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Abstract

Recent research portrays the economy as a complex, adaptive system com-

posed of heterogeneous agents interacting with one another and their en-

vironment. This thesis contributes to this research effort, focusing on pro-

duction networks and financial markets.

International supply chains are a remarkable example of complex networks,

and their investigation is crucial to understanding our economies. The first

part of this thesis is devoted to the reconstruction and modelling of these

networks. In Chapter 1, we briefly survey the literature on network recon-

struction and how it has been applied to the case of production networks.

In Chapter 2, we use Machine Learning to reconstruct the production net-

work -i.e., to infer which firms are linked by commercial relationships. Us-

ing some sensible economic and financial properties as inputs, we show

that our algorithm outperforms some well-known benchmarks, investigate

which features are important for accurate predictions, and study to what

extent our approach can be used in real-world tasks. In Chapter 3, we fo-

cus on firms’ sales time series and show that the production network has a

visible impact on their correlation structure. We build on this finding and

develop a method to reconstruct production networks from firms’ dynam-

ics. Chapter 4 outlines an agent-based model designed to study the impact

of exogenous shocks on the real production network. The primary agents

of our model are firms connected by trade and credit relationships. We

explain the model, provide some analytical results and simulations, and

describe a simple approach to generate weighted production networks that

match some aggregate (and observable) properties of global trade.

In the second part of the thesis, we pivot our focus away from produc-

tion networks and onto financial markets. Chapter 5, provides empirical

evidence for the Market Ecology hypothesis. This hypothesis models fi-

nancial markets as ecologies where trading strategies compete to generate

returns. Using a large dataset of U.S. stock prices, funds’ portfolios, and



funds’ trading strategies, we find a correlation between wealth allocation

across such strategies and market volatility, as recently proposed in sim-

ple stylized models. In Chapter 6, we analyze the cryptocurrency market

through the framework of its investors’ network. Our findings reveal that

the structure of this network closely reflects the correlation patterns within

the cryptocurrency market.
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Foreword

Complex adaptive systems are composed of several agents interacting with one an-

other and their environment [Weaver, 1948, Mitchell, 2009, Holland, 2014, Thurner

et al., 2018]. As the system’s dynamics unfolds, these agents influence their world

and react to the consequences of their collective behaviour. Agents’ interactions, even

when local and simple, can produce unexpected global outcomes; typically, these

emergent properties of the system can’t be predicted from knowledge of its compo-

nents alone [Anderson, 1972]. This definition encompasses a wide range of examples.

Ecologies, social networks, the human brain, and the Internet can all be interpreted

and studied as complex systems.

The global economy is another such example. Consider financial crises. No com-

pany, institution, or person in their right state of mind purposely acts to trigger a

financial meltdown, yet financial crises punctuate history. They are the byproduct of

the economic activity of heterogeneous actors - firms, banks, governments, and or-

dinary people - entangled in a complicated network of interactions. This network

is hard to model which is why, despite having a good understanding of what banks

do, we usually cannot forecast financial crises. They are a remarkable emergent phe-

nomenon.

In economics, the standard approach to studying how aggregate economic out-

comes form from agents’ behaviours is known as neoclassical economics. Neoclassical

economics models are based on a few assumptions [Arthur, 2021]. Agents are perfectly
rational: they face well-defined problems and always adopt the strategy that will maxi-

mize their outcome. They look much like one another so including a few representative
agents in the model (such as one firm, one household, and one bank) is sufficient: all

agents of the same type would behave in the same way. They all know every other

agent and understand that they are all perfectly rational. Finally, their expectations

are consistent with the system’s aggregate outcome; the system is in equilibrium and

agents have no incentive to change their actions. Occasionally, an exogenous shock
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hits the system but agents adapt swiftly and the system reaches a new equilibrium.1

These assumptions have some merit. When they were first introduced, they greatly

simplified the mathematical analysis of economic questions by condensing the world

into a small number of readily observable factors. In an era prior to the diffusion

of computers, they were a sensible way forward and provided elegant analytical ex-

planations for several economic phenomena. Yet, they have proven to be too strict

to provide insights into deep economic downturns [Kirman, 1992, Farmer and Foley,

2009, Stiglitz, 2018]. Eventually, neoclassical models might prove of little help in

addressing society’s most pressing issues.2

Complexity economics, which investigates the economy through complex systems’

lenses, offers an alternative [Arthur, 1999, Bouchaud, 2008, Farmer and Foley, 2009,

Farmer, 2012, Haldane and Turrell, 2018, Bouchaud, 2021]. Instead of trying to make

the economy fit into the Procrustean boundaries of neoclassical assumptions, com-

plexity economics starts with how agents actually behave and focuses on understand-

ing the emergent collective behaviour that they generate, either with analytical the-

ories or through computer simulations [Farmer and Foley, 2009, Axtell and Farmer,

2022]. Thanks to the recent abundance of computational resources, these simulations

can now run at large scale, producing synthetic copies of the economy that researchers

could use to test policies and make forecasts.

This approach, however, is not devoid of challenges. A faithful copy of the econ-

omy requires getting a lot of details right. Synthetic agents should be initialized to

match the real-world heterogeneity. Their behaviour should be truthful. Their inter-

actions should be accurate.

Unfortunately, it is not always possible to collect the data needed for this calibra-

tion, and sometimes agents’ properties, behaviours, and interactions must be inferred.

Part I of this thesis (Chapters 1, 2, 3, 4) focuses on inferring and modelling how

firms interact through production networks, i.e., networks of firms tied in commer-

cial relationships. Networks [Barabasi, 2016, Newman, 2018] are a popular tool to

model interplays between agents. Each agent is identified by a node in a network

and the presence of a link between two nodes signals an interaction. Network the-

ory has been successfully applied to model a wide range of economic phenomena. In

1Although these assumptions have been relaxed to build models with more realistic behaviours, they
can still be thought of as guiding principles of neoclassical economics.

2To give an example, Nobel prize-winning, neoclassical models claim that an increase of 6°C in
world temperature would correspond to a drop of ∼ 10% in global GDP [Nordhaus, 2017]. The consen-
sus among scientists is that a 6°C temperature rise would constitute an existential threat for hundreds
of millions of people, force billions to migrate, and make densely populated regions more or less unin-
habitable due to submersion, desertification, and exposure to extreme events [Stern, 2022].
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finance, liabilities’ networks have been key to developing the notion of systemic risk
[Haldane and May, 2011, Bardoscia et al., 2021]. In macroeconomics, production net-

works [Carvalho, 2014, Carvalho and Tahbaz-Salehi, 2019] have been proposed as a

possible cause for large macroeconomic fluctuations [Bak et al., 1993, Acemoglu et al.,

2012, Moran and Bouchaud, 2019] and shown to be a key driver for shock propaga-

tions [Leontief, 1936, Pichler et al., 2022, Carvalho et al., 2021, Diem et al., 2022]

and economic growth [McNerney et al., 2022]. This literature suggests that a detailed

knowledge of production networks is crucial to realistic macroeconomic modelling.

Alas, data on production networks is very scarce; since these networks can’t be

directly observed, we have to reconstruct them. In Chapter 1, we survey the recent

literature focussing on reconstructing production networks. In Chapter 2, we give

an original contribution by reconstructing these networks using Machine Learning to

reconstruct production networks. Using some sensible economic and financial prop-

erties as inputs, we show that our algorithm outperforms some well-known bench-

marks, investigate which features are important for accurate predictions, and study to

what extent our approach can be used in real-world tasks. Chapter 3 tackles the same

problem from a different angle. We focus on firms’ sales time series and show that

the production network has a visible impact on their correlation structure. We build

on this finding and develop a method to reconstruct production networks from firms’

sales dynamics. Chapter 4 outlines an agent-based model designed to study the im-

pact of exogenous shocks on the real production network. The primary agents of our

model are firms connected by trade and credit relationships. We explain the model,

provide some analytical results, and describe a simple approach to generate weighted

production networks that match some aggregate (and observable) properties of global

trade.

In the second part of the thesis (Chapters 5, 6), we pivot our focus away from

production networks and onto financial markets. Financial markets are arguably the

branch of economics where the application of complex systems theory is more estab-

lished. In financial markets, millions of traders buy and sell assets agreeing, at any

time, on a price that satisfies both sides of the trade. The dynamics of these prices

are very diverse. Prices’ fluctuations are fat-tailed [Gopikrishnan et al., 1999, Malev-

ergne et al., 2005, Gabaix, 2009] and intermittent [Mandelbrot, 1963], exhibit long-

range correlations [Bouchaud et al., 2009], and are usually not related to external news

[Cutler et al., 1988, Joulin et al., 2008, Marcaccioli et al., 2022]. This rich phenomenol-

ogy and the profusion of financial data stimulated complex systems’ researchers, who

helped explain how traders’ orders affect prices [Bouchaud et al., 2018], the impact of
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leverage [Thurner et al., 2012] and herding [Lux, 1995, Cont and Bouchaud, 2000] on

market stability, and to draw analogies between markets and other dynamical systems

[Sornette, 2006]. Another hybrid between complex systems theory and financial mar-

kets is the Market Ecology Hypothesis. Market Ecology [Farmer, 2002, Lo, 2004, Hens

and Schenk-Hoppe, 2009, Farmer and Skouras, 2013, Scholl et al., 2021] views the

market as an ecosystem of different trading strategies which evolve and specialize to

exploit market inefficiencies. Investors allocate their funds based on strategies’ ability

to generate returns so that successful strategies become more popular while unsuc-

cessful ones become extinct. In a simple model of the market, Scholl et al. [2021]

drew a connection between the wealth allocation among three ‘macro’ classes of trad-

ing strategies (value investors, trend followers, and noise traders) and market volatil-

ity. In Chapter 5, we provide some empirical evidence for this phenomenon in real

market data. Chapter 6 further explores the relationship between investors and mar-

ket behaviour, focusing on the cryptocurrency market. Through a large dataset of

investments in cryptocurrency firms, we show that the returns of currencies shared by

a single investor are statistically more correlated than the market average.

Despite the diverse topics covered in this thesis, from production networks to fi-

nancial markets, our overarching goal is to foster a more nuanced understanding of

economic phenomena. By leveraging machine learning, network theory, agent-based

models, and complex systems theory, we hope to contribute to a more realistic and

comprehensive modelling approach that is true to the composite nature of our global

economy.
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Part I

Production Networks
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When we think of semiconductors we typically envision smartphones, laptops, and

hi-tech devices. However, semiconductors are embedded in a myriad of other objects:

cars, dishwashers, and refrigerators alike. They are crucial components of our every-

day life.

Semiconductor production is a truly global enterprise, often involving designs

from Europe or the United States, manufacturing in Taiwan, and assembly in China

[Miller, 2022]. It is a complicated process, made possible by world-spanning, complex

production networks.

Disruptions of these networks have far-reaching consequences. Consider the re-

cent pandemic. When COVID-19 spread across the world in 2020, the automotive

industry cut its demand for chips, anticipating lower sales during lockdowns. At the

same time, the world prepared to work from home and demand for PC chips spiked.

Throughout 2021, a series of accidents and lockdowns at crucial plants further shrunk

the production of microchips, so that when car manufacturers started to ask for more

chips again, there were none left. They had to halt production, and automotive in-

curred losses amounting to $200B [Miller, 2022].

Semiconductors’ production networks also bear another risk: dependence on a

handful of firms. For instance, each year, 37% of the world’s microchips are pro-

duced in Taiwan. The Taiwan Semiconductor Manufacturing Company (TSMC) alone

produces 90% of the most advanced microchips globally. A rough estimate suggests

that if TSMC was to shut down all its plants, the world would experience a downturn

comparable to the Great Recession, affecting all the sectors of the economy-3

The idea that the production of goods and services relies on a complicated network

of suppliers and customers has a long history in economics. As early as 1941, the No-

bel Prize-winning economist Wassily Leontief wrote that everybody is ‘equally aware

of the existence of some kind of interconnection between even the remotest parts of

a national economy [...] observed whenever expanded automobile sales in New York

City increase the demand for groceries in Detroit [...] when the sudden shutdown

of the Pennsylvania coal mines paralyzes the textile mills in New England’ [Leontief,

1941, Carvalho and Tahbaz-Salehi, 2019].4 To study this interconnection, Leontief

developed its input-output framework [Leontief, 1986]. The input-output framework

views industries as nodes in a network of physical and monetary flows. Conservation

3Ironically, several of these important companies are located in areas with a high seismic risk (Tai-
wan, Japan, California).

4Leontief must have also been aware of the risks lying in these interconnections, having designed
effective strategies to disrupt Germany’s economy during World War II [Bollard, 2019].
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laws for these flows lead, at economic equilibrium, to linear systems of equations de-

scribing the connections between industries’ outputs. The solutions of these equations

show how changes in the production of a given industry affect the production of any

other economic sector. First used as a policy tool, the input-output framework was

later used to explain the origins of macroeconomic fluctuations.

The existence of macroeconomic fluctuations is noteworthy in its own right. There

are several sectors in the economy, each subject to idiosyncratic shocks. A diversifi-

cation argument [Lucas, 1977] would suggest that, when taken together, these shocks

would average out so that the aggregate output of an economy would be stable. Long

and Plosser [1983] introduced a landmark neoclassical model showing that the link-

ages between sectors could transmit shocks from one firm to another, placing produc-

tion networks at the core of macroeconomic fluctuations. Further research [Acemoglu

et al., 2012, Carvalho et al., 2021, Diem et al., 2022] showed that the transmission

of economic shocks depends on the fine-grained structure of this network, and that

coarse-grained analysis at the sectoral level can lead to a severe misestimation of risk

and distress propagation. Furthermore, knowing production networks has proven im-

portant for managing the green transition [Stangl et al., 2023], reducing tax evasion,

and the enforcement of human rights and environmental standards. For many of to-

day’s grand challenges, production networks matter.

However, this is a disturbing remark: there are three hundred million firms world-

wide [Pichler et al., 2023], and less than 1% of them are covered in the data [Bacilieri

et al., 2023]. Recently, a stream of research has targeted the problem of reconstruct-
ing this hidden network of firms. Given a set of firms, can we predict which of them

are connected? In Chapter 1, we overview how researchers have tried to answer this

question. In Chapter 2 and Chapter 3, we provide two original contributions to the

problem. In Chapter 4, we outline a firm-level agent-based model to study the propa-

gation of shocks across the supply chain. We also provide a method to assign a mon-

etary value to the links in the production network, i.e., to reconstruct the network

weights.

8



Chapter 1

Production Networks reconstruction

In mathematical terms, a network G is a tuple G = (V ,E) consisting of a set V =

(1, . . . ,N ) of N = ∥V ∥ nodes and a set E ⊆ V × V of M = |E| links between pair of

nodes [Newman, 2018]. A network is weighted if, for every link (i, j) ∈ E, there exists

a scalar ωij describing the strength of the connection. We say that a network is undi-
rected if, for every link (i, j) ∈ E, it exists a link (j, i) ∈ E, and ωi,j = ωj,i ; the structure

of a network can be encoded in an adjacency matrix Aij , such that Aij = 1 if (i, j) ∈ E,

and Aij = 0 otherwise.

Networks provide a unified formalism to describe systems that can be cast as a col-

lection of interactive elements and have been successfully applied to study a variety of

complex systems, including biological (ecosystems and neural circuits), technological

(power grids, telecommunications), and social systems.

Knowing the topology of a network is important for (at least) two reasons. First,

they can provide insights into the structure of the system. An emblematic example

is the study by Milgram, which revealed that the average distance (i.e., number of

intermediate connections) between any two people in the U.S. social network is ap-

proximately six. Second, when studying a dynamical process on a network, the topol-

ogy is crucial to understanding the process’ evolution [Barrat et al., 2008].1 In many

situations, the topology of the network is either unknown or only partially known,

compelling researchers to reconstruct the missing elements. The techniques constitut-

ing the field of network reconstruction precisely aim at inferring the unknown portion

of the network making use of the information available [Lü and Zhou, 2011, Squartini

et al., 2018, Cimini et al., 2021, Peel et al., 2022].

Production networks, also known as “supply chains” or “supply networks”, consist

of millions of firms producing and exchanging goods and services. From a mathemat-

1However, the level of detail required to predict the dynamics accurately depends on the process,
see, e.g., Prasse and Mieghem [2022].
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ical perspective, they can be represented as weighted, directed networks, where nodes

symbolize firms (or establishments), and links denote a supply-buy relationship with

weights denoting transaction volume, such as the monetary value of the goods or ser-

vices supplied over a given period.

Supply networks share many properties with other economic networks, but also

exhibit unique features. Some of their empirical properties include [Bacilieri et al.,

2023]: “small-worldliness” (short average path lengths and high clustering), heavy-

tailed degree distributions, heavy-tailed (link and/or node) weight distributions, strong

correlations between node strength and degree, and similarly, between in- and out-

degrees. It is also relatively well documented that, like biological and technological

networks but unlike social networks derived from co-affiliation [Newman, 2002], sup-

ply networks feature negative degree assortativity.

However, supply networks are in many ways very different from other natural and

economic networks. Their properties are deeply influenced by their function. First,

the likelihood of a link between any two firms is driven by what the two firms are

producing: for instance, steel manufacturers buy more iron than sugar. Product qual-

ity also plays a role, with “high quality” firms usually connecting with other “high

quality” firms [Demir et al.]. Second, supply networks are strongly embedded in geo-

graphic space, so that the likelihood of connections and their intensity decreases with

distance [Bernard et al., 2019]. Third, in contrast to, e.g., financial networks, supply

networks are less constrained by strict external regulations, and emerge as the result

of a decentralized multi-criteria optimization process whereby millions of companies

simultaneously attempt to organise their production in a way that minimizes their

costs while maintaining acceptable levels of resilience to disruptions.

These characteristics make production networks incredibly complex: in modern

economies, a sophisticated product such as an aircraft might involve contracting thou-

sands of firms and sourcing millions of parts that cross national borders multiple

times. Organizations in the network choose their dyadic relations and make local de-

cisions, but hardly have visibility over their wider network. No single entity controls,

designs and keeps track of the large-scale emergent network. As we mentioned in

the introduction to Part I, however, visibility over the network is increasingly impor-

tant for several reasons: monitoring of environmental pledges to ensure firms quan-

tify their greenhouse gas emissions, including those from their suppliers and cus-

tomers; food and pharmaceutical traceability; analysing and improving supply chain

resilience; and supply chain due diligence to ensure that actors that violate human

rights or engage in environmentally damaging actions are not present in the chain.
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In the past decade, researchers in economics and complex systems have worked

extensively to better understand supply chains. A key barrier to these studies has been

a lack of data, as supply chains compete with one another [Christopher and Holweg,

2011], making information on them highly commercially sensitive. As a result, most

studies to date have used firm-centred (e.g. starting with [Choi and Hong, 2002]) or

sector-specific (e.g. global automotive [Brintrup et al., 2016] and aerospace [Brintrup

et al., 2015], computer and electronics [Perera et al., 2017]) supply chains. While

firm-centric and industry-specific studies have been important in gathering insights

into how network features shape the operation of supply chains, it remains hard to

generalize these findings.

Due to the above challenges, production networks are a perfect use case for net-

work reconstruction. Several recent studies have suggested the development of meth-

ods to reconstruct or predict the existence of hidden links in supply chain networks,

offering a variety of approaches. These range from the use of natural language pro-

cessing to extract and infer data from the World Wide Web to probabilistic maximum-

entropy methods, each with varying success rates.

This chapter provides a brief survey of the literature focused on reconstructing

production networks. We start by describing the key problems (Section 1.1): what data

is available, what data is missing, and how to evaluate reconstruction performance. In

Section 1.2, we overview the set of techniques generally employed in network recon-

struction. We then summarise recent approaches to inferring the production network

topology (section 1.3), and to infer the values of transactions when the topology is

known (Section 1.4). We conclude with a discussion (section 1.5).

1.1 The supply network reconstruction problem

Production networks can be modelled at different levels of detail, both for nodes and

edges. Often, the properties of the network depend on its level of aggregation.

