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An Insurance Paradigm for Improving Power
System Resilience via Distributed Investment

Farhad Billimoria, Filiberto Fele, Iacopo Savelli, Thomas Morstyn, and Malcolm McCulloch

Abstract—Extreme events, exacerbated by climate change, pose
significant risks to the energy system and its consumers. However
there are natural limits to the degree of protection that can
be delivered from a centralised market architecture. Distributed
energy resources provide resilience to the energy system, but
their value remains inadequately recognized by regulatory frame-
works. We propose an insurance framework to align residual
outage risk exposure with locational incentives for distributed
investment. We demonstrate that leveraging this framework in
large-scale electricity systems could improve consumer welfare
outcomes in the face of growing risks from extreme events via
investment in distributed energy.

Index Terms—resilience; insurance; distributed energy re-
sources; capacity market; energy dispatch.

I. INTRODUCTION

This paper addresses the issue of incentive frameworks for
decentralised resilience investments by proposing an electricity
interruption insurance scheme to price residual outage risk.
In doing so it presents a defensible rationale for efficient
investment in resilient distributed energy resources (DER).

The nature of risks faced by the electricity system is
changing. The impetus for sectoral decarbonisation is expected
to drive order-of-magnitude increases in generation supply
from variable renewable energy (VRE), along with the rolloff
of an ageing and increasingly unreliable thermal fleet [1],
[2]. With climate change already occurring, the frequency and
severity of extreme weather events are expected to magnify
with particularly significant impacts on centralised grid archi-
tectures [3].

While wholesale energy markets can in theory ensure a
reliable system [4] a range of recent works identify incom-
pleteness in liberalized market architectures that can leave
systems and communities vulnerable to extreme events [5]–
[7]. Administrative contracting too can distort the fuel mix
towards resources that are particularly vulnerable to weather
extremes [8], [9]. Furthermore, to no flaw of market design,
extreme events can island particular regions leaving communi-
ties disrupted and at risk for sustained periods. The recognition
that, despite best efforts, wholesale market design inevitably
leaves residual outage exposure for consumers leads to a view
by some that promising complete protection from wholesale
market frameworks is at best inordinately costly, and at worst
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illusory [10]. Yet there is a concomitant acknowledgement
that leaving open such vulnerability may also be undesirable,
particularly given a changing climate [11] and the inequitable
impacts of outages from extreme events [12], [13].

Decentralised technologies offer the technical potential for
improved resilience to extreme events. In particular, solar
PV, storage and other RDER (EVs, smart home etc), can be
configured to act as micro-, nano-, and pico- grids during
emergencies providing power at community and consumer
levels when centralised system architectures fail [3], [14]–
[16]. An economic framework that appropriately values the
resilience benefits of DER technologies could catalyse invest-
ment that enables the realization of this technical potential.
In this paper we are primarily interested in the concept of
reliability insurance as an economic framework for valuing
resilience via distributed investment.

A. Related Work and Contributions

The concept of reliability insurance in electricity market
design was introduced in [17]–[19] as a means of pricing pri-
ority service. The central precept of this line of work involves
an insurance contract between an energy consumer and an
insurance agency which provides economic compensation for
electricity interruption in exchange for an upfront premium.
The application of insurance schemes to incentives for backup
generation was investigated in [20], [21] and [7]. A key result
of [20] was that, under full insurance, an individual’s economic
incentives to install onsite backup generation to minimise
premia will supplant the utility’s incentive to mitigate compen-
sation liabilities. [21] uses an agent-based model that confirms
that insurance contracts converge to theoretical optima under
bounded perception of risks and losses. The authors in [7]
establish that a compensatory insurance scheme can improve
consumer outcomes in the presence of reliability externalities.
More recently, [22] establishes that priority service Pareto
dominates both ex-ante time-of-use pricing and integrated
resource planning under supply uncertainty. However, all of
these works adopted a simplified copper-plate network model
and a generalised definition of reserves.

Our paper uses a more detailed model of the network and
the market design to understand the regional and temporal
aspects of reliability insurance as an incentive framework for
distributed investment. Specifically the contributions and novel
aspects of this paper are as follows:

1) we develop a locational model of reliability insurance
that differentiates risk on a regional level, recognizing
remoteness and weak network connectivity. This can
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play an important role in scalable management of ex-
treme risks;

2) we formulate a multi-agent model of the electricity
system to test the effect of the insurance mechanism
on three different market designs. The model reflects
the spatial topology of the grid with the objective of
providing insight on participant behaviour, the nature of
interactions between participant and design, and system
reliability and resiliency impacts;

3) we propose two investment incentive frameworks for
resilient DER – direct investment and subsidization. It
is shown that while subsidization can leverage consumer
self-insurance benefits, take-up depends upon risk aver-
sion, which is non-transparent to regulators.

The structure of this paper is as follows. Section II presents the
technical and market architecture associated with the insurance
scheme for resilient distributed energy resource investment. In
Section III we present the multi-agent model of the market and
the program formulation for insurance-based decision making.
Section IV applies the model to a numerical case study,
followed in Section V by policy implications and conclusions.

II. SYSTEM AND RISK ARCHITECTURE

Our approach in this paper involves the imposition of
an insurance scheme to insure consumers for long-duration
outages. Figure 1 illustrates the main elements of the scheme.

Two components make up the market architecture. First,
the wholesale market design, which comprises a spot market
combined with additional resource adequacy mechanisms. In
this paper, we consider a locational spot market for electricity,
that is optionally augmented with an operating reserve demand
curve (ORDC) and a capacity mechanism [23].

The second component of the architecture is an insurance
mechanism for system resiliency. The insurer offers electricity
interruption insurance to consumers. In exchange for an up-
front premium, insurance provides consumers with financial
compensation in the event that load is interrupted, in the
form of a payment (represented in $ per MWh) linked to
the value of the particular source of consumption, consistent
with optimal contract selection [24]. The insurer manages
the tail risks by setting premia and reserving capital against
severe losses. In addition, to reduce compensation liability
exposure the insurer can also offset risk through investment in
resilient distributed energy resources (in the following shortly
referred as RDER). The incentive to invest depends on the
potential service interruption mitigation, thus aligning interests
between the insurer and consumers. We consider two forms of
investment in RDER : (i) direct investment, where the insurer
bears the full investment cost of RDER; and (ii) subsidy,
where the insurer subsidises the investment cost of RDER for
consumers. The two models are differentiated in how RDER
investment is undertaken. In the former it is the insurer that
makes the investment and bears all associated cost. In the
latter, the costs are split between the insurer and consumer,
with the investment made by the consumer. Note that both
models only apply after a wholesale investment equilibrium
has been reached.

