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1 Introduction and overview

One of the successes of string theory and M-theory has been to give a microstate counting of
black hole entropy. While the seminal work of [1] applied to supersymmetric black holes in
asymptotically flat spacetime, more recently a different approach was initiated in [2, 3] using
holography for asymptotically AdS black holes. This relies on the fact that the partition
function of the dual field theory may be evaluated exactly using supersymmetric localization,
reducing the computation of the entropy to a matrix model calculation. The aim of the
present work is to extend this matching further, identifying large N matrix model quantities
in this setting to counterparts in the gravity duals.

1.1 Introduction and background

We consider a general class of supersymmetric, magnetically charged AdS4 black holes in
M-theory, where the internal space Y7 is a Sasaki-Einstein manifold. Before introducing
the black hole the vacuum of the theory is the Freund-Rubin solution AdS4 × Y7. Dirac
quantization imposes

N = 1
(2πℓp)6

∫
Y7
⋆11G ∈ N , (1.1)

where G is the M-theory four-form, ⋆11 is the Hodge dual, and ℓp denotes the Planck length.
The integer N fixes the overall scale, and may also be interpreted as the number of M2-branes
sourcing the AdS solution, as we describe further below.
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Via the Kaluza-Klein mechanism, if the isometry group of Y7 contains a maximal torus
U(1)s of rank s, then there are associated massless U(1) gauge fields Ai, i = 1, . . . , s, in
the four-dimensional spacetime. One can then consider introducing a supersymmetric black
hole into this vacuum, carrying conserved charges under the gauge fields. Taking the black
hole horizon to be a Riemann surface1 Σg of genus g, we consider black holes with magnetic
(but no electric) fluxes

pi =
1
2π

∫
Σg

dAi ∈ Z . (1.2)

In the full M-theory geometry the pi are Chern classes which describe how the internal
space Y7 is fibred, as an associated principal U(1)s bundle, over the horizon Σg. The total
space Y9 is then a fibre bundle

Y7 ↪→ Y9 → Σg . (1.3)

Such black hole solutions are in general difficult to construct explicitly, not least since in
general we lack four-dimensional consistent truncations that keep the massless gauge fields
Ai. Exceptions to this are the U(1)4 ⊂ SO(8) STU gauged supergravity model that arises
from reduction on Y7 = S7, with the corresponding black holes and holographic microstate
counting discussed in [2]; and the consistent truncation of [6] to minimal gauged supergravity
that includes only the R-symmetry gauge field (the graviphoton) for the U(1)R isometry
of Y7, where the corresponding “universal twist” black holes and microstate counting were
discussed in [7].

Even with a consistent truncation it is not guaranteed to be able to solve the Einstein
equations in closed form, and we shall instead follow the approach introduced in [8], and
further developed in [9–11]. Here rather than studying the full supersymmetric extremal
black holes, we instead focus on their near-horizon geometry. Such near-horizon solutions take
the form AdS2 × Y9, where the internal space Y9 has the fibred form (1.3). Supersymmetric
M-theory solutions of this type, with no internal four-form flux G on Y9, were classified in [12],
and require that Y9 is a “GK geometry” [13]. We shall review this in more detail in section 3,
but for the purposes of this introduction we now briefly summarize some relevant features.

Firstly, Y9 necessarily admits an R-symmetry Killing vector field ξ, meaning that the
preserved Killing spinor of the supergravity solution is charged under ξ. If we introduce a
normalized basis of Killing vectors ∂φi , i = 1, . . . , s, generating the U(1)s isometry of the
fibre Y7 in (1.3), then we may generically write

ξ =
s∑

i=1
bi ∂φi . (1.4)

The variables bi ∈ R then specify how U(1)R ⊂ U(1)s. Secondly, the geometry transverse
to the vector field ξ in Y9 is Kähler, and in the fibre Y7 in particular one can introduce
a transverse Kähler class [ω] ∈ H2

B(Fξ), where the latter is the basic cohomology for the
1Later in the paper we will also consider the extension to supersymmetric accelerating black holes [4],

where the horizon is a orbifold surface known as a spindle [5].
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foliation Fξ defined by the vector field ξ. As in [10, 14, 15] we then study a restricted class
of flavour twist solutions, where by definition we assume

[ω] = Λ[ϱ] ∈ H2
B(Fξ) . (1.5)

Here Λ ∈ R is a constant (which is ultimately fixed by flux quantization in M-theory, as
in (1.1)) and ϱ denotes the transverse Ricci form for the Kähler metric. The condition (1.5)
may be motivated in a number of ways. It is in some sense imposing an Einstein equation on
the transverse Kähler metric, at a cohomology level, but in general one can certainly turn on
more general Kähler class parameters. These parameters are expected, since in addition to
the massless gauge fields Ai that result from isometries of Y7, the Kaluza-Klein mechanism
will also lead to “baryonic” U(1) gauge fields, associated with five-cycles in Y7, with the
number of these being dimH5(Y7,R). When the latter is zero (such as for Y7 = S7 discussed
above) the condition (1.5) is automatically true, and the same condition also holds for the
universal twist black holes, also discussed above. On the other hand, when (1.5) does not
hold it is currently not understood how to match the black hole entropy to a localization
calculation, due to associated flat directions for the baryonic symmetries at large N [10].
In fact, in this paper we shall find a new puzzle with interpreting supergravity solutions
which do not satisfy the condition (1.5).

With these ingredients to hand, we can now state how the black hole entropy is computed
using this formalism [9, 10]. First, we introduce the gravitational free energy

Fgrav[ξ] =
√

2π6

27VolS(Y7)[ξ]
N3/2 . (1.6)

Here VolS(Y7)[ξ] is the Sasakian volume of Y7 [16, 17], and as the notation suggests this may
be computed just from the topology of Y7 and fixing a choice of R-symmetry vector ξ. Fgrav is
the free energy (the holographically renormalized action) of the AdS4 × Y7 vacuum discussed
at the start of this section. The black hole entropy is then given by the elegant formula

S[ξ] = 4
s∑

i=1
pi

∂

∂bi
Fgrav[ξ]

∣∣∣
b1=1

, (1.7)

where pi are the magnetic charges (1.2), and we have chosen a basis for ∂φi generating U(1)s

such that the Killing spinor is charged only under ∂φ1 , with charge 1
2 . Supersymmetry is

then preserved for such solutions via a topological twist, which fixes p1 = 2g − 2, in terms
of the genus g of the horizon Σg, and the condition b1 = 1 in (1.7) simply normalizes the
R-symmetry correctly. Crucially, following [8], in [9, 10] it is shown that solutions to the
equation of motion extremize the entropy function in (1.7) over the choice of ξ, parametrized
in terms of bi via (1.4). The extremal value of S is then the Bekenstein-Hawking entropy
of the corresponding black hole solution.

The dual field theory calculations, which reproduce the entropy in (1.7) for certain
classes of models, were carried out in [18, 19], with an interesting alternative approach
recently given in [20]. As we review in section 2, the field theories are generically described
by 3d N = 2 Chern-Simons-matter theories. These arise as the low-energy worldvolume
theories on N M2-branes at the Calabi-Yau four-fold singularity X4 = C(Y7), and flow to
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superconformal field theories (SCFTs) in the IR, dual to the AdS4 × Y7 vacuum. This is
itself a well-established story.

Introducing a supersymmetric black hole changes the spacetime geometry, and correspond-
ingly the Euclidean conformal boundary on which the field theory is defined is then Σg × S1.
The partition function Z of the Chern-Simons-matter theory on the latter background is called
the “topologically twisted index”, and this localizes to a matrix model as we review in section 2.
In general the gauge group consists of G copies of U(N), labelled by I = 1, . . . ,G , and one can
introduce the complexified Cartan-valued variables uI = β(AI

3 + iσI). Here β is the radius of
the S1, AI

3 is the component of the I-th gauge field along this circle direction, while σI is the
scalar field in the corresponding vector multiplet. The localized partition function involves
an integral over the matrix variables uI , which in the large N limit take a continuum form

uI(t) = iN1/2t+ vI(t) , (1.8)

where the imaginary part N1/2t will play a crucial role in what follows. The continuum limit
has an associated eigenvalue density ρ(t), and the black hole entropy is identified with Re logZ.

1.2 Overview of results

In this paper we extend the above matching further, and show that many quantities in
the large N matrix model can be identified directly in the gravitational duals, described
by the GK geometry on Y9.

Firstly, a given field theory dual involves specifying a choice of the M-theory circle
S1

M . This is because the Chern-Simons-matter theories are typically engineered from brane
configurations in type IIA string theory, which involve reducing on S1

M . This can be specified
by picking a U(1)M action on the fibre internal space Y7, generated by a corresponding
Killing vector field ζM . Analogously to the construction in [21], we then introduce an M-
theory Hamiltonian function hM , also called moment map in the following, which satisfies
the defining equation

dhM = −ζM⌟ω . (1.9)

Recall here that ω is the transverse Kähler form for the fibre Y7. In fact there is a natural
choice for the integration constant in hM , with an alternative definition of hM given later
in the paper. Being a continuous function on a compact space Y7, the image

hM (Y7) = [τmin, τmax] ⊂ R (1.10)

is a compact interval in R, where we denote the image by the variable τ . Our first result
is that there is a natural identification between this variable in gravity and the large N

eigenvalue distribution on Σg × S1, namely

τ = ℓ3pN
1/2t , (1.11)

where ℓp is the Planck length, cf. equation (1.8). We motivate this identification by following
a chain of relationships in the set-up we have described, starting from the vacuum moduli
space of the Chern-Simons-matter theory. We shall see in examples that the eigenvalues in
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the matrix model are then indeed supported on the t-interval corresponding to (1.10), but
there are further checks on this identification, as we now describe.

Secondly, in the gravity dual we can introduce a one-parameter family of five-dimensional
spaces

Yτ = h−1
M (τ)/U(1)M , (1.12)

parametrized by τ . These are “Sasakian quotients” of Y7 by the M-theory circle action, where
the associated moment map level is τ . We then find that the eigenvalue density ρ(t) in the
matrix model is given by the simple formula

ρ(t) = C · d
dΛVol(Yτ )

∣∣∣∣
τ=ℓ3

pN1/2t
. (1.13)

Here the constant C is fixed by requiring that ρ(t) is a normalized density, and again we shall
give a more explicit general formula later in the paper. Notice the derivative with respect to
the parameter Λ, which was introduced as a Kähler class parameter via (1.5).

Finally, we also study certain probe M2-branes in the near-horizon AdS2 × Y9 geometries,
wrapping the (Euclidean) AdS2 part of the spacetime and the M-theory circle direction (so
that they are tangent to ζM ). These correspond to fundamental strings upon reducing to
type IIA, and, when supersymmetric, should map to BPS Wilson loops in the fundamental
representation of the gauge group wrapping the Euclidean time circle in the dual field
theory [22]. We find that such M2-branes are supersymmetric precisely if they wrap the
R-symmetry direction, and so are tangent to ξ. This can happen only on loci where ξ and ζM

are aligned, which are precisely the critical points of hM . Denoting with pn any point in the
n-th such (connected) locus, the image hM (pn) = τn defines a value tn in the matrix model
via (1.11). The values tn are precisely the points at which the derivative of the eigenvalue
density ρ′(t) is discontinuous, and we find them to be related to the renormalized action
IM2 of the above BPS M2-branes as

IM2|pn = N1/2tn . (1.14)

If we order t1 = tmin < t2 < · · · < tmax, the BPS Wilson loop in the fundamental repre-
sentation is then

log ⟨Wfund⟩ = −IM2|p1 = −N1/2tmin , (1.15)

which is the BPS M2-brane with least action.
This is a very satisfying picture of how the large N matrix model, that arises from

localizing the Chern-Simons-matter field theories on Σg × S1, is related to the gravitational
dual. We should emphasize that some of the ingredients we have introduced above have
analogues also in the original AdS4 × Y7 vacua — for example, the eigenvalue density on S3

was interpreted in [23] in terms of counting operators in the chiral ring of the gauge theory in
flat spacetime. The fact that we find similar formulas for the black hole solutions is non-trivial.
Firstly, although the large N matrix models on S3 and Σg ×S1 are closely related (as pointed
out in [18]), before taking the large N limit they are very different. This is emphasized by
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the alternative approach to the topologically twisted index and its refinement given in [20],
which we will briefly discuss momentarily and in section 5. Similarly, the fact that certain
structures in the Sasaki-Einstein geometry of Y7 have analogues in GK geometry for Y9
which are fibrations, as in (1.3), only follows from the quite extensive work on developing
GK geometry that has been cited above. In particular there are some key differences with
previous literature, for example with the discussion of BPS M2-branes. Another important
aspect of the results described above is that they are formally independent of the choice of
magnetic charges pi, which have no analogue in the AdS4 × Y7 vacuum. The matching we
describe in fact holds “off-shell”, for any choice of R-symmetry vector ξ; in particular we do
not have to pick the superconformal R-symmetry which extremizes the entropy (1.7) (and
thus depends implicitly on the magnetic charges pi) in order for the above statements to
hold, and a priori it is not clear that this had to be the case.

Many of the structures we have introduced above also extend to accelerating black holes,
using the results of [14, 15], as we discuss in section 5. Here the black hole horizon is replaced
by a spindle Σ = WCP1

[m+,m−]. This is topologically a two-sphere, but with conical deficit
angles 2π(1− 1/m±) at the poles. Crucially there is not yet any large N matrix model result
to compare to, although this is expected to arise from a limit of the spindle index introduced
in [24]. However, setting m+ = m− = 1 gives the two-sphere, but where unlike in (1.4) the
R-symmetry vector ξ on Y9 is now allowed to mix with rotations of the horizon S2. We find
that the analogous quantities computed in GK geometry in this setting, for example BPS
M2-brane actions which sit at the poles of the S2, precisely match the refined twisted index
of [20, 25] where an additional chemical potential is introduced for rotations of the S2, in
the background S2 × S1 on which the field theory is defined! We present gravity predictions
for the large N limit of the spindle index for Σ × S1.

Plan of the paper. The plan of the rest of the paper is as follows. In section 2 we
briefly review how 3d N = 2 Chern-Simons-matter theories arise on the worldvolumes of N
M2-branes at a Calabi-Yau four-fold singularitiy X4. Key to this is a choice of M-theory circle
and reduction to type IIA string theory, with our main examples being the ABJM and ADHM
field theories, where in both cases X4 = C4/Zk. We summarize how the partition function of
such Chern-Simons-matter theories on Σg × S1 (the “topologically twisted index”) localizes
to a matrix model, and take a large N continuum limit. In section 3, which is also largely
review, we give an overview of the gravity dual solutions, with the near-horizon limit of the
supersymmetric extremal black holes being described by AdS2×Y9 GK geometries in M-theory.
Here X4 = C(Y7) is a cone over Y7, and in turn the internal space Y9 is a fibration of Y7 over
the horizon Σg (1.3). These two sections are largely review, and have been included to make
the paper self-contained. They can safely be skipped by readers familiar with these topics.

Having introduced both sides of the duality, in section 4 we proceed to match quantities
on both sides in more detail. Motivated by the moduli space discussion in section 2 we
introduce the M-theory Hamiltonian function on Y9 and relate this to the continuous eigenvalue
density in the matrix model. We show in detail how this works for our two main ABJM
and ADHM examples, and also relate this to the matching of BPS M2-brane probes in the
gravity background and dual Wilson loop VEVs. Section 5 switches gears and discusses the
generalization to accelerating black holes, for which the Riemann surface horizon is replaced
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by a spindle Σ = WCP1
[m+,m−]. In this case there is not yet a large N matrix model result to

compare to, but using [15] our gravity constructions extend straightforwardly. Remarkably,
setting m+ = m− = 1 so that Σ = S2 our results and BPS M2-brane actions in gravity
perfectly match the recent “refined twisted index”, computed in the large N limit in [20].
Section 6 illustrates the matching described in section 4 with further examples, where the
calculations utilize appropriate toric geometry methods. We conclude in section 7 with a
brief discussion and outlook.

Some further details have been relegated to various appendices: appendix A gives more
details of the large N matrix models with flavours, appendix B collects the key results for
the two main ABJM and ADHM examples, appendix C derives the BPS condition for probe
M2-branes, and finally appendix D discusses a subtlety in computing the M2-brane VEV
in gravity, along with its resolution.

2 M2-brane Chern-Simons theories

2.1 Geometric engineering

In this section we review how one can construct 3d N = 2 worldvolume theories for M2-
branes in backgrounds R1,2 × X4, where X4 is a Calabi-Yau four-fold singularity. This
is well-understood in cases where X4 may be appropriately viewed as a fibration over a
Calabi-Yau three-fold X3, and there is a corresponding interpretation in terms of D2-branes
in type IIA string theory. The fibration is related to adding D6-branes and/or turning on
Ramond-Ramond two-form flux in the type IIA setting. We will focus on two simple examples
which illustrate the general features, where both describe M2-branes in quotients of flat
spacetime R1,2 × C4/Zk. We will then refer to these as primary examples for illustration
throughout the remainder of the paper.

2.1.1 Type IIA construction

We start by considering N D2-branes in the background R1,2 × X3 × Rt, where t ∈ R
parametrizes2 the real line and X3 is a Calabi-Yau three-fold cone singularity. The latter has
conical metric gX3 = dr2 + r2gY5 , where r ≥ 0 is a radial coordinate for the cone and (Y5, gY5)
is a Sasaki-Einstein five-manifold. There are by now many classes of such X3, including
infinite families with both explicit metrics and also general existence results [26]. While
X3 could be arbitrary, we will illustrate our results with two particularly simple examples,
which we refer to as Model I and Model II:

Model I : XI
3 = C3 ,

Model II : XII
3 = {z1z2 = z3z4} ⊂ C4 . (2.1)

Here XII
3 is the well-known conifold singularity, with Y II

5 = T 1,1 ∼= S2 × S3, while the
background for Model I is simply flat spacetime, with Y I

5 = S5 with its round metric. The
D2-branes are placed at the conical singularity r = 0 of X3 (which is the origin of C3, C4,
respectively, in the two models (2.1)), and the origin t = 0 of Rt.

2Here t is not to be confused with the time direction in R1,2, which will play no particular role in this
paper.
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The low-energy effective theory on the D2-branes in the R1,2 directions is generically
a three-dimensional N = 2 theory. When the singularity X3 admits a resolution to a
smooth Calabi-Yau, this effective theory is expected to be described by a quiver gauge
theory with superpotential W . For example, this will be the case if X3 is a toric Calabi-Yau
singularity, where the gauge group may be taken to be G = U(N)G where G is the Euler
number of the Calabi-Yau resolution. In this picture, each copy of U(N) arises as the gauge
group on a fractional D-brane, wrapping various collapsed cycles at the singularity, and
the bifundamental matter fields in the quiver are massless strings between these D-branes.
For our two examples we have:

Model I0: N = 8 U(N) SYM. In N = 2 language this is a U(N) vector
multiplet, together with three adjoint chiral fields Φi, i = 1, 2, 3, and superpotential
W = Tr (Φ3[Φ1,Φ2]).

Model II0: Klebanov-Witten theory [27]. This is a U(N)2 quiver gauge theory,
with bifundemental chiral fields Ai, Bi (i = 1, 2), transforming in the (N,N),
(N,N) representations, respectively, and superpotential W = Tr (A1B1A2B2 −
A1B2A2B1).

In particular for Model II0 the resolved Calabi-Yau is the resolved conifold, which replaces
the isolated singular point {r = 0} = {z1 = z2 = z3 = z4 = 0} ∈ XII

3 by a copy of CP1 = S2.
To obtain the final models that we are interested in, we add two further ingredients:

D6-branes. We may add D6-branes to the above D2-brane set-up, without breaking any
supersymmetry, provided these wrap divisors (complex codimension one submanifolds) in X3.
From the low-energy D2-brane worldvolume perspective, this adds chiral matter fields in the
fundamental/anti-fundamental representations, corresponding to massless strings stretching
between the D2-branes and D6-branes [28, 29]. In particular, we define:

Model I: ADHM theory. We add k pairs of fundamental/anti-fundamental chiral
fields (Qj , Q̃j), j = 1, . . . , k to Model I0 [N = 8 U(N) SYM] above, with total
superpotential

W = Tr
(
Φ3[Φ1,Φ2] +

k∑
j=1

Q̃jΦ3Qj

)
. (2.2)

Physically we have added k D6-branes to the original background, located at
{z3 = 0} ⊂ C3, and at the origin t = 0 of Rt. The quiver for this theory is shown
in figure 1.

Chern-Simons terms. In 2 + 1 dimensions we may instead add an N = 2 Chern-Simons
interaction for each U(N) gauge group factor, proportional to the Chern-Simons levels kI ∈ Z,
I = 1, . . . ,G . As explained in [30], such Chern-Simons interactions may be induced (via
the Wess-Zumino couplings on D-branes) by turning on Ramond-Ramond (RR) fluxes in
the original D2-brane background, where the flux threads the various (collapsed) cycles
in X3. The sum

∑G
I=1 kI = 2πℓsF0, where ℓs is the string length and F0 is the Romans
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N k

Qj

Q̃j

Φ1,2,3

Figure 1. Quiver diagram for Model I: the ADHM theory.

N+k N−k

A1,2

B1,2

Figure 2. Quiver diagram for Model II: the ABJM theory.

mass [31]. Thus provided F0 = 0 the resulting backgrounds uplift to M-theory. For Model II0
above this leads to:

Model II: ABJM theory [32]. This is the same Model II0 D2-brane analogue of
the Klebanov-Witten theory above, with superpotential

W = Tr (A1B1A2B2 −A1B2A2B1) , (2.3)

but with Chern-Simons levels (k1, k2) = (k,−k), ensuring F0 = 0. This Chern-
Simons coupling is induced by turning on k units of RR two-form flux through the
(collapsed) CP1 at the conifold singularity. The quiver for this theory is shown in
figure 2.

More generally, given any X3 (with a Calabi-Yau resolution) one could add D6-branes,
introducing fundamental matter in the field theory, and also turn on RR two-form flux,
inducing Chern-Simons couplings in the field theory. Both types of deformation precisely fibre
the M-theory circle S1

M over the original type IIA spacetime. The uplifted M-theory solution
is then R1,2 ×X4, where N = 2 supersymmetry fixes X4 to be a Calabi-Yau four-fold, with
the M-theory circle then necessarily complexified into C∗

M ≡ Rt × S1
M , and we may identify

X3 = X4/C∗
M . Both of our models uplift to R1,2 × C4/Zk, with different Zk quotients, as

we describe in more detail in section 2.1.3.

2.1.2 Moduli space of vacua

The class of 3d N = 2 field theories we have introduced have moduli spaces of vacua, and in
this section we briefly comment on some aspects of this which will be relevant for the rest of
the paper. A more complete discussion may be found in the original references [28–30, 33].

The Calabi-Yau geometry X4 probed by the M2-branes appears directly in their vacuum
moduli spaces. The reason for this is simple: for a single brane that probes a space X as
a pointlike object, and is free to move anywhere on X, by definition X should appear as
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(a component of) the vacuum moduli space of the worldvolume field theory on that brane.
Similarly, for N branes the vacuum moduli space should contain a copy of SymNX, the
symmetric product of N copies of X, corresponding to the moduli space of N indistinguishable
pointlike objects probing X.