At the most granular level, nodes would represent individual production plants

where goods undergo processing and transformation. A more aggregate model would

equate nodes with the companies operating these plants. One could further aggregate

by either consolidating firms under a common parent company or grouping them by

industry sector.2

2One could think that the industry level is more aggregated than the firm. While this is mostly true,
it is sometimes important to recognize that large firms span many industries. Industry-level input-
output networks produced by national accounts arise from the Supply and Use Tables, which attempt
to reallocate the output of multi-product firms into their appropriate categories.
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Firms exchange various goods and services. In a very detailed approach, each prod-

uct type could be identified with a specific type of edge, rendering the production

network as an edge-labelled multigraph. A simpler model would connect two nodes

if they are involved in any type of trade, irrespective of the products’ nature. Link

weights can also have different definitions, measuring either the flow of goods (in

terms, e.g., of the number of items traded) or the monetary value of such flow.

In the context of this chapter, we define a supply network G as a graph where

nodes represent firms while directed, weighted links represent the value of the flow

of goods and services in a buyer-customer relation. This definition proves practi-

cal when reconstructing real-world supply networks from empirical data, which fre-

quently adopts this format.

1.1.1 What data is available?

Almost all countries officially release Input-Output (I-O) tables, which provide the

flow of money between industries, typically at the level of 50-500 industries. While we

focus on firms here, this data is sometimes useful in the methods below. Besides, I-O

tables provide a meso-scale ground truth that could be a good target for reconstruction

methods.

With this in mind, how do we expect the global firm-level supply network to look

like, and how much of it do we know?

Pichler et al. recently produced an estimate of the size of the global firm-level

supply network. They start from an estimate of about three hundred million firms in

the world, and for (domestic-only) supply networks where the full data is available,

an average of about forty suppliers per firm. Thus, as a rough estimate, the full, global

firm-level supply network could have 300 million nodes and 13 billion links.

Bacilieri et al. provides a taxonomy of existing datasets covering this network;

these are mainly commercial datasets confidential datasets held by governments, pay-

ment data, and industry-specific datasets.

Purchasing data from data providers, such as FactSet, Capital IQ, or Bloomberg is

relatively straightforward, but commercial datasets can be very expensive, and cover

only a fraction of firms, a very small fraction of links, and usually do not include the

value of the transactions. As commercial data providers typically assemble their data

from publicly available information, researchers may also decide to collect this infor-

mation themselves. An example is the extraction of data from the World Wide Web,

after which machine learning algorithms are trained to predict supply-buy relation-

ships [Wichmann et al., 2020]. Such an approach enables researchers to successfully
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gather rudimentary maps of supply chains, although it is limited to publicly available

data, hence necessitating reconstruction efforts to identify missing relationships.

The option of using government-held data necessitates datasets to be shared by

national authorities, which may not always be feasible. However, where data has been

collected by a national authority it is usually of very high quality. For example, VAT

reporting may contain the value of transactions and timestamped data between vir-

tually all firms within a country. Bacilieri et al. shows that VAT datasets with no

reporting thresholds exhibit strikingly similar properties, while incomplete datasets

(either because of a reporting threshold or because they are assembled from publicly

available information) usually have fewer links so that many key statistics are likely

to be highly biased.

A third option is payment data, which is usually (but not always) limited to indi-

vidual banks collecting payment flow data between their client firm (see, e.g., Ialongo

et al.). Although it is not guaranteed that every transaction corresponds to a business

link within a supply network, it can be viewed as a plausible indicator. These datasets

are extremely detailed for any subset of firms affiliated with the same bank. However,

they do not cover firms served by different banks or accounts held by their clients in

different institutions.

Finally, datasets focusing on specific industry verticals are also sometimes gath-

ered by private companies (e.g., MarkLines’ automotive dataset used in Brintrup et al.

[2018])) and public regulatory bodies (e.g., the U.S. Drug Enforcement Administra-

tion’s dataset of controlled substances flow). However, they are usually limited to

specific geographies and production sectors.

There are no large-scale publicly available datasets on firm-level production net-

works, making it impossible at the moment to portray the global supply network.

Summing up the number of nodes in the datasets reported in Bacilieri et al. [2023]

gives roughly three million, less than 1% of the 300m nodes reported earlier. Merg-

ing all the available datasets would give only an even smaller portion of the links and

weights. This limitation forces researchers to use alternative options to proxy supply

networks from smaller-scale, more specific datasets. These methodologies, developed

to reconstruct or infer missing information about supply networks, are the main focus

of this chapter.

However, what ‘reconstructing’ actually means depends on the data already avail-

able to the researchers and the ultimate use of the (inferred) data, i.e. the goal of the

analysis. We discuss these points in what follows.
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1.1.2 A taxonomy of supply network reconstruction approaches

We classify the studies we review along four primary axes. We do not see these clas-

sifications as having rigid boundaries, but rather as providing continuous dimensions

where models can be placed variably.

Predicting network topology and/or weights on transactions. Consider a matrix

Ω where Ωij shows the amount paid by j to i. We distinguish between methods

that focus only on finding the network’s topology, i.e., the presence or absence of a

commercial connection between two firms encoded in the (binary) adjacency matrix

Aij = 1↔Ωij > 0, and those that assume that the adjacency matrix is known and try

to infer the monetary value of the existing connections, i.e. the link weights Ωij |Aij = 1

(see also point c below). Note that some methods try to simultaneously reconstruct

both the topology and the weights of the network. Most of the methods we review

focus on network topology.

Predicting individual links or the full network. Some methods focus on identify-

ing the presence of specific links independently, while others try to reconstruct the

entire network at once. The difference is subtle, yet important.

Typically, links in production networks are not independent. For instance, if firms

tend to not “multi-source”, so if they are connected to supplier j for a key input, they

are less likely to be connected to other suppliers for that input.

The methods focusing on identifying the presence of each link independently are

usually known as link prediction, while we refer to the second approach as network
inference. In general, network inference computes the full distribution P (G) over the

set of possible networks. Link prediction, instead, computes the marginal probability

pij of an edge between nodes i and j.3 Again, there is no hard boundary between the

two methods, which are occasionally equivalent. If one takes links independence as a

modelling assumption, computing the values pij and reconstructing the network are

effectively equivalent, as the probability P (G) factorizes as

P (G) =
∏

(i,j)∈E(G)

pij
∏

(i,j)<E(G)

(
1− pij

)
, (1.1)

where E(G) denotes the set of edges realized in graph G. Even if link independence

is not directly assumed, some network inference methods can produce probability

3More generally, link prediction methods produce a score sij , such that sij > skl =⇒ pij > pkl . How-
ever, such scores are not necessarily smaller than one, and the ratio between two scores is not necessarily
equal to the ratio between links probabilities.
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distributions P (G) that factorize as in Eq. (1.1) (see, e.g., Ialongo et al.). Finally, when-

ever the full probability P (G) is available, it is possible to compute the values pij as

pij = P
(
Aij = 1

)
=

∑
G∈G P (G)Aij , and use them in a link prediction exercise.

It is fair to say that link prediction is typically a less refined approach, as we know

that the factorization in Eq. (1.1) is, at most, only approximately true in reality. How-

ever, link prediction methods can still capture meso- and macro-scale features of the

network and, by framing the reconstruction problem as a binary classification task,

link prediction facilitates easy comparison of methods through standard performance

metrics.

Using topological information or not. Of course, all reconstruction methods need

the network to test their predictions. However, while some methods need the ad-

jacency matrix to be trained, other methods can learn from node-level or pair-level

features only. This is important because the methods that do not rely on the adjacency

matrix for training can be used in contexts where the detailed network is not observed,

as long as the node-level and pair-level features are available.

Probabilistic or deterministic. Some models produce deterministic outputs, usually

finding a network configuration by minimizing or maximizing a given loss function.

Consequently, their output is a single network realization that is, in some sense, op-

timal. Other methods provide probabilities over possible network realizations . The

goal of these methods can then be viewed as finding a ‘good’ probability distribution,

peaked ‘around’ or ‘close’ to the true one. Equipped with this probability distribu-

tion, researchers can find the typical and most likely realizations of the network and

compute, for instance, expected values and confidence intervals for properties of the

network.

1.1.3 Evaluating the reconstructed networks

In their review paper on network reconstruction, Squartini et al. provide a useful

taxonomy of performance metrics: statistical, topological, and dynamical indicators.

Statistical indicators evaluate the quality of the reconstructed network on a link-by-

link (or weight-by-weight) basis. Different statistical indicators apply to deterministic

and probabilistic outcomes.

In the realm of deterministic outcomes, perhaps the most commonly employed

indicator is accuracy (or precision, the proportion of correct predictions. In supply

15



networks, however, there is a strong class imbalance: the number of pairs not linked

is much higher than the number of pairs linked. Thus, it is generally easy to make

“correct” predictions since predicting that a link does not exist is very likely to be cor-

rect. For this reason, a commonly used metric is the F1-score, defined as the harmonic

mean of precision and recall (how many relevant items are selected), which offers a

more balanced performance metric in unbalanced datasets.

For probabilistic reconstructions, the evaluation is often based on the area under
the receiver operating characteristic curve (AUROC) and the area under the precision-recall
curve. AUROC, derived from the Receiver Operating Characteristic (ROC) curve, es-

sentially quantifies models’ ability to discern between classes at varying threshold

levels. The ROC curve plots the true positive rate (recall) against the false positive

rate for different decision thresholds (i.e., by considering “true” all the predictions

with probability larger than a certain threshold τ , for different values of τ), giving

insights into the trade-off between sensitivity (true positive rate) and specificity (true

negative rate). The AUROC, being the area under this curve, ranges from 0.5 to 1, with

1 implying an ideal classifier and 0.5 suggesting no better than random guessing. See

Sec. 2.2.2 for a longer description of ROC curves.

While statistical indicators focus on individual links, they may not adequately

evaluate if the reconstructed network replicates complex network structures. Topolog-
ical indicators measure how well the network’s macro-level and meso-level features

are reproduced. Topological indicators gauge how effectively the reconstruction cap-

tures the network’s ‘coarse-grained’ features. For instance, Ialongo et al., validate their

reconstruction methodology by assessing how accurately it replicates the network’s

degree distribution.

Topological indicators can tell us whether the reconstructed and true networks are

“similar”. However, ultimately the key question is whether a reconstructed network is

good enough to give good answers to substantive economic questions. Dynamical (or

more generally model-based) indicators assess the similarity in the process’ evolution

on the real and reconstructed networks. As an example, Diem et al. introduced the

Economic Systemic Risk Index (ESRI) to quantify each firm’s importance within an econ-

omy. The metric measures the percentage drop in the economy’s overall production

caused by the removal of a firm from the network. Its computation requires running a

dynamical process, wherein the sudden disappearance of a firm first impacts its sup-

pliers and customers and, iteratively, spreads to firms that are further in the network,

until the system reaches an equilibrium. Conceivably, accurately estimating firms’
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ESRI may only necessitate identifying a subset of key links serving as primary con-

tagion channels, implying that the majority of links and the network’s higher-order

features may have less bearing on the results.

1.2 Network reconstruction techniques

Network reconstruction is a multidisciplinary pursuit, with various methodologies

developed across natural and social sciences. As we saw, there are two common ap-

proaches to the network reconstruction problem: link prediction, where each link in

the network is predicted independently, and network inference, where the whole net-

work is inferred at once. In the previous section, we explained that there is not a

“hard” boundary between the two methods. However, they are a useful classification

scheme to organize the techniques that we are going to review.

1.2.1 Link Prediction

Link prediction involves assigning a score to each possible link, assuming that such

score proxies the probability that the link exists. We can calculate these scores based

on the network’s structure (assuming we know at least part of the network), nodes’

and links’ attributes, or both.

Scores derived from the network’s structure are known as structural similarity scores.

In their 2011 review, Lü and Zhou delineated the most common structural similarity

scores used in link prediction, dividing them into local, quasi-local, and global scores.

To compute local similarity scores for the link (i, j), we only need to know the neigh-

bours of two nodes A and B (see Tab. A.1, Appendix A.1). To compute quasi-local

similarity scores, we need to know neighbours at a network distance greater than one.

Finally, global similarity scores require knowledge of the entire network.4

The design of such local, quasi-local, and global structural similarity scores was

originally performed manually, based on researchers’ intuition and domain expertise.

More recently, Graph Neural Networks (GNN) [Bronstein et al., 2017, Hamilton, 2020],

a class of neural network models specifically engineered for dealing with graph data,

have been used to leverage the network structure without the need for explicitly de-

signing any scoring algorithm [Zhang, 2022]. GNN-based link prediction primarily

follows two paradigms: node-based and subgraph-based. The node-based approach

4For ‘the entire network’ we mean the whole observed network. These methods are used to identify
existing but unobserved links in a network or to predict the appearance of these links in the future but
are not suited to reconstruct a network ‘from scratch’ when no link is observed.
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first learns a node representation through a GNN, then aggregates pairwise node rep-

resentations into link representations for prediction. Subgraph-based methods first

extract a local subgraph around each target link, then apply a graph-level GNN to

each subgraph, learning a subgraph representation, which is used as the target link

representation for prediction.

Structural similarity scores have been collectively used as predictors in a more

traditional supervised-learning setting [Ghasemian et al., 2020].

Other approaches to link prediction that do not require explicit modelling of a

score are those based on network embedding. Network embedding [Cui et al., 2019]

methods learn low-dimensional representations (i.e., embeddings) for nodes. These

embeddings aim to preserve the structure of the network by positioning connected

nodes close to one another in the latent space. The distance of nodes in the latent space

can then be used as a score for link prediction. A famous example is the Node2Vec
[Grover and Leskovec, 2016] algorithm.

However, all structural scores face the cold start problem. When a new node joins

the network, these methods may struggle to predict its links accurately due to the lack

or the limited number of existing links with other nodes. The problem is exacerbated

when we can only observe a set of nodes, but we can’t observe any link in the network.

Content-Based methods [Zhang, 2022] can be helpful in these situations. Content-based

methods leverage explicit nodes’ features for link prediction. As we will see in Chap-

ter 2, these methods have been successfully applied to predict links in production

networks.5

1.2.2 Network inference

A second set of approaches tries to reconstruct the entire network at once. Broadly

speaking, these approaches either compute a probability distribution over the set of

possible networks or produce a network that is optimal in some sense. A complete

survey of these methods is beyond the scope of this section, where we will only review

a few that are relevant for production networks.

A first approach is rooted in statistical physics and based on the maximum-entropy
principle [Jaynes, 1957, 1982, Cover and Thomas, 2005]. In maximum-entropy mod-

els, also known as Exponential Random Graph models, the probability of a graph G,

5Structural and content-based methods can be combined. Graph Neural Networks are, for example,
able to ingest both topological information and nodes’ covariates.
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P (G), is obtained by maximizing the Shannon entropy S ,

P (G) = max
P
S (P ) = max

P
−
∑
G∈G

P (G) lnP (G).

The maximization is subject to a normalization constraint,
∑
G∈G P (G) = 1, and a col-

lection of m constraints c∗ representing the macroscopic properties enforced on the

system. These constraints are usually enforced in a soft way, that is, by constraining

the expected values of the constraints over the set of possible networks,∑
G∈G

P (G)ci (G) = c∗i .

Introducing the set of Lagrange multipliers θ in the maximization procedure we get,

P (G) = max
P
S −θ0

∑
G∈G

P (G)− 1

− m∑
i=1

θi

∑
G∈G

P (G)c (G)− c∗i

 ,
which leads to the probability distribution

P (G|θ) =
e−H(G,θ)

Z (θ)
,

where the function H (G,θ) = θ · c∗ is known as the Hamiltonian, the function Z (θ) is

the partition function, and the values θ are chosen to satisfy ci (G) = c∗i∀i. The intuition

behind the procedure is to compute a probability distribution that is maximally non-
committal with respect to unknown information Jaynes [1957] or, in simpler words,

to build a probability distribution that minimizes unjustified assumptions about the

network.

The model accepts an analytical solution when the constraints are the density of

the network, a degree sequence {ki}, and a sequence of in- and out-degrees
{
sini , s

out
i

}
.

Researchers have widely employed these methods to reconstruct financial and trade

networks [Squartini et al., 2018, Cimini et al., 2019], and, more recently, to recon-

struct production networks [Ialongo et al., Bacilieri and Astudillo-Estevez, 2023].

A second approach is matrix completion. The key assumption in matrix completion

[Nguyen et al., 2019] is that the underlying true matrix has a low-rank structure. A

matrix is said to be of rank-r if it can be expressed as the product of two matrices, one

having r columns and the other r rows.6Matrix completion factorizes the observed

adjacency matrix A of the network into the product of a low-rank embedding matrix

6If a matrix has a low rank, its rows (or columns) are highly correlated.
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Z and its transpose. It approximately reconstructs an edge between two nodes i and j

using their embeddings zi and zj ,

Âi,j = zTi zj ,

where the embedding matrix Z minimizes a loss L,

L =
1
|E|

∑
(i,j)∈E

(
Ai,j − Âi,j

)2
.

Matrix completion has been employed to reconstruct aggregate Input-Output tables

[Metulini et al., 2022] but, so far, has not been employed for firm-level production

networks. A last set of approaches has been developed to reconstruct networks that

support a statistical or physical process [Dong et al., 2019, Peel et al., 2022]. The

situation is the following. Imagine a network G composed of N nodes, and a process

taking place on the network. Here, we use the term process very broadly. For instance,

drawing T samples from a multivariate probability distribution of N variables could

represent a statistical process, while an example of a physical process could be the

spread of a disease among a network of N people over T days. We can observe the

evolution of the process by tracking the state of each node through time, xi (t). We

know that the evolution of the process is influenced by the graph G; the goal is then

to reconstruct the graph from the observations xi .

The philosophy behind the statistical view is that there exists a graph G, whose

topology determines the joint probability distribution of the observations xi on the

nodes. These models are known as probabilistic graphical models [Koller and Friedman,

2009], where the edges in the graph encode the conditional dependence relationship

among random variables that are represented by the vertices. To provide some intu-

ition on how these models work, we will review a well-known reconstruction method

in the probabilistic graphical model framework: the graphical Lasso. For a more de-

tailed review of probabilistic graphical models, we refer to the survey by Dong et al..

There are two main types of graphical models: undirected graphical models, also

known as Markov random fields (MRFs), in which local neighbourhoods of the graph

capture the independence structure of the variables, and directed graphical models,

also known as Bayseian networks or belief betworks, which have a more complicated

notion of independence by taking into account the direction of the edges [Dong et al.,

2019]. An MRF with respect to a graph G = {V ,E} is a set of random variables x =

{xi : i ∈ V } that satisfy the pairwise Markov property

(i, j) < E⇔ P
(
xi |xj ,x\

{
xi ,xj

})
= P

(
xi |x\

{
xi ,xj

})
.
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In other words, the two random variables xi and xj are conditionally independent

given the rest if there is no edge between the corresponding vertices i and j. A well-

known example of MRFs is Gaussian MRFs. In Gaussian MRFs, the probability of

drawing a set of random variables X, Xi,t = xi (t) is given by a multivariate Gaussian

distribution,

P (X |Θ) =
|Θ| 12

(2π)
N
2

exp
(
−1

2
XTΘX

)
,

where Θ is the inverse covariance or precision matrix. In this context, learning the

graph structure boils down to learning the matrix Θ, which encodes pairwise condi-

tional independence between the variables: a null entry Θij means that there is no link

between nodes i and j.

Assume that the variables xi have zero mean and unit standard deviation. Using

Bayes’ theorem, we can write the probability p (Θ|X) as

P (Θ|X) = P (X |Θ)
P (Θ)
P (X)

.

Assuming a uniform prior for the matrix Θ and ignoring the factor p (X) (which does

not depend on Θ), we find that p (Θ|X) ∝ P (X |Θ). Since XTΘX = tr
(
XTXΘ

)
= tr(CΘ),

where C is the empirical correlation matrix Cij = xTi · xj and tr(·) is the trace of the

matrix, the function logp (X |Θ) is

logP (X |Θ) = −N
2

log(2π) +
1
2

logdetΘ − 1
2

tr(CΘ) .

The graphical Lasso method [Banerjee et al., 2008] proposes to find the matrix Θ that

maximizes

max
Θ

logdetΘ − tr (CΘ)− ρ∥Θ∥.

Essentially, the method prescribes to maximize the log-likelihood under a GMRF (i.e.,

the function logp (X |Θ) ), with a penalty term added to enforce sparsity of the con-

nections with a regularization parameter ρ. The method estimates the entire precision

matrix Θ simultaneously, consequently providing a reconstruction of the full network.

In Chapter 3 we will use graphical Lasso to reconstruct the production network.