We adopt a RDER system architecture that incorporates (i)
a distributed solar system and (ii) a battery energy storage sys-
tem (BESS) that is connected to the central grid and enabled
for islanded operation if the grid connection is interrupted.
This represents one potential setup of RDER that could aid in
improving resilience to extreme events.1

III. METHODS

To illustrate the economic rationale for the proposal we
develop an agent-based model of investment in the electricity
market via the associated insurance scheme.

Subsection III-A presents the decision formulation for
agents in the wholesale electricity market. Subsection III-B
presents the decision making formulation for the insurer
and consumers under an insurance overlay. Subsection III-C
presents an algorithm to find an equilibrium among partici-
pants in the market and insurance scheme.

A. Investment decision-making in wholesale markets

In this subsection we present the mathematical formulation
of the multi-agent model of the electricity market.

For each generation or storage resource, a two-stage deci-
sion making process is adopted. Investment decisions are made
in the first stage based on outcomes in the second stage. The
second stage represents the economic dispatch of energy and
operating reserves and clearing of the capacity mechanism.
Four aspects of uncertainty are modelled (locational demand,
resource availability, network availability and inflows into
hydro storage) reflected in annual scenarios (ω ∈ Ω).

1) Economic dispatch: The electricity spot market EDω in
(1) expresses a centrally cleared bid-based economic dispatch
for energy and operating reserves. As standard in the literature,
this formulation is based on a convex DC optimal power flow
(DC-OPF) model; this grants computational tractability while
providing reasonably accurate results for market clearing in
the transmission grid [?]. It is assumed that participants bid
truthfully in line with their actual costs, and strategic bidding is
not considered in this analysis. This is a reasonable assumption
under the presence of many bidders, even in complex settings
[25]. For simplicity, only upward reserve procurement is con-
templated in (1); nonetheless, the formulation can be readily
extended to incorporate additional reserve markets.

The set of resources r ∈ R comprise generation G, storage
S and hydro H units (R = G ∪ S ∪ H), based on capacity
investment decisions in the first stage. We clarify here that the
set H only includes hydro generation resources with reservoir
storage; this is opposed to ‘run-of-river hydro generation’
which can be incorporated as a generation resource in G.

For ease of notation, any decision variables and parameters
that vary over time are denoted in bold. For example, we

1Other options include feeder and substation level configurations (see for
example [?]). Centralized transmission and distribution network resilience en-
hancement could be considered and co-optimized with distributed investment
options, though this is kept out of scope for this paper to keep the formulation
tractable. We also evaluated cases that included residential diesel gensets as
part of the suite of investment options available to the insurer: however, no
investment in diesel gensets was recorded in the base case due to their non-
competitive capital and variable costs.
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Fig. 1: Schematic of the market architecture incorporating a wholesale electricity market design with centrally cleared spot
markets for energy, reserves and capacity; combined with an insurance scheme for electricity sector resilience.

define the vector of energy dispatched over time from a
resource r ∈ G ∪ H as pG

rω := [pGr1ω, ..., p
G
rtω, ..., p

G
rTω]

where pGrtω denotes the energy dispatched by resource r in
scenario ω, time period t ∈ T := {1, . . . , T}. Other vectors
are defined similarly. For storage resources, energy dispatch
is separated into charge pG+

stω and discharge pG−
stω with total

energy generation defined as the difference between the two
pGstω = pG−

stω−pG+
stω . Total reserve dispatch is defined as the sum

of reserve delivery from pRstω = pR−
stω+pR+

stω . All mathematical
notation is defined in Supplementary Information Section I
[26].

For a given scenario ω ∈ Ω, we define the economic dis-
patch optimization problem EDω as follows, where ZED :=
{pG

rω,p
R
rω,p

sh
dω,p

rsh
iω ,Srω,θωn} denotes the set of decision

variables.

EDω : min
ZED

∑
r∈R

Cvc
rω · pG

rω +
∑
d∈D

Csh
dω · psh

dω

+
∑
r∈R

CR
r · pR

rω +
∑
i∈I

Crsh
i prsh

iω (1a)

subject to:∑
d∈Dn

(P
D

dω − psh
dω) +

∑
m∈Ln

Bnm(θnω − θmω)

=
∑
r∈Rn

pG
rω, n ∈ N , [λE

ωn] (1b)

psh
dω ≤ P

D

dω, ∀d ∈ D, (1c)

pG
rω + pR

rω ≤ PrA
G
rωur, ∀r ∈ G ∪H (1d)

−pG+
rω +pR+

rω ≤ PrA
G
rωur, ∀r ∈ S, (1e)

pG−
rω + pR−

rω ≤ PrA
G
rωur, ∀r ∈ S, (1f)

− FnmAL
nm,ω ≤ Bnm(θωn − θωm) ≤ FnmAL

nm,ω,

∀n, ∀m ∈ Ln, (1g)

Srtω = Sr,t−1,ω + q+r p
G+
rtω −

1

q−r
pG−
rtω , ∀r ∈ S, t ∈ T (1h)

Srtω = Sr,t−1,ω + iG+
rtω −

1

q−r
pG−
rtω , ∀r ∈ H, t ∈ T , (1i)

Sr1ω = SrTω, ∀r ∈ S ∪H, (1j)

Srω ≤ Prurer, ∀r ∈ S ∪H, (1k)∑
r∈R

pR
rω +

∑
i∈I

prsh
iω ≥ Rreq, ∀r ∈ R, [λR

ω ] (1l)

prsh
iω ≤ Rreq

i , ∀i ∈ I, (1m)
θω1 = 0, (1n)

Pr ≥ pG+
rω ≥ 0, Pr ≥ pG−

rω ≥ 0,

pR+
rω ≥ 0, pR−

rω ≥ 0, Srω ≥ 0. (1o)

The objective is to minimise the total cost (1a). The first term
expresses energy generation costs as the product of energy
dispatched (pG

ω ) and variable unit costs (Cvc
rω). The second

term is the cost of unserved demand psh
dω , where Csh

dω is the
value of lost load. The third term is the cost of dispatched
operating reserves pR

rω with unit reserve costs CR
r . The final

term expresses the cost of unmet reserves prsh
iω , penalised at

price Crsh
i for each segment i ∈ I.