Let us describe this for a single D2-brane in R1,2 × C3 × Rt, setting N = 1 in Model I0
described at the start of section 2.1.1. In N = 2 language we have a U(1) vector multiplet,
which in addition to the gauge field contains a real scalar σ, together with three (uncharged)
complex scalar fields Φi, i = 1, 2, 3. The superpotential W is zero for the Abelian theory,
and thus the vacua are simply described by the vacuum expectation values (VEVs) of the
Φi, which precisely parametrize XI

3 = C3, together with the VEV of the real scalar σ, which
parametrizes Rt. As already mentioned above, in three dimensions we may also dualize the
U(1) gauge field into a periodic scalar field: in the M2-brane lift of the D2-brane, the VEV of
this periodic scalar precisely parametrizes the M-theory circle S1

M . Moreover, after dualizing in
this way the N = 2 vector multiplet becomes a complex scalar field, living in C∗

M . Extending
to the non-Abelian U(N) case, all of these fields become N ×N matrices, transforming in
the adjoint representation. Imposing the F-term relations dW = 0 from the superpotential
W = Tr (Φ3[Φ1,Φ2]) implies that the Φi commute, and are thus simultaneously diagonalizable,
parametrized by their N eigenvalues Φα

i , α = 1, . . . , N . Similarly, σ is now a Hermitian
N ×N matrix, which is again parameterized by its N real eigenvalues σα. Altogether these
parametrize SymN (C3 × Rt) = (C3 × Rt)N/SN , with the eigenvalues permuted by the Weyl
group Weyl(U(N)) = SN , which is the permutation group of N objects.

The M2-brane worldvolume theories of interest deform the original D2-brane theories
by adding either D6-branes (fundamental/anti-fundamental matter) or turning on RR flux
(Chern-Simons couplings). There is a similar, but more involved, discussion of their vacuum
moduli spaces, which may be found in the original references [28–30, 33]. The main point
we wish to emphasize here is that the branch of the vacuum moduli space which reproduces
SymNX4 has [33]

σ1 = σ2 = · · · = σG , (2.4)

where σI is the vector multiplet scalar for the I-th gauge group factor in G = U(N)G . The N
real eigenvalues σα

I of any one of the σI , where α = 1, . . . , N , may again be thought of as
parametrizing the positions of the D2/M2-branes along the Rt direction. We shall return to
this point again in the next subsection, and also when we consider the holographic duals.

In 3d gauge theories one can introduce pointlike monopole operators, which by definition
create magnetic flux for a gauge field through an S2

pt surrounding that point. For M2-brane
theories with gauge group G = U(N)G an important role is played by the diagonal monopole
operators T (n), which by definition create flux∫

S2
pt

TrFI = n ∈ Z , I = 1, . . . ,G . (2.5)

Here FI is the field strength for the I’th gauge field, and it is convenient to further define
T ≡ T (1), T̃ ≡ T (−1). In a Chern-Simons theory such monopole operators also carry electric
charges under the gauge group G. An alternative way to introduce T, T̃ is to first notice
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that in a quiver gauge theory nothing is charged under the diagonal U(1)diag ⊂ U(N)G .
This Abelian gauge field may then be dualized to a periodic scalar field τ, with period
2π/G [33]. The diagonal monopole operators may then be promoted to complex chiral fields
by identifying T = |T | eiG τ, T̃ = |T̃ | e−iG τ [28].

For quiver gauge theories without D6-branes, and hence without fundamental/anti-
fundamental matter, such as Model II, one can describe the vacuum moduli space without
introducing T , T̃ ; or rather one can introduce them, but they are essentially then immediately
redundant, satisfying the trivial relation T T̃ = 1. However, for theories that contain
fundamental/anti-fundamental matter, the charges of T , T̃ under both gauge and global
symmetries in the quantum theory obtain anomalous contributions from fermion zero modes
in that matter [28, 29]. The classical vacuum moduli space is correspondingly corrected in
the quantum theory, and one necessarily needs to introduce T , T̃ to describe this quantum-
corrected moduli space. This leads to:

Model I: The monopole operators satisfy the quantum F-term relation

T T̃ = Φk
3 . (2.6)

This will be important, both for discussing the matrix model in section 2.2, and
also for comparing to the gravity dual in section 4.

2.1.3 M-theory circle

As mentioned at the end of section 2.1.1, adding RR two-form flux and/or D6-branes to a
type IIA spacetime fibres the M-theory circle S1

M , resulting in a total 11d spacetime of the
form R1,2 ×X4. Equivalently, one can start with the latter spacetime and a specific choice of
M-theory circle, and then reduce to type IIA. In practice we may fix a Calabi-Yau four-fold
X4 and pick a U(1) ≡ U(1)M action on X4. The flow of the associated Killing vector ζM

generates the M-theory circle action. Moreover, as explained in the last subsection the field
theory moduli space for the Abelian theory precisely realizes X4.

For our models of interest recall that X4 = C4/Zk, where we denote standard complex
coordinates on C4 by za = |za|eiϕa , and the a-th copy of C is rotated by ∂ϕa with weight
one. The Zk quotient is precisely along Zk ⊂ U(1)M , but where the M-theory circle action
depends on the model. Let us see this explicitly:

Model I: Recall that this theory adds the fundamental/anti-fundamental fields
Qj , Q̃j , j = 1, . . . , k, to the N = 8 Maxwell theory. The branch of the classical
vacuum moduli space where Qj = 0 = Q̃j is identical to that for a D2-brane in flat
spacetime, namely C∗

M × C3, which has the wrong topology.3 However, as shown
in [28], the quantum-corrected moduli space for this theory may be parametrized
by the three complex scalars Φ1,Φ2,Φ3, together with the diagonal monopole
operators T, T̃ , which recall satisfy the additional quantum constraint (2.6). The
latter equation defines an Ak−1 = C2/Zk ⊂ C3 singularity, where the C3 here has

3There will be an additional “Higgs branch”, where Qj , Q̃j may obtain vacuum expectation values, but
from the F-term equations dW = 0 this can only happen where Φ3 = 0, which geometrically is then the
D2-branes and D6-brane are coincident. This Higgs branch does not play any role in our discussion.
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coordinates (T, T̃ ,Φ3). We immediately see that the quantum vacuum moduli
space is XI

4 = C2/Zk × C2, with (Φ1,Φ2) parametrizing the second factor of C2.
We may then identify

T = zk
1 , T̃ = zk

2 , Φ1 = z3 , Φ2 = z4 , (2.7)

in terms of the standard coordinates za on C4. The operators above have charges

U(1)I
M : (1,−1, 0, 0) , (2.8)

under the M-theory circle action U(1)M . The Zk quotient is precisely along ZI
k ⊂

U(1)I
M , and we introduce the associated generating vector field ζM = 1

k (∂ϕ1 −∂ϕ2),
whose orbits are precisely the M-theory circles S1

M of the quotient. On the other
hand, the fixed point set of the circle action {z1 = z2 = 0} corresponds to the
D6-brane locus in the type IIA spacetime. The original type IIA spacetime
XI

3 = C3 arises as the (Geometric Invariant Theory) quotient

C4/(C∗
M )I = XI

3 = C3 , (2.9)

where recall that (C∗
M )I is the complexification of U(1)I

M .

Model II: There are no quantum corrections in this theory, and we may hence
describe the vacuum moduli space without introducing T , T̃ . In the Abelian
N = 1 theory the superpotential W is zero, and the vacuum moduli space is hence
parametrized by the four scalar fields

A1 = z1 , B1 = z2 , A2 = z3 , B2 = z4 . (2.10)

Nothing is charged under the U(1)diag ⊂ U(1)2 diagonal gauge group, while we
may identify the remaining U(1) (to be concrete, the second U(1) in U(1)2) with
the M-theory circle action. Thus the coordinates za on C4 have charges

U(1)II
M : (1,−1, 1,−1) . (2.11)

The vacuum moduli space is then XII
4 = C4/ZII

k , with the ZII
k ⊂ U(1)II

M quotient
arising due to a residual discrete gauge symmetry [32], and we correspondingly
introduce the vector field ζM = 1

k (∂ϕ1 − ∂ϕ2 + ∂ϕ3 − ∂ϕ4). In this example the
circle action is free, and hence there are no D6-branes. However Kaluza-Klein
reduction along U(1)II

M gives rise to RR fluxes corresponding to Chern Simons
coupling in the field theory. The original type IIA spacetime is the quotient

C4/(C∗
M )II = XII

3 = {z1z2 = z3z4} ⊂ C4 . (2.12)

2.2 Topologically twisted matrix model

The class of 3d N = 2 Chern-Simons-matter theories we have introduced may be put on
Σg ×S1 with a topological twist along Σg, preserving supersymmetry, where Σg is a Riemann
surface of genus g.4 The path integral of such a theory is called the topologically twisted index.
In the following we review the localization of the latter, which leads to an effective matrix
model description whose properties can be extracted in the large N limit. Our discussion
follows the original references [2, 25, 34].

4From the type IIA perspective, this is achieved by wrapping the D2-branes on Σg.
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2.2.1 Chemical potentials versus R-charges

The topologically twisted index is a function of background magnetic fluxes nA and fugacities
yA for the flavour symmetries of the theory. The fugacities yA = eiπ∆A are equivalently
expressed in terms of the chemical potentials ∆A and these are the variables we use in
the following.5 Another important fugacity is that for the topological symmetry, namely
ξ = eiπ∆m .

On the other hand, the partition function on S3 instead depends on trial R-charges, which
are also denoted ∆A in the literature. We shall use ∆S3

A to distinguish them where necessary.
The chemical potentials and the R-charges appear in an identical fashion in the computation
of the large N partition functions on Σg × S1 and S3 respectively, which leads to the formal
identification ∆A = ∆S3

A in [18]. The latter reference also noticed that for the topological
symmetry these parameters are related up to a sign ∆m = −∆S3

m . These identifications
are crucial for this work, as holographically the parameters matched to geometry are the
R-charges, and then by extension the chemical potentials. Additionally, it is also expected that
the chemical potentials should be R-charges for the 1d supersymmetric theory that appears
on flowing to the IR, after compactification on Σg. We will make some of these statements
more precise in section 4.1. In line with this comment, we introduce the formal variables ∆T

and ∆T̃ which we identify with the R-charges of the diagonal monopole operators, such that

∆m = −∆S3
m = −1

2(∆
S3
T −∆S3

T̃
) = −1

2(∆T −∆T̃ ) . (2.13)

The second equality is the definition of the “bare” monopole charge ∆S3
m [35]. Recall that the

monopole operators T and T̃ also obey an F-term relation, which translates into a constraint
on their R-charges, and by extension to our variables. Together with (2.13) this gives two
constraints on ∆T and ∆T̃ , and it is consistent to phrase any result in terms of these rather
than ∆m. As we shall see, many of the results we shall obtain take a more simple, universal
form when expressed in terms of ∆T,T̃ .

Finally, we note that the above variables are not all independent, but rather obey
constraints coming from the superpotential. First, the invariance of the superpotential under
global symmetries imposes

∏
A y

A = 1 in each term of the superpotential, such that6∑
A∈W

∆A = 2 , (2.14)

where the sum runs over the fields appearing in each monomial of the superpotential. On the
other hand the superpotential has charge 2 under the R-symmetry ∆W = 2, giving rise to
the constraint

∑
A ∆S3

A = 2. This guarantees that the identification ∆A = ∆S3
A is sensible.

Second, there is also a constraint on the fluxes arising because we are imposing a topological
twist to preserve supersymmetry on the Riemann surface Σg∑

A∈W

nA = 2g − 2 . (2.15)

5Note that we take a different convention from [2], namely ∆there = π∆.
6Looking only at the constraint on the fugacities it appears that we could have

∑
A

∆A = 2ℓ, ℓ ∈ Z in
general. However it as been argued in [18] that any ℓ ̸= 1 either does not give a consistent solution, or gives a
solution related to the ℓ = 1 solution by discrete symmetries.
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Note that we take a different sign convention from [2] for the fluxes, in order to match the
geometry conventions of [15] later on.

2.2.2 Localization on Σg × S1

The index can be evaluated exactly using supersymmetric localization [36]. That is, for
BPS observables the path integral is exactly equal to a (finite-dimensional) integral over
certain supersymmetric field configurations, dressed by a one-loop determinant that captures
fluctuations. Recall that N = 2 theories have vector multiplets with fields (Aµ, λ, σ,D),
where Aµ is the gauge field with curvature Fµν , λ is an adjoint-valued Dirac fermion, while
σ,D are adjoint-valued scalars. The BPS configurations for an N = 2 vector multiplet on
Σg ×S1, denoting the Σg directions with orthonormal frame directions e1, e2 and the S1 with
e3, are such that D = iF12, F13 = F23 = 0, while σ and A3 take constant values along S1.
The BPS moduli space is then characterized by the Cartan-valued variables

u = β(A3 + iσ) , m = 1
2π

∫
Σg

F , (2.16)

where β is the radius of the S1 and the gauge magnetic fluxes m take values in the co-root
lattice of the gauge group.7 For each U(N) gauge group, u takes the form of an N×N matrix,
which can be diagonalized by a gauge transformation. Then, for the I’th gauge group factor,

uI = diag(u1
I , . . . , u

N
I ) , (2.17)

such that the full BPS moduli space is parametrized by the G sets of N eigenvalues uα
I ,

α = 1, . . . , N , I = 1, . . . ,G .
The localized partition function can then be recast into a contour integral over uI and

a sum over m.

Z(∆, n) =
∑
m

∮
C
Zint(u,m; ∆, n) . (2.18)

We are not interested in the explicit form of the integrand at this stage. What we want to
highlight is that even though the moduli space depends on the gauge content of the model
only, the path integral itself also includes the matter content. Therefore, as mentioned before,
it is a function of the chemical potentials and the flavour magnetic fluxes of the theory.
Deforming the contour and performing the sum in (2.18), the twisted index reduces to a
contour integral with simple poles at eiBα

I − 1 = 0 where eiBα
I depends on the field content;

explicit rules to build this function can be found in [18]. The index is therefore given by a
sum of residues evaluated at the solutions of the so-called Bethe ansatz equations (BAEs)

eiBα
I = 1 =⇒ Bα

I + 2πnα
I = 0 , (2.19)

where the variables nα
I parameterize the phase ambiguities, and are chosen in order to cancel

the long range forces [2]. Furthermore, the BAEs can be obtained as critical points of a
function known as the Bethe potential U ,

BAEs : ∂ U
∂uα

I

= 0 . (2.20)

7This BPS locus is to be contrasted with the one on S3 where only σ = −D is non-zero, and in particular
there are no gauge magnetic fluxes.
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In summary, this reformulates the problem of evaluating the index to the one of extremizing
the Bethe potential.

2.2.3 The large N limit

In the large N limit, (2.20) can be solved numerically by taking the following ansatz for
the eigenvalues, which is partly based on some analytical arguments and on the numerical
simulations in [2],

uα
I = itαN1/2 + vα

I + o(N0) , (2.21)

where tα, vα
I are real and taken to be O(N0) in the large N limit. Notice that (2.21) may

equivalently be written as

Im u1 = · · · = Im uG = diag(t1, · · · , tN )N1/2 . (2.22)

Note this condition implies that σ1 = · · · = σG , which is precisely the same condition that
arises on the vacuum moduli space — see equation (2.4). This is a non-trivial statement: (2.22)
describes the large N eigenvalue distribution of the field theory localized on Σg×S1, while (2.4)
is a statement about the moduli space of the same field theory on flat spacetime R1,2. Recall
that in the latter case we interpreted σ1 = · · · = σG as the position of the corresponding
D2-branes in Rt. We will return to this comment in section 4, when we come to interpret
the large N saddle point distribution directly in the gravity dual.

The numerical simulations also show that the imaginary parts of the eigenvalues tα

become dense at large N , and are distributed over a finite interval [tmin, tmax]. We may
order the eigenvalues using Weyl transformations so that tα are increasing, and introduce
the corresponding (discrete) density function

ρ(t) = 1
N

N∑
α=1

δ(t− tα) ,
∫ tmax

tmin
dt ρ(t) = 1 . (2.23)

In the N → ∞ limit the eigenvalues tα become a continuous variable t, with continuous
eigenvalue density ρ(t). In particular (2.21) becomes a continuous function

uI(t) = itN1/2 + vI(t) . (2.24)

In fact, the Bethe potential can be formulated in terms of ρ(t) and vI(t), and the solutions of
the BAEs are found by extremizing the potential with respect to these functions. Again there
are rules, which can be found in [18] and that we review in appendix A, to build U in terms of
these variables directly from the field content of the theory. The normalization of ρ is imposed
via the introduction of a Lagrange multiplier µ, and the quantity to extremize is actually

U
iN3/2 − πµ

(∫
dt ρ(t)− 1

)
. (2.25)

We now present the results of this extremization, which may be found in [19] and [2]
respectively:
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tt1 t2 t3

ρ(t)

Figure 3. Schematic behaviour of the piecewise linear distribution of eigenvalues in the large N limit
for the Model I ADHM theory.

Model I: The chemical potentials satisfy the constraints
3∑

i=1
∆Φi = 2 , ∆T +∆T̃ = k∆Φ3 , (2.26)

leaving three independent. The first constraint is simply the superpotential one,
where the W is given in (2.2), while the second constraint follows from (2.6). The
saddle point eigenvalue density is

ρ(t) =


µ+∆T̃ t

π2∆Φ1∆Φ2∆Φ3

, tmin < t < 0 ,

µ−∆T t

π2∆Φ1∆Φ2∆Φ3

, 0 ≤ t < tmax ,

(2.27)

where the endpoints are given by

tmin = − µ

∆T̃

, tmax = µ

∆T
, (2.28)

and the extremal value of the Lagrange multiplier is

µ = π

√
2
k
∆Φ1∆Φ2∆T∆T̃ . (2.29)

In particular for generic chemical potentials, ρ(t) is linear in two regions (see
figure 3).

Model II: The chemical potentials ∆Ai , ∆Bi , i = 1, 2, satisfy the single superpo-
tential constraint

∆A1 +∆B1 +∆A2 +∆B2 = 2 , (2.30)

where W is given by (2.3). Without loss of generality, we may assume that
∆A1 ≤ ∆A2 , ∆B1 ≤ ∆B2 . One finds the following eigenvalue density

ρ(t) =



µ+ k∆B1t

π2(∆A1 +∆B1)(∆A2 +∆B1)(∆B2 −∆B1)
, t1 < t < t2 ,

2µ+k(∆B1 ∆B2−∆A1 ∆A2 )t
π2(∆A1 +∆B1 )(∆A1 +∆B2 )(∆A2 +∆B1 )(∆A2 +∆B2 ) , t2 < t < t3 ,

µ− k∆A1t

π2(∆A1 +∆B1)(∆A1 +∆B2)(∆A2 −∆A1)
, t3 < t < t4 .

(2.31)
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tt1 t2 t3 t4

ρ(t)

Figure 4. Schematic behaviour of the piecewise linear distribution of eigenvalues in the large N limit
for the Model II ABJM theory.

which is linear in the three regions separated by

t1 = − µ

k∆B1
, t2 = − µ

k∆B2
, t3 = µ

k∆A2
, t4 = µ

k∆A1
, (2.32)

where tmin = t1 < t2 < t3 < t4 = tmax, as depicted in figure 4. The extremal value
of the Lagrange multiplier is

µ = π
√
2k∆A1∆A2∆B1∆B2 . (2.33)

The free energy F = − logZ can also be computed directly from the Bethe potential
evaluated on the BAEs solutions [18]

logZΣg×S1(∆, n) = 1
π

∑
A

[
nA
∂ Ū(∆)
∂∆A

]
, (2.34)

Ū(∆) ≡ −iU|BAEs =
2πµ
3 N3/2 , (2.35)

where the sum runs over all the fields in the quiver, as well as the monopole operators.
Note that some fields can be eliminated using the constraints (2.14) and (2.15). For our
examples, this recovers some known results:

Model I

logZADHM
Σg×S1 = π

3

√
2
k
∆Φ1∆Φ2∆T∆T̃

(
nΦ1

∆Φ1

+ nΦ2

∆Φ2

+ nT

∆T
+ nT̃

∆T̃

)
N3/2 , (2.36)

and
2
π
Ū(∆) = 4π

3

√
2
k
∆Φ1∆Φ2∆T∆T̃N

3/2 = FADHM
S3 . (2.37)

Model II

logZABJM
Σg×S1 = π

3

√
2k∆A1∆A2∆B1∆B2

(
nA1

∆A1
+ nA2

∆A2
+ nB1

∆B1
+ nB2

∆B2

)
N3/2 , (2.38)

and
2
π
Ū(∆) = 4π

3

√
2k∆A1∆A2∆B1∆B2N

3/2 = FABJM
S3 . (2.39)
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There are two things to notice here. First, the similarity of the expressions between the two
models. This is easily understood from looking at the dual geometries which we will do in
section 4.1. Second, that Ū corresponds to the expression of the free energy on S3 upon
identifying the chemical potential with the R-charges, which has already been noted in [18].
There is no a priori reason for these quantities to be related from a purely field theoretic
point of view. For some related discussion in the gravity dual, see [9].

Finally we shall also be interested in the expectation values of supersymmetric Wilson
loop operators. Recall that a Wilson loop in a representation R is defined as

WR = TrRP exp
∮

dτ (iAµẋ
µ + σ|ẋ|) . (2.40)

In order for the Wilson loop to be supersymmetric, it needs to wrap the S1 direction [25].
It then reduces to WR = TrR exp(iu) with u defined in (2.16). The expectation value is
obtained by inserting this loop operator into the path integral, and normalizing by a factor
of 1/Z, so that ⟨1⟩ = 1. In the large N limit, the factors of the partition function simply
cancel. Therefore, in the fundamental representation,

⟨Wfund⟩ =
G∑

I=1

N∑
α=1

eiuα
I = N

G∑
I=1

∫ tmax

tmin
dtρ(t)e−N1/2t+ivI(t) , (2.41)

such that at leading order in N

log ⟨Wfund⟩ = −N1/2tmin . (2.42)

Compare this with the discussion in [21], on S3, which is similar.

3 Gravity duals

In this section we review the geometry of the M-theory backgrounds dual to the 3d field
theories introduced in section 2. Firstly, we briefly introduce the vacuum AdS4 ×Y7 solutions,
with Y7 being a 7d Sasaki-Einstein manifold, which are dual to the field theories placed on S3

(the conformal boundary of global Euclidean AdS4). Next, we consider inserting a black hole
with horizon Σg into such a background. This is the gravity setting relevant for reproducing
the topologically twisted index at large N discussed in section 2.2, as the conformal boundary
with the insertion of a black hole is Σg × S1 rather than S3.

The near-horizon geometry of such extremal black holes takes the form of AdS2 × Y9
with Y9 a GK manifold [12, 13]. More specifically Y9 here is the total space of a fibration
with base Σg and fibre Y7, as in (1.3). We present the main properties of such fibred Y9
geometries and summarize the geometric extremization procedure to get the entropy and the
R-charges in gravity. Finally, we illustrate concretely all the above constructions by looking
at case where Y7 is a 7-sphere (or a Zk quotient thereof), which corresponds to the gravity
dual of the Models I and II previously introduced.

