±0.00 0.87±0.01 0.89±0.01 0.88±0.01 0.89±0.01 0.80±0.01 1.00±0.00 1.07±0.08 1.00±0.00 1.18±0.09 0.80±0.00
Basketball finer(2008) 1.98±0.00 0.85±0.00 0.86±0.02 0.87±0.02 0.86±0.02 0.88±0.02 0.79±0.01 1.00±0.00 1.07±0.07 1.00±0.00 1.20±0.11 0.78±0.00
Basketball finer(2009) 2.06±0.00 0.84±0.00 0.85±0.01 0.85±0.01 0.86±0.02 0.85±0.01 0.76±0.01 1.00±0.00 1.09±0.06 1.00±0.00 1.20±0.13 0.75±0.00
Basketball finer(2010) 1.98±0.00 0.82±0.00 0.85±0.01 0.85±0.01 0.86±0.02 0.85±0.01 0.75±0.01 1.00±0.00 1.02±0.03 1.00±0.00 1.12±0.05 0.75±0.00
Basketball finer(2011) 2.01±0.00 0.85±0.00 0.87±0.01 0.87±0.01 0.87±0.01 0.87±0.01 0.78±0.01 1.00±0.00 1.08±0.05 1.00±0.00 1.19±0.07 0.77±0.00
Basketball finer(2012) 1.97±0.00 0.80±0.00 0.83±0.01 0.85±0.01 0.84±0.01 0.85±0.01 0.74±0.01 1.00±0.00 1.10±0.07 1.00±0.00 1.19±0.07 0.75±0.00
Basketball finer(2013) 2.06±0.00 0.83±0.00 0.86±0.01 0.85±0.00 0.86±0.01 0.85±0.00 0.78±0.01 1.00±0.00 1.11±0.04 1.00±0.00 1.22±0.07 0.79±0.00
Basketball finer(2014) 2.07±0.00 0.84±0.00 0.88±0.03 0.87±0.01 0.89±0.03 0.87±0.00 0.78±0.00 1.00±0.00 1.11±0.10 1.00±0.00 1.22±0.09 0.79±0.00
Football(2009) 1.80±0.09 0.61±0.00 0.76±0.02 0.75±0.06 0.98±0.23 0.87±0.14 0.65±0.03 0.79±0.04 0.83±0.11 0.80±0.05 0.88±0.13 0.61±0.00
Football(2010) 1.94±0.20 1.17±0.00 1.20±0.05 1.21±0.04 1.15±0.14 1.26±0.07 1.17±0.04 0.90±0.02 0.96±0.05 0.96±0.04 0.95±0.05 1.17±0.01
Football(2011) 1.80±0.19 0.80±0.00 0.87±0.02 0.91±0.15 1.16±0.21 1.01±0.12 0.82±0.03 0.83±0.03 0.96±0.07 0.85±0.09 0.91±0.08 0.80±0.01
Football(2012) 1.73±0.18 0.86±0.00 0.81±0.09 0.83±0.17 0.98±0.11 0.97±0.10 0.85±0.04 0.75±0.03 0.86±0.12 0.80±0.08 0.82±0.11 0.83±0.01
Football(2013) 1.93±0.09 0.68±0.00 0.64±0.04 0.66±0.08 0.73±0.15 0.83±0.24 0.59±0.02 0.71±0.05 0.84±0.18 0.76±0.07 0.80±0.08 0.56±0.00
Football(2014) 1.83±0.11 1.08±0.00 0.97±0.06 0.98±0.17 1.22±0.12 1.18±0.12 1.06±0.06 0.96±0.12 1.08±0.27 0.96±0.07 1.03±0.03 1.08±0.00
Football finer(2009) 1.91±0.17 0.66±0.00 0.76±0.03 0.76±0.18 0.80±0.08 0.83±0.09 0.68±0.02 0.99±0.04 0.98±0.05 0.95±0.12 0.98±0.04 0.65±0.02
Football finer(2010) 2.11±0.01 1.17±0.00 1.23±0.09 1.25±0.16 1.23±0.04 1.27±0.06 1.20±0.04 1.00±0.01 1.00±0.01 1.00±0.00 0.99±0.02 1.17±0.01
Football finer(2011) 2.14±0.02 0.85±0.00 0.92±0.16 1.00±0.09 1.00±0.09 0.95±0.10 0.85±0.03 0.99±0.04 0.99±0.02 0.99±0.04 0.97±0.09 0.84±0.02
Football finer(2012) 2.15±0.01 0.86±0.00 0.93±0.07 0.99±0.05 0.95±0.05 0.97±0.06 0.89±0.07 1.00±0.00 0.99±0.03 0.99±0.03 0.98±0.05 0.86±0.03
Football finer(2013) 2.01±0.00 0.73±0.00 0.74±0.04 0.73±0.19 0.82±0.10 0.88±0.23 0.62±0.04 0.99±0.04 0.98±0.05 0.94±0.07 0.94±0.08 0.57±0.01
Football finer(2014) 2.09±0.17 1.05±0.00 1.07±0.05 1.10±0.15 1.22±0.11 1.20±0.26 1.07±0.06 1.00±0.00 1.03±0.10 1.00±0.03 1.03±0.08 1.07±0.02
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Table D.7: Performance on Lupset, naive for each variant in the proposed GNNRank
framework, compared with the worst and the best baseline method, averaged over 10
runs, and plus/minus one standard deviation. The best is marked in bold red while
the second best is highlighted in underline blue .

Type Baselines DIMPA IB
Data worst baseline best baseline dist innerproduct proximal dist proximal innerproduct proximal baseline dist innerproduct proximal dist proximal innerproduct proximal baseline
HeadToHead 0.50±0.00 0.25±0.00 0.27±0.00 0.27±0.00 0.28±0.00 0.27±0.00 0.24±0.00 0.55±0.07 0.49±0.05 0.64±0.08 0.51±0.03 0.24±0.00
Finance 0.50±0.00 0.40±0.00 0.41±0.00 0.41±0.00 0.41±0.00 0.41±0.00 0.40±0.00 0.44±0.00 0.46±0.02 0.45±0.01 0.45±0.01 0.40±0.00
Animal 0.58±0.11 0.08±0.00 0.10±0.02 0.12±0.05 0.10±0.01 0.10±0.01 0.11±0.01 0.52±0.12 0.36±0.09 0.48±0.09 0.39±0.10 0.06±0.00
Faculty: Business 0.50±0.01 0.10±0.00 0.10±0.00 0.10±0.00 0.11±0.00 0.12±0.01 0.10±0.00 0.24±0.07 0.24±0.02 0.25±0.07 0.23±0.01 0.09±0.00
Faculty: CS 0.50±0.07 0.08±0.00 0.08±0.01 0.09±0.00 0.09±0.00 0.09±0.00 0.08±0.00 0.48±0.02 0.44±0.07 0.44±0.02 0.46±0.03 0.08±0.00
Faculty: History 0.54±0.20 0.08±0.00 0.07±0.00 0.07±0.00 0.07±0.00 0.08±0.00 0.08±0.00 0.50±0.08 0.43±0.16 0.51±0.24 0.46±0.21 0.08±0.00
Basketball(1985) 0.53±0.00 0.19±0.00 0.19±0.00 0.20±0.02 0.21±0.01 0.20±0.00 0.18±0.00 0.56±0.10 0.49±0.13 0.79±0.23 0.54±0.13 0.18±0.00
Basketball(1986) 0.50±0.00 0.19±0.00 0.20±0.00 0.20±0.00 0.21±0.00 0.21±0.00 0.18±0.00 0.61±0.15 0.46±0.11 0.77±0.18 0.54±0.07 0.17±0.00
Basketball(1987) 0.48±0.00 0.21±0.00 0.21±0.00 0.21±0.00 0.23±0.01 0.22±0.00 0.19±0.00 0.67±0.21 0.46±0.10 0.75±0.24 0.57±0.06 0.19±0.00
Basketball(1988) 0.48±0.00 0.19±0.00 0.19±0.00 0.19±0.02 0.20±0.01 0.20±0.00 0.18±0.00 0.72±0.06 0.46±0.14 0.82±0.09 0.56±0.09 0.17±0.00
Basketball(1989) 0.47±0.00 0.19±0.00 0.19±0.00 0.20±0.02 0.21±0.01 0.21±0.00 0.18±0.00 0.50±0.16 0.49±0.09 0.67±0.27 0.52±0.11 0.17±0.00
Basketball(1990) 0.49±0.00 0.19±0.00 0.19±0.00 0.20±0.00 0.21±0.00 0.20±0.01 0.18±0.00 0.61±0.12 0.46±0.09 0.80±0.21 0.53±0.09 0.17±0.00
Basketball(1991) 0.51±0.00 0.19±0.00 0.20±0.00 0.19±0.00 0.21±0.01 0.21±0.00 0.18±0.00 0.72±0.06 0.48±0.07 0.88±0.15 0.55±0.08 0.18±0.00
Basketball(1992) 0.50±0.00 0.18±0.00 0.19±0.00 0.18±0.00 0.20±0.00 0.20±0.00 0.17±0.00 0.56±0.20 0.43±0.08 0.70±0.27 0.54±0.08 0.17±0.00
Basketball(1993) 0.51±0.00 0.19±0.00 0.19±0.00 0.19±0.00 0.21±0.00 0.20±0.01 0.17±0.00 0.67±0.11 0.51±0.07 0.85±0.21 0.57±0.10 0.17±0.00
Basketball(1994) 0.51±0.00 0.18±0.00 0.19±0.00 0.19±0.00 0.20±0.01 0.20±0.00 0.18±0.00 0.52±0.22 0.43±0.08 0.63±0.29 0.52±0.08 0.17±0.00
Basketball(1995) 0.50±0.00 0.19±0.00 0.20±0.00 0.19±0.00 0.21±0.00 0.20±0.01 0.18±0.00 0.57±0.17 0.46±0.08 0.77±0.24 0.53±0.07 0.18±0.00
Basketball(1996) 0.51±0.00 0.20±0.00 0.21±0.00 0.21±0.00 0.23±0.00 0.22±0.00 0.19±0.00 0.65±0.15 0.49±0.08 0.84±0.20 0.57±0.04 0.19±0.00
Basketball(1997) 0.49±0.00 0.20±0.00 0.21±0.00 0.21±0.00 0.22±0.00 0.22±0.00 0.19±0.00 0.66±0.17 0.48±0.07 0.82±0.19 0.53±0.06 0.19±0.00
Basketball(1998) 0.48±0.00 0.19±0.00 0.20±0.00 0.20±0.00 0.22±0.01 0.21±0.00 0.18±0.00 0.65±0.20 0.45±0.08 0.78±0.26 0.56±0.08 0.19±0.00
Basketball(1999) 0.50±0.00 0.20±0.00 0.21±0.00 0.22±0.01 0.23±0.00 0.22±0.01 0.19±0.00 0.79±0.07 0.45±0.07 0.90±0.10 0.60±0.12 0.18±0.00
Basketball(2000) 0.49±0.00 0.21±0.00 0.21±0.00 0.21±0.00 0.23±0.00 0.22±0.01 0.19±0.00 0.62±0.14 0.45±0.06 0.80±0.17 0.54±0.09 0.19±0.00
Basketball(2001) 0.51±0.00 0.19±0.00 0.20±0.01 0.19±0.00 0.22±0.01 0.21±0.00 0.18±0.00 0.49±0.16 0.46±0.05 0.67±0.30 0.51±0.10 0.18±0.00
Basketball(2002) 0.49±0.00 0.20±0.00 0.20±0.00 0.20±0.00 0.22±0.00 0.21±0.01 0.18±0.00 0.48±0.21 0.49±0.06 0.61±0.28 0.50±0.08 0.18±0.00
Basketball(2003) 0.51±0.00 0.20±0.00 0.21±0.00 0.21±0.00 0.23±0.00 0.22±0.00 0.20±0.00 0.55±0.13 0.52±0.10 0.79±0.18 0.54±0.06 0.19±0.00
Basketball(2004) 0.50±0.03 0.19±0.00 0.19±0.00 0.19±0.00 0.21±0.00 0.20±0.00 0.17±0.00 0.74±0.12 0.45±0.06 0.86±0.07 0.60±0.09 0.17±0.00
Basketball(2005) 0.49±0.01 0.19±0.00 0.21±0.00 0.20±0.00 0.22±0.01 0.21±0.00 0.18±0.00 0.73±0.08 0.48±0.08 0.84±0.20 0.57±0.11 0.18±0.00
Basketball(2006) 0.50±0.00 0.19±0.00 0.21±0.00 0.21±0.00 0.23±0.00 0.22±0.01 0.19±0.00 0.60±0.18 0.46±0.06 0.76±0.26 0.56±0.08 0.19±0.00
Basketball(2007) 0.49±0.00 0.20±0.00 0.21±0.00 0.21±0.00 0.22±0.00 0.22±0.00 0.19±0.00 0.55±0.16 0.49±0.09 0.76±0.25 0.55±0.07 0.19±0.00
Basketball(2008) 0.50±0.00 0.20±0.00 0.21±0.00 0.21±0.01 0.22±0.00 0.21±0.00 0.20±0.00 0.72±0.17 0.47±0.09 0.86±0.20 0.57±0.10 0.20±0.00
Basketball(2009) 0.51±0.00 0.19±0.00 0.20±0.00 0.19±0.00 0.21±0.00 0.21±0.00 0.18±0.00 0.48±0.15 0.47±0.07 0.70±0.23 0.51±0.12 0.18±0.00
Basketball(2010) 0.51±0.00 0.19±0.00 0.21±0.00 0.21±0.00 0.22±0.00 0.22±0.00 0.18±0.00 0.54±0.20 0.41±0.04 0.68±0.23 0.52±0.15 0.18±0.00
Basketball(2011) 0.51±0.00 0.20±0.00 0.20±0.00 0.20±0.00 0.22±0.00 0.21±0.00 0.19±0.00 0.50±0.13 0.46±0.14 0.73±0.21 0.55±0.14 0.18±0.00
Basketball(2012) 0.49±0.00 0.19±0.00 0.19±0.00 0.19±0.00 0.21±0.00 0.21±0.00 0.18±0.00 0.64±0.10 0.48±0.13 0.81±0.21 0.56±0.11 0.17±0.00
Basketball(2013) 0.50±0.01 0.20±0.00 0.20±0.00 0.21±0.02 0.22±0.01 0.21±0.00 0.19±0.00 0.49±0.16 0.46±0.10 0.66±0.26 0.50±0.08 0.19±0.00
Basketball(2014) 0.52±0.00 0.20±0.00 0.21±0.00 0.21±0.00 0.22±0.00 0.22±0.00 0.19±0.00 0.76±0.05 0.48±0.12 0.89±0.10 0.59±0.12 0.19±0.00
Basketball finer(1985) 0.49±0.00 0.19±0.00 0.20±0.01 0.20±0.00 0.20±0.01 0.20±0.00 0.18±0.00 0.99±0.02 0.81±0.12 0.99±0.01 0.75±0.06 0.18±0.00
Basketball finer(1986) 0.50±0.00 0.19±0.00 0.21±0.00 0.20±0.00 0.23±0.01 0.20±0.00 0.17±0.00 0.99±0.01 0.82±0.10 0.98±0.06 0.76±0.06 0.17±0.00
Basketball finer(1987) 0.49±0.00 0.20±0.00 0.21±0.01 0.23±0.00 0.22±0.01 0.23±0.00 0.19±0.00 0.99±0.02 0.79±0.12 0.98±0.06 0.74±0.03 0.19±0.00
Basketball finer(1988) 0.49±0.00 0.19±0.00 0.20±0.00 0.20±0.00 0.20±0.00 0.20±0.00 0.18±0.00 0.99±0.01 0.76±0.15 0.97±0.09 0.73±0.09 0.18±0.00
Basketball finer(1989) 0.49±0.00 0.19±0.00 0.20±0.01 0.20±0.00 0.20±0.01 0.20±0.00 0.18±0.01 0.98±0.05 0.75±0.15 1.00±0.01 0.71±0.12 0.18±0.00
Basketball finer(1990) 0.50±0.00 0.20±0.00 0.20±0.01 0.20±0.00 0.20±0.01 0.20±0.00 0.18±0.00 0.98±0.05 0.79±0.15 1.00±0.01 0.74±0.04 0.18±0.00
Basketball finer(1991) 0.51±0.00 0.20±0.00 0.21±0.00 0.21±0.00 0.23±0.09 0.21±0.00 0.18±0.00 0.96±0.10 0.78±0.14 0.97±0.08 0.71±0.11 0.18±0.00
Basketball finer(1992) 0.47±0.00 0.18±0.00 0.19±0.00 0.19±0.00 0.19±0.01 0.19±0.00 0.17±0.00 0.94±0.10 0.77±0.18 0.99±0.02 0.72±0.14 0.17±0.00
Basketball finer(1993) 0.51±0.00 0.19±0.00 0.20±0.00 0.20±0.00 0.22±0.01 0.20±0.00 0.17±0.00 0.98±0.04 0.79±0.15 1.00±0.01 0.75±0.05 0.17±0.00
Basketball finer(1994) 0.50±0.00 0.18±0.00 0.19±0.00 0.20±0.00 0.19±0.00 0.20±0.00 0.17±0.00 0.98±0.04 0.80±0.14 0.98±0.06 0.75±0.10 0.17±0.00
Basketball finer(1995) 0.48±0.00 0.20±0.00 0.21±0.00 0.20±0.00 0.22±0.00 0.20±0.00 0.18±0.00 0.94±0.08 0.77±0.18 0.99±0.02 0.73±0.15 0.18±0.00
Basketball finer(1996) 0.49±0.00 0.20±0.00 0.22±0.00 0.22±0.00 0.22±0.00 0.22±0.00 0.19±0.00 0.97±0.06 0.79±0.15 0.97±0.07 0.74±0.13 0.19±0.00
Basketball finer(1997) 0.51±0.00 0.21±0.00 0.21±0.00 0.22±0.00 0.22±0.00 0.22±0.00 0.19±0.00 0.96±0.07 0.79±0.16 0.99±0.03 0.74±0.13 0.19±0.00
Basketball finer(1998) 0.48±0.00 0.20±0.00 0.20±0.00 0.21±0.00 0.21±0.00 0.21±0.00 0.18±0.00 0.99±0.02 0.83±0.12 1.00±0.00 0.75±0.03 0.18±0.00
Basketball finer(1999) 0.50±0.00 0.20±0.00 0.21±0.00 0.21±0.00 0.22±0.00 0.21±0.00 0.18±0.00 0.99±0.03 0.84±0.10 0.99±0.01 0.77±0.04 0.18±0.00
Basketball finer(2000) 0.49±0.00 0.21±0.00 0.22±0.00 0.23±0.00 0.22±0.00 0.23±0.00 0.20±0.00 1.00±0.01 0.84±0.11 1.00±0.00 0.75±0.08 0.19±0.00
Basketball finer(2001) 0.51±0.00 0.20±0.00 0.21±0.00 0.22±0.00 0.22±0.00 0.22±0.00 0.18±0.00 0.97±0.09 0.78±0.12 0.99±0.02 0.75±0.05 0.18±0.00
Basketball finer(2002) 0.51±0.00 0.22±0.00 0.21±0.00 0.21±0.00 0.21±0.00 0.21±0.00 0.19±0.00 0.98±0.07 0.83±0.07 0.97±0.10 0.77±0.06 0.19±0.00
Basketball finer(2003) 0.50±0.00 0.22±0.00 0.22±0.00 0.22±0.00 0.22±0.00 0.22±0.00 0.20±0.00 0.98±0.05 0.84±0.02 1.00±0.01 0.77±0.04 0.19±0.00
Basketball finer(2004) 0.49±0.00 0.19±0.00 0.21±0.00 0.21±0.00 0.23±0.00 0.21±0.00 0.18±0.00 0.98±0.05 0.79±0.15 1.00±0.01 0.72±0.13 0.18±0.00
Basketball finer(2005) 0.50±0.00 0.21±0.00 0.21±0.00 0.22±0.00 0.22±0.00 0.22±0.00 0.19±0.00 0.99±0.02 0.83±0.11 0.98±0.06 0.74±0.05 0.19±0.00
Basketball finer(2006) 0.49±0.00 0.21±0.00 0.22±0.01 0.23±0.00 0.22±0.01 0.23±0.00 0.19±0.00 0.99±0.03 0.80±0.13 0.99±0.02 0.73±0.05 0.19±0.00
Basketball finer(2007) 0.49±0.03 0.21±0.00 0.22±0.00 0.22±0.00 0.22±0.00 0.22±0.00 0.20±0.00 1.00±0.00 0.82±0.02 1.00±0.00 0.76±0.05 0.20±0.00
Basketball finer(2008) 0.49±0.00 0.21±0.00 0.21±0.00 0.22±0.00 0.22±0.00 0.22±0.00 0.20±0.00 1.00±0.00 0.84±0.02 1.00±0.00 0.77±0.05 0.20±0.00
Basketball finer(2009) 0.52±0.00 0.21±0.00 0.21±0.00 0.21±0.00 0.21±0.00 0.21±0.00 0.19±0.00 0.98±0.05 0.82±0.11 1.00±0.00 0.76±0.07 0.19±0.00
Basketball finer(2010) 0.49±0.00 0.20±0.00 0.21±0.00 0.21±0.00 0.21±0.00 0.21±0.00 0.19±0.00 0.99±0.02 0.83±0.01 1.00±0.01 0.75±0.05 0.19±0.00
Basketball finer(2011) 0.50±0.00 0.21±0.00 0.22±0.00 0.22±0.00 0.22±0.00 0.22±0.00 0.19±0.00 1.00±0.00 0.84±0.04 1.00±0.00 0.75±0.04 0.19±0.00
Basketball finer(2012) 0.49±0.00 0.20±0.00 0.21±0.00 0.21±0.00 0.21±0.00 0.21±0.00 0.18±0.00 1.00±0.01 0.83±0.10 0.99±0.04 0.77±0.05 0.19±0.00
Basketball finer(2013) 0.52±0.00 0.21±0.00 0.21±0.00 0.21±0.00 0.21±0.00 0.21±0.00 0.20±0.00 0.99±0.03 0.82±0.11 0.98±0.06 0.76±0.04 0.20±0.00
Basketball finer(2014) 0.52±0.00 0.21±0.00 0.22±0.01 0.22±0.00 0.22±0.01 0.22±0.00 0.20±0.00 1.00±0.01 0.82±0.02 1.00±0.01 0.76±0.04 0.20±0.00
Football(2009) 0.45±0.02 0.15±0.00 0.19±0.01 0.19±0.01 0.24±0.06 0.22±0.04 0.16±0.01 0.29±0.07 0.24±0.05 0.36±0.09 0.27±0.04 0.15±0.00
Football(2010) 0.49±0.05 0.29±0.00 0.30±0.01 0.30±0.01 0.31±0.01 0.31±0.02 0.29±0.01 0.37±0.05 0.38±0.04 0.48±0.10 0.38±0.04 0.29±0.00
Football(2011) 0.45±0.05 0.20±0.00 0.22±0.01 0.23±0.04 0.29±0.05 0.25±0.03 0.21±0.01 0.43±0.23 0.34±0.07 0.46±0.22 0.34±0.08 0.20±0.00
Football(2012) 0.43±0.04 0.22±0.00 0.20±0.02 0.21±0.04 0.24±0.03 0.24±0.02 0.21±0.01 0.25±0.02 0.30±0.08 0.32±0.07 0.30±0.09 0.21±0.00
Football(2013) 0.48±0.02 0.17±0.00 0.16±0.01 0.16±0.02 0.18±0.04 0.21±0.06 0.15±0.01 0.34±0.06 0.24±0.02 0.46±0.12 0.34±0.06 0.14±0.00
Football(2014) 0.46±0.03 0.27±0.00 0.24±0.01 0.25±0.04 0.31±0.03 0.30±0.03 0.26±0.01 0.28±0.02 0.32±0.04 0.27±0.03 0.29±0.04 0.27±0.00
Football finer(2009) 0.48±0.04 0.16±0.00 0.19±0.01 0.19±0.05 0.21±0.03 0.21±0.02 0.17±0.00 0.58±0.33 0.29±0.07 0.59±0.28 0.32±0.10 0.16±0.01
Football finer(2010) 0.53±0.00 0.29±0.00 0.31±0.02 0.31±0.04 0.31±0.01 0.32±0.02 0.30±0.01 0.64±0.24 0.43±0.06 0.62±0.23 0.41±0.04 0.29±0.00
Football finer(2011) 0.53±0.00 0.21±0.00 0.23±0.04 0.25±0.02 0.25±0.02 0.24±0.03 0.21±0.01 0.52±0.25 0.32±0.07 0.48±0.22 0.33±0.07 0.21±0.01
Football finer(2012) 0.54±0.00 0.22±0.00 0.24±0.02 0.25±0.01 0.24±0.01 0.24±0.02 0.22±0.02 0.77±0.31 0.39±0.12 0.59±0.29 0.36±0.05 0.21±0.01
Football finer(2013) 0.50±0.00 0.18±0.00 0.19±0.01 0.18±0.05 0.20±0.03 0.22±0.06 0.15±0.01 0.67±0.29 0.28±0.04 0.52±0.25 0.32±0.06 0.14±0.00
Football finer(2014) 0.52±0.04 0.26±0.00 0.27±0.01 0.28±0.04 0.30±0.03 0.30±0.06 0.27±0.02 0.40±0.03 0.45±0.06 0.43±0.03 0.44±0.06 0.27±0.01
ERO(p=0.05, style=uniform,η=0) 0.49±0.03 0.03±0.00 0.04±0.00 0.06±0.03 0.05±0.01 0.06±0.04 0.05±0.01 0.06±0.00 0.05±0.00 0.05±0.00 0.05±0.00 0.05±0.00
ERO(p=0.05, style=gamma,η=0) 0.51±0.00 0.02±0.00 0.04±0.00 0.07±0.06 0.04±0.00 0.04±0.00 0.04±0.01 0.10±0.00 0.09±0.00 0.09±0.00 0.09±0.00 0.07±0.01
ERO(p=0.05, style=uniform,η=0.1) 0.50±0.01 0.11±0.00 0.14±0.01 0.14±0.02 0.17±0.06 0.14±0.01 0.09±0.00 0.13±0.00 0.13±0.01 0.13±0.01 0.13±0.00 0.13±0.00
ERO(p=0.05, style=gamma,η=0.1) 0.51±0.00 0.11±0.00 0.19±0.00 0.21±0.00 0.24±0.01 0.23±0.01 0.09±0.00 0.20±0.00 0.22±0.03 0.20±0.00 0.20±0.01 0.11±0.01
ERO(p=0.05, style=uniform,η=0.2) 0.50±0.00 0.15±0.00 0.19±0.00 0.20±0.02 0.21±0.05 0.20±0.00 0.13±0.00 0.19±0.00 0.19±0.00 0.19±0.01 0.20±0.00 0.19±0.01
ERO(p=0.05, style=gamma,η=0.2) 0.52±0.00 0.15±0.00 0.24±0.00 0.27±0.00 0.32±0.01 0.28±0.01 0.14±0.00 0.27±0.00 0.29±0.00 0.28±0.01 0.29±0.01 0.14±0.01
ERO(p=0.05, style=uniform,η=0.3) 0.51±0.00 0.20±0.00 0.24±0.00 0.24±0.02 0.26±0.00 0.25±0.00 0.18±0.01 0.23±0.00 0.23±0.00 0.26±0.03 0.25±0.01 0.24±0.01
ERO(p=0.05, style=gamma,η=0.3) 0.51±0.00 0.20±0.00 0.31±0.01 0.32±0.01 0.35±0.01 0.32±0.01 0.19±0.00 0.32±0.00 0.34±0.01 0.32±0.01 0.33±0.01 0.19±0.00
ERO(p=0.05, style=uniform,η=0.4) 0.51±0.00 0.23±0.00 0.29±0.00 0.29±0.02 0.36±0.00 0.30±0.03 0.23±0.01 0.28±0.00 0.28±0.01 0.32±0.00 0.31±0.02 0.27±0.02
ERO(p=0.05, style=gamma,η=0.4) 0.51±0.00 0.24±0.00 0.34±0.04 0.36±0.01 0.40±0.04 0.36±0.01 0.23±0.01 0.34±0.01 0.37±0.01 0.35±0.01 0.37±0.04 0.23±0.01
ERO(p=0.05, style=uniform,η=0.5) 0.51±0.00 0.27±0.00 0.32±0.00 0.35±0.00 0.40±0.00 0.35±0.00 0.27±0.00 0.33±0.01 0.32±0.00 0.34±0.01 0.34±0.01 0.29±0.01
ERO(p=0.05, style=gamma,η=0.5) 0.49±0.00 0.28±0.00 0.39±0.02 0.39±0.00 0.42±0.02 0.39±0.00 0.27±0.01 0.38±0.01 0.40±0.01 0.38±0.01 0.40±0.01 0.27±0.01
ERO(p=0.05, style=uniform,η=0.6) 0.51±0.00 0.31±0.00 0.36±0.01 0.38±0.00 0.42±0.01 0.38±0.00 0.30±0.00 0.35±0.00 0.35±0.00 0.37±0.00 0.37±0.00 0.31±0.00
ERO(p=0.05, style=gamma,η=0.6) 0.50±0.00 0.32±0.00 0.40±0.01 0.42±0.00 0.44±0.01 0.42±0.00 0.30±0.01 0.41±0.01 0.42±0.01 0.44±0.01 0.44±0.02 0.30±0.01
ERO(p=0.05, style=uniform,η=0.7) 0.49±0.00 0.34±0.00 0.39±0.01 0.40±0.00 0.43±0.00 0.40±0.00 0.32±0.00 0.39±0.00 0.38±0.01 0.40±0.00 0.39±0.01 0.33±0.01
ERO(p=0.05, style=gamma,η=0.7) 0.50±0.00 0.35±0.00 0.46±0.01 0.45±0.01 0.46±0.01 0.45±0.01 0.33±0.01 0.43±0.02 0.43±0.01 0.45±0.01 0.46±0.02 0.33±0.01
ERO(p=0.05, style=uniform,η=0.8) 0.51±0.00 0.36±0.00 0.43±0.01 0.42±0.00 0.43±0.01 0.42±0.00 0.34±0.00 0.42±0.00 0.42±0.00 0.42±0.00 0.42±0.00 0.34±0.00
ERO(p=0.05, style=gamma,η=0.8) 0.50±0.00 0.36±0.00 0.45±0.01 0.44±0.00 0.45±0.01 0.44±0.00 0.34±0.01 0.43±0.02 0.44±0.01 0.45±0.04 0.46±0.05 0.34±0.01
ERO(p=1, style=uniform,η=0) 0.50±0.03 0.00±0.00 0.01±0.02 0.04±0.07 0.01±0.01 0.04±0.09 0.00±0.01 0.00±0.00 0.04±0.11 0.01±0.01 0.05±0.06 0.00±0.00
ERO(p=1, style=gamma,η=0) 0.50±0.05 0.00±0.00 0.03±0.03 0.01±0.03 0.03±0.04 0.04±0.05 0.02±0.00 0.00±0.00 0.01±0.01 0.00±0.00 0.00±0.00 0.00±0.00
ERO(p=1, style=uniform,η=0.1) 0.48±0.00 0.06±0.00 0.09±0.01 0.08±0.00 0.08±0.00 0.08±0.00 0.08±0.01 0.11±0.01 0.13±0.09 0.10±0.01 0.11±0.03 0.06±0.00
ERO(p=1, style=gamma,η=0.1) 0.46±0.00 0.06±0.00 0.10±0.00 0.12±0.01 0.10±0.00 0.13±0.01 0.11±0.01 0.20±0.15 0.13±0.02 0.21±0.18 0.12±0.02 0.06±0.00
ERO(p=1, style=uniform,η=0.2) 0.47±0.00 0.11±0.00 0.14±0.00 0.15±0.02 0.14±0.00 0.14±0.00 0.13±0.00 0.21±0.03 0.23±0.03 0.22±0.04 0.21±0.08 0.11±0.00
ERO(p=1, style=gamma,η=0.2) 0.48±0.00 0.11±0.00 0.15±0.00 0.16±0.02 0.18±0.01 0.17±0.01 0.17±0.00 0.29±0.13 0.20±0.05 0.27±0.11 0.18±0.00 0.11±0.00
ERO(p=1, style=uniform,η=0.3) 0.47±0.00 0.16±0.00 0.18±0.00 0.19±0.00 0.20±0.01 0.19±0.00 0.19±0.00 0.31±0.19 0.25±0.02 0.27±0.08 0.23±0.02 0.16±0.00
ERO(p=1, style=gamma,η=0.3) 0.48±0.00 0.16±0.00 0.20±0.00 0.22±0.02 0.23±0.01 0.22±0.01 0.21±0.00 0.39±0.13 0.25±0.01 0.36±0.08 0.24±0.01 0.16±0.00
ERO(p=1, style=uniform,η=0.4) 0.48±0.00 0.21±0.00 0.23±0.00 0.23±0.00 0.26±0.03 0.26±0.06 0.23±0.00 0.29±0.03 0.30±0.02 0.28±0.03 0.27±0.02 0.21±0.00
ERO(p=1, style=gamma,η=0.4) 0.49±0.00 0.22±0.00 0.25±0.00 0.26±0.02 0.27±0.00 0.27±0.01 0.25±0.00 0.52±0.28 0.30±0.02 0.36±0.07 0.29±0.00 0.22±0.00
ERO(p=1, style=uniform,η=0.5) 0.49±0.00 0.27±0.00 0.27±0.00 0.28±0.02 0.32±0.03 0.28±0.00 0.28±0.00 0.33±0.01 0.35±0.04 0.32±0.02 0.33±0.02 0.27±0.00
ERO(p=1, style=gamma,η=0.5) 0.49±0.00 0.27±0.00 0.29±0.00 0.31±0.02 0.32±0.01 0.32±0.02 0.30±0.00 0.66±0.25 0.37±0.05 0.37±0.04 0.33±0.00 0.27±0.00
ERO(p=1, style=uniform,η=0.6) 0.50±0.00 0.32±0.00 0.32±0.00 0.33±0.00 0.37±0.02 0.33±0.00 0.33±0.00 0.37±0.01 0.40±0.04 0.37±0.01 0.37±0.01 0.32±0.00
ERO(p=1, style=gamma,η=0.6) 0.49±0.00 0.32±0.00 0.34±0.00 0.35±0.02 0.36±0.02 0.35±0.03 0.34±0.02 0.61±0.25 0.42±0.07 0.38±0.01 0.38±0.01 0.32±0.00
ERO(p=1, style=uniform,η=0.7) 0.49±0.00 0.37±0.00 0.37±0.00 0.37±0.00 0.40±0.00 0.37±0.00 0.38±0.00 0.41±0.01 0.43±0.03 0.41±0.01 0.42±0.02 0.37±0.00
ERO(p=1, style=gamma,η=0.7) 0.50±0.00 0.37±0.00 0.39±0.00 0.38±0.00 0.40±0.01 0.38±0.00 0.37±0.00 0.62±0.16 0.44±0.02 0.48±0.17 0.42±0.01 0.37±0.00
ERO(p=1, style=uniform,η=0.8) 0.49±0.00 0.42±0.00 0.42±0.00 0.42±0.00 0.43±0.00 0.42±0.00 0.42±0.00 0.44±0.01 0.47±0.01 0.45±0.01 0.46±0.03 0.41±0.00
ERO(p=1, style=gamma,η=0.8) 0.50±0.00 0.42±0.00 0.43±0.00 0.43±0.00 0.44±0.01 0.43±0.00 0.41±0.00 0.49±0.05 0.46±0.02 0.45±0.00 0.45±0.01 0.41±0.00
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Table D.8: Performance on Lupset, ratio for each variant in the proposed GNNRank
framework, compared with the worst and the best baseline method, averaged over 10
runs, and plus/minus one standard deviation. The best is marked in bold red while
the second best is highlighted in underline blue .