Nodal power balance is defined in equation (1b), where
the associated dual variable λE

ωn can be interpreted as the
locational marginal price of energy. Equation (1c) ensures that
unserved demand is below actual nodal demand. Equations
(1d),(1e) and (1f) ensure the energy and reserve dispatch are
below the deliverable capacity, represented as the product
of resource capacity Pr, temporal availability AG

rω and the
(boolean) build status of the resource ur. Equation (1g)
enforces transmission DC flow limits. Equations (1h) and
(1i) define the state-of-charge (SoC) dynamics for storage
and hydro, with hydro SoC dependent upon rain flow iG+

rtω .
To avoid trivial solutions, in (1j) the SoC is constrained
to have the same value at start and end of the considered
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period. Technical limits on SoC are enforced in (1k). Equation
(1l) determines the reserve amount with the dual variable
λR
ω indicating the system marginal reserve price. Equation

(1m) limits the reserves shortage to the corresponding value
of the segmented operating reserve demand curve (ORDC)
[27]. Equations (1n)-(1o) set reference phase angles and non-
negativity constraints.

2) Capacity mechanism formulation: The formulation for
the capacity mechanism CM envisions a central auction for re-
source capacity cleared against an administratively determined
demand curve.

CM : min
ZCM

∑
r∈R

CI
r p

CM
r +

∑
j∈J

CU
j pUj (2a)

subject to:∑
j∈J

Dth
j =

∑
r∈R

pCM
r +

∑
j∈J

pUj , [λCM ] (2b)

0 ≤ pCM
r ≤ PrA

CM
r ur, ∀r ∈ R, (2c)

0 ≤ pUj ≤ Dth
j , ∀j ∈ J , (2d)

where ZCM := {pCM
r , pUj } gathers the decision variables. The

first term in (2a) represents the total investment in resource r
capacity, given by unit capacity costs CI

r and cleared resource
capacity award pCM

r ; the second term represents the costs
of unmet capacity demand, where the penalty associated to
capacity shortage pUj in each capacity demand segment j ∈ J
is denoted by CU

j . Equation (2b) balances auction demand
and supply; here, the dual variable λCM defines the marginal
clearing price of the capacity auction. Equation (2c) ensures
that cleared capacity award is lower than or equal to the der-
ated maximum capacity of resource (the product of resource
capacity Pr and the derating factor ACM

r ). Capacity deratings
factors are based on the effective load carrying capacity
(ELCC) [28]. Capacity demand curve segments are specified
in (2d) [27]. The capacity mechanism provides an additional
source of revenue to resources based on the marginal price of
the capacity auction and cleared resource capacity.

3) Investment decision: Investment decision making for
each generation, hydro or storage resource is modelled as a
lumpy binary investment with risk endogenised via a risk-
weighted utility function. The latter is defined as a convex
combination of expected value of the profit and a coherent
risk measure, namely the conditional value-at-risk (CVaR),
a measure of the expected shortfall [8], [29]. This model is
used to determine the risk averse utility UG

r of an individual
generation, storage or hydro resource given the set of all
committed resources (i.e., all resources r ∈ R such that
ur = 1) and the market outcomes associated with these
(including prices and dispatch of spot energy and reserves,
prices and awards for the capacity mechanism); the coupling
is reflected through the dual variables from (1) and (2).

IDr : UG
r = max

ZU

βr

(
vGr −

1

αG
r

∑
ω∈Ω

πωϱ
G
gω

)
+ (1− βr)

∑
ω∈Ω

πωΨ
G
rω − CI

rPrur (3a)

subject to:

ΨG
rω = (λE

ωn(r) −Cvc
r ) · pG

rω (3b)

+ (λR
ω −CR

r ) · pR
rω + λCMpCM

r , (3c)

vGr −ΨG
rω ≤ ϱGrω, ∀ω ∈ Ω, (3d)

ϱGrω ≥ 0, ∀ω ∈ Ω, (3e)

where ZU := {ΨG
rω, v

G
r , ϱ

G
rω} gathers the decision variables

of the problem, i.e., ΨG
rω and two auxiliary variables vGr , ϱ

G
rω

used for the CVaR formulation. The objective function (3a)
is specified as a maximization of risk-weighted utility, formu-
lated as convex combination (0 ≤ βr ≤ 1) of the expected
value and the (1 − αG

r )-CVaR (i.e., relative to the worst-
case 1 − αG

r quantile) of scenario profits (3c), minus capital
costs. Constraints (3d) and (3e) are required for the scenario
formulation of CVaR [30].

B. Insurance overlay

We consider the insurer to act as a central agent with
contingent liability for consumer electricity service outages;
while decentralized and competitive paradigms for insurance
are possible, these deserve a dedicated analysis that is out
of the scope of this work. For technical convenience, we
assume the insurance is mandatory. We note that the analysis
in Section IV suggests the scheme could continue to be
financially viable if this assumption is dropped; however, in
practical implementations issues related to consumer tail risk
estimation (including willingness and capability to properly
assess such risks), and the consequent impacts on take-up
of insurance, need to be carefully considered also through a
consumer protection and social justice lens.

The decision making for the insurer (INS) is set out as
follows.