3.1 AdS4 backgrounds in M-theory

To set the stage, we briefly illustrate the near-horizon limit of the 11d geometries corresponding
to the 3d SCFTs on S3 we introduced in section 2. This will also allow us to introduce various
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notation and geometric concepts that will be needed for the black hole generalization, where
the internal manifold Y7 will fiber over the horizon Σg in the later subsections.

The starting point consists of R1,2 ×X4 backgrounds in M-theory where X4 is a Calabi-
Yau four-fold cone. There are many classes of constructions of such Calabi-Yau’s, including
explicit metrics and existence results, and some of these will be considered later in section 6.
However, for the sake of clarity, we mainly focus on the simplest possible example, namely
X4 = C4 (or a Zk quotient thereof), which leads to the Model I and II introduced previously
in section 2. Following [16] we go “off-shell” and consider X4 equipped with a Kähler, but
not necessarily Ricci-flat, cone metric

ds2
X4 = dr2 + r2 ds2

Y7 . (3.1)

When the cone (3.1) is Kähler the induced metric ds2
Y7

on Y7 = {r = 1} ⊂ X4 is by definition
Sasakian and therefore comes equipped with a unit length Killing vector field ξ called Reeb
vector field. In particular the metric on Y7 can be written as

ds2
Y7 = η2

7 + ds2
6d(ωS) , (3.2)

where η7 is the one-form dual to ξ, i.e. ξ⌟ η7 = 1 (and ξ⌟dη7 = 0). The metric (3.2) itself
is transversely Kähler, with Kähler two-form ωS and dη7 = 2ωS .8 The transverse Kähler
form on the base of the cone can be related with the Kähler form J on the cone itself
in the following way

J ≡ 1
2 d(r2η7) = r dr ∧ η7 + r2 ωS =⇒ J

∣∣
r=1 = ωS . (3.3)

The holomorphic (4, 0)-form Ψ(4,0) on the cone X4 = C(Y7) has charge 4 under ξ i.e.

LξΨ(4,0) = 4iΨ(4,0) . (3.4)

We assume that Y7 has a U(1)s isometry with 1 ≤ s ≤ 4, and we call the corresponding
generating vector fields ∂φi , i = 1, . . . , s, with the coordinates φi having period 2π. The
case s = 4 corresponds to a toric cone and will be considered in more detail in section 6.1.1.
Having introduced the coordinates φi, we may parameterize the Reeb vector field ξ as

ξ =
s∑

i=1
bi ∂φi . (3.5)

In particular, we choose the basis in (3.5) in such a way that Ψ(4,0) has charge 1 under ∂φ1

and is uncharged under all other ∂φi , so that (3.4) is achieved by setting b1 = 4.
Placing N M2-branes at the singular point {r = 0} ∈ X4, including their backreaction

and then taking the near-horizon limit, results in the associated AdS4 backgrounds

ds2
11 = L2

(1
4 ds2

AdS4 + ds2
Y7

)
,

G = 3
8L

3volAdS4 . (3.6)

8The superscript in ωS is meant to highlight that this Kähler two-form is such that the metric (3.2) is
Sasakian. Later on we will lift this assumption and consider a generic Kähler two-form ω.
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Here gAdS4 is the metric on a unit radius AdS4, with volAdS4 the corresponding volume form,
while G is the M-theory four-form. The constant length scale L is fixed by flux quantization via

L6 = (2πℓp)6N

6VolS(Y7)
, (3.7)

where ℓp is the eleven-dimensional Planck length, VolS(Y7) is the volume of the Sasakian
metric on Y7, and the integer flux N given by (1.1) is the number of M2-branes.

The holographically renormalized gravitational free energy of such backgrounds is

Fgrav[ξ] =
π

2G4
=
√

2π6

27VolS(Y7)[ξ]
N3/2 , (3.8)

where G4 is the four-dimensional effective Newton constant. Here VolS(Y7)[ξ] highlights the
fact that the Sasakian volume of Y7 is a function of the Reeb vector field ξ [16, 17]. The
eleven-dimensional metric and four-form in (3.6) give an N = 2 supersymmetric solution to
eleven-dimensional supergravity precisely when the Sasakian metric ds2

Y7
is also Einstein, or

equivalently when the Kähler cone metric (3.1) is also Ricci-flat, i.e. Calabi-Yau. In [16, 17]
it was shown that such metrics precisely minimize the volume Vol(Y7)[ξ], as a function of ξ
subject to the charge constraint (3.4) which fixes its normalization. It immediately follows
that the extremal value of ξ then maximizes the holographic free energy Fgrav in (3.8).

3.2 Near-horizon geometry of AdS4 black holes

From a geometric engineering perspective, taking an M2-brane worldvolume field theory
and putting it on a Riemann surface Σg amounts to wrapping the M2-branes at the tip
of the CY cone X4 over Σg. When taking the near-horizon limit this set-up results in a
particular class of AdS2 × Y9 backgrounds where Y9 is a GK manifold [12, 13] taking the
particular form of a fibration over Σg with fibres Y7 as in (3.2), although with Kähler form
ω in general different from the Sasakian Kähler form ωS . These are the near-horizon limits
of supersymmetric, asymptotically AdS4, magnetically charged black holes, that we began
our discussion with at the start of the paper.

3.2.1 GK geometry and geometric extremization

We start by describing the M-theory background arising from a general GK manifold Y9.
We consider solutions of the form

ds2
11 = e−2B/3 (ds2

AdS2 + ds2
Y9) , (3.9)

G = volAdS2 ∧ F , (3.10)

where ds2
AdS2

is the metric on AdS2 with unit radius, and B and F are respectively a function
and a closed two-form on a compact manifold Y9. Via Dirac quantization the seven-form
flux ⋆G needs to be quantized over a set of codimension 2 submanifolds ΣΥ ⊂ Y9, which
constitute a basis for the free part of H7(Y9,Z):

1
(2πℓp)6

∫
ΣΥ

⋆G = NΥ ∈ Z . (3.11)
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Imposing supersymmetry, i.e. the existence of Killing spinors, it can be shown [13] that
the 9d Riemannian manifold Y9 is equipped with a unit norm Killing vector field ξ, now
called the R-symmetry vector,9 whose dual one-form we call η. The metric on Y9 is adapted
to the corresponding foliation Fξ, taking the form

ds2
Y9 = η2 + eB ds2

8d(J) . (3.12)

Here ds2
8d(J) is the 8d transverse metric, which is Kähler with Kähler two-form J , Ricci two-

form ϱ = dP , and a positive Ricci scalar R > 0. Note that in local coordinates we may write

ξ = ∂z , η = dz + P , (3.13)

so that dη = ϱ. The transverse Kähler form J fully determines this class of geometries as

eB = R

2 , F = −J + d
(
e−Bη

)
. (3.14)

The cone C(Y9), with metric ds2
C(Y9) = dr2 + r2 ds2

Y9
, has a canonically defined integrable

complex structure and it admits a closed nowhere-vanishing holomorphic (5,0)-form Ψ(5,0),
hence it is a Calabi-Yau in this sense [13]. Furthermore, Ψ(5,0) has definite charge under
the U(1) action generated by ξ:

LξΨ(5,0) = iΨ(5,0) . (3.15)

The geometries described are supersymmetric and satisfy the 11d equations of motion
provided that the transverse Kähler metric satisfies the equation

□R = 1
2 R

2 −RabR
ab , (3.16)

where Rab is the Ricci tensor and □ the Laplacian. However, we will again go “off-shell”
following [8] and we will not impose the PDE (3.16) on the Kähler two-form. Instead we
will follow an alternative approach, which is the analogue of the constrained extremization
mentioned at the end of section 3.1. This consists of two steps: rather than imposing (3.16),
one instead imposes its integral over Y9 to hold, namely∫

Y9
η ∧ ϱ2 ∧ J2

2 = 0 . (3.17)

It then makes sense to impose the flux quantization conditions (3.11), which read∫
ΣΥ

η ∧ ϱ ∧ J2

2 = (2πℓp)6 NΥ . (3.18)

It can be proved that these integrals depend only on the (basic) cohomology classes of J
and ϱ. The second step then involves varying the supersymmetric action

SSUSY(ξ, [J ]) =
∫

Y9
η ∧ ϱ ∧ J3

3! , (3.19)

9The reason we used the same symbol to denote the R-symmetry vector and the Reeb vector in section 3.1
will become clear momentarily.
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subject to the constraints (3.18) and (3.17). Solving these for the cohomology class of J , the
result is a function depending on the R-symmetry vector ξ only, which is the analogue of (3.8)
in the AdS4 case. This function is proportional to the “trial entropy” of the black hole

S = 4π
(2π)8ℓ9p

SSUSY . (3.20)

Extremizing S over the R-symmetry vector ξ and imposing its positivity yields the on-
shell entropy.

3.2.2 Fibered Y9

As anticipated we want to put a black hole in the AdS4 background and study its near-
horizon limit. This amounts to consider AdS2 × Y9 backgrounds as in (3.9) where Y9 takes
the fibered form

Y7 ↪→ Y9 → Σg , (3.21)

where Y7 is a manifold as in (3.2) with an a priori generic Kähler two-form ω instead of
the Sasakian one. The R-symmetry vector ξ is assumed to be tangent to Y7, hence it can
be parametrized in the same way as the Reeb vector of the fibre (3.5). Physically the
fibration (3.21) may be achieved by turning on s U(1) gauge fields Ai supported on Σg

with integer magnetic fluxes
1
2π

∫
Σg

dAi = pi ∈ Z , (3.22)

which are nothing but the magnetic charges of the black hole. Mathematically, this amounts
to constructing a principal U(1)s bundle over Σg with Chern numbers pi. The holomorphic
(5,0)-form Ψ(5,0) is obtained as a wedge product of the canonical (1,0)-form on Σg and the
(4,0)-form Ψ(4,0), and differently from the AdS4 case it has charge 1 under the U(1) action
generated by ξ, hence b1 = 1. In order for Ψ(5,0) to be globally well-defined form, in our
basis we need to set p1 = 2g − 2 [37]. In the following we will refer to the integers pi as
flavour twisting parameters.

Denoting ψ7 as the one-form such that locally ω = dψ7, concretely the fibration amounts
to replace

η7 → ηt
7 ≡ η7

∣∣
dφi→dφi+Ai

, (3.23)

ψ7 → ψt
7 ≡ ψ7

∣∣
dφi→dφi+Ai

(3.24)

where the superscript t stands for “twisted”. Then one can show that for Y9 as in (3.21) we have

η = ηt
7 + basic , (3.25)

J = dψt
7 +A volΣg + basic exact , (3.26)

where we take the normalization to be
∫

Σg
volΣg = 1, A is parametrizing the Kähler class

of the Riemann surface, and “basic” here is with respect to the R-symmetry foliation Fξ.
Note that the equation dη = ϱ at the cohomology level becomes

[dηt
7] = [ϱ] ∈ H2

B(Fξ) . (3.27)
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To summarize: we started from a manifold Y7 with U(1)s isometry, within which we
picked an R-symmetry vector field ξ, parametrized in terms of bi as in (3.5). Then we built
the fibration (3.21) specified by some twisting parameters pi ∈ Z. The resulting manifold is a
foliation defined by the above choice of ξ, which furthermore depends on the Kähler form
of the transverse metric (3.26), which is unspecified up to this point.

3.2.3 Flavour twist

As discussed in the introduction, in the remainder of the paper we will be interested in the
so called “flavour twist”, which amounts to imposing that the Kähler class of the fibre is
proportional to its Ricci form class, i.e.

[ω] = Λ [ϱ7] . (3.28)

The full Kähler class [J ] is then parameterized by two parameters only: A and Λ. This
is the case which is under control from the holographic perspective, where a holographic
matching of the free energy has been achieved [9, 10]. Note that for manifolds Y7 with no
baryonic symmetries, i.e. H2(Y7,R) = 0 (such as S7 and Zk quotients thereof, as in our main
examples), the condition (3.28) is automatically true.

With this assumption, the geometric extremization procedure summarized in section 3.2.1
simplifies, but we will not go through the steps here.10 In the present work all we will need is
an expression for the Kähler class parameter Λ which can be obtained by picking the 7-cycle
given by the fibre Y7 itself in (3.18). Indeed, the resulting flux is equivalent to (1.1) and
gives the number of M2-branes N , and it is quadratic in Λ

Λ2

2

∫
Y7
η7 ∧ ϱ3

7 = (2πℓp)6N . (3.29)

Now note that the integral at the left hand side is proportional to the Sasakian volume of Y7

VolS(Y7) =
1

(2b1)3

∫
Y7
η7 ∧

ϱ3
7
3! , (3.30)

hence we can solve (3.29) to obtain11

Λ = (2πℓp)3√
24b3

1 VolS(Y7)
N1/2 . (3.31)

Then the remaining equations in (3.17) and (3.18) fix A, and put constraints on the remaining
quantized fluxes NΥ in terms of the R-symmetry vector bi and the flavour twisting parameters
pi, and eventually one obtains the trial black hole entropy with a flavour twist

S[ξ] = 4
s∑

i=1
pi

∂

∂bi
Fgrav[ξ]

∣∣∣
b1=1

, (3.32)

where Fgrav[ξ] is the trial free energy (3.8) of the vacuum AdS4 solution we started with.12

10See [10] (and note that what we call “flavour twist” is dubbed “mesonic twist” in [10]).
11A thorough discussion of the choice of sign in taking the square root is given in [15].
12Note that the free energy appearing in (3.32) is intended to be before setting b1 = 4.
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It is useful to introduce further observables: the geometric R-charges. These are integrals
associated to 5d U(1)s-invariant supersymmetric submanifolds in the fibres Sa ⊂ Y7 and
they are dual to the R-charges of baryonic operators associated with M5-branes wrapping
them. In particular, they are defined as

Ra ≡ 1
N

4π
(2πℓp)6

∫
Sa

η7 ∧
ω2

2 . (3.33)

Analogously to what we did above, we can introduce the Sasakian volume of these sub-
manifolds as

VolS(Sa) =
1

(2b1)2

∫
Sa

η7 ∧
ϱ2

7
2 , (3.34)

so that in the flavour twist case the geometric R-charges reduce to the ratio between
Sasakian volumes

Ra = 2π
3b1

VolS(Sa)
VolS(Y7)

, (3.35)

with Ra > 0 [15].
Finally, other relevant quantities associated to these submanifolds are the quantized

fluxes Ma that are obtained by considering the integral in (3.18) on fibrations Sa ↪→ Σa → Σg.
Note that these are different from the NΥ in (3.18) and in general they are non-vanishing
even if H5(Y7,R) = 0 (see [15] for more details on this). For the flavour twist they are
related to the geometric R-charges Ra by

Ma = N

2

4∑
i=1

pi
∂

∂bi
(b1Ra) . (3.36)

3.3 Example: Y7 = S7

In this section we illustrate the simplest example of the above geometry, corresponding to
the fibre being a 7-sphere.

The cone X4 = C(S7) in this case is simply C4, hence we can introduce four complex
coordinates za = |za|eiϕa , a = 1, 2, 3, 4, with ϕa having period 2π. The holomorphic form
Ψ(4,0) is the standard one on C4

Ψ(4,0) = dz1 ∧ dz2 ∧ dz3 ∧ dz4 . (3.37)

The standard Kähler form for the flat metric on C4 is

J = i
2

4∑
a=1

dza ∧ dz̄a =
4∑

a=1
d(12 |za|2) ∧ dϕa =

4∑
a=1

dya ∧ dϕa , (3.38)

where in the last step we introduced the coordinates ya = 1
2 |za|2 ≥ 0. Note that the last

form in (3.38) is still valid when we lift the Einstein condition on C4, though the coordinates
ya are defined differently.
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The number of independent U(1) isometries is clearly s = 4, hence there has to exist
a linear change of variables relating the vector fields ∂ϕa rotating the coordinates za with
weight one with the general basis introduced in (3.5)

∂ϕa =
4∑

i=1
vai ∂φi , (3.39)

where vai are 16 constants. Recalling that we require Ψ(4,0) to have charge one under ∂φ1

and to be uncharged under the remaining ∂φi we can read off

v1 = (1, 0, 0, 0) , v2 = (1, 1, 0, 0) , v3 = (1, 0, 1, 0) , v4 = (1, 0, 0, 1) . (3.40)

The Sasakian volume as a function of the R-symmetry vector is given by

VolS(S7) = π4

3b2 b3 b4 (b1 − b2 − b3 − b4)
. (3.41)

Setting za = 0 selects a copy of C3 ⊂ C4 which is the cone over the submanifold Sa. The
corresponding Sasakian volumes are given by

VolS(S1) =
π3

b2 b3 b4
, VolS(Sa) =

π3 ba

b2 b3 b4 (b1 − b2 − b3 − b4)
, a = 2, 3, 4 . (3.42)

From the quantities above we can directly read off the final results for the gravitational
free energy of the AdS4 solution (3.8), and the black hole entropy (3.32), the geometric R-
charges (3.35), and the fluxes (3.36) through the submanifolds Σa ⊂ Y9 of the AdS2 solution:

Fgrav = π

3

√
2b2 b3 b4 (b1 − b2 − b3 − b4)N3/2 ,

S = 4π
3 N3/2

4∑
i=1

pi
∂

∂bi

√
2b2 b3 b4 (b1 − b2 − b3 − b4) ,

R1 = 2
b1

(b1 − b2 − b3 − b4) , Ra = 2ba

b1
, a = 2, 3, 4 ,

M1 = N(p1 − p2 − p3 − p4) , Ma = N pa , a = 2, 3, 4 . (3.43)

One should then set b1 = 1 and extremize S in order to obtain the on-shell quantities.
Note that we have

4∑
a=1

Ra = 2 ,
4∑

a=1
Ma = (2g − 2)N . (3.44)

It is also convenient to give an expression for the R-symmetry vector in terms of the original
basis ∂ϕa . One may check that

ξ = b1
2

4∑
a=1

Ra ∂ϕa . (3.45)
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Using this expression to compute ξ⌟J with both (3.38) and (3.3) we find that the radius
in the coordinates {ya} is

r2 =
4∑

a=1
Ra ya . (3.46)

Later we will be interested in Zk quotients of the 7-sphere. This will be reviewed for the
two main models of interest in section 4.1. However, at the level of the various quantities
obtained via integration introduced above, the quotient simply amounts to adding a factor
of k ∈ Z in the denominator of the volumes (3.41) and (3.42). Moreover, for later purposes
it is useful to invert the relations (3.43) and express Fgrav and S in terms of the geometric
R-charges, so that eventually we have

Fgrav = 4π
3
√
2kR1R2R3R4N

3/2 , (3.47)

S = π

3
√
2kR1R2R3R4

4∑
a=1

(Ma/N)
Ra

N3/2 , (3.48)

where we have already set b1 = 4 in the former and b1 = 1 in the latter. Finally, let us
also give an expression for the Kähler class parameter (3.31) in the flavour twist as we will
need it many times later

Λ =
πℓ3pN

1/2

2
√
2kR1R2R3R4 . (3.49)

4 Matrix model geometry

The topologically twisted matrix models described in section 2 are dual to the black hole
near-horizon geometries presented in section 3. In this section we make a precise identification
of various quantities on both sides of this duality. We start in section 4.1 by reviewing the
matching between chemical potentials and R-charges, and the free energy with the entropy.
In section 4.2 then we introduce the M-theory Hamiltonian function, which allows us to give
a further geometrical interpretation of the matrix model, or more particularly its eigenvalue
density discussed in section 4.3. The relation to probe M2-branes wrapping the M-theory
circle, and their Wilson loop duals, is described in section 4.4. Along the way we describe
the general matching for any Calabi-Yau four-fold cone X4, but illustrate with our two main
examples where X4 = C4/Zk; further examples are discussed in section 6.

4.1 Holography of free energies and R-charges

As already discussed in section 2.1.3, given any M-theory solution we may in principle make
different choices of M-theory circle U(1) ≡ U(1)M acting on the spacetime, and reduce in
different ways to type IIA. Starting with a given AdS2 × Y9 background, with Y9 a fibration
of Y7 over Σg as introduced in the previous section, different choices of M-theory circle acting
on Y7 lead to different Chern-Simons-matter theories on Σg × S1. Our principal examples
of this are Models I and II, which are dual to M-theory geometries with Y7 = S7/Zk and
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U(1)M actions given in (2.8) and (2.11) respectively, where the Zk quotient is taken along
the corresponding M-theory circle.

Having fixed a particular GK geometry and choice of M-theory circle, and hence a
choice of UV field theory on Σg × S1, we would like to identify variables on each side of the
duality. From a geometric engineering point of view, baryonic operators arise from M5-branes
wrapping five-dimensional submanifolds SA ⊂ Y7. The R-charge of the corresponding field is
then given in term of the Sasakian volume of SA in the same way we defined the geometrical
R-charges in (3.35);13 this was first studied in the D3-brane holographic context in [38].
Moreover, recalling the identification between chemical potentials and R-charges, we get
the following chain of identifications

∆A = ∆S3
A = RA . (4.1)

Here A labels any field of the theory, including monopole operators whose chemical potentials
are only formally defined. Similarly, the field theory fluxes nA through Σg are related in
the same way to the geometrical fluxes:

nA = M(SA)
N

, (4.2)

where M(SA) is the quantized flux through SA ↪→ ΣA → Σg, which is computed via (3.36).
Let us illustrate this for our two models:

Model I: The identifications (2.7) give the relation between the fields in this
model and the divisors on C4/Zk. In this case, the submanifolds SA directly
correspond to (multiples of) Sa (recall the latter are defined by {za = 0}).
Substituting this into (4.1) gives the identifications

∆T = kR1 , ∆T̃ = kR2 , ∆Φ1 = R3 , ∆Φ2 = R4 , (4.3)

nT = k
M1
N

, nT̃ = k
M2
N

, nΦ1 = M3
N

, nΦ2 = M4
N

. (4.4)

Model II: we may again use (4.1) together with the identifications (2.10) to
deduce the mapping

∆A1 = R1 , ∆B1 = R2 , ∆A2 = R3 , ∆B2 = R4 , (4.5)

nA1 = M1
N

, nB1 = M2
N

, nA2 = M3
N

, nB2 = M4
N

. (4.6)

Having made these identifications allows one to then match other physical quantities
on both sides of the correspondence. In particular minus the free energy of the field theory
on Σg × S1 reproduces the entropy S:

logZΣg×S1 [∆, n] = S[R,M ] . (4.7)
13The distinction between SA and Sa is purely motivated by the fact that in some examples the choice we

make in gravity for the latter submanifolds does not directly correspond to the SA associated to physical
operators but rather to linear combinations thereof. Correspondingly, the same will be true for any associated
quantity e.g. RA vs Ra.
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The matching (4.7) has been verified in multiple examples [2, 9, 10], and is particularly straight-
forward to see in our main examples. For Model I, using the dictionary (4.3)–(4.4), logZ
in (2.36) matches the entropy (3.48) on S7. Likewise for Model II, the dictionary (4.5)–(4.6)
relates (2.38) with (3.48). In a similar fashion, a well-known matching is that of the free
energy on S3 with Fgrav, which can be observed explicitly for both models as (2.39) and (2.37)
match with (3.47). Interestingly FS3 and Fgrav are proportional to µ and Λ respectively,
such that a direct consequence of their matching is

Λ =
ℓ3pN

1/2

2 µ , (4.8)

which is indeed what we observe by comparing (3.49) with (2.29) and (2.33).