Type Baselines DIMPA IB
Data worst baseline best baseline dist innerproduct proximal dist proximal innerproduct proximal baseline dist innerproduct proximal dist proximal innerproduct proximal baseline
HeadToHead 1.19±0.09 0.71±0.01 0.68±0.00 0.69±0.01 0.95±0.00 0.95±0.00 0.94±0.00 0.96±0.00 0.96±0.00 0.96±0.00 0.96±0.00 0.94±0.00
Finance 0.64±0.00 0.26±0.00 0.26±0.00 0.26±0.00 0.27±0.00 0.27±0.00 0.27±0.00 0.27±0.00 0.27±0.00 0.27±0.00 0.27±0.00 0.27±0.00
Animal 1.34±0.00 0.22±0.00 0.24±0.03 0.35±0.24 0.68±0.02 0.67±0.01 0.66±0.00 0.60±0.14 0.45±0.02 0.79±0.01 0.72±0.02 0.66±0.00
Faculty: Business 1.40±0.13 0.34±0.00 0.33±0.01 0.31±0.00 0.89±0.00 0.90±0.00 0.89±0.01 0.80±0.20 0.80±0.07 0.93±0.02 0.93±0.01 0.89±0.00
Faculty: CS 1.33±0.16 0.28±0.00 0.26±0.02 0.26±0.01 0.92±0.01 0.91±0.00 0.86±0.00 0.90±0.00 0.90±0.06 0.95±0.00 0.95±0.00 0.90±0.00
Faculty: History 1.35±0.11 0.23±0.00 0.23±0.01 0.21±0.00 0.85±0.00 0.88±0.00 0.84±0.02 0.89±0.04 0.83±0.11 0.96±0.00 0.93±0.01 0.87±0.00
Basketball(1985) 1.32±0.00 0.54±0.04 0.46±0.01 0.48±0.11 0.82±0.00 0.82±0.00 0.82±0.00 0.81±0.02 0.90±0.02 0.85±0.01 0.85±0.00 0.82±0.00
Basketball(1986) 1.30±0.00 0.54±0.01 0.43±0.00 0.42±0.00 0.82±0.00 0.82±0.00 0.81±0.00 0.78±0.02 0.87±0.02 0.85±0.01 0.85±0.00 0.81±0.00
Basketball(1987) 1.37±0.00 0.56±0.00 0.49±0.01 0.48±0.01 0.83±0.00 0.83±0.00 0.83±0.00 0.82±0.01 0.91±0.04 0.85±0.01 0.86±0.00 0.82±0.00
Basketball(1988) 1.33±0.00 0.53±0.01 0.45±0.01 0.47±0.01 0.83±0.00 0.83±0.00 0.82±0.00 0.82±0.01 0.87±0.01 0.86±0.01 0.86±0.00 0.82±0.00
Basketball(1989) 1.34±0.00 0.55±0.01 0.46±0.01 0.50±0.01 0.83±0.00 0.83±0.00 0.83±0.00 0.80±0.04 0.87±0.01 0.86±0.01 0.86±0.00 0.83±0.00
Basketball(1990) 1.35±0.00 0.51±0.05 0.44±0.01 0.47±0.01 0.83±0.00 0.83±0.00 0.82±0.00 0.82±0.01 0.88±0.03 0.86±0.01 0.86±0.00 0.82±0.00
Basketball(1991) 1.34±0.00 0.53±0.03 0.46±0.00 0.45±0.00 0.83±0.00 0.83±0.00 0.82±0.00 0.84±0.01 0.88±0.02 0.86±0.00 0.86±0.01 0.82±0.00
Basketball(1992) 1.35±0.00 0.50±0.06 0.44±0.01 0.43±0.00 0.83±0.00 0.83±0.00 0.83±0.00 0.81±0.04 0.90±0.02 0.86±0.01 0.86±0.00 0.83±0.00
Basketball(1993) 1.28±0.00 0.51±0.03 0.45±0.01 0.44±0.01 0.82±0.00 0.82±0.00 0.82±0.00 0.80±0.06 0.88±0.02 0.85±0.01 0.85±0.00 0.82±0.00
Basketball(1994) 1.35±0.00 0.43±0.05 0.43±0.01 0.42±0.00 0.82±0.00 0.82±0.00 0.82±0.00 0.77±0.07 0.89±0.03 0.85±0.01 0.85±0.00 0.82±0.00
Basketball(1995) 1.36±0.00 0.47±0.06 0.45±0.01 0.44±0.00 0.82±0.00 0.82±0.00 0.81±0.00 0.81±0.02 0.89±0.02 0.85±0.01 0.85±0.00 0.81±0.00
Basketball(1996) 1.35±0.00 0.55±0.03 0.48±0.00 0.48±0.00 0.83±0.00 0.83±0.00 0.82±0.00 0.80±0.03 0.90±0.05 0.85±0.01 0.86±0.00 0.82±0.00
Basketball(1997) 1.30±0.00 0.56±0.00 0.49±0.00 0.48±0.00 0.83±0.00 0.83±0.00 0.82±0.00 0.82±0.02 0.91±0.04 0.85±0.01 0.86±0.00 0.82±0.00
Basketball(1998) 1.36±0.00 0.56±0.00 0.47±0.01 0.46±0.00 0.84±0.00 0.84±0.00 0.84±0.00 0.82±0.04 0.90±0.01 0.87±0.01 0.87±0.00 0.84±0.00
Basketball(1999) 1.32±0.00 0.55±0.03 0.48±0.00 0.51±0.01 0.84±0.00 0.84±0.00 0.83±0.00 0.85±0.01 0.89±0.01 0.87±0.00 0.87±0.00 0.83±0.00
Basketball(2000) 1.40±0.01 0.58±0.01 0.51±0.01 0.50±0.00 0.86±0.00 0.86±0.00 0.86±0.00 0.85±0.02 0.91±0.01 0.89±0.01 0.89±0.00 0.86±0.00
Basketball(2001) 1.40±0.00 0.55±0.04 0.48±0.01 0.47±0.00 0.85±0.00 0.85±0.00 0.85±0.00 0.83±0.03 0.90±0.01 0.88±0.01 0.88±0.00 0.85±0.00
Basketball(2002) 1.33±0.00 0.56±0.03 0.49±0.01 0.48±0.01 0.85±0.00 0.85±0.00 0.84±0.00 0.80±0.04 0.91±0.02 0.87±0.01 0.88±0.00 0.84±0.00
Basketball(2003) 1.40±0.00 0.56±0.04 0.52±0.01 0.51±0.00 0.85±0.00 0.85±0.00 0.85±0.00 0.82±0.02 0.89±0.01 0.88±0.01 0.88±0.00 0.85±0.00
Basketball(2004) 1.35±0.00 0.54±0.04 0.47±0.01 0.46±0.00 0.85±0.00 0.85±0.00 0.85±0.00 0.85±0.02 0.88±0.01 0.88±0.00 0.88±0.00 0.85±0.00
Basketball(2005) 1.29±0.01 0.57±0.01 0.50±0.01 0.49±0.01 0.86±0.00 0.86±0.00 0.85±0.00 0.84±0.01 0.91±0.03 0.88±0.01 0.88±0.00 0.85±0.00
Basketball(2006) 1.36±0.00 0.50±0.05 0.50±0.01 0.49±0.01 0.86±0.00 0.86±0.00 0.86±0.00 0.83±0.04 0.91±0.01 0.88±0.01 0.89±0.00 0.85±0.00
Basketball(2007) 1.41±0.00 0.57±0.00 0.49±0.00 0.49±0.00 0.86±0.00 0.86±0.00 0.86±0.00 0.83±0.03 0.91±0.01 0.89±0.01 0.89±0.00 0.86±0.00
Basketball(2008) 1.33±0.01 0.55±0.04 0.51±0.01 0.53±0.10 0.86±0.00 0.86±0.00 0.86±0.00 0.85±0.03 0.90±0.01 0.89±0.01 0.89±0.00 0.86±0.00
Basketball(2009) 1.24±0.00 0.56±0.00 0.48±0.00 0.47±0.00 0.86±0.00 0.86±0.00 0.86±0.00 0.83±0.03 0.90±0.01 0.89±0.01 0.89±0.00 0.86±0.00
Basketball(2010) 1.35±0.00 0.52±0.06 0.49±0.00 0.49±0.00 0.88±0.00 0.87±0.00 0.87±0.00 0.83±0.05 0.92±0.02 0.90±0.01 0.91±0.00 0.87±0.00
Basketball(2011) 1.34±0.00 0.52±0.05 0.50±0.01 0.49±0.00 0.87±0.00 0.87±0.00 0.86±0.00 0.83±0.03 0.91±0.01 0.89±0.01 0.89±0.00 0.86±0.00
Basketball(2012) 1.42±0.00 0.54±0.05 0.48±0.01 0.48±0.01 0.87±0.00 0.87±0.00 0.86±0.00 0.85±0.04 0.91±0.01 0.90±0.01 0.90±0.00 0.86±0.00
Basketball(2013) 1.34±0.00 0.58±0.03 0.51±0.01 0.53±0.10 0.87±0.00 0.87±0.00 0.86±0.00 0.84±0.03 0.91±0.01 0.89±0.01 0.90±0.00 0.86±0.00
Basketball(2014) 1.41±0.00 0.52±0.06 0.49±0.01 0.49±0.01 0.86±0.00 0.86±0.00 0.86±0.00 0.86±0.01 0.91±0.01 0.89±0.00 0.89±0.00 0.86±0.00
Basketball finer(1985) 0.57±0.00 0.01±0.00 0.01±0.00 0.00±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.19±0.02 0.01±0.00 0.01±0.00 0.01±0.00
Basketball finer(1986) 0.60±0.00 0.01±0.00 0.01±0.00 0.00±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.19±0.02 0.01±0.00 0.01±0.00 0.01±0.00
Basketball finer(1987) 0.58±0.00 0.01±0.00 0.01±0.00 0.00±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.21±0.02 0.01±0.00 0.01±0.00 0.01±0.00
Basketball finer(1988) 0.57±0.00 0.01±0.00 0.01±0.00 0.00±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.22±0.02 0.01±0.00 0.01±0.00 0.01±0.00
Basketball finer(1989) 0.56±0.00 0.01±0.00 0.01±0.00 0.00±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.22±0.03 0.01±0.00 0.01±0.00 0.01±0.00
Basketball finer(1990) 0.55±0.00 0.01±0.00 0.01±0.00 0.00±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.22±0.01 0.01±0.00 0.01±0.00 0.01±0.00
Basketball finer(1991) 0.54±0.00 0.01±0.00 0.01±0.00 0.00±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.23±0.03 0.01±0.00 0.01±0.00 0.01±0.00
Basketball finer(1992) 0.55±0.00 0.01±0.00 0.01±0.00 0.00±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.22±0.03 0.01±0.00 0.01±0.00 0.01±0.00
Basketball finer(1993) 0.58±0.00 0.01±0.00 0.01±0.00 0.00±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.20±0.02 0.01±0.00 0.01±0.00 0.01±0.00
Basketball finer(1994) 0.58±0.00 0.01±0.00 0.01±0.00 0.00±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.21±0.03 0.01±0.00 0.01±0.00 0.01±0.00
Basketball finer(1995) 0.55±0.00 0.01±0.00 0.01±0.00 0.00±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.21±0.02 0.01±0.00 0.01±0.00 0.01±0.00
Basketball finer(1996) 0.56±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.20±0.02 0.01±0.00 0.01±0.00 0.01±0.00
Basketball finer(1997) 0.56±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.20±0.02 0.01±0.00 0.01±0.00 0.01±0.00
Basketball finer(1998) 0.56±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.21±0.02 0.01±0.00 0.01±0.00 0.01±0.00
Basketball finer(1999) 0.57±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.18±0.02 0.01±0.00 0.01±0.00 0.01±0.00
Basketball finer(2000) 0.55±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.21±0.02 0.01±0.00 0.01±0.00 0.01±0.00
Basketball finer(2001) 0.59±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.20±0.03 0.01±0.00 0.01±0.00 0.01±0.00
Basketball finer(2002) 0.57±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.20±0.02 0.01±0.00 0.01±0.00 0.01±0.00
Basketball finer(2003) 0.58±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.21±0.03 0.01±0.00 0.01±0.00 0.01±0.00
Basketball finer(2004) 0.57±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.20±0.02 0.01±0.00 0.01±0.00 0.01±0.00
Basketball finer(2005) 0.60±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.20±0.03 0.01±0.00 0.01±0.00 0.01±0.00
Basketball finer(2006) 0.57±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.20±0.02 0.01±0.00 0.01±0.00 0.01±0.00
Basketball finer(2007) 0.53±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.22±0.02 0.01±0.00 0.01±0.00 0.01±0.00
Basketball finer(2008) 0.59±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.20±0.03 0.01±0.00 0.01±0.00 0.01±0.00
Basketball finer(2009) 0.57±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.20±0.03 0.01±0.00 0.01±0.00 0.01±0.00
Basketball finer(2010) 0.58±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.20±0.03 0.01±0.00 0.01±0.00 0.01±0.00
Basketball finer(2011) 0.59±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.21±0.02 0.01±0.00 0.01±0.00 0.01±0.00
Basketball finer(2012) 0.57±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.22±0.03 0.01±0.00 0.01±0.00 0.01±0.00
Basketball finer(2013) 0.56±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.22±0.03 0.01±0.00 0.01±0.00 0.01±0.00
Basketball finer(2014) 0.56±0.00 0.01±0.00 0.01±0.00 0.00±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.20±0.04 0.01±0.00 0.01±0.00 0.01±0.00
Football(2009) 1.16±0.05 0.48±0.02 0.46±0.01 0.49±0.11 0.73±0.04 0.71±0.03 0.69±0.00 0.73±0.05 0.70±0.16 0.81±0.02 0.79±0.03 0.69±0.00
Football(2010) 1.25±0.01 0.66±0.02 0.65±0.00 0.68±0.07 0.73±0.00 0.75±0.00 0.73±0.01 0.75±0.02 0.76±0.03 0.79±0.01 0.78±0.01 0.74±0.00
Football(2011) 1.17±0.00 0.53±0.02 0.53±0.01 0.54±0.07 0.73±0.01 0.71±0.01 0.69±0.00 0.70±0.04 0.79±0.07 0.77±0.03 0.77±0.04 0.69±0.00
Football(2012) 1.18±0.00 0.53±0.03 0.51±0.01 0.53±0.08 0.74±0.05 0.72±0.01 0.71±0.00 0.64±0.03 0.77±0.09 0.74±0.02 0.76±0.05 0.71±0.00
Football(2013) 0.94±0.00 0.48±0.04 0.46±0.01 0.47±0.12 0.72±0.02 0.72±0.03 0.71±0.00 0.65±0.06 0.69±0.11 0.80±0.03 0.79±0.04 0.71±0.00
Football(2014) 1.49±0.00 0.74±0.01 0.69±0.01 0.69±0.07 0.87±0.01 0.87±0.02 0.85±0.00 0.87±0.02 0.96±0.05 0.88±0.01 0.90±0.03 0.85±0.00
Football finer(2009) 0.73±0.04 0.17±0.01 0.17±0.00 0.17±0.03 0.21±0.00 0.22±0.01 0.21±0.00 0.30±0.01 0.30±0.01 0.29±0.01 0.28±0.02 0.21±0.00
Football finer(2010) 0.67±0.00 0.18±0.01 0.19±0.01 0.17±0.00 0.18±0.00 0.18±0.01 0.18±0.00 0.25±0.01 0.25±0.00 0.24±0.01 0.23±0.01 0.19±0.00
Football finer(2011) 0.58±0.00 0.17±0.00 0.17±0.00 0.19±0.05 0.19±0.00 0.20±0.00 0.19±0.00 0.28±0.01 0.27±0.02 0.26±0.01 0.26±0.02 0.20±0.00
Football finer(2012) 0.66±0.04 0.16±0.00 0.15±0.00 0.16±0.03 0.17±0.00 0.17±0.00 0.17±0.00 0.25±0.01 0.25±0.00 0.24±0.01 0.23±0.02 0.17±0.00
Football finer(2013) 0.52±0.00 0.21±0.01 0.21±0.01 0.19±0.04 0.25±0.00 0.25±0.02 0.24±0.01 0.33±0.01 0.33±0.01 0.33±0.01 0.31±0.02 0.25±0.00
Football finer(2014) 0.98±0.00 0.35±0.00 0.34±0.00 0.35±0.05 0.38±0.00 0.39±0.03 0.38±0.00 0.47±0.01 0.47±0.01 0.46±0.02 0.46±0.01 0.38±0.00
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Table D.9: Lupset, simple comparison for different variants on selected real-world data,
averaged over 10 runs, and plus/minus one standard deviation. “avg" for time series data
first average over all seasons, then consider mean and standard deviation over the 10
averaged values. The best for each group of variants (GNNRank-N or GNNRank-P) is
marked in bold red while the second best is highlighted in underline blue .

Methods GNNRank-N GNNRank-P
Data/Variant loss sum Lupset,margin Lupset, ratio loss sum Lupset,margin Lupset, ratio no pretrain {αγ}Γ

γ=1not trainable Γ = 3 Γ = 7
Animal 0.43±0.06 0.59±0.08

0.41±0.09
0.25±0.00 0.25±0.00 0.25±0.01 0.25±0.00 0.25±0.00 0.25±0.00 0.25±0.00

Faculty: Business 0.40±0.02 0.49±0.16 0.38±0.01 0.36±0.00 0.36±0.00 0.36±0.00 0.36±0.00 0.36±0.00 0.36±0.00 0.36±0.00

Faculty: CS 0.35±0.01 0.36±0.01
0.33±0.03

0.32±0.00 0.32±0.00 0.32±0.00 0.33±0.00 0.32±0.00 0.32±0.00 0.32±0.00

Faculty: History 0.28±0.01 0.31±0.01 0.28±0.01 0.30±0.01 0.30±0.01 0.30±0.02 0.30±0.01 0.30±0.01 0.30±0.01 0.30±0.01

Football(2009) 0.76±0.03 0.79±0.04
0.75±0.06

0.61±0.00 0.61±0.00 0.61±0.00 0.61±0.00 0.61±0.00 0.61±0.00 0.61±0.00

Football(2010) 0.90±0.02 0.93±0.05 0.92±0.03 0.95±0.05 0.96±0.06 0.96±0.05 0.95±0.06 0.96±0.06 0.95±0.05 0.95±0.04

Football(2011) 0.86±0.10 0.83±0.03 0.84±0.08 0.80±0.00 0.80±0.00 0.80±0.01 0.80±0.00 0.80±0.01 0.80±0.00 0.80±0.00

Football(2012) 0.81±0.09 0.75±0.03 0.78±0.03 0.80±0.08 0.80±0.08 0.84±0.00 0.84±0.00 0.80±0.08 0.78±0.03 0.80±0.06

Football(2013) 0.65±0.03 0.75±0.05
0.64±0.04

0.56±0.00 0.56±0.00 0.56±0.00 0.56±0.00 0.56±0.00 0.56±0.00 0.56±0.00

Football(2014) 0.96±0.12 1.00±0.11 0.98±0.17 0.98±0.06 0.96±0.07 0.98±0.09 0.99±0.10 0.98±0.06 0.95±0.05 0.97±0.08

Football finer(2009) 0.76±0.03 0.93±0.38
0.76±0.18

0.65±0.02 0.65±0.02 0.65±0.03 0.66±0.00 0.65±0.03 0.63±0.03 0.64±0.02

Football finer(2010) 1.00±0.01 1.00±0.01 1.00±0.01 0.99±0.02 1.00±0.01 1.00±0.00 0.99±0.02 1.00±0.01 1.00±0.00 1.00±0.00

Football finer(2011) 0.99±0.03 0.92±0.16 0.99±0.04 0.85±0.01 0.84±0.02 0.85±0.00 0.85±0.00 0.85±0.01 0.83±0.03 0.84±0.03

Football finer(2012) 0.93±0.07 1.00±0.02 0.96±0.03 0.86±0.02 0.86±0.03 0.86±0.02 0.86±0.00 0.86±0.03 0.86±0.01 0.86±0.00

Football finer(2013) 0.74±0.04 0.98±0.04
0.73±0.19

0.59±0.02 0.69±0.03 0.57±0.01 0.58±0.00 0.58±0.01 0.57±0.02 0.57±0.02

Football finer(2014) 1.00±0.00 1.01±0.04
1.00±0.00

1.00±0.00 1.01±0.03 1.00±0.03 1.08±0.12 1.00±0.03 1.00±0.00 1.00±0.00
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Table D.10: Lupset, naive comparison for different variants on selected real-world data,
averaged over 10 runs, and plus/minus one standard deviation. “avg" for time series data
first average over all seasons, then consider mean and standard deviation over the 10
averaged values. The best is marked in bold red while the second best is highlighted
in underline blue .

Methods GNNRank-N GNNRank-P
Data/Variant loss sum Lupset,margin Lupset, ratio loss sum Lupset,margin Lupset, ratio no pretrain {αγ}Γ

γ=1not trainable Γ = 3 Γ = 7
Animal 0.11±0.02 0.15±0.02

0.10±0.02
0.06±0.00 0.06±0.00 0.06±0.00 0.06±0.00 0.06±0.00 0.06±0.00 0.06±0.00

Faculty: Business 0.10±0.00 0.12±0.04
0.10±0.00

0.09±0.00 0.09±0.00 0.09±0.00 0.09±0.00 0.09±0.00 0.09±0.00 0.09±0.00

Faculty: CS 0.09±0.00 0.09±0.00 0.08±0.01 0.08±0.00 0.08±0.00 0.08±0.00 0.08±0.00 0.08±0.00 0.08±0.00 0.08±0.00

Faculty: History 0.07±0.00 0.08±0.00
0.07±0.00

0.07±0.00 0.08±0.00 0.08±0.00 0.07±0.00 0.07±0.00 0.08±0.00 0.08±0.00

Football(2009) 0.19±0.01 0.26±0.06 0.19±0.01 0.15±0.00 0.15±0.00 0.15±0.00 0.15±0.00 0.15±0.00 0.15±0.00 0.15±0.00

Football(2010) 0.30±0.01 0.36±0.06 0.30±0.01 0.29±0.00 0.29±0.00 0.29±0.00 0.29±0.00 0.29±0.00 0.29±0.01 0.29±0.00

Football(2011) 0.22±0.01 0.26±0.07 0.22±0.01 0.20±0.00 0.20±0.00 0.20±0.00 0.20±0.00 0.20±0.00 0.20±0.00 0.20±0.00

Football(2012) 0.20±0.02 0.29±0.06 0.21±0.04 0.21±0.00 0.21±0.00 0.21±0.00 0.21±0.00 0.21±0.00 0.20±0.00 0.21±0.00

Football(2013) 0.16±0.01 0.20±0.07 0.16±0.01 0.14±0.00 0.14±0.00 0.14±0.00 0.14±0.00 0.14±0.00 0.14±0.00 0.14±0.00

Football(2014) 0.24±0.01 0.30±0.02 0.25±0.04 0.26±0.01 0.27±0.00 0.27±0.02 0.27±0.00 0.26±0.01 0.27±0.02 0.27±0.00

Football finer(2009) 0.19±0.01 0.23±0.09
0.19±0.05

0.16±0.01 0.16±0.01 0.16±0.01 0.16±0.00 0.16±0.01 0.16±0.01 0.16±0.00

Football finer(2010) 0.31±0.01 0.35±0.05
0.31±0.02

0.29±0.00 0.29±0.00 0.29±0.00 0.29±0.00 0.29±0.00 0.29±0.00 0.29±0.00

Football finer(2011) 0.25±0.01 0.23±0.04 0.25±0.01 0.21±0.00 0.21±0.01 0.21±0.00 0.21±0.00 0.21±0.01 0.21±0.01 0.21±0.01

Football finer(2012) 0.24±0.02 0.25±0.04 0.24±0.01 0.21±0.00 0.21±0.01 0.22±0.01 0.22±0.00 0.21±0.01 0.22±0.00 0.22±0.00

Football finer(2013) 0.19±0.01 0.26±0.12
0.18±0.05

0.15±0.00 0.17±0.01 0.14±0.00 0.15±0.00 0.14±0.00 0.14±0.00 0.14±0.00

Football finer(2014) 0.27±0.01 0.35±0.09 0.28±0.04 0.27±0.02 0.27±0.00 0.27±0.02 0.27±0.00 0.27±0.02 0.27±0.00 0.27±0.01
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Table D.11: Lupset, ratio comparison for different variants on selected real-world data,
averaged over 10 runs, and plus/minus one standard deviation. “avg" for time series data
first average over all seasons, then consider mean and standard deviation over the 10
averaged values. The best for each group of variants (GNNRank-N or GNNRank-P) is
marked in bold red while the second best is highlighted in underline blue .