INS : max
ZINS

U i := (1− βi)
∑
ω∈Ω

πωΨ
i
ω + βic̃

i − γϕi (4a)

subject to:

Ψi
ω =

∑
d∈D

(CP
d −Ccomp

d · pc
dω)−

∑
r∈Rder

κCI
rPr, ω ∈ Ω

(4b)

c̃i = vi − 1

αi

∑
ω∈Ω

πωϱ
i
ω, (4c)

vi −Ψi
ω ≤ ϱiω, ∀ω ∈ Ω, (4d)

ϕi ≥ max{0,−c̃i}, (4e)

Pr ≥ 0, and ϱiω ≥ 0, pc
dω ≥ 0, ∀ω ∈ Ω, (4f)∑

d∈Dn

pc
dω =

∑
d∈Dn

psh∗
dω −

∑
r∈Rder

pG
rω, ∀ω ∈ Ω, n ∈ N , (4g)

0 ≤ pG
rω ≤ PrA

G
rω, ∀r ∈ Rder, ω ∈ Ω (4h)

0 ≤ Srω ≤ Prer, ∀r ∈ Sder, ω ∈ Ω, (4i)

Srtω = Sr,t−1,ω + q+r p
G+
rtω −

1

q−r
pG−
rtω ,

∀r ∈ Sder, t ∈ T , ω ∈ Ω, (4j)

where ZINS := {Ψi
ω, c̃

i, ϕi, Pr, v
i, ϱiω,p

c
dω,p

G
rω,Srω} de-

notes the set of decision variables. The objective is to max-
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imise a convex combination of the expected value and the
(1−αi)-CVaR (denoted as c̃i) of the insurer’s profits (first and
second term in (4a)). In addition, the insurer must also bear
the costs associated with reserving capital to meet potential
losses [7]: this is expressed by the third term of the objective
function, where ϕi is the reserved capital and γ its annualized
cost. For each scenario ω ∈ Ω, insurer profits Ψi

ω are defined
in (4b) as the sum of premium revenues CP

d , minus insurance
compensation costs and the investment costs of RDER, scaled
by the subsidy 0 < κ < 1 provided to consumers (κ = 1
corresponds to direct investment). Note that Rder ⊆ R
designates the subset of RDERs available for investment
by the insurer; in particular, Rder := Gder ∪ Sder, so the
term

∑
r∈Rder κCI

rPr can include both (solar) generation
and storage investment costs. We note that for storage assets
r ∈ Sder, the net generation term pG

rω is equivalent to the
difference between storage discharge pG−

rω and storage charge
pG+
rω . Thus pG

rω = pG−
rω − pG−

rω , as in Section III-A1.
Equations (4c) and (4d) define the CVaR c̃i, whereas (4e)

sets out the requirements for reserve capital to be in excess of
the negative CVaR. Alternative approaches that may also be
applicable in assessing extreme or tail risks include robust or
“worst case” risk measures. Load shedding is defined in (4g) as
the difference between the wholesale unserved demand (psh∗

dω ,
output of EDω) minus generation from RDER. Technical
constraints associated with RDER (availability, SoC) are set
out in (4h)-(4j).

Finally we illustrate the decision making framework CONd,
upon which consumers base their investments in RDER at a
subsidised cost. As this problem pertains to the subsidization
framework, it is only solved for the case κ < 1.

CONd : max
ZCON

U c
d := (1− βd)

∑
ω∈Ω

πωΨ
c
dω + βdc̃

c
d (5a)

subject to:

Ψc
dω = −Cvoll

d · pc
dω −

∑
r∈Rder

(1− κ)CI
rP

′
r − CP

d

+Ccomp
d · pc

dω, ω ∈ Ω, (5b)

c̃cd = vcd −
1

αc
d

∑
ω∈Ω

πωϱ
c
dω, (5c)

vcd −Ψc
dω ≤ ϱcdω, ∀ω ∈ Ω, (5d)

ϱcdω ≥ 0, ∀ω ∈ Ω, (5e)

pc
dω = psh∗

dω −
∑

r∈Rder

pG
rω, ∀ω ∈ Ω, (5f)

0 ≤ pG
rω ≤ P ′

rA
G
rω ∀r ∈ Rder, ω ∈ Ω, (5g)

0 ≤ Srω ≤ P
′
rer ∀r ∈ Sder, ω ∈ Ω, (5h)

Srtω = Sr,t−1,ω + q+r p
G+
rtω −

1

q−r
pG−
rtω ,

∀r ∈ Sder, t ∈ T , ω ∈ Ω, (5i)

where ZCON := {Ψc
dω, c̃

c
d, P

′
r, v

d
c , ϱ

c
dω,p

c
dω,p

G
rω,Srω} gath-

ers the decision variables. The objective is to maximise a
convex combination of the scenario-weighted consumer sur-

plus Ψc
dω and the risk measure given by the (1 − αc

d)-CVaR
denoted as c̃cd. The consumer surplus, as defined in (5b),
reflects losses associated with load shedding, investment costs
of RDER (net of subsidy), the insurance premium plus any
insurance compensation payable for load shedding. For each
consumer, the key decision variable is the capacity of RDER
built (P ′

r). As in the considered subsidization framework the
latter is the result of a co-investment by the insurer and the
consumer, the realised capacity is taken to be the minimum
of P ′

r and Pr from (4) (line 27 in Algorithm 1). The other
constraints relate to CVaR (5c)-(5e) and technical/operational
constraints (5f)-(5i), similar to the INS problem.

C. Market equilibrium algorithm
We seek to find a market investment equilibrium where no

agent can increase its utility by deviating unilaterally from
the solution. To search for equilibria we propose a heuristic
algorithm that seeks to replicate the process of competitive
entry and exit in liberalised markets. Fig. 2 provides a flow
chart of the adopted approach, detailed in Algorithm 1.