4.2 M-theory circle moment map

Our aim in this section is to provide a geometric interpretation of the matrix model described
in section 2.2.3, or more precisely the large N saddle point distribution. To this end, we
would first like to identify the variable t from a geometric perspective in M-theory.

Recall that, in the large N limit, the variable t corresponds to the continuum limit of the
imaginary parts of the eigenvalues in (2.21). On the other hand, before taking the large N
limit the eigenvalues tα, α = 1, . . . , N , are simply defined as the values of the scalars σα (up to
an overall proportionality constant). Physically the VEVs of the scalars σα also parametrize
the position of the N D2-branes in the Rt direction, as described in section 2.1.2. Via this
chain of identifications, it is natural to conclude that the matrix model variable t, for the large
N eigenvalue distribution, should be related to the coordinate parametrizing Rt in the type
IIA construction. The aim of the rest of this section will be to make this statement precise.

Let us start by considering the uplifted geometry in M-theory without the branes’
backreaction. Recall from section 2.1.3 that the Killing vector ζM by definition generates
the U(1)M isometry of the M-theory circle action. This U(1)M action is Hamiltonian on X4,
namely there exists a function µM : X4 → R, called the moment map, such that

dµM = − ζM⌟J , (4.9)

where J is the original Kähler form on X4. The crucial point is that the image of µM is
precisely identified with the Rt direction. In fact, from a physical perspective, the D-term
equations that fix the VEVs of σα (i.e. the position of the M2-branes along Rt), correspond
geometrically to fixing level sets of the moment map [33]!

Let us illustrate this in the two examples with X4 = C4/Zk. We will focus on the Abelian
case (N = 1), where note that the Kähler form is given in (3.38).

Model I: from (2.8) we recall that the M-theory circle is given by ζI
M = 1

k (∂ϕ1 −
∂ϕ2). Hence, using the definition (4.9), the moment map in this case is simply

µI
M (za) =

1
2k
(
|z1|2 − |z2|2

)
. (4.10)

On the other hand the D-term equation for k = 1 reads [28]

|T |2 − |T̃ |2 = σ

2π , (4.11)
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and hence from the identifications in (2.7) we can see that the D-term equation
for k = 1 can be expressed as14

µI
M (za) =

σ

π
. (4.12)

Model II: here, the M-theory circle is in (2.11) and reads ζII
M = 1

k (∂ϕ1 − ∂ϕ2 +
∂ϕ3 − ∂ϕ4). From (4.9) we then read the moment map

µII
M (za) =

1
2k
(
|z1|2 − |z2|2 + |z3|2 − |z4|2

)
. (4.13)

The D-term equation for this theory is [32]

1
k

(
|A1|2 − |B1|2 + |A2|2 − |B2|2

)
= σ

2π . (4.14)

From the identifications (2.10) it follows that the D-term equation is again

µII
M (za) =

σ

π
. (4.15)

Our claim is that this picture is “preserved”, in a sense that we will specify momentarily,
when taking the large N limit in field theory and the near-horizon limit in gravity.

As explained in section 2.2.3, in field theory the eigenvalues uα
I in the large N limit become

infinite in number, and continuously distributed, with their imaginary part parametrized by
the real variable t which takes values in a finite interval [tmin, tmax]. Moreover, this interval is
divided into a certain number of subintervals, on each of which the eigenvalue density ρ(t) is
linear; in particular ρ′(t) is discontinuous at the endpoints of each subinterval. The gravity
duals are described by the AdS2 × Y9 backgrounds in M-theory described in section 3.2. In
this context, the U(1)M action on the fibre Y7 is still Hamiltonian, and hence we can define
the moment map hM (now regarded as a function on Y7) via

dhM = − ζM⌟ω . (4.16)

Recall here that ω is the transverse Kähler form on Y7, and in the flavour twist case this is
given by (3.28). From (3.3) and the fact that dη7 = ϱ7 it follows that, for the flavour twist case

hM = 2ΛµM

∣∣
r=1 = Λ ζM⌟ η7 , (4.17)

where µM is the moment map on the cone X4 introduced above in (4.9). Since hM is a
continuous real function defined on a compact space, its image is an interval

hM (Y7) = [τmin, τmax] ⊂ R . (4.18)

The function hM is defined on Y7, rather than directly on a Kähler manifold (which is instead
here a transverse Kähler structure), but nevertheless it is straightforward to import some

14Recall that C2/Zk ⊂ C4/Zk = X4 is realized via the embedded equation T T̃ = Φk
3 in C3 (2.6). This means

that for k > 1 we cannot identify T , T̃ with the coordinates z1, z2 on the covering space C2 of C2/Zk, and
correspondingly the classical metric on the field theory moduli space is different from the spacetime metric.
However, these comments are only meant to motivate the precise identifications later.
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standard results from the symplectic geometry literature (see e.g. [39]). Similar reasoning
was used in [21]. First, the interval in (4.18) is divided into subintervals whose boundaries
are given by the images of the critical points of the moment map, so {dhM = 0}. In turn
these are precisely the loci where ζM is aligned with the Reeb vector field ξ, so that along
such a locus ζM⌟ η7 is a constant. This includes the special case where ζM is zero, which are
fixed point sets signalling the presence of D6-branes. We shall return to what distinguishes
these subintervals geometrically in the next subsection, while the relation of these points
with physical observables will be discussed in section 4.4.

We conclude that there must be a holographic map between the field theory variable
t and the geometry variable τ parametrizing the image of the moment map. In particular,
from the examples we are going to consider shortly and later in section 6, we find the
precise identification is

τ = ℓ3pN
1/2 t . (4.19)

Let us once again illustrate how this works concretely for the examples with X4 = C4/Zk

i.e. Y7 = S7/Zk. Recall the radial coordinate on the cone is given by (3.46)

r2 =
4∑

a=1
Ra ya , (4.20)

with ya ≥ 0. Note that when Ra = 1
2 for all a = 1, 2, 3, 4 we recover the usual radius for a

round 7-sphere. Setting r2 = 1 constrains the possible values of ya, in particular

0 ≤ ya ≤ 1
Ra

. (4.21)

Model I: the moment map on S7/Zk is given by

hI
M = 2Λ

k
(y1 − y2)

∣∣
r2=1 , (4.22)

whose image is clearly

hI
M (S7/Zk) =

[
− 2Λ
kR2

,
2Λ
kR1

]
. (4.23)

Using (3.49) for the Kähler class parameter, this precisely maps to the interval
[tmin, tmax] with extrema (2.28) via (4.19) and the identification among the R-
charges (4.3). Moreover, the only other fixed point locus of the U(1)M action
on S7/Zk is {z1 = z2 = 0} which reproduces the point t = 0, arising from the
D6-brane insertion.

Model II: here we solve the constraint r2 = 1 for one of the coordinates and
substitute it back into the moment map. In order to obtain τmin it is convenient
to solve for y4, so that

hII
M (ya) =

2Λ
k

[(
1 + R1

R4

)
y1 −

(
1− R2

R4

)
y2 +

(
1 + R3

R4

)
y3 − 1

R4

]
. (4.24)
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In field theory we assumed a particular ordering for the chemical potentials which
must be mirrored here: R1 ≤ R3 and R2 ≤ R4. As a consequence the coefficient
of y2 in the expression above is negative, and it is then clear that the minimum
of hII

M (ya) is achieved when

y1 = y3 = 0 , y2 = 1
R2

=⇒ τ1 ≡ τmin = − 2Λ
kR2

. (4.25)

Similarly, solving for y3 it is easy to obtain the maximum

τ4 ≡ τmax = 2Λ
kR1

. (4.26)

Notice that, as explained in general above, τmin and τmax are images of loci where
ζM is aligned with the R-symmetry vector ξ, specifically here where {z1 = z3 =
z4 = 0} and {z2 = z3 = z4 = 0}. Indeed, there are other two such loci/image
points:

{z1 = z2 = z3 = 0} =⇒ τ2 = − 2Λ
kR4

, (4.27)

{z1 = z2 = z4 = 0} =⇒ τ3 = 2Λ
kR3

. (4.28)

By virtue of (4.8), (4.5), and (4.19), τ1, τ2, τ3, τ4 are precisely matched with (2.32).

To conclude this section, let us notice that here neither the 3d space where the field theory
lives, nor the fact that Y7 is fibered over Σg, played a crucial role. Therefore, everything we
have said holds, with minor adjustments, for both 3d theories localized on S3 and on Σg ×S1.

4.3 Eigenvalue density from geometry

In the previous section we identified the variable t in field theory as the value of the moment
map associated to the M-theory circle action. We can actually do better and provide a
prescription to compute the full eigenvalue density function of the matrix model ρ(t) from the
geometry of the near-horizon dual. Despite focusing on the AdS2 × Y9 geometries, applying
our approach to AdS4 × Y7 is rather straightforward. Note that for a certain set of the latter
geometries with toric Y7 some results concerning this very same matter were already found
in the past — see appendix C of [23] and section 3.6 of [21]. However, here we will give a
much more complete picture which works off-shell and in principle also for non-toric Y7, and
more specifically also for the near-horizon black hole GK geometries.

We start by using the moment map hM defined in (4.17) to build a 5d space out of the
fibre Y7, by restricting to the level set h−1

M (τ) ⊂ Y7 and then quotienting by the M-theory
circle action

Yτ ≡ h−1
M (τ)/U(1)M . (4.29)

In the special case when Y7 is quasi-regular, namely that bi ∈ Q for all i = 1, . . . , s, so
that the orbits of the R-symmetry vector close, Yτ has a particular structure which derives
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from the following mathematical construction. We first introduce the 6d Kähler base space
K6 obtained by quotienting

K6 ≡ Y7/U(1)ξ . (4.30)

Note that this quotient would be very badly behaved if we did not assume bi ∈ Q, because
the generic orbits of ξ would then be open. In passing, let us highlight that the critical points
of hM which delimit the subintervals in the image hM (Y7) correspond precisely to the fixed
points of the U(1)M action on K6; indeed these are either fixed points on Y7 itself, which are
related to D6-brane insertions, or points where ζM is aligned with ξ in the ambient space
Y7, as in such a situation the former projects to zero in the quotient above.

Given that the moment map hM is independent of ξ, it can be thought as a function
on K6. We can then consider introducing a 4d subspace Kτ ⊂ K6 as a symplectic quotient
with Fayet-Iliopoulos parameter τ

Kτ ≡ K6//U(1)M , (4.31)

and by construction Kτ is itself a Kähler space with a Kähler form ωτ that is inherited from
the original ω on K6. Finally, we restore the U(1)ξ direction by building the fibration

S1
ξ ↪→ Yτ → Kτ . (4.32)

The induced Kähler class [ωτ ] depends linearly on τ , with a different slope in each of the
subintervals in the image of hM delimited by the U(1)M fixed points [39]; therefore it is quite
natural to relate it with ρ(t). Our precise claim is that

ρ(t) ∝ d
dΛ

∫
Yτ

η ∧ ω2
τ

2

∣∣∣∣
τ=ℓ3

pN1/2 t

= d
dΛ Vol(Yτ )

∣∣∣∣
τ=ℓ3

pN1/2 t

. (4.33)

The normalization constant is then fixed by requiring ρ(t) to integrate to 1. Finally, in
order for the construction above to make sense even when Y7 is irregular (bi /∈ Q), we note
that Vol(Yτ ) depends continuously on the R-symmetry vector bi, hence its expression can
be extended to the general case by continuity.

Next, we will illustrate the above in the two examples with Y7 = S7/Zk, but first let
us comment on how to go about computing the volume Vol(Yτ ). For toric Y7 it is quite
straightforward and we will provide a general recipe later in section 6. In general, without
further assumptions on the geometry of Y7, it may be difficult to produce closed form
expressions. We envisage that an approach based on a fixed point formula, such as that
in [40], could however be effective.

For Y7 = S7/Zk we use the coordinates {ya, ϕa} introduced in section 3.3. Modulo angles,
the space Yτ is described by imposing both r2 = 1 and hM (ya) = τ which result in the two
linear equations describing hyperplanes in R4. Recalling that r2 is given by (4.20) and that
ya ≥ 0, the former equation actually defines a tetrahedron with vertices

pa = 1
Ra

ea , (4.34)
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where ea is the standard orthonormal basis on R4. Imposing the moment map level set
equation then amounts to slicing this tetrahedron with a hyperplane. The intersection of
the two will be a 2d polygon Qτ , particularly either a triangle or a quadrilateral. For the
flavour twist, by definition the following cohomological relation holds

[ω] = Λ[dη7] = 2Λ[ωS ] . (4.35)

From (3.38) one can see that the measure induced via ωS is simply the standard Euclidean
measure on R4 (times a factor k−1 which comes from the Zk quotient), and correspondingly
ω induces (2Λ)4 times the Euclidean volume form. It follows that

Vol(Yτ ) =
(2π)3

k
(2Λ)2 VolE(Qτ ) , (4.36)

where VolE denotes the Euclidean volume, and the factor (2π)3 comes from integrating
over the angles.

Let us also introduce a notation for the vectors orthogonal to the two hyperplanes, which
are nothing but ξ and ζM in coordinates. The former is

ξ = 1
2 (R1, R2, R3, R4) , (4.37)

while the latter will depend upon the model we are considering and we will denote it by ζ. It
will also be useful to introduce a name for the component of ζ orthogonal to ξ, namely

ζ⊥ ≡ ζ − ζ · ξ

|ξ|2
ξ . (4.38)

In both Model I and Model II, it turns out the properly normalized ρ(t) is given in gravity by

ρ(t) = 1
32π5ℓ3pN

1/2 |ξ||ζ⊥|
d
dΛ Vol(Yτ )

∣∣∣∣
τ=ℓ3

pN1/2 t

. (4.39)

Model I: the hyperplane described by the level set equation of the M-theory
circle moment map in (4.22) satisfies the equation

y1 − y2 = k

2Λ τ , (4.40)

with − 2Λ
kR2

≤ τ ≤ 2Λ
kR1

, and the vector ζ is

ζ = 1
k
(1,−1, 0, 0) . (4.41)

Note that for τ = 0, both vertices p3 and p4 of the tetrahedron belong to Qτ=0,
therefore the hyperplane (4.40) is parallel to one of the edges of the tetrahedron.
So Qτ is always a triangle but we have to compute VolE(Qτ ) separately for τ < 0
and τ > 0, which corresponds to the two subintervals of the image of hI

M that
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Qτ
Qτ

Qτp2

p1

p3

p4

q1

q3

q2

q1

q3

q2

q1

q3

q2

Figure 5. Tetrahedron describing S7 and its slicing corresponding to Model I — ADHM theory. The
red slice is for τmin < τ < 0, blue slice for τ = 0, and green slice for 0 < τ < τmax. The perimeter of
Qτ varies with τ qualitatively as ρ in figure 3.

we identified in the previous section (see figure 5). Let us start with τ < 0. By
standard linear algebra, one can find that the vertices of Qτ are

q1 =
( 2Λ + kR2τ

2Λ(R1 +R2)
,
2Λ− kR1τ

2Λ(R1 +R2)
, 0, 0

)
,

q2 =
(
0,− kτ2Λ ,

2Λ + kR2τ

2ΛR3
, 0
)
,

q3 =
(
0,− kτ2Λ , 0,

2Λ + kR2τ

2ΛR4

)
. (4.42)

Given that ξ and ζ⊥ are both orthogonal to the plane where Qτ lies, the volume
of Qτ can be related to the volume of the 4d parallelotope whose edges are the
aforementioned vectors plus two of the edges of Qτ . Concretely

VolE(Qτ<0) =
1
2

∣∣∣∣det( ξ

|ξ|
,

ζ⊥
|ζ⊥|

, q2 − q1, q3 − q1

)∣∣∣∣
= (2Λ + kR2τ)2

8Λ2R3R4(R1 +R2)

√
(R1 +R2)2 + 2(R2

3 +R2
4) . (4.43)

Similarly, for τ > 0 we get the vertices

q1 =
( 2Λ + kR2τ

2Λ(R1 +R2)
,
2Λ− kR1τ

2Λ(R1 +R2)
, 0, 0

)
,

q2 =
(
kτ

2Λ , 0,
2Λ− kR1τ

2ΛR3
, 0
)
,

q3 =
(
kτ

2Λ , 0, 0,
2Λ− kR1τ

2ΛR4

)
, (4.44)
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and therefore the volume

VolE(Qτ>0) =
(2Λ− kR1τ)2

8Λ2R3R4(R1 +R2)

√
(R1 +R2)2 + 2(R2

3 +R2
4) . (4.45)

From (4.43) and (4.45) we can directly compute ρ(t) as explained above. Fixing
the normalization as in (4.39), we find

ρ(t) = 1
ℓ3pN

1/2


2Λ + kR2τ

π2R3R4(R1 +R2)
, − 2Λ

kR2
< τ < 0

2Λ− kR1τ

π2R3R4(R1 +R2)
, 0 < τ <

2Λ
kR1

∣∣∣∣∣∣∣∣∣
τ=ℓ3

pN1/2 t

, (4.46)

which perfectly matches with the eigenvalue distribution (2.27) of the ADHM
theory.

Model II: here the hyperplane corresponding to the moment map level set is
described by

y1 − y2 + y3 − y4 = k

2Λ τ , (4.47)

with − 2Λ
kR2

≤ τ ≤ 2Λ
kR1

(recall we assumed R1 ≤ R3 and R2 ≤ R4), and the vector
ζ is

ζ = 1
k
(1,−1, 1,−1) . (4.48)

In this case there is no value of τ for which both p3 and p4 belong to the
hyperplane (4.47), hence the latter hyperplane is not parallel to any edge and
the situation is as depicted in figure 6. In the intervals τmin = τ1 < τ < τ2
and τ3 < τ < τ4 = τmax the polyhedron Qτ is a triangle and the computation
goes through similarly to Model I. Instead in the interval τ2 < τ < τ3, Qτ is a
quadrilateral whose vertices are

q1 =
( 2Λ + kR2τ

2Λ(R1 +R2)
,
2Λ− kR1τ

2Λ(R1 +R2)
, 0, 0

)
,

q2 =
( 2Λ + kR4τ

2Λ(R1 +R4)
, 0, 0, 2Λ− kR1τ

2Λ(R1 +R4)

)
,

q3 =
(
0, 0, 2Λ + kR4τ

2Λ(R3 +R4)
,
2Λ− kR3τ

2Λ(R3 +R4)

)
,

q4 =
(
0, 2Λ− kR3τ

2Λ(R2 +R3)
,
2Λ + kR2τ

2Λ(R2 +R3)
, 0
)
. (4.49)

The Euclidean volume of Qτ can be computed as the sum of the volumes of two
triangles, say those with vertices {q1, q2, q3} and {q1, q3, q4}

VolE(Qτ2<τ<τ3) =
1
2

∣∣∣∣det( ξ

|ξ|
,

ζ⊥
|ζ⊥|

, q2 − q1, q3 − q1

)∣∣∣∣
+ 1

2

∣∣∣∣det( ξ

|ξ|
,

ζ⊥
|ζ⊥|

, q3 − q1, q4 − q1

)∣∣∣∣ . (4.50)
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Qτ
Qτ

Qτp2

p1

p3

p4

q1

q3

q2

q1

q4

q3

q2

q1

q3

q2

Figure 6. Tetrahedron describing S7 and its slicing corresponding to Model II — ABJM theory. The
red slice is for τ1 < τ < τ2, blue slice for τ2 < τ < τ3, and green slice for τ3 < τ < τ4. The perimeter
of Qτ varies with τ qualitatively as ρ in figure 4.

We do not write the explicit expression as it is long and not particularly insightful.
Eventually, fixing the normalization as in (4.39), we find

ρ(t) = 1
ℓ3pN

1/2


2Λ+kR2τ

π2(R1+R2)(R2+R3)(R4−R2) , τ1<τ<τ2

4Λ+k(R2R4−R1R3)τ
π2(R1+R2)(R2+R3)(R1+R4)(R3+R4) , τ2<τ<τ3

2Λ−kR1τ
π2(R1+R2)(R1+R4)(R3−R1) , τ3<τ<τ4

∣∣∣∣∣∣∣∣∣∣
τ=ℓ3

pN1/2t

, (4.51)

with
τ1 = − 2Λ

kR2
, τ2 = − 2Λ

kR4
, τ3 = 2Λ

kR3
, τ4 = 2Λ

kR1
, (4.52)

which perfectly matches with the eigenvalue distribution (2.31) of the ABJM
theory.

4.4 M2-branes and Wilson loops

In this section we place probe M2-branes in the black hole backgrounds from section 3. In
particular, we are interested in M2-branes wrapping AdS2 and an additional circle S1

M2 ⊂ Y9
in the internal manifold. When these branes are BPS and wrap a particular S1 copy, their
classical action is related to BPS Wilson loop expectation values in the dual matrix model.

4.4.1 BPS probe M2-branes

Since we wish to ultimately match to the Euclidean localized field theory, we need to Wick
rotate our background15

t(L) = −it(E) , vol(L) = −i vol(E) , iI(L) = −I(E) , (4.53)
15In this instance t(L) is the time coordinate rather than the direction Rt introduced at the beginning of

section 2.1.1.
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where the superscripts (L) and (E) denote respectively quantities in Lorentzian and Euclidean
signature and I here stands for any action. Consequently, the backgrounds of interest become
EAdS2 × Y9. In the rest of the section we will drop the superscripts and work in Euclidean
signature unless otherwise stated.