Methods GNNRank-N GNNRank-P
Data/Variant loss sum Lupset,margin Lupset, ratio loss sum Lupset,margin Lupset, ratio no pretrain {αγ}Γ

γ=1not trainable Γ = 3 Γ = 7
Animal 0.24±0.01 0.41±0.09

0.24±0.03
0.66±0.00 0.66±0.00 0.66±0.00 0.66±0.00 0.66±0.00 0.66±0.00 0.66±0.00

Faculty: Business 0.32±0.02 0.71±0.14
0.31±0.00

0.89±0.00 0.89±0.01 0.89±0.00 0.89±0.01 0.89±0.00 0.89±0.01 0.89±0.00

Faculty: CS 0.27±0.01 0.69±0.05
0.26±0.02

0.90±0.00 0.86±0.00 0.90±0.00 0.90±0.00 0.86±0.00 0.86±0.00 0.86±0.00

Faculty: History 0.21±0.00 0.60±0.10
0.21±0.00

0.86±0.00 0.84±0.02 0.85±0.00 0.87±0.00 0.84±0.02 0.84±0.02 0.84±0.02

Football(2009) 0.46±0.01 0.72±0.14 0.48±0.01 0.69±0.00 0.69±0.00 0.69±0.00 0.69±0.00 0.69±0.00 0.69±0.00 0.69±0.00

Football(2010) 0.65±0.00 0.75±0.02 0.68±0.07 0.73±0.01 0.74±0.00 0.74±0.00 0.73±0.00 0.73±0.01 0.73±0.00 0.73±0.01

Football(2011) 0.53±0.01 0.70±0.04 0.54±0.02 0.69±0.00 0.69±0.00 0.69±0.00 0.69±0.00 0.69±0.00 0.69±0.00 0.69±0.00

Football(2012) 0.51±0.01 0.65±0.04 0.53±0.08 0.71±0.00 0.71±0.00 0.71±0.00 0.71±0.00 0.71±0.00 0.71±0.00 0.71±0.00

Football(2013) 0.46±0.01 0.56±0.16 0.46±0.01 0.71±0.00 0.71±0.00 0.71±0.00 0.71±0.00 0.71±0.00 0.71±0.00 0.71±0.00

Football(2014) 0.69±0.01 0.92±0.07 0.69±0.07 0.85±0.00 0.85±0.00 0.85±0.00 0.85±0.00 0.85±0.00 0.85±0.00 0.85±0.00

Football finer(2009) 0.17±0.00 0.28±0.07
0.17±0.03

0.21±0.00 0.21±0.00 0.21±0.01 0.21±0.00 0.21±0.00 0.20±0.00 0.21±0.01

Football finer(2010) 0.19±0.03 0.25±0.00
0.17±0.00

0.18±0.00 0.19±0.00 0.18±0.00 0.18±0.00 0.18±0.00 0.18±0.00 0.18±0.00

Football finer(2011) 0.17±0.00 0.22±0.09 0.18±0.01 0.19±0.00 0.20±0.02 0.19±0.00 0.19±0.00 0.19±0.00 0.19±0.00 0.19±0.00

Football finer(2012) 0.15±0.00 0.23±0.02 0.16±0.03 0.17±0.00 0.17±0.00 0.17±0.00 0.17±0.00 0.17±0.00 0.17±0.00 0.17±0.00

Football finer(2013) 0.21±0.01 0.29±0.03
0.19±0.04

0.25±0.01 0.25±0.00 0.24±0.01 0.25±0.00 0.24±0.01 0.24±0.00 0.25±0.00

Football finer(2014) 0.34±0.00 0.46±0.04 0.35±0.05 0.38±0.00 0.38±0.00 0.38±0.00 0.38±0.00 0.38±0.00 0.38±0.00 0.38±0.00

Table D.12: Result table on Lupset, simple for each year in the time series matches,
applying the trained model for 1985 on all seasons without further training, averaged
over 10 runs, and plus/minus one standard deviation. The best is marked in bold red
while the second best is highlighted in underline blue . As MVR could not generate

results after a week, we omit the results here.

Data SpringRank SyncRank SerialRank BTL DavidScore Eig.Cent. PageRank RankCent. SVD_RS SVD_NRS Directly Apply Train Specifically
Basketball finer(1985) 0.76±0.00 1.63±0.00 1.96±0.10 1.46±0.05 0.83±0.00 1.18±0.00 1.16±0.00 1.97±0.00 1.00±0.00 0.87±0.00 0.71±0.00 0.71±0.00
Basketball finer(1986) 0.77±0.00 1.81±0.00 1.99±0.00 1.42±0.06 0.84±0.00 1.16±0.00 1.15±0.00 1.99±0.00 1.09±0.00 0.86±0.00 0.69±0.00 0.69±0.00
Basketball finer(1987) 0.82±0.00 1.79±0.00 1.87±0.00 1.41±0.06 0.89±0.00 1.17±0.00 1.21±0.00 1.95±0.00 0.99±0.00 0.91±0.00 0.77±0.00 0.77±0.00
Basketball finer(1988) 0.78±0.00 1.79±0.00 1.90±0.00 1.43±0.10 0.84±0.00 1.23±0.00 1.19±0.00 1.97±0.00 0.97±0.00 0.83±0.00 0.70±0.00 0.70±0.00
Basketball finer(1989) 0.77±0.00 1.67±0.00 1.86±0.00 1.43±0.05 0.83±0.00 1.13±0.00 1.14±0.00 1.94±0.00 0.99±0.00 0.90±0.00 0.88±0.52 0.70±0.00
Basketball finer(1990) 0.79±0.00 1.67±0.00 1.93±0.00 1.45±0.05 0.82±0.00 1.28±0.00 1.17±0.00 1.98±0.00 0.91±0.00 0.84±0.00 0.71±0.00 0.71±0.00
Basketball finer(1991) 0.81±0.00 1.83±0.00 2.03±0.00 1.36±0.06 0.83±0.00 1.38±0.00 1.31±0.00 1.97±0.00 0.99±0.00 0.89±0.00 0.71±0.00 0.71±0.00
Basketball finer(1992) 0.73±0.00 1.72±0.00 1.88±0.00 1.33±0.06 0.77±0.00 1.26±0.00 1.21±0.00 1.87±0.00 0.95±0.00 0.84±0.00 0.67±0.00 0.67±0.00
Basketball finer(1993) 0.75±0.00 1.66±0.00 2.03±0.00 1.35±0.05 0.78±0.00 1.18±0.00 1.10±0.00 1.97±0.00 0.98±0.00 0.86±0.00 0.69±0.00 0.69±0.00
Basketball finer(1994) 0.74±0.00 1.69±0.00 2.01±0.00 1.35±0.08 0.78±0.00 1.23±0.00 1.10±0.00 1.94±0.00 0.90±0.00 0.83±0.00 0.67±0.00 0.67±0.00
Basketball finer(1995) 0.79±0.00 1.78±0.00 1.89±0.00 1.35±0.06 0.83±0.00 1.19±0.00 1.13±0.00 1.92±0.01 0.95±0.00 0.87±0.00 0.73±0.00 0.73±0.00
Basketball finer(1996) 0.81±0.00 1.67±0.00 1.95±0.00 1.44±0.06 0.88±0.00 1.22±0.00 1.20±0.00 1.94±0.00 1.08±0.00 0.95±0.00 0.77±0.00 0.77±0.00
Basketball finer(1997) 0.83±0.00 1.77±0.00 1.94±0.00 1.40±0.04 0.86±0.00 1.19±0.00 1.16±0.00 2.05±0.00 0.96±0.00 0.92±0.00 0.77±0.00 0.77±0.00
Basketball finer(1998) 0.78±0.00 1.70±0.00 1.92±0.00 1.36±0.07 0.83±0.00 1.14±0.00 1.13±0.00 1.91±0.00 0.97±0.00 0.90±0.00 0.74±0.00 0.74±0.00
Basketball finer(1999) 0.81±0.00 1.64±0.00 2.02±0.00 1.38±0.07 0.86±0.00 1.17±0.00 1.11±0.00 1.99±0.00 1.17±0.00 0.94±0.00 0.73±0.00 0.73±0.00
Basketball finer(2000) 0.84±0.00 1.75±0.00 1.97±0.00 1.39±0.05 0.90±0.00 1.26±0.00 1.18±0.00 1.92±0.00 1.12±0.00 0.95±0.00 0.78±0.00 0.78±0.00
Basketball finer(2001) 0.81±0.00 1.69±0.00 2.06±0.00 1.41±0.06 0.86±0.00 1.25±0.00 1.18±0.00 2.03±0.00 1.08±0.00 0.97±0.00 0.73±0.00 0.73±0.00
Basketball finer(2002) 0.87±0.00 1.75±0.00 1.86±0.00 1.43±0.08 0.89±0.00 1.20±0.00 1.13±0.00 2.03±0.00 1.07±0.00 0.92±0.00 0.78±0.00 0.78±0.00
Basketball finer(2003) 0.87±0.00 1.78±0.00 1.98±0.07 1.46±0.09 0.91±0.00 1.18±0.00 1.14±0.00 2.00±0.00 1.02±0.00 0.95±0.00 0.78±0.00 0.78±0.00
Basketball finer(2004) 0.77±0.00 1.71±0.06 1.87±0.00 1.41±0.06 0.80±0.00 1.17±0.00 1.13±0.00 1.98±0.02 0.95±0.00 0.88±0.00 0.72±0.00 0.72±0.00
Basketball finer(2005) 0.84±0.00 1.82±0.00 1.93±0.00 1.38±0.06 0.88±0.00 1.14±0.00 1.09±0.00 2.00±0.00 1.08±0.00 0.95±0.00 0.93±0.52 0.75±0.00
Basketball finer(2006) 0.86±0.00 1.76±0.00 1.97±0.00 1.40±0.07 0.85±0.00 1.21±0.00 1.11±0.00 1.96±0.00 1.06±0.00 0.94±0.00 0.76±0.00 0.76±0.00
Basketball finer(2007) 0.86±0.00 1.85±0.00 1.97±0.14 1.39±0.05 0.93±0.00 1.15±0.00 1.09±0.00 1.92±0.00 0.95±0.00 0.93±0.00 0.80±0.00 0.80±0.00
Basketball finer(2008) 0.85±0.00 1.72±0.00 1.98±0.00 1.36±0.08 0.88±0.00 1.20±0.00 1.13±0.00 1.96±0.00 0.99±0.00 0.91±0.00 0.78±0.00 0.78±0.00
Basketball finer(2009) 0.84±0.00 1.71±0.00 2.00±0.04 1.37±0.04 0.90±0.00 1.17±0.00 1.12±0.00 2.06±0.00 0.99±0.00 0.91±0.00 0.75±0.00 0.75±0.00
Basketball finer(2010) 0.82±0.00 1.68±0.00 1.98±0.00 1.34±0.06 0.84±0.00 1.10±0.00 1.13±0.00 1.97±0.00 0.94±0.00 0.92±0.00 0.75±0.00 0.75±0.00
Basketball finer(2011) 0.85±0.00 1.65±0.00 1.96±0.00 1.36±0.06 0.87±0.00 1.12±0.00 1.14±0.00 2.01±0.00 0.96±0.00 0.89±0.00 0.77±0.00 0.77±0.00
Basketball finer(2012) 0.80±0.00 1.68±0.00 1.97±0.00 1.37±0.07 0.83±0.00 1.17±0.00 1.10±0.00 1.91±0.00 0.93±0.00 0.89±0.00 0.75±0.00 0.75±0.00
Basketball finer(2013) 0.83±0.00 1.73±0.00 2.06±0.00 1.37±0.07 0.88±0.00 1.15±0.00 1.13±0.00 1.97±0.00 1.01±0.00 0.92±0.00 0.79±0.00 0.79±0.00
Basketball finer(2014) 0.84±0.00 1.77±0.19 2.07±0.00 1.42±0.09 0.86±0.00 1.18±0.00 1.13±0.00 1.97±0.00 1.02±0.00 0.88±0.00 0.79±0.00 0.79±0.00
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Table D.13: Result table on Lupset, naive for each year in the time series matches, applying
the trained model for 1985 directly without further training, averaged over 10 runs, and
plus/minus one standard deviation. The best is marked in bold red while the second
best is highlighted in underline blue . As MVR could not generate scores, we omit the
results here.

Data SpringRank SyncRank SerialRank BTL DavidScore Eig.Cent. PageRank RankCent. SVD_RS SVD_NRS Directly Apply Train Specifically
Basketball finer(1985) 0.19±0.00 0.41±0.00 0.49±0.02 0.36±0.01 0.21±0.00 0.29±0.00 0.29±0.00 0.49±0.00 0.25±0.00 0.22±0.00 0.18±0.00 0.18±0.00
Basketball finer(1986) 0.19±0.00 0.45±0.00 0.50±0.00 0.36±0.02 0.21±0.00 0.29±0.00 0.29±0.00 0.50±0.00 0.27±0.00 0.21±0.00 0.17±0.00 0.17±0.00
Basketball finer(1987) 0.20±0.00 0.45±0.00 0.47±0.00 0.35±0.01 0.22±0.00 0.29±0.00 0.30±0.00 0.49±0.00 0.25±0.00 0.23±0.00 0.19±0.00 0.19±0.00
Basketball finer(1988) 0.19±0.00 0.45±0.00 0.48±0.00 0.36±0.03 0.21±0.00 0.31±0.00 0.30±0.00 0.49±0.00 0.24±0.00 0.21±0.00 0.18±0.00 0.18±0.00
Basketball finer(1989) 0.19±0.00 0.42±0.00 0.46±0.00 0.36±0.01 0.21±0.00 0.28±0.00 0.29±0.00 0.49±0.00 0.25±0.00 0.23±0.00 0.22±0.13 0.18±0.00
Basketball finer(1990) 0.20±0.00 0.42±0.00 0.48±0.00 0.36±0.01 0.21±0.00 0.32±0.00 0.29±0.00 0.50±0.00 0.23±0.00 0.21±0.00 0.18±0.00 0.18±0.00
Basketball finer(1991) 0.20±0.00 0.46±0.00 0.51±0.00 0.34±0.02 0.21±0.00 0.35±0.00 0.33±0.00 0.49±0.00 0.25±0.00 0.22±0.00 0.18±0.00 0.18±0.00
Basketball finer(1992) 0.18±0.00 0.43±0.00 0.47±0.00 0.33±0.01 0.19±0.00 0.31±0.00 0.30±0.00 0.47±0.00 0.24±0.00 0.21±0.00 0.17±0.00 0.17±0.00
Basketball finer(1993) 0.19±0.00 0.42±0.00 0.51±0.00 0.34±0.01 0.20±0.00 0.29±0.00 0.27±0.00 0.49±0.00 0.25±0.00 0.21±0.00 0.17±0.00 0.17±0.00
Basketball finer(1994) 0.18±0.00 0.42±0.00 0.50±0.00 0.34±0.02 0.19±0.00 0.31±0.00 0.27±0.00 0.49±0.00 0.22±0.00 0.21±0.00 0.17±0.00 0.17±0.00
Basketball finer(1995) 0.20±0.00 0.44±0.00 0.47±0.00 0.34±0.02 0.21±0.00 0.30±0.00 0.28±0.00 0.48±0.00 0.24±0.00 0.22±0.00 0.18±0.00 0.18±0.00
Basketball finer(1996) 0.20±0.00 0.42±0.00 0.49±0.00 0.36±0.02 0.22±0.00 0.30±0.00 0.30±0.00 0.49±0.00 0.27±0.00 0.24±0.00 0.19±0.00 0.19±0.00
Basketball finer(1997) 0.21±0.00 0.44±0.00 0.49±0.00 0.35±0.01 0.21±0.00 0.30±0.00 0.29±0.00 0.51±0.00 0.24±0.00 0.23±0.00 0.19±0.00 0.19±0.00
Basketball finer(1998) 0.20±0.00 0.42±0.00 0.48±0.00 0.34±0.02 0.21±0.00 0.29±0.00 0.28±0.00 0.48±0.00 0.24±0.00 0.22±0.00 0.18±0.00 0.18±0.00
Basketball finer(1999) 0.20±0.00 0.41±0.00 0.50±0.00 0.34±0.02 0.22±0.00 0.29±0.00 0.28±0.00 0.50±0.00 0.29±0.00 0.24±0.00 0.18±0.00 0.18±0.00
Basketball finer(2000) 0.21±0.00 0.44±0.00 0.49±0.00 0.35±0.01 0.23±0.00 0.32±0.00 0.30±0.00 0.48±0.00 0.28±0.00 0.24±0.00 0.19±0.00 0.19±0.00
Basketball finer(2001) 0.20±0.00 0.42±0.00 0.51±0.00 0.35±0.01 0.21±0.00 0.31±0.00 0.30±0.00 0.51±0.00 0.27±0.00 0.24±0.00 0.18±0.00 0.18±0.00
Basketball finer(2002) 0.22±0.00 0.44±0.00 0.47±0.00 0.36±0.02 0.22±0.00 0.30±0.00 0.28±0.00 0.51±0.00 0.27±0.00 0.23±0.00 0.19±0.00 0.19±0.00
Basketball finer(2003) 0.22±0.00 0.45±0.00 0.50±0.02 0.36±0.02 0.23±0.00 0.29±0.00 0.29±0.00 0.50±0.00 0.26±0.00 0.24±0.00 0.19±0.00 0.19±0.00
Basketball finer(2004) 0.19±0.00 0.43±0.01 0.47±0.00 0.35±0.01 0.20±0.00 0.29±0.00 0.28±0.00 0.49±0.00 0.24±0.00 0.22±0.00 0.18±0.00 0.18±0.00
Basketball finer(2005) 0.21±0.00 0.46±0.00 0.48±0.00 0.34±0.01 0.22±0.00 0.29±0.00 0.27±0.00 0.50±0.00 0.27±0.00 0.24±0.00 0.23±0.13 0.19±0.00
Basketball finer(2006) 0.21±0.00 0.44±0.00 0.49±0.00 0.35±0.02 0.21±0.00 0.30±0.00 0.28±0.00 0.49±0.00 0.27±0.00 0.23±0.00 0.19±0.00 0.19±0.00
Basketball finer(2007) 0.21±0.00 0.46±0.00 0.49±0.03 0.35±0.01 0.23±0.00 0.29±0.00 0.27±0.00 0.48±0.00 0.24±0.00 0.23±0.00 0.20±0.00 0.20±0.00
Basketball finer(2008) 0.21±0.00 0.43±0.00 0.49±0.00 0.34±0.02 0.22±0.00 0.30±0.00 0.28±0.00 0.49±0.00 0.25±0.00 0.23±0.00 0.20±0.00 0.20±0.00
Basketball finer(2009) 0.21±0.00 0.43±0.00 0.50±0.01 0.34±0.01 0.22±0.00 0.29±0.00 0.28±0.00 0.52±0.00 0.25±0.00 0.23±0.00 0.19±0.00 0.19±0.00
Basketball finer(2010) 0.20±0.00 0.42±0.00 0.49±0.00 0.33±0.02 0.21±0.00 0.28±0.00 0.28±0.00 0.49±0.00 0.24±0.00 0.23±0.00 0.19±0.00 0.19±0.00
Basketball finer(2011) 0.21±0.00 0.41±0.00 0.49±0.00 0.34±0.01 0.22±0.00 0.28±0.00 0.28±0.00 0.50±0.00 0.24±0.00 0.22±0.00 0.19±0.00 0.19±0.00
Basketball finer(2012) 0.20±0.00 0.42±0.00 0.49±0.00 0.34±0.02 0.21±0.00 0.29±0.00 0.28±0.00 0.48±0.00 0.23±0.00 0.22±0.00 0.19±0.00 0.19±0.00
Basketball finer(2013) 0.21±0.00 0.43±0.00 0.52±0.00 0.34±0.02 0.22±0.00 0.29±0.00 0.28±0.00 0.49±0.00 0.25±0.00 0.23±0.00 0.20±0.00 0.20±0.00
Basketball finer(2014) 0.21±0.00 0.44±0.05 0.52±0.00 0.36±0.02 0.22±0.00 0.30±0.00 0.28±0.00 0.49±0.00 0.26±0.00 0.22±0.00 0.20±0.00 0.20±0.00

Table D.14: Result table on Lupset, ratio for each year in the time series matches, applying
the trained model for 1985 directly without further training, averaged over 10 runs, and
plus/minus one standard deviation. The best is marked in bold red while the second
best is highlighted in underline blue . As MVR could not generate scores, we omit the
results here.

Data SpringRank SyncRank SerialRank BTL DavidScore Eig.Cent. PageRank RankCent. SVD_RS SVD_NRS Directly Apply Train Specifically
Basketball finer(1985) 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.47±0.00 0.01±0.00 0.01±0.00 0.57±0.00 0.46±0.00 0.46±0.00 0.01±0.00 0.01±0.00
Basketball finer(1986) 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.49±0.00 0.01±0.00 0.01±0.00 0.60±0.00 0.48±0.00 0.49±0.00 0.01±0.00 0.01±0.00
Basketball finer(1987) 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.51±0.00 0.01±0.00 0.01±0.00 0.58±0.00 0.46±0.00 0.48±0.00 0.01±0.00 0.01±0.00
Basketball finer(1988) 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.52±0.00 0.01±0.00 0.01±0.00 0.57±0.00 0.56±0.00 0.52±0.00 0.01±0.00 0.01±0.00
Basketball finer(1989) 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.49±0.00 0.01±0.00 0.01±0.00 0.56±0.00 0.49±0.00 0.49±0.00 0.01±0.00 0.01±0.00
Basketball finer(1990) 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.49±0.00 0.01±0.00 0.01±0.00 0.55±0.00 0.48±0.00 0.49±0.00 0.01±0.00 0.01±0.00
Basketball finer(1991) 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.49±0.00 0.01±0.00 0.01±0.00 0.54±0.00 0.49±0.00 0.47±0.00 0.01±0.00 0.01±0.00
Basketball finer(1992) 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.49±0.00 0.01±0.00 0.01±0.00 0.55±0.00 0.44±0.00 0.49±0.00 0.01±0.00 0.01±0.00
Basketball finer(1993) 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.51±0.00 0.01±0.00 0.01±0.00 0.58±0.00 0.47±0.00 0.49±0.00 0.01±0.00 0.01±0.00
Basketball finer(1994) 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.49±0.00 0.01±0.00 0.01±0.00 0.58±0.00 0.46±0.00 0.49±0.00 0.01±0.00 0.01±0.00
Basketball finer(1995) 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.50±0.00 0.01±0.00 0.01±0.00 0.55±0.00 0.47±0.00 0.49±0.00 0.01±0.00 0.01±0.00
Basketball finer(1996) 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.48±0.00 0.01±0.00 0.01±0.00 0.56±0.00 0.45±0.00 0.47±0.00 0.01±0.00 0.01±0.00
Basketball finer(1997) 0.04±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.50±0.00 0.01±0.00 0.01±0.00 0.56±0.00 0.48±0.00 0.47±0.00 0.01±0.00 0.01±0.00
Basketball finer(1998) 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.50±0.00 0.01±0.00 0.01±0.00 0.56±0.00 0.47±0.00 0.45±0.00 0.01±0.00 0.01±0.00
Basketball finer(1999) 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.50±0.00 0.01±0.00 0.01±0.00 0.57±0.00 0.48±0.00 0.46±0.00 0.01±0.00 0.01±0.00
Basketball finer(2000) 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.51±0.00 0.01±0.00 0.01±0.00 0.55±0.00 0.50±0.00 0.47±0.00 0.01±0.00 0.01±0.00
Basketball finer(2001) 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.51±0.00 0.01±0.00 0.01±0.00 0.59±0.00 0.51±0.00 0.47±0.00 0.01±0.00 0.01±0.00
Basketball finer(2002) 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.51±0.00 0.01±0.00 0.01±0.00 0.57±0.00 0.51±0.00 0.50±0.00 0.01±0.00 0.01±0.00
Basketball finer(2003) 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.50±0.00 0.01±0.00 0.01±0.00 0.58±0.00 0.47±0.00 0.48±0.00 0.01±0.00 0.01±0.00
Basketball finer(2004) 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.52±0.00 0.01±0.00 0.01±0.00 0.57±0.00 0.45±0.00 0.47±0.00 0.01±0.00 0.01±0.00
Basketball finer(2005) 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.51±0.00 0.01±0.00 0.01±0.00 0.60±0.00 0.43±0.00 0.47±0.00 0.01±0.00 0.01±0.00
Basketball finer(2006) 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.51±0.00 0.01±0.00 0.01±0.00 0.57±0.00 0.46±0.00 0.48±0.00 0.01±0.00 0.01±0.00
Basketball finer(2007) 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.53±0.00 0.01±0.00 0.01±0.00 0.53±0.00 0.49±0.00 0.48±0.00 0.01±0.00 0.01±0.00
Basketball finer(2008) 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.51±0.00 0.01±0.00 0.01±0.00 0.59±0.00 0.47±0.00 0.47±0.00 0.01±0.00 0.01±0.00
Basketball finer(2009) 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.52±0.00 0.01±0.00 0.01±0.00 0.57±0.00 0.50±0.00 0.49±0.00 0.01±0.00 0.01±0.00
Basketball finer(2010) 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.52±0.00 0.01±0.00 0.01±0.00 0.58±0.00 0.48±0.00 0.47±0.00 0.01±0.00 0.01±0.00
Basketball finer(2011) 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.52±0.00 0.01±0.00 0.01±0.00 0.59±0.00 0.46±0.00 0.47±0.00 0.01±0.00 0.01±0.00
Basketball finer(2012) 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.52±0.00 0.01±0.00 0.01±0.00 0.57±0.00 0.48±0.00 0.48±0.00 0.01±0.00 0.01±0.00
Basketball finer(2013) 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.52±0.00 0.01±0.00 0.01±0.00 0.56±0.00 0.46±0.00 0.48±0.00 0.01±0.00 0.01±0.00
Basketball finer(2014) 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.53±0.00 0.01±0.00 0.01±0.00 0.56±0.00 0.48±0.00 0.47±0.00 0.01±0.00 0.01±0.00
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Table D.15: Result table on Lupset, simple improvement with “proximal baseline" training
starting from a baseline as initial guess, for individual directed graphs, averaged over 10
runs, and plus/minus one standard deviation. The best is marked in bold red while
the second best is highlighted in underline blue .