The algorithm requires as input the set of resources R,
along with their corresponding features and parameters. The
main body of the algorithm consists of the market loop –
which in turn comprises two subsequent processes dealing
with resource retirement and investment – followed by the
insurance decision-making. Both inner loops start by finding
the dispatch solutions and prices for energy, reserves and
capacity. Based on these, an investment problem is then solved
to calculate each resource’s risk-averse utility. The build status
of the relevant resources is assigned to the corresponding
binary variables based on whether the investment is con-
sidered profitable or not (an investment with negative risk-
weighted utility UG

r is considered unprofitable). Given the
possibly multiple equilibria, our algorithm is best described
as a guided search through the feasibility set. The rationale
of this approach is to seek an equilibrium that is interpretable
by nature of retiring following the order of unprofitability and
investing by priority of interconnection. In particular, in line 14
we assume that a predefined ordering of the set of resources
exists; we point out that this ordering is arbitrary, and can
reflect the grid interconnection priority that different classes
of assets could incur in practice (e.g., according to the unit
commitment status [31]). The algorithm terminates when the
resource mix does not change over the prior iteration (i.e.,
no plants seek to retire and no new plants seek to enter the
market); note that y is an auxiliary flag variable used to keep
track of such changes. Also note that in line 8 it is assumed
that argminr(U

G
r ) is a singleton (otherwise any tie-break rule

can be applied).
The set of available resources and the relative market

outcomes (economic dispatch and capacity) are obtained upon
termination of the market loop. These constitute the input for
the insurance and consumer decision-making (lines 24–26).
Note that the insurance framework is meant to operate as
an overlay so as to limit interference in wholesale electricity
markets; this is reflected in the model formulation by having
the insurer and consumers taking decisions sequentially, once
the wholesale market equilibrium iterations have terminated.
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Fig. 2: Flowchart of Algorithm 1.

Our heuristic equilibrium-seeking algorithm follows from
the concepts of ordered interconnection queue, and commer-
cial retirement decision making. We do not provide guarantees
of convergence to an equilibrium for the adopted heuristic
approach. Nonetheless, for each of the test cases considered
in the numerical study, an equilibrium was attained within a
relatively small number of iterations (we verified that each of
the points reached by the heuristic algorithm was indeed an
equilibrium by running an ex-post diagonalization algorithm
of the form outlined in [27]). We also tested the algorithm
against alternative network cases and initial conditions and in
most instances an equilibrium was reached; exceptions were
those characterised by a limited liquidity, where a reduced set
of resource candidates was available.

IV. NUMERICAL STUDY

Our numerical study is developed to illustrate the insurance
value of resilient investment. The National Electricity Market
(NEM) of Australia provides an apposite case study of a large
scale grid in transition towards a high penetration of VRE and
the rolloff of legacy fossil fleet. We also benefit from a high
degree of transparency on demand and generation availability
projections across scenarios and locations, technical and finan-
cial data for current fleet and network topology information,
as well as projected interconnection pipeline.

A. Data and assumptions

Plant technical, financial and cost data are sourced from
the Integrated System Plan (ISP) produced by the Australian
Energy Market Operator (AEMO) for existing, committed
and anticipated resources [32], supplemented by [31] for new

projects. For the network topology we adopt the ISP sub-
regional network representation comprising 10 zones, with
their transfer capability and seasonal availability limits [32]; a
diagram of the network along with further details are provided
in Supplementary Information Section II [26].

To account for weather uncertainty, a set of annual weather-
year scenarios are adopted for demand, VRE availability, hy-
dro inflows and transmission network capacity with data pro-
vided for every half-hour over the year. Projections from ten
equiprobable ‘base’ weather years reflect normal weather vari-
ability as sourced from AEMO’s ISP Step Change projection.
These are built upon ensemble projections from downscaled
global climate models and reflect inherent correlations be-
tween demand and renewable generation availability. Twenty
four representative days are selected from each of the base
scenarios using a K-means clustering algorithm [33]. These
are used as input to model the VRE resources with 30 minute
dispatch intervals. We approximate energy exchange of long
duration storage and hydro between representative periods
through the introduction of additional variables and constraints
based on the approach in [34]. Costing and operational as-
sumptions include storage life cycle and degradation cost
adjustments, as well as charging and discharging efficiencies
[32].

To assess the impact of extreme outcomes, the base weather
years are complemented with six equiprobable ‘extreme’
years, developed as stylised scenarios that reflect the specific
risks faced by the NEM. These are built upon extreme scenario
calibration work undertaken in [35] and the Electricity Sec-
tor Climate Information Risk Assessment Framework, result
of a collaboration between AEMO and the Commonwealth
Scientific and Industrial Research Organisation (CSIRO) [36];
we refer the reader to Supplementary Information Section III
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Algorithm 1: Wholesale market investment & insur-
ance framework

Input : Resource mix R and associated parameters;
initial state of assets ur, ∀r ∈ R

Output: Equilibrium solution u∗
r , ∀r ∈ R

Market loop:
1 repeat

Retirement loop:
2 repeat
3 solve (EDω, ∀ω ∈ Ω)
4 solve (CM )
5 for r ∈ R : ur = 1 do
6 UG

r ← solve (IDr)
7 end
8 U ← minr(U

G
r ), r ← argminr(U

G
r )

9 if U < 0 then
10 ur ← 0
11 end
12 until U < 0;

Investment loop:
13 uprev

r ← ur, ∀r ∈ R
14 for r ∈ R : ur = 0, in interconnection queue order

do
15 ur ← 1
16 solve (EDω, ∀ω ∈ Ω)
17 solve (CM )
18 UG

r ← solve (IDr)
19 if UG

r < 0 then
20 ur ← 0
21 end
22 end
23 until maxr |ur − uprev

r | ≠ 0;
Insurance overlay:

24 solve (INS)
25 if κ < 1 then
26 solve (CONd, ∀d ∈ D)
27 Pr

∗
= min{Pr

∗
, P ′

r

∗}, ∀r ∈ Rder

28 end
29 return (u∗

r , Pr
∗
), ∀r ∈ Rder

[26] for details on the specific assumptions used. We wish
to point out that all the scenarios used – including demand,
generation availability and hydrological inflows – comprise
future projections (in the form of time series) that incorporate
climate impacts. They serve to illustrate the range of extreme
events that could be expected to form an insurance-based
assessment of extreme risks in practice. A real-world analysis
would involve a larger number of scenario assessments, which
we have limited here for computational tractability. Under
the assumption of equiprobability the tail scenarios were cali-
brated to similar extremity as informed by the risk assessment.
Specifically, each of the six extreme year scenarios is assumed
to have a probability of occurrence of 0.01, i.e., each a 1-in-
100 year event. (Another possible approach could be to fit
parametric distributions for uncertainty parameters and obtain
a joint distribution through a copula.)