The classical action of a probe M2-brane with worldvolume ΣM2 in Euclidean signature
is [41]16

IM2 = 1
(2π)2ℓ3p

[
−Vol (ΣM2)− i

∫
ΣM2

C

]
. (4.54)

Notice that this formula is gauge-invariant under shifts of the three-form gauge field C → C +
dΩ, with Ω a two-form, provided that Ω |∂ΣM2 = 0. However, the formula (4.54) requires careful
interpretation, as we will discuss next. By virtue of (3.10) and (3.14), we can express C as

C = −i volEAdS2 ∧ A+ dΩ , (4.55)

where Ω parametrizes the gauge freedom and we have defined

A = −ψ + e−Bη , (4.56)

with dψ = J . Notice here that J is closed, so we may always locally write J = dψ, with ψ

a transverse one-form (i.e. ξ ⌟ψ = 0), but in general this will not be globally well-defined.
Indeed, [J ] ∈ H2

B(Fξ) always defines a non-zero basic cohomology class — if it were a
basic exact form then using Stokes’ theorem the volume of Y9 would necessarily be zero.17

Explicitly, recalling (3.26) we can write

A = −(ψt
7 +AσΣg) + e−Bη + basic exact , (4.57)

where both ψ7 and σΣg , such that dσΣg = volΣg , are local one-forms only. There is no
possible choice of gauge fixing that turns the total C-field (4.55) into a globally defined form.
However, in the following we will be interested in a particular case where S1

M2 is tangent to
the fibres Y7. Therefore, if we can turn C into a global form when restricted to the fibres,
that would yield a well-defined M2-brane action when substituted into (4.54). Assuming
the flavour twist condition (3.28), we can do this by choosing

Ω = −i volEAdS2 ∧ (−Λz) , (4.58)

so that (4.55) reads (cf. (3.25))

C = −i volEAdS2 ∧ (−Λη −AσΣg + e−Bη + basic exact) . (4.59)

Restricting the above expression to a point on the Riemann surface, the term proportional to
σΣg drops out and everything left is proportional to η, which itself is a global one-form since
the only class in H2

B(Fξ) that is zero when pulled back to a class in H2(Y9) is that generated
16We use the conventions of [42], Wick-rotated as in (4.53).
17This is a modification of a standard argument in Kähler geometry, showing that the Kähler class of a

compact manifold is always non-zero.
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by [ϱ]. In fact as discussed in [8] for the class of GK geometries we are considering in fact
H2(Y9) ∼= H2

B(Fξ)/[ϱ], where ϱ = dη immediately implies that [ϱ] = 0 ∈ H2(Y9).
Substituting (4.59) into (4.54) and recalling we are interested in the case where ΣM2 =

EAdS2 × S1
M2, we get

IM2 = 1
(2π)2ℓ3p

[
(−2π)

∫
S1

M2

(
−e−2B/3 volS1

M2
+ Λη − e−Bη

)]
, (4.60)

where the factor (−2π) appearing in front of the first integral comes from the regularized
volume18 of EAdS2 [43]

Vol(EAdS2) = −2π . (4.61)

We are interested in computing the action (4.60) for BPS M2-branes. In general, a probe
M2-brane will break the supersymmetry of the background, in the sense that acting with
a supercharge on the configuration fields of the M2-brane yields a non-vanishing variation.
However, the M2-brane action possesses another fermionic symmetry, called κ-symmetry [41],19

which we can use to compensate for the supersymmetry variation. In appendix C we discuss
in some detail the condition to retain some supersymmetry with the M2-brane insertion, and
we find that the circle S1

M2 needs to be aligned with the R-symmetry circle, i.e.

volS1
M2

= −e−B/3 η . (4.62)

Then, in the action (4.60) the first and third terms inside the first integral cancel to give
the final result

IBPS
M2 = − Λ

2πℓ3p

∫
S1

M2

η , (4.63)

where Λ is given explicitly in (3.31), and depends on VolS(Y7)−1/2 and N1/2. Note that this
integral is a quantity that will differ from model to model and from point to point and will
have to be computed in each example. For ease of notation, we will drop the BPS superscript
in the following, and by IM2 we will always mean the action of a BPS M2-brane.

Finally, let us make a further comment on the C-field (4.59). This is valid for solutions in
the flavour twist class, but outside this class it is not clear how to generalize the gauge-fixing
we have carried out. More specifically, it is not clear how to assign well-defined M2-brane
actions outside the flavour twist class. Notice that while the action of an M2-brane is invariant
under gauge transformations of the C-field, the issue in this case is that we are working with a
complex solution, with purely imaginary C-field, and the saddle point solution then in general
manifestly depends on the (complex) gauge choice. On the other hand, the holographic
matching of quantities in gravity and localized field theory/matrix models only seems to hold
for the same flavour twist class, and it is possible that these observations are related.

18Specifically, one can use holographic normalization to define this rigorously.
19This is a symmetry of the Green-Schwarz brane action which includes also fermionic degrees of freedom.

However, when evaluating the Green-Schwarz action on a classical bosonic background such a contribution
vanishes and one is left with the action (4.54).
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4.4.2 Wilson loop dual

In order for the probe M2-branes to be holographically dual to Wilson loops in the fundamental
representation, they should wrap EAdS2 × S1

M — see figure 7.20,21 Indeed Wilson loops are
dual to fundamental strings from the type IIA perspective [22], so we should take S1

M2 = S1
M .22

In the previous subsection we derived that the M2-branes were BPS for S1
M2 aligned with the

R-symmetry circle. Then further imposing that they wrap the M-theory circle, the branes
are BPS at the points where ζM is aligned with the R-symmetry vector ξ. There are a
finite number of such connected loci, which can be determined explicitly for each choice
of Y7 together with a U(1)M action. Let us denote by pn a point in the n-th such locus.
Holographically the dual Wilson loop expectation value is determined by the M2-brane action
evaluated at pn, where we should sum (or integrate) over all the possible configurations

⟨Wfund⟩ =
∑

n

∫
dpn e−IM2|pn . (4.64)

Interestingly the value of the action only depends on the locus and not on the specific
point within. One should also presumably integrate over the locus, with some measure,
although the choice of measure is a subleading effect in N , and we have correspondingly
been schematic in writing (4.64). Another interesting point is that the Wilson loop for
the class of supersymmetric black holes we are considering is not zero due to integration
over gauge-equivalent configurations, discussed in [44]. This is a subtle point, but clearly
important for the identification that follows, and the way that the argument in [44] is evaded
in this setting is discussed further in appendix D.

The ordering of the loci is arbitrary from the geometry point of view, and we order them
such that IM2|pn is increasing with n. At large N we only consider the dominant contribution
in the sum in (4.64), which comes from the most negative M2-brane action

log ⟨Wfund⟩ = −IM2|p1 . (4.65)

Comparing with the expression for the Wilson loop at large N in field theory (2.42), we have a
matching IM2|p1 = N1/2tmin. Our claim is that more is true and actually the M2-brane action
reproduces all the points tn at which the derivative of the eigenvalue density is discontinuous:

IM2|pn = N1/2tn , (4.66)

where recall that pn is a point in the n-th region where ζM and ξ are aligned. Let us denote
βn the factor of proportionality at such a point,

ζM = βnξ =⇒
∫

S1
M |pn

η = −2πβn , (4.67)

20Similar M2-branes were considered in [21], although without any black hole in AdS4 present.
21Note that we can use a probe approximation because we are interested in Wilson loops in the fundamental

representation which are “light”, meaning that the corresponding brane has negligible backreaction. The
equivalent statement in field theory is that the insertion of the Wilson loop in the path integral does not affect
the eigenvalue density itself, to leading order.

22Note that, as anticipated, this circle is always tangent to the fibres Y7, hence the expression (4.60) is
well-defined.
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Σg EAdS2

S1

Y7/U(1)M

p1

S1
M

p2

−→ EAdS4

×

y

Figure 7. We consider an extremal black hole with Euclidean near horizon geometry EAdS2 × Σg in
EAdS4. The full geometry is EAdS2 × Y9 with Y9 a fibration of Y7 over Σg. The probe M2-branes
wrap the EAdS2 and a copy of the M-theory circle S1

M at the points pn (red) where ζM is aligned
with the R-symmetry vector ξ at pn. The dual field theory lives on Σg × S1 (blue), with S1 being
the boundary of EAdS2. This S1 is also the direction wrapped by the Wilson loop, in order for it
to be BPS.

as ξ⌟ η = 1 and the sign is due to the orientation determined in (4.62). Therefore the action
of a BPS M2-brane dual to a Wilson loop reads

IM2|pn = Λ
ℓ3p
βn . (4.68)

The statement (4.66) is actually equivalent to the argument in section 4.2 that the
discontinuity points of ρ′ are reproduced by the fixed points of the moment map. Indeed recall
that hM = Λ ζM⌟ η, and we already mentioned that the critical points of hM were those where
ζM and ξ are aligned. At a point pn where ζM = βn ξ we have τn ≡ hM |pn = Λβn, such that

tn = τn

ℓ3pN
1/2 = Λβn

ℓ3pN
1/2 =

IM2|pn

N1/2 . (4.69)

Let us next examine this in our favourite examples. Recall that on S7/Zk

ξ =
4∑

a=1

Ra

2 ∂ϕa . (4.70)
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Model I: For ADHM
ζI

M = 1
k
(∂ϕ1 − ∂ϕ2) , (4.71)

such that ζI
M = βnξ in the regions p1 ∈ (0, z2, 0, 0), p2 ∈ (0, 0, z3, z4), p3 ∈

(z1, 0, 0, 0), with
β1 = − 2

kR2
, β2 = 0 , β3 = 2

kR1
. (4.72)

This reproduces the points in (2.28), recalling the relation (4.8) between Λ and µ.

Model II: For ABJM

ζII
M = 1

k
(∂ϕ1 − ∂ϕ2 + ∂ϕ3 − ∂ϕ4) , (4.73)

such that ζII
M and ξ are aligned on the regions where only one of the coordinate

is non-zero. Ordering them by increasing βn we denote p1 ∈ (0, z2, 0, 0), p2 ∈
(0, 0, 0, z4), p3 ∈ (0, 0, z3, 0), p4 ∈ (z1, 0, 0, 0), giving

β1 = − 2
kR2

, β2 = − 2
kR4

, β3 = 2
kR3

, β4 = 2
kR1

, (4.74)

which exactly reproduces the subinterval points in (2.32).
In the case where some of the R-charges are equal the regions may change topology.
In particular when Ra = 1/2 for all a, there are two loci on which ζII

M and ξ are
aligned, namely p1 ∈ {z1 = z3 = 0}, p2 ∈ {z2 = z4 = 0}, where

β1 = −4
k
, β2 = 4

k
, (4.75)

and ρ(t) = 2µ/π is just a constant function between these two points. In our
polytope picture this corresponds to the moment map plane being parallel to both
the edge between p1 and p3 and that between p2 and p4, so that Qτ is always a
quadrilateral. In this case, we also have

Λ =
πℓ3pN

1/2

8
√
2k =

πℓ3pN
1/2

2 µ . (4.76)

This particular case describes the so-called “universal twist”, which is an explicitly
known black hole solution of minimal 4d gauged supergravity that uplifts on
general classes of internal space Y7 [7], including S7/Zk discussed here.

5 Matrix models on the spindle

In this section we generalize the results obtained so far to the case where the black hole has
a further parameter corresponding to the acceleration. The near-horizon geometry remains
of the form described in section 3.2.1, with an internal GK manifold Y9, but the Riemann
surface in the fibration (3.21) is replaced by the 2d orbifold Σ ≡ WCP1

[m+,m−], where m± ∈ N
are coprime and determine the acceleration [14, 15]. The space Σ, known as a spindle, is
topologically a two-sphere with conical singularities at the two poles parametrized by the
positive integers m±. Notice that we recover S2 by setting m+ = m− = 1.
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We first review the relevant geometric properties of said fibrations, based on the discussion
in [15], and then proceed to outline how we expect the large N matrix model arising from
localizing the dual 3d N = 2 SCFT on Σ × S1 to behave. There are currently no results
concerning such large N matrix models from a purely field theoretic approach, though some
related work on the “refined twisted index”, with which we make contact here, has been
carried out in [20], and may be matched to our gravitational formulas.

5.1 Accelerating black holes and block formulas

In [14] it was conjectured that any supersymmetric, magnetically charged, and accelerating
black hole in AdS4, which uplifts to M-theory on a Sasaki-Einstein manifold like (3.2), has a
near-horizon geometry of the form (3.9) where Y9 takes the fibred form

Y7 ↪→ Y9 → Σ . (5.1)

Here Σ is a spindle parametrized by m± ∈ N. These fibrations were constructed explicitly
in [15], and their main difference with respect to (3.21) is that the R-symmetry vector ξ is
not necessarily orthogonal to Σ; in general it may have a component tangent to the spindle,
which is the black hole horizon. Denoting ∂φ0 the generator of the U(1) isometry which
rotates Σ about its axis, and keeping the notation ∂φi for a basis of generators for the U(1)4

action on the fibre Y7, we parametrize ξ as

ξ =
s∑

µ=0
bµ ∂φµ , (5.2)

with b0 ̸= 0 in general and b1 = 1 as before. Other than this, the twisting is obtained by
turning on s gauge magnetic fluxes analogous to those in (3.22)

1
2π

∫
Σ
dAi =

pi

m+m−
, pi ∈ Z . (5.3)

The i = 1 direction is special and we need to set

p1 = −σm+ −m− , (5.4)

where σ = ±1 determines whether the mechanism for preserving supersymmetry is the
“twist” or the “anti-twist”, which are both distinct from the topological twist for preserving
supersymmetry on a Riemann surface [45]. Note that in the twist case σ = +1 when setting
m± = 1 we have p1 = −2, which agrees with what we had in section 3.2.2 for g = 0.

Differently from the Riemann surface case, here the topology of the fibres in (5.1) do
depend on the specific point of the base. We will be particularly interested in the fibres
over the two poles of the spindle

Y± ≡ Y7/Zm± . (5.5)

The vector fields V+ =
∑s

µ=0 v+µ ∂φµ and V− = σ
∑s

µ=0 v−µ ∂φµ which rotate the normal
directions to Y± are given by

v+ = (m+, 1,−a+p2, . . . ,−a+ps) , v− = (−σm−, 1,−σa−p2, . . . ,−σa−ps) , (5.6)
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where a± are coprime integers satisfying a−m+ + a+m− = 1.23 Thanks to (5.6), we can
introduce two new vectors fields ξ± as the orthogonal projections of the R-symmetry vector
ξ onto Y±

ξ± ≡ ξ ∓ b0
m±

V± =
s∑

i=1
b

(±)
i ∂φi , (5.7)

where we define the shifted vectors

b
(+)
i ≡ bi −

b0
m+

v+i , b
(−)
i ≡ bi +

b0
σm−

v−i . (5.8)

By applying a simple lemma in differential geometry, in [15] it was shown that in this set-
up many geometric quantities that are integrals over Y9 receive contributions only from the two
poles of the spindle and hence reduce to integrals over the fibres Y±, resulting in the so-called
block formulas.24 In particular, this is the case for all the quantities of physical interests such
as the supersymmetric action (3.19), the constraint (3.17), and the quantized fluxes (3.18).
Moreover, the geometric R-charges defined in (3.33) get doubled as we can define both R+

a

and R−
a by integrating over S±

a i.e. the copies of the codimension two submanifold Sa ⊂ Y7
over the two poles of the spindle. For a more detailed discussion and the explicit expressions
we refer the reader to [15], while here we will directly focus on the flavour twist case.

In order to implement the flavour twist condition here we cannot simply impose (3.28), as
the transverse Kähler form of the fibres ω is not guaranteed to be the same at every point of the
spindle — and it is not in general. However, the analogous conditions in this case are instead

[J |Y± ] = Λ±[ϱ|Y± ] , Λ± ∈ R . (5.9)

The two Kähler class parameters are specified by imposing flux quantization through the
fibres at the poles and read

Λ+ = (2πℓp)3√
24b3

1 VolS(Y7)|b(+)
i

N1/2 , Λ− = σ
(2πℓp)3√

24b3
1 VolS(Y7)|b(−)

i

N1/2 . (5.10)

Note that these are the same functional expressions as (3.31), though evaluated with the
shifted vectors b(±)

i . This is a characteristic feature of physical quantities in these fibred
geometries: most get contributions from the two poles, taking the same form we had in
the Riemann surface case but evaluated with the orthogonal projections of the R-symmetry
vector onto the fibres (5.7). Indeed, the off-shell entropy is given by

S = 4
b0

(Fgrav[ξ+]− σ Fgrav[ξ−])
∣∣∣
b1=1

. (5.11)

Moreover, as anticipated we have now two sets of geometric R-charges associated to super-
symmetric submanifolds of the fibres Sa ⊂ Y7

R±
a = 2π

3b1

VolS(Sa)
VolS(Y7)

∣∣∣∣
b

(±)
i

, (5.12)

23The integers a± exist by Bezout’s lemma but are not unique. However, this is not an issue as they drop
out from any on-shell physical quantity.

24These block formulas in GK geometry have recently been derived using a fixed point formula for an
equivariant version of the master volume in [46].
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with R+
a > 0 and σR−

a > 0. The corresponding integer fluxes Ma through the codimension
two fibrations Sa ↪→ Σa → Σ inside Y9 are given in terms of these R-charges by

Ma = b1
2b0

(R+
a −R−

a )N . (5.13)

Note that all of the above expressions reduce to those in section 3.2.3 upon setting σ = 1,
m+ = m− = 1, and sending b0 → 0, hence recovering the result for Σg = S2.

5.2 Shifted eigenvalue densities

Besides an investigation of the localized index on Σ×S1 at finite N [24], there are currently no
systematic studies of the field theory dual to the accelerating black holes whose near-horizon
geometry we presented above. This renders the task of providing a geometric characterization
of the corresponding matrix models harder, especially given that part of the picture we
presented in section 4 was motivated heuristically, albeit with concrete computational checks.
Nevertheless, we can exploit the lessons learned so far to describe some of the features of
said matrix models, leaving a more thorough analysis to future work.

First of all, let us notice that at the fixed points of V±, that is at the respective poles of Σ,
the geometry of the internal space becomes equivalent to that described in section 3.2.2 (with
Σg replacing the spindle), upon using the shifted R-symmetry vectors bi → b

(±)
i . Moreover,

the vector field ζM generating the U(1)M action is a characteristic feature of the original
geometric engineering set-up, and as such it only rotates directions inside the fibres Y7, and
does not act on the spindle itself — that is, it does not have any component along ∂φ0 . Hence
it is clear that at the two poles of the spindle the geometric set-up is much the same as what
we had before, and thus we can envisage having a doubling of all the quantities associated to
the matrix model, with a copy at the “+” pole and another at the “−” pole.

We begin by noting that the U(1)M action is Hamiltonian on Y±, and therefore we can
define two associated moment maps h±M at the poles of the spindle to be such that

dh±M = − ζM⌟ J |Y± . (5.14)

From here, everything goes through as in section 4, although with the shifted R-symmetry
vector b(±)

i and consequently the shifted Kähler class parameters Λ± and the shifted R-charges
R±

a . Parametrizing with τ the images of h±M , we can define two quotients of the fibres Y±

Y ±
τ ≡ (h±M )−1(τ)/U(1)M . (5.15)

The volumes of Y ±
τ can be obtained from Vol(Yτ ), as computed in the Riemann surface

case, by shifting the R-symmetry vectors and dividing by a factor m± which accounts for
the Zm± quotient in (5.5)

Vol(Y ±
τ ) = 1

m±
Vol(Yτ )

∣∣∣
b

(±)
i

. (5.16)

Note that τ is just a label at this stage, and there is no reason why it should be the same at
the two poles, hence we will rename it to τ±. We can correspondingly define two “shifted
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densities” ρ±(t±) as in (4.33). In particular, denoting with ρΣg(t) the eigenvalue density of a
certain field theory on Σg, the same field theory on the spindle will have

ρ±(t±) = ρΣg(t±)
∣∣
b

(±)
i

. (5.17)

Moreover, the derivatives ρ′±(t) are discontinuous at the critical points of h±M , namely where
ζM is aligned with ξ± and are simply given by

t±n = tn|b(±)
i

, (5.18)

where tn are the points of discontinuity of ρ′Σg
(t).

This last point can be corroborated by looking at probe M2-branes in this background.
The discussion about supersymmetry we carried out in section 4.4.1 goes through without
any change as it relies only on the fact that Y9 is a GK manifold. There we showed that the
M2-branes are BPS when ζM is aligned with ξ, and from (5.7) we can see that in the loci where
V± are zero, namely the respective poles of the spindle, this is equivalent to requiring ζM to
be aligned with ξ±, as stated above. With suitable tweaks, also the gauge fixing in section 4.4
goes through, albeit it has to be done separately at the two poles, and we find that BPS
M2-branes wrapping EAdS2 ×S1

M can sit at either poles of Σ, and their action matches (5.18)

IM2|p±
n
= N1/2t±n . (5.19)

Here p±n are points in the n-th locus where ζM ∝ ξ±. Correspondingly, in field theory a Wilson
loop in the fundamental representation wrapping the Euclidean time circle is supersymmetric
when it sits at either of the two poles, and its expectation value at leading order in N will be

log ⟨W±
fund⟩ = −IM2|p±

1
. (5.20)

All the quantities introduced up to now should then match with the corresponding
quantities derived from a purely field theoretic computation. In particular, for 3d N = 2
SCFTs on Σ × S1 it is convenient to introduce the shifted chemical potentials

∆+
A = ∆A + ϵ

2

(
nA − rA

2
m− − σm+
m+m−

)
, (5.21)

∆−
A = ∆A − ϵ

2

(
nA + rA

2
m− − σm+
m+m−

)
, (5.22)

where ϵ is an extra parameter which will enter the extremization procedure and the rA

are subject to the constraint
∑

A∈W rA = 2 but are otherwise free. We expect all physical
quantities to have natural expressions in terms of these, and the holographic matching to be
achieved by suitably identifying ∆±

A with linear combinations of R±
a and ϵ with 2b0.

To summarize, the matrix model arising from considering the large N limit of the
localized partition function on Σ × S1 is expected to factorize into two different matrix
models, which can be studied independently and result in the densities ρ±(t±) introduced
above. We expect that the information contained in said “shifted” densities can be used to
recover the total ρΣ(t), as a function of a single variable t obtained from t±. This picture
is also motivated by several results in the literature where in various different contexts a
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factorization of physical observables have been observed, ultimately related to a fixed point
formula. Of these, the refined twisted index discussed in [20] is directly relevant, and will
be discussed in more detail in the next subsection.

Since we have left most of the formulas in this section rather implicit, we conclude by
presenting the explicit BPS M2-brane actions for the ABJM model on a spindle. There
are 4 such BPS M2-branes, wrapping an aligned M-theory circle and R-symmetry vector
over each ± pole of the spindle, giving 8 formulas in total. From (5.19) and the results in
appendix B we can simply write down

IM2|p±
a
= N1/2t±a , a = 1, 2, 3, 4 , (5.23)

where

t±1 = − µ±

kR±
2
, t±2 = − µ±

kR±
4
, t±3 = µ±

kR±
3
, t±4 = µ±

kR±
1
, (5.24)

and

µ± = π
√
2kR±

1 R
±
2 R

±
3 R

±
4 . (5.25)

Here the R-charges R±
a satisfy the constraints [15]

R+
a −R−

a = 2b0
Ma

N
= 2b0na ,

4∑
a=1

R+
a = 2− 2b0

m+
,

4∑
a=1

R−
a = 2 + 2b0

σm−
, (5.26)

which should be matched to the chemical potential variables ∆±
a in (5.21), (5.22), where the

fluxes na for the twist and anti-twist cases are constrained to obey

4∑
a=1

na = −σm+ +m−
m+m−

. (5.27)

Here we identify ϵ = 2b0, as in the next subsection. This gives a very precise prediction for
the large N matrix model behaviour of the ABJM theory on a spindle, with (5.24) giving the
points at which the expected eigenvalue density blocks have discontinuities in their derivatives.
More physically, as we have explained the least such M2-brane action computes a BPS Wilson
loop VEV in the field theory on the spindle.