Data SpringRank SyncRank SerialRank BTL Eig.Cent. PageRank SVD_NRS
HeadToHead -0.01±0.00 -0.98±0.00 -1.02±0.00 -0.12±0.03 -0.48±0.00 -0.37±0.00 -0.43±0.00
Finance -0.63±0.00 -0.98±0.00 -0.61±0.00 -0.78±0.01 -0.74±0.00 -0.75±0.00 -0.64±0.00
Animal -0.09±0.05 -1.36±0.24 -1.42±0.50 -0.01±0.01 -0.02±0.02 -0.08±0.07 -0.02±0.07
Faculty: Business -0.03±0.00 -0.47±0.00 -0.70±0.04 -0.00±0.02 -0.02±0.03 -0.04±0.03 -0.03±0.02
Faculty: CS -0.00±0.00 -0.66±0.10 -0.72±0.07 0.00±0.01 0.01±0.03 -0.00±0.00 -0.10±0.04
Faculty: History -0.02±0.01 -0.27±0.00 -1.77±0.82 0.00±0.01 -0.01±0.03 -0.00±0.00 -0.00±0.00
Football(2009) -0.00±0.00 -0.70±0.46 -0.16±0.06 -0.03±0.08 -0.12±0.05 -0.24±0.06 -0.02±0.01
Football(2010) -0.24±0.06 -0.85±0.17 -0.58±0.06 -0.22±0.09 -0.40±0.04 -0.41±0.04 -0.21±0.05
Football(2011) -0.00±0.01 -0.74±0.37 -0.10±0.06 -0.03±0.04 -0.13±0.09 -0.19±0.09 -0.02±0.09
Football(2012) -0.17±0.06 -0.72±0.04 -0.57±0.07 -0.14±0.10 -0.10±0.09 -0.22±0.03 -0.05±0.08
Football(2013) -0.03±0.03 -1.08±0.10 -0.08±0.06 -0.06±0.05 -0.16±0.06 -0.15±0.03 -0.04±0.03
Football(2014) -0.17±0.05 -0.83±0.20 -0.59±0.08 -0.17±0.06 -0.27±0.09 -0.24±0.07 -0.07±0.09
Football finer(2009) -0.03±0.03 -1.04±0.05 -0.18±0.06 -0.06±0.14 -0.17±0.11 -0.24±0.12 -0.02±0.03
Football finer(2010) -0.30±0.02 -0.63±0.02 -0.45±0.02 -0.31±0.09 -0.37±0.00 -0.49±0.00 -0.17±0.00
Football finer(2011) -0.00±0.02 -0.75±0.04 -0.14±0.06 -0.03±0.06 -0.08±0.05 -0.19±0.04 -0.01±0.02
Football finer(2012) -0.03±0.03 -0.90±0.18 -0.12±0.08 -0.03±0.06 -0.14±0.06 -0.29±0.05 -0.01±0.03
Football finer(2013) -0.13±0.07 -1.01±0.02 -0.12±0.07 -0.08±0.05 -0.19±0.11 -0.26±0.09 -0.07±0.03
Football finer(2014) -0.16±0.00 -0.74±0.04 -0.57±0.00 -0.19±0.04 -0.23±0.00 -0.23±0.00 -0.09±0.03
Basketball(1985) -0.01±0.01 -0.91±0.00 -1.26±0.04 -0.10±0.07 -0.05±0.01 -0.07±0.02 -0.07±0.01
Basketball(1986) -0.01±0.01 -1.10±0.00 -1.11±0.03 -0.14±0.02 -0.07±0.01 -0.06±0.02 -0.03±0.02
Basketball(1987) -0.00±0.01 -1.02±0.01 -0.94±0.03 -0.11±0.02 -0.11±0.02 -0.01±0.01 -0.05±0.02
Basketball(1988) -0.00±0.00 -0.96±0.00 -1.07±0.04 -0.11±0.04 -0.06±0.02 -0.04±0.02 -0.03±0.01
Basketball(1989) 0.00±0.00 -1.04±0.00 -0.99±0.02 -0.12±0.02 -0.00±0.00 -0.02±0.01 -0.07±0.01
Basketball(1990) -0.00±0.01 -0.98±0.00 -1.09±0.03 -0.10±0.11 -0.09±0.01 -0.07±0.01 -0.05±0.01
Basketball(1991) -0.02±0.01 -1.10±0.00 -1.15±0.04 -0.09±0.06 -0.03±0.01 -0.01±0.02 -0.08±0.01
Basketball(1992) -0.01±0.01 -1.07±0.00 -1.05±0.02 -0.06±0.10 -0.04±0.01 0.00±0.00 -0.07±0.01
Basketball(1993) -0.01±0.01 -1.00±0.01 -1.18±0.06 -0.09±0.07 -0.05±0.01 -0.06±0.01 -0.07±0.01
Basketball(1994) 0.00±0.00 -0.98±0.00 -1.15±0.02 -0.02±0.09 -0.02±0.02 -0.03±0.01 -0.05±0.01
Basketball(1995) 0.00±0.00 -1.06±0.01 -1.01±0.03 -0.03±0.10 -0.02±0.01 -0.06±0.01 -0.04±0.01
Basketball(1996) -0.00±0.01 -0.90±0.01 -1.11±0.02 -0.08±0.08 -0.02±0.01 -0.02±0.01 -0.07±0.01
Basketball(1997) -0.01±0.01 -0.96±0.01 -1.02±0.04 -0.12±0.04 -0.05±0.01 -0.03±0.01 -0.07±0.01
Basketball(1998) -0.00±0.01 -0.95±0.01 -1.00±0.06 -0.14±0.02 -0.06±0.01 -0.02±0.01 -0.07±0.01
Basketball(1999) -0.00±0.01 -0.83±0.00 -1.10±0.02 -0.09±0.07 -0.07±0.01 -0.07±0.01 -0.07±0.01
Basketball(2000) -0.01±0.01 -1.00±0.00 -1.03±0.03 -0.09±0.02 -0.02±0.01 -0.03±0.01 -0.05±0.01
Basketball(2001) -0.00±0.00 -1.02±0.00 -1.10±0.11 -0.09±0.08 -0.05±0.02 -0.02±0.02 -0.11±0.02
Basketball(2002) -0.02±0.00 -0.95±0.00 -1.05±0.02 -0.09±0.06 -0.01±0.01 -0.06±0.01 -0.05±0.01
Basketball(2003) 0.00±0.00 -1.07±0.00 -1.13±0.01 -0.08±0.07 -0.08±0.01 -0.07±0.01 -0.07±0.01
Basketball(2004) -0.00±0.00 -0.98±0.00 -1.14±0.11 -0.09±0.06 -0.05±0.01 -0.06±0.01 -0.07±0.01
Basketball(2005) 0.00±0.00 -1.05±0.01 -1.06±0.06 -0.14±0.03 -0.00±0.01 -0.06±0.01 -0.07±0.01
Basketball(2006) 0.00±0.00 -1.04±0.00 -1.09±0.03 0.02±0.09 0.00±0.00 -0.03±0.01 -0.04±0.01
Basketball(2007) -0.00±0.00 -1.10±0.00 -1.03±0.08 -0.09±0.02 -0.03±0.01 -0.02±0.01 -0.04±0.01
Basketball(2008) 0.00±0.00 -0.97±0.00 -1.10±0.03 -0.03±0.07 -0.04±0.01 -0.05±0.01 -0.06±0.01
Basketball(2009) -0.00±0.00 -1.02±0.01 -1.17±0.02 -0.12±0.02 -0.03±0.01 -0.03±0.01 -0.06±0.01
Basketball(2010) -0.00±0.00 -0.83±0.00 -1.06±0.01 -0.03±0.13 -0.04±0.01 -0.04±0.01 -0.05±0.01
Basketball(2011) -0.00±0.01 -0.90±0.00 -1.09±0.03 0.00±0.08 -0.04±0.01 -0.05±0.01 -0.02±0.01
Basketball(2012) -0.00±0.00 -1.11±0.00 -1.11±0.05 -0.07±0.08 -0.04±0.01 -0.03±0.02 -0.04±0.01
Basketball(2013) -0.00±0.00 -0.95±0.00 -1.09±0.06 -0.11±0.06 -0.06±0.01 -0.03±0.01 -0.07±0.01
Basketball(2014) -0.00±0.01 -0.96±0.00 -1.14±0.05 -0.00±0.10 -0.01±0.01 -0.04±0.01 -0.02±0.01
Basketball finer(1985) -0.01±0.01 -0.92±0.00 -0.96±0.10 -0.56±0.07 -0.35±0.01 -0.32±0.02 -0.07±0.01
Basketball finer(1986) -0.00±0.00 -1.12±0.00 -1.01±0.03 -0.52±0.08 -0.30±0.02 -0.27±0.01 -0.05±0.01
Basketball finer(1987) -0.01±0.00 -1.02±0.01 -0.90±0.02 -0.45±0.07 -0.25±0.01 -0.28±0.01 -0.05±0.01
Basketball finer(1988) -0.01±0.00 -1.09±0.01 -1.02±0.02 -0.55±0.11 -0.38±0.02 -0.34±0.01 -0.03±0.01
Basketball finer(1989) -0.00±0.00 -0.96±0.00 -0.87±0.03 -0.51±0.06 -0.27±0.01 -0.29±0.01 -0.07±0.01
Basketball finer(1990) -0.01±0.01 -0.96±0.00 -1.02±0.01 -0.55±0.05 -0.42±0.01 -0.31±0.01 -0.03±0.01
Basketball finer(1991) -0.01±0.00 -1.13±0.00 -1.03±0.00 -0.45±0.06 -0.46±0.02 -0.41±0.01 -0.05±0.01
Basketball finer(1992) -0.00±0.00 -1.04±0.00 -0.99±0.02 -0.46±0.06 -0.41±0.02 -0.37±0.02 -0.07±0.01
Basketball finer(1993) -0.00±0.01 -0.98±0.01 -1.08±0.10 -0.49±0.06 -0.35±0.01 -0.27±0.01 -0.05±0.01
Basketball finer(1994) 0.00±0.00 -1.02±0.00 -1.11±0.04 -0.50±0.07 -0.39±0.02 -0.28±0.01 -0.03±0.01
Basketball finer(1995) -0.01±0.01 -1.06±0.01 -0.98±0.01 -0.48±0.08 -0.35±0.01 -0.30±0.01 -0.06±0.01
Basketball finer(1996) -0.00±0.01 -0.90±0.00 -0.95±0.00 -0.44±0.06 -0.27±0.02 -0.25±0.02 -0.06±0.01
Basketball finer(1997) -0.01±0.01 -1.02±0.01 -0.98±0.01 -0.47±0.04 -0.28±0.01 -0.24±0.01 -0.08±0.01
Basketball finer(1998) -0.01±0.01 -0.96±0.01 -0.95±0.01 -0.44±0.06 -0.25±0.01 -0.24±0.01 -0.08±0.01
Basketball finer(1999) -0.00±0.01 -0.90±0.00 -1.05±0.02 -0.44±0.08 -0.27±0.01 -0.19±0.01 -0.08±0.01
Basketball finer(2000) 0.00±0.00 -0.97±0.00 -0.99±0.02 -0.42±0.05 -0.31±0.02 -0.25±0.01 -0.06±0.01
Basketball finer(2001) -0.00±0.00 -0.96±0.00 -1.06±0.00 -0.46±0.06 -0.31±0.01 -0.25±0.02 -0.10±0.01
Basketball finer(2002) -0.04±0.02 -0.99±0.01 -0.92±0.02 -0.52±0.09 -0.30±0.02 -0.25±0.01 -0.05±0.01
Basketball finer(2003) 0.00±0.00 -1.01±0.00 -0.98±0.07 -0.49±0.10 -0.25±0.01 -0.21±0.01 -0.05±0.01
Basketball finer(2004) -0.02±0.01 -1.00±0.06 -0.93±0.01 -0.48±0.07 -0.29±0.01 -0.24±0.01 -0.07±0.01
Basketball finer(2005) -0.01±0.01 -1.08±0.01 -0.93±0.00 -0.42±0.05 -0.22±0.01 -0.18±0.01 -0.06±0.01
Basketball finer(2006) -0.00±0.01 -1.01±0.00 -0.97±0.00 -0.42±0.07 -0.24±0.02 -0.17±0.01 -0.04±0.01
Basketball finer(2007) -0.00±0.01 -1.05±0.01 -0.97±0.14 -0.46±0.06 -0.25±0.02 -0.18±0.02 -0.06±0.01
Basketball finer(2008) -0.00±0.00 -0.94±0.00 -0.98±0.00 -0.42±0.09 -0.29±0.01 -0.21±0.01 -0.04±0.01
Basketball finer(2009) -0.00±0.00 -0.96±0.00 -1.00±0.04 -0.45±0.04 -0.26±0.01 -0.21±0.02 -0.06±0.01
Basketball finer(2010) -0.00±0.00 -0.93±0.00 -0.98±0.02 -0.41±0.07 -0.18±0.01 -0.21±0.01 -0.05±0.01
Basketball finer(2011) -0.01±0.00 -0.88±0.00 -0.99±0.01 -0.44±0.06 -0.21±0.01 -0.22±0.01 -0.03±0.01
Basketball finer(2012) 0.00±0.00 -0.94±0.01 -0.98±0.03 -0.45±0.07 -0.26±0.01 -0.21±0.01 -0.03±0.00
Basketball finer(2013) -0.00±0.01 -0.95±0.01 -1.06±0.00 -0.45±0.08 -0.27±0.01 -0.25±0.01 -0.07±0.01
Basketball finer(2014) -0.01±0.00 -0.99±0.19 -1.07±0.00 -0.47±0.09 -0.24±0.02 -0.20±0.01 -0.02±0.01
ERO(p=0.05, style=uniform,η=0) -0.05±0.02 -1.71±0.01 -1.64±0.01 -0.16±0.11 0.08±0.01 -0.00±0.01 -0.06±0.02
ERO(p=0.05, style=gamma,η=0) -0.13±0.01 -1.76±0.03 -1.61±0.40 0.22±0.03 0.31±0.03 0.22±0.02 0.07±0.01
ERO(p=0.05, style=uniform,η=0.1) -0.00±0.00 -1.49±0.02 -1.30±0.01 -0.05±0.04 -0.27±0.01 -0.24±0.01 -0.00±0.01
ERO(p=0.05, style=gamma,η=0.1) -0.00±0.00 -1.60±0.01 -1.19±0.04 0.05±0.01 -0.05±0.03 0.02±0.03 0.02±0.01
ERO(p=0.05, style=uniform,η=0.2) -0.01±0.02 -1.37±0.01 -1.21±0.04 -0.01±0.05 -0.22±0.04 -0.31±0.04 -0.02±0.03
ERO(p=0.05, style=gamma,η=0.2) -0.00±0.01 -1.43±0.02 -1.14±0.02 0.00±0.01 -0.17±0.03 -0.14±0.02 -0.01±0.01
ERO(p=0.05, style=uniform,η=0.3) -0.01±0.01 -1.10±0.02 -0.98±0.11 0.05±0.05 -0.14±0.05 -0.21±0.06 -0.01±0.03
ERO(p=0.05, style=gamma,η=0.3) -0.03±0.01 -1.16±0.02 -1.05±0.02 -0.04±0.02 -0.29±0.01 -0.30±0.02 -0.05±0.01
ERO(p=0.05, style=uniform,η=0.4) -0.00±0.00 -1.00±0.05 -0.75±0.03 0.04±0.05 -0.01±0.02 -0.09±0.04 0.02±0.01
ERO(p=0.05, style=gamma,η=0.4) -0.11±0.03 -0.98±0.05 -0.98±0.09 -0.10±0.03 -0.31±0.06 -0.34±0.02 -0.17±0.15
ERO(p=0.05, style=uniform,η=0.5) -0.00±0.00 -0.84±0.01 -0.64±0.02 0.02±0.15 -0.01±0.03 -0.04±0.05 -0.02±0.04
ERO(p=0.05, style=gamma,η=0.5) -0.27±0.01 -0.84±0.04 -0.87±0.13 -0.25±0.04 -0.38±0.06 -0.44±0.02 -0.66±0.02
ERO(p=0.05, style=uniform,η=0.6) -0.00±0.00 -0.66±0.01 -0.57±0.01 0.00±0.03 -0.00±0.02 -0.05±0.05 -0.18±0.05
ERO(p=0.05, style=gamma,η=0.6) -0.39±0.02 -0.83±0.09 -0.92±0.02 -0.32±0.09 -0.53±0.01 -0.52±0.03 -0.76±0.09
ERO(p=0.05, style=uniform,η=0.7) -0.01±0.03 -0.64±0.02 -0.56±0.26 -0.01±0.04 -0.14±0.27 -0.23±0.30 -0.48±0.27
ERO(p=0.05, style=gamma,η=0.7) -0.42±0.00 -0.86±0.05 -0.89±0.05 -0.38±0.06 -0.59±0.02 -0.54±0.02 -0.87±0.04
ERO(p=0.05, style=uniform,η=0.8) -0.24±0.20 -0.61±0.23 -0.69±0.23 -0.19±0.21 -0.26±0.28 -0.26±0.24 -0.72±0.24
ERO(p=0.05, style=gamma,η=0.8) -0.51±0.00 -0.84±0.03 -0.90±0.03 -0.44±0.05 -0.61±0.03 -0.55±0.05 -0.88±0.09
ERO(p=1, style=uniform,η=0) 0.00±0.00 -1.85±0.00 0.00±0.00 -0.23±0.11 0.00±0.00 0.00±0.00 0.00±0.00
ERO(p=1, style=gamma,η=0) 0.00±0.00 -1.83±0.00 0.00±0.00 -0.09±0.01 0.00±0.00 0.00±0.00 -0.01±0.00
ERO(p=1, style=uniform,η=0.1) -0.02±0.01 -1.67±0.00 0.00±0.00 -0.12±0.07 -0.09±0.02 -0.49±0.03 -0.00±0.00
ERO(p=1, style=gamma,η=0.1) -0.01±0.01 -1.58±0.00 0.00±0.00 -0.03±0.01 -0.25±0.02 -0.51±0.02 -0.00±0.00
ERO(p=1, style=uniform,η=0.2) -0.01±0.01 -1.41±0.00 -0.00±0.00 -0.11±0.05 -0.10±0.01 -0.34±0.02 -0.00±0.00
ERO(p=1, style=gamma,η=0.2) -0.01±0.01 -1.45±0.00 -0.00±0.00 -0.01±0.02 -0.15±0.02 -0.32±0.03 -0.00±0.00
ERO(p=1, style=uniform,η=0.3) -0.00±0.00 -1.21±0.00 0.00±0.00 -0.06±0.04 -0.07±0.01 -0.23±0.02 -0.00±0.00
ERO(p=1, style=gamma,η=0.3) -0.00±0.00 -1.25±0.00 -0.00±0.00 -0.00±0.01 -0.12±0.03 -0.21±0.03 0.00±0.00
ERO(p=1, style=uniform,η=0.4) -0.00±0.00 -1.05±0.00 -0.00±0.00 -0.05±0.04 -0.04±0.01 -0.14±0.02 -0.00±0.01
ERO(p=1, style=gamma,η=0.4) -0.02±0.00 -1.07±0.00 0.00±0.00 -0.04±0.00 -0.15±0.00 -0.21±0.00 -0.00±0.00
ERO(p=1, style=uniform,η=0.5) -0.13±0.00 -0.94±0.00 -0.06±0.00 -0.18±0.03 -0.19±0.00 -0.26±0.00 -0.11±0.00
ERO(p=1, style=gamma,η=0.5) -0.21±0.00 -0.98±0.00 -0.07±0.00 -0.23±0.01 -0.30±0.00 -0.33±0.00 -0.19±0.00
ERO(p=1, style=uniform,η=0.6) -0.32±0.00 -0.94±0.00 -0.27±0.00 -0.36±0.03 -0.37±0.00 -0.40±0.00 -0.31±0.00
ERO(p=1, style=gamma,η=0.6) -0.38±0.00 -0.93±0.00 -0.27±0.00 -0.42±0.01 -0.44±0.00 -0.46±0.00 -0.37±0.00
ERO(p=1, style=uniform,η=0.7) -0.51±0.00 -0.95±0.00 -0.49±0.00 -0.54±0.03 -0.53±0.00 -0.55±0.00 -0.51±0.00
ERO(p=1, style=gamma,η=0.7) -0.55±0.00 -0.98±0.00 -0.52±0.00 -0.59±0.01 -0.59±0.00 -0.60±0.00 -0.56±0.00
ERO(p=1, style=uniform,η=0.8) -0.68±0.00 -0.97±0.00 -0.95±0.00 -0.71±0.02 -0.70±0.00 -0.71±0.00 -0.70±0.00
ERO(p=1, style=gamma,η=0.8) -0.71±0.00 -0.96±0.00 -0.98±0.00 -0.75±0.01 -0.73±0.00 -0.73±0.00 -0.73±0.00
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Table D.16: Result table on Lupset, naive improvement with “proximal baseline" training
starting from a baseline as initial guess, for individual directed graphs, averaged over 10
runs, and plus/minus one standard deviation. The best is marked in bold red while
the second best is highlighted in underline blue .

Data SpringRank SyncRank SerialRank BTL Eig.Cent. PageRank SVD_NRS
HeadToHead -0.00±0.00 -0.24±0.00 -0.18±0.00 0.00±0.00 -0.05±0.00 -0.02±0.00 -0.04±0.00
Finance -0.00±0.00 -0.09±0.00 0.00±0.00 -0.03±0.00 -0.02±0.00 -0.02±0.00 -0.00±0.00
Animal -0.02±0.01 -0.34±0.06 -0.44±0.12 0.00±0.00 -0.01±0.00 -0.02±0.02 -0.00±0.02
Faculty: Business -0.01±0.00 -0.12±0.00 -0.17±0.01 -0.00±0.00 -0.01±0.01 -0.01±0.01 -0.01±0.00
Faculty: CS -0.00±0.00 -0.17±0.02 -0.18±0.02 0.00±0.00 0.00±0.01 -0.00±0.00 -0.02±0.01
Faculty: History -0.00±0.00 -0.07±0.00 -0.44±0.20 0.00±0.00 -0.00±0.01 -0.00±0.00 -0.00±0.00
Football(2009) 0.00±0.00 -0.18±0.11 -0.04±0.02 -0.01±0.02 -0.03±0.01 -0.04±0.02 -0.00±0.00
Football(2010) -0.01±0.01 -0.15±0.04 -0.08±0.01 -0.00±0.01 -0.03±0.02 -0.03±0.02 -0.00±0.00
Football(2011) -0.00±0.00 -0.19±0.09 -0.01±0.01 -0.01±0.01 -0.01±0.01 -0.03±0.02 -0.00±0.01
Football(2012) -0.01±0.01 -0.17±0.01 -0.12±0.03 -0.01±0.02 -0.00±0.01 -0.01±0.00 0.00±0.00
Football(2013) -0.01±0.01 -0.27±0.03 -0.02±0.01 -0.02±0.01 -0.04±0.01 -0.04±0.01 -0.01±0.01
Football(2014) -0.00±0.01 -0.18±0.05 -0.12±0.03 -0.01±0.01 -0.02±0.03 -0.00±0.00 -0.01±0.01
Football finer(2009) -0.01±0.01 -0.26±0.01 -0.04±0.01 -0.01±0.03 -0.04±0.03 -0.06±0.03 -0.01±0.01
Football finer(2010) -0.02±0.01 -0.11±0.01 -0.05±0.02 -0.03±0.03 -0.03±0.02 -0.06±0.01 -0.00±0.00
Football finer(2011) -0.00±0.01 -0.19±0.01 -0.04±0.01 -0.01±0.01 -0.02±0.01 -0.05±0.01 -0.00±0.01
Football finer(2012) -0.01±0.01 -0.23±0.04 -0.03±0.02 -0.01±0.01 -0.04±0.02 -0.07±0.01 -0.00±0.01
Football finer(2013) -0.03±0.03 -0.25±0.00 -0.03±0.02 -0.02±0.02 -0.05±0.03 -0.06±0.02 -0.02±0.01
Football finer(2014) -0.00±0.01 -0.17±0.02 -0.09±0.03 -0.02±0.02 -0.01±0.01 -0.02±0.01 -0.00±0.01
Basketball(1985) -0.00±0.00 -0.23±0.00 -0.32±0.01 -0.03±0.02 -0.01±0.00 -0.02±0.01 -0.02±0.00
Basketball(1986) -0.00±0.00 -0.28±0.00 -0.28±0.01 -0.03±0.01 -0.02±0.00 -0.01±0.00 -0.01±0.00
Basketball(1987) -0.00±0.00 -0.25±0.00 -0.23±0.01 -0.03±0.01 -0.03±0.01 -0.00±0.00 -0.01±0.00
Basketball(1988) 0.00±0.00 -0.24±0.00 -0.27±0.01 -0.03±0.01 -0.01±0.00 -0.01±0.00 -0.01±0.00
Basketball(1989) 0.00±0.00 -0.26±0.00 -0.25±0.01 -0.03±0.00 0.00±0.00 -0.01±0.00 -0.02±0.00
Basketball(1990) -0.00±0.00 -0.25±0.00 -0.27±0.01 -0.03±0.03 -0.02±0.00 -0.02±0.00 -0.01±0.00
Basketball(1991) -0.00±0.00 -0.27±0.00 -0.29±0.01 -0.02±0.01 -0.01±0.00 -0.00±0.00 -0.02±0.00
Basketball(1992) -0.00±0.00 -0.27±0.00 -0.26±0.00 -0.01±0.03 -0.01±0.00 0.00±0.00 -0.02±0.00
Basketball(1993) -0.00±0.00 -0.25±0.00 -0.29±0.02 -0.02±0.02 -0.01±0.00 -0.02±0.00 -0.02±0.00
Basketball(1994) 0.00±0.00 -0.25±0.00 -0.29±0.00 -0.01±0.02 -0.01±0.00 -0.01±0.00 -0.01±0.00
Basketball(1995) 0.00±0.00 -0.26±0.00 -0.25±0.01 -0.01±0.02 -0.00±0.00 -0.02±0.00 -0.01±0.00
Basketball(1996) -0.00±0.00 -0.23±0.00 -0.28±0.01 -0.02±0.02 -0.01±0.00 -0.01±0.00 -0.02±0.00
Basketball(1997) -0.00±0.00 -0.24±0.00 -0.25±0.01 -0.03±0.01 -0.01±0.00 -0.01±0.00 -0.02±0.00
Basketball(1998) -0.00±0.00 -0.24±0.00 -0.25±0.01 -0.03±0.01 -0.02±0.00 -0.01±0.00 -0.02±0.00
Basketball(1999) -0.00±0.00 -0.21±0.00 -0.27±0.01 -0.02±0.02 -0.02±0.00 -0.02±0.00 -0.02±0.00
Basketball(2000) -0.00±0.00 -0.25±0.00 -0.26±0.01 -0.02±0.01 -0.01±0.00 -0.01±0.00 -0.01±0.00
Basketball(2001) 0.00±0.00 -0.26±0.00 -0.28±0.03 -0.02±0.02 -0.01±0.00 -0.01±0.00 -0.03±0.01
Basketball(2002) -0.00±0.00 -0.24±0.00 -0.26±0.00 -0.02±0.01 -0.00±0.00 -0.02±0.00 -0.01±0.00
Basketball(2003) 0.00±0.00 -0.27±0.00 -0.28±0.00 -0.02±0.02 -0.02±0.00 -0.02±0.00 -0.02±0.00
Basketball(2004) -0.00±0.00 -0.25±0.00 -0.28±0.03 -0.02±0.01 -0.01±0.00 -0.02±0.00 -0.02±0.00
Basketball(2005) 0.00±0.00 -0.26±0.00 -0.26±0.02 -0.04±0.01 -0.00±0.00 -0.01±0.00 -0.02±0.00
Basketball(2006) 0.00±0.00 -0.26±0.00 -0.27±0.01 0.00±0.02 0.00±0.00 -0.01±0.00 -0.01±0.00
Basketball(2007) -0.00±0.00 -0.28±0.00 -0.26±0.02 -0.02±0.01 -0.01±0.00 -0.01±0.00 -0.01±0.00
Basketball(2008) 0.00±0.00 -0.24±0.00 -0.27±0.01 -0.01±0.02 -0.01±0.00 -0.01±0.00 -0.01±0.00
Basketball(2009) -0.00±0.00 -0.26±0.00 -0.29±0.01 -0.03±0.01 -0.01±0.00 -0.01±0.00 -0.01±0.00
Basketball(2010) -0.00±0.00 -0.21±0.00 -0.26±0.01 -0.01±0.03 -0.01±0.00 -0.01±0.00 -0.01±0.00
Basketball(2011) -0.00±0.00 -0.22±0.00 -0.27±0.01 0.00±0.02 -0.01±0.00 -0.01±0.00 -0.00±0.00
Basketball(2012) -0.00±0.00 -0.28±0.00 -0.28±0.01 -0.02±0.02 -0.01±0.00 -0.01±0.00 -0.01±0.00
Basketball(2013) -0.00±0.00 -0.24±0.00 -0.27±0.02 -0.03±0.01 -0.01±0.00 -0.01±0.00 -0.02±0.00
Basketball(2014) -0.00±0.00 -0.24±0.00 -0.28±0.01 -0.00±0.03 -0.00±0.00 -0.01±0.00 -0.00±0.00
Basketball finer(1985) -0.00±0.00 -0.23±0.00 -0.24±0.02 -0.14±0.02 -0.09±0.00 -0.08±0.00 -0.02±0.00
Basketball finer(1986) 0.00±0.00 -0.28±0.00 -0.25±0.01 -0.13±0.02 -0.08±0.00 -0.07±0.00 -0.01±0.00
Basketball finer(1987) -0.00±0.00 -0.26±0.00 -0.23±0.00 -0.11±0.02 -0.06±0.00 -0.07±0.00 -0.01±0.00
Basketball finer(1988) -0.00±0.00 -0.27±0.00 -0.25±0.00 -0.14±0.03 -0.09±0.00 -0.09±0.00 -0.01±0.00
Basketball finer(1989) 0.00±0.00 -0.24±0.00 -0.22±0.01 -0.13±0.01 -0.07±0.00 -0.07±0.00 -0.02±0.00
Basketball finer(1990) -0.00±0.00 -0.24±0.00 -0.25±0.00 -0.14±0.01 -0.10±0.00 -0.08±0.00 -0.01±0.00
Basketball finer(1991) -0.00±0.00 -0.28±0.00 -0.26±0.01 -0.11±0.02 -0.12±0.00 -0.10±0.00 -0.01±0.00
Basketball finer(1992) -0.00±0.00 -0.26±0.00 -0.25±0.00 -0.12±0.01 -0.10±0.00 -0.09±0.00 -0.02±0.00
Basketball finer(1993) -0.00±0.00 -0.24±0.00 -0.27±0.02 -0.12±0.01 -0.09±0.00 -0.07±0.00 -0.01±0.00
Basketball finer(1994) 0.00±0.00 -0.25±0.00 -0.28±0.01 -0.12±0.02 -0.10±0.00 -0.07±0.00 -0.01±0.00
Basketball finer(1995) -0.00±0.00 -0.26±0.00 -0.25±0.00 -0.12±0.02 -0.09±0.00 -0.07±0.00 -0.02±0.00
Basketball finer(1996) -0.00±0.00 -0.22±0.00 -0.22±0.01 -0.11±0.01 -0.07±0.01 -0.06±0.00 -0.01±0.00
Basketball finer(1997) -0.00±0.00 -0.26±0.00 -0.24±0.00 -0.12±0.01 -0.07±0.00 -0.06±0.00 -0.02±0.00
Basketball finer(1998) -0.00±0.00 -0.24±0.00 -0.24±0.00 -0.11±0.02 -0.06±0.00 -0.06±0.00 -0.02±0.00
Basketball finer(1999) -0.00±0.00 -0.23±0.00 -0.26±0.01 -0.11±0.02 -0.07±0.00 -0.05±0.00 -0.02±0.00
Basketball finer(2000) 0.00±0.00 -0.24±0.00 -0.25±0.00 -0.10±0.01 -0.08±0.00 -0.06±0.00 -0.01±0.00
Basketball finer(2001) -0.00±0.00 -0.24±0.00 -0.25±0.01 -0.11±0.01 -0.08±0.00 -0.06±0.00 -0.02±0.00
Basketball finer(2002) -0.01±0.00 -0.25±0.00 -0.23±0.01 -0.13±0.02 -0.08±0.00 -0.06±0.00 -0.01±0.00
Basketball finer(2003) 0.00±0.00 -0.25±0.00 -0.22±0.02 -0.12±0.02 -0.06±0.00 -0.05±0.00 -0.01±0.00
Basketball finer(2004) -0.00±0.00 -0.25±0.01 -0.23±0.00 -0.12±0.02 -0.07±0.00 -0.06±0.00 -0.02±0.00
Basketball finer(2005) -0.00±0.00 -0.27±0.00 -0.22±0.00 -0.10±0.01 -0.05±0.00 -0.04±0.00 -0.02±0.00
Basketball finer(2006) -0.00±0.00 -0.25±0.00 -0.24±0.00 -0.10±0.02 -0.06±0.00 -0.04±0.00 -0.01±0.00
Basketball finer(2007) -0.00±0.00 -0.26±0.00 -0.23±0.03 -0.12±0.01 -0.06±0.00 -0.04±0.00 -0.01±0.00
Basketball finer(2008) -0.00±0.00 -0.23±0.00 -0.24±0.01 -0.11±0.02 -0.07±0.00 -0.05±0.00 -0.01±0.00
Basketball finer(2009) -0.00±0.00 -0.24±0.00 -0.25±0.01 -0.11±0.01 -0.07±0.00 -0.05±0.00 -0.01±0.00
Basketball finer(2010) -0.00±0.00 -0.23±0.00 -0.25±0.00 -0.10±0.02 -0.05±0.00 -0.05±0.00 -0.01±0.00
Basketball finer(2011) -0.00±0.00 -0.22±0.00 -0.25±0.00 -0.11±0.01 -0.05±0.00 -0.06±0.00 -0.01±0.00
Basketball finer(2012) 0.00±0.00 -0.24±0.00 -0.24±0.01 -0.11±0.02 -0.07±0.00 -0.05±0.00 -0.01±0.00
Basketball finer(2013) -0.00±0.00 -0.24±0.00 -0.26±0.02 -0.11±0.02 -0.07±0.00 -0.06±0.00 -0.02±0.00
Basketball finer(2014) -0.00±0.00 -0.25±0.05 -0.26±0.01 -0.12±0.02 -0.06±0.01 -0.05±0.00 -0.01±0.00
ERO(p=0.05, style=uniform,η=0) -0.01±0.01 -0.43±0.00 -0.40±0.01 -0.04±0.03 0.02±0.00 -0.00±0.00 -0.01±0.00
ERO(p=0.05, style=gamma,η=0) -0.03±0.00 -0.44±0.01 -0.40±0.10 0.06±0.01 0.08±0.01 0.05±0.01 0.02±0.00
ERO(p=0.05, style=uniform,η=0.1) -0.00±0.00 -0.37±0.00 -0.32±0.00 -0.01±0.01 -0.06±0.00 -0.06±0.00 -0.00±0.00
ERO(p=0.05, style=gamma,η=0.1) -0.00±0.00 -0.40±0.00 -0.26±0.02 0.01±0.00 -0.01±0.00 0.01±0.00 0.01±0.00
ERO(p=0.05, style=uniform,η=0.2) -0.00±0.01 -0.34±0.00 -0.30±0.01 -0.00±0.01 -0.05±0.01 -0.08±0.01 -0.00±0.01
ERO(p=0.05, style=gamma,η=0.2) -0.00±0.00 -0.36±0.00 -0.21±0.01 0.00±0.00 -0.02±0.00 -0.02±0.00 -0.00±0.00
ERO(p=0.05, style=uniform,η=0.3) -0.00±0.00 -0.28±0.01 -0.25±0.03 0.01±0.01 -0.03±0.01 -0.05±0.02 -0.00±0.01
ERO(p=0.05, style=gamma,η=0.3) -0.01±0.00 -0.29±0.00 -0.16±0.02 -0.00±0.00 -0.01±0.01 -0.01±0.00 -0.00±0.00
ERO(p=0.05, style=uniform,η=0.4) -0.00±0.00 -0.25±0.01 -0.18±0.01 0.01±0.01 -0.00±0.00 -0.02±0.01 0.00±0.00
ERO(p=0.05, style=gamma,η=0.4) -0.00±0.01 -0.24±0.01 -0.11±0.03 0.00±0.01 -0.01±0.00 -0.01±0.00 -0.00±0.00
ERO(p=0.05, style=uniform,η=0.5) -0.00±0.00 -0.21±0.00 -0.16±0.00 0.01±0.04 -0.00±0.01 -0.01±0.01 -0.00±0.01
ERO(p=0.05, style=gamma,η=0.5) -0.01±0.01 -0.21±0.01 -0.06±0.04 -0.01±0.01 -0.01±0.00 -0.00±0.00 -0.03±0.03
ERO(p=0.05, style=uniform,η=0.6) -0.00±0.00 -0.17±0.00 -0.14±0.00 0.00±0.01 -0.00±0.00 -0.01±0.01 -0.04±0.01
ERO(p=0.05, style=gamma,η=0.6) -0.01±0.01 -0.18±0.01 -0.04±0.00 -0.01±0.01 -0.01±0.01 -0.01±0.01 -0.01±0.01
ERO(p=0.05, style=uniform,η=0.7) -0.00±0.01 -0.16±0.00 -0.09±0.00 -0.00±0.01 0.00±0.00 -0.00±0.00 -0.06±0.00
ERO(p=0.05, style=gamma,η=0.7) -0.00±0.01 -0.16±0.01 -0.05±0.01 -0.01±0.01 -0.01±0.01 0.00±0.00 -0.02±0.01
ERO(p=0.05, style=uniform,η=0.8) -0.00±0.00 -0.14±0.00 -0.07±0.00 0.00±0.01 -0.00±0.00 0.00±0.00 -0.07±0.00
ERO(p=0.05, style=gamma,η=0.8) -0.01±0.01 -0.14±0.01 -0.04±0.01 -0.01±0.01 -0.01±0.01 0.00±0.01 -0.03±0.02
ERO(p=1, style=uniform,η=0) 0.00±0.00 -0.46±0.00 0.00±0.00 -0.06±0.03 0.00±0.00 0.00±0.00 0.00±0.00
ERO(p=1, style=gamma,η=0) 0.00±0.00 -0.46±0.00 0.00±0.00 -0.02±0.00 0.00±0.00 0.00±0.00 -0.00±0.00
ERO(p=1, style=uniform,η=0.1) -0.00±0.00 -0.42±0.00 0.00±0.00 -0.03±0.02 -0.02±0.01 -0.12±0.01 -0.00±0.00
ERO(p=1, style=gamma,η=0.1) -0.00±0.00 -0.39±0.00 0.00±0.00 -0.01±0.00 -0.05±0.02 -0.11±0.01 -0.00±0.00
ERO(p=1, style=uniform,η=0.2) -0.00±0.00 -0.35±0.00 -0.00±0.00 -0.03±0.01 -0.03±0.00 -0.09±0.00 -0.00±0.00
ERO(p=1, style=gamma,η=0.2) -0.00±0.00 -0.36±0.00 -0.00±0.00 -0.00±0.00 -0.04±0.01 -0.08±0.01 -0.00±0.00
ERO(p=1, style=uniform,η=0.3) -0.00±0.00 -0.30±0.00 0.00±0.00 -0.02±0.01 -0.02±0.00 -0.06±0.00 -0.00±0.00
ERO(p=1, style=gamma,η=0.3) -0.00±0.00 -0.31±0.00 -0.00±0.00 -0.00±0.00 -0.03±0.01 -0.05±0.01 0.00±0.00
ERO(p=1, style=uniform,η=0.4) -0.00±0.00 -0.26±0.00 -0.00±0.00 -0.01±0.01 -0.01±0.00 -0.04±0.00 -0.00±0.00
ERO(p=1, style=gamma,η=0.4) -0.00±0.00 -0.27±0.00 0.00±0.00 -0.00±0.00 -0.02±0.01 -0.03±0.01 0.00±0.00
ERO(p=1, style=uniform,η=0.5) -0.00±0.00 -0.22±0.00 -0.00±0.00 -0.01±0.01 -0.01±0.00 -0.03±0.00 -0.00±0.00
ERO(p=1, style=gamma,η=0.5) -0.00±0.00 -0.22±0.00 -0.00±0.00 0.00±0.01 -0.01±0.01 -0.01±0.01 0.00±0.00
ERO(p=1, style=uniform,η=0.6) -0.00±0.00 -0.17±0.00 -0.00±0.00 -0.01±0.01 -0.01±0.00 -0.02±0.00 -0.00±0.00
ERO(p=1, style=gamma,η=0.6) -0.00±0.00 -0.16±0.00 -0.00±0.00 -0.00±0.00 -0.01±0.00 -0.01±0.00 -0.00±0.00
ERO(p=1, style=uniform,η=0.7) -0.01±0.00 -0.12±0.00 -0.00±0.00 -0.00±0.01 -0.00±0.00 -0.00±0.00 -0.00±0.00
ERO(p=1, style=gamma,η=0.7) -0.01±0.00 -0.13±0.00 0.00±0.00 -0.00±0.00 -0.00±0.00 -0.00±0.00 -0.00±0.00
ERO(p=1, style=uniform,η=0.8) -0.00±0.00 -0.08±0.00 -0.05±0.00 -0.00±0.01 -0.00±0.00 -0.00±0.00 -0.00±0.00
ERO(p=1, style=gamma,η=0.8) -0.00±0.00 -0.08±0.00 -0.05±0.00 -0.00±0.00 -0.00±0.00 0.00±0.00 -0.00±0.00
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Table D.17: GNN selection among GNNRank-N methods for the lowest Lupset, simple.