Finally, in physically motivated models the observations X are considered the out-

come of some physical phenomena on the graph [Peel et al., 2022]. Peixoto [2019]

provides an example. In a nutshell, the approach consists of 1) assuming a generative

model for a network7 defined by a set of parameters b, P (G|b); 2) assuming an appro-

priate model for the evolution of the system given an underlying network G, P (X |A);

7In the specific example of the paper, the generative model is a stochastic block model.
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3) using Bayes’ theorem to compute P (G,b|X) as

P (G,b|X) =
P (X |G)P (G|b)P (b)

P (X)
;

4) sampling the above distribution using a Markov Chain Monte Carlo procedure.

The above process has the double advantage of simultaneously providing a distribu-

tion for the networkG and the parameters b of its generative model. In Peixoto [2019],

the author simulates an epidemic process (SIS model) and an Ising model on several

synthetic and real-world networks and uses the method to reconstruct the networks

and infer their community structure. An overview of the paper, together with sev-

eral other physical-based approaches to network reconstruction, can be found in the

review by Peel et al..

In this section, we surveyed several approaches developed to reconstruct networks.

While not exhaustive, we hope that our review provides an intuition on how some of

the most well-known methods work and some useful references to help the reader

delve deeper into the subject. In the following section, we review how these ap-

proaches have been used to reconstruct production networks.

1.3 Reconstructing the production network topology

We start by reviewing studies that focus on predicting the binary adjacency matrix, us-

ing either link prediction or network inference methods. Table 1.1 provides an overall

summary of the methods and their differences.

1.3.1 Link prediction

1.3.1.1 Setting up the problem

An early stream of research employs machine learning for link prediction in produc-

tion networks. The key idea is to construct a dataset in the form of Fig. 1.1A, where

for each pair (i, j), we collect some features f(i,j) that can be features of each node (e.g.,

the product it makes, its total sales, etc.) or of the pair (e.g. geographical distance,

whether they have a common supplier or client, etc.), and the response Aij , which is

equal to 0 or 1.

With such a dataset, one can then train a machine-learning classifier on a set of

examples
{
f(i,j),Aij

}
. Different papers have then made different choices for the pre-

dictors f(i,j) and the predictive algorithm, as we will discuss in detail. But before, let

us note another critical element, which is the construction of the dataset. Production
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(a)

Undersampling

(b)

Figure 1.1: (a) Datasets for link prediction are usually built by filling rows with two
nodes features (fu , fv , fu,v) and by indicating if there is a link between the two nodes
(Au,v). (b) These datasets are usually undersampled: in the original dataset, a small
minority of the rows will be s.t. Au,v = 1 (blue), while most of the rows will be s.t.
Au,v = 0 (red); undersampling discards a portion of them to generate a more balanced
dataset.

networks are very sparse [Bacilieri et al., 2023], so the ratio between the number of

existing (Aij = 1) and non-existing (Aij = 0) links is very large. Therefore, training

a model on the entire set of available examples might simply be computationally in-

tractable (there are ∼ n2 pairs). Moreover, sampling a random subset would usually

lead to poor predictions, because the scarce number of positive examples hinders the

model’s ability to effectively discriminate between the two classes. This phenomenon,

known as the class imbalance problem, can potentially lead to models that are biased

toward predicting the majority class, thus failing to accurately identify the existing

links.

This problem is commonly addressed by applying undersampling (Fig. 1.1B), a tech-

nique that aims to rebalance the class distribution. In the context of production net-

works, undersampling involves carefully curating the training set to ensure a pre-

determined ratio between positive (Aij = 1) and negative (Aij = 0) examples. This

controlled selection helps foster a more balanced, discriminative model and was em-

ployed in all the machine learning approaches that we are now set to survey.

However, this procedure has implications for model evaluation. Typically, an al-

gorithm is trained on a subsample (the training set), and evaluated on the remaining

data (the testing set). If subsampling is done before the split into a testing and train-

ing set, the testing set will contain many more positives than a “ real-life” testing set,

so metrics such as accuracy will be severely biased. Mungo et al. [2023] found that
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metrics such as AUC were not substantially affected by the undersampling ratio, so

we will tend to report AUCs, which are more comparable across studies.

1.3.1.2 Predicting new business partners

Interestingly, link prediction in production networks has not been originally pursued

to reconstruct existing networks, but rather to build recommender systems that could

suggest new partnerships to companies trying to expand their supplier or customer

bases. In this framework, the ability of a model to identify existing (or past) supply-

chain links is considered a proxy for their ability to make sensible recommendations,

i.e., to identify candidate links that firms could turn into existing ones.

Despite aiming for different goals, these studies share several similarities with

those on network reconstruction in the problem’s layout, framed as a link prediction

task, and the tools used, often relying on statistical models and network science.

Mori et al. [2012] focuses on ∼ 30k manufacturing firms in Japan. They build a

business partner recommendation system by feeding a Support Vector Machine (SVM)

with several companies’ features, such as size, industrial sector, and geographic loca-

tion. On a dataset comprising ∼ 34k links and an equal number of negative instances,

they achieve an F-score of 0.85. The approach is refined in Zuo et al. [2016], which

still uses an SVM but adds topological properties in the list of companies’ features,

such as their degree, betweenness centrality, and closeness centrality. For a network

of 180k firms and half a million links assembled through the Tokyo Shoko Research

dataset, and again an undersampling ratio of 1:1, they achieve an F-score of 0.81.

Sasaki and Sakata explicitly incorporate the network of second-tier suppliers and

their respective industries, providing a more contextual analysis. The authors’ intu-

ition is that two firms within the same industry but with different suppliers will have

different probabilities of selling to a specific customer. In other words, establishing

a relationship between firms A (supplier) and B (customer) does not depend solely

on the identity of A and B, but also on who are A’s suppliers. Thus, the authors first

extract from their network all the triads of firms connected in sequence (i.e., all the

motifs A→ B→ C). Then, they replace each firm with its industrial sector (e.g., if we

call Si the industrial sector of firm i, the triplet A→ B→ C becomes SA→ SB→ SC),

and use a Bayesian model called n-gram to compute the link probability between B

and C given B and C’s industrial sectors and the industrial sectors of B’s suppliers.

Finally, the authors use these probabilities as features in a random model classifier,

together with a few firms’ attributes (total revenues, number of employees, etc.) and
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network centralities. The authors focus on ∼ 50k links in a network of 130k Japanese

firms8, achieving an F-Score of 0.80 with an undersampling ratio of 1:1.

More recently, Lee and Kim [2022] integrated information on firms’ geographi-

cal position and industrial sector with aggregate trade volumes between sectors and

textual information on companies’ activities and products. The authors encode this

information and use it to train a deep neural network. On a sample of ∼ 90k connec-

tions between South Korean firms, where 20% of the examples are used as a test set,

the authors achieve an AUROC of 0.92.9

This trajectory of studies reflects a consistent evolution in methodology, with each

iteration contributing incremental enhancements in feature integration and model so-

phistication, partially akin to what we will see now for papers which address supply

network reconstruction specifically.

1.3.1.3 Can a firm better understand its supply network dependencies?

From a supply chain management perspective, a focal firm is interested in under-

standing hidden dependencies within its supply network - for instance, two suppliers

may rely on a hidden “second tier” supplier, creating a vulnerability for the focal firm

that is invisible at first sight. In such a context, the focal firm would typically see a

fair part of the network and could use this topological information to make further

inferences.

This is the context of the early investigation by Brintrup et al., who focuses on the

supply networks of three specific major car manufacturers (Jaguar, Saab, and Volvo,

using data from the Marklines Automotive Information Platform). Using their domain

expertise, the authors create four features for each potential link (i, j): Outsourcing
Association (the overlap between the goods produced by company i and those bought

by company j), Buyer Association (how frequently firms that purchase the same inputs

as firm i also buy the products of firm j), Competition Association (the overlap between

the products of firm i and those of firm j.), and Degrees (the number of partners of

each firm).

Training a logistic regression and a Naive Bayes using these features yields an AU-

ROC of around 0.8, providing a benchmark for link prediction in production net-

works.
8The authors test their method on “new” links, missing from their 2010 snapshot of the network and

present in the 2011 snapshot. The data is provided by Teikoku Databank Ltd., a business intelligence
company.

9The authors do not specify the undersampling ratio of their exercise
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In a subsequent paper [Kosasih and Brintrup, 2022], the authors refine their ap-

proach using Graph Neural Networks (GNNs) [Hamilton, 2020]. The concept un-

derlying GNNs is that the network’s topological information should not be distilled

by the researchers through the design of specific features (as was the case with the

association measures of the previous paper), but should instead be discovered auto-

matically by the neural network. For production networks, the intuition is that the

association measures designed in Brintrup et al. [2018], while informative, might not

convey all the information lying in the network’s topology. Instead, a neural network

provided with a sufficient amount of examples would identify patterns hidden from

researchers.

Practically, this is accomplished by: 1) for each link l = (i, j), isolating subnetworks

Gi , Gj composed by the nodes i and j, along with the set of their neighbours; 2) em-

bedding each node u in the subnetwork Gl = Gi ∪Gj in a vector fu,l ;10 3) feeding the

nodes’ embeddings fu,l to a series of K graph convolutional layers, which are nonlinear

functions f k+1
ul = φ

(
f kul , {ku}

)
, where ku are the degrees of the nodes in Gu ; 4) averaging

the final vectors f Ku,l across all the different nodes u, generating an embedding vec-

tor f ′l for the subnetwork Gl ; 5) feeding the embedding through a sequence of fully

connected layers to generate a single prediction for the probability pij .

The weights in the graph-convolutional and fully connected layers are trained with

the usual backpropagation algorithm. The authors find a significant improvement

compared to the previous approach, with the GNNs scoring an AUROC value ∼ 0.95.

While this is an impressive improvement in performance, a downside of this approach

is that it becomes very difficult to interpret the predictions made by the neural net-

work and develop novel insights into how firms connect.

A similar approach is proposed in Minakawa et al. [2023], where the authors train a

graph neural network with topological information and textual information on firms’

activities, encoded via the Doc2Vec algorithm [Le and Mikolov, 2014]. On a network

of 170k firms and 1.2M edges provided by a large Asian bank, the authors report

several AUROC values depending on the respective sizes of the training and the test

data. The AUROC value for the largest training set (80% of the samples) is ∼ 0.95;

the one for the smallest training set (20% of the samples) is 0.94. The authors do not

report the undersampling ratio for their study.

10The embedding usually consists of computing an average distance d between node k and the nodes
i and j, and then embedding k in a vector f kij = δdd′ . The dimension of this vector is the maximum
possible distance, which must be specified as a parameter of the model.
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1.3.1.4 Predicting the supply networks of entire countries where no network data
exist

Mungo et al., subject of Chapter 2 of this thesis, use similar methods for a different

purpose. They observed that in some countries, excellent data is available, while in

other countries (including the US), there is no fully reliable information on firm-to-

firm transactions, creating a need for methods that predict the supply network using

only information available locally ([Hooijmaaijers and Buiten, 2019], reviewed in Sec-

tion 1.4.2, first developed a method based on data held by the most statistical offices).

Based on this observation, they ask whether a model trained on the production net-

work of a country A accurately predicts links within firms in another country B.

In all countries, there is usually good data available on key features of firms and

pairs of firms that could determine link formation. For example, it is well established

that large firms have more connections [Bacilieri et al., 2023], prefer to trade with

geographically closer firms [Bernard et al., 2019, 2022], and have production recipes

that put significant constraints on the inputs they buy. Based on these hypotheses, for

each candidate link, the authors build a vector f(i,j) containing information on firms’

sales, industrial sector, and geographical distance. They then train a gradient-boosting
model to predict link probability.

The study is run on three different datasets: two commercial, global datasets (Com-
pustat and FactSet) and one dataset covering (a subsample of) Ecuador’s national pro-

duction network, assembled by Ecuador’s government using VAT data. When tested

on the same dataset used to train the model, the approach scores an AUROC similar to

that of the previous approach (from ∼ 0.91 to ∼ 0.95 depending on the dataset), sug-

gesting that indeed, knowing a firm’s products, location and size provides sufficient

information to make decent predictions.

For making predictions on unobserved countries, they conduct two tests. In the

first test, they considered different countries in the same dataset, for instance training

their model on FactSet’s US and Chinese networks and predicting links in FactSet’s

Japan. In this case, the approach still performs relatively well (AUROC > 0.75). In

the second test, they predict the links in Ecuador using FactSet and the other way

around. Here, the performance deteriorates substantially, which the authors explain

by showing that the distribution of features in FactSet (an incomplete, commercial

dataset with large firms in rich countries) and Ecuador (a complete administrative

dataset, with all firms from a developing economy) are very different.

This partial success suggests that there is potential for further studies, but us-

ing multiple administrative datasets. For instance, while it is not possible to predict
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the Ecuadorian administrative data using the commercial data from FactSet, it might

still be possible using similar administrative datasets, given the results from Bacilieri

et al. [2023] showing that administrative datasets exhibit strikingly similar topological

properties. This is a straightforward approach to reconstructing the global firm-level

production network, using training data from a few countries, and large-scale firm-

level datasets such as ORBIS.

1.3.1.5 Leveraging alternative data: news and phone calls

The idea in Zhang et al. [2012] and Wichmann et al. [2020] is that significant commer-

cial deals might be announced in press releases or covered by the specialized press.

Zhang et al. [2012] build a system to automate the analysis of articles and investor

comments coming from Reuters and identify collaborative11 and competitive relation-

ships between companies. The authors web-scrape a corpus of ∼ 125k documents and

manually annotate a sample of 4.5k, overall identifying 505 relationships. Then, they

use a Latent Dirichlet Allocation (LDA) algorithm (a widely used algorithm in text

analysis) to examine these examples, finding that the algorithm identifies collabora-

tive relationships with an AUROC of 0.87.

Similarly, Wichmann et al. [2020] automates the analysis of textual data (coming

from Reuters Corpora TRC2 and RCV1, NewsIR16, and specific web searches) to find

mentions of commercial deals between the firms. First, the authors collect a text cor-

pus describing the relationships between firms. Then, they classify these relationships

as either a commercial relationship (e.g., firm i supplies firm j), an ownership relation-

ship (firm i owns firm j), or none of the previous. The annotated examples are em-

bedded into numerical vectors using the word embeddings in the Glove dataset and

finally used to train a Natural Language Processing (NLP) classifier with a BiLSTM

architecture. 30% of the sentences were left out of the data and used to assess the per-

formance of the model, which scores an F1-score of 0.72. Unfortunately, the choice of

evaluating the score on a binary metric (the F1-Score) does not allow a straightforward

comparison with the previous approaches. However, the authors report that a random

classifier would get an F1-Score of 0.38. In a follow-up paper [Schaffer et al., 2023],

the authors improve their results by running the same study using a BERT model, and

reach an F1-Score of 0.81.

In Reisch et al. [2022], instead, the authors use phone calls between companies

and survey data to track down supplier-customer relationships in an undisclosed Eu-

11Note that, for the authors, a “collaborative relationship” has a broader meaning than supply rela-
tionship.
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ropean country. The survey asked companies to list their ten most important suppliers

and customers. On this subsample of the network, the authors find that if the aver-

age daily communication time between two firms i and j, denoted τij , is greater than

30 seconds, the probability that these two firms are connected is pij ≈ 0.9. Equipped

with this observation, the authors reconstruct the network by first assuming the pres-

ence of a link between i and j if τij > 30s and then assigning a direction to the link

stochastically with a probability

p (i→ j) =
ωaibj

ωaibj +ωbjai
,

where ai and bj are i and j’s respective industrial sector, and ωab is the total amount of

trade (in monetary value) from firms in sector a to firms in sector b, as reported in the

country’s Input-Output tables.12 The authors do not provide any ‘standard’ evaluation

metric for their reconstruction. However, they mention that choosing a threshold τij =

30s/d minimizes the Kullback-Leibler divergence between the degree distribution of

the reconstructed network and the degree distribution of a well-studied network, the

Hungarian production network.

The authors’ ultimate goal was to compute firms’ Economic Systemic Risk Index

(ESRI) [Diem et al., 2022] in the reconstructed network. In broad terms, the ESRI of

a firm i measures the relevance of a firm by measuring the downturn in aggregate

production caused by the removal of the firm from the production network. The au-

thors find a good qualitative agreement between the ESRI sequence of firms in the

reconstructed and the Hungarian network.

1.3.2 Network Inference

A second stream of research tries to reconstruct the production network as a whole

rather than link-by-link. We distinguish three sets of approaches: matching algo-

rithms, maximum entropy methods, and probabilistic graphical learning.

1.3.2.1 Matching algorithms

A couple of papers have used matching algorithms to create supply networks. We

classify these under “Network Inference” because while they reconstruct the network

link-by-link, they typically try to match aggregate constraints, taken from I-O tables

and/or from meso-level statistics published independently.

12A consequence of the algorithm choosing edge direction is that the reconstructed network has null
reciprocity, while we know that real networks exhibit reciprocity of around a few percent Bacilieri et al.
[2023].
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An early study is the one from Hooijmaaijers and Buiten [Hooijmaaijers and Buiten,

2019] (see Rachkov et al. [2021] for details), who devise an algorithm that matches

firms based on commonly observable firm characteristics (industry, size, location) and

I-O tables.

Roughly speaking, their method works as follows. First, using a relationship be-

tween sales and degrees of si ∝ k1.3
i [Watanabe et al., 2013], they can estimate out-

degrees based on total sales. Using the I-O tables, they estimate the expenses of each

firm by industry, and assuming that in-degree by industry is a (specific) increasing

function of expenses by industry, they can estimate the number of industry-specific

suppliers for each firm.

Knowing the degrees of all firms, the next task is to match them. To do this, they

create pairwise scores based on assumptions about what determines the likelihood of a

match. The final score is a linear combination of three scores: one that increases with

firm size, one that decreases with distance, and one that acts as a bonus or penalty

if the firms are in industries that trade in I-O tables. The matching algorithm then

starts with the buyer that has the highest purchasing volume and goes in descending

order. The number of suppliers connected to each buyer is determined by the buyer’s

in-degree. Among the potential suppliers, those with the highest scores are consid-

ered the most likely to trade with the buyer. If any of these top-rated suppliers have

no remaining outgoing links, then the next most likely supplier in line is considered

instead.

Hillman et al. introduced another algorithm, driven by their need to create a syn-

thetic firm-level network for their agent-based model of the impact of the Covid-19

pandemic. Again, their method makes use of I-O tables and data on sales, although

it does not use location information. Their algorithm is less clearly documented, but

essentially works by first using I-O tables to determine which industries a firm should

sell to, then allocating chunks of its sales to randomly selected firms in the buying in-

dustry. They show that their algorithm is able to reproduce a positive strength-degree

relationship.

1.3.2.2 Maximum-entropy for network inference

In a sense, matching algorithms try to distribute connections randomly, while match-

ing some aggregate properties of the network. However, to do so they introduce plau-

sible assumptions, such as specific functional forms to create scores. Instead, the

Maximum Entropy approach assigns probabilities to each possible network config-

uration in a way that avoids making assumptions, remaining as unbiased as possi-

30



ble. This leads to the question of whether introducing assumptions about what is not

fully known is better than just maximizing entropy conditional only on what is fully

known. This is the question of Rachkov et al., who showed that the networks obtained

from the matching method proposed in Hooijmaaijers and Buiten [2019] have differ-

ent properties than those obtained using a simple maximum-entropy model, suggest-

ing possible biases in heuristics-based reconstructions. That being said, simple max-

imum entropy methods are not well-suited for complete supply networks (i.e., not

commodity-specific), because they do not use information on firms’ products, which

we know is a critical determinant of their probability to link.

Ialongo et al. introduced a method that tackles this issue and simultaneously re-

constructs the whole network topology and link weights (see Sec. 1.4 for the weights).

Following a well-established approach in network reconstruction (Squartini et al. [2018],

see also Sec. 1.2), they compute a probability distribution P (G) over the set of possible

graphs G that maximizes the Shannon Entropy S ,

S = −
∑
G∈G

P (G) lnP (G) .

The maximization is subject to a normalization constraint,
∑
G∈G P (G) = 1, and a col-

lection of constraints c̃ representing the macroscopic properties enforced on the sys-

tem. These constraints are usually enforced in a soft way, that is, by constraining the

expected values of the constraints over the set of possible networks,∑
G∈G

P (G)ci (G) = c̃i .

The authors expand on a pre-existing model [Parisi et al., 2020], constraining the

network’s density ρ, each firm’s total sales ωouti and the money spent by firm i on

inputs from each industrial sector a, {ωa→i}. However, as we have already emphasized,

a crucial feature in supply networks is that firms connect to others specifically for the

products they make. A method that does not take into account the product or industry

of the firm is, in the context of supply networks, doomed to fail.