5.3 Connecting to the refined twisted index

To conclude the discussion on the spindle index, we will make contact with the recent field
theory results of [20]. There the authors studied the matrix models arising from the large
N limit of the refined twisted index ZS2

ϵ ×S1 , which is defined for the genus g = 0 case
as a further refinement of the topologically twisted index with respect to the axial U(1)
isometry of the two-sphere (see section 4 of [25]). This index depends on an extra parameter
ϵ, which “rotates” the S1 relative to the S2. Holographically, its logarithm has been matched
with the entropy of supersymmetric, magnetically charged, and also rotating black holes in
AdS4 [47], with ϵ identified with the chemical potential conjugate to the angular momentum
of the black hole [48].
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We shall see in this section that the field theory results of [20] may also be matched
to GK geometries for which Y7 = S7 is fibred over S2, and where the R-symmetry vector
also rotates the S2. Specifically, we shall see that the field theory parameter ϵ = 2b0, in
terms of the component b0 of ξ that rotates the S2. A similar matching was pointed out
in [14], and also relies on some observations in [49]. In order to explain this, one first
observes for the twisted S2

ϵ × S1, the R-symmetry Killing vector field bilinear for this rigid
supersymmetric background is [25, 49]25

K = ζ̄γµζ∂µ = ∂θ +
1
2ϵ ∂φ0 . (5.28)

Here ζ is the Killing spinor of the background, θ has period 2π and parametrizes the S1,
while φ0 parametrizes the axial direction on the S2 and is also normalized to have canonical
period 2π. The expression (5.28) is a more invariant geometric way to characterize the
parameter ϵ, in terms of specifying the R-symmetry vector field of the background on which
one is localizing. On the other hand, the bulk black hole solution inherits the same Killing
vector field, and when lifted to 11d M-theory this explains why ϵ = 2b0, since by definition b0
parameterizes the component of the R-symmetry vector of the full solution along the horizon
direction Σ, precisely as in equation (5.2). This is all detailed quite explicitly for the class of
dyonically charged, accelerating and rotating black holes studied in [4, 49] (which lie in the
universal truncation of [6]), but the same arguments should go through also for the more
general class of purely magnetically charged black holes in this paper, with general choice of
Y7 and magnetic fluxes, but with a trial R-symmetry vector field that also rotates the horizon
S2. We then expect the entropy function in (5.11) to match logZS2

ϵ ×S1 in the twist case σ = 1
and in the limit m± = 1, which we find is indeed the case. This is then consistent with the
conjecture in [14]: that b0 may be regarded as a chemical potential for angular momentum J ,
with the entropy of rotating versions of the black holes in this paper obtained via a Legendre
transform. Moreover, given the results earlier in the paper, we may go further and also match
matrix model quantities in the refined field theory calculation, and GK geometry with b0 ̸= 0.

When considering the refined index, the summation over the gauge magnetic fluxes m

in (2.18) cannot be performed directly and instead one should keep them as variables when
taking the large N limit. In particular, in [20] the authors supplement the ansatz (2.21) with26

mα
I = iN1/2 sα + pα

I −→ mI(t) = iN1/2 s(t) + pI(t) . (5.29)

Moreover, the partition function takes the form of a product of holomorphic blocks [50],
which at large N can be expressed in terms of shifted Bethe potentials

logZS2
ϵ ×S1 = − i

πϵ

[
U(ρ+(t+), v+

I (t+),∆+
A)− U(ρ−(t−), v−I (t−),∆−

A)
]
, (5.30)

where U is the same Bethe potential we introduced in section 2.2.2 and the various quantities

25The fugacity was denoted eiϵ = eiς/2 in [25], which explains the factor of 1
2 in (5.28).

26Our notation differs from that of [20] in the following way: sthere = −n, nthere = s, ϵthere = πϵ, ∆there = π∆,
T

(±)
there = t±, W̃there = −U .
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appearing are defined as

t± = t± πϵ

2 s(t) , ρ±(t±) =
ρ(t)

1± πϵ
2 s′(t) , v±I (t±) = vI(t)±

πϵ

2 pI(t) ,

∆±
A = ∆A ± ϵ

2 nA ,

(5.31)

and the shifted chemical potentials satisfy the constraints∑
A∈W

∆±
A = 2∓ ϵ . (5.32)

Note that the ∆±
A introduced for the spindle in (5.21) and (5.22) precisely reduce to those

in (5.31) when σ = 1 and m+ = m− = 1.
At this point, one should extremize (5.30) with respect to ρ(t), vI(t), s(t), and pI(t), but

in [20] the authors observed that this is actually equivalent to extremizing independently the
two Bethe potentials with respect to ρ±(t±) and v±I (t±). With a suitable map between the
variables this is equivalent to the unrefined case and therefore the results are the same

ρ±(t±) = ρΣg(t±)
∣∣
∆±

A
, v±I (t±) = v

Σg

I (t±)
∣∣
∆±

A
. (5.33)

The physical ρ(t) and the other functions of t of the matrix model are then obtained by
going backwards through the definitions of the shifted quantities in (5.31) and imposing
some consistency conditions which will not be detailed here. Substituting (5.33) into (5.30)
one obtains

logZS2
ϵ ×S1 = 1

πϵ

[
Ū(∆+

A)− Ū(∆−
A)
]
= 1

2ϵ
[
FS3(∆+

A)− FS3(∆−
A)
]
. (5.34)

As anticipated, this matches perfectly with the entropy function (5.11) when σ = 1 and
m+ = m− = 1 if we identify ϵ = 2b0 and ∆±

A with suitable linear combinations of R±
a (ξ±).27

Furthermore, notice that the densities (5.33) are exactly the same as those we defined from
GK geometry, for the spindle matrix model, in (5.17)!

6 Further toric examples

In this final section we illustrate our results with some further examples. We will consider
other toric choices of Calabi-Yau cones X4, which are dual to various flavoured variants of the
two quivers we already discussed. These are somewhat more involved computationally, but
there are no extra ingredients entering the picture besides some toric geometry machinery,
which we will use as a tool for computing the relevant quantities.

We first revisit briefly the toric version of the GK geometry described in section 3.2 and
explain how the extra structure provides an algorithmic way to compute both the eigenvalue
density and the discontinuity points of its derivative. We then apply the above to the examples
where X4 = C × C(T 1,1) and X4 = C(Q1,1,1/Zn).

27Recall that FS3 = Fgrav|b1=4 = 16Fgrav|b1=1 upon identifying ∆A with the same linear combinations of
Ra(ξ).
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6.1 Generalities on toric cones

6.1.1 GK geometry with toric fibres

In the examples we will consider, the cone X4 = C(Y7) is a complex toric cone. The advantage
of dealing with toric spaces is that geometric quantities can be expressed in terms of sums
over combinatorial data, the toric data, including integrals over the internal space or its
cycles. For ease of exposition in this section we generally take Y7 to be the simply-connected
covering space, re-establishing quotients by Zk or Zn in final formulas as appropriate, much
as we did in section 3.3.

The complex cone (3.1) is toric if s = 4 i.e. Y7 has U(1)4 isometry, generated by the
Killing vector fields ∂φi as before. At each fixed radius r > 0 sits a homothetic copy of Y7,
with the original Y7 embedded naturally at r = 1. A toric cone is fully described by a set
of d ≥ 4 primitive integer vectors va ∈ Z4, a = 1, . . . , d. In particular, we introduce the
polyhedral cone C as the cone whose d facets have va as inward-pointing normal vectors

C ≡
{
y ∈ R4 |

4∑
i=1

yi vai ≥ 0 , a = 1, . . . , d
}
. (6.1)

This polyhedral cone is also the image of the moment map µ : C(Y7) → R4 associated to
the U(1)4 action, given explicitly by28

µi = yi = 1
2 r

2 ∂φi⌟ η . (6.2)

The set {yi, φi}, i = 1, 2, 3, 4 constitutes a system of coordinates for C(Y7) and the latter
can be built as a U(1)4 fibration over the polyhedral cone C itself in the following way: in
the interior of the cone Cint the fibration is trivial, while on each facets at the boundary
∂C a single U(1) ⊂ U(1)4 copy shrinks to a point. In particular, at the ath facet the U(1)
copy that shrinks is identified by the vector field

νa =
4∑

i=1
vai ∂φi . (6.3)

Complex codimension one submanifolds of C(Y7) which are invariant under the U(1)4 action
are called toric divisors and their images under the moment map µ are precisely the d facets of
the cone C. Note that the freedom of changing basis for the U(1)4 action results in the freedom
of making an SL(4,Z) transformation of the toric data vai and the toric map coordinates µi.
The basis we use is such that the condition (3.15) holds and va = (1, w⃗a), with w⃗a ∈ Z3.

Notice that any consistent choice of toric data for d = 4 is related to that in (3.40)
by an SL(4,Z) transformation, and indeed C4 = C(S7) is the simplest example of toric
cone. In that case the toric divisors coincide with the cones over the submanifolds obtained
setting the complex coordinates za = 0 whose volumes are (3.42), and the vectors νa are
nothing but those rotating said coordinates, i.e. νa = ∂ϕa . When d > 4 instead, the va

28This should not be confused with the moment map associated to the U(1)M action we introduced in (4.9).
The one given in (6.2) is defined to satisfy dµi = −∂φi⌟J .
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cannot be all linearly independent, and indeed there exists a d × (d − 4) constant matrix
qa

A (the kernel matrix), such that

d∑
a=1

qa
A va = 0 , ∀A = 1, . . . , d− 4 . (6.4)

This relation can also be seen as the fact that the toric divisors are not independent cycles
because dimH5(Y7,R) = d− 4.29 It is then clear that the vectors νa do not constitute a basis
for the U(1)4 action as they are not linearly independent, hence we will stick with the ∂φi basis,
unlike what we did for Y7 = S7 where ∂ϕa is a more natural (or certainly democratic) choice.

The image of Y7 under the moment map is a subset of C which we call the Sasakian
polytope. Introducing the vector b = (b1, b2, b3, b4) as the coordinate vector for the Reeb
vector field (3.5), the Sasakian polytope is given by

P (b) = C ∩ H(b) , (6.5)

where H(b) is the Reeb hyperplane, defined as

H(b) ≡
{
y ∈ R4 |

4∑
i=1

yi bi =
1
2

}
. (6.6)

One can show that the Sasakian volume (3.30) can be obtained from the Euclidean volume
of the polytope P (b) as

VolS(Y7) =
(2π)4

|b|
VolE(P ) , (6.7)

where |b| denotes the Euclidean norm of the vector b and the factor (2π)4 comes from
integrating over the angles φi. This is useful because computing VolE(P ) is just a matter of
basic linear algebra involving the toric data va and the Reeb vector b. Note that the cones
over the submanifolds Sa we introduced above (3.33) are precisely the toric divisors and are
mapped to the facets of C via the moment map µ. Hence, the Sasakian volume VolS(Sa) is
similarly obtained from the Euclidean volume of the facets Pa of the polytope P

VolS(Sa) =
(2π)3

|b|
VolE(Pa) . (6.8)

All the discussion so far was true for Sasakian Y7. However, in order to implement the
GK extremization procedure, we want to depart from this assumption and consider a general
Kähler form ω (transverse to the foliation Fξ generated by ξ). In particular, the transverse
cohomology class of ω can be parametrized by d real parameters λa ∈ R as

[ω] = −2π
d∑

a=1
λaca , (6.9)

where ca ∈ H2
B(Fξ) are the Poincaré duals of the toric divisors. The Sasakian case with ωS

is recovered when λa = − 1
2b1

for all a = 1, . . . , d. Likewise, the flavour twist is achieved by
29An alternative way to construct the toric cone X4 is to start with the space Cd with coordinates za, and

then take a (GIT) quotient by a (C∗)d−4 action with weights qa
A.
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setting λa = −Λ as in (3.31) for all a = 1, . . . , d.30 For now it will be convenient to stick
with the general case and we will impose the flavour twist at a later stage. Allowing for a
general Kähler class amounts to shifting the facets of the polytope (6.5)

P (b) → P(b, λa) ≡
{
y ∈ H(b) |

4∑
i=1

(yi − yi
∗) vai ≥ λa , a = 1, . . . , d

}
, (6.10)

where yi
∗ is an arbitrary point in the Reeb hyperplane. For the following, it will be con-

venient to take

y∗ =
( 1
2b1

, 0, 0, 0
)
. (6.11)

Note that saturating the ath inequality in (6.10) defines the ath facet Pa. The corresponding
generalization of the Sasakian volume (6.7) is the so-called master volume

V7 = Vol(Y7) ≡
∫

Y7
η7 ∧

ω3

3! = (2π)4

|b|
VolE(P) , (6.12)

which itself is a function of the Reeb vector b and the Kähler class parameters λa. Concretely,
V7 can be computed again using basic linear algebra notions (see [9]). The supersymmetric
action (3.19), the constraint equation (3.17), and the quantized fluxes (3.18) can all be
expressed in terms of V7 and its derivatives. We refer to [9, 37] for more details as we will
not need these expressions.

Next, note that whenever the cone X4 is toric, the geometric R-charges (3.35) satisfy
the constraints

d∑
a=1

Ravai =
2
b1
bi . (6.13)

The i = 1 component tells us that the Ra sum to 2, which in turn imposes a constraint
on the fluxes

d∑
a=1

Ma = p1N = (2g − 2)N , (6.14)

which is a manifestation of the fact that supersymmetry for these geometries is being
implemented via a topological twist over the Riemann surface Σg. Moreover, from (6.13) it is
possible to express the R-symmetry vector (3.5) in terms of the vectors νa in (6.3)

ξ = b1
2

d∑
a=1

Ra νa , (6.15)

which agrees with (3.45), as it should.
30There is a subtlety here that we are slightly glossing over. Since dim H2

B(Fξ) = d − 3, the d parameters
λa are not uniquely specified in (6.9). There is then a related “gauge invariance”, acting as the shifts
λa → λa +

∑4
i=1 γi(vaib1 − bi), γi being the arbitrary gauge parameters. More precisely then, we recover the

flavour twist when there exist a gauge in which λa = −Λ.
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Finally, to connect back to the flavour twist case of interest, we note that the Sasakian
volumes can be recovered from V7 in the following way

VolS(Y7) = V7
∣∣
λa=− 1

2b1
, VolS(Sa) = − 1

2π
∂V7
∂λa

∣∣∣∣
λa=− 1

2b1

. (6.16)

Substituting these expressions into the relevant quantities of section 3.2.3 yields the physical
observables in the toric flavour twist case.31

6.1.2 Critical points and M2-branes

Recall that the moment map hM associated to the U(1)M action defined in (4.17) maps Y7
to the interval [τmin, τmax] which gives the support of the eigenvalue density. Let us compute
hM explicitly. Firstly, note that for general toric Y7 we have [37, 51]

∂φi⌟ω = − dxi , (6.17)

where xi = (yi − yi
∗). Defining ζi to be the coefficient of the M-theory killing vector ζM in

the toric basis, i.e. ζM =
∑4

i=1 ζi ∂φi , it follows that

hM (yi) =
4∑

i=1
ζi (yi − yi

∗) . (6.18)

The coefficients ζi depend on the particular physical model we consider, and will be specified
in each example.

Recall also that the image of hM is divided in subintervals whose extrema correspond
to its value at the critical points, i.e. where dhM = 0. In turn such points are those where
ζM is proportional to ξ, and we can find them explicitly by employing the following strategy.
We firstly find all the linear combinations of the form

ζM = β ξ +
∑
a∈F

αaνa , (6.19)

where F is any set of toric indices {a} such that all the corresponding facets {Pa} have at
least one point in common. By definition, in the intersection

⋂
a∈F Pa all the vectors νa

with a ∈ F collapse, and therefore ζM = β ξ which is precisely the condition for criticality
of hM . Note that here β could also be vanishing, which signals the presence of D6-branes.
In all the examples we look at, the intersection above is either a single point in the toric
polytope or one of its edges. Ultimately, the extrema of the subintervals in the image of
hM are obtained by evaluating

hM (yF ) , yF ∈
⋂

a∈F

Pa , (6.20)

for each set F defined as above, where note that different sets F do not always lead to
different points in the image.

31In practice we imposed the flavour twist condition before the toric condition. Alternatively, we could have
started from the toric expressions for the supersymmetric action, constraint, and flux quantization conditions
and imposed the flavour twist by setting λa all equal. The two procedures are completely equivalent.
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Furthermore, we can directly make contact with the M2-brane discussion of section 4.4.
In particular, from (4.67) we see that β determines precisely the value of the action of the
probe M2-brane, which becomes BPS when it sits at yF

IM2 = Λ
ℓ3p
β . (6.21)

6.1.3 Eigenvalue density

We now want to compute the eigenvalue density as the volume of the quotient space (4.29)
for any choice of toric X4. In fact, recall that in section 4.3 we stated that

ρ(t) ∝ d
dΛ Vol(Yτ )

∣∣∣∣
τ=ℓ3

pN1/2t

, (6.22)

where Yτ is defined as a quotient of the τ level set of hM . In the toric setting we can
always follow the strategy we exploited for the two examples considered earlier in section 4.3,
and decouple the coordinates yi ∈ R4 with Euclidean metric32 from the angles φi ∈ U(1)4,
which simply give a contribution of 2π each. Firstly, we note that the polytope (6.10) is
the generalization of the tetrahedron defined by r2 = 1 in section 4.3. The shape of such a
polytope will depend on the toric data va. Saturating the ath inequality, i.e.

(yi − yi
∗) vai = λa , (6.23)

defines the plane where the ath facet Pa lies, and changing the corresponding Kähler class
parameter λa amounts to shifting the facet parallel to itself. Upon setting the flavour twist
condition λa = −Λ, all the facets move together when changing Λ. We then restrict to the
level set of the moment map (6.18) imposing

(yi − yi
∗) ζi = τ . (6.24)

This equation describes a hyperplane in R4 which slices the polytope P . The intersection of
the two will be a polygon Qτ whose shape depends on the value of τ and whose Euclidean
area determines directly the volume we are interested in

Vol(Yτ ) = (2π)3 VolE(Qτ ) . (6.25)

Every time the plane (6.24) crosses a vertex or an edge of the polytope, the expression for
VolE(Qτ ) changes, hence it is clear that these correspond to the discontinuity points in the
derivative of the density, i.e. the critical points of the previous subsection. Note that here we
have a clear geometric interpretation of what it means taking the derivative with respect to
Λ in (6.22): given what we said below (6.23), it is clear that d

dΛ VolE(Qτ ) is (proportional
to) the length of the perimeter of the polygon Qτ .

32Differently from section 4.3, here the Kähler class parameter is absorbed into the coordinates yi. This has
some repercussions on the normalization of quantities. In particular, this is why we distinguish Qτ from Qτ

(see (6.25) versus (4.36)) which are otherwise conceptually the same quantity.
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In general, for a fixed τ a vertex qab ∈ R4 of Qτ is computed by imposing simultaneously
two equations like (6.23) for adjacent facets Pa and Pb, the Reeb hyperplane condition
y ∈ H(b), and the moment map level set in (6.24)

(qi
ab − yi

∗) vai = −Λ ,
(qi

ab − yi
∗) vbi = −Λ ,

(qi
ab − yi

∗) bi = 0 ,
(qi

ab − yi
∗) ζi = τ . (6.26)

These are four linear equations for four variables qi
ab, i = 1, . . . , 4, hence the vertices of Qτ

are uniquely determined in terms of Λ, τ and b (for fixed examples va and ζ are fixed),33 and
we pick y∗ = (1/2b1, 0, 0, 0) for convenience. This system should be solved for any pair of
adjacent facets. Note that it may not admit any solution, for certain pairs, indicating that
the moment map hyperplane cuts the polytope parallel to the edge between these two facets.
Further imposing that the solution indeed lies inside the polytope

(qi
ab − yi

∗)vci ≥ −Λ , ∀c = 1, . . . , d (6.27)

gives the range of τ for which qab is a vertex of Qτ . Therefore the set of vertices of Qτ , and
consequently the expression for its perimeter (which recall is the quantity identified with the
eigenvalue density ρ), changes on each such interval of τ . Once the sets of vertices are found,
the surface area of Qτ on each interval can be computed by splitting it into triangles and
computing the area of each triangle as a determinant as we did in the examples in section 4.3.
More concretely, let us call ζ the vector in R4 with components ζi and introduce

ζ⊥ ≡ ζ − ζ · b
|b|2

b . (6.28)

This is the equivalent of (4.38) but all the vectors here are expressed in toric coordinates.
Then, the area of a triangle with vertices qa1a2 , qa3a4 , qa5a6 ∈ R4 can be computed as

1
2

∣∣∣∣det( b

|b|
,

ζ⊥
|ζ⊥|

, qa3a4 − qa1a2 , qa5a6 − qa1a2

)∣∣∣∣ , (6.29)

and VolE(Qτ ) will be a finite sum of such determinants. Note that it is crucial to have
ζ⊥ rather then ζ in (6.29) because only ζ⊥ is orthogonal to both the triangle and to b, so
that the volume of the parallelotope computed by the determinant is simply the area of the
triangle times the length of the two “heights”, which are both 1. We refer the reader to the
examples in the next subsections to see how this procedure works more concretely.

Finally, let us highlight that we are now able to justify the normalization in (4.39). Let
us compute the integral of the r.h.s. of (6.22)

I ≡
∫ tmax

tmin
dt d

dΛ Vol(Yτ ) =
(2π)3

ℓ3pN
1/2

d
dΛ

∫ τmax

τmin
dτ VolE(Qτ ) , (6.30)

33Note that in the examples we will express b in terms of geometrical R-charges R, as in (6.15), for better
comparison with the dual field theory results.
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where in the last step we exchanged the integral and the derivative and changed the variable
of integration from t to τ . Now the integral above with a suitable measure is nothing but the
volume of the entire polytope P, which can be expressed in terms of the master volume V7∫ τmax

τmin

dτ
|ζ⊥|

VolE(Qτ ) = VolE(P) = |b|
(2π)4 V7 . (6.31)

Substituting this back into (6.30) we obtain

I = |b||ζ⊥|
2πℓ3pN1/2

dV7
dΛ = |b||ζ⊥|

2πℓ3pN1/2 (2πℓp)6N , (6.32)

where the second equality is the toric equivalent of the flux quantization (3.29) [9]. Hence,
the correct normalization for (6.22) is

ρ(t) = 1
I

d
dΛ Vol(Yτ )

∣∣∣∣
τ=ℓ3

pN1/2t

= 1
32π5ℓ3pN

1/2|b||ζ⊥|
d
dΛVol(Yτ )

∣∣∣∣
τ=ℓ3

pN1/2 t

, (6.33)

which is exactly what we had in (4.39). If Y7 is a quotient space by a Zn action, similarly
to section 4, there is an additional factor of n relating the volumes of Yτ and Qτ (the
unquotiented case is n = 1), and the final expression for ρ reads

ρ(t) = 1
4π2ℓ3pN

1/2|b||ζ⊥|n
d
dΛVol(Qτ )

∣∣∣∣
τ=ℓ3

pN1/2 t

. (6.34)

6.2 Example: C(Y7) = C × C(T 1,1)

We now illustrate the procedure outlined in the previous subsection on the toric cone
X4 = C × C(T 1,1), which admits two field theory duals depending on the choice of the
M-theory circle action. First let us describe some properties of this geometry. The toric
vectors are

v1 = (1, 0, 0, 0) , v2 = (1, 0, 0, 1) , v3 = (1, 0, 1, 1) ,
v4 = (1, 0, 1, 0) , v5 = (1, 1, 0, 0) ,

(6.35)

and the corresponding toric diagram is shown in figure 8. A subtle point to address is
that the space Y7 has a singularity and therefore computing the master volume naively
leads to the wrong result. As discussed in [9] this is fixed by imposing a restriction on
the Kähler class parameters

λ1 − λ2 + λ3 − λ4 = 0 . (6.36)

Incidentally, this constraint also enforces the flavour twist condition (3.28), which is precisely
what we need to compare with field theory results. The Sasakian volume of the link Y7
of C × C(T 1,1) is

VolS(Y7) =
π4(b1 − b2)

3b2b3b4(b1 − b2 − b3)(b1 − b2 − b4)
. (6.37)
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e1
e2

e3

w⃗1

w⃗2

w⃗3

w⃗4w⃗5

Figure 8. Toric diagram for C× C(T 1,1).