Data Variant train with pretrain with Lupset,margin coefficient baseline Lupset,ratio coefficient
HeadToHead ib dist proximal baseline innerproduct 1 SVD_NRS 1
Finance ib dist innerproduct – 0 – 1
Animal DIMPA dist dist – 0 – 1
Faculty: Business DIMPA innerproduct innerproduct – 0 – 1
Faculty: CS DIMPA dist dist – 0 – 1
Faculty: History DIMPA innerproduct innerproduct – 0 – 1
Basketball(1985) DIMPA dist dist – 0 – 1
Basketball(1986) DIMPA innerproduct innerproduct – 0 – 1
Basketball(1987) DIMPA innerproduct innerproduct – 0 – 1
Basketball(1988) DIMPA dist dist – 0 – 1
Basketball(1989) DIMPA dist dist – 0 – 1
Basketball(1990) DIMPA dist dist – 0 – 1
Basketball(1991) DIMPA innerproduct innerproduct – 0 – 1
Basketball(1992) DIMPA innerproduct innerproduct – 0 – 1
Basketball(1993) DIMPA dist dist – 1 – 1
Basketball(1994) DIMPA innerproduct innerproduct – 0 – 1
Basketball(1995) DIMPA innerproduct innerproduct – 0 – 1
Basketball(1996) DIMPA innerproduct innerproduct – 0 – 1
Basketball(1997) DIMPA innerproduct innerproduct – 0 – 1
Basketball(1998) DIMPA innerproduct innerproduct – 0 – 1
Basketball(1999) DIMPA dist dist – 0 – 1
Basketball(2000) DIMPA innerproduct innerproduct – 0 – 1
Basketball(2001) DIMPA innerproduct innerproduct – 0 – 1
Basketball(2002) DIMPA innerproduct innerproduct – 0 – 1
Basketball(2003) DIMPA innerproduct innerproduct – 0 – 1
Basketball(2004) DIMPA dist dist – 0 – 1
Basketball(2005) DIMPA innerproduct innerproduct – 0 – 1
Basketball(2006) DIMPA dist dist – 0 – 1
Basketball(2007) DIMPA innerproduct innerproduct – 0 – 1
Basketball(2008) DIMPA dist dist – 0 – 1
Basketball(2009) DIMPA innerproduct innerproduct – 0 – 1
Basketball(2010) DIMPA innerproduct innerproduct – 0 – 1
Basketball(2011) DIMPA innerproduct innerproduct – 0 – 1
Basketball(2012) DIMPA innerproduct innerproduct – 0 – 1
Basketball(2013) DIMPA dist dist – 0 – 1
Basketball(2014) DIMPA innerproduct innerproduct – 0 – 1
Basketball finer(1985) DIMPA innerproduct innerproduct – 0 – 1
Basketball finer(1986) DIMPA innerproduct innerproduct – 0 – 1
Basketball finer(1987) DIMPA dist dist – 1 – 1
Basketball finer(1988) DIMPA innerproduct innerproduct – 0 – 1
Basketball finer(1989) DIMPA dist dist – 1 – 1
Basketball finer(1990) DIMPA dist dist – 1 – 1
Basketball finer(1991) DIMPA dist dist – 1 – 0
Basketball finer(1992) DIMPA dist dist – 1 – 1
Basketball finer(1993) DIMPA dist dist – 1 – 0
Basketball finer(1994) DIMPA dist dist – 1 – 1
Basketball finer(1995) DIMPA innerproduct innerproduct – 0 – 1
Basketball finer(1996) DIMPA dist dist – 1 – 1
Basketball finer(1997) DIMPA dist dist – 1 – 1
Basketball finer(1998) DIMPA dist dist – 1 – 0
Basketball finer(1999) DIMPA dist dist – 1 – 1
Basketball finer(2000) DIMPA dist dist – 1 – 1
Basketball finer(2001) DIMPA dist dist – 1 – 1
Basketball finer(2002) DIMPA dist dist – 1 – 1
Basketball finer(2003) DIMPA dist dist – 1 – 1
Basketball finer(2004) DIMPA dist dist – 1 – 0
Basketball finer(2005) DIMPA dist dist – 1 – 1
Basketball finer(2006) DIMPA dist dist – 1 – 1
Basketball finer(2007) DIMPA dist dist – 1 – 0
Basketball finer(2008) DIMPA dist dist – 1 – 1
Basketball finer(2009) DIMPA innerproduct innerproduct – 0 – 1
Basketball finer(2010) DIMPA dist dist – 1 – 1
Basketball finer(2011) DIMPA dist dist – 1 – 1
Basketball finer(2012) DIMPA dist dist – 1 – 0
Basketball finer(2013) DIMPA innerproduct innerproduct – 0 – 1
Basketball finer(2014) DIMPA innerproduct innerproduct – 0 – 1
Football(2009) DIMPA innerproduct innerproduct – 0 – 1
Football(2010) ib dist proximal innerproduct dist 1 – 1
Football(2011) ib dist proximal baseline dist 1 BTL 0
Football(2012) ib dist dist – 1 – 0
Football(2013) DIMPA dist dist – 0 – 1
Football(2014) ib dist proximal baseline innerproduct 1 Eign.Cent. 1
Football finer(2009) DIMPA innerproduct innerproduct – 0 – 1
Football finer(2010) ib innerproduct proximal innerproduct innerproduct 1 – 0
Football finer(2011) DIMPA dist dist – 1 – 0
Football finer(2012) DIMPA dist proximal baseline dist 1 BTL 1
Football finer(2013) DIMPA innerproduct innerproduct – 0 – 1
Football finer(2014) ib dist proximal innerproduct SerialRank similarity 1 – 1
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Table D.18: GNN selection among GNNRank-P methods for the lowest Lupset, simple.

Data Variant train with pretrain with Lupset,margin coefficient baseline Lupset,ratio coefficient
HeadToHead ib proximal baseline proximal baseline SerialRank similarity 1 SyncRank 1
Finance ib proximal dist innerproduct – 0 – 1
Animal ib proximal baseline proximal baseline innerproduct 1 SyncRank 0
Faculty: Business ib proximal baseline proximal baseline innerproduct 0 SyncRank 1
Faculty: CS ib proximal baseline proximal baseline dist 0 SyncRank 1
Faculty: History DIMPA proximal dist dist – 1 – 1
Basketball(1985) ib proximal baseline proximal baseline dist 0 SyncRank 1
Basketball(1986) ib proximal baseline proximal baseline dist 0 SyncRank 1
Basketball(1987) DIMPA proximal baseline proximal baseline SerialRank similarity 0 SyncRank 1
Basketball(1988) ib proximal baseline proximal baseline dist 0 SyncRank 1
Basketball(1989) ib proximal baseline proximal baseline SerialRank similarity 1 SyncRank 1
Basketball(1990) ib proximal baseline proximal baseline dist 0 SyncRank 1
Basketball(1991) ib proximal baseline proximal baseline dist 0 SyncRank 1
Basketball(1992) ib proximal baseline proximal baseline dist 0 SyncRank 1
Basketball(1993) DIMPA proximal baseline proximal baseline dist 1 SyncRank 0
Basketball(1994) ib proximal baseline proximal baseline dist 0 SyncRank 1
Basketball(1995) DIMPA proximal baseline proximal baseline SerialRank similarity 1 SyncRank 0
Basketball(1996) DIMPA proximal baseline proximal baseline dist 1 SyncRank 0
Basketball(1997) DIMPA proximal baseline proximal baseline SerialRank similarity 0 SyncRank 1
Basketball(1998) DIMPA proximal baseline proximal baseline innerproduct 1 SyncRank 0
Basketball(1999) ib proximal baseline proximal baseline dist 0 SyncRank 1
Basketball(2000) ib proximal baseline proximal baseline dist 0 SyncRank 1
Basketball(2001) ib proximal baseline proximal baseline dist 0 SyncRank 1
Basketball(2002) ib proximal baseline proximal baseline dist 0 SyncRank 1
Basketball(2003) ib proximal baseline proximal baseline dist 0 SyncRank 1
Basketball(2004) ib proximal baseline proximal baseline dist 0 SyncRank 1
Basketball(2005) DIMPA proximal baseline proximal baseline SerialRank similarity 1 SyncRank 1
Basketball(2006) ib proximal baseline proximal baseline SerialRank similarity 1 SyncRank 0
Basketball(2007) ib proximal baseline proximal baseline SerialRank similarity 1 SyncRank 0
Basketball(2008) ib proximal baseline proximal baseline dist 0 SyncRank 1
Basketball(2009) DIMPA proximal baseline proximal baseline SerialRank similarity 1 SyncRank 1
Basketball(2010) ib proximal baseline proximal baseline dist 0 SyncRank 1
Basketball(2011) ib proximal baseline proximal baseline dist 0 SyncRank 1
Basketball(2012) ib proximal baseline proximal baseline dist 0 SyncRank 1
Basketball(2013) DIMPA proximal baseline proximal baseline SerialRank similarity 1 SyncRank 0
Basketball(2014) DIMPA proximal baseline proximal baseline dist 1 SyncRank 0
Basketball finer(1985) ib proximal baseline proximal baseline dist 0 SyncRank 1
Basketball finer(1986) ib proximal baseline proximal baseline dist 0 SyncRank 1
Basketball finer(1987) DIMPA proximal baseline proximal baseline dist 1 SyncRank 1
Basketball finer(1988) DIMPA proximal baseline proximal baseline dist 1 SyncRank 1
Basketball finer(1989) ib proximal baseline proximal baseline dist 0 SyncRank 1
Basketball finer(1990) ib proximal baseline proximal baseline dist 0 SyncRank 1
Basketball finer(1991) ib proximal baseline proximal baseline dist 0 SyncRank 1
Basketball finer(1992) ib proximal baseline proximal baseline dist 0 SyncRank 1
Basketball finer(1993) DIMPA proximal baseline proximal baseline dist 1 SyncRank 0
Basketball finer(1994) ib proximal baseline proximal baseline dist 0 SyncRank 1
Basketball finer(1995) DIMPA proximal baseline proximal baseline SerialRank similarity 1 SyncRank 0
Basketball finer(1996) ib proximal baseline proximal baseline dist 0 SyncRank 1
Basketball finer(1997) DIMPA proximal baseline proximal baseline SerialRank similarity 1 SyncRank 1
Basketball finer(1998) DIMPA proximal baseline proximal baseline SerialRank similarity 1 SyncRank 0
Basketball finer(1999) ib proximal baseline proximal baseline dist 0 SyncRank 1
Basketball finer(2000) ib proximal baseline proximal baseline dist 0 SyncRank 1
Basketball finer(2001) ib proximal baseline proximal baseline dist 0 SyncRank 1
Basketball finer(2002) DIMPA proximal baseline proximal baseline dist 1 SyncRank 0
Basketball finer(2003) ib proximal baseline proximal baseline dist 0 SyncRank 1
Basketball finer(2004) DIMPA proximal baseline proximal baseline innerproduct 1 SyncRank 1
Basketball finer(2005) DIMPA proximal baseline proximal baseline dist 1 SyncRank 1
Basketball finer(2006) ib proximal baseline proximal baseline dist 0 SyncRank 1
Basketball finer(2007) DIMPA proximal baseline proximal baseline dist 1 SyncRank 1
Basketball finer(2008) ib proximal baseline proximal baseline dist 0 SyncRank 1
Basketball finer(2009) ib proximal baseline proximal baseline dist 0 SyncRank 1
Basketball finer(2010) ib proximal baseline proximal baseline dist 0 SyncRank 1
Basketball finer(2011) ib proximal baseline proximal baseline dist 0 SyncRank 1
Basketball finer(2012) DIMPA proximal baseline proximal baseline dist 1 SyncRank 0
Basketball finer(2013) DIMPA proximal baseline proximal baseline SerialRank similarity 1 SyncRank 0
Basketball finer(2014) DIMPA proximal baseline proximal baseline innerproduct 1 SyncRank 1
Football(2009) ib proximal baseline dist – 0 SpringRank 1
Football(2010) ib proximal innerproduct proximal baseline innerproduct 1 SpringRank 1
Football(2011) ib proximal baseline proximal baseline SerialRank similarity 0 SpringRank 1
Football(2012) ib proximal dist proximal baseline SerialRank similarity 1 PageRank 0
Football(2013) ib proximal baseline proximal baseline dist 0 SyncRank 1
Football(2014) ib proximal dist proximal baseline innerproduct 1 PageRank 0
Football finer(2009) ib proximal baseline proximal baseline SerialRank similarity 1 SVD_NRS 1
Football finer(2010) ib proximal innerproduct proximal baseline innerproduct 1 SerialRank 1
Football finer(2011) ib proximal baseline proximal baseline SerialRank similarity 1 SVD_NRS 0
Football finer(2012) ib proximal baseline proximal baseline dist 1 SVD_NRS 0
Football finer(2013) ib proximal baseline proximal baseline dist 0 SyncRank 1
Football finer(2014) ib proximal dist proximal baseline innerproduct 0 SVD_NRS 1
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Table D.19: GNN selection among GNNRank-N methods for the lowest Lupset, naive.

Data Variant train with pretrain with Lupset,margin coefficient baseline Lupset,ratio coefficient
HeadToHead DIMPA dist dist – 0 – 1
Finance DIMPA innerproduct innerproduct – 1 – 0
Animal DIMPA dist dist – 0 – 1
Faculty: Business DIMPA innerproduct innerproduct – 0 – 1
Faculty: CS DIMPA dist dist – 0 – 1
Faculty: History DIMPA innerproduct innerproduct – 0 – 1
Basketball(1985) DIMPA dist dist – 0 – 1
Basketball(1986) DIMPA innerproduct innerproduct – 0 – 1
Basketball(1987) DIMPA innerproduct innerproduct – 0 – 1
Basketball(1988) DIMPA dist dist – 0 – 1
Basketball(1989) DIMPA dist dist – 0 – 1
Basketball(1990) DIMPA dist dist – 0 – 1
Basketball(1991) DIMPA innerproduct innerproduct – 0 – 1
Basketball(1992) DIMPA innerproduct innerproduct – 0 – 1
Basketball(1993) DIMPA innerproduct innerproduct – 0 – 1
Basketball(1994) DIMPA innerproduct innerproduct – 0 – 1
Basketball(1995) DIMPA innerproduct innerproduct – 0 – 1
Basketball(1996) DIMPA innerproduct innerproduct – 0 – 1
Basketball(1997) DIMPA innerproduct innerproduct – 0 – 1
Basketball(1998) DIMPA innerproduct innerproduct – 0 – 1
Basketball(1999) DIMPA dist dist – 0 – 1
Basketball(2000) DIMPA innerproduct innerproduct – 0 – 1
Basketball(2001) DIMPA innerproduct innerproduct – 0 – 1
Basketball(2002) DIMPA innerproduct innerproduct – 0 – 1
Basketball(2003) DIMPA innerproduct innerproduct – 0 – 1
Basketball(2004) DIMPA dist dist – 0 – 1
Basketball(2005) DIMPA innerproduct innerproduct – 0 – 1
Basketball(2006) DIMPA dist dist – 0 – 1
Basketball(2007) DIMPA innerproduct innerproduct – 0 – 1
Basketball(2008) DIMPA dist dist – 0 – 1
Basketball(2009) DIMPA innerproduct innerproduct – 0 – 1
Basketball(2010) DIMPA innerproduct innerproduct – 0 – 1
Basketball(2011) DIMPA innerproduct innerproduct – 0 – 1
Basketball(2012) DIMPA innerproduct innerproduct – 0 – 1
Basketball(2013) DIMPA dist dist – 0 – 1
Basketball(2014) DIMPA innerproduct innerproduct – 0 – 1
Basketball finer(1985) DIMPA innerproduct innerproduct – 0 – 1
Basketball finer(1986) DIMPA innerproduct innerproduct – 0 – 1
Basketball finer(1987) DIMPA dist dist – 1 – 1
Basketball finer(1988) DIMPA innerproduct innerproduct – 0 – 1
Basketball finer(1989) DIMPA dist dist – 1 – 1
Basketball finer(1990) DIMPA dist dist – 1 – 1
Basketball finer(1991) DIMPA dist dist – 1 – 0
Basketball finer(1992) DIMPA dist dist – 1 – 1
Basketball finer(1993) DIMPA dist dist – 1 – 0
Basketball finer(1994) DIMPA dist dist – 1 – 1
Basketball finer(1995) DIMPA innerproduct innerproduct – 0 – 1
Basketball finer(1996) DIMPA dist dist – 1 – 1
Basketball finer(1997) DIMPA dist dist – 1 – 1
Basketball finer(1998) DIMPA dist dist – 1 – 0
Basketball finer(1999) DIMPA dist dist – 1 – 1
Basketball finer(2000) DIMPA dist dist – 1 – 1
Basketball finer(2001) DIMPA dist dist – 1 – 1
Basketball finer(2002) DIMPA dist dist – 1 – 1
Basketball finer(2003) DIMPA dist dist – 1 – 1
Basketball finer(2004) DIMPA dist dist – 1 – 0
Basketball finer(2005) DIMPA dist dist – 1 – 1
Basketball finer(2006) DIMPA dist dist – 1 – 1
Basketball finer(2007) DIMPA dist dist – 1 – 0
Basketball finer(2008) DIMPA dist dist – 1 – 1
Basketball finer(2009) DIMPA innerproduct innerproduct – 0 – 1
Basketball finer(2010) DIMPA dist dist – 1 – 1
Basketball finer(2011) DIMPA dist dist – 1 – 1
Basketball finer(2012) DIMPA dist dist – 1 – 0
Basketball finer(2013) DIMPA innerproduct innerproduct – 0 – 1
Basketball finer(2014) DIMPA innerproduct innerproduct – 0 – 1
Football(2009) DIMPA innerproduct innerproduct – 0 – 1
Football(2010) DIMPA dist proximal dist dist 1 – 1
Football(2011) DIMPA dist dist – 0 – 1
Football(2012) DIMPA dist dist – 1 – 1
Football(2013) DIMPA dist dist – 0 – 1
Football(2014) DIMPA dist dist – 1 – 1
Football finer(2009) DIMPA innerproduct innerproduct – 0 – 1
Football finer(2010) DIMPA dist proximal dist dist 0 – 1
Football finer(2011) DIMPA dist dist – 1 – 0
Football finer(2012) DIMPA dist innerproduct – 1 – 1
Football finer(2013) DIMPA innerproduct innerproduct – 0 – 1
Football finer(2014) DIMPA dist dist – 1 – 1
ERO(p=0.05, style=uniform,η=0) DIMPA dist dist – 0 – 1
ERO(p=0.05, style=gamma,η=0) DIMPA dist dist – 0 – 1
ERO(p=0.05, style=uniform,η=0.1) ib innerproduct innerproduct – 0 – 1
ERO(p=0.05, style=gamma,η=0.1) DIMPA dist dist – 0 – 1
ERO(p=0.05, style=uniform,η=0.2) DIMPA dist dist – 1 – 1
ERO(p=0.05, style=gamma,η=0.2) ib innerproduct proximal baseline innerproduct 0 SpringRank 1
ERO(p=0.05, style=uniform,η=0.3) ib dist dist – 1 – 1
ERO(p=0.05, style=gamma,η=0.3) ib innerproduct proximal baseline innerproduct 1 SyncRank 1
ERO(p=0.05, style=uniform,η=0.4) ib innerproduct innerproduct – 1 – 0
ERO(p=0.05, style=gamma,η=0.4) ib innerproduct proximal baseline innerproduct 1 SyncRank 1
ERO(p=0.05, style=uniform,η=0.5) ib innerproduct innerproduct – 1 – 0
ERO(p=0.05, style=gamma,η=0.5) ib innerproduct proximal innerproduct innerproduct 1 – 1
ERO(p=0.05, style=uniform,η=0.6) ib innerproduct innerproduct – 1 – 0
ERO(p=0.05, style=gamma,η=0.6) ib innerproduct innerproduct – 0 – 1
ERO(p=0.05, style=uniform,η=0.7) ib innerproduct innerproduct – 1 – 0
ERO(p=0.05, style=gamma,η=0.7) ib innerproduct innerproduct – 0 – 1
ERO(p=0.05, style=uniform,η=0.8) ib innerproduct innerproduct – 1 – 0
ERO(p=0.05, style=gamma,η=0.8) ib innerproduct innerproduct – 0 – 1
ERO(p=1, style=uniform,η=0) ib dist dist – 1 – 0
ERO(p=1, style=gamma,η=0) ib dist dist – 1 – 0
ERO(p=1, style=uniform,η=0.1) DIMPA innerproduct proximal baseline innerproduct 0 SVD_NRS 1
ERO(p=1, style=gamma,η=0.1) DIMPA dist dist – 0 – 1
ERO(p=1, style=uniform,η=0.2) DIMPA dist dist – 0 – 1
ERO(p=1, style=gamma,η=0.2) DIMPA dist dist – 0 – 1
ERO(p=1, style=uniform,η=0.3) DIMPA dist dist – 0 – 1
ERO(p=1, style=gamma,η=0.3) DIMPA dist dist – 1 – 1
ERO(p=1, style=uniform,η=0.4) DIMPA innerproduct innerproduct – 0 – 1
ERO(p=1, style=gamma,η=0.4) DIMPA dist dist – 1 – 1
ERO(p=1, style=uniform,η=0.5) ib dist innerproduct – 0 – 1
ERO(p=1, style=gamma,η=0.5) ib dist dist – 1 – 1
ERO(p=1, style=uniform,η=0.6) ib dist dist – 0 – 1
ERO(p=1, style=gamma,η=0.6) ib dist dist – 1 – 0
ERO(p=1, style=uniform,η=0.7) ib dist dist – 0 – 1
ERO(p=1, style=gamma,η=0.7) ib dist dist – 0 – 1
ERO(p=1, style=uniform,η=0.8) ib dist dist – 0 – 1
ERO(p=1, style=gamma,η=0.8) ib dist dist – 0 – 1
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Table D.20: GNN selection among GNNRank-P methods for the lowest Lupset, naive.