Three market designs are tested in the case study: (i) energy
only market (EOM), (ii) energy market with an operating
reserve demand curve (ORDC) and (iii) energy market with
capacity auctions (CM). An energy market price cap of
$15000/MWh is adopted for the EOM and ORDC designs,
while for the CM we consider a reduced cap of $2000/MWh.
The ORDC is characterised by three reserve quantity seg-
ments of 2000 MW, 1000 MW and 1000 MW with cor-
responding price thresholds of $15000/MWh, $10000/MWh
and $5000/MWh. The CM relies on a capacity demand curve
with three interpolated points. The highest point is set to
105% of the system’s peak demand (equivalent to a reserve
margin of 5%). The two remaining interpolated points are
set at the peak demand and 95% of the peak demand; the
corresponding capacity price thresholds for each interpolated
point are based on an assumed cost of new entry (CONE) of
$90000/MW/year and set at 0.5, 1.0 and 1.5 times CONE
respectively. The derating factors for numerical study are
based on a marginal effective load-carrying capacity (ELCC)
methodology. We define the ‘risk-neutral’ case as the one
where the insurer preferences are skewed towards expected
returns, i.e., the insurer is almost neutral towards risk; we
simulate this by using βi = 0.1, such that some risk aversion
is built into the insurance decision making, which would be
practically reasonable.

The algorithm is initialised with the Australian NEM re-
source portfolio as in December 2022. We characterise risk
aversion for resource decision-making by βr = 0.5 and
αr = 0.9, for all r ∈ R. The insurance scheme adopts a
capital reserving threshold with a tail probability 1−αi set at
1% (consistent with international insurer solvency standards
[37]).

We provide a set of RDER investment options for the
insurer. The insurer is able to select from a combination of
resources that comprise rooftop solar and distributed battery
storage; costs and technical specifications were obtained from
[38]. We consider both (i) a direct investment model where the
insurer directly funds the investment and bears the associated
costs (in this case κ is set to 1) and (ii) a subsidy model,
where partial capital subsidies are provided to consumers for
the deployment of RDER storage (in Fig. 9 we show results
for κ ranging from 0.2 to 0.8). Note that in the latter case, we
focus on storage only, given the array of subsidies available
to distributed solar technologies.

B. Results

For each of the three selected market designs, Figure 3a
illustrates the retired and added capacity, while Fig. 3b shows
the total installed capacity at system level. These plots illus-
trate both the capacity incentivised through the corresponding
wholesale market (resource categories with prefix ‘W’), as
well as additional investment in resilient DER resource ca-
pacity funded by the insurance scheme (preceded by ‘RDER’).
Empirical cumulative density functions for system annualized
unserved energy (USE) (which is defined as annual energy
demand unserved as a proportion of total annual demand) are
shown in Fig. 4 for each of the three market designs. The
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Fig. 4: Duration curves for system unserved energy (USE),
measured as percentage of demand, under the EOM, ORDC
and CM markets.

results indicate differences in both the total quantities and type
of resources incentivised by each of the market designs. At
a wholesale level and relative to current supply mix, the CM
design results in a net addition of 0.7 GW of resource capacity,
while the EOM and ORDC designs drive net retirements of
over 6.7 GW and 6.3 GW respectively. In the spot based
designs (EOM and ORDC) retirements are mainly from black
& brown coal (amounting to ∼9.0 GW) and also some gas
units; these are replaced by new investment in wind, solar and
storage (of 1 and 2 hour durations). New investment in the CM
are made on fast-start gas units and storage (though the latter
is incremental, as all candidate gas units in the current queue
are built). Fig. 4 illustrates that prior to the application of the
insurance scheme the base reliability outcomes are better for
CM relative to EOM and ORDC across median and higher
percentiles. This is expected since the CM design is targeted
towards maximal load forecasts.

The impact of the insurance framework on resilience is
evident in the quantity of RDER that the insurance agency

is incentivised to deploy, which in turn has consequences
in terms of unserved energy reduction. For the EOM and
ORDC, the insurance scheme drives additional investments
of 3.7 GW in RDER-solar and 1.5–1.7 GW in RDER-storage
(with an average duration of 3 to 4 hours). For the CM, the
insurance overlay yields investments that amount to ∼1 GW
of solar RDER and 0.3 GW of storage RDER (2 hr duration).
Regarding reliability, reduction in unserved energy for extreme
cases are observed for all market designs as a result of the
additional investment in RDER. At a probability of exceedance
(POE) level of 5%, USE is improved by 0.019-0.025% for
EOM/ORDC and 0.003% for CM, while for POE of 1%,
improvements recorded are 0.073-0.078% for EOM/ORDC
and 0.015% for CM above the wholesale market outcomes.
As the network is characterised by regional areas with weaker
connections, such as Central New South Wales (CNSW) and
Northern New South Wales (NNSW), local effects can be
observed where these regions suffer from a poorer supply
reliability. This implies that the potential contingent liability
exposures investment under an insurance framework is skewed
to such regions. As a result, the introduction of the proposed
insurance scheme yields noticeable improvements in USE
outcomes, following additional investments in RDER driven
in these areas, which could be observed particularly under the
EOM market architecture (see Fig. 5).

Table I sets out the consumer and insurer surplus from the
proposed insurance scheme under each of the modelled scenar-
ios for the EOM. To reflect a regulated recovery of operating
and capital costs, we set the insurance premium to a level
that provides a zero-utility outcome (eq. (4a)) to the insurer;
we deemed this approach appropriate to a central scheme
such as the one proposed in this work. The total premium
is then allocated to consumers (CP

d in (4b)) in proportion
to their contribution to peak net load. With the premium set
in this way, it is observed that the realisation of surplus for
the consumers is hindered by payments of insurance premia
under base weather years, despite the benefit from lowered
VOLL. Conversely, significant surplus can be registered in
extreme years, where the role of insurance compensation
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Fig. 5: Duration curves for unserved energy (USE), measured as percentage of demand, in regional areas of Central New South
Wales (CNSW) and Northern New South Wales (NNSW) under an energy only market design.

TABLE I: Consumer and insurer surplus under EOM design, all figures in $ billion. “Comp.”: insurance compensation, “Res.
Cost”: cost of provisioning capital reserves, “RDER Cost”: operating and investment costs of RDER.