The geometric R-charges are

R1 = 2(b1 − b2 − b3)(b1 − b2 − b4)
b1(b1 − b2)

, R2 = 2b4(b1 − b2 − b3)
b1(b1 − b2)

,

R3 = 2b3b4
b1(b1 − b2)

, R4 = 2b3(b1 − b2 − b4)
b1(b1 − b2)

, R5 = 2b2
b1

,

(6.38)

so they satisfy

5∑
a=1

Ra = 2 , R1R3 −R2R4 = 0 . (6.39)

Note that the second constraint implements the partial extremization over the baryonic
directions in field theory. Finally, the Kähler class parameter defined in (3.31) can be
expressed in terms of the R-charges as

Λ =
ℓ3pN

1/2π

2

√
2(R1 +R2)(R3 +R4)(R1 +R4)(R2 +R3)R5

R1 +R2 +R3 +R4
. (6.40)

Notice that the denominator may also be expressed as 2 − R5.

6.2.1 Flavoured U(N)

Geometry. The first choice of U(1)M action we consider has weights (1,−1, 0, 0, 0) on the
complex coordinates za in the ambient space of the GIT quotient defining X4 (see footnote 29),
which are rotated by ∂ϕa ≡ νa =

∑
i vai∂φi [28]. Using the toric data (6.35), the M-theory

circle action on X4 therefore reads

ζM = −∂φ4 . (6.41)

For this choice of ζM and toric data (6.35), (6.19) admits two non-trivial solutions for β,34

which we multiply by Λ to obtain τ

τmin = − 2Λ
R2 +R3

, τmax = 2Λ
R1 +R4

. (6.42)

34In practice we solve the system in terms of bi and then convert the results in the Ra variables using (6.38).
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Figure 9. Pyramid describing C × C(T 1,1) and its slicing corresponding to flavoured U(N). The
red slice is Qτ for τmin < τ < 0, the blue slice for τ = 0, and the green slice for 0 < τ < τmax. Each
vertex pabc denotes the intersection of the facets Pa, Pb, Pc, and the Reeb hyperplane. The perimeter
of Qτ varies with τ qualitatively as ρ in figure 3.

The non-zero αa coefficients for these solutions are {α1, α4, α5} and {α2, α3, α5} respectively,
which is reflected by the vertices in figure 9. Note that β = τ/Λ = 0 is also a solution
for either {α1, α2} or {α3, α4} non-vanishing. Recall that these results also correspond to
the action of BPS M2-branes via (4.69).

Next we want to obtain the full distribution ρ by solving the system (6.26). We find
solutions for {q14, q15, q45, q23, q25, q35}. We do not report the explicit expressions of the
vertices as they are not particularly insightful. They have a similar structure to the ones
presented in the examples of section 4.3. Further imposing the inequalities (6.27), we find
that the first three solutions are the vertices of Qτ for τ ∈ [τmin, 0], while the last three define
Qτ for τ ∈ [0, τmax], where we reproduce the expression of τmin, τmax in (6.42). Qτ is therefore
a triangle in both regions, and its area can be computed via the determinant (6.29) first for
{q14, q15, q45} and then for {q23, q25, q35}, see figure 9. Finally taking the Λ derivative to obtain
the perimeter and normalizing by the appropriate factor (6.34) gives the geometrical density

ρ(t) = 1
ℓ3pN

1/2


2Λ + (R2 +R3)τ

π2(R1 +R2)(R3 +R4)R5
, τmin < τ < 0

2Λ− (R1 +R4)τ
π2(R1 +R2)(R3 +R4)R5

, 0 < τ < τmax

∣∣∣∣∣∣∣∣∣
τ=ℓ3

pN1/2t

. (6.43)

Field theory. The dual field theory to this geometry is a flavoured U(N) theory which
contains two pairs of fundamental chiral fields {Q(1), Q̃(1)}, {Q(2), Q̃(2)} and three adjoint
chiral fields Φi, i = 1, 2, 3, see figure 10, and has superpotential

W = Tr
[
Φ1[Φ2,Φ3] + Q̃(1)Φ1Q

(1) + Q̃(2)Φ2Q
(2)
]
, (6.44)
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Figure 10. Quiver diagram of the flavoured U(N) theory.

such that

T T̃ = Φ1Φ2 =⇒ ∆T +∆T̃ = ∆Φ1 +∆Φ2 . (6.45)

The results can be derived from the Bethe potential given in appendix A, and read [19]

tmin = − µ

∆T̃

, tmax = µ

∆T
, (6.46)

ρ(t) =


µ+∆T̃ t

π2∆Φ1∆Φ2∆Φ3

, tmin < t < 0 ,

µ−∆T t

π2∆Φ1∆Φ2∆Φ3

, 0 < t < tmax ,

, (6.47)

with

µ = π

√
2∆Φ1∆Φ2∆Φ3∆T∆T̃

∆ΦT
+∆ΦT̃

. (6.48)

Matching. The field theory and geometrical parameters are related as [9]

∆Φ1 = R1 +R2 , ∆Φ2 = R3 +R4 , ∆Φ3 = R5 ,

∆T = R1 +R4 , ∆T̃ = R2 +R3 .
(6.49)

As expected, under this identification, µ = 2Λ/(ℓ3pN1/2). It is then easy to see that the
discontinuity points of ρ′(t) match, and also that we reproduce ρ(t).

6.2.2 Flavoured ABJM

Geometry. A second possible choice of U(1)M is to have weights (1, 0, 0, 0,−1) on za,
which using the toric data (6.35) reads on the cone

ζM = −∂φ2 . (6.50)

In the following we assume R4 < R2. Solving (6.19) for this choice of M-theory circle gives
four solutions (recall τ = Λβ)

τ1 = −2Λ
R5

, τ2 = 0 , τ3 = 2Λ
R1 +R2

, τ4 = 2Λ
R1 +R4

, (6.51)
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Figure 11. Pyramid describing C× C(T 1,1) and its slicing corresponding to flavoured ABJM. The
red slice is Qτ for τ1 < τ < τ2, the blue slice for τ2 < τ < τ3, and the green slice for τ3 < τ < τ4. Each
vertex pabc denotes the intersection of the facets Pa, Pb, Pc, and the Reeb hyperplane. Note that we
do not draw the slice at τ = τ2 = 0, where q14 = q45 = p145 and q12 = q25 = p125. The perimeter of
Qτ varies with τ qualitatively as ρ in figure 18.

and associated non-zero αa, {α1, α2, α3, α4}, {α1, α5}, {α3, α4, α5} {α2, α3, α5}, respectively,
as clearly appears in figure 11. Physically these results correspond to the value of the action
of BPS probe M2-branes.

To reproduce ρ we turn to the system (6.26), which in this case admits solutions for
any pair of neighbouring va, except for q15. The M-theory hyperplane therefore slices the
toric polytope parallel to the edge between P1 and P5 as shown in figure 11. Then from
the inequalities (6.27), we find that Qτ has vertices {q12, q23, q34, q14}, {q25, q23, q34, q45},
{q25, q23, q35} in the regions [τ1, τ2], [τ2, τ3], [τ3, τ4] respectively, where we recover the values of
τ from (6.51). In the regions where Qτ is quadrilateral the area is computed by splitting into
two triangles, and summing the two areas computed via the determinant (6.29). After taking
the derivative and normalizing properly, see (6.34), we deduce that the density is given by

ρ(t) = 1
ℓ3pN

1/2



4Λ+2R5τ
π2(R2+R3)(R3+R4)(R1+R5+R2)(R1+R5+R4) , τ1<τ<τ2

4Λ−(2R1+R2R4−R3(R1+R5))τ
π2(R2+R3)(R3+R4)(R1+R5+R2)(R1+R5+R4) , τ2<τ<τ3

2Λ−(R1+R4)τ
π2(R2−R4)(R4+R3)(R1+R5+R4) , τ3<τ<τ4

∣∣∣∣∣∣∣∣∣∣∣
τ=ℓ3

pN1/2 t

. (6.52)

Field theory. The field theory dual to X4 = C × C(T 1,1) equipped with the M-theory
circle (6.50) is an instance of the flavoured ABJM theory. That is the Model II with an addi-
tional pair of fundamental chiral fields (Q, Q̃) and with Chern-Simons level (−1/2, 1/2) [28].35

35The half-integer level is needed to cancel the parity anomaly due to the additional pair of chiral fields.
Note that we exchange k and −k compared to [28], according to the prescription in table 1 of [18].
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Figure 12. Quiver diagram for the flavoured ABJM theory.

The quiver diagram is shown in figure 12. The superpotential is the ABJM superpotential,
plus a deformation term

W = Tr
[
A1B1A2B2 −A1B2A2B1 +QA1Q̃

]
, (6.53)

T T̃ = A1 =⇒ ∆T +∆T̃ = ∆A1 . (6.54)

The results are derived in appendix A, assuming ∆B1 < ∆B2 :

t1 = − µ

∆T̃

, t2 = 0 ,

t3 = µ

∆T +∆B2
, t4 = µ

∆T +∆B1
.

(6.55)

ρ(t) =



2µ+ 2∆T̃ t

π2(∆A1 +∆B1)(∆A1 +∆B2)(∆A2 +∆B1)(∆A2 +∆B2)
, t1 < t < t2 ,

2µ− (2∆T +∆B1∆B2 −∆A1∆A2)t
π2(∆A1 +∆B1)(∆A1 +∆B2)(∆A2 +∆B1)(∆A2 +∆B2)

, t2 < t < t3 ,

µ− (∆T +∆B1)t
π2(∆A1 +∆B1)(∆A2 +∆B1)(∆B2 −∆B1)

, t3 < t < t4 .

(6.56)

µ = π

√
2(∆A2 +∆B1)(∆A2 +∆B2)(∆T +∆B1)(∆T +∆B2)∆T̃

2−∆T̃

. (6.57)

Matching. Finally, the parameters on both sides are related by [10]36

∆A1 = R1 +R5 , ∆A2 = R3 , ∆B1 = R4 , ∆B2 = R2 ,

∆T = R1 , ∆T̃ = R5 ,
(6.58)

such that again, µ = 2Λ/(ℓ3pN1/2), t and τ match and we exactly reproduce ρ in the geometry.
Note that the orderings we assumed on each side, namely R4 < R2 and ∆B1 < ∆B2 , are
equivalent.

36Note we used a different toric basis from [10]. In particular, we have R1 = ∆there
1 , R2 = ∆there

3 , R3 = ∆there
5 ,

R4 = ∆there
2 , R5 = ∆there

4 .
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Figure 13. Toric diagram for Q1,1,1.

6.3 Example: Y7 = Q1,1,1/Zn

A second example of a toric cone is Y7 = Q1,1,1/Zn. Here we denote the quotient by Zn,
rather than Zk, since in this case the positive integer n is the number of flavours (D6-branes),
rather than a Chern-Simons level (RR two-form flux). The toric data are given by the
following, with the toric diagram shown in figure 13:

v1 = (1, 0, 0, 0) , v2 = (1, 0, 0, 1) , v3 = (1,−1, 0, 0) ,
v4 = (1, 1, 0, 1) , v5 = (1, 0,−1, 0) , v6 = (1, 0, 1, 1) .

(6.59)

We will consider the simplifying ansatz of [9] for the Reeb vector

b = (1, 0, b3, 1/2 + b3) . (6.60)

In this case we have

VolS(Q1,1,1/Zn) =
32π4

3n
3− 4b2

3
(1− 4b2

3)2 . (6.61)

The expressions for the geometrical R-charges in terms of b3 can be found in [9]. We do not
need them here and only notice that their positivity imposes |b3| ≤ 1/2. Finally we record that

Λ =
ℓ3pN

1/2π

2
√
n

1− 4b2
3√

3− 4b2
3

. (6.62)

6.3.1 Flavoured ABJM

Geometry. We pick a U(1)M action with weights (−1, 0, 0, 0, 0, 1) on the coordinates of
the ambient space, which using the toric data (6.59) reads on Q1,1,1/Zn

ζM = 1
n
(∂φ3 + ∂φ4) . (6.63)

Then the equation (6.19) admits two37 non-trivial solutions for β = τ/Λ (corresponding to
BPS M2-brane actions) with non-vanishing {α2, α6} and {α1, α5} respectively, which read

τmin = − 2Λ
n− 2nb3

, τmax = 2Λ
n+ 2nb3

. (6.64)

37Actually for general b there are four solutions, which degenerate to these two under the ansatz (6.60).
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Figure 14. Polytope describing Q1,1,1 and its slicing corresponding to flavoured ABJM. The red slice
is Qτ for τmin < τ < 0, the blue slice for τ = 0, and the green slice for 0 < τ < τmax. Each vertex pabc

denotes the intersection of the facets Pa, Pb, Pc, and the Reeb hyperplane. Note that Qτ is not 0 at
τmin,max but an edge of the polytope.

It also admits β = 0 as a solution with either {α2, α5} or {α1, α6} non-zero, as can be
observed in figure 14.

The system (6.26) has solutions {q23, q24, q46, q36} and {q13, q35, q45, q14} which, according
to the inequalities (6.27) are the vertices of Qτ for τ in [τmin, 0] and [0, τmax] respectively
(see figure 14), reproducing τmin,max given above. The volume of Qτ is computed on each
region by splitting the quadrilateral into two triangles whose areas are the determinant (6.29).
Taking the derivative with respect to Λ and normalizing as in (6.34), we eventually obtain

ρ(t) = 1
ℓ3pN

1/2


4Λ + (n− 4nb3)τ

π2 , τmin < τ < 0

4Λ− (n+ 4nb3)τ
π2 , 0 < τ < τmax

∣∣∣∣∣∣∣∣
τ=ℓ3

pN1/2t

. (6.65)

Field theory. The field theory dual is a flavoured ABJM theory with two sets of pairs
of fundamental chiral fields {Q(1)

j , Q̃
(1)
j }, {Q(2)

j , Q̃
(2)
j }, j = 1, . . . , n, and Chern-Simons level

0, see figure 15. It has the superpotential

W = Tr

A1B1A2B2 −A1B2A2B1 +
n∑

j=1
Q

(1)
j A1Q̃

(1)
j +

n∑
j=1

Q
(2)
j A2Q̃

(2)
j

 , (6.66)

and the monopole operators obey the relations

T T̃ = An
1A

n
2 =⇒ ∆T +∆T̃ = n(∆A1 +∆A2) . (6.67)

In terms of these variables the chemical potential for the topological symmetry is

∆m = −1
2(∆T −∆T̃ ) . (6.68)
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Figure 15. Quiver diagram for the flavoured ABJM theory.

The results of interest have been obtained in [19], as explained in appendix A, and read38

tmin = − µ

n+∆m
, tmax = µ

n−∆m
, (6.69)

ρ(t) =


2µ+ (n+ 2∆m)t

π2 , tmin < t < 0 ,

2µ− (n− 2∆m)t
π2 , 0 < t < tmax ,

(6.70)

with
µ = π√

n

|n2 −∆2
m|√

3n2 −∆2
m

. (6.71)

Note that ρ(tmin,max) ̸= 0, in accordance with the geometric picture.

Matching. There is one parameter on each side that are related via [9]

−∆m = 2nb3 . (6.72)

Again under this identification µ = 2Λ/(ℓ3pN1/2) and ρ(t) is correctly reproduced in the
geometry. An interesting observation is that the postivity of the geometrical R-charges,
which implies that |b3| ≤ 1/2 gives the constraint |∆m| ≤ n (such that we could drop the
absolute value in µ).

7 Discussion

In this paper we have further studied the relationship between a class of supersymmetric,
magnetically charged (and potentially accelerating) black holes in M-theory, and their dual
matrix model description. The matching between entropy functions on the two sides (for
classes of examples) had already been established in [9, 10]. More recently, a gravitational
block formula for the entropy function of accelerating black holes (5.11) was proven in [14, 15]
(see also [46]). One observation we have made in this paper is that the gravity formula (5.11)
in GK geometry may already be matched to the refined twisted index field theory results
in [20], on setting m+ = m− = 1 so that the spindle horizon becomes simply S2. Similarly,
the actions of BPS probe M2-branes at the poles of this S2 then also match with points where

38Fixing a typo in the sign of ∆m.
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the eigenvalue density derivatives ρ′± for the two blocks in the matrix model are discontinuous.
These results extend straightforwardly to the accelerating case with a spindle on the gravity
side, and it will be fascinating to match the large N limit of the spindle index of [24] to the
gravitational results in GK geometry we have presented here.

Perhaps the most interesting open question is to further match quantities in the matrix
model to quantities in gravity. For example, it seems likely that there is also a simple
geometric characterization of the fluxes s(t). But one also expects a more direct holographic
interpretation of these variables, and of the density function ρ(t). The analogous quantity on
S3 was interpreted in [23] in terms of counting operators in the chiral ring of the gauge theory.
However, the present paper perhaps suggests a more direct physical interpretation on the
gravity side. Specifically, the near-horizon solutions are sourced by N M2-branes, where in
AdS/CFT the brane sources disappear and are replaced by N units of dissolved flux over the
internal space. On the other hand, in type IIA we have N D2-branes, where hM = τ = ℓpN

1/2t

is the location of the D2-branes (before the back-reaction and near-horizon limit). This
suggests that the eigenvalue density ρ(t) is also playing the role of a density function directly
in the gravity dual, describing how the dissolved D2/M2-branes are distributed in the internal
space. We leave this speculation, and other questions, for future work.
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A Bethe potential at large N

In this appendix we review the expression for the Bethe potential of topologically twisted
Chern-Simons-matter theories at large N , derived in [18]. We focus on flavoured U(N)
and ABJM theories, reproducing and completing the discussion of [19] (and fixing some
minor typographical errors).

At leading order in N the Bethe potential consists of contributions coming from the
various gauge and matter content of the theory39

U = UGauge + UBifund + UFlavour . (A.1)

For theories with gauge group G =
∏G

a=1 U(N)ka with
∑G

a=1 ka = 0 such that they have
an M-theory dual,

UGauge = −iN3/2
∫

dt t ρ(t)
G∑

a=1

(
kava(t) + π∆(a)

m

)
, (A.2)

where ∆(a)
m is the chemical potential of the topological symmetry of U(N)ka . We write

∆m =
∑

a ∆
(a)
m in terms of variables ∆T , ∆T̃ , identified with the R-charges on S3 of the

39There are additional bifundamental contributions to the following equation that are subleading in N .
Their role is discussed in [2], but we do not need to consider them in this work.
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diagonal monopole operators, via

∆m = −1
2(∆T −∆T̃ ) . (A.3)

The general expressions of UBifund and UFlavour are given in [18]. Here we want to state
their simplification (together with that for UGauge) in the special cases of G = U(N) and
G = U(N)k ×U(N)−k, from which all the examples of the present paper can be recovered.

A.1 Flavoured U(N) theories

A general flavoured U(N) theory contains three sets of pairs of fundamental chiral fields
{Q(i)

j , Q̃
(i)
j }ni

j=1, and three adjoint chiral fields Φi, i = 1, 2, 3, see figure 16, and has super-
potential

W = Tr
[
Φ1 [Φ2,Φ3] +

n1∑
j=1

Q
(1)
j Φ1Q̃

(1)
j +

n2∑
j=1

Q
(2)
j Φ2Q̃

(2)
j +

n3∑
j=1

Q
(3)
j Φ3Q̃

(3)
j

]
. (A.4)

The chemical potentials satisfy constraints coming from the superpotential
3∑

i=1
∆Φi = 2 , ∆

Q
(i)
j

+∆
Q̃

(i)
j

+∆Φi = 2 , (A.5)

while the monopole operators obey

T T̃ = Φn1
1 Φn2

2 Φn3
3 =⇒ ∆T +∆T̃ =

3∑
i=1

ni∆Φi . (A.6)

We have

UGauge = −iN3/2
∫

dt t ρ(t)π∆m ,

UBifund = iN3/2
∫

dt ρ(t)2
3∑

i=1
g+(π∆Φi) ,

UFlavour = iN3/2
∫

dt 12 |t| ρ(t)
3∑

i=1
ni π∆Φi ,

(A.7)

where
g+(v) =

v3

6 − π

2 v
2 + π2

3 v . (A.8)

Extremizing this potential with respect to ρ, adding a Lagrange multiplier guarantying
its normalization

U
iN3/2 − πµ

(∫
dt ρ(t)− 1

)
, (A.9)

gives

tmin = − µ

∆T̃

, tmax = µ

∆T
, (A.10)

ρ(t) =


µ+∆T̃ t

π2∆Φ1∆Φ2∆Φ3

, tmin < t < 0 ,

µ−∆T t

π2∆Φ1∆Φ2∆Φ3

, 0 < t < tmax ,

, (A.11)
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Figure 16. Quiver diagram for the flavoured U(N) theory.

with

µ = π

√
2∆Φ1∆Φ2∆Φ3∆T∆T̃

∆T +∆T̃

, (A.12)

where tmin,max are obtained as the solutions of ρ(t) = 0, and µ imposing
∫ tmax

tmin
dt ρ(t) = 1.

Note that these results only depend on the flavours through the constraint (A.6), while the
density takes the exact same form for any flavoured U(N) theory. This is one motivation
for introducing the variables ∆T,T̃ .

In this paper we consider the ADHM theory (i.e. Model I, which is dual to S7/Zk)
corresponding to n1 = n2 = 0, n3 = k, and the flavoured U(N) dual to C × C(T 1,1)
corresponding to n1 = n2 = 1, n3 = 0.

A.2 Flavoured ABJM theories

Flavoured ABJM theories have U(N)+k × U(N)−k gauge group, contain two sets of pairs
of fundamental chiral fields {Q(i)

j , Q̃
(i)
j }ni

j=1 and bifundemental chiral fields Ai, Bi (i = 1, 2),
transforming in the (N,N), (N,N) representations respectively, see figure 17, and have
superpotential

W = Tr
[
A1B1A2B2 −A1B2A2B1 +

n1∑
j=1

Q
(1)
j A1Q̃

(1)
j +

n2∑
j=1

Q
(2)
j A2Q̃

(2)
j

]
. (A.13)

We could consider flavouring B1 and B2 as well and a similar analysis follows, but we are
not interested in spelling out this more general case here. The chemical potentials satisfy
the superpotential constraints

∆A1 +∆B1 +∆A2 +∆B2 = 2 , ∆
Q

(a)
j

+∆
Q̃

(a)
j

+∆Aa = 2 , (A.14)

while the monopole operators obey

T T̃ = An1
1 An2

2 =⇒ ∆T +∆T̃ = n1∆A1 + n2∆A2 . (A.15)
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Figure 17. Quiver diagram for the flavoured ABJM theory.

The two gauge groups have opposite Chern-Simons levels (k1, k2) = (k,−k), and we
define the following combinations

δv(t) ≡ v2(t)− v1(t) , ∆m = ∆(1)
m +∆(2)

m , (A.16)

such that40

UGauge = iN3/2
∫

dt t ρ(t)
(
k δv(t)− π∆m

)
,

UBifund = iN3/2
∫

dt ρ(t)2 ∑
a=1,2

[
g+(δv(t) + π∆Ba)− g−(δv(t)− π∆Aa)

]
,

UFlavour = iN3/2
∫

dt 12 |t| ρ(t)
[
n1 (π∆A1 − δv(t)) + n2(π∆A2 − δv(t))

]
,

(A.17)

where
g±(v) =

v3

6 ∓ π

2 v
2 + π2

3 v . (A.18)

We do not present the solution for extremizing this potential for general flavours. Instead in
the next subsection we turn to a specific example, which has not been treated in the literature.