As a result, the authors design a new model able to handle sector-specific con-

straints. For instance, in a hypothetical economy with two sectors, a and b, the model

enforces three constraints on each firm: one for total sales,
∑
G∈G P (G)ωouti = ω̃outi and

one for spending on each of the sectors: the money spent on inputs from sector a,∑
G∈G P (G)ωa→i = ω̃a→i , and the spending on inputs from sector b,

∑
G∈G P (G)ωb→i =

ω̃b→i . The model accepts an analytical solution for the marginals pij ,

pij =
zω̃outi ω̃ai→j

1 + zω̃outi ω̃ai→j
, (1.2)
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where ai is the industrial sector of firm i, and z is chosen such that
∑
i
∑
j,i pij = ρ̃.

The authors show that their method significantly improves upon the model by

Parisi et al. [2020], where each firm is subject to a single constraint for the overall

intermediate expenses. In a maximum-entropy framework, imposing only one con-

straint on the intermediate expenses would distribute a firm’s supplier equally across

all industrial sectors. This is at odds with the reality of supply chains, where firms

require only a select range of goods from the basket of products available in an econ-

omy.

The authors do not report any standard reconstruction metric, but they show that

the in-degree and out-degree distribution of the reconstructed network are, in ex-

pectation, in good agreement with the empirical degree distribution. Moreover, the

relationship between degrees and strengths of firms is generally well replicated.

A limitation of all the studies discussed so far is that they consider only firm-

to-firm links. For macroeconomic applications, it would be useful to reconstruct

complete synthetic populations, including links between firms (including banks) and

consumers/workers. Hazan uses a maximum-entropy approach (more precisely, the

fitness-induced configuration model, [Garlaschelli and Loffredo, 2004]) for firm-to-

firm networks and firm-to-consumer networks, taking average degrees from the liter-

ature to estimate z separately in each network.

1.3.2.3 Leveraging the correlation matrix using graph learning

An established literature tackles the problem of reconstructing a network starting

from node-level time series x (t) [Dong et al., 2019, Peel et al., 2022].

The general philosophy is that the structure of the network G determines the joint

probability distribution of the observations. If one assumes that each observation

x (t) ∈ RN is drawn from a probability distribution p (x|Θ) with a parameter matrix

Θ ∈ RN×N , the problem of reconstructing a graph, or graph learning, becomes that of

finding the correct value of Θ.

Production networks serve as a contagion channel for economic shocks. They

spread negative or positive shocks from one firm to its customers and suppliers, gen-

erating correlations between firms’ fundamentals, such as market valuation and sales

[Barrot and Sauvagnat, 2016, Carvalho and Tahbaz-Salehi, 2019, Carvalho et al., 2021].

Starting from this observation and leveraging the graph learning literature, Mungo

and Moran, subject of Chapter 3 of this thesis, introduce a method to reconstruct the

production network from the time series of firm sales, si (t). First, the authors show

empirically that the correlation between the log-growth rates of firms connected in
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the production network surpasses the average correlation yielded by randomly sam-

pled firm pairs, and this excess correlation decreases as firms get further apart in

the supply chain. Then, the authors harness this observation to design a network re-

construction approach, framed within Gaussian Markov Random Fields [Dong et al.,

2019]. Adapting a modern graph learning strategy [Kumar et al., 2019], the authors

assumed that the growth time series data could be modelled as a sequence of draws

from a multivariate Gaussian distribution. This distribution’s precision matrix (the

inverse of the covariance matrix) is, in turn, identified with the network Laplacian

L = D −A where Dij = kiδij . To estimate the precision matrix, the authors employed

a maximum likelihood approach, constraining the possible Laplacians L to preserve

the expected connections’ density within and across economic sectors. In addition, a

penalization term is included to enforce network sparsity.

Upon assessment against smaller network fragments, their methodology reports

an F1-score within the range of 0.2−0.3. Nevertheless, it does not consistently surpass

all benchmark tests under consideration. While it is true that, on average, firms that

are more closely connected are more correlated, there is a lot of overlap between the

distributions of correlations at various distances. In other words, knowing that firms

are highly correlated is not very informative of their distance, making the task of

network inference based on time series data very challenging.

1.4 Inferring the value of transactions

While methods for reconstructing weights have been used extensively on financial

and global trade networks [e.g. Anand et al., 2018, Squartini et al., 2018, Cimini et al.,

2021] and aggregate I-O tables [e.g. Golan et al., 1994], their application to firm-level

networks is relatively novel. A first set of methods uses meso-level information from

I-O tables, while another set of papers relies on the maximum entropy principle. Ta-

ble 1.2 provides an overview of the methods we are about to survey.

1.4.1 Matching I-O tables

Inoue and Todo incorporates aggregate I-O information into their weights’ estimates

for Japan’s production network. They assign to each link (i, j) a weight proportional

to the product of firms’ sales, ωij ∝ ω̃out
i

ω̃out
j∑

j ω̃
out
j

, where the sum only runs on i’s neigh-

bours. The weights are then rescaled to align with the aggregate transaction amounts
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within industry sectors ω̃ab,

ωij = ω̃out
i

ω̃out
j∑

j ω̃
out
j

ω̃aibj∑
k∈ai ,l∈bj ω̃

out
k ω̃out

l

,

where ai and bj denote the respective industrial sectors of i and j. A similar approach

has been used by [Hillman et al., 2021] where, starting from data on firms’ sales and

inputs, the authors construct individual-firm networks, that, when aggregated, align

with the sectoral IO table. The authors rescale firms’ input and output to match the

IO tables,13 and then allocate links in the network with an iterative algorithm that

matches buyers to suppliers, while also imposing that larger firms will have more

customers. The weight of each connection is then set to the smallest value between

the supplier’s maximum capacity and the customer’s demand.

Instead of reconstructing the weights, Carvalho et al. estimate the input shares αij
of each link,

αij =
ωij∑
iωij

.

For any given customer-supplier pair of firms (i, j) in the data, they assign αij propor-

tionally to the input-output table entry corresponding to industries i and j belong to,

i.e., αij ∝ ω̃aibj , and renormalize them to ensure
∑
i αij = 1.

Real-world scenarios often present situations where it is unfeasible to find weights

that align with aggregate observations. In Welburn et al. [2020], the authors design an

inference strategy that aims to minimize the discrepancy between reconstructed and

observed aggregate properties of the network. More specifically, the authors observe

that, given a binary network G, it is not always possible to assign weights ωij that

satisfy constraints
∑
jωij = ω̃out

i and
∑
jωji = ω̃in

i . Take as an example a firm i who

supplies only a single firm j, and assume that i is the only supplier of j. The aggregate

constraints will only be satisfied if i’s sales match exactly j’s expenses, ω̃out
i = ω̃in

j , a

condition not always respected in the data. The authors solve this issue by introducing

a ‘residual node’ r to capture the portion of the economy that is not covered by the

network G. This node accounts for all the firms that are not present in the data. They

propose to find the set of weightsωij that minimize the loss L =
∑
iωi,r+

∑
iωr,i , where

ωij are subject to the usual constraints.

Finally, Hazan reconstructs the weights for a complete stock-flow consistent econ-

omy, with households, firms, banks, and flows of money in the form of consumption,

13More precisely, they match intermediate inputs (roughly, inputs that are neither labour nor invest-
ment goods), and gross output (roughly, total sales).
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firm-to-firm payments, wages, and interest payments. After reconstructing the net-

work using maximum entropy methods (Sec. 1.3.2.2), stock-flow consistency allows to

write a linear system for the weights, which can be solved using Non-Negative Least

Squares to avoid negative values.

The performance of the methods reviewed in this subsection is unfortunately un-

known, as information on the real weights ω̃ was not available to the authors, who

could not compare their reconstructions to the respective ground truths. However, in

the future, researchers using these methods could partially validate their results by

comparing them to the empirical regularities observed in [Bacilieri et al., 2023] for

weight distributions and the relationships between in- and out-degrees and strengths.

1.4.2 Maximum entropy for weights inference

Another way of predicting weights given some aggregate trade information is to use

the maximum entropy principle (again, see Sec. 1.2). In Sec. 1.3.2.2, we saw how

maximum entropy was used to compute probabilities for possible binary networks.

We are now going to see how it can be used to predict weights.

If we consider the weights ωij , subject to the “hard”constraints
∑
jωij = ω̃outi , and∑

jωji = ω̃ini , where ω̃outi and ω̃ini represent the observed total outflow (intermediate

sales) and inflow (intermediate expenses) of firm i, we find that the set of weights that

maximize the Shannon Entropy

S = −
N∑
i

N∑
j

ωij lnωij ,

are

ωij =
ω̃outi ω̃inj

Ω̃
, (1.3)

where Ω̃ =
∑
i ω̃

out
i =

∑
i ω̃

in
i . This approach was also used in Reisch et al. [2022] for an

undisclosed European country.14

A different application of the maximum-entropy principle, where constraints are

imposed softly (see Sec. 1.3.1), results in the solution used in Bacilieri and Astudillo-

Estevez [2023] to reconstruct Ecuador’s national production network and in Ialongo

et al. to reconstruct the transaction network between customers of two Dutch banks.
14Bartolucci et al. show that “upstreamness”, a classic metric in I-O economics, can be recovered very

well from networks reconstructed from maximum entropy, as long as the networks are not too sparse.
This is because, under very general conditions for the original network, the first-order approximation of
a node’s upstreamness is its upstreamness in the maximum entropy-reconstructed network [Bartolucci
et al., 2020].
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Building on Parisi et al. [2020], these papers first reconstruct the network’s topology15,

then sample the (positive) weights ωij of the existing links from an exponential distri-

bution,

P
(
ωij = x

)
= βij exp

(
−βijx

)
,

where βij is selected so that the expected value of ωij , conditional to the existence of a

link, is

Eij
[
ωij |Aij = 1

]
=

ω̃outi ω̃inj

pij
∑
i ω̃

out
i

.

In Ialongo et al., pij is defined by Eq. (1.2). In contrast, Bacilieri and Astudillo-Estevez

[2023] omits sector-specific constraints for intermediate inputs,16 and defines pij as

pij =
zω̃outi ω̃inj

1 + zω̃outi ω̃inj
.

Bacilieri and Astudillo-Estevez [2023] reports a cosine similarity of 0.928 between

inferred and actual weights. The authors also compute a few “higher-order” proper-

ties of the nodes that describe the propagation of shocks in production networks in an

established macroeconomic model [Acemoglu et al., 2012], which the reconstructed

network fails to capture adequately (the cosine similarity for the most relevant prop-

erty, the influence vector, is ∼ 0.5).

In Ialongo et al., visual inspection of the results shows a substantial enhancement

in weight reconstruction when applying sector-specific constraints to firms’ inputs,

further underscoring the pivotal role the economy’s sectoral structure plays in the

accurate reconstruction of production networks.

1.5 Discussion

In this section, we take stock of what we can learn from existing studies, and provide

suggestions on how the field could be further advanced.

15In the case of [Bacilieri et al., 2023], the topology is assumed to be known.
16Ialongo et al. simply assume that the meso-level constraints are observable since they have this in

their firm-level data. Inoue and Todo [2019], Hillman et al. [2021], Carvalho et al. [2021] cannot read
this information from the data, so they take meso-level information from the I-O tables. Bacilieri and
Astudillo-Estevez [2023] argue that differences in accounting standards between firm- and industry-
level networks are large so that the meso-level structure of a firm network should not be constrained
to be like the I-O tables. Bacilieri et al. [2023] shows that there are indeed some important differences,
especially in industries that follow different accounting conventions, such as retail and wholesale trade.
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1.5.1 What have we learned?

A first, clear message from the review is that in the context of supply networks, know-

ing the kind of product a firm makes is extremely important and substantially im-

proves the reconstruction. This is evident both in the link prediction studies on in-

dustry data [Brintrup et al., 2018], commercial or country-level data [Mungo et al.,

2023], and in the maximum entropy reconstruction on payment data [Ialongo et al.].

Unsurprisingly, ongoing research tries to predict the firms’ products at a granular

level, for instance from websites [Occhini et al., 2023].

Second, the importance of products leads us to ask: to what extent can we, or

should we rely on existing (national or inter-country) input-output matrices? While

some studies reconstruct weights (conditional on links) using I-O links [Inoue and

Todo, 2019, Carvalho et al., 2021, Hillman et al., 2021], others refrain from doing

so [Bacilieri and Astudillo-Estevez, 2023], by fear that differences in accounting con-

ventions [Bacilieri et al., 2023] may create inconsistencies. Here the answer may de-

pend on the goal of the reconstruction. A useful avenue for further research, however,

would be to develop methods that easily allow to switch between business- and na-

tional accounting conventions. Such methods would necessarily use techniques and

assumptions to allocate flows of money based on partially observed data, so that the

methods reviewed here may be helpful.

Third, we have seen that more sophisticated machine learning methods do pro-

vide substantial boosts in performance. This is clear from the improvement in link

prediction performance between the logistic regression and graph neural nets in the

automotive dataset [Brintrup et al., 2018, Kosasih and Brintrup, 2022], and between

simpler methods and gradient boosting in Mungo et al. [2023].17

Fourth, there appears to be substantial scope for improving performance using

“alternative” data. Zhang et al. [2012] and Wichmann et al. [2020] have provided a

proof of concept that mining news and websites for supplier-buyer relations can be

automated, and we have already mentioned that websites can be an important source

of key metadata for link prediction (especially product-related information). While

phone data is likely to be difficult to access, it is worth remembering the impressive

result in [Reisch et al., 2022] that firms with average daily communication of more

than 30s/day have a 90% probability of being connected.

A related question for further research will be to establish the potential of “dy-

namical” data. Mungo and Moran [2023] (Chapter 3 of this thesis) showed that while

there is information about the network in the sales growth rates correlation matrix,

17However, in both studies, predictions made by sophisticated models are harder to interpret.
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predicting the network remains difficult, as the distribution of pairwise correlation

for connected and unconnected pairs overlaps greatly, even though their average is

statistically significantly different. Nevertheless, there are interesting developments

in this area for networks generally, with only one application to supply networks. One

limitation has been that very few supply networks’ datasets have a reasonable time-

series dimension, but as these become more common it will perhaps become possible

to find other firm-level dynamical features that contain fingerprints of their network.

Finally, many studies have shown that baking sensible economic intuition into the

models usually improves predictions. To sum up, we have learned (or confirmed from

existing literature) that link formation is likely driven by the kind of products firms

make, their geographical distance, and their size. We have seen that firms who com-

municate a lot are likely to be in a supply-buy relationship and that firms that are in

a relationship are likely to have a substantial co-movement in sales. While predic-

tion is in some cases the ultimate goal, making methods that prioritize performance

over interpretability appropriate [Kosasih and Brintrup, 2022], the quest for better

reconstruction models has also prompted a deeper investigation into the behavioural

and economic principles influencing how firms make and unmake their connections

[Brintrup et al., 2018, Mungo et al., 2023]. Currently, no fully realistic supply net-

work formation model has been developed (however, see [Atalay et al., 2011] for an

early example); we anticipate that reconstruction methods and the development of

null models will, at least partly, go hand in hand.

1.5.2 How can we learn more?

What method works best for which task? We are not yet able to properly answer

this question because the literature uses different datasets, takes different features

of the data to make predictions, and uses different evaluation metrics. While this is

warranted by the diversity of goals and applications, we think it would be valuable to

organize “horse races”, as has been done for financial networks [Anand et al., 2018],

and provide standard datasets, as is common in the machine learning community.

The methods proposed are very diverse and usually require distinct data to oper-

ate. The diversity of datasets and features used is understandable and valuable. For

example, Kosasih and Brintrup [2022] use topological features because one of their

realistic use cases is to augment an existing “observed” network dataset, while Mungo

et al. [2023] avoid using topological information because their envisioned use case is

to port a trained model to a context where no such features are available. As another
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example, while phone data is very hard to access, the study using this data made it

possible to evaluate the systemic risk of each firm in an entire European country.

A slightly less justified “diversity of approaches” is the lack of standardized assess-

ment metrics, as it is in principle relatively easy to report several metrics.

Traditional statistical indicators (accuracy, AUROC, PR-AUC) provide an easy, well-

known benchmark, and have already been functional in, e.g., propelling the develop-

ment of computer-vision models [Russakovsky et al., 2015]. Yet, the question remains

as to whether they are sufficient to evaluate the reconstruction of a network, and what

additional metrics should be adopted to supplement them. Some metrics, initially

conceived for balanced datasets, may not hold up as reliably when applied to sparse

networks, where non-existing links greatly outnumber the existing ones, further com-

plicating the comparison between methods. Overall, the area under the Receiving

Operator Characteristic Curve (AUROC) seems robust in the face of class imbalance:

if one makes the imbalance more and more severe, its value does not change sub-

stantially (see Appendix B.2). Consequently, AUROC is a sensible metric to compare

results. The area under the Precision-Recall curve (PR-AUC), which is more sensitive

to the performance of the model on the minority class, is also very sensitive to the level

of imbalance in the data; PR-AUC and imbalance should always be reported jointly.

Reporting basic topology metrics of the reconstructed network is also a sensible

approach, as there is substantial evidence [Bacilieri et al., 2023] that some topological

properties are universally shared by all production networks. For instance, Bacilieri

et al. [2023] showed that the tail exponents for the in- and out-degree distributions

are remarkably similar in national, VAT-assembled datasets.

Ultimately, as we plug reconstructed networks into economic models, the opti-

mal metric will be the one that best correlates with accurate economic predictions.

Identifying these proper “dynamical” indicators needs to go hand-in-hand with the

development of economic models that are carefully validated on real-world data and

can become legitimate standards for evaluating reconstruction performance.

While agreeing on a set of metrics and features appears relatively easy, the key

challenge ahead is data availability. To follow our previous analogy, in computer vi-

sion, researchers can access standard, large-scale datasets [Deng et al., 2009] of an-

notated images to train and evaluate their models. Similar datasets for production

network reconstruction are not currently available and, due to the confidential or pro-

prietary nature of such data, its assembly seems unlikely in the near future. The

research community should unite to devise strategies to circumvent this issue, possi-

bly by considering the use of synthetic data [Jordon et al., 2022] as an alternative to
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real data. While synthetic data generation is currently an active area of research, it is

less well-developed for networks than for tabular data and still suffers from either a

lack of privacy guarantees (for traditional methods) or a lack of interpretability of the

privacy guarantees (for differential privacy).

1.6 Conclusion

The reconstruction of production networks through mathematical methods is a young

field. This chapter offers a review of methodologies that researchers have proposed to

grapple with this challenge.

While it is good proof-of-concept studies exist, much remains to be done. A strik-

ing feature of the literature is the diversity of methods, datasets and evaluation met-

rics. While this is justified by the different backgrounds and motivations of the re-

searchers, we think that progress in this area would benefit from the availability of

open datasets and the definition of standard metrics, so that horse races could be or-

ganised.

While we were able to propose guidelines to standardize performance metrics, the

path to open datasets is more complicated and will require international cooperation

that either facilitates researchers’ access or fosters the creation of high-fidelity syn-

thetic datasets.

Despite this difficulty, reconstructing supply networks is an excellent playing ground

for the complex systems community, as it requires a deep understanding of networks,

statistics, and dynamical systems, together with an appreciation that these networks

emerge from the decentralized interactions of millions of highly heterogenous, bounded-

rational agents operating with different objectives at different time scales.
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Coverage Dataset Inputs Probabilistic

Mori et al. [2012] Regional Tokyo Area Man-
ufacturing Firms,
Source unspecified.

Several features regarding
firms’ activities, balance sheets,
and management

Zuo et al. [2016] National. Tokyo Shoko Re-
search.

Firms’ sales, profits, industrial
sector, location, number of
employees, network centrality

Sasaki and Sakata [2017] Regional. Tohoku region,
Teikoku Databank.

Firms’ sales, capital, size, in-
dustrial sector, network central-
ity

X

Lee and Kim [2022] National. Korean Enterprise
Data.

Description of firms’ activities.
Firms’ industrial sector and
location. Aggregate transaction
volumes between industrial
sectors.

X

Brintrup et al. [2018] Automotive. Markline Automo-
tive Information
Platform.

Firms’ known connections,
products, and intermediate
inputs.