Base Weather Year Scenarios Extreme Year Scenarios
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Consumer Surplus - No insurance scheme
VOLL -1.4 -1.0 -0.4 -0.1 0.0 -0.1 -0.6 -1.4 0.0 -0.6 -4.6 -1.6 -12.2 -29.4 -19.1 -4.2

Total (A) -1.4 -1.0 -0.4 -0.1 0.0 -0.1 -0.6 -1.4 0.0 -0.6 -4.6 -1.6 -12.2 -29.4 -19.1 -4.2

Consumer Surplus - With insurance scheme
Premium -1.8 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8
Comp. 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.3 0.0 0.0 0.6 0.2 2.7 7.0 5.1 0.7
VOLL -0.4 -0.2 -0.1 -0.0 0.0 -0.1 -0.2 -0.9 0.0 -0.1 -1.9 -0.5 -10.8 -22.4 -15.7 -2.1

Total (B) -2.1 -2.0 -1.9 -1.9 -1.8 -1.9 -2.0 -2.4 -1.8 -1.9 -3.1 -2.2 -9.9 -17.2 -12.4 -3.2
∆ =(B)-(A) -0.7 -1.0 -1.5 -1.8 -1.8 -1.7 -1.4 -1.0 -1.8 -1.3 1.4 -0.5 2.3 12.2 6.7 0.9

Insurer Surplus - With insurance scheme
Premium 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8
Res. Cost -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5

Comp. -0.1 -0.1 0.0 0.0 0.0 0.0 -0.1 -0.3 0.0 0.0 -0.6 -0.2 -2.7 -7.0 -5.1 -0.7
RDER Cost -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4

Total 0.8 0.8 0.9 0.9 0.9 0.9 0.8 0.6 0.9 0.9 0.3 0.8 -1.8 -6.1 -4.2 0.2
Reserves 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4

payouts becomes evident. Correspondingly, the insurer makes
small profits in base weather years (primarily from premium
payments with only small compensation claims); this profit
could be used to lower the premium over subsequent years,
making the scheme more appealing to consumers. The insurer
can incur significant expenses during extreme years, albeit the
amount of capital reserves obtained from the solution of (4)
affords solvency in all the considered scenarios.

Fig. 6 shows a regional breakdown of the effect of the de-
ployment of the insurance scheme, in terms of mean consumer
utility and expected shortfall. In particular, the plots show the
sensitivity of these to the insurer’s risk aversion. In general,
variations of the latter do not produce noticeable differences in
the effectiveness of the insurance scheme, once βi ≥ 0.3. We
note, however, that for βi approaching 1, the mean consumer
surplus declines abruptly due to the conservative investments
made by the insurer, which require an unjustified (on the basis
of the considered scenarios) increase in the premium cost. As
regards tail events, most regions benefit noticeably from the
service of the insurance overlay (considering 1 − αc

d = 0.01
for the CVaR). Not all these regions, however, afford a positive
mean surplus with the considered premium, which is also a

sign of the asymmetrical impact that the different scenarios
have at local level. This suggests that the premium can be
readjusted on the basis of the observed regional vulnerability,
to keep the scheme attractive to the users.

Fig. 7 shows the sensitivity of the amount invested in RDER
capacity with respect to the degree of insurer risk aversion. As
βi increases we observe that the amount invested in RDER
(both solar and storage) grows significantly: the investment is
twice as large at βi = 0.5 and over 3 times under a fully
risk-averse case, compared to the case βi = 0.1. The average
weighted duration of storage also tends to increase with risk
aversion from 3-4 hours to 6-7 hours.

A sensitivity analysis is conducted against insurance com-
pensation levels with results for the EOM design shown in
Fig. 8. The results indicate that the insurance scheme fails to
incentivise investment in RDER at compensation levels below
$12000/MWh. Beyond this level, RDER investment grows but
starts to cap out at compensation levels of ∼$28000/MWh.
This indicates that there are practical bounds to the value of
the insurance scheme in a large scale market context.

Finally, while the above results are obtained under the
assumption of direct investment by the insurer in RDER, we
also consider the case where the insurer provides a subsidy
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Fig. 6: Regional breakdown of the effect of the insurance
scheme, in terms of mean consumer utility (upper plot) and
expected shortfall (bottom plot): sensitivity to variations in the
insurer’s risk aversion.
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depicts the average storage duration characterising the assets
on which the investments are allocated: this grows from 4 to
7 hours, attained for βi ≥ 0.3. Average storage duration is
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Fig. 8: Sensitivity of installed RDER generation and storage
capacity to insurance outage compensation. The insurance
scheme fails to incentivise investment in RDER at com-
pensation levels below $12000/MWh. On the other hand,
investments reach their maximum at compensations of the
order of $28000/MWh. This indicates that there are practical
bounds to the value of the insurance scheme in a large scale
market context.

to consumers ranging from 20% to 100% of the capital costs
of storage RDERs, under the EOM framework. The leftmost
bars in Fig. 9 represent the maximum potential investment
in storage RDER, expressed by the value Pr resulting from
(4); As expected, the latter decreases as higher subsidies are
included in the insurer budget, tending to the direct investment
case for κ approaching 1. The blue and red bars represent
consumer investments given the level of subsidy provided
by the insurance scheme, respectively for near risk-neutral
(βd = 0.2), and risk averse (βd = 1) preferences. Interestingly,
the results show that subsidy levels of 40–80% can drive higher
investment compared to the direct investment framework. As
concerns the RDER storage duration, at lower subsidy levels
this is well below the insurer’s reference cap, although this gap
narrows as subsidies increase and the effective cost of RDER
becomes cheaper for the consumer.

In the next section, we discuss some policy implications
based on the results of this study. While these results point to
the viability of the proposed insurance scheme, associated with
significant benefits to the energy system reliability, we should
mention some important limitations of this numerical study,
which can be overcome in future works. First, to facilitate the
analysis, issues related to power system security, e.g., voltage
and frequency deviations, were not explicitly modelled. In-
corporating these in the model would allow a more precise
quantification of the benefits from the proposed approach.
Second, scenario risks are presumed to be quantifiable: while
the increased availability of data regarding weather and grid
operation can facilitate the task, we acknowledge that not all
forms of extreme events could be predicted with the required
accuracy. Moreover, while market participants are assumed to
be risk averse, it can be challenging to characterise the wide
range of preferences and behaviours that can be observed in
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Fig. 9: Insurance subsidy model: sensitivity of installed RDER
storage capacity to the amount of subsidy to consumers. The
blue and red bars represent consumer investments given the
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tively for near risk-neutral (βd = 0.2), and risk averse (βd = 1)
consumers. The left bars represent the potential investment in
storage RDER from the insurer’s perspective, expressed by the
value Pr resulting from (4).

practice.