Data Variant train with pretrain with Lupset,margin coefficient baseline Lupset,ratio coefficient
HeadToHead ib proximal baseline proximal baseline SerialRank similarity 1 SyncRank 1
Finance ib proximal baseline proximal baseline SerialRank similarity 0 SerialRank 1
Animal ib proximal baseline proximal baseline innerproduct 1 SyncRank 0
Faculty: Business ib proximal baseline proximal baseline innerproduct 0 SyncRank 1
Faculty: CS ib proximal baseline proximal baseline dist 0 SyncRank 1
Faculty: History DIMPA proximal dist dist – 1 – 1
Basketball(1985) ib proximal baseline proximal baseline dist 0 SyncRank 1
Basketball(1986) ib proximal baseline proximal baseline dist 0 SyncRank 1
Basketball(1987) DIMPA proximal baseline proximal baseline SerialRank similarity 0 SyncRank 1
Basketball(1988) ib proximal baseline proximal baseline dist 0 SyncRank 1
Basketball(1989) ib proximal baseline proximal baseline SerialRank similarity 1 SyncRank 1
Basketball(1990) ib proximal baseline proximal baseline dist 0 SyncRank 1
Basketball(1991) ib proximal baseline proximal baseline dist 0 SyncRank 1
Basketball(1992) ib proximal baseline proximal baseline dist 0 SyncRank 1
Basketball(1993) DIMPA proximal baseline proximal baseline dist 1 SyncRank 0
Basketball(1994) ib proximal baseline proximal baseline dist 0 SyncRank 1
Basketball(1995) DIMPA proximal baseline proximal baseline SerialRank similarity 1 SyncRank 0
Basketball(1996) DIMPA proximal baseline proximal baseline dist 1 SyncRank 0
Basketball(1997) DIMPA proximal baseline proximal baseline SerialRank similarity 0 SyncRank 1
Basketball(1998) DIMPA proximal baseline proximal baseline innerproduct 1 SyncRank 0
Basketball(1999) ib proximal baseline proximal baseline dist 0 SyncRank 1
Basketball(2000) ib proximal baseline proximal baseline dist 0 SyncRank 1
Basketball(2001) ib proximal baseline proximal baseline dist 0 SyncRank 1
Basketball(2002) ib proximal baseline proximal baseline dist 0 SyncRank 1
Basketball(2003) ib proximal baseline proximal baseline dist 0 SyncRank 1
Basketball(2004) ib proximal baseline proximal baseline dist 0 SyncRank 1
Basketball(2005) DIMPA proximal baseline proximal baseline SerialRank similarity 1 SyncRank 1
Basketball(2006) ib proximal baseline proximal baseline SerialRank similarity 1 SyncRank 0
Basketball(2007) ib proximal baseline proximal baseline SerialRank similarity 1 SyncRank 0
Basketball(2008) ib proximal baseline proximal baseline dist 0 SyncRank 1
Basketball(2009) DIMPA proximal baseline proximal baseline SerialRank similarity 1 SyncRank 1
Basketball(2010) ib proximal baseline proximal baseline dist 0 SyncRank 1
Basketball(2011) ib proximal baseline proximal baseline dist 0 SyncRank 1
Basketball(2012) ib proximal baseline proximal baseline dist 0 SyncRank 1
Basketball(2013) DIMPA proximal baseline proximal baseline SerialRank similarity 1 SyncRank 0
Basketball(2014) DIMPA proximal baseline proximal baseline dist 1 SyncRank 0
Basketball finer(1985) ib proximal baseline proximal baseline dist 0 SyncRank 1
Basketball finer(1986) ib proximal baseline proximal baseline dist 0 SyncRank 1
Basketball finer(1987) DIMPA proximal baseline proximal baseline SerialRank similarity 1 SyncRank 1
Basketball finer(1988) DIMPA proximal baseline proximal baseline dist 1 SyncRank 1
Basketball finer(1989) ib proximal baseline proximal baseline dist 0 SyncRank 1
Basketball finer(1990) ib proximal baseline proximal baseline dist 0 SyncRank 1
Basketball finer(1991) ib proximal baseline proximal baseline dist 0 SyncRank 1
Basketball finer(1992) ib proximal baseline proximal baseline dist 0 SyncRank 1
Basketball finer(1993) DIMPA proximal baseline proximal baseline dist 1 SyncRank 0
Basketball finer(1994) ib proximal baseline proximal baseline dist 0 SyncRank 1
Basketball finer(1995) DIMPA proximal baseline proximal baseline SerialRank similarity 1 SyncRank 0
Basketball finer(1996) ib proximal baseline proximal baseline dist 0 SyncRank 1
Basketball finer(1997) DIMPA proximal baseline proximal baseline SerialRank similarity 1 SyncRank 1
Basketball finer(1998) DIMPA proximal baseline proximal baseline SerialRank similarity 1 SyncRank 1
Basketball finer(1999) ib proximal baseline proximal baseline dist 0 SyncRank 1
Basketball finer(2000) ib proximal baseline proximal baseline dist 0 SyncRank 1
Basketball finer(2001) ib proximal baseline proximal baseline dist 0 SyncRank 1
Basketball finer(2002) DIMPA proximal baseline proximal baseline dist 1 SyncRank 0
Basketball finer(2003) ib proximal baseline proximal baseline dist 0 SyncRank 1
Basketball finer(2004) DIMPA proximal baseline proximal baseline innerproduct 1 SyncRank 1
Basketball finer(2005) DIMPA proximal baseline proximal baseline dist 1 SyncRank 1
Basketball finer(2006) ib proximal baseline proximal baseline dist 0 SyncRank 1
Basketball finer(2007) DIMPA proximal baseline proximal baseline dist 1 SyncRank 1
Basketball finer(2008) ib proximal baseline proximal baseline dist 0 SyncRank 1
Basketball finer(2009) ib proximal baseline proximal baseline dist 0 SyncRank 1
Basketball finer(2010) ib proximal baseline proximal baseline dist 0 SyncRank 1
Basketball finer(2011) ib proximal baseline proximal baseline dist 0 SyncRank 1
Basketball finer(2012) DIMPA proximal baseline proximal baseline dist 1 SyncRank 0
Basketball finer(2013) DIMPA proximal baseline proximal baseline SerialRank similarity 1 SyncRank 0
Basketball finer(2014) DIMPA proximal baseline proximal baseline innerproduct 1 SyncRank 1
Football(2009) ib proximal baseline dist – 0 SpringRank 1
Football(2010) ib proximal baseline proximal baseline SerialRank similarity 0 SVD_NRS 1
Football(2011) ib proximal baseline proximal baseline SerialRank similarity 0 SpringRank 1
Football(2012) ib proximal baseline proximal baseline dist 1 SyncRank 0
Football(2013) ib proximal baseline proximal baseline dist 0 SyncRank 1
Football(2014) DIMPA proximal baseline proximal baseline SerialRank similarity 1 SVD_NRS 1
Football finer(2009) ib proximal baseline proximal baseline SerialRank similarity 1 SVD_NRS 1
Football finer(2010) ib proximal baseline proximal baseline dist 1 SVD_NRS 0
Football finer(2011) ib proximal baseline proximal baseline SerialRank similarity 1 SVD_NRS 0
Football finer(2012) ib proximal baseline proximal baseline dist 1 SVD_NRS 0
Football finer(2013) ib proximal baseline proximal baseline dist 0 SyncRank 1
Football finer(2014) DIMPA proximal baseline proximal baseline SerialRank similarity 1 SyncRank 1
ERO(p=0.05, style=uniform,η=0) ib proximal baseline proximal baseline innerproduct 1 SyncRank 1
ERO(p=0.05, style=gamma,η=0) DIMPA proximal baseline proximal baseline dist 1 SyncRank 0
ERO(p=0.05, style=uniform,η=0.1) DIMPA proximal baseline proximal baseline dist 1 SyncRank 0
ERO(p=0.05, style=gamma,η=0.1) DIMPA proximal baseline proximal baseline dist 1 SyncRank 0
ERO(p=0.05, style=uniform,η=0.2) DIMPA proximal baseline proximal baseline dist 1 SyncRank 0
ERO(p=0.05, style=gamma,η=0.2) DIMPA proximal baseline proximal baseline dist 1 SyncRank 0
ERO(p=0.05, style=uniform,η=0.3) DIMPA proximal baseline proximal baseline dist 1 SyncRank 0
ERO(p=0.05, style=gamma,η=0.3) ib proximal baseline proximal baseline dist 0 SyncRank 1
ERO(p=0.05, style=uniform,η=0.4) DIMPA proximal baseline proximal baseline innerproduct 1 SyncRank 0
ERO(p=0.05, style=gamma,η=0.4) ib proximal baseline proximal baseline dist 0 SyncRank 1
ERO(p=0.05, style=uniform,η=0.5) DIMPA proximal baseline proximal baseline dist 1 SyncRank 1
ERO(p=0.05, style=gamma,η=0.5) ib proximal innerproduct innerproduct – 1 – 1
ERO(p=0.05, style=uniform,η=0.6) DIMPA proximal baseline proximal baseline dist 1 SyncRank 1
ERO(p=0.05, style=gamma,η=0.6) ib proximal dist innerproduct – 0 – 1
ERO(p=0.05, style=uniform,η=0.7) DIMPA proximal baseline proximal baseline dist 1 SyncRank 0
ERO(p=0.05, style=gamma,η=0.7) ib proximal innerproduct innerproduct – 0 – 1
ERO(p=0.05, style=uniform,η=0.8) ib proximal dist proximal baseline dist 1 SpringRank 1
ERO(p=0.05, style=gamma,η=0.8) ib proximal innerproduct innerproduct – 0 – 1
ERO(p=1, style=uniform,η=0) ib proximal baseline proximal baseline innerproduct 1 SerialRank 0
ERO(p=1, style=gamma,η=0) ib proximal baseline proximal baseline dist 0 SerialRank 1
ERO(p=1, style=uniform,η=0.1) ib proximal baseline proximal baseline innerproduct 0 SerialRank 1
ERO(p=1, style=gamma,η=0.1) ib proximal baseline proximal baseline innerproduct 0 SerialRank 1
ERO(p=1, style=uniform,η=0.2) ib proximal baseline proximal baseline innerproduct 0 SerialRank 1
ERO(p=1, style=gamma,η=0.2) ib proximal baseline proximal baseline innerproduct 1 SerialRank 0
ERO(p=1, style=uniform,η=0.3) ib proximal baseline proximal baseline innerproduct 0 SerialRank 1
ERO(p=1, style=gamma,η=0.3) ib proximal baseline proximal baseline SerialRank similarity 1 SerialRank 0
ERO(p=1, style=uniform,η=0.4) ib proximal baseline proximal baseline innerproduct 1 SerialRank 0
ERO(p=1, style=gamma,η=0.4) ib proximal baseline proximal baseline innerproduct 0 SerialRank 1
ERO(p=1, style=uniform,η=0.5) ib proximal dist innerproduct – 0 – 1
ERO(p=1, style=gamma,η=0.5) ib proximal dist dist – 1 – 1
ERO(p=1, style=uniform,η=0.6) ib proximal dist dist – 0 – 1
ERO(p=1, style=gamma,η=0.6) ib proximal dist dist – 1 – 0
ERO(p=1, style=uniform,η=0.7) ib proximal dist dist – 0 – 1
ERO(p=1, style=gamma,η=0.7) ib proximal dist dist – 0 – 1
ERO(p=1, style=uniform,η=0.8) ib proximal dist dist – 0 – 1
ERO(p=1, style=gamma,η=0.8) ib proximal dist dist – 0 – 1
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Table D.21: GNN selection among GNNRank-N methods for the lowest Lupset, ratio.

Data Variant train with pretrain with Lupset,margin coefficient baseline Lupset,ratio coefficient
HeadToHead DIMPA dist dist – 0 – 1
Finance DIMPA innerproduct innerproduct – 0 – 1
Animal DIMPA dist dist – 0 – 1
Faculty: Business DIMPA innerproduct innerproduct – 0 – 1
Faculty: CS DIMPA dist dist – 0 – 1
Faculty: History DIMPA innerproduct innerproduct – 0 – 1
Basketball(1985) DIMPA dist dist – 0 – 1
Basketball(1986) DIMPA innerproduct innerproduct – 0 – 1
Basketball(1987) DIMPA innerproduct innerproduct – 0 – 1
Basketball(1988) DIMPA dist dist – 0 – 1
Basketball(1989) DIMPA dist dist – 0 – 1
Basketball(1990) DIMPA dist dist – 0 – 1
Basketball(1991) DIMPA innerproduct innerproduct – 0 – 1
Basketball(1992) DIMPA innerproduct innerproduct – 0 – 1
Basketball(1993) DIMPA innerproduct innerproduct – 0 – 1
Basketball(1994) DIMPA innerproduct innerproduct – 0 – 1
Basketball(1995) DIMPA innerproduct innerproduct – 0 – 1
Basketball(1996) DIMPA innerproduct innerproduct – 0 – 1
Basketball(1997) DIMPA innerproduct innerproduct – 0 – 1
Basketball(1998) DIMPA innerproduct innerproduct – 0 – 1
Basketball(1999) DIMPA dist dist – 0 – 1
Basketball(2000) DIMPA innerproduct innerproduct – 0 – 1
Basketball(2001) DIMPA innerproduct innerproduct – 0 – 1
Basketball(2002) DIMPA innerproduct innerproduct – 0 – 1
Basketball(2003) DIMPA innerproduct innerproduct – 0 – 1
Basketball(2004) DIMPA innerproduct innerproduct – 0 – 1
Basketball(2005) DIMPA innerproduct innerproduct – 0 – 1
Basketball(2006) DIMPA innerproduct innerproduct – 0 – 1
Basketball(2007) DIMPA innerproduct innerproduct – 0 – 1
Basketball(2008) DIMPA dist dist – 0 – 1
Basketball(2009) DIMPA innerproduct innerproduct – 0 – 1
Basketball(2010) DIMPA innerproduct innerproduct – 0 – 1
Basketball(2011) DIMPA innerproduct innerproduct – 0 – 1
Basketball(2012) DIMPA innerproduct innerproduct – 0 – 1
Basketball(2013) DIMPA dist dist – 0 – 1
Basketball(2014) DIMPA innerproduct innerproduct – 0 – 1
Basketball finer(1985) DIMPA innerproduct innerproduct – 0 – 1
Basketball finer(1986) DIMPA innerproduct innerproduct – 0 – 1
Basketball finer(1987) DIMPA innerproduct innerproduct – 0 – 1
Basketball finer(1988) DIMPA innerproduct innerproduct – 0 – 1
Basketball finer(1989) DIMPA innerproduct innerproduct – 0 – 1
Basketball finer(1990) DIMPA innerproduct innerproduct – 0 – 1
Basketball finer(1991) DIMPA innerproduct innerproduct – 0 – 1
Basketball finer(1992) DIMPA innerproduct innerproduct – 0 – 1
Basketball finer(1993) DIMPA innerproduct innerproduct – 0 – 1
Basketball finer(1994) DIMPA innerproduct innerproduct – 0 – 1
Basketball finer(1995) DIMPA innerproduct innerproduct – 0 – 1
Basketball finer(1996) DIMPA innerproduct innerproduct – 0 – 1
Basketball finer(1997) DIMPA innerproduct innerproduct – 0 – 1
Basketball finer(1998) DIMPA innerproduct innerproduct – 0 – 1
Basketball finer(1999) DIMPA innerproduct innerproduct – 0 – 1
Basketball finer(2000) DIMPA innerproduct innerproduct – 0 – 1
Basketball finer(2001) DIMPA innerproduct innerproduct – 0 – 1
Basketball finer(2002) DIMPA innerproduct innerproduct – 0 – 1
Basketball finer(2003) DIMPA innerproduct innerproduct – 0 – 1
Basketball finer(2004) DIMPA innerproduct innerproduct – 0 – 1
Basketball finer(2005) DIMPA innerproduct innerproduct – 0 – 1
Basketball finer(2006) DIMPA innerproduct innerproduct – 0 – 1
Basketball finer(2007) DIMPA innerproduct innerproduct – 0 – 1
Basketball finer(2008) DIMPA innerproduct innerproduct – 0 – 1
Basketball finer(2009) DIMPA innerproduct innerproduct – 0 – 1
Basketball finer(2010) DIMPA innerproduct innerproduct – 0 – 1
Basketball finer(2011) DIMPA innerproduct innerproduct – 0 – 1
Basketball finer(2012) DIMPA innerproduct innerproduct – 0 – 1
Basketball finer(2013) DIMPA innerproduct innerproduct – 0 – 1
Basketball finer(2014) DIMPA innerproduct innerproduct – 0 – 1
Football(2009) DIMPA dist dist – 1 – 1
Football(2010) DIMPA dist dist – 1 – 1
Football(2011) DIMPA dist dist – 1 – 1
Football(2012) DIMPA dist dist – 1 – 1
Football(2013) DIMPA dist dist – 1 – 1
Football(2014) DIMPA dist dist – 1 – 1
Football finer(2009) DIMPA dist dist – 1 – 1
Football finer(2010) DIMPA innerproduct innerproduct – 0 – 1
Football finer(2011) DIMPA dist dist – 1 – 1
Football finer(2012) DIMPA dist dist – 1 – 1
Football finer(2013) DIMPA innerproduct innerproduct – 0 – 1
Football finer(2014) DIMPA dist dist – 1 – 1
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Table D.22: GNN selection among GNNRank-P methods for the lowest Lupset, ratio.

Data Variant learning rate train with pretrain with Lupset,margin coefficient baseline Lupset,ratio coefficient
HeadToHead DIMPA proximal baseline proximal baseline dist 1 SyncRank 1
Finance DIMPA proximal baseline proximal innerproduct dist 1 SpringRank 1
Animal ib proximal baseline proximal baseline SerialRank similarity 0 SpringRank 1
Faculty: Business DIMPA proximal dist proximal baseline SerialRank similarity 0 SerialRank 1
Faculty: CS DIMPA proximal baseline proximal baseline dist 1 PageRank 0
Faculty: History DIMPA proximal baseline proximal baseline dist 1 BTL 0
Basketball(1985) ib proximal baseline proximal baseline SerialRank similarity 0 SyncRank 1
Basketball(1986) ib proximal baseline proximal baseline SerialRank similarity 0 SyncRank 1
Basketball(1987) ib proximal baseline proximal baseline SerialRank similarity 0 SyncRank 1
Basketball(1988) ib proximal baseline proximal baseline SerialRank similarity 1 SyncRank 1
Basketball(1989) ib proximal baseline proximal baseline SerialRank similarity 0 SyncRank 1
Basketball(1990) ib proximal baseline proximal baseline SerialRank similarity 1 SyncRank 1
Basketball(1991) ib proximal baseline proximal baseline SerialRank similarity 0 SyncRank 1
Basketball(1992) ib proximal baseline proximal baseline SerialRank similarity 1 SVD_NRS 0
Basketball(1993) ib proximal baseline proximal baseline SerialRank similarity 1 SyncRank 1
Basketball(1994) ib proximal baseline proximal baseline SerialRank similarity 0 SyncRank 1
Basketball(1995) ib proximal baseline proximal baseline SerialRank similarity 0 SyncRank 1
Basketball(1996) ib proximal baseline proximal baseline SerialRank similarity 0 SyncRank 1
Basketball(1997) ib proximal baseline proximal baseline SerialRank similarity 0 SyncRank 1
Basketball(1998) ib proximal baseline proximal baseline SerialRank similarity 1 SyncRank 0
Basketball(1999) ib proximal baseline proximal baseline SerialRank similarity 0 SyncRank 1
Basketball(2000) ib proximal baseline proximal baseline SerialRank similarity 0 SyncRank 1
Basketball(2001) ib proximal baseline proximal baseline SerialRank similarity 0 SyncRank 1
Basketball(2002) ib proximal baseline proximal baseline SerialRank similarity 0 SyncRank 1
Basketball(2003) ib proximal baseline proximal baseline SerialRank similarity 0 SyncRank 1
Basketball(2004) ib proximal baseline proximal baseline SerialRank similarity 0 SyncRank 1
Basketball(2005) ib proximal baseline proximal baseline SerialRank similarity 0 SyncRank 1
Basketball(2006) ib proximal baseline proximal baseline dist 0 SyncRank 1
Basketball(2007) ib proximal baseline proximal baseline SerialRank similarity 1 SyncRank 0
Basketball(2008) ib proximal baseline proximal baseline dist 0 SyncRank 1
Basketball(2009) ib proximal baseline proximal baseline SerialRank similarity 1 SyncRank 1
Basketball(2010) ib proximal baseline proximal baseline SerialRank similarity 0 SyncRank 1
Basketball(2011) ib proximal baseline proximal baseline SerialRank similarity 0 SyncRank 1
Basketball(2012) ib proximal baseline proximal baseline SerialRank similarity 1 SyncRank 1
Basketball(2013) ib proximal baseline proximal baseline SerialRank similarity 0 SyncRank 1
Basketball(2014) ib proximal baseline proximal baseline SerialRank similarity 0 SyncRank 1
Basketball finer(1985) ib proximal baseline dist – 0 SpringRank 1
Basketball finer(1986) DIMPA proximal baseline innerproduct – 0 SpringRank 1
Basketball finer(1987) DIMPA proximal baseline innerproduct – 0 SpringRank 1
Basketball finer(1988) DIMPA proximal baseline innerproduct – 0 SpringRank 1
Basketball finer(1989) DIMPA proximal baseline innerproduct – 0 SpringRank 1
Basketball finer(1990) DIMPA proximal baseline innerproduct – 0 SpringRank 1
Basketball finer(1991) DIMPA proximal baseline dist – 1 SpringRank 1
Basketball finer(1992) ib proximal baseline innerproduct – 0 SpringRank 1
Basketball finer(1993) DIMPA proximal baseline innerproduct – 0 SpringRank 1
Basketball finer(1994) ib proximal baseline dist – 1 SpringRank 0
Basketball finer(1995) DIMPA proximal baseline innerproduct – 0 SpringRank 1
Basketball finer(1996) DIMPA proximal baseline dist – 1 SpringRank 1
Basketball finer(1997) DIMPA proximal baseline innerproduct – 0 SpringRank 1
Basketball finer(1998) DIMPA proximal baseline dist – 1 SpringRank 1
Basketball finer(1999) DIMPA proximal baseline dist – 1 SpringRank 1
Basketball finer(2000) DIMPA proximal baseline dist – 1 SpringRank 1
Basketball finer(2001) DIMPA proximal baseline dist – 1 SpringRank 1
Basketball finer(2002) DIMPA proximal baseline innerproduct – 0 SpringRank 1
Basketball finer(2003) DIMPA proximal baseline innerproduct – 0 SpringRank 1
Basketball finer(2004) DIMPA proximal baseline innerproduct – 0 SpringRank 1
Basketball finer(2005) DIMPA proximal baseline innerproduct – 0 SpringRank 1
Basketball finer(2006) DIMPA proximal baseline innerproduct – 0 SpringRank 1
Basketball finer(2007) DIMPA proximal baseline innerproduct – 0 SpringRank 1
Basketball finer(2008) DIMPA proximal baseline innerproduct – 0 SpringRank 1
Basketball finer(2009) DIMPA proximal baseline innerproduct – 0 SpringRank 1
Basketball finer(2010) DIMPA proximal baseline innerproduct – 0 SpringRank 1
Basketball finer(2011) DIMPA proximal baseline innerproduct – 0 SpringRank 1
Basketball finer(2012) DIMPA proximal baseline innerproduct – 0 SpringRank 1
Basketball finer(2013) DIMPA proximal baseline dist – 1 SpringRank 1
Basketball finer(2014) DIMPA proximal baseline innerproduct – 0 SpringRank 1
Football(2009) ib proximal baseline proximal baseline SerialRank similarity 0 SyncRank 1
Football(2010) DIMPA proximal baseline proximal innerproduct dist 1 SpringRank 1
Football(2011) ib proximal baseline proximal baseline dist 1 SyncRank 0
Football(2012) ib proximal baseline proximal baseline SerialRank similarity 1 SyncRank 1
Football(2013) ib proximal baseline proximal baseline SerialRank similarity 0 SyncRank 1
Football(2014) ib proximal baseline proximal baseline dist 1 SyncRank 0
Football finer(2009) DIMPA proximal baseline dist – 1 SpringRank 1
Football finer(2010) DIMPA proximal baseline dist – 1 SpringRank 1
Football finer(2011) DIMPA proximal baseline proximal innerproduct dist 1 SpringRank 1
Football finer(2012) DIMPA proximal baseline proximal innerproduct dist 0 SpringRank 1
Football finer(2013) DIMPA proximal baseline proximal innerproduct dist 0 SpringRank 1
Football finer(2014) DIMPA proximal dist dist – 1 – 1
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E.1 Analytical discussions

E.1.1 Properties of the loss functions
In classical convex optimization of the type infx g(x), optimal values are achieved
at stationary points; when the function g is differentiable, then following Fermat’s
rule, stationary points are points at which the gradient of g vanishes. Such points
are typically found via gradient descent methods. When the function g is not
differentiable, then there are weaker variants for differentiablity available such as
the directional derivative. First we recall the notion of a directional derivative and
a directional stationary point from [207]. The directional derivative of a function
f at point x ∈ R

m in the direction d ∈ R
m is defined by

f ′(x, d) = lim
t↘0

f(x + td)− f(x)
t

.

A directional stationary point x ∈ Rn of the problem infx∈C g(x) for C ⊂ R
n and

g : Rn → R is a point such that the directional derivatives in any direction d ∈ Rn

satisfy (g + 1C)′(x, d) ≥ 0. This notion is broad enough to include functions such
as the maximum which is not everywhere differentiable.

Moreover we say that a function f : Rm → R is locally Lipschitz if for any
bounded set S ⊂ R

m, there exists a constant L > 0 such that

|f(x− y)| ≤ L ∥ x− y ∥2

for all x, y ∈ S. Note that a locally Lipschitz function f is differentiable almost
everywhere, see for example [231, Theorem 9.60] where also more background on
directional derivatives and subdifferentials can be found.
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Proof of Proposition 2 Here we prove Proposition 2 from the main text; for
convenience, we repeat it here.
Proposition 5. Every local minimum of eq. (6.1) is a directional stationary point
of eq. (6.2).
Proof. eq. (6.2) gives that

Lupset

= ∥M∥F /t

= 1
t

√∑
i,j

1(Ti,j −Ai,j ̸= 0, 2π) min(Ti,j −Ai,j mod 2π, Ai,j −Ti,j mod 2π)2

= 1
t

√∑
i,j

1(Ti,j −Ai,j ̸= 0, 2π) min{Ti,j −Ai,j mod 2π, 2π − (Ti,j −Ai,j mod 2π)}2

where t is the number of nonzero elements in A. The function f : (0, 2π) 7→ (0, 2π)
given by f(x) = min(x2, (2π − x)2) is differentiable with derivative uniformly
bounded by 4π (and is hence locally Lipschitz) except at the point x = π where
it takes on its maximum, π2. Thus, this function is a directionally differentiable
Lipschitz function (which can be seen by writing min(a, b) = 1

2(a + b)− 1
2 |a− b| and

noting that f(x) = −|x| is a directionally differentiable Lipschitz function). More-
over we can phrase the optimization problem for the upset loss as an optimization
problem over the closed set C = [0, 2π]n representing sets{ri, i = 1, . . . , n} which
are then used to obtain matrices T with entries Tij = ri − rj mod 2π. Fact 6 in
[207] then guarantees that every local minimum is a directional stationary point of
eq. (6.2).

Discussion of the case of general k For general k-synchronization, we only
require M(l)

i,j to be close to zero for one l instead of all because each edge is assumed
to belong to exactly one graph Gl. Therefore in an ideal setting, for each edge
(i, j) ∈ E , exactly one of the entries M(l)

i,j , l = 1, . . . , k is zero. If all entries are large
then this indicates that the information for (i, j) is very noisy. Subsequently, the
entry for (i, j) is downweighted in the updated graph for the cycle loss function.
The rationale is that when edge information is very noisy, the cycle consistency
will often be violated; violations for edge information that is not so noisy are more
important for angular synchronization as they should contain a stronger signal.

In terms of the cycle loss function itself, the confidence matrix C̃ for edges in
G arises. First consider the optimization problem in which C̃ is omitted; taking
Ã = (A−A⊤) mod 2π and we optimize the upset loss, the cycle loss, or both. For the
upset loss, eq. (6.5) itself when considering fixed Ã(l) terms, can be analyzed similarly
to the analysis of Lupset in Proposition 1, using that the minimum as appearing in
Mi,j = minl∈{1,...,k} M(l)

i,j is a directionally differentiable Lipschitz function. For the
cycle loss function, the expression of L(l)

cycle takes a constant (when we regard Ã(l) as
fixed) away from the minimum of S

(l)
i,j,q mod 2π and (−S

(l)
i,j,q) mod 2π. This minimum

is equivalent to |π − (S(l)
i,j,q mod 2π)|, which is again a directionally differentiable

Lipschitz function. Arguing as for Proposition 1 thus shows that the statement of
this proposition extends to this special treatment of the k-synchronization problem.