X

Kosasih and Brintrup [2022] Automotive. Markline Automo-
tive Information
Platform.

Firms’ known connections. X

Minakawa et al. [2023] Global Asian bank’s trans-
action data

Firms’ known connection,
description of firms’ activities.

X

Mungo et al. [2023] Global,
National.

Compustat, FactSet,
Ecuador VAT.

Firms’ sales, industrial sector,
location

X

Zhang et al. [2012] Global. Specialized Press
(Reuters)

Media coverage X

Wichmann et al. [2020] Global. Specialized Press. Media coverage.

Schaffer et al. [2023] Global. Specialized Press. Media coverage.

Reisch et al. [2022] National. Phone Calls, Survey
Data, Hungary VAT.

Firms’ phone calls; national I-O
tables.

X

Hooijmaaijers and Buiten [2019] National, 4
commodity
groups.

I-O tables, Business
Register, Structural
Business Statistics.

Firms’ known connections,
sales, geographic location,
industrial sector.

Hillman et al. [2021] National. I-O tables, Business
Register, Structural
Business Statistics.

Firms’ known connections,
sales, geographic location,
industrial sector.

Ialongo et al. National. Dutch banks’ trans-
action data.

Firms’ sales, intermediate
expenses by sector; network
density (for calibration).

X

Mungo and Moran [2023] Global. FactSet. Firms’ sales (time series), indus-
trial sector; network’s sectoral
structure.

Table 1.1: Overview of the methods used to reconstruct the production network’s
topology.
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Coverage Dataset Inputs Probabilistic MaxEnt

Inoue and Todo [2019] National,
Japan.

Tokyo Shoko
Research.

Firm sales, national I/O
tables.

Carvalho et al. [2021] National,
Japan.

Tokyo Shoko
Research.

Firm sales, national I/O
tables.

Welburn et al. [2020] National,
US.

S&P Capital IQ,
EDGAR.

Firm sales and inputs
(COGS).

Hazan [2019] National,
Czech
Republic.

Full IOTs. Full IOTs.

Bacilieri and Astudillo-Estevez [2023] National,
Interna-
tional.

Factset, Ecuador. Firm sales, intermediate
expenses; network density.

X X

Ialongo et al. National. Dutch banks’
transaction data.

Firm sales, intermediate
expenses by sector; network
density (for calibration).

X X

Table 1.2: Overview of the methods used to infer production network’s weights.
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Chapter 2

Can machine learning help us to recon-
struct production networks?

2.1 Introduction

The literature on input-output economics is old and well-established, but the vul-

nerability of just-in-time supply chains - recently under the spotlight [Goodman and

Chokshi, 2021] - has led to a renewed interest in the study of shock propagation in pro-

duction networks. While early research has been mainly carried out at the industry

level [Leontief, 1986, Miller and Blair, 2009, Acemoglu et al., 2012], it is increasingly

evident that more fine-grained data is needed to predict the impact of shocks. Un-

fortunately, information on firm-to-firm relationships is by nature confidential and,

therefore, often hard to access and incomplete [Bacilieri et al., 2023]. In the US, pub-

lic companies are required to disclose prominent customers [Atalay et al., 2011]. In

a few countries, such as Belgium or Hungary, VAT reporting allows national statisti-

cal offices to provide production networks to researchers [Dhyne et al., 2020, Diem

et al., 2022]; in others, such as Japan, large commercial datasets are available [Mizuno

et al., 2014, Inoue and Todo, 2019, Carvalho et al., 2021]. In the Operations Research

and Supply Chain Management literature, rich datasets have been analyzed [Brintrup

et al., 2018, Demirel et al., 2019, Chauhan et al., 2021, Dolgui et al., 2018, Schueller

et al., 2022], but they are usually limited to a specific industry or assembled to study

the supply network of a specific firm.

In most countries and for most periods, however, the data on firm-to-firm rela-

tionships is unavailable, making it crucial to develop methods to reconstruct these

networks based on available data. In this work, we develop a method for predict-

ing links in production networks using data on firms’ financial statements, industry,

and location. For simplicity and due to data limitations, our focus is on reconstruct-
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ing binary relationships (the existence of links) rather than their weight (the value of

transactions). We approach this as a classification problem and tackle it with standard

modern machine-learning techniques. Let u and v be two nodes of the network G, fu
and fv be vectors of u’s and v’s covariates (e.g., sales, industry, etc.), and f(u,v) be a

vector of dyadic features (e.g., the geographical distance between the two companies).

We can write the probability Pu,v of a link between u and v as

Pu,v = ψ
(
fu ,fv ,f(u,v)

)
,

where ψ is unknown and network-specific. This formulation encompasses a wide va-

riety of models where ψ is defined explicitly or implicitly. For instance, the literature

on the reconstruction of financial networks uses explicit functional forms for ψ, or

varying complexity, from simple gravity models to more complicated fitness models

[Garlaschelli and Loffredo, 2004, Garlaschelli et al., 2005, De Masi et al., 2006]. In the

production network growth literature [Atalay et al., 2011, Carvalho and Voigtländer,

2014], ψ is often implicit but could be derived from the knowledge of the stochastic

mechanisms generating the network. Here we propose to learn ψ using a typical su-

pervised learning framework. We train a machine learning model on a portion of the

network and study its capacity to predict links in the unobserved part. We validate the

predictions of our model through its Receiving Operator Characteristic (ROC) curve.

Our method shows remarkable results for all the tested datasets. In addition, these

methods make it possible to understand which features of the firms are key to pre-

dicting trade connections through an analysis of the features’ importance. For our

datasets, firms’ industrial sector, geographical location, and size are the main perfor-

mance drivers.

The outline of this chapter is as follows. Section 2.2 describes the data and the

methods. Section 2.3 provides the results; we conclude in Section 2.4.

2.2 Data and methods

2.2.1 Data

Datasets. We test our methods on three datasets: Compustat, FactSet, and a firm-

level administrative dataset from Ecuador.1 Compustat is a financial, statistical, and

market information database on active and inactive publicly listed companies. It pro-

vides several company-level fundamentals (such as income statements and balance

1These datasets include goods and services firms. Many important examples of supply chain dis-
ruptions concern physical flows (e.g., the delays following the recent blockage of the Suez Canal), so
one could remove services firms for specific research questions. Here we keep all the firms.
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sheets) and information on firms’ commercial relationships. Compustat primarily

draws its data from Security and Exchange Commission (SEC) filings, and standard-

ized financial statements required from the US SEC. SEC filings require companies

to indicate those customers who account for 10% or more of their total revenues, al-

lowing the identification of supplier-customer relations between different companies.

Like Compustat, FactSet is a proprietary database of financial and market data. It

also collects information on companies’ trade partners from SEC filings but integrates

them with press releases, news, and other sources of business insights. The third

dataset, which we call “Ecuador” for short, is assembled by Ecuador’s Tax authorities

from firms’ tax declarations. It contains information on companies’ legal status, sales,

and location. Most importantly, it has detailed information on every firm’s trading

partners for virtually all the firms in Ecuador’s formal economy.2

We downloaded Compustat from Wharton Research Data Services. Firms’ annual

fundamentals can be found in the eponymous table in the Compustat directory. Sup-

ply Chain data can be found in the “WRDS Supply Chain” table in the “Linking Suite

by WRDS” folder. No pre-processing was performed on this data. We accessed the

FactSet data through FactSet’s proprietary data feed. Firms’ fundamentals and supply

chain information can be found in the folders with the same names. The supply chain

data was aggregated at the ultimate parent company level, using FactSet’s ownership

structures data, while the monetary variables in the fundamentals were converted to

USD (see Online Appendix B.3 for details).3

The Ecuador dataset was provided by Ecuador’s government to one of the authors.

Additional details on this dataset can be found in Astudillo-Estevez [2021]. Bacilieri

et al. [2023] reviews existing firm-level production networks datasets and their key

properties, including Ecuador and Factset, and contains further references to papers

using these datasets.

Compustat and FactSet’s data are provided at a yearly frequency, but we only re-

tain a one-year snapshot, choosing the year with the highest number of links (2013

for Compustat, 2018 for Factset). In each dataset, we remove firms with incomplete

information and retain only firms with at least one connection in the supply chain.

For Ecuador, we restrict our analysis to the largest 10.000 private companies due to

computational constraints. Table 2.1 reports the number of nodes and links in each

dataset.
2The Ecuador dataset was assembled for research purposes. Consequently, the data is anonymized,

and real firms cannot be identified in the data.
3Compustat data was last downloaded in September 2021. Appendix B.3 contains the specific ver-

sion of FactSet used to build our dataset.
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Number of firms (N ) Number of links (E) (N (N − 1)−E)/E

Compustat 915 1,033 808
FactSet 6,714 40,861 1,102
Ecuador 10,000 587,693 169

Table 2.1: Number of nodes and links in the three datasets. The last column shows
the dataset’s imbalance, i.e., the ratio of the number of pairs that do not have a link
to the number of pairs that do have a link.

We now motivate and describe three sets of variables that we will use as features:

financial variables, geographical variables, and industry affiliation.

Financial variables. Larger firms are likely to have more links [Krichene et al., 2019,

Bernard et al., 2022, Bacilieri et al., 2023]. As a result, firm sales are likely to be an

important feature. In FactSet and Compustat, we also retain two other indicators:

labour productivity (sales per worker) and R&D intensity (R&D expenses over sales).

For Ecuadorean companies, we include expenses among the features.4

Geographical variables. Extensive literature going back to Marshall [1890] in eco-

nomic geography and Tinbergen [1962] in international trade has documented that

firms tend to trade with physically closer firms (see also Diodato et al. [2018], Bernard

et al. [2019]). The three datasets contain the addresses of firms’ headquarters. We

merged this information with that in the GeoNames database to compute the geo-

graphical distance between each pair of firms.5 Moreover, we used a firm’s country (for

Compustat and FactSet) or province (for Ecuador) as a feature. Specifically, we created

a dyadic feature listing all the possible ordered combinations of countries (provinces)

and assigned to each possible link the corresponding value given the supplier’s and

the customer’s location. Note that we include only dyadic features (distance and loca-

tion pair), and we do not include location as an individual firm’s feature.

4For Ecuador, we do not have access to total sales or total expenses, but only to sales to other compa-
nies (closer to the concept of “intermediate sales”, i.e. excluding e.g. sales to households) and expenses
paid to other companies (closer to the concept of intermediate expenses, excluding e.g. labour costs).

5More precisely, Compustat, FactSet, and Ecuador all have information on companies’ addresses,
specifically (city, state, postal code, and ISO 3 country code). Geonames maintains a record of all the
human settlements around the globe with a population > 500. The dataset contains the geographical co-
ordinates of each settlement and can be downloaded from http://download.geonames.org/export/

dump/. The two datasets can be merged on the cities’ name, the state and the country ( “State” is only
available for the US, Australia, Brazil, and a few other federal countries). Once we have the geographi-
cal coordinates of each firm, the distance is computed as the geodesic distance between the two sets of
coordinates.
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Industrial sector. The type of product that two firms produce should be a strong

determinant of their probability of trading. In the extreme case where a product has

a fixed “recipe”, as in Leontief production functions, a producer will buy only from

firms producing the required inputs. All the datasets contain information on compa-

nies’ industrial sectors. We used 3-digit NAICS codes for Compustat, 3-digit SIC codes

for FactSet, and 3-digit ISIC codes for Ecuador. As for firms’ geographical location, we

used the industrial sectors to create a dyadic feature for every possible link. For in-

stance, if firm 1 is in sector A and firm 2 is in sector B, the industrial sector feature for

the couple (1,2) will be AB; and if firm 1 is in sector B and firm 2 is in sector A, the

industrial sector feature for the couple (1,2) will be BA. As for geographical location,

we include industry only as a pairwise feature, that is, we do not include industry as a

feature of an individual firm.

Compustat FactSet Ecuador Node-level Dyad-level
Sales X X X X
Productivity X X X
R&D intensity X X X
Expenses X X
Industrial sector X X X X
Geographical distance X X X X
Country X X X
Province X X

Table 2.2: Summary of the features used in our model for each dataset.

2.2.2 Setup

Structure of the dataset. We create a row for each possible (directed) pair of firms.6

First, we fill the row with suppliers’ and customers’ individual features (sales, and

labour productivity, R&D intensity, total expenses). Second, we include dyadic features

(geographical distance, and the two categorical variables containing the industrial sec-

tor and the country/province of the two firms). The column existence provides the

classification target for prediction, that is, 1 if a link is present in the dataset and 0

otherwise.

Dealing with sparsity using subsampling. Only a tiny fraction of all possible links

exist, so the existence column contains vastly more zeroes than ones. If untreated,

this imbalance drives the model always to predict a non-existing link (see also Sec.

6Self-loops are excluded by default, despite being sometimes observed in the data.
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1.3.1.1). We tackle this issue by randomly undersampling the datasets [He and Garcia,

2009, More, 2016]; that is, we retain all the positive entries but we keep only a small

randomly selected fraction of zero entries. We call the undersampling ratio the ratio

between the number of elements in the two classes in the subsampled dataset. We

choose an undersampling ratio of 200 for Compustat and Factset and 50 for Ecuador

(the ratios in the non-undersampled datasets are reported in Table 2.1) – these provide

a good balance between model performance and computational requirements. For

each network, we generate five different subsampled datasets. We then split each of

these 5 datasets into a training and a testing set in a 70 : 30 ratio.7

Randomly undersampling the data is not the only possible solution to learning on

imbalanced datasets, nor is it an inconsequential choice. By deleting a portion of the

data, undersampling might lead to an information loss and hinder a model’s perfor-

mance. Several “informed” undersampling algorithms have been proposed to delete

links with minimal information loss (e.g., Zhang and Mani [2003]). However, these

methods are computationally more demanding, as they usually require computing

some definition of distance between the different data points and, thus, are harder to

adopt when dealing with large datasets. Another approach, oversampling, consists in

making copies of the data points associated with existing links (in a possibly sophis-

ticated way, see e.g., Chawla et al. [2002]), but again this is computationally intensive

and might lead to overfitting if implemented naively.

Algorithm. Our main approach is an ensemble method, specifically Gradient Boost-
ing [Friedman, 2001]. Ensemble methods combine multiple algorithms (weak or base
learners) to obtain predictive performance that any constituent algorithms alone could

not achieve alone. These are considered to be among the best algorithms for classifi-

cation and predictions on tabular data [Grinsztajn et al., 2022]. They also have the

7The subsampling is performed before the splitting of the dataset into a training and a testing
set so that both are undersampled. However, the results hold - with minor differences - for a non-
undersampled test set. This is because the non-undersampled test set would have more entries for
non-existing links, which are easy to predict. See Appendix B.2. Our procedure implies that we per-
form the undersampling, which is stochastic, only once.
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advantage of being widely available in software packages, and are fast enough for us,

given the size of our datasets.

The idea at the core of boosting is to train several learners sequentially, each trying

to compensate for its predecessors’ shortcomings. Assume a given dataset of n exam-

ples andm featuresD = {(xi, yi)} (|D| = n,xi ∈ Rm, yi ∈ R), and a function φ (xi) = yi that

maps inputs into outputs. Gradient Boosting tries to build an approximation φ∗K (xi)

as a sum of K functions,

ŷi = φK (xi) =
K∑
k=1

ρkfk , (2.1)

where the functions fk = f (xi ,θk) are the ensemble’s base learners, parametrized by

θk. The approximation φ∗K minimizes the expected value of a loss function L (yi , ŷi)

and is built in K steps. First, a constant approximation is obtained as

φ∗0 = argmin
α

n∑
i=1

L (yi ,α) . (2.2)

The following models are then built sequentially,

φm = φm−1 + ρmfm, (2.3)

where ρm and fm minimize

{
ρm, fm

}
= argmin

ρ,θ

n∑
i=1

L (yi ,φm−1 + ρf (xi ,θ)) . (2.4)

Ideally, to solve the minimization problem in equation 2.4, we would choose fm to be

equal to the negative gradient of the loss function,

fm (xi) = −gm (xi) = −
[
∂L (yi ,φ (xi))
∂φ (xi)

]
φ(xi )=φm−1(xi )

, (2.5)

and find the value of ρm with a line search,

ρm = argmin
ρ

n∑
i=1

L (yi ,φm−1 (xi) + ρfm (xi)) . (2.6)

However, equation 2.5 can’t be always satisfied, and we settle for the learner fm (xi) =

f (xi ,θm) that mostly correlates with gm over the data distribution. This is the solution

to the problem

θm = argmin
β,θ

n∑
i=1

[−gm (xi)− βf (xi ,θ)]2 . (2.7)
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A common choice for base learners is using classification and regression trees [Breiman,

1984, Sutton, 2005]. Broadly speaking, trees are made of branches, starting at the

same node. Each branch is composed of a set of internal nodes and terminates with

a leaf. Internal nodes host decision rules; by starting at the tree’s root and following

the decision rules, each data point can be allocated to one of the leaves, or a set of

scores can be assigned to each leaf, and later combined into a single prediction. The

goal is to create a model that predicts a target variable’s value by learning the cor-

rect decision rules inferred from the data features. For this class of functions, finding

the optimal parametrization in equation 2.7 corresponds to finding the optimal tree

structure and leaf weights. This is a very demanding computational task: a simple

“greedy” approach requires enumerating all the possible split points for every fea-

ture of the training data. Recently, a series of algorithms and engineering solutions

have been proposed to train gradient boosting models more efficiently (see, e.g., Tyree

et al. [2011], Chen and Guestrin [2016] and Ke et al. [2017]). Among these, Light-
GBM [Ke et al., 2017] was developed with the goal of optimizing training time on

large datasets. According to Bentéjac et al. [2021], LightGBM significantly outper-

forms the other gradient-boosting implementations in terms of computational speed

and memory consumption with minor compromises on predictive performance. In

line with LightGBM’s default recommendation, we treat categorical features as nu-

meric (see Appendix B.5 for a discussion). We mostly stick to the default parameters;

Appendix B.1 reports what we use in detail.

ROC curves. A model trained to distinguish between existing and non-existing links

is an example of a binary classifier. To test its performance, one can compute True

Positives (TP), True Negatives (TN), False Negatives (FN) and False Positives (FP) (see

Fig. 2.1).

In practice, our classifier is predicting a probability p that a link exists. It is up

to us to decide the threshold τ , such that if p > τ , the link is predicted as existing;

the model’s confusion matrix (Fig. 2.1) ultimately depends on the threshold we adopt.

To evaluate the model in a way that does not depend on the threshold, we use the

Receiving Operator Characteristic curve (ROC). The ROC curve is created by plotting

the True Positive Rate (TPR=TP/(TP+FN)), also called Recall or Sensitivity, against

the False Positive Rate (FPR=FP/(FP+TN)) at various values of the threshold τ . In

our framework, the ROC curve can be thought of as the set of points in the FPR/TPR

space obtained by sequentially adding links in the network, from the most to the least

probable.
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Figure 2.1: (A): True Positives, True Negatives, False Positives and False Negatives
are often reported in the confusion matrix. (B): TPR, FPR, and Precision can help us
summarize the information in the confusion matrix.

We can summarize the information in an ROC curve in a single metric, the Area

Under the Curve (AUC): the higher the AUC, the better the model performance. AUC

can take values between 0 and 1, and a “random” classifier, that is, a classifier that

makes its prediction by drawing from a Bernoulli distribution achieves an AUC equal

to 0.5.

In strongly unbalanced datasets, it is extremely easy to predict the negatives, so

the difficulty lies in making a small number of excellent predictions, that is, pre-

dicting only a fairly small number of links and doing so accurately (having TP and

few FP). AUROC does not measure this ability very well, because even when many of

our predicted links are non-existing (many FP), the FPR=FP/(FP+TN) remains rela-

tively small due to the huge number of TN. Precision-Recall Curves (PRCs) are inter-

esting alternatives to ROC in this context (see, e.g., Brintrup et al. [2018]). Precision

(TP/(TP+FP)) gives the number of correct guesses out of all guesses, and Recall is the

TPR defined above (TP/(TP+FN)), which gives the number of correct guesses out of all

the positives in the dataset. The area under the precision-recall curve (PR-AUC) can

be used to summarize the performance of the model. Nevertheless, here we present

our results in terms of AUROC (AUC for short) for two reasons (see Appendix B.2).