V. POLICY IMPLICATIONS AND CONCLUSIONS

There are a number of important policy implications and
further areas of inquiry flowing from the results of the case
study. First, the wholesale market outcomes reinforce the
notion that extreme events present real risks for power and
energy systems, with particular effects on consumers in poorly
connected, remote regions of the grid. This effect remains
evident in market designs that incentivise higher levels of
investment, such as designs with capacity mechanisms (CM).
Interestingly, in our case study the CM design performed
consistently with the inherent bias of such markets towards low
capital/high marginal cost resources (such as legacy thermal
generation); this has been recognised to be detrimental in
scenarios where thermal failure represents the extreme risk [8],
[9]. In the current energy system context, the shift from legacy
thermal to newer generation technologies (renewables, storage)
underscores the impact of market design on investment mix,
and the need for careful structuring and parameterisation of
schemes for resilience and reliability. Therefore, achieving
resilience in large scale power systems remains an important
objective.

Second, the insurance framework provides an economic lens
for investment decision making particularly as it relates to
high-impact lower probability events. The results support a
rational economic case for investment in resilience by central
agencies. Importantly the RDER investment procured by the
insurer and required premia adjust to the capacity mix yielded
by the market design. While an insurance scheme has the
potential to be viable, regional consumer attitudes and risk
exposures should be considered in the allocation of premium

costs. Moreover, regional differences in scheme viability may
drive a more localised focus for reliability insurance.

While the results do not suggest that all adverse outcomes
can be avoided, the proposed insurance-based approach pro-
vides material economic protection to consumers, through
the combination of economic loss compensation and loss-
mitigating investment. This aligns with the policy objectives
of system resilience, which calls for improved resistance
and adaptability rather than elimination of extreme impacts
altogether [11].

We observe that the risk parameters can have a material
impact on the level of investment – and given the public
nature of the insurance scheme, this would be an important
area of consultation and engagement prior to implementation.
Furthermore, the results also reflect the tradeoffs between
insurer ‘subsidy’ and ‘direct’ modes of investment. Subsidi-
sation models offer the potential for scalable investment, but
dependent upon consumer risk attitudes and take-up (which
may be variant and subject to consumer budget constraints).
The insurer has more control over direct investments but must
bear all the costs, resulting in lower investment. Granular as-
sessment of consumer attitudes and budgets should accompany
any implementation. Finally the sensitivities also suggest that
there are thresholds to scheme operation. With investment
benefits only apparent within certain ranges, agencies would
need to consider whether they are willing to meet minimum
compensation levels over a long term basis. The success of
an insurance scheme depends upon its sustainability both
from a capital and income perspective and as such should
be considered as part of a programmatic approach to system
resilience.

Going forward we consider that this paper supports further
development of the research thesis. The funding of such a
scheme requires attention to the economic willingness to pay
and social acceptance of premia to protect and compensate for
losses, which are currently all borne by the consumer [39].
The consideration of equity issues related to the allocation
of such premia is an important methodological stream, given
that vulnerable consumers can often be located in the regions
where risk is highest. The literature on equitable charging of
tariffs is a natural starting point here [40]. Given the challenges
of tail risk estimation for vulnerable consumers, opt-out provi-
sions of such schemes must also be considered carefully from
a consumer protection and social justice lens. Furthermore,
government contingent liability is currently an open area of
exposure. Comprehensive risk management standards relating
to such exposures could aid in developing mitigation and
investment plans for resilience. Finally, related streams could
look to scheme design and optionality and whether micro-
models of insurance could be applied at community levels.

The need for resilience in electricity systems is apparent and
immediate. While wholesale market designs should be opti-
mised for resilience, improvements to resilience can also come
from distributed architectures, especially in the continuity of
essential services during extreme weather. In our proposal for
a social insurance scheme for electric service interruptions we
align incentives for capital investment, and provide consumers
with physical and financial risk mitigation. We illustrate that
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TABLE II: Resource mix: alternative equilibrium solution -
EOM

Technology Capacity (GW) ∆ to Orig. Case
W Coal 8.1 -6.3
W Intermediate gas 3.5 0.0
W Flexible gas 10.3 +3.6
W Wind 12.2 +0.7
W Solar 8.8 +0.7
W BESS SD 2.0 +0.8
W BESS LD 0.6 +0.4
W Dam hydro 6.5 0.0
W Pumped hydro 2.3 +0.6
Total wholesale 54.1 +0.5
RDER Solar 4.3 +0.6
RDER BESS 2.3 +0.6

SD = Short duration (< 4hrs), LD = Long duration (≥ 4hrs)

TABLE III: Unserved energy: alternative equilibrium solution

Unserved Energy (%) Solution ∆ to Orig. Case
Mean - w/o ins 0.03 0.02
Mean - with ins 0.01 0.0
POE5 - w/o ins 0.06 +0.04
POE5 - with ins 0.03 +0.02

this can have material positive impacts in encouraging RDER
investment, reduction of unserved energy during extremes,
while providing financial coverage for consumers.

APPENDIX A: ANALYSIS OF A DIFFERENT CASE

This section briefly describes the solution obtained from
an alternative initial generation portfolio: relative to the case
described in Section IV, the problem was initialised with a
supply mix that removed (i) all remaining brown coal gener-
ation and (ii) reduced the capacity of black coal generation
capacity by approximately 8 GW. Results are shown for the
EOM design case in Tables II and III.

The major difference in the wholesale supply mix relative
to the case in Section IV is the higher investment in flexible
gas, renewables and storage (with total wholesale investment
being relatively unchanged). This is because the starting re-
source mix automatically precludes much of the coal such
that it cannot be added into the mix. Distributed generation
investment is also similar. Unserved energy outcomes are also
similar, both in terms of magnitude and relative impact of the
insurance scheme.
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