In our general treatment of the k-synchronization problem, the confidence matrix
C̃ depends on the maximum M of the residual matrices and involves the expression
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1
1+Mi,j

1(Ai,j ̸= 0). While the function f(x) = 1
1+x

is differentiable for x > 0,
its composition with a function such as M may not be differentiable, as M only
possesses a very weak notion of differential, called a limiting subdifferential in [207],
to which the chain rule does not apply. This complex dependence hinders a more
rigorous analysis of the general treatment of the k-synchronization problem, where
even the chain rule is not guaranteed to hold.

Non-differentiable points of the loss function Although the Frobenius norm,
the min function, and modulo have non-differentiable points, these points have
measure zero. Moreover, as we use PyTorch autograd 1 for gradient calculation,
even in the presence of non-differentiable points, backpropagation can be carried
out whenever an approximate gradient can be constructed. Note that the absolute
value function is convex, and hence autograd will apply the sub-gradient of the
minimum norm. There also exist differentiable approximations for the modulo,
and hence backpropagation can still be executed. Finally, in our experiments, we
do not empirically observe any issue of convergence.

Novelty While the design of the upset loss in isolation may be relatively straight-
forward for the k = 1 case, we provide theoretical support as well as a less obvious
loss function extension to handle broader k ≥ 2 cases that rely on assigning
edges to different graphs. The design of the cycle loss is not trivial and based
on problem-specific insights.

E.1.2 Robustness of GNNSync
First we review DIMPA (Directed Mixed Path Aggregation) from [5] for obtaining
a network embedding. DIMPA captures local network information by taking a
weighted average of information from neighbors within h hops. Here we use h = 2
hops throughout the paper. Let A ∈ Rn×n be an adjacency and As its row-
normalization. A weighted self-loop is added to each node; then we normalize
by setting As = (D̃s)−1Ãs, where Ãs = A + τIn, with D̃s the diagonal matrix
with entries D̃s

i,i = ∑
j Ãs

i,j, In the n × n identity matrix, and τ is a small value;
as in [5] we take τ = 0.5.

The h-hop source matrix is given by (As)h. The set of up-to-h-hop source
neighborhood matrices is denoted as As,h = {In, As, . . . , (As)h}. Similarly, for
aggregating information when each node is viewed as a target node of a link, we
carry out the same procedure for the transpose A⊤. The set of up-to-h-hop target
neighborhood matrices is denotes as At,h = {In, At, . . . , (At)h}, where At is the
row-normalized target adjacency matrix calculated from A⊤.

Let the input feature matrix be denoted by X ∈ Rn×din . The source em-
bedding is given by

Zs =
 ∑

N∈As,h

ωs
N ·N

 ·Qs ∈ Rn×d, (E.1)

where for each N, ωs
N is a learnable scalar, d is the dimension of this embedding, and

Qs = MLP(s,L)(X). Here, the hyperparameter L controls the number of layers in the
multilayer perceptron (MLP) with ReLU activation but without the bias terms; as in
[5] we fix L = 2 throughout. Each layer of the MLP has the same number d of hidden

1https://pytorch.org/docs/stable/notes/autograd.html
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units. The target embedding Zt is defined similarly, with s replaced by t ineq. (E.1).
After these two decoupled aggregations, the embeddings are concatenated to obtain
the final node embedding as a n × (2d) matrix Z = CONCAT (Zs, Zt) .

Proof of Proposition 3 Here we prove Proposition 3 from the main text; for
convenience, we repeat it here.

Proposition 6. For adjacency matrices A, Â, assume their row-normalized variants
As, Âs, At, Ât satisfy

∥∥∥As − Âs

∥∥∥
F

< ϵs and
∥∥∥At − Ât

∥∥∥
F

< ϵt, where subscripts s, t

denote source and target, resp. Assume further their input feature matrices X, X̂
satisfy

∥∥∥X− X̂
∥∥∥

F
< ϵf . Then their initial angles r(0), r̂(0) from a trained GNNSync

using DIMPA satisfy
∥∥∥r(0) − r̂(0)

∥∥∥
F

< Bsϵs + Btϵs + Bfϵf , for values Bs, Bt, Bf that
can be bounded by imposing constraints on model parameters and input.

Proof. Let us assume the input feature matrices are X, X̂ ∈ Rn×din for A and Â,
respectively.

The DIMPA procedures for the input row-normalized adjacency matrices As, At
with 2 hops and hidden dimension d can be written as a concatenation of the source
and target node embeddings Zs and Zt, where

Zs = (In + as1As + as2A2
s)ReLU(XWs0)Ws1,

Zt = (In + at1At + at2A2
t )ReLU(XWt0)Wt1.

(E.2)

Here In ∈ Rn×n is the identity matrix, as1, as2, at1, at2 ∈ R, Ws0, Wt0 ∈ Rdin×d

where d is the hidden dimension, and Ws1, Wt1 ∈ Rh×h. Similarly, we have for Âs

and Ât

Ẑs = (In + as1Âs + as2Â2
s)ReLU(X̂Ws0)Ws1,

Ẑt = (In + at1Ât + at2Â2
t )ReLU(X̂Wt0)Wt1.

(E.3)

After DIMPA, we carry out the innerproduct procedure and sigmoid rescaling,
to obtain for k = 1

r(0) = 2πsigmoid(Zsas + Ztat + b), r̂(0) = 2πsigmoid(Ẑsas + Ẑtat + b), (E.4)

where as, at ∈ Rd×1 and b is a trained scalar.
For k > 1, we have (before reshaping r(0) and r̂(0) from shape nk × 1 to shape

n× k which does not change the Frobenius norm)

r(0) = 2πsigmoid(Zsas + Ztat + b), r̂(0) = 2πsigmoid(Ẑsas + Ẑtat + b), (E.5)

where as, at ∈ Rdk and b ∈ Rk. Indeed, we could view the scalar b as a 1D vector,
and consider eq. (E.4) as a special case of eq. (E.5).

Printed on June 7, 2024



E. Robust Angular Synchronization Using Directed Graph Neural Networks
Supplementary Information 250

Using eq. (E.2) and eq. (E.3), along with the triangle inequality, we have that

∥∥∥Zs − Ẑs

∥∥∥
F

=
∥∥∥(In + as1As + as2A2

s)ReLU(XWs0)Ws1 − (In + as1Âs + as2Â2
s)ReLU(X̂Ws0)Ws1

∥∥∥
F

≤
∥∥∥(In + as1As + as2A2

s)ReLU(XWs0)Ws1 − (In + as1Âs + as2Â2
s)ReLU(XWs0)Ws1

∥∥∥
F

+∥∥∥(In + as1Âs + as2Â2
s)ReLU(XWs0)Ws1 − (In + as1Âs + as2Â2

s)ReLU(X̂Ws0)Ws1

∥∥∥
F

≤
∥∥∥[as1(As − Âs) + as2(A2

s − Â2
s)]ReLU(XWs0)Ws1

∥∥∥
F

+∥∥∥In + as1Âs + as2Â2
s

∥∥∥
F
∥Ws1∥F

∥∥∥ReLU(XWs0)− ReLU(X̂Ws0)
∥∥∥

F

≤
∥∥∥As − Âs

∥∥∥
F

∥∥∥[as1 + as2(As + Âs)]ReLU(XWs0)Ws1

∥∥∥
F

+∥∥∥In + as1Âs + as2Â2
s

∥∥∥
F
∥Ws1∥F ∥Ws0∥F

∥∥∥X− X̂
∥∥∥

F

<ϵsBs0 + ϵfBfs,

(E.6)

where Bs0 =
∥∥∥[as1 + as2(As + Âs)]ReLU(XWs0)Ws1

∥∥∥
F

and
Bfs =

∥∥∥In + as1Âs + as2Â2
s

∥∥∥
F
∥Ws1∥F ∥Ws0∥F . Note that we also use the fact that

the ReLU function is Lipschitz with Lipschitz constant 1.
Likewise, we have ∥∥∥Zt − Ẑt

∥∥∥
F

< ϵtBt0 + ϵfBft, (E.7)

where Bt0 =
∥∥∥[at1 + at2(At + Ât)]ReLU(XWt0)Wt1

∥∥∥
F

and
Bft =

∥∥∥In + at1Ât + at2Â2
t

∥∥∥
F
∥Wt1∥F ∥Wt0∥F .

With eq. (E.6) and eq. (E.7), noting that the sigmoid function is Lipschitz with
Lipschitz constant 1, we employ eq. (E.5) to obtain

∥∥∥r(0) − r̂(0)
∥∥∥

F

=
∥∥∥2πsigmoid(Zsas + Ztat + b)− 2πsigmoid(Ẑsas + Ẑtat + b)

∥∥∥
F

≤2π
∥∥∥(Zsas + Ztat + b)− (Ẑsas + Ẑtat + b)

∥∥∥
F

=2π
∥∥∥(Zs − Ẑs)as + (Zt − Ẑt)at

∥∥∥
F

≤2π
[∥∥∥(Zs − Ẑs)as

∥∥∥
F

+
∥∥∥(Zt − Ẑt)at

∥∥∥
F

]
=2π

(
∥as∥F

∥∥∥Zs − Ẑs

∥∥∥
F

+ ∥at∥F

∥∥∥Zt − Ẑt

∥∥∥
F

)
<2π(ϵsBs0 + ϵfBfs + ϵtBt0 + ϵfBft)
=ϵsBs + ϵtBt + ϵfBf ,
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with values

Bs =2πBs0 = 2π
∥∥∥[as1 + as2(As + Âs)]ReLU(XWs0)Ws1

∥∥∥
F

,

Bt =2πBt0 = 2π
∥∥∥[at1 + at2(At + Ât)]ReLU(XWt0)Wt1

∥∥∥
F

,

Bf =2π(Bfs + Bft)
=2π

∥∥∥In + as1Âs + as2Â2
s

∥∥∥
F
∥Ws1∥F ∥Ws0∥F

+ 2π
∥∥∥In + at1Ât + at2Â2

t

∥∥∥
F
∥Wt1∥F ∥Wt0∥F .

(E.8)

If we in addition have

∥Ws0∥F ≤ 1, ∥Ws1∥F ≤ 1, ∥Wt0∥F ≤ 1, ∥Wt1∥F ≤ 1,∥∥∥as1 + as2(As + Âs)
∥∥∥

F
≤ 1,

∥∥∥at1 + at2(At + Ât)
∥∥∥

F
≤ 1,

∥XWs0∥F ≤ 1,
∥∥∥In + as1Âs + as2Â2

s

∥∥∥
F
≤ 1,

∥∥∥In + at1Ât + at2Â2
t

∥∥∥
F
≤ 1,

then the bound becomes
∥∥∥r(0) − r̂(0)

∥∥∥
F

< 2π(ϵs + ϵt + 2ϵf ), as

∥∥∥[as1 + as2(As + Âs)]ReLU(XWs0)Ws1

∥∥∥
F

≤
∥∥∥as1 + as2(As + Âs)

∥∥∥
F
∥ReLU(XWs0)∥F ∥Ws1∥F

≤
∥∥∥as1 + as2(As + Âs)

∥∥∥
F
∥XWs0∥F ∥Ws1∥F ,

and similarly for Bt.
This completes the proof.

Discussion on GNNSync’s robustness to noise With the above proposition,
we could consider Â as the ground-truth noiseless adjacency matrix whose nonzero
entries encode (θi − θj) mod 2π, and A as the actual noisy observed input graph.
We then execute row normalization to obtain the source and target matrices Âs

and Ât for the ground-truth and As and At for the observation, respectively. In a
favorable noise regime, ϵs and ϵt would be small. The value ϵf comes from the feature
generation method. For Spectral_RN baseline as input feature generation method
for example, this involves some eigensolver corresponding to complex Hermitian
matrices, and hence the Davis-Kahan Theorem [232] or one of its variants [233, 234]
could be applied to upper-bound ϵf . As for the values Bs, Bt, and Bf , we could
bound them by adding constraints to GNNSync’s model parameters. Employing a
backpropagation procedure with our novel loss functions could further boost the
robustness of GNNSync, with learnable procedures, as shown for example in [235].

E.2 Data sets

E.2.1 Random graph outlier models
The detailed synthetic data generation process is as follows:
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1. Given the number of nodes n, generate k group(s) of ground-truth angles
{θi,l : i ∈ {1, . . . , n}} for l ∈ {1, . . . , k}. One option is to generate each θi,l

from the same Gamma distribution with shape 0.5 and scale 2π. We denote
this option with subscript “1". Since angles could be highly correlated in
practical scenarios, we introduce a more realistic but challenging option “2",
with multivariate normal ground-truth angles. For example, in the SNL
application, angles correspond to patch rotations, and may well be that
patches in similar geographic regions have corresponding rotations. The mean
of the ground-truth angles is π, with covariance matrix for each l ∈ {1, . . . , k}
defined by ww⊤, where entries in w are generated independently from a
standard normal distribution. We then apply mod 2π to all angles to ensure
that they lie in [0, 2π). We thus obtain the ground-truth adjacency matrix
(matrices) Al

GT ∈ Rn×n, whose (i, j) element is given by (θi,l − θj,l) mod 2π.

2. Generate a noisy background adjacency matrix Anoise ∈ Rn×n whose entries
are independently generated from a uniform distribution over [0, 2π).

3. Generate a selection matrix Asel ∈ R
n×n whose entries are independently

drawn from a Uniform(0,1) distribution. The (i, j) entry of this selection
matrix is used to assign whether or not the observation is noisy, and if not
noisy, to which graph it is assigned, using for l = 1, . . . , k

Bnoise(i, j; l) = 1

(
(1− η)(l − 1)/k ≤ Asel(i, j) < (1− η)l/k

)
and Bnoise(i, j;∞) = 1

(
Asel(i, j) ≥ (1 − η)

)
, where 1(·) is the indicator

function.
4. Construct a complete (without self-loops) weighted adjacency matrix Acomplete ∈
R

n×n by Acomplete(i, j) = ∑
l∈{1,...,k} A(l)

GT(i, j)Bnoise(i, j; l)+Anoise(i, j)Bnoise(i, j;∞).

5. Generate a measurement graph Ḡ with adjacency matrix Ḡ using a standard
random graph model, as introduced by Sec. 6.6.1.

6. The edges in Ḡ are the edges on which we observe the noisy version Acomplete of
the ground-truth adjacency matrix (matrices) Al

GT, to obtain the temporary
adjacency matrix T1 by T1(i, j) = Acomplete(i, j)1(Ḡ(i, j) ̸= 0).

7. The true angle differences would yield a skew-symmetric matrix before taking
the entries mod 2π. We therefore construct a skew-symmetric matrix T2 by
setting T2(i, i) = 0 for all i, and for i ̸= j setting T2(i, j) = T1(i, j)1(i <
j)−T1(j, i)1(i > j).

8. In the skew-symmetric matrix, each entry appears twice, with different signs.
For computational reasons, for the final adjacency matrix, we only keep the
non-negative entries, except for evaluation. We obtain the final adjacency
matrix A by Ai,j = A(i, j) = T2(i, j)1(T2(i, j) ≥ 0) mod 2π.

In addition to the two options introduced in Sec. 6.6.1, we introduce two
more options for the ground-truth angle generation process here, which are both
multivariate normal distributions, but with different covariance matrices. For
option “3", the covariance matrix is just the identity matrix. For option “4", we
have a block-diagonal covariance matrix, with six blocks, each of which is generated
independently according to option “2" as stated in Sec. 6.6.1 in the main text.
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As methods could be applied to different connected components of disconnected
graphs separately, we focus on weakly connected networks. We have checked that
all generated networks in our experiments are weakly connected.

The reason behind the naming convention “outlier" stems from the noisy offset
entries in the adjacency matrix.

Steps 7 and 8 are to ensure that there does not exist an edge (i, j) such that
(Ai,j + Aj,i) mod 2π ̸= 0, as this would be confusing. In principle, we could work
with the upper-triangular part or the lower-triangular part of the adjacency matrix
first, then obtain the skew-symmetric adjacency matrix T2 and apply step 8 again.
The procedures mentioned in Sec. 6.6.1 are what we implement in practice, which
should take no more than twice the computational cost compared to working with
half of the adjacency matrix at the beginning. Note that data generation only
happens once before running the actual experiments.

Our synthetic data settings are similar to those in previous angular synchroniza-
tion papers, such as [196, 197, 203], to generate noisy samples from an outlier model
(where each outlier measurement is generated uniformly at random), instead of using
additive Gaussian noise in the so-called spike models. The choice of the number of
nodes 360 could be changed to other numbers; we chose it to relate to 360 possible
integer degrees of an angle. Note that the initial work of [197] considered n random
rotation angles uniformly distributed in [0, 2π). We do not observe a large difference
in the performance of other sizes (we have also tried 300 and 500, for example).

The choice of synthetic data set construction is inspired by [197] and [196]. They
are noisy versions of standard random graph models. These random graph models
were chosen as they can be used for comparison. Indeed, some previous works have
only used ER measurement graphs as in [203], and [197] theoretically analyzed
and experimented with both sparse ER and complete measurement graphs; we
already have a more thorough setup in our experiments. Furthermore, the addition
of the RGG model stems from the very fact that this model is perhaps the most
representative one, given the applications that have motivated the development of
the group synchronization problem over the last decade. Indeed, in sensor network
localization or the molecule problem in NMR structural biology, pairwise Euclidean
distance information is only available between nearby sensors or atoms (e.g., certain
sensors/atoms are connected if at most 6 miles/angstrom apart), hence leading to
an RGG (disc graph) model. In this setup, in order to recover the latent coordinates,
the state-of-the-art methods rely on divide-and-conquer approaches that first divide
the graph into overlapping subgraphs /patches, embed locally to take advantage of
the higher edge density locally, and finally aim to stitch globally, which is where
group synchronization comes into play. Therefore, any patch-based reconstruction
method that leverages the local geometry is only able to pairwise align only nearby
patches that have enough points in common; far away patches that do not overlap
simply cannot be aligned. Thus, the choice of RGG resembles best the real-world
applications. The ER model has been predominantly used in the literature as
it is easier to analyze theoretically compared to RGG, in light of available tools
from the random matrix theory literature.

E.2.2 Sensor network localization
Previous works in the field of angular synchronization typically only consider
synthetic data sets in their experiments, and those applying synchronization to
real-world data do not typically publish the data sets. Concrete examples for
such works include tracking the trajectory of a moving object using directional
sensors [236], and habitat monitoring in an infrastructure-less environment in which
radios are turned on at designated times to save power on Great Duck Island [237].

In this paper, we adapt the task on group synchronization over the Euclidean
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(a) Construct a patch in blue
based on nearest neighbors.
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(c) Add noise to each node’s
coordinates in each patch.
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(d) Rotate the patches based
on some ground-truth

rotation angles. Then apply
Procrustes analysis to

estimate the rotation angle
based on overlapping nodes

(in green). Here we use
θblue = 174◦ and

θyellow = 178◦ with
ground-truth

θblue − θyellow = 356◦.
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(e) Perform angular
synchronization on the full

adjacency matrix A (keeping
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to obtain estimated angles
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Apply estimated rotations to

the noisy patches.
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(f) Recovered central point
locations (in blue) versus

their ground-truth locations
(in green) on the U.S. map

(in red) for the two sampled
patches. The locations are

estimated by taking the
average recovered

coordinates for each city
(node) from all patches that

contain this node.

Figure E.1: U.S. city patch localization pipeline with two patches as an example:
Starting with the ground-truth locations of U.S. cities, we construct patches using each
city as a central node and add its kpatch = 50 nearest neighbors to the corresponding patch.
We then add noise to each node’s coordinates using independent normal distributions for
x and y coordinates respectively, with mean zero and standard deviation η = 0.05 times of
x and y coordinates’ standard deviation, respectively. We then rotate the patches based
on some ground-truth rotation angles from option “2" introduced in Sec. 4.1. Here we use
θblue = 174◦ and θyellow = 178◦ with ground-truth θblue − θyellow = 356◦. The estimated
rotation angle from the blue patch to the yellow one is Ablue, yellow = 6.25 (i.e., 358◦).
Then we apply Procrustes analysis to estimate the rotation angle based on overlapping
nodes (but with noisy coordinates). After that, we perform angular synchronization on
the full adjacency matrix A (keeping only upper triangular entries) to obtain estimated
angles for each patch. We then update the estimated angles by shifting by the average
of pairwise differences between the estimated and ground-truth angles. Here we have
estimates rblue = 173◦ and ryellow = 175◦ with rblue − ryellow = 358◦. Then we apply
estimated rotations to the noisy patches. Finally, we obtain recovered central point
locations for the two sampled patches. The locations are estimated by taking the average
recovered coordinates for each city (node) from all patches that contain this node. The
recovered points are colored in blue, while their ground-truth locations are colored in
green.

group of rigid motions Euc(2) = Z2 × SO(2)× R2 to a real-world task, by focusing
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on the angular synchronization SO(2) component. This task on a real-world data
set is a special case of the sensor network localization (SNL) task on the plane
(R2) mentioned in [21], but we focus on synchronization over SO(2) only, as we
do not consider any translations or reflections. Though we do not have purely
real-world data sets that are employed in practice, we mimic the practical task
of sensor network localization (with a focus on rotation only) and conduct the
localization task on the U.S. map as well as a PACM point cloud. In detail, the
task is conducted as follows, where Fig. E.1 provides an overview of the pipeline
on the U.S. map with an illustrative example:

1. Starting with the ground-truth locations of U.S. cities (we have n = 1097
cities, see red dots in Fig. E.1), we construct patches using each city as a
central node and add its kpatch = 50 nearest neighbors to the corresponding
patch (see Fig. E.1(a)). We then obtain m = n = 1097 patches (see Fig. E.1(b)
for a two-patch example). This is to represent sensor patches in the real world.

2. For each patch, we add noise to each node’s coordinates using independent
normal distributions for x and y coordinates respectively, with mean zero
and standard deviation η times of x and y coordinates’ standard deviation,
respectively (see Fig. E.1(c)). Note that the noise added to the same node is
independent for different patches. This is to represent noisy observations due
to the lack of use of the expensive GPS service to estimate sensor coordinates.

3. We then rotate the patches based on some ground-truth rotation angles
θ1, . . . , θn (see Fig. E.1(d)). Here we generate the angles using one of the
options introduced in Sec. 6.6.1 and Sec. E.2.1. This again is to represent
noisy observations in the real world.

4. Then for each pair of the patches that have at least kthres = 6 overlapping
nodes, we apply Procrustes alignment [210] to estimate the rotation angle
based on these overlapping nodes (but with noisy coordinates) and add an edge
with the weight the estimated rotation angle to the observed (measurement)
adjacency matrix A. In other words, if two patches Pi, Pj that have at least
kthres = 6 overlapping nodes, we have Ai,j the estimated rotation angle from
Procrustes alignment to rotate Pj to align with Pi. This angle is an estimation
of θi − θj. The threshold is set to represent the real-world scenario where only
nearby sensors may communicate with each other.

5. After that, we perform angular synchronization on the sparse adjacency matrix
A (retaining only the upper triangular entries) to obtain the initial estimated
angles r

(0)
1 , . . . , r(0)

n for each patch.

6. We then update the estimated angles by shifting by the average of pairwise
differences between the estimated and ground-truth angles, in order to mod out
the global degree of freedom from the synchronization step (see Fig. E.1(e)).
That is, we first calculate the average of pairwise differences by δpariwise =
1
n

∑n
i=1[(r(0)

i − θi) mod 2π], then set ri = (r(0)
i − δpairwise) mod 2π, i = 1, . . . , n.

7. Next, we apply the estimated rotations to the noisy patches.

8. Finally, we estimate the city coordinates by averaging the estimated loca-
tions for each city (node) across patches that contain this city (node) (see
Fig. E.1(f)).
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Note that the noise in the observed adjacency matrix originates from the error by
Procrustes alignment, with possible noise added to nodes’ coordinates. Therefore,
even when η = 0, the observed adjacency matrix may not align perfectly with
ground-truth pairwise angular offsets. Besides, the observed adjacency matrix is
sparse instead of complete due to the thresholding set up to only connect two nodes
in the graph if the patches have enough overlapping nodes. In our experiments,
we vary η from [0, 0.05, 0.1, 0.15, 0.2, 0.25].

Our current experiment is focused on group synchronization over the group
SO(2), and in future work we plan to explore synchronization over the full Euclidean
group Euc(2) = Z2 × SO(2) × R2, similar to [21], where in addition to rotations,
both reflections and translations are considered and synchronized over.

E.3 Implementation details

E.3.1 Setup
We use the whole graph for training for at most 1000 epochs, and stop early if the
loss value does not decrease for 200 epochs. We use Stochastic Gradient Descend
(SGD) as the optimizer and ℓ2 regularization with weight decay 5 · 10−4 to avoid
overfitting. We use as learning rate 0.005 throughout.

For each synthetic data set, we generate 5 synthetic networks under the same
setting, each with 2 repeated runs.

The DIMPA model is inherited from [5]. Indeed, other directed graph embedding
neural network methods such as [114] and [6] could be employed, and we pick
DIMPA just for simplicity. In our experiments, we did try out [114], and we do
not observe much difference in the performance as long as some directed graph
embeddings could be produced.

E.3.2 Codes, data and hardware
To fully reproduce our results, anonymized code is available at https://github.
com/SherylHYX/GNN_Sync. Experiments were conducted on two compute nodes,
each with 8 Nvidia Tesla T4, 96 Intel Xeon Platinum 8259CL CPUs @ 2.50GHz
and 378GB RAM. All experiments can be completed within several days, in-
cluding all variants.

The data sets considered here are relatively small and the same applies to
GNNSync’s competitive papers. Although each individual task does not require
many resources (often < 5min/run), for the synthetic data sets in this paper we have

3(measurement graph styles for k = 1) · 10(noise levels)
·3(sparsity levels) · 4(ground-truth options)

+ 3(number of larger k values) · 6(measurement graph
options for k > 1) · 8(noise levels)
·3(sparsity levels) · 4(ground-truth options)

= 360 + 1, 728 = 2, 088

synthetic data sets.
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Each data set requires 10 runs for each of the

1(main results)
+6(different baselines as input features)
+1(no Projected Gradient Steps)
+1(trainable α)

= 9
variants for the regular angular synchronization (k = 1) and

3(main results)
+2(different baselines as input features)
+2(different baseline)
+2(trainable {αγ})
+2(no Projected Gradient Steps)
+2(separate H(l))
+5(other linear combinations of the loss function)

= 18
variants for general k-synchronization with k ∈ {2, 3, 4}. Therefore, the set of
tasks in this paper requires a total of 360 · 10 · 9 + 1, 728 · 10 · 18 = 32, 400 +
311, 040 = 343, 440 runs.

The baselines are typically faster, as they do not involve training, but GNNSync
is also pretty computationally friendly, not at a significantly higher computational
expense. Indeed, the set of all cycles could be pre-computed before training. For
k-synchronization, we only need to verify whether all edges in a cycle are contained
in an estimated graph, and to keep only these cycles for computation. There is a
loop that repeats k times, but for each loop, only matrix operations are involved,
which can be done in parallel for all possible cycles. This would not be too expensive,
as validated by our experiments. Besides, for the MSE function, we do not use it
for training, so it is not a loss function in the first place. For evaluation, it does
require computing all permutations of k but the evaluation is only conducted once.
Therefore, these computationally expensive operations (locating all possible cycles
and permutations of k in the MSE computation) are not involved in training, but
only before or after training, and hence our method is still scalable with n and k.

E.3.3 Baseline implementation
For CEMP_GCW and CEMP_MST, we adapt the MatLab code from https:
//github.com/yunpeng-shi/CEMP/tree/main/SO2 to Python. For other baselines,
we implement the approaches based on equations from the original papers. For
TAS, we transform the MatLab codes from the authors of [204] to Python. We set
the number of epochs to 50, and set the trimming parameter to zero due to the
high sparsity level of our synthetic networks, as otherwise, almost all predictions
would be the same, just like the Trivial solution.

Besides, we do not compare GNNSync against the method in [200] in our
experiments, as there is no code available. Also, their algorithm involves integration
and angular argmax in each iteration, which seems to be computationally expensive.

Finally, we are aware of Semi-Definite Programming (SDP) baselines but have
found them too time-consuming or space-inefficient. Also, from [197], we know
that SDP and spectral methods have comparable performance. Therefore, in our
experiments, we omit the SDP results.
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E.3.4 MSE calculation
As stated in eq. (6.2), the MSE function calculates the mean square error using
a global angular rotation that minimizes the MSE value. The implementation of
the MSE function, however, does not explicitly search for the lowest MSE value
through grid search or gradient descent. Inspired by the implementation of the
MSE in [208], we first map each of the predicted angles r and the ground-truth
angles R to rotation matrices by the mapping function

rot(θ) =
[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
.

We then calculate the matrix

Q = 1
n

n∑
i=1

rot(Ri)⊤ · rot(ri).

The MSE value is given by

4− 2
n∑

i=1
singi(Q),

where singi(Q) is the i-th singular value of Q during Singular Value Decom-
position (SVD).

E.4 Extended experimental results
This section reports extended experimental results mentioned in the main text.