First, when a model has a curve that dominates in the TPR-FPR space, it dominates in

the P-R space. Since these curves convey relatively similar information, it makes sense

to present the more commonly used metric. Second, PR-AUC, in contrast to AUROC,
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is highly sensitive to the undersampling ratio. Since the undersampling ratio is a rela-

tively arbitrary choice we make, and future researchers would likely make a different

choice, we prefer to establish our benchmark performance using AUROC and include

Precision-Recall Curves in Appendix B.6.

2.3 Results

We first show the performance of our approach and compare it with those of a few

relevant benchmarks. Next, we show which features substantially impact the model’s

performance. Finally, we train the model with data from a specific country and show

its performance in predicting links in other countries, mimicking a real-world appli-

cation more closely.

2.3.1 Prediction performance

Fig. 2.2 shows the results of our machine learning model on the three different datasets.

The model provides very good results, with a value for the AUC always above 0.9,

vastly outperforming the 0.5 AUC benchmark value of random classifiers. These re-

sults are in line with those obtained by Kosasih and Brintrup [2022], who also get AUC

values slightly above 0.9, although the comparison is not straightforward because the

two methods differ substantially in their inputs, the networks analyzed, and the over-

all approach.

Fig. 2.3 shows the corresponding ROC curves. Recall that the ROC curve is built

by ranking all pairs of firms by their probability of being connected, and considering

that a link exists only for the n pairs with the highest probability. The steep ascent

at the beginning of the curves in Fig. 2.3 tells us that if we increase n a little (i.e. if

we move on the curve in the right direction), we will correctly predict more and more

links at the cost of misplacing a few.

What would these numbers imply for a real-world, truly out-of-sample test case?

In such a case, we would not be able to undersample the set where predictions are

made, since, by definition, we wouldn’t know whether links exist or not. To better

understand what these numbers would imply in practice, Appendix B.2 provides an

analysis of Compustat with no undersampling. We found that if we predicted a num-

ber of links equal to the existing number of links in the test set (310), 23% of the pre-

dicted links would be true links (and by definition, these predictions would recover

23% of all the positive links).
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Figure 2.2: AUC values for the Gradient Boosting model on the three datasets. Av-
erage values (bars) and standard deviations (error bars) are computed on the five
different realizations of the subsampled datasets. Each error bar shows ± one stan-
dard deviation from the average value.
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Figure 2.3: ROC curves of the Gradient Boosting model. For each dataset, we plot 5
ROC curves, obtained on five different train-test splits of the datasets

2.3.2 Benchmarks

To further assess the performance of our model, we provide three relevant bench-

marks: a sales-driven maximum entropy model, a gravity model, and an exponential ran-
dom graph model (ERGM). All the benchmark models were tested on the same test
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sets used for the gradient boosting model. However, the training procedure and the

information used vary from benchmark to benchmark.

Sales-driven Maximum Entropy model. We use a model similar to the model used

by Almog et al. [2019], Squartini and Garlaschelli [2014], Garlaschelli and Loffredo

[2004, 2005], Garlaschelli et al. [2007] to predict the topology of the International

Trade Network. In one of its simplest forms, in the context of trade between countries,

the model predicts that, if i and j have GDP Yi and Yj respectively, the probability of

trade between i and j (i.e., of goods flowing from i to j) is

pij =
zYiYj

1 + zYiYj
,

where z is a parameter to be estimated. We use the previous formula and substitute

firms’ sales for countries’ GDP to compute the probability of a link between two com-

panies. Since pij is an increasing monotonic function of YiYj , assuming z > 0, we can

simplify the expression above and compute a score sij as

sij = YiYj .

We build the ROC curves by using the score sij to rank the links from the most to the

least likely to exist.

The advantages of the sales-driven maximum entropy model are that it does not

need training (it can be used directly on the test data) and it requires very little data.

A substantial drawback, however, is that while reciprocity tends to be low in pro-

duction networks (e.g. around 5% in the Ecuador network and lower in FactSet and

Compustat, Bacilieri et al. [2023]), this model predicts perfect reciprocity, pij = pji .

The next benchmark we introduce keeps a similar structure but allows for non-

symmetric predictions and uses more information.

Gravity model. The gravity model owes its name to a loose analogy with Newton’s

gravitational law. First pioneered by Ravenstein [1889] in the study of migration pat-

terns, it was later used by Tinbergen [1962] to explain international trade flows. The

model was immensely successful in this field due to the good fit to observed trade

flows, and its parsimonious and tractable representation of economic interactions [An-

derson, 2010]. In a generalized form, the Gravity Model of international trade states

that the expected amount of trade
〈
wij

〉
from country i to country j is

〈
wij

〉
= K

Y αi Y
β
j

d
γ
ij

, (2.8)
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where dij is the geographic distance between the countries and K , α, β, and γ are

free parameters. We test whether
〈
wij

〉
can be used as a meaningful score for link

prediction. Specifically, if we define a score sij = log
(〈
wij

〉)
we can rewrite Eq. 2.8 as

sij = constant +α logYi + β logYj −γ logdij . (2.9)

To estimate this model, we take the “existence” variable as the dependent variable,

replacing sij . Since it is binary, we estimate the model using logistic regression, which

we perform on the training samples. 8

A limitation of this model is that it does not use any information on firms’ indus-

trial sectors. While we could, in principle, add a set of dummies, we had limited suc-

cess doing this, partly because many industry pairs appear only once or, more rarely,

appear in the test set but not in the training set. We refrain from pursuing this fur-

ther while noting that the transparency of the logit (or linear probability) models may

make them useful in practice.

The estimated values for the parameters α, β, and γ are shown in Table 2.3. The lo-

gistic regression picks up a few relevant features of the network. In all three datasets,

γ takes positive values - unsurprisingly, as distant firms are less likely to be connected

than closer ones. The values of α and β are more interesting, as they offer some in-

sights about the differences between the datasets. Recall that Yi denotes the sales of

the supplier, and Yj denotes the sales of the customer. For Compustat, the value of α

is negative, while β is positive. These values suggest that holding customer size con-

stant, pairs with larger suppliers are less likely, and holding supplier size constant,

pairs with larger customers are more likely. This somewhat counterintuitive result is

a consequence of Compustat’s way of collecting supply chain data: it is hard to find

large firms that sell more than 10% of their production to a single customer. The α

value becomes positive again when this bias is lower (FactSet) or absent (Ecuador).

α β γ

Compustat −0.059± 0.004 0.743± 0.006 0.170± 0.009
FactSet 0.294± 0.001 0.660± 0.001 0.158± 0.001

Ecuador 0.4854± 0.0004 0.4311± 0.0003 0.1377± 0.0002

Table 2.3: Average value and standard deviation of the three coefficients (across the
five subsampled datasets).

8We also added a small quantity δ = 10−2 to the sales and distance variables before taking the log.
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Exponential Random Graph Model (ERGM). An ERGM is a probability distribu-

tion Pe over the set of possible networks G,

Pe (G) ∝ exp
(
θ · x (G)

)
,

where x (G) is a vector of network G’s statistics and the vector θ contains the model’s

parameters. The statistics can include individual, dyadic or global information about

a network, such as the sales of firms, the geographical distance between pairs of firms,

and the average density of the network.

These parameters are estimated so that the expected network statistics match the

observed ones, EG [x] = x
(
Gempirical

)
. ERGMs are popular in the study of socio-economic

networks, in part because they can shed light on the mechanisms driving the net-

work formation process. For instance, looking at Japanese firms, Krichene et al. [2019]

find that link formation is driven by geographical distance, industrial sector, size (al-

though with disassortative mixing), common main bank, reciprocity, and transitivity

with common partners.

Finally, ERGMs make link prediction tasks straightforward. Let G+ij and G−ij be

two identical networks, except that i is connected to j in G+ij but not in G−ij . Thus the

odds ratio pij of an edge from i to j being present rather than absent is

pij =
Pe

(
G+ij

)
Pe

(
G−ij

) = exp
(
θ (̇x(G+ij)− x(G−ij))

)
.

We provide a more thorough discussion on link prediction with ERGMs and ex-

plain how we fit the model in Appendix B.4.

Results. Fig. 2.4 shows the results. The Gradient Boosting model substantially out-

performs the three benchmarks. An interesting result is that, on the Compustat dataset,

the maximum entropy model has weak performance and is vastly outperformed by

the gravity model. This is again due to the way Compustat collects information on

the supply chain. The correlation between sales and indegree (number of suppliers) is

0.76, but only -0.16 between sales and outdegree (number of customers). As a result,

good models should be able to assign greater probability to pairs in which a large firm

is the customer rather than the supplier, something that the gravity and the gradi-

ent boosting model are flexible enough to do, but the sales-driven maximum entropy

model fails to do because it predicts pij = pji .
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Figure 2.4: Values of the AUC for the benchmark models. Average values (bars) and
standard deviations (error bars) are computed on the five different realizations of
the subsampled datasets. Each error bar shows ± one standard deviation from the
average value.

2.3.3 Importance of different features

Computing features’ importance means - in general - quantifying the relative predic-

tive power of the features. Here we compute each feature’s permutation importance
[Breiman, 2001]. A feature’s permutation importance is the decline in the model’s

performance when the values of the feature are randomly shuffled. Shuffling breaks

the relationship between the feature and the target and helps us assess how strongly

our predictions depend on that feature.

The algorithm works as follows. Let m be a fitted predictive model, D be a dataset

with units in rows and variables in columns (here D is the test set), and K be a given

number of repetitions of the randomization. We first compute the reference perfor-

mance P of the model m on D. Then, for each repetition k = 1, . . . ,K , and for each

feature j in D, we first randomly shuffle the column j of the dataset to generate a cor-

rupted version of the data D̃k,j , and then compute the score Pk,j of m on the corrupted

data D̃k,j . Finally, we compute importance Ij for feature j as Ij = P − 1
K

∑K
k=1Pk,j .
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Permutation feature importance can give misleading results in correlated features

that need to be permuted together and whose contribution is hard to disentangle. In

our data, the features “country pair” and “geographical distance” are highly corre-

lated, so we permuted these jointly (that is, we randomized both columns simultane-

ously).

Figure 2.5: Features’ permutation importance. Average values (bars) and standard
deviations (error bars) are computed on ten random permutations of one of the sub-
sampled datasets. Each error bar shows ± 1 standard deviation from the average
value.

In all the datasets, we observe that the industrial sector is the main driver for the

performance (see Fig. 2.5). This is a sensible result. Firms producing similar goods

will buy similar inputs, and, consequently, knowing the industrial sectors of a pair of

firms helps us a lot in predicting commercial partnerships.

It is hard to make an unambiguous ranking of the other features; however, a few

facts can be highlighted. The combination of Geographical distance and Country pair

(Province pair for the Ecuador dataset) is very relevant for Ecuador and FactSet. These

features are less relevant in Compustat. This could be because most Compustat firms

are based in the U.S., so knowing a pair of firms’ countries is not very informative.

Finally, features related to size, while less important, do appear significant. In

Compustat, and to a lesser degree in FactSet, the sales of the customer is an important

feature; again, this makes sense since Compustat and to a lower extent FactSet include

data arising from the “disclosure of large customers” rule; the sales of the supplier is

also important, but less. In Ecuador, the expenses variables appear more important

than the sales variables.
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R&D intensity and labour productivity appear to have some mild importance in

Compustat, but none in FactSet (these variables are not available for Ecuador). This

is an interesting negative result, suggesting that overall, most of the predictive ability

comes from intuitive and widely available data: industry pairs, distance, and firm

sizes. Of course, we expect that future studies should be able to identify and design

better features, based on network and economic theory.

2.3.4 Unobserved countries

In many countries, including several large advanced economies, no production net-

work data is available. Can we predict the production network of these countries,

using what we learn from countries where the production network is available, cou-

pled with standard data on firms’ industries, locations, and sizes?

In principle, yes. We can train a model on a country where network data is avail-

able and apply this model using only firm-level data. Here we demonstrate that this

is technically feasible (we only need to renormalize the variables to make the model

portable from one country to another), and we establish two benchmark results.

The first uses the fact that FactSet contains data on several different countries. We

remove a country from FactSet, train the model on the remaining data, and predict

the network of the country that has been removed. If we perform well, we could, in

principle, predict the production network of a country where no production network

data exists “as if FactSet had collected it”.

We then attempt a harder prediction task: Can we train the model on Ecuador, and

predict FactSet? And vice-versa? Our results here will be much less promising, and

we will explain why.

Normalizing variables. Given our results on features’ importance, we consider only

the most important features: firm sales, industrial sector, and geographical distance.

Working with raw quantities is sometimes not feasible (e.g. because the classifica-

tion systems for industries are different), sometimes non-sensical (e.g. if sales are

expressed in a different currency), and sometimes sub-optimal (e.g. because the geog-

raphy of the countries is very different; for instance, the distance between any pair of

Japanese firms is lower than the distance between Boston and Los Angeles).

To make the features more homogeneous across countries so that learning in one

can be used in the other, we rescale each feature such that within a given country, it

ranges between 0 and 1. If xi represents the sales of firm i based in country c, and if ω
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is the set of all the firms based in c, we compute the quantity Xi as

Xi =
logxi −minj∈ω logxj

maxj∈ω logxj −minj∈ω logxj
.

Similarly, we substitute for the distance dij between i and j the quantity9

Dij =
logdij −mink,l∈ω logdkl

maxk,l∈ω logdk,l −mink,l∈ω logdk,l
.

Finally, to homogenize the industry classification systems, we convert both FactSet’s

and Ecuador’s industrial sector code to NAICS classification.10

Different countries in FactSet. FactSet contains information on companies based all

over the world. However, most firms are based either in the US, China, or Japan: each

of these countries hosts roughly one-third of the firms in the dataset. These coun-

tries are thus excellent candidates for testing cross-country predictability, as taking 2

out 3 in the training set implies roughly the same train-test ratio as in the main task

(0.7/0.3). We build a dataset as described in Section 2.2.2, and then filter it to retain

only pairs of firms based in the same country.

More precisely, while previously we considered all links and split them into a test-

ing and training set at random (Fig. 2.6, left), we now take all the within-country links

in a specific set of countries as the training set, and all the links within a target country

as a testing set (Fig. 2.6, right). Note that all the between-country links are entirely

discarded - they are part of neither the training nor the testing set.

FactSet on Ecuador, and vice-versa. Aside from normalizing and harmonizing the

variables, we again remove from FactSet all the links between firms based in different

countries. For both datasets, we kept the undersampling ratios of Sec. 2.3.1.

9To avoid computing the logarithms of null values, we added a small quantity δ = 10−2 to the sales
and the distance of each firms couple.

10SIC to NAICS crosswalk was provided by NAICS association https://www.naics.com/

sic-naics-crosswalk-search-results/. ISIC (Revision 4) to NAICS concordance table was down-
loaded from https://unstats.un.org/unsd/classifications/Family/Detail/27. We take SIC,
ISICs, and NAICS at the third-digit aggregation level. When the mapping between codes is not 1-
to-1, we choose the more common combination (e.g., a SIC sector S1 might be mapped 75% of the times
to a NAICS sector N1 and 25% of the times to a NAICS sector N2. We consider S1→ N1 as the correct
mapping). If more than one combination of codes appears with the same frequency (11% of the SIC
codes and 10% of the ISIC codes), we select one at random.
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Figure 2.6: In the previous section, the links to predict (dahed lines in light blue)
were randomly picked from the network. Now, the network is split into disjoint
parts. Note that in training set, we remove inter-country (blue-to-orange) links.

Results. Fig. 2.7 shows the results for the cross-country prediction tasks using Fact-

Set. Our approach retains a decent predictive performance with an AUROC greater

than 0.8; while the quality of the prediction decreased compared to the previous sec-

tion (Figs. 2.2 and 2.3), our approach is still consistently better than the benchmarks.

The simple maximum entropy model is a particularly interesting benchmark for this

task, because it requires no training, and is, therefore, a straightforward method al-

ready available in many countries to reconstruct production network data.

To understand why our approach is not as effective as the previous cases, we look

at the distribution of the rescaled quantities D (distances) and X (sales) for the three

different countries (Fig. 2.8 and Fig. 2.9). The point here is that we cannot expect an

algorithm to predict well on a dataset that is very different from the training sample,

so we explore some basic statistical properties of each dataset separately to see if they

appear similar (i.e. as if they were drawn at random from the same sample).

We see that Japan’s D distribution has a prominent peak for small values, which

is not present for the other countries, and another peak around D = 0.9, while the

distributions for the US and China peak aroundD = 0.95. The distribution of rescaled

sales X also appears quite different: while most of the mass of the distributions for

China and the US is between X = 0.5 and X = 0.9, that of Japan is between X = 0.4

and X = 0.7. These differences are noticeable and likely to contribute to the decline

in performance, but overall, there is a good degree of homogeneity in FactSet, making

cross-country prediction possible.

By contrast, the results of the second experiment, where we predict FactSet using

Ecuador and the other way around, are not as encouraging. The performance of our
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Figure 2.7: AUROCs for the Factset cross-country prediction task, for different
dataset splits. Average values (bars) and standard deviations (error bars) are com-
puted on the five different realizations of the subsampled datasets. Each error bar
shows ± 1 standard deviation from the average value.

Figure 2.8: Distribution of rescaled distances D for the US, China, and Japan

Figure 2.9: Distribution of rescaled sales X for the US, China, and Japan
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Figure 2.10: AUROC values for all the combinations of training and test sets. For
ease of comparison, we report in the first five rows the results of Fig. 2.2 and Fig. 2.7

model hardly surpasses those of simpler classifiers (see Fig. 2.10; Maximum Entropy

would have a similar performance). We again attribute this outcome to the consider-

able differences between the two datasets. The distributions of rescaled sales X and

rescaled distances D, shown in Fig. 2.11 and Fig. 2.12, support this intuition.11 In

particular, the distributions of firm sizes are very different in FactSet, which is based

on large, listed firms, and in Ecuador, which is an administrative dataset.

Aside from firm sizes and distances, the key features helping prediction are the

industry pairs. In Fig. 2.13, we ask, for each dataset and each sector-pair, “If we ob-

serve two firms with a specific sector-pair, what is the (empirical) probability that

there is a link between them?”. In other words, for each sector pair, we check the

share of observations in the (undersampled) dataset that correspond to existing links.

The percentages differ dramatically between Ecuador and FactSet, basically showing

no correlation.

We think this is the result of differences in the structure of the economies, differ-

ences in data collection methods, and issues with matching classification systems.

Overall, the results suggest that our approach can predict links on an unobserved

country as long as the data on the production network of the target country is collected

using similar methods. We cannot be sure that the good results we have for cross-

country predictions using FactSet would extend to cross-country predictions using

administrative datasets, but we think this should be tested and our work here provides

a clear benchmark.
11The distributions are computed on the full datasets, i.e., before splitting them into test and train

sets (but after the pre-processing, removing international links and rescaling variables).
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Figure 2.11: Distribution of D for FactSet and Ecuador.

Figure 2.12: Distribution of X for FactSet and Ecuador.

2.4 Conclusions

We used machine learning classifiers to infer the presence of commercial relationships

between companies. Our approach shows solid predictive performance. Given how

parsimonious our model is regarding training features and how consistent the results

are across datasets, we believe this is a striking result.

Our approach outperforms a few well-known benchmarks, although the compar-

ison is difficult because the models have different data requirements. Nevertheless,

the strength of our model lies in the possibility of leveraging company-specific fea-

tures, numerical and categorical. For supply chains, these properties (sales, industry,

and location) are often easier to find than network-specific metrics that other methods

require.

Our results also suggest that reconstructing the production network of country A,

given the production network of another country B, might be a feasible challenge. In

this chapter, we described one first attempt to establish a benchmark that we expect

can be beaten in the future, for example, by including in the predictions some pre-

vious knowledge on the target production network. If successful, this effort would

dramatically cut the efforts required to obtain production networks’ data and make

fine-grained data much more widely available to researchers.
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Figure 2.13: Percentage of existing links in each sector couple in the two datasets.
The two quantities are uncorrelated (the correlation coefficient ρ is only 0.09), sug-
gesting a significant difference in the economies’ structures and the data collection
process.

An obvious extension of our work would be to include and design new features,

company and pair-specific, from both network and economic theory.

Simple link prediction models based on local similarity indices [Zhou et al., 2009],

or more sophisticated models based on topological information have proven to be ef-

fective in predicting links for a wide set of networks, including supply chains [Brin-

trup et al., 2018, Kosasih and Brintrup, 2022]. It is well known in the forecasting

community that forecasts combination often improves performance. This principle

also applies in the context of link prediction: optimal predictions are often obtained

by stacking together the output of several different models [Ghasemian et al., 2020].