The cases of interest for this paper are the pure ABJM theory (Model II), which has no
flavours turned on (n1 = n2 = 0) and Chern-Simons level k. In this case, the symmetries of
the theories allow to set ∆(1)

m = ∆(2)
m = 0 without loss of generality [2]. Then the instance of

the flavoured ABJM dual to C × C(T 1,1) has n1 = 1, n2 = 0, and k = −1/2. Finally, the
flavoured ABJM dual to Q1,1,1/Zn has n1 = n2 = n, and k = 0.

A.2.1 Flavoured ABJM dual to C × C(T 1,1)

In the following we present the computations to obtain the eigenvalue density of the flavoured
ABJM field theory dual to the C × C(T 1,1) geometry. This computation is interesting to
present both because it produces new results, and because it is representative of how the
results have been obtained in all of the examples. Indeed, this theory includes both flavours
and non-zero Chern-Simons levels. We therefore expect a behaviour that combines the
features from Model I and II, i.e. both a discontinuity point of ρ′(t) at t = 0 coming from
the D6-branes, and some t ̸= 0 and ρ ̸= 0 discontinuity points.

40Compared to [19], we add the k term and define ∆m slightly differently.
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As explained in section 2.2.3 the analytical expression for ρ(t) is obtained by extremizing
the Bethe potential, adding a Lagrange multiplier term

U
iN3/2 − πµ

(∫
dt ρ(t)− 1

)
. (A.19)

For the model we consider, the Bethe potential is given by (A.17), with k = −1/2, n1 = 1,
n2 = 0. Extremizing this potential gives solutions for ρ and δv, which are valid for41

0 < δv(t) + π∆Ba < 2π , −2π < δv(t)− π∆Aa < 0 , a = 1, 2 . (A.20)

As
∑

∆ = 2, the 0 bounds are always more restrictive than the 2π bounds, and we only
need to consider the former. When δv hits one of these bounds, it stays frozen at that value,
creating some “tails” where ρ is obtained again by extremizing U , but with δv set at its
frozen value. For δv extremizing (A.17), the bounds are saturated at

δv(t1) = π∆A2 , δv(t⋆) = π∆A1 ,

δv(t3) = −π∆B1 , δv(t4) = −π∆B2 , (A.21)

with
t1 = − 2µ

∆A1 + 2∆m
, t⋆ = 2µ

∆A1 − 2∆m − 2∆A2
,

t3 = 2µ
∆A1 − 2∆m + 2∆B2

, t4 = 2µ
∆A1 − 2∆m + 2∆B1

.
(A.22)

By symmetry of the quiver (see figure 12), we can assume without loss of generality that
∆B1 < ∆B2 , such that t1 < 0 < t3 < t4 (where we have also assumed that ∆A1 + 2∆m > 0).
Therefore there is a tail on the right, on which δv(t) = −π∆B1 . The extremal values of t
are determined by ρ(tmin) = ρ(tmax) = 0, which correspond to tmin = t1 and tmax = t4. We
discard the t⋆ solution, which lies outside of [t1, t4] for ∆A2 < ∆A1 . For ∆A2 > ∆A1 , we do
not have an a priori reason to discard t⋆, but we note that if it were a discontinuity point of
ρ′(t), it would give a tail on the left, which is not what we expect either from the numerics
(see figure 18) or the gravity dual analysis. We know that there is also a discontinuity point
of ρ′(t) at t2 = 0 as D6-branes are present. This is confirmed by the presence of a |t| term
in the solution for ρ(t), which in summary is

ρ(t) =


4µ− (−4∆m +∆B1∆B2 −∆A1∆A2)t− (∆A1 +∆B1)(∆A1 +∆B2)|t|

2π2(∆A1 +∆B1)(∆A1 +∆B2)(∆A2 +∆B1)(∆A2 +∆B2)
, t1 < t < t3 ,

2µ− (∆A1 − 2∆m + 2∆B1)t
2π2(∆A1 +∆B1)(∆A2 +∆B1)(∆B2 −∆B1)

, t3 < t < t4 .

(A.23)

Finally µ is determined by imposing the normalization of ρ and reads

µ = π

√
(∆A2 +∆B1 )(∆A2 +∆B2 )(∆A1 +2∆m)(∆A1−2∆m+2∆B1 )(∆A1−2∆m+2∆B2 )

8−4∆m−2∆A1
. (A.24)

Note that both ∆1 and ∆m are related to the monopole variables as ∆1 = ∆T +∆T̃ and
−∆m = 1

2(∆T + ∆T̃ ), such that

∆A1 − 2∆m = 2∆T , ∆A1 + 2∆m = 2∆T̃ . (A.25)
41These conditions come from the derivation of UBifund, see [18].
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Figure 18. Comparison of the analytical solution in (A.23) (solid line) with the numerics (dots), for
∆A1 = 1/2, ∆A2 = 2/3, ∆B1 = 1/3, ∆B2 = 1/2, ∆m = 0.

In the main text, we quote the above results in terms of ∆T and ∆T̃ . This simplifies both
the expressions themselves and their comparison with the geometry results.

We also checked our results numerically following the method of [2]. A near-perfect
agreement can be observed in figure 18.

B Example: Y7 = S7/Zk — summary of results

The field theories dual to S7/Zk, namely the ADHM and ABJM theories, were used to
illustrate the concepts from section 2 to section 4. The aim of this appendix is to gather
the results that have appeared scattered in the main text, and present them in the same
fashion as in the examples of section 6. Note that C(S7) = C4 is also an example of a toric
cone, but the geometry in this case is so elementary that the results could be obtained as
in section 4, without resorting to the toric machinery introduced in section 6. Here instead
we use the general toric framework to present the results.

S7/Zk has the following toric data,

v1 = (1, 0, 0, 0) , v2 = (1, 1, 0, 0) , v3 = (1, 0, 1, 0) , v4 = (1, 0, 0, 1) , (B.1)

with toric diagram shown in figure 19. We have

VolS(S7/Zk) =
1
k

π4

3b2 b3 b4 (b1 − b2 − b3 − b4)
, (B.2)

R1 = 2
b1

(b1 − b2 − b3 − b4) , Ra = 2ba

b1
, a = 2, 3, 4 , (B.3)

such that

Λ =
πℓ3pN

1/2

2
√
2kR1R2R3R4 . (B.4)
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e1
e2

e3

w⃗1
w⃗2 w⃗3

w⃗4

Figure 19. Toric diagram for S7.

B.1 ADHM — Model I

Geometry. We first consider

ζM = 1
k
(∂ϕ1 − ∂ϕ2) = −1

k
∂φ2 , (B.5)

leading to

τmin = − 2Λ
R2 +R3

, τmax = 2Λ
R1 +R4

, (B.6)

and

ρ(t) = 1
ℓ3pN

1/2


2Λ + kR2τ

π2R3R4(R1 +R2)
, τmin < τ < 0

2Λ− kR1τ

π2R3R4(R1 +R2)
, 0 < τ < τmax

∣∣∣∣∣∣∣∣∣
τ=ℓ3

pN1/2t

, (B.7)

as shown in figure 20.

Field theory. The field theory dual to this geometry is the ADHM theory, which corresponds
to the instance n1 = n2 = 0, n3 = k of the flavoured U(N) theory described in appendix A.1.
The results read

tmin = − µ

∆T̃

, tmax = µ

∆T
, (B.8)

ρ(t) =


µ+∆T̃ t

π2∆Φ1∆Φ2∆Φ3

, tmin < t < 0 ,

µ−∆T t

π2∆Φ1∆Φ2∆Φ3

, 0 < t < tmax ,

(B.9)

with

µ = π

√
2
k
∆Φ1∆Φ2∆T∆T̃ . (B.10)

Matching.

∆T = kR1 , ∆T̃ = kR2 , ∆Φ1 = R3 , ∆Φ2 = R4 , (B.11)

such that, µ = 2Λ/(ℓ3pN1/2), and ρ(t) match.
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p134

p234

p124

p123

q34

q14

q13

q34

q24

q23

Figure 20. Tetrahedron describing S7/Zk and its slicing corresponding to the ADHM theory. The
red slice is Qτ for τmin < τ < 0, the blue slice for τ = 0, and the green slice for 0 < τ < τmax. The
perimeter of Qτ varies with τ qualitatively as ρ in figure 3.

B.2 ABJM — Model II

Geometry. The second choice of M-theory circle is

ζM = 1
k
(∂ϕ1 − ∂ϕ2 + ∂ϕ3 − ∂ϕ4) =

1
k
(−∂φ2 + ∂φ3 − ∂φ4) , (B.12)

leading to

τ1 = − 2Λ
kR2

, τ2 = − 2Λ
kR4

, τ3 = 2Λ
kR3

, τ4 = 2Λ
kR1

, (B.13)

and

ρ(t) = 1
ℓ3pN

1/2


2Λ+kR2τ

π2(R1+R2)(R2+R3)(R4−R2) , τ1<τ<τ2

4Λ+k(R2R4−R1R3)τ
π2(R1+R2)(R2+R3)(R1+R4)(R3+R4) , τ2<τ<τ3

2Λ−kR1τ
π2(R1+R2)(R1+R4)(R3−R1) , τ3<τ<τ4

∣∣∣∣∣∣∣∣∣∣
τ=ℓ3

pN1/2t

(B.14)

as shown in figure 21.

Field theory. The field theory dual to this geometry is the ABJM theory, which corresponds
to the unflavoured instance (n1 = n2 = 0) of the flavoured ABJM theory described in
appendix A.2. The results read

t1 = − µ

k∆B1
, t2 = − µ

k∆B2
, t3 = µ

k∆A2
, t4 = µ

k∆A1
, (B.15)

ρ(t) =



µ+ k∆B1t

π2(∆A1 +∆B1)(∆A2 +∆B1)(∆B2 −∆B1)
, t1 < t < t2 ,

2µ+k(∆B1 ∆B2−∆A1 ∆A2 )t
π2(∆A1 +∆B1 )(∆A1 +∆B2 )(∆A2 +∆B1 )(∆A2 +∆B2 ) , t2 < t < t3 ,

µ− k∆A1t

π2(∆A1 +∆B1)(∆A1 +∆B2)(∆A2 −∆A1)
, t3 < t < t4 .

(B.16)
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Figure 21. Tetrahedron describing S7/Zk and its slicing corresponding to the ABJM theory. The
red slice is Qτ for τ1 < τ < τ2, the blue slice for τ2 < τ < τ3, and the green slice for τ3 < τ < τ4. The
perimeter of Qτ varies with τ qualitatively as ρ in figure 4.

with

µ = π
√
2k∆A1∆A2∆B1∆B2 . (B.17)

Matching.

∆A1 = R1 , ∆B1 = R2 , ∆A2 = R3 , ∆B2 = R4 , (B.18)

such that, µ = 2Λ/(ℓ3pN1/2), and ρ(t) match.

C BPS condition for M2-branes

In the following we denote with M = (0, 1,m) the 11d spacetime index and with A = (0, 1, a)
the 11d frame indices, and we introduce a local orthonormal frame eA for the metric (3.9)
such that e10 = e−B/3 η. If ϵ is the Killing spinor of the background, an M2-brane whose
configuration is described by the embedding coordinates XM does not break supersymmetry
if it is such that ϵ satisfies the following Euclidean projection condition [52]

P ϵ = 0, with P ≡ 1
2

(
1− i

3! ε
ijk ∂iX

M∂jX
N∂kX

P ΓMNP

)
. (C.1)

Here i, j, k are worldvolume indices, εijk is the 3d Levi-Civita tensor, and ΓMNP are
antisymmetric products of the 11d gamma matrices in curved space, i.e. ΓM = ΓA e

A
M . The

configuration of branes we are interested in is wrapping EAdS2 (i.e. the (0,1) directions) and
S1

M2, which we take to be a generic linear combination of the directions in Y9, i.e.42

volS1
M2

=
10∑

a=2
ca e

a , ca ∈ R . (C.2)

42Of course the fact that S1
M2 must be a circle will in principle put restrictions on the coefficients ca, but we

will not need them as the projection condition (C.1) is enough to fix all the coefficients.

– 73 –



J
H
E
P
0
5
(
2
0
2
4
)
2
2
6

We choose a parametrization where

∂0X
0 = ∂1X

1 = 1 , (∂3X
m) ea

m = ca ,

∂0X
m = ∂1X

m = ∂3X
0 = ∂3X

1 = 0 .
(C.3)

Then the only non-zero contributions in the sum in P are those for which (M,N,P ) = (0, 1,m)
or permutations, yielding

P ϵ = 0, with P = 1
2

(
1− i

10∑
a=2

ca Γ0Γ1Γa

)
. (C.4)

The next step is to decompose this projection on our AdS2 × Y9 background. Following the
conventions of [13, 42] but rotated to Euclidean signature, as those are compatible with our
GK backgrounds, we split the 11d gamma matrices as ΓA = (β0 ⊗ I9, β1 ⊗ I9, β∗ ⊗ γa), where
β0 = σ2 and β1 = σ1 are Pauli matrices, β∗ = −iβ0β1 = −σ3 is the chiral gamma matrix
in 2d, and γa generates the 9d Clifford algebra. This gives

P = 1
2

(
I2 ⊗ I9 − iβ0β1β∗ ⊗

10∑
a=2

caγa

)
= 1

2 I2 ⊗
(
I9 +

10∑
a=2

caγa

)
, (C.5)

where we used the fact that iβ0β1β∗ = −I2. Notice that in order for P to be a well-defined
projector we have to ensure that P2 = P, which implies that

∑10
a=2 c

2
a = 1. Splitting also the

11d Killing spinor as ϵ = θ ⊗ χ+ c.c., where θ is a Killing spinor on AdS2 and χ on Y9, the
condition P ϵ = 0 results in the following equation involving the 9d spinor only

10∑
a=2

caγaχ = −χ . (C.6)

Finally, taking χ to be normalized as χ̄χ = 1, it can be shown that for a GK geometry
the 1-form η is given by the bilinear [12]

η = eB/3 χ̄γaχ e
a , (C.7)

but recall that by definition of the frame η = eB/3e10, so that χ necessarily satisfies

γ10χ = χ , χ̄γaχ = 0 , a ̸= 10 . (C.8)

These equations tell us that χ is an eigenvector of γ10 with unit eigenvalue and γaχ is
orthogonal to χ̄ when a ̸= 10. Similarly, the Kähler 2-form of the GK background is given by

J = − i
2 χ̄γabχ e

a ∧ eb , (C.9)

where γab = γ[aγb]. However, one can always choose a frame such that

J = e2 ∧ e3 + e4 ∧ e5 + e6 ∧ e7 + e8 ∧ e9 , (C.10)

so that iγ23χ = iγ45χ = iγ67χ = iγ89χ = χ and χ̄γabχ = 0 for any other combination of
indices a, b. As a consequence, one may check that the two sets of spinors

{χ, γ2χ, γ4χ, γ6χ, γ8χ} and {χ, γ3χ, γ5χ, γ7χ, γ9χ} (C.11)
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are both linearly independent. Combining (C.8) with (C.11), we find that (C.6) is solved
by setting ca = 0 , a ̸= 10

c10 = −1
=⇒ volS1

M2
= −e10 = −e−B/3 η . (C.12)

We thus conclude that an M2-brane wrapping EAdS2 × S1
M2 is supersymmetric precisely

when the circle direction is aligned with the R-symmetry circle.

D Wilson loop duals and flat C-fields

In section 4.4.2 we have matched BPS Wilson loop VEVs in the large N matrix model
with the action of M2-branes/fundamental strings in the holographic dual. We have seen
that this matching works in a variety of examples throughout the paper, including the toric
examples in section 6, and the extension to black holes with spindle horizons/the refined
twisted index in section 5.

There is, however, an important subtlety in this matching, which we address in this
appendix. The matching of Wilson loops VEVs with the renormalized action of fundamental
strings, whose worldvolume ends on the Wilson loop at the conformal boundary, goes back
to [22]. However, depending on the topology of the bulk spacetime this Wilson loop VEV
in the gravity dual can sometimes be zero, due to integration over a certain bulk zero
mode. In particular this can be the case for Euclidean black holes, as first pointed out in a
non-supersymmetric context in [44]. One might then be puzzled by why this effect does not
lead to the Wilson loops in this paper being zero. They are not zero, and it is instructive
to consider the mechanism in [44] more closely to see why.

The type IIA string has a coupling exp(i
∫
B), where in the supergravity partition

function we should be careful to sum over all bulk configurations with the same boundary
conditions on the conformal boundary. In particular, the bulk field B is a two-form potential
for the NS three-form H = dB, and one can add a closed/flat B-field to a supergravity
background without affecting the gauge-invariant flux H or its equation of motion. In the
present set-up, with boundary conditions fixed at conformal infinity, we should then sum
over B-fields in the bulk spacetime that are zero at infinity, modulo gauge transformations
B → B + dΛ, where the one-form Λ is also zero at conformal infinity. Such physically
distinct B-fields are then classified by the compactly supported cohomology group H2

cpt(M),
where M is the spacetime.43

Now for Euclidean black holes the black hole part of the spacetime has topology R2 × Σ,
where Σ is the horizon and R2 is parametrized by the Euclidean time circle and the radial
direction for the black hole. In fact the topology is the same whether one considers the full
black hole, or as in this paper just the near-horizon region of an extremal black hole, where
Euclidean AdS2 also has the topology of R2. The fundamental strings we consider in the
paper are precisely wrapping this R2 direction. Since H2

cpt(R2 × Σ,R) ∼= R is generated by
a closed two-form that integrates to 1 over the R2 direction and has rapid decay towards
the boundary of R2 (where the conformal boundary is), this naively leads to a moduli space

43Even more precisely, including large gauge transformations this becomes H2
cpt(M, U(1)).
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of flat B-fields to integrate over. As we will explain further below, in fact this is not the
case, but if it were the case the supergravity saddle point approximation for the path integral
with the type IIA string inserted would give

⟨ string ⟩ =
∫ 2π

ϑ=0
exp[−Istring + iϑ] = 0 . (D.1)

Here Istring is the renormalized string action, for a fundamental string wrapping the R2

direction, and ϑ =
∫
R2 B parametrizes the integrals of the inequivalent B-fields. The 2π-

periodicity in ϑ arises here precisely due to the large gauge transformations mentioned above.
The above effect was explained in [44], but the conclusion (D.1) is not correct for the

set-up we are considering here. In particular, we skipped over two important steps above: (i)
the full spacetime M is not simply the black hole part of the geometry, since there is also
an internal space geometry, and (ii) we must take into account that the M-theory circle is
non-trivially fibred over the type IIA spacetime. In particular the latter introduces a RR
field in addition to the B-field, and these couple to each other. In fact it is then simpler to
think of the fundamental string as a wrapped M2-brane, wrapping the M-theory circle, and
consider instead the M2-brane coupling exp(i

∫
C), with compactly support C-field modes

in the full 11d spacetime.
We denote the 11d Euclidean spacetime by E, and note we are interested in the case

where E = R2 × Y9, where the R2 factor could be either Euclidean AdS2 (i.e. the Poincaré
disk), or the transverse directions to the horizon of a non-extremal deformation of the 4d
black hole (i.e. the radial and Euclidean time circle). The topology of E is the same in both
cases, with the horizon geometry absorbed into Y9.

We suppose also that Y9 is the total space of a circle fibration over a base B8. This
could be viewed as either the M-theory circle fibration, or a choice of (off-shell) R-symmetry
direction for the purposes of the argument that follows. In general B8 might also have orbifold
singularities (for example for a quasi-regular choice of R-symmetry Killing vector), and that
also does not affect the following statements in de Rham cohomology. We denote the choice
of circle action by U(1), and write B8 = Y9/U(1) and M = E/U(1) = R2 × B8.

In general given a total space E which is an S1 bundle over a non-compact space M , we
have the following associated long exact Gysin sequence in cohomology:

· · · −→ H3
cpt(M) π∗

−→ H3
cpt(E) π∗−→ H2

cpt(M) ∧ c1−→ H4
cpt(M) −→ · · · (D.2)

Here π : E →M is the projection, π∗ the usual pull-back of forms, π∗ denotes “integration
over the fibre”, which means integrating the form (partially) along the S1 fibre, and finally
c1 ∈ H2(M) denotes the first Chern class of the S1 bundle, i.e. c1 = [F/2π], where F = dA
denotes the curvature of a connection A on this circle bundle.44

Viewing M = R2 ×B8 as a trivial R2 bundle over B8, the Thom isomorphism theorem
tells us that Hn+2

cpt (M) ∼= Hn(B8) for all n ≥ 0. In particular H2
cpt(M) ∼= H0(B8) ∼= R,

44When the S1 corresponds to the M-theory circle direction, here F is naturally represented by the RR
two-form field strength. It is precisely when this has a non-trivial cohomology class that the original B-field
argument we presented is affected, and from a purely type IIA perspective this is due to the couplings between
these fields.
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which is generated by a unit integral two-form along R2. Notice this is the same two-form
discussed in the argument that led to (D.1), as in [44]. The M2-branes of interest are precisely
wrapping this R2 direction, together with the S1 fibre (whether that is the M-theory circle
or the R-symmetry direction — for BPS M2-branes they are necessarily aligned for the
locus the M2-brane is wrapping).

Examining (D.2) further, the Thom isomorphism above gives us H3
cpt(M) ∼= H1(B8) ∼= 0,

which follows since our internal spaces Y9 (and hence their quotients B8) all have zero first
Betti number, i.e. there are no non-trivial closed one-forms. This is a crucial ingredient, as
we comment further below. Thus more specifically in this case (D.2) reads

· · · −→ 0 −→ H3
cpt(E) π∗−→ R ∧ c1−→ H4

cpt(M) −→ · · · (D.3)

As long as c1 ̸= 0, i.e. the circle bundle we have is non-trivial, then wedging the volume form
on R2 (which generates the R factor) with c1 is non-zero in H4

cpt(M). In fact as already noted
the Thom isomorphism tells us H4

cpt(M) ∼= H2(B8), with this isomorphism map corresponding
to wedging with the above-mentioned volume form. So as long as c1 ̸= 0 ∈ H2(B8), the
image in H4

cpt(M) will also be non-zero, and the kernel of the ∧ c1 map is hence trivial. But
then exactness of (D.3) says that the generator of R is not the image of any class in H3

cpt(E),
when integrated over S1 under the π∗ map.

Coming back to the M2-branes of interest, the cohomology group H3
cpt(E) precisely

captures the flat C-field modes in the bulk that should be integrated over when evaluating the
full supergravity partition function. The above argument shows that when the circle bundle
we have is non-trivial, the integral of any such C-field mode over the circle direction and
R2 direction is necessarily zero. There are hence no modes that contribute to an argument
similar to that in [44], and the holographic Wilson loop we have is non-zero.

Let us conclude by remarking that this argument is certainly evaded in the case that
the circle bundle is trivial: then Y9 = S1 × B8, and there is a flat C-field that is simply
the volume form on R2 wedged with the volume form along the S1. Such M2-branes would
lead to zero VEVs, as in (D.1), but in our examples Y9 always have zero first Betti number,
and in particular do not have S1 × B8 topology.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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