E.4.1 Extended main results
Full main synthetic experimental results are shown in Fig. E.2 to E.13. Results
on real-world data sets are shown in Fig. E.14 to E.23, while other PACM results
are omitted but with the same conclusion. To accommodate potential variability
in different runs, we report the mean and standard deviation of ten runs (two
repeated runs on five different sets of ground-truth angles) in Tab. E.1 and E.3.
We also compute the Average Normalized Error (ANE) for coordinate recovery
similar to eq. (44) of [21], and report mean and one standard deviation of the results
in Tab. E.2 and E.4. Specifically, denote (xi, yi) as the ground-truth coordinate
for node i where i = 1, . . . , n, and (x̂i, ŷi) as the predicted coordinate, we define
the Average Normalized Error (ANE) as

ANE =

√∑n
i=1[(xi − x̂i)2 + (yi − ŷi)2]√∑n
i=1[(xi − x0)2 + (yi − y0)2]

, (E.9)

where (x0, y0) = ( 1
n

∑n
i=1 xi,

1
n

∑n
i=1 yi) = (0, 0) is the center of mass of the true

coordinates. We conclude that GNNSync is able to effectively recover coordinates.
We also observe that GNNSync is more robust to the noise of patch coordinates.
We omit the visual plots for the “Trivial" baseline but report its performance in
Tab. E.1, E.2, E.3, and E.4.
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Table E.1: Average MSE values (plus/minus one standard deviation) for the real-world
experiments on the U.S. map over ten runs. The best is marked in bold red while the
second best is in underline blue .

η option GNNSync Spectral Spectral_RN GPM TranSync CEMP_GCW CEMP_MST TAS Trivial
0 1 0.010±0.006 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 2.358±0.075 2.442±0.069
0 2 0.004±0.001 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 1.567±0.035 1.566±0.037
0 3 0.000±0.000 -0.000±0.000 -0.000±0.000 -0.000±0.000 -0.000±0.000 -0.000±0.000 -0.000±0.000 0.138±0.174 0.138±0.174
0 4 0.002±0.001 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.651±0.237 0.663±0.238
0.05 1 0.014±0.006 0.007±0.001 0.006±0.001 0.006±0.001 0.036±0.027 0.082±0.040 1.162±0.438 2.340±0.098 2.411±0.094
0.05 2 0.010±0.002 0.006±0.000 0.006±0.000 0.006±0.000 0.026±0.006 0.072±0.006 1.353±0.461 1.559±0.032 1.559±0.033
0.05 3 0.006±0.002 0.007±0.001 0.006±0.001 0.006±0.001 0.027±0.009 0.816±0.494 2.827±0.980 0.293±0.481 0.294±0.482
0.05 4 0.007±0.002 0.006±0.001 0.006±0.000 0.006±0.001 0.024±0.007 0.319±0.251 1.826±0.918 0.750±0.373 0.759±0.372
0.1 1 0.030±0.005 0.030±0.007 0.027±0.006 0.025±0.005 0.147±0.026 0.528±0.077 2.819±0.292 2.318±0.104 2.368±0.101
0.1 2 0.025±0.002 0.031±0.002 0.028±0.002 0.027±0.001 0.188±0.053 0.397±0.048 2.874±0.315 1.558±0.030 1.564±0.028
0.1 3 0.019±0.003 0.027±0.005 0.024±0.004 0.025±0.004 0.129±0.048 1.775±1.104 3.583±0.298 0.138±0.175 0.138±0.174
0.1 4 0.021±0.006 0.026±0.003 0.023±0.002 0.023±0.002 0.127±0.033 1.055±0.616 3.102±0.205 0.656±0.238 0.663±0.238
0.15 1 0.059±0.008 0.075±0.012 0.072±0.013 0.062±0.008 0.483±0.279 1.496±0.473 3.698±0.092 2.363±0.117 2.396±0.118
0.15 2 0.057±0.005 0.082±0.005 0.076±0.007 0.067±0.003 0.492±0.122 1.193±0.238 3.501±0.301 1.566±0.037 1.566±0.037
0.15 3 0.037±0.006 0.052±0.011 0.048±0.009 0.046±0.010 0.277±0.064 1.745±0.540 3.671±0.229 0.138±0.175 0.138±0.174
0.15 4 0.043±0.007 0.055±0.008 0.052±0.006 0.046±0.005 0.591±0.384 1.317±0.174 3.519±0.152 0.658±0.239 0.663±0.238
0.2 1 0.101±0.007 0.148±0.024 0.151±0.019 0.107±0.009 1.000±0.257 2.568±0.906 3.711±0.122 2.377±0.095 2.399±0.093
0.2 2 0.101±0.006 0.163±0.017 0.159±0.018 0.122±0.009 1.054±0.245 2.082±0.263 3.717±0.109 1.564±0.037 1.566±0.037
0.2 3 0.065±0.015 0.095±0.018 0.092±0.019 0.078±0.015 0.756±0.222 2.239±0.556 3.699±0.111 0.335±0.377 0.336±0.380
0.2 4 0.066±0.008 0.096±0.017 0.095±0.019 0.072±0.010 0.717±0.258 2.040±0.334 3.751±0.089 0.660±0.239 0.663±0.238
0.25 1 0.158±0.008 0.244±0.038 0.263±0.039 0.164±0.011 1.690±0.569 2.888±0.240 3.791±0.096 2.427±0.069 2.442±0.069
0.25 2 0.163±0.013 0.291±0.038 0.294±0.042 0.193±0.018 1.888±0.737 2.633±0.294 3.782±0.108 1.564±0.037 1.566±0.037
0.25 3 0.105±0.065 0.143±0.018 0.242±0.105 0.103±0.021 1.265±0.583 3.050±0.552 3.765±0.081 0.138±0.174 0.138±0.174
0.25 4 0.128±0.074 0.170±0.029 0.176±0.040 0.107±0.017 1.296±0.320 2.787±0.477 3.787±0.070 0.660±0.238 0.663±0.238

Table E.2: Average ANE values (plus/minus one standard deviation) for the real-world
experiments on the U.S. map over ten runs. The best is marked in bold red while the
second best is in underline blue .

η option GNNSync Spectral Spectral_RN GPM TranSync CEMP_GCW CEMP_MST TAS Trivial
0 1 0.075±0.028 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.740±0.021 0.973±0.263
0 2 0.047±0.010 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.425±0.015 0.423±0.014
0 3 0.011±0.009 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.050±0.049 0.049±0.049
0 4 0.030±0.016 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.213±0.078 0.219±0.078
0.05 1 0.074±0.027 0.032±0.010 0.032±0.011 0.032±0.009 0.360±0.591 0.121±0.069 0.709±0.495 0.735±0.025 0.984±0.277
0.05 2 0.054±0.013 0.284±0.508 0.030±0.002 0.159±0.258 0.092±0.020 0.146±0.035 0.638±0.238 0.421±0.015 0.419±0.013
0.05 3 0.030±0.017 0.118±0.160 0.035±0.005 0.039±0.008 0.469±0.763 0.708±0.338 0.900±0.178 0.089±0.124 0.089±0.124
0.05 4 0.229±0.569 0.404±0.744 0.031±0.007 0.032±0.008 0.058±0.009 0.494±0.595 0.750±0.369 0.243±0.121 0.250±0.122
0.1 1 0.078±0.014 0.070±0.024 0.204±0.152 0.160±0.181 0.164±0.050 0.568±0.409 1.068±0.135 0.733±0.028 0.987±0.280
0.1 2 0.057±0.017 0.077±0.007 0.076±0.005 0.259±0.355 0.270±0.042 0.345±0.042 0.992±0.161 0.415±0.016 0.414±0.016
0.1 3 0.046±0.015 0.085±0.017 0.079±0.018 0.324±0.466 0.503±0.503 0.920±0.298 1.019±0.109 0.053±0.047 0.053±0.047
0.1 4 0.247±0.583 0.075±0.019 0.069±0.016 0.124±0.119 0.226±0.135 0.828±0.382 0.964±0.146 0.215±0.079 0.219±0.078
0.15 1 0.313±0.449 0.216±0.153 0.602±0.713 0.104±0.022 0.313±0.027 0.859±0.422 1.019±0.071 0.755±0.032 1.101±0.257
0.15 2 0.076±0.019 0.573±0.679 0.151±0.062 0.136±0.026 0.460±0.304 0.983±0.460 0.964±0.065 0.425±0.015 0.424±0.014
0.15 3 0.181±0.347 0.189±0.165 0.102±0.024 0.107±0.025 0.524±0.527 0.787±0.145 0.979±0.105 0.057±0.045 0.057±0.045
0.15 4 0.075±0.032 0.104±0.030 0.096±0.020 0.088±0.024 0.929±0.522 0.947±0.460 1.019±0.060 0.215±0.077 0.220±0.078
0.2 1 0.131±0.026 0.247±0.203 0.612±0.375 0.125±0.034 0.835±0.435 0.876±0.140 1.087±0.058 0.749±0.027 0.976±0.267
0.2 2 0.094±0.018 0.451±0.332 0.225±0.109 0.433±0.506 0.609±0.234 0.967±0.272 1.005±0.038 0.424±0.017 0.424±0.014
0.2 3 0.087±0.037 0.133±0.025 0.130±0.028 0.132±0.030 0.964±0.649 0.889±0.211 1.020±0.053 0.109±0.092 0.110±0.093
0.2 4 0.077±0.023 0.123±0.029 0.126±0.025 0.103±0.027 0.724±0.484 0.911±0.217 0.999±0.031 0.215±0.076 0.221±0.077
0.25 1 0.197±0.066 0.223±0.101 0.337±0.255 0.478±0.418 0.656±0.188 0.978±0.133 1.008±0.032 0.760±0.022 0.974±0.263
0.25 2 0.122±0.034 0.494±0.399 0.393±0.219 0.546±0.701 0.912±0.215 0.895±0.061 1.030±0.025 0.425±0.017 0.425±0.014
0.25 3 0.260±0.397 0.281±0.215 0.230±0.065 0.157±0.038 1.193±0.429 1.085±0.153 1.009±0.052 0.067±0.041 0.067±0.041
0.25 4 0.134±0.109 0.513±0.662 0.188±0.047 0.288±0.343 0.612±0.174 0.958±0.147 1.042±0.048 0.217±0.074 0.222±0.076
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Table E.3: Average MSE values (plus/minus one standard deviation) for the real-world
experiments on the PACM point cloud over ten runs. The best is marked in bold red
while the second best is in underline blue .

η option GNNSync Spectral Spectral_RN GPM TranSync CEMP_GCW CEMP_MST TAS Trivial
0 1 0.010±0.013 -0.000±0.000 -0.000±0.000 -0.000±0.000 -0.000±0.000 -0.000±0.000 -0.000±0.000 2.249±0.128 2.468±0.139
0 2 0.001±0.001 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 1.640±0.041 1.565±0.042
0 3 0.002±0.002 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 1.221±0.779 1.160±0.783
0 4 0.001±0.001 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 1.196±0.430 1.176±0.426
0.05 1 0.015±0.011 0.003±0.000 0.003±0.001 0.003±0.000 0.010±0.004 0.039±0.008 0.202±0.093 2.246±0.129 2.468±0.139
0.05 2 0.004±0.001 0.003±0.000 0.002±0.000 0.002±0.000 0.010±0.003 0.024±0.016 0.885±1.157 1.611±0.057 1.543±0.051
0.05 3 0.004±0.002 0.003±0.000 0.003±0.000 0.003±0.000 0.009±0.004 0.057±0.058 0.528±0.496 1.218±0.777 1.160±0.783
0.05 4 0.003±0.001 0.003±0.000 0.003±0.000 0.003±0.000 0.011±0.012 0.177±0.206 0.718±0.292 1.006±0.246 0.987±0.253
0.1 1 0.015±0.005 0.012±0.004 0.012±0.004 0.012±0.004 0.049±0.014 0.187±0.107 1.580±0.642 2.122±0.150 2.346±0.135
0.1 2 0.010±0.001 0.011±0.001 0.010±0.001 0.010±0.001 0.044±0.011 0.145±0.031 1.599±0.459 1.631±0.036 1.565±0.042
0.1 3 0.012±0.003 0.010±0.001 0.010±0.001 0.010±0.001 0.055±0.025 0.298±0.377 1.394±0.659 1.213±0.775 1.160±0.783
0.1 4 0.010±0.001 0.011±0.001 0.010±0.001 0.010±0.001 0.067±0.052 0.271±0.148 1.934±0.656 1.191±0.431 1.176±0.426
0.15 1 0.032±0.009 0.029±0.012 0.028±0.011 0.028±0.012 0.136±0.088 0.380±0.192 2.009±0.657 2.262±0.136 2.468±0.139
0.15 2 0.022±0.002 0.022±0.002 0.020±0.002 0.021±0.002 0.109±0.034 0.522±0.528 2.927±0.254 1.587±0.064 1.530±0.057
0.15 3 0.021±0.005 0.020±0.004 0.019±0.004 0.019±0.004 0.107±0.035 0.523±0.416 2.970±0.502 0.570±0.468 0.524±0.446
0.15 4 0.020±0.002 0.022±0.001 0.020±0.001 0.020±0.001 0.091±0.038 0.567±0.324 2.869±0.430 1.185±0.427 1.176±0.426
0.2 1 0.050±0.012 0.053±0.019 0.051±0.018 0.051±0.019 0.236±0.117 0.546±0.167 2.894±0.312 2.288±0.139 2.468±0.139
0.2 2 0.037±0.003 0.039±0.006 0.037±0.005 0.038±0.006 0.250±0.109 0.826±0.410 2.982±0.595 1.610±0.041 1.565±0.042
0.2 3 0.032±0.006 0.032±0.004 0.030±0.003 0.030±0.004 0.157±0.045 0.872±0.368 3.330±0.284 1.180±1.161 1.166±1.170
0.2 4 0.030±0.002 0.034±0.002 0.032±0.002 0.031±0.002 0.191±0.084 0.894±0.220 3.312±0.295 0.998±0.246 0.987±0.253
0.25 1 0.069±0.019 0.082±0.026 0.078±0.025 0.081±0.028 0.389±0.185 1.028±0.224 3.513±0.350 2.318±0.140 2.468±0.139
0.25 2 0.054±0.005 0.059±0.010 0.056±0.009 0.057±0.011 0.454±0.386 0.955±0.126 3.586±0.224 1.605±0.040 1.565±0.042
0.25 3 0.050±0.013 0.051±0.009 0.047±0.008 0.049±0.009 0.341±0.105 0.942±0.049 3.469±0.164 1.475±1.071 1.460±1.084
0.25 4 0.047±0.005 0.053±0.003 0.050±0.004 0.050±0.003 0.359±0.176 1.179±0.442 3.238±0.333 1.181±0.425 1.176±0.426

Table E.4: Average ANE values (plus/minus one standard deviation) for the real-world
experiments on the PACM point cloud over ten runs. The best is marked in bold red
while the second best is in underline blue .

η option GNNSync Spectral Spectral_RN GPM TranSync CEMP_GCW CEMP_MST TAS Trivial
0 1 0.118±0.093 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 1.357±0.080 1.655±0.426
0 2 0.051±0.031 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.870±0.029 0.785±0.020
0 3 0.048±0.034 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.645±0.396 0.597±0.390
0 4 0.038±0.024 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.687±0.236 0.631±0.223
0.05 1 0.139±0.079 0.722±1.382 0.088±0.120 0.029±0.009 0.093±0.042 0.154±0.066 0.964±1.353 1.347±0.082 1.655±0.426
0.05 2 0.055±0.019 0.671±1.288 0.022±0.003 0.024±0.005 0.102±0.048 0.121±0.093 0.692±0.687 0.869±0.043 0.805±0.045
0.05 3 0.061±0.031 0.029±0.007 0.026±0.007 0.028±0.007 0.062±0.017 0.823±1.317 0.588±0.310 0.640±0.393 0.597±0.389
0.05 4 0.046±0.021 0.032±0.007 0.030±0.006 0.031±0.007 0.068±0.039 0.291±0.253 0.826±0.425 0.699±0.256 0.671±0.279
0.1 1 0.116±0.037 0.072±0.039 0.074±0.039 0.661±1.159 0.220±0.066 0.896±1.294 1.326±0.710 1.320±0.094 1.654±0.433
0.1 2 0.068±0.021 0.197±0.275 0.053±0.009 0.088±0.063 0.210±0.041 1.057±1.368 1.499±0.537 0.851±0.018 0.785±0.020
0.1 3 0.077±0.039 0.144±0.168 0.158±0.216 0.055±0.016 0.196±0.070 0.401±0.320 1.470±0.907 0.636±0.391 0.597±0.389
0.1 4 0.057±0.014 0.063±0.011 0.056±0.014 0.060±0.013 0.270±0.185 0.639±0.383 1.419±0.437 0.683±0.245 0.632±0.223
0.15 1 0.163±0.063 0.228±0.178 0.159±0.064 0.138±0.060 0.301±0.235 0.511±0.346 1.313±0.653 1.357±0.084 1.655±0.426
0.15 2 0.085±0.020 0.078±0.017 0.076±0.015 0.349±0.382 0.232±0.078 0.739±0.438 2.096±0.323 0.844±0.043 0.768±0.032
0.15 3 0.095±0.039 0.738±1.340 0.076±0.031 0.079±0.032 0.239±0.061 0.903±1.036 1.803±0.217 0.322±0.241 0.298±0.226
0.15 4 0.079±0.020 0.094±0.016 0.086±0.019 0.090±0.017 0.366±0.240 1.125±1.250 1.775±0.338 0.670±0.237 0.632±0.223
0.2 1 0.189±0.063 0.196±0.068 0.199±0.069 0.193±0.071 0.937±1.219 1.528±0.954 2.331±0.262 1.378±0.085 1.655±0.426
0.2 2 0.102±0.029 0.111±0.028 0.110±0.031 0.265±0.313 0.402±0.239 1.202±0.789 1.909±0.278 0.840±0.027 0.785±0.020
0.2 3 0.097±0.036 0.846±1.507 0.526±0.873 0.169±0.173 0.336±0.124 0.829±0.338 1.852±0.125 0.633±0.591 0.635±0.610
0.2 4 0.096±0.017 0.116±0.020 0.807±0.855 0.104±0.022 0.398±0.247 1.059±0.303 1.952±0.435 0.690±0.270 0.672±0.279
0.25 1 0.290±0.277 0.254±0.074 0.252±0.075 0.247±0.081 0.465±0.140 1.505±0.824 2.016±0.194 1.391±0.093 1.655±0.426
0.25 2 0.109±0.029 0.142±0.051 0.129±0.040 0.372±0.494 0.907±1.221 1.312±0.891 2.087±0.138 0.838±0.028 0.785±0.020
0.25 3 0.311±0.615 0.557±0.872 0.407±0.586 0.313±0.268 0.871±0.806 1.713±0.728 1.941±0.078 0.779±0.534 0.782±0.560
0.25 4 0.109±0.022 0.140±0.035 0.888±0.965 0.131±0.035 0.427±0.117 1.248±0.622 1.923±0.205 0.648±0.235 0.633±0.222
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Figure E.2: MSE performance comparison on GNNSync against baselines on angular
synchronization (k = 1) for ERO models. Error bars indicate one standard deviation.
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Figure E.3: MSE performance comparison on GNNSync against baselines on angular
synchronization (k = 1) for BAO models. Error bars indicate one standard deviation.
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Figure E.4: MSE performance comparison on GNNSync against baselines on angular
synchronization (k = 1) for RGGO models. Error bars indicate one standard deviation.
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Figure E.5: MSE performance comparison on GNNSync against baselines on
k−synchronization with k = 2 for ERO models. Error bars indicate one standard
deviation.
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Figure E.6: MSE performance comparison on GNNSync against baselines on
k−synchronization with k = 2 for BAO models. Error bars indicate one standard
deviation.
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Figure E.7: MSE performance comparison on GNNSync against baselines on
k−synchronization with k = 2 for RGGO models. Error bars indicate one standard
deviation.
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Figure E.8: MSE performance comparison on GNNSync against baselines on
k−synchronization with k = 3 for ERO models. Error bars indicate one standard
deviation.
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Figure E.9: MSE performance comparison on GNNSync against baselines on
k−synchronization with k = 3 for BAO models. Error bars indicate one standard
deviation.
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Figure E.10: MSE performance comparison on GNNSync against baselines on
k−synchronization with k = 3 for RGGO models. Error bars indicate one standard
deviation.
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Figure E.11: MSE performance comparison on GNNSync against baselines on
k−synchronization with k = 4 for ERO models. Error bars indicate one standard
deviation.
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Figure E.12: MSE performance comparison on GNNSync against baselines on
k−synchronization with k = 4 for BAO models. Error bars indicate one standard
deviation.
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Figure E.13: MSE performance comparison on GNNSync against baselines on
k−synchronization with k = 4 for RGGO models. Error bars indicate one standard
deviation.
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(a) GNNSync,
η = 0 (b) Spectral, η = 0 (c) Spectral_RN,

η = 0 (d) GPM, η = 0

(e) TranSync,
η = 0

(f) CEMP_GCW,
η = 0

(g) CEMP_MST,
η = 0 (h) TAS, η = 0
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η = 0.05
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(k) Spectral_RN,
η = 0.05 (l) GPM, η = 0.05
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η = 0.05

(o) CEMP_MST,
η = 0.05 (p) TAS, η = 0.05

(q) GNNSync,
η = 0.1

(r) Spectral,
η = 0.1

(s) Spectral_RN,
η = 0.1 (t) GPM, η = 0.1

(u) TranSync,
η = 0.1

(v) CEMP_GCW,
η = 0.1

(w) CEMP_MST,
η = 0.1 (x) TAS, η = 0.1

Figure E.14: Result visualization for the Sensor Network Localization task on the U.S.
map using option “1" as ground-truth angles for low-noise input data. Red dots indicate
ground-truth locations and blue dots are estimated city locations.
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(s) Spectral_RN,
η = 0.25 (t) GPM, η = 0.25

(u) TranSync,
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(v) CEMP_GCW,
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(w) CEMP_MST,
η = 0.25 (x) TAS, η = 0.25

Figure E.15: Result visualization for the Sensor Network Localization task on the U.S.
map using option “1" as ground-truth angles for high-noise input data. Red dots indicate
ground-truth locations and blue dots are estimated city locations.
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(a) GNNSync,
η = 0 (b) Spectral, η = 0 (c) Spectral_RN,

η = 0 (d) GPM, η = 0

(e) TranSync,
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η = 0.05 (p) TAS, η = 0.05
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η = 0.1

(s) Spectral_RN,
η = 0.1 (t) GPM, η = 0.1

(u) TranSync,
η = 0.1

(v) CEMP_GCW,
η = 0.1

(w) CEMP_MST,
η = 0.1 (x) TAS, η = 0.1

Figure E.16: Result visualization for the Sensor Network Localization task on the U.S.
map using option “2" as ground-truth angles for low-noise input data. Red dots indicate
ground-truth locations and blue dots are estimated city locations.
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(a) GNNSync,
η = 0.15

(b) Spectral,
η = 0.15

(c) Spectral_RN,
η = 0.15 (d) GPM, η = 0.15

(e) TranSync,
η = 0.15

(f) CEMP_GCW,
η = 0.15

(g) CEMP_MST,
η = 0.15 (h) TAS, η = 0.15
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η = 0.2
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η = 0.2

(k) Spectral_RN,
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(r) Spectral,
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(s) Spectral_RN,
η = 0.25 (t) GPM, η = 0.25
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(w) CEMP_MST,
η = 0.25 (x) TAS, η = 0.25

Figure E.17: Result visualization for the Sensor Network Localization task on the U.S.
map using option “2" as ground-truth angles for high-noise input data. Red dots indicate
ground-truth locations and blue dots are estimated city locations.
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(a) GNNSync,
η = 0 (b) Spectral, η = 0 (c) Spectral_RN,

η = 0 (d) GPM, η = 0

(e) TranSync,
η = 0

(f) CEMP_GCW,
η = 0

(g) CEMP_MST,
η = 0 (h) TAS, η = 0
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η = 0.05

(j) Spectral,
η = 0.05

(k) Spectral_RN,
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η = 0.1
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η = 0.1 (t) GPM, η = 0.1

(u) TranSync,
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η = 0.1

(w) CEMP_MST,
η = 0.1 (x) TAS, η = 0.1

Figure E.18: Result visualization for the Sensor Network Localization task on the U.S.
map using option “3" as ground-truth angles for low-noise input data. Red dots indicate
ground-truth locations and blue dots are estimated city locations.
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(a) GNNSync,
η = 0.15

(b) Spectral,
η = 0.15

(c) Spectral_RN,
η = 0.15 (d) GPM, η = 0.15

(e) TranSync,
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(g) CEMP_MST,
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(k) Spectral_RN,
η = 0.2 (l) GPM, η = 0.2
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(o) CEMP_MST,
η = 0.2 (p) TAS, η = 0.2

(q) GNNSync,
η = 0.25

(r) Spectral,
η = 0.25

(s) Spectral_RN,
η = 0.25 (t) GPM, η = 0.25

(u) TranSync,
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(v) CEMP_GCW,
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(w) CEMP_MST,
η = 0.25 (x) TAS, η = 0.25

Figure E.19: Result visualization for the Sensor Network Localization task on the U.S.
map using option “3" as ground-truth angles for high-noise input data. Red dots indicate
ground-truth locations and blue dots are estimated city locations.
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(a) GNNSync,
η = 0 (b) Spectral, η = 0 (c) Spectral_RN,

η = 0 (d) GPM, η = 0

(e) TranSync,
η = 0

(f) CEMP_GCW,
η = 0

(g) CEMP_MST,
η = 0 (h) TAS, η = 0
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(k) Spectral_RN,
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η = 0.1

(r) Spectral,
η = 0.1

(s) Spectral_RN,
η = 0.1 (t) GPM, η = 0.1

(u) TranSync,
η = 0.1

(v) CEMP_GCW,
η = 0.1

(w) CEMP_MST,
η = 0.1 (x) TAS, η = 0.1

Figure E.20: Result visualization for the Sensor Network Localization task on the U.S.
map using option “4" as ground-truth angles for low-noise input data. Red dots indicate
ground-truth locations and blue dots are estimated city locations.
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(a) GNNSync,
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(b) Spectral,
η = 0.15

(c) Spectral_RN,
η = 0.15 (d) GPM, η = 0.15

(e) TranSync,
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(r) Spectral,
η = 0.25

(s) Spectral_RN,
η = 0.25 (t) GPM, η = 0.25

(u) TranSync,
η = 0.25

(v) CEMP_GCW,
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(w) CEMP_MST,
η = 0.25 (x) TAS, η = 0.25

Figure E.21: Result visualization for the Sensor Network Localization task on the U.S.
map using option “4" as ground-truth angles for high-noise input data. Red dots indicate
ground-truth locations and blue dots are estimated city locations.
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(a) GNNSync,
η = 0 (b) Spectral, η = 0 (c) Spectral_RN,

η = 0 (d) GPM, η = 0

(e) TranSync,
η = 0

(f) CEMP_GCW,
η = 0
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(u) TranSync,
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η = 0.1

(w) CEMP_MST,
η = 0.1 (x) TAS, η = 0.1

Figure E.22: Result visualization for the Sensor Network Localization task on the
PACM point cloud using option “1" as ground-truth angles for low-noise input data. Red
dots indicate ground-truth locations and blue dots are estimated city locations.
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Figure E.23: Result visualization for the Sensor Network Localization task on the
PACM point cloud using option “1" as ground-truth angles for high-noise input data. Red
dots indicate ground-truth locations and blue dots are estimated city locations.
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E.4.2 Extended ablation study results
Ablation study results are reported in Fig. E.24 and E.25, while the rest are omitted
but could lead to the same conclusion. Note that for k > 1, we ablation study
results are based on using Lcycle as the training loss function.

Improvements over all possible baselines when taking their output as input
features for k = 1 are reported in Fig. E.26, E.27 and E.28, where we omit results
for η = 0.9 as in general all methods fall behind the trivial solution at η = 0.9.
We find that in most cases GNNSync could improve over baselines, and could do
worse often only when all methods fall behind the trivial baseline.

To show the effect of a linear combination of Lcycle and Lupset, we empirically
test Lcycle + τLupset, with τ varying from 0 to 0.9; see Fig. E.29 (the others are
omitted but could lead to the same conclusion) for details. The performance for
different choices of τ do not vary significantly, providing further evidence that
it suffices to simply pay attention to either of the two loss functions instead of
their linear combination. The experiments also show that as the problem becomes
harder (e.g. as the noise level increases and the network becomes sparser), a smaller
coefficient of Lupset (even zero) is preferred, which indicates that Lcycle plays a more
essential role in the more challenging scenarios.

To assess the effect of fine-tuning (via projected gradient steps) over the baselines,
we apply the same number of projected gradient descent steps as GNNSync to the
comparative baselines and report the performance in Figures E.30 and E.31. We
observe that even when applying these fine-tuning steps, the baselines are usually
beaten by our end-to-end trainable GNNSync pipeline.
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Figure E.24: MSE performance comparison on GNNSync variants on angular synchro-
nization (k = 1) for ERO models. p is the network density and η is the noise level. Error
bars indicate one standard deviation.
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Figure E.25: MSE performance comparison on GNNSync variants on k−synchronization
with k = 2 for ERO models. p is the network density and η is the noise level. Error bars
indicate one standard deviation.
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Figure E.26: MSE performance improvement on GNNSync over variants on angular
synchronization (k = 1) for ERO models. Error bars indicate one standard deviation.
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Figure E.27: MSE performance improvement on GNNSync over variants on angular
synchronization (k = 1) for BAO models. Error bars indicate one standard deviation.
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Figure E.28: MSE performance improvement on GNNSync over variants on angular
synchronization (k = 1) for RGGO models. Error bars indicate one standard deviation.
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Figure E.29: MSE comparison on GNNSync variants using as loss τLupset + Lcycle
with different coefficients τ , on k−synchronization with k = 2 for ERO models. p is the
network density and η is the noise level. Error bars indicate one standard deviation.
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Figure E.30: MSE performance comparison on GNNSync against fine-tuned baselines
on angular synchronization (k = 1) for ERO models. p is the network density and η is
the noise level. Error bars indicate one standard deviation.
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(e) ERO1(p = 0.1)
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(f) ERO2(p = 0.1)
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Figure E.31: MSE performance comparison on GNNSync against fine-tuned baselines
on k−synchronization with k = 2 for ERO models. p is the network density and η is the
noise level. Error bars indicate one standard deviation.
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