Combining the approach described in this work with other topology-based link pre-

diction methods (see Chapter 1) is an interesting and important future direction for
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research.

As we discussed in Chapter 1, a related avenue for further research would be to

find better metrics for evaluating performance. Here we have used the classic AU-

ROC, noting its limitations, but in the future, it would be interesting to find perfor-

mance metrics that focus on the ability to predict existing links, are invariant to the

undersampling ratio, evaluate the ability of the model to predict topological features,

and evaluate whether the reconstructed network is useful when plugged in economic

models.
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Chapter 3

Firms dynamics and production networks
reconstruction

Introduction

Fifty years ago, Wassily Leontief was awarded the Nobel prize in Economics for his de-
velopment of the input-output method and its application to important economic problems.
His input-output framework [Leontief, 1936] views industries as nodes in a network

of physical and monetary flows. Conservation laws for these flows lead, at economic

equilibrium, to linear systems of equations linking the production of different indus-

tries, whose solutions show how differences in the output of an industry impact the

output of any other economic sector.

These solutions were used to determine, for example, how much one should invest

in each sector of an economy in order to increase the production of a given sector. It

was in particular an important tool for central planners in the decades following the

Second World War [Bollard, 2019].

Later on, input-output analysis was used to understand the origins of macroeco-

nomic fluctuations, with the seminal paper of Long and Plosser [Long and Plosser,

1983], where the input-output network amplifies small shocks that can lead to system-

wide crises. However, most of these analyses are conducted at a very coarse-grained

level, in the sense that they attempt to model the different sectors of the economy

rather than modelling more granular constituents: there are 405 industries in U.S. Bu-

reau of Economic Analysis’ most disaggregated input-output tables, while there are

approximately 300 million firms worldwide [Pichler et al., 2023]. This is an unset-

tling remark, as recent literature [Acemoglu et al., 2012, Carvalho et al., 2021, Diem

et al., 2022] shows that fine-grained production networks play an important role in

the propagation of shocks and that aggregating firms into sectors can lead to a mis-
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estimation of risk and distress propagation. Detailed firm-level data will also be cru-

cial to the coming of age of agent-based modelling, a promising approach to studying

out-of-equilibrium macro-economic phenomena [Dessertaine et al., 2022], that recently

matched (occasionally, improved) the forecasting accuracy of more traditional meth-

ods [Poledna et al., 2023, Hommes et al., 2022, Pichler et al., 2022].

As we mentioned in the previous chapters, firm-level production data is thus very

useful, but is also scarce [Bacilieri et al., 2023]: the few datasets that are available only

cover certain countries or certain categories of companies, leaving most of the global

production network inaccessible. As we saw in Chapter 1, to tackle this problem,

scholars have attempted to reconstruct the production network, inferring the topology

of the network using only partial, aggregate, or related data.

The motivation of this research effort is that economic models conceived to repre-

sent the economy at the firm level require a good knowledge of the production net-

work and should lead to a better understanding of economic dynamics and forecasts.

But the converse should also be true: supply chains are vital in a firm’s production,

and they should leave a trace on the dynamics of a firm, as observed when considering

natural disasters [Carvalho et al., 2021] or the dynamics of companies’ market capital-

isation [Abergel and Akar, 2022]. Is it possible to exploit this observation backwards,

and infer the network topology from firm dynamics?

The study of firm dynamics, through the statistical analysis of their growth rates,

has a long history dating back to the work of Gibrat [Sutton, 1997]. Gibrat’s model is a

multiplicative growth model initially proposed to explain the distribution of firm sizes

(proxied, e.g., by sales or number of employees). The model assumes that a firm grows

by a random percentage of its current size from one period to the next. This random

variable is thought of as being independent across firms and was initially also mod-

elled as having the same distribution for all companies. Although this last hypothe-

sis has been weakened in past work, showing for example that the volatility of firm

growth decreases with their size in a non-trivial way [Amaral et al., 1997], and even

that it is necessary to think of the volatility of growth as being firm-dependent [Moran

et al.], the hypothesis of independence has not been explicitly questioned thus far. In

this chapter, we propose to go beyond this hypothesis, making the dependencies be-

tween firm growth explicit by studying the correlations between them and leveraging

this information to reconstruct the firm network.

The chapter is organized as follows. Section 3.1 gives an overview of the data we

use for our research, which we use in conjunction with the methods we outline in Sec-

tion 3.2. Section 3.3 presents clear empirical evidence of the link between the supply
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chain and firm growth. Section 3.4 makes use of these observations to reconstruct the

production network from firm growth time series. We detail both the optimization al-

gorithm used to carry out this reconstruction as well as the results we obtain. Finally,

Section 3.5 concludes.

3.1 Data

The primary data sources used in this chapter are the FactSet Fundamentals and Fact-

Set Supply Chain Relationships datasets. Together, they provide a coherent environ-

ment from which companies’ financial information (such as their quarterly sales or

market capitalisation), legal information (e.g., their industrial classification or head-

quarters location) and supply chain connections can be retrieved. Although it is very

large, it should be noted that this dataset has a strong bias in covering mainly US

firms.

The first dataset contained in this environment, FactSet Fundamentals, contains

firms’ financial, balance sheet, and legal information. The dataset spans a time range

going from the early 1980s to the present day and covers developed and emerging

markets worldwide for a total of around 100,000 active and inactive companies. From

1995 onwards, data on firms’ sales, capitalisation, and investments are available for

each quarter.

The second dataset, FactSet Supply Chain Relationships, is assembled by FactSet

using multiple sources. The most prominent of these are filings required by the US

Federal Accounting Standards, whereby each firm must report its most important sup-

pliers and clients, and import-export declarations from bills of lading. These sources

are complemented with insight mined by FactSet from news, press releases, company

websites, and other sources of business intelligence, which permit the inference of a

link between two companies. Each record of a link between two companies can be

represented by a temporal network, using directed links connecting a supplier to its

customers. The temporal dimension of this data is also provided by FactSet: each link

is assigned specific timestamps indicating the first time the connection was reliably

attested and when the connection is known to have ended, when this is the case.1

To simplify our analysis, we have discarded the temporal dimension by aggregat-

ing all the links into a single network that only considers whether a link between two

companies was ever present in the period we consider. Another simplification we per-

form is to aggregate firms that may be part of large conglomerates at the ultimate

1Note that this procedure implies that persistent links appear multiple times, as they are reported
over many years.

69



parent level using ownership structure data. Thus, the total sales, market capitali-

sation, and any other balance sheet data of these aggregated entities are the sums of

these quantities for each of the constituting entities. At the network level, this proce-

dure has the effect of deleting possible self-loops, as, for example, two branches of the

same conglomerate that are present in separate countries can trivially be reported to

have supply chain linkages between them. These aggregated entities constitute what

we understand by “firms” or “companies” in the remainder of this chapter.

Finally, we have only retained firms in the global supply chain’s weakly largest con-
nected component,2 whose financial information was available for at least eight years,

thus removing time series that are too short for our analysis. Our final sample is

composed of 16,401 firms connected by 178,911 links. Details on the data’s initial

processing can be found in Appendix B.3.

Number of firms 16,401
Number of links 178,911

Density 6.7× 10−4

Average degree 10.9
Median degree 7

Max. degree 1,664

Table 3.1: Network summary statistics

3.2 Growth time series

We label firms with an index i = 1, . . . ,N , calling si(t) the sales of firm i at time t

(counted in quarters). With this, we define the annual growth rate of the sales of the

firm as

gi(t) := log
(
si(t + 4)
si(t)

)
. (3.1)

This quantity describes sales variations over the scale of a year, sampled quarterly. We

follow Moran et al. in describing sales growth rates with a random variable with a

Gaussian central region, although with fatter tails than a normal distribution, along

with firm-dependent mean and variance (volatility). This, therefore, leads us to define

2A weakly connected component is a set of nodes such that for any two nodes A and B, there exists
a directed path starting at A and arriving at B or from B to A, but not necessarily the other way around.
When both a path A→ . . .→ B and B→ . . .→ A exist for any two nodes A and B in the component, a
much more restrictive condition, then it is said to be strongly connected.
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the rescaled growth rates,

g ′i (t) :=
gi(t)−Et′ [gi(t′)]√

Vt′,t [gi(t′)]
(3.2)

where the average is computed over all times t′, but the variance is computed from

the time series where the observation corresponding to t′ = t has been removed. This

corresponds to the leave-one-out rescaling defined in Bouchaud and Potters [2003],

where the denominator on the right-hand side of Eq. (3.2) allows one to rescale with

respect to the volatility when considering a variable with a fat-tailed distribution.3 We

drop the apostrophe below for clarity, as we will not use the “bare” growth rates in the

remainder of this chapter.

Our goal in the rest of this chapter is to infer the supply chain structure from the

correlation structure of the growth rates. Nonetheless, the growth rates of two compa-

nies are likely correlated because of reasons other than their connection through the

supply chain. This can be the case, for instance, if two firms are in a given country

that endures an exogenous economic shock, as in the case of the Covid-19 pandemic.

Our strategy therefore will be to attempt to remove these common factors, assuming

that what remains in the correlations must be the more subtle effects due to the supply

chain. To illustrate the technique used for this, we shall resort to a very simple model

that is described below.

3.2.1 Removing common shocks

Let us propose first a very simple example, where one has N time series xi(t), with

1 ≤ i ≤ N and 1 ≤ t ≤ T . Each time series xi (t) is composed of an idiosyncratic term,

driving time series i only and given by i.i.d. Gaussian terms, and a common term that

affects all the time series and that is also random. The model reads

xi(t) = ξi(t) + σv(t), (3.3)

where ξi(t) is a Gaussian random variable with E[ξi(t)] = 0 and E[ξi(t)ξj(t′)] = δijδtt′ ,

with δij the Kronecker delta (i.e., δij = 1 if i = j and 0 otherwise). Similarly, v(t) is a

Gaussian random variable satisfying E[v(t)v(t′)] = δtt′ and E[v(t)ξi(t′)] = 0.

3When the distribution is fat-tailed, the “naive” estimator for the variance, proportional to
∑
i gi (t)

2,
may be dominated by a single observation. As a result, when gi (t) is very large, g ′i (t) doesn’t adequately
reflect this “extremeness” because the same large value inflates the denominator.
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In this case, where we know precisely the nature of the common shock, we can

estimate v(t) when N is large by writing:

1
N

N∑
i=1

xi(t) =
1
N

N∑
i=1

ξi(t) + σv(t) ≈
N≫1

σv(t). (3.4)

The correlation matrix for the model’s time series reads

Cij := E[xi(t)xj(t)] = δij + σ2, (3.5)

which we can rewrite as C = I+Nσ2uu⊺, with u = 1√
N

1, and where u⊺ indicates vector

transposition.4 Because C is the sum of the identity matrix and a rank-one matrix,

it is easy to see that it has an eigenvalue 1 + σ2, corresponding to the eigenvector u
as Cu = (1 +Nσ2)u, with all the other N − 1 remaining eigenvalues equal to 1, with

eigenvectors corresponding to the canonical basis of the vector space that is orthogonal

to u. We can in fact go further in this geometric interpretation and bring meaning to

the vector u by focusing on the projection of the time series onto it. What we mean by

this is that for every time step in the multi-dimensional time series, we may consider

the vector x(t) = (x1(t), . . . ,x2(t)), and consider the projected time series v̂(t) = u · x(t).

In this case, we notice that for large N we should have v̂(t) = 1
N

∑N
i=1xi(t) ≈ σv(t).

We can actually generalise this: if we replace Eq. (3.3) by

xi(t) = ξi(t) + σuiv(t), (3.6)

that is a model where each time series has a different exposure (or loading, in factor

models’ jargon) to the common mode v(t), then the correlation matrix is the same and

we still have an eigenvector u = (u1, . . . ,uN ).5 Doing the projection x(t) ·u(t) still leads

to v̂(t) ≈ v(t).

In fact, we can also consider the orthogonal projector to u, given by P = I − uu⊺,

or equivalently Pij = δij − uij . We can now apply this projector to our time series, as

y(t) = Px(t), or equivalently by defining Y = PX. We have yi(t) = xi(t)− v̂(t) ≈ ξi(t).
To address our general problem of removing common fluctuations from time se-

ries, we can adopt the following procedure to remove the common mode and be left

only with the idiosyncratic fluctuations. Assuming that the common mode v(t) is the

primary driver of time series variations (σ ≫ 1), we can:

1. Take the time series and compute the empirical correlation matrix,

4This vector u is chosen to be normalised.
5This vector can be assumed to be normalised, if not we can always replace σ by

√
u2σ in the model.
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C

Figure 3.1: (A) The time series xi (t) are created by adding a sine wave and an id-
iosyncratic random noise. (B) The spectrum of the empirical correlation matrix
Ĉij = 1

T

∑T
t=1xi (t)xj (t), along with the random benchmark given by the Marčenko-

Pastur distribution. Note the presence of an eigenvector at λ ≈ 16, beyond the random
benchmark (C). The eigenmode v̂(t), obtained by projecting the time series onto the
vector û corresponding to the largest eigenvalue, tracks the collective oscillations of
the system.

2. Diagonalise the correlation matrix and rank the eigenvalues and eigenvectors

according to the magnitude of the eigenvalue,

3. Project the time series onto the eigenvector corresponding to the largest eigen-

value to get the dynamics of the common mode,

4. Remove the dynamics of the common mode from the time series by using the

orthogonal projector to the corresponding eigenvector.

Naturally, we can repeat this procedure and remove also the mode corresponding

to the second largest eigenvalue and so on, so that it is easily generalisable to other,

more complex situations than the one of Eq. (3.3) (see Fig. 3.1 for an example where

the common mode v(t) is a sinusoidal wave).

The issue, however, is that this relies on the assumption that the empirical cor-

relation matrix is a reliable estimator of the “true” underlying correlation matrix

from which the data is generated.6 Naturally, this is not true, and one expects some

6At least in this model. In reality, when analysing time series with this point of view we are mak-
ing the more stringent assumption that the correlation structure of data is time-invariant. Although
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estimation error when the length of the time series T is finite. In our toy model

above, it is in fact possible to separate the contribution of the idiosyncratic noise,

as Ĉ0 := 1
T (ξξ⊺)ij = 1

T

∑T
t=1ξi(t)ξj(t). Because the elements of ξ are i.i.d. Gaus-

sian random variables, this empirical correlation matrix is known as a Wishart ma-

trix [Wishart, 1928], and the statistical properties of its spectrum are known to be

determined by the Marčenko-Pastur distribution [Marčenko and Pastur, 1967]. For a

more in-depth understanding of this and other links with random matrix theory, we

invite the reader to consult Potters and Bouchaud [2020], but we will explain the main

results we need below.

Because Ĉ0 −→
T→∞

I, we expect naturally that for large time series the spectrum of

Ĉ0 should be concentrated around 1. In practice, however, because of measurement

error, we don’t expect all of its eigenvalues to be equal to 1. Thus, we intuitively

expect the full spectrum of Ĉ to be constituted of N − 1 eigenvalues close to 1, which

constitute the contribution coming from C0, and a single-peaked eigenvalue close to

σ2, which is the contribution coming from the dynamics of v(t) that couples all of

the N time series. For the full empirical correlation matrix Ĉ, we also expect that the

eigenvector corresponding to its largest eigenvalue will satisfy, û ≈ u. However, the

result of Marčenko-Pastur is that in the limit where both N,T →∞, but with the ratio

q = N
T fixed, the spectrum of C0 is concentrated in the interval (1−√q,1 +

√
q), called

the “bulk”, and may also have a delta-peak at 0 if q < 1. For finite N,T we also expect

some eigenvalues to be slightly out of this interval. This sheds light on why in practice

finding the common mode may be difficult: if, say, σ is of the order of q, then the

eigenvalue “spike” at 1+σ2 will in fact be inside the Marčenko-Pastur interval. This is

linked to the so-called Baik-Ben Arous-Péché (BBP) transition [Baik et al., 2005], and,

in this case, it is not possible to reconstruct the common mode.

We can indeed imagine that we run the model and execute the procedure described

above first for a value of σ ≫ q, and then reduce σ progressively until we reach σ ≈ q.

When diagonalising the empirical correlation matrix Ĉ and considering the eigenvec-

tor corresponding to its largest eigenvalue, û, this eigenvector will match the “true”

eigenvector u when σ ≫ q, so that for example û ·u ≈ 1. However, as σ → q this over-

lap will decrease, and the intuition then is that when the outlier eigenvalue reaches

the Marčenko-Pastur bulk, then its associated eigenvector û cannot now reliably be

thought of as an estimator of u, and will instead point in any random direction. In

there has been some work to relax this assumption in e.g. financial data Bongiorno et al. [2021], these
approaches are difficult, if not impossible, to adopt for the analysis of our time series because of their
relatively small length and sampling frequency.
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this case u · û will be of order 1/
√
N .7In this case, the usage of the projectors, or steps

3 and 4 of our procedure, will not lead to the identification of common modes.

The conclusion from this is that we are indeed capable of identifying common

factors in time series using this approach, but we must first make sure that these

modes correspond to eigenvalues of the correlation matrix that are not compatible

with a random benchmark.

Indeed, the example above corresponds to time series of equal length, where each

entry of the time series is drawn at random from a Gaussian distribution. In this

case, the random benchmark for the spectrum is determined by the Marčenko-Pastur

distribution, as said above. The case of our time series is, however, different since

sales data is not available for every company at any time. Growth time series can have

different starting points and lengths, and the period over which one can compute their

correlation is different for any pair of firms. Our data therefore has a lot of missing

values, and two firms present in non-overlapping times for example will be set to have

a correlation of 0. Another issue is that the growth-rate distribution is not Gaussian,

and has slightly heavier tails. Understanding the correlation spectrum of heavy-tailed

processes is feasible (see for example Biroli et al. [2007]), but very difficult to do for

any distribution.

We can nonetheless establish a random benchmark for the correlation spectrum

computationally and use it to identify eigenvalues indicating correlated modes. We

achieve this by creating a surrogate of the growth-rate time series where the miss-

ing data structure is preserved and where the individual growth rates are drawn at

random from their empirical distribution. This is similar to the procedure used in Vo-

denska et al. [2016], where the authors randomly shuffle a time series to benchmark

the eigenvalues of correlation matrices that can be distinguished from noise.

Fig. 3.2 shows that the real correlation spectrum has several eigenvalues that are

beyond the bulk corresponding to the random benchmark, both on the left and on the

right side of the bulk. Note that the presence of negative eigenvalues is a consequence

of missing data, and is something that one does not obtain for standard Wishart matri-

ces. The largest eigenvalue corresponds to the market mode, a collective trend shared

by all the firms in the supply chain. This collective mode concerns all firms, as shown

by the fact that the entries of the corresponding eigenvector have (roughly) all the

same sign and magnitude.8 Thus, this mode corresponds to a common factor in the

7See [Potters and Bouchaud, 2020, Section 14.2.2], and also Allez et al. [2014] for intuition for this
phenomenon using Dyson Brownian motion

8This is similar to the toy model presented in Section 3.2.1.
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economy, and all the firms move coherently with it. Interpreting the modes corre-

sponding to eigenvalues outside the bulk is more challenging: contrary to what is

observed in the correlation structure of financial returns, we have not been able to

identify them with specific industrial sectors or geographies. Because we are unable

to give these eigenvectors a clear interpretation, and since they could potentially carry

information about the production network, we have decided to remove only the first

eigenmode from the time series. In the rest of this chapter, we will refer to the growth

time series cleaned of the system’s first eigenmode as “cleaned” time series g̃i (t), and

to their correlation as the “cleaned” correlation.9

3.3 Network correlation and random benchmarks

We have introduced the main object of our analysis, firms’ growth time series gi(t).

We will now show that the supply chain induces specific correlations between firms, a

necessary step to justify our usage of correlations in supply-chain reconstruction. We

9It should be noted that what we mean by “cleaning” is, in a sense, the opposite of what is done
for returns’ correlation matrices in finance: there, usually one discards the modes corresponding to the
smaller eigenvalues (see e.g. Bun et al. [2017]). We, however, discard the largest mode because we want
to remove reasons for firm co-movement that are distinct from supply chain-induced co-movement.
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define the following correlation matrices,10

Cij(τ) = Et
[
gi(t)gj(t + τ)

]
,

C̃ij(τ) = Et
[
g̃i(t)g̃j(t + τ)

]
.

(3.7)

We can compute the average value of the elements of the matrix C and C̃ across the

pairs of firms (i, j) linked in the production network, defining averaged client/supplier

correlation functions. Given any (binary) adjacency matrix A we define

CA (τ) = Eij
[
Cij (τ) |Aij = 1

]
, (3.8)

and

C̃A (τ) = Eij
[
C̃ij (τ) |Aij = 1

]
, (3.9)

where the average runs over all pairs 1 ≤ i ≤ j ≤ N . In other words, CA and C̃A are

the average correlation between two neighbours in a graph with an adjacency matrix

A. This average can be computed using the true adjacency matrix of the production

network, S, or over the adjacency matrix of any other network.

3.3.1 Random benchmarks

We first compute the correlations averaged over the adjacency matrix S of FactSet’s

production network, where Sij = 1 if j either supplies or is a client of i, and compare

their value to those obtained with several random network models: the Erdős-Rényi
model [Erdős and Rényi, 1959], the Stochastic Block Model [Karrer and Newman, 2011],

and the Configuration Model [Newman, 2003]. We describe all three models and their

parameters in detail below.

We randomly sample n = 50 networks of each model, with adjacency matrices

R1, . . . ,Rn and compute the sets
{
CR1

, . . . ,CRn

}
and

{
C̃R1

, . . . , C̃Rn

}
. All of the models are

parametrized to match the empirical properties of the supply-chain network.

For the Erdős-Rényi network, we fix its density p to match that of the production

network, namely

p =
1

N (N − 1)

N∑
i=1

N∑
j>i

Sij .

10Note that here we use the notation Et[·] = 1
T

∑T
t=1 ·(t) to indicate the empirical average across the

time variable. The notation E used in the previous section corresponds instead to the “true” average
value of our stochastic model, computed over the distribution of the noise ξi and v. Similarly, Eij
indicates an empirical average taken by summing over the variables i and j.
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The Erdős-Rényi network has a homogeneous topology and no community struc-

ture. We therefore also used stochastic block models, which we initialized with sev-

eral different block schemes. Specifically, we divided firms into blocks {B1, . . . ,Bm} de-

pending on their industrial sector (at their SIC code’s third-digit level of aggregation),

their country, or their network community as identified by the Louvain community-

detection algorithm [Blondel et al., 2008]. The network densities within- and across-

blocks are chosen to be equal to their empirical counterparts,

ρij =
1

|Bi |
(∣∣∣Bj ∣∣∣− δij)

∑
k∈Bi ,l∈Bj

Akl . (3.10)

Finally, we use the configuration model to produce networks with a degree distribu-

tion that matches exactly the empirical one.

Fig. 3.3 compares the average correlation measured on the true production network

S and on the random network benchmarks. The value of CS (0) is twice as high as the

average correlation measured on the Erdős-Rényi graph, and ≈ 50% higher than the

correlation measured for the configuration model. The result for C̃S (0) are even more

striking, with the residual correlation on the supply chain being still ≈ 0.1 and most

of the random benchmarks dropping close to zero. This highlights the usefulness of

our cleaning procedure, as it significantly increases our signal-to-noise ratio. The full

distribution of the random benchmarks’ correlation can be found in Appendix C.1.

3.3.2 Relationship with network distance

A second way to show that the supply chain induces correlations in the dynamics of

firm sales is to study how the correlation behaves with respect to network distance.

Intuitively, we expect that two firms that are close to each other on the supply chain

will be more correlated than two firms that are far apart.

To see this, we start again from the binary adjacency matrix S of the production

network and define recursively

S
(k)
ij =

∑
l1,...,lk−1

1
(
Sil1Sl1l2 . . .Slk−1j > 0

) k−1∏
m=1

(
1− S(m)

ij

)
, (3.11)

where S(1)
ij = Sij . The first factor on the right-hand side is equal to 1 if and only if there

exists a path i → l1→ . . .→ j of length k linking i to j. The second factor is 0 if there

exists a shorter path from i to j in the network. Thus defined, S(k)
ij is equal to one only

if the shortest path between i and j is of length k.

We can see how these correlations decay with distance, by computing the values
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DS(k) = Eij

[
Cij(0)|S(k)

ij = 1
]
, (3.12)

and

D̃S(k) = Eij

[
C̃ij(0)|S(k)

ij = 1
]
, (3.13)

namely the average of the non-lagged growth correlation between any two firms that

are k-steps apart in the supply chain. We show this in Figure 3.3, C. The correlation

between firms decays as their distance in the production networks increases, revealing

again that the production networks mediate growth correlations between firms.

3.4 Supply Chain Reconstruction

In the previous sections, we have established that the supply chain induces correla-

tions between firms, and we have also established that our cleaning procedure in-

creases the signal-to-noise ratio of these correlations compared to the real supply

chain. We next propose a procedure to reconstruct the supply chain using the cleaned

correlation matrix.

Inferring networks from observations, or graph learning [Dong et al., 2019], is a

problem that encompasses several branches of natural and social sciences (see also

Chapter 2). Following Dong et al. [2019], we define the problem of graph learning as
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follows: given T observations on N entities, represented by a data matrix X ∈ RN×T ,

and taking some prior knowledge as given, we seek to infer relationships between our

N entities and represent these relationships as a graph G.

A possible approach to solve this problem is to assume that G encodes some statisti-

cal relationship between the entities. Specifically, probabilistic graphical models assume

that the structure of G determines the joint probability distribution of the observations

on the data entities: the presence or absence of edges in the graphs encodes the con-

ditional independence among the random variables represented by the vertices. In

particular, Markov Random Fields consider a graph G = {V ,E} and a set of random vari-

ables x = {xi : vi ∈ V} satisfying the pairwise Markov property,(
vi ,vj

)
< E ⇔ p

(
xi |xj ,x\

{
xi ,xj

})
= p

(
xi ,x\

{
xi ,xj

})
, (3.14)

which simply states that two variables xi and xj are conditionally independent if there

is no edge between the corresponding vertices vi and vj . In Markov Random Fields,

the joint probability distribution of the variables x1, . . . ,xN may also be represented as

p (x) =
1
Z

K∏
i=1

φi (Di) , (3.15)

where Di , . . . ,DK are a set of graph’s cliques (i.e., groups of nodes), Z is a normalisa-

tion factor known as the partition function, and φis are generic functions known as

factors. It is straightforward to see that the exponential family of distributions with a
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parameter matrix Θ ∈ R,

p (x|Θ) =
1

Z (Θ)
exp

∑
vi∈V

θiix
2
i +

∑
(vi ,vj )∈E

θijxixj

 , (3.16)

is compatible with this formalism; the multivariate Gaussian distribution with preci-

sion matrix Θ,

p (x|Θ) =
|Θ|1/2

(2π)N/2
exp

(
−1

2
xTΘx

)
, (3.17)

belongs to this family. The subclass of Markov random fields that adopt Eq. (3.17) as

the parametrisation for the joint probability distribution p are called Gaussian Markov

Random Fields or Gaussian Graphical Models.

In Gaussian Graphical models, the problem of finding the graph G is reduced to

that of estimating a precision matrix Θ that encodes the conditional relationship be-

tween the nodes. In the previous section, we saw that the production network influ-

ences the correlation of firms’ growth gi . If we consider each vector g (t) as a drawn

from a joint probability distribution where the correlations are driven by the supply

chain, Gaussian graphical models seem well equipped to reconstruct the production

network if one ignores the fact that the growth rates do not have a Gaussian distri-

bution.11 We think nonetheless that, because the growth rates show a Gaussian-like

central region, as shown by Moran et al., it is reasonable to use this model to attempt

a reconstruction.

We propose to use the Graphical Lasso method to construct an estimator Θ̂ of Θ by

solving the following optimisation problem:12

Θ̂ = argmaxΘ logdetΘ− tr
(
ĈΘ

)
−α∥Θ∥1, (3.18)

with Ĉ = 1
T GGT the sample covariance matrix, det(·) the determinant and tr(·) the

trace. The first two terms can be thought of as the log-likelihood of Θ in the Gaussian

Graphical Model, while α |Θ| is an L1 regularisation term with parameter α. This ap-

proach will, in general, recover a matrix Θ with both positive and negative entries. In

this setting, a positive off-diagonal entry θij of the precision matrix implies a negative

partial correlation between xi and xj , whose interpretation is problematic since links

in the production network should increase the correlation between the nodes’ growth

time series.
11Indeed, the marginal distribution of xi in Eq. (3.17) is clearly a Gaussian distribution.
12This is the result of applying Bayes theorem assuming a constant prior for Θ.
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Daitch et al., Lake and Tenenbaum, Hu et al. suggest instead searching for the

precision matrix among the set SΘ of possible Graph Laplacian matrices,

SΘ =

Θ|θij = θji < 0 for i , j,θii = −
∑
j,i

θij

 . (3.19)

Conditioning Θ̂ to be in the set of possible graph Laplacians has two interesting

consequences. First, the graph Laplacian L uniquely determines the adjacency matrix

W of the graph; thus, the problem in Eq. (3.18) with the assumption Θ ∈ SΘ creates

a direct connection between the data and the topology of the network. Second, since

the time series gi has zero mean, we can write the trace
(
ĈΘ

)
as

tr
(
ĈΘ

)
=

1
T

tr
(
GGTΘ

)
=

1
T

∑
i,j

T∑
t=1

θij
(
gi(t)− gj(t)

)2
. (3.20)

The term on the right hand of the equation measures the (squared) difference between

the observation on firms i and j (gi and gj), computed over couples of connected firms

(θij > 0); it is generally known as the quadratic energy function and quantifies the

smoothness of G over the graph with Laplacian L. For an economic interpretation,

the second term in Eq. (3.18), tr
(
ĈΘ

)
, can be interpreted as a penalty term affecting

networks over which G is not smooth, i.e., a production network that exhibits large

differences between the growth rates of connected firms.

In Kumar et al. [2019] (see Appendix C.2), the authors propose an efficient algo-

rithm to solve the problem in Eq. (3.18) while also enforcing some (soft) constraints

on the spectrum Sp(Θ) of the Laplacian matrix. The problem becomes

Θ̂ =argmaxΘ loggdetΘ− tr
(
ĈΘ

)
−α∥Θ∥1,

subject to Θ ∈ SΘ, Sp(Θ) ⊂ Sλ
(3.21)

where Sλ is the set of admissible spectra that we choose, and gdetΘ denotes the gener-

alized determinant defined as the product of the non-zero eigenvalues of Θ. Because

the spectrum of the Laplacian encodes information about the underlying network’s

topology, choosing Sλ appropriately allows us to enforce high-level topological fea-

tures on the reconstructed network.

We, therefore, attempt to use the algorithm provided in Kumar et al. [2019] to

reconstruct the production network. In the following, we assume that we know the

network’s density in advance and that we also have a reliable estimate for the number

of links within and across different sectors. This information would not be available
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Figure 3.5: (A) A stylised representation of an adjacency matrix with two sectors.
The density of links between the nA firms in sector A is ρA, the density of links be-
tween the nB firms in sector B is ρB, and the density of links across the two sectors
is ρAB. (B) Another adjacency matrix. There are two groups of firms of size nA (right
bottom corner of the matrix) and nB (top left corner of the matrix). The density
within firms in the first group is ρB, the density between firms in the second group
is ρA, and the density across the groups is ρAB. The graph Laplacian of the matrix in
(A) and that of the matrix in (B) will have the same spectrum. However, the density
within and across sectors in (B) is different from that in (A).

directly in a real-world situation, but the literature on production networks and other

available data sources as input-output tables allow informed guesses (see, e.g., Ba-

cilieri et al. [2023]). This means that our results should be placed halfway between a

proof of concept and a realistic use case.

We must however slightly modify this algorithm to apply it to our specific situa-

tion. Indeed, a problem with the algorithm described in Kumar et al. [2019] is that,

while it is possible to encode a given community structure by constraining the Lapla-

cian, we are not able to specify which firms should go into which community (see

Fig. 3.5).

To solve this, we have devised the following procedure. First, we split Ĉ into di-

agonal and off-diagonal blocks based on firm industries. Next, we use the procedure

defined in Eq. (3.21) to reconstruct each diagonal block independently. Thirdly, we

go through all the possible pairs of diagonal blocks and – keeping the diagonal blocks

equal to those that were reconstructed in the previous step – we reconstruct the off-

diagonal blocks. Finally, we assemble all the blocks together to obtain the entire adja-

cency matrix; this procedure is shown graphically in Fig. 3.6.

Every time we reconstruct a network, we choose the parameter α to match the

empirical network density. To reconstruct the diagonal blocks, we use the spectrum
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Figure 3.6: Reconstruction of the supply chain networks. The original correlation
matrix (A) is split into the different industry sectors. First, we reconstruct the diagonal
blocks (B). Then, we reconstruct the off-diagonal blocks (C). Finally, we re-assemble
the blocks together (D).

obtained by averaging over the spectra 1000 Erdős-Rényi random networks’ Lapla-

cians, with probability p equal to the desired density. Similarly, to reconstruct the

off-diagonal blocks, we use the spectrum obtained by averaging over the spectra of

1000 block models’ Laplacians, where the probabilities of links within and across each

block are chosen to match the desired density. We provide details on the reconstruc-

tion algorithm in Appendix C.2.

We ran our procedure over several different subparts of the real production net-

work, each composed of a minimum of 300 to a maximum of 500 firms. We compared

our results to those of two random benchmarks: an Erdos-Renyi graph and an indus-

trial sector block model, built as in 3.3. While our approach seems to have the highest

accuracy, it fails to consistently beat the block model benchmark on the other metrics

we tested (Fig. 3.7).

3.5 Conclusions

In this chapter, we investigated if the correlation between firms’ growth time series

could be useful in reconstructing production networks.

Using FactSet’s supply chain network as a use case and several random network

models as benchmarks, we have first shown that the growths of firms connected in the

production networks are on average more correlated than those of randomly selected

84



0.0 0.1 0.2 0.3 0.4
Reconstructed Network

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Ra
nd

om
 B

en
ch

m
ar

k

True Positive Rate
Erdos-Renyi
Block Model

0.7 0.8 0.9 1.0
Reconstructed Network

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ra
nd

om
 B

en
ch

m
ar

k

Accuracy
Erdos-Renyi
Block Model

0.0 0.1 0.2 0.3 0.4
Reconstructed Network

0.0

0.1

0.2

0.3

0.4

Ra
nd

om
 B

en
ch

m
ar

k

F1 Score
Erdos-Renyi
Block Model

Figure 3.7: True Positive rate (left), Accuracy (middle), and F1 Score (right) of the
reconstructed networks, plotted against the same metrics for the two different random
benchmarks. Each dot corresponds to one of the sub-portions of the network over
which we tested our algorithm.

firms’ pairs. We have shown that this effect fades gradually as one looks at the average

correlation between pairs of firms at an increasing network distance along the supply

chain. Finally, we have framed the production network reconstruction in the context

of graph learning and tested some recent techniques developed in the field to identify

trade connections between firms.

Our approach did not seem to significantly improve the benchmark. While un-

derstanding exactly the reason would require further research, we can mention some

plausible culprits. First, we provided the algorithm with spectra built through block

models, which might differ substantially from the true ones. Second, we might have

not used the optimal values for the penalty term in our loss function. Finally, while

in this paper we provided evidence of a signal connecting production networks with

sales’ correlation matrices, this signal might not be strong enough to be picked up

by the algorithm and used for the inverse problem. However, we believe that the ap-

proach could still be improved to deliver good results. First, it relies on a mechanism

that can be easily accepted as universal: the growth of business partners is correlated.

Improvements in the estimation of these correlations, using techniques developed for

financial data [Bun et al., 2017] and multiple time series (e.g., stock returns) will au-

tomatically improve our returns. Second, it is a fully ”unsupervised” approach, which

does not require the training of a model and is not prone to over-fitting. Third, it

requires data that is easily accessible (firms’ sales) and, to a certain extent, substi-

tutable (e.g., we obtained similar results when we looked at the correlation of firms’

stock returns). Finally, it generates a network that matches a set of desired topolog-
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ical features. This last point also highlights interesting avenues of research: as more

”universal” production networks’ features will be documented, and better generative

models for these networks will be developed, the more effective our approach will be.
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Chapter 4

An agent-based model of production net-
works

In the introduction of this thesis, we mentioned that after Lucas’ critique [Lucas,

1976], neoclassical macroeconomics tried to ground its models on “microfoundations”.

Generally speaking, this means that macroeconomic behaviour should be built from

the bottom up by aggregating the individual actions of self-interested, typically opti-

mizing agents.

Nevertheless, due to mathematical and computational constraints, economists were

compelled to adopt unrealistic assumptions about agents’ behaviour to derive analyt-

ical solutions to their models. Specifically, most of the models postulate that agents

have rational expectations [Muth, 1961] and act selfishly to optimize their utility.

Models built in this way have some limitations [Haldane and Turrell, 2018]. The as-

sumptions on rational expectations and optimizing behaviour are often at odds with

empirical evidence [Estrella and Fuhrer, 2002]. The notion that, even if these be-

haviours are not truthful to the micro-level, agents’ deviations would wash out when

aggregated and the macro outcome would be the same “as if” they were true has also

been disputed, if not discredited, within and outside of economics [Anderson, 1972,

Kirman, 2016].

Agent-Based Models (ABMs) [Axtell and Farmer, 2022] provide a potential solu-

tion to these limitations. ABMs are computer simulations where a population of ob-

jects, called agents, interact with each other and the environment through a series of

prescribed rules. These rules, also termed heuristics, provide a more plausible set

of microfoundations for the model, reproducing closely the behavior of consumers,

firms, and governments [Simon, 1959, Tversky and Kahneman, 1974, Gigerenzer and

Selten, 2002]. At the cost of renouncing to analytical solutions, ABMs allow to model

systems composed of heterogeneous, realistic agents, embedded in physical, social,
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and spatial networks. They are well-suited to study the economy at a higher level of

resolution.

In preceding chapters, we highlighted how aggregated, sectoral-level macroeco-

nomic models [Brookshire et al., 1997, Rose et al., 2002, Okuyama, 2004, Santos,

2004, Hallegatte, 2008, Baqaee and Fahri, 2020, Barrot et al., 2021, Bonadio et al.,

2021, Eichenbaum et al., 2021, Bodenstein et al., 2022, Pichler et al., 2022] might mis-

estimate the impact of shocks on the economy, and emphasized the need for more

fine-grained models. In this chapter, we outline an agent-based model where firms

interact through supply chains and trade credit and respond to exogenous shocks.

The ultimate goal of the model is to study the short-term adjustments that firms

put in place when faced with shocks. Consequently, we assume fixed prices and ex-

clude the possibility of supply-chain rewiring. We initialize the model on a realistic

supply chain, retrieved from FactSet.

Our model builds upon the work of Henriet et al. [2012], Inoue and Todo [2019],

and Battiston et al. [2007]. The model studies the impact and propagation of external

shocks on economies, in line with the model of Henriet et al. [2012], from which we

borrow firms’ features and production structure; it uses data on a real production net-

work, akin to Inoue and Todo [2019]; finally, includes firms with balance sheets that

can go bankrupt and extend trade credit, as in Battiston et al. [2007], while allowing

firms to extend trade credit as an arbitrary portion of their sales with an arbitrary

expiration date.

While this feature has not been fully explored and will, to some extent, be ne-

glected in the rest of the chapter, a proper modelization of trade credit is crucial,

given the role of this type of credit in firms’ balance sheets. Boissay found that trade

credit represented one-half of the corporate sector’s short-term liabilities in the US

in 2004. Reischer finds that total accounts payable (receivable) account for approxi-

mately 11.2 (9.5)% of total liabilities (assets) and approximately 5.0% (6.5%) of the US

GDP. Battiston et al. mention that trade credit is often used as collateral in bank bor-

rowing, especially by small and medium-sized firms. In the US, credit lines secured

by accounts receivables represented approximately one-quarter of total bank loans in

1998 [Klapper, 2001]. In Italy, loans secured by receivables were 22% of total loans

and 54% of short-term loans in 2002 [Omiccioli, 2005].

Trade credit ties firms in a network of mutual financial obligations, essentially akin

to the inter-bank liabilities networks studied by the financial systemic risk literature

[Caccioli et al., 2018]. We use a clearing algorithm [Rogers and Veraart, 2013] devel-

oped in this context to settle payments and defaults among our firms.
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The model’s goal is to elucidate how a realistic economic system responds to shocks,

especially in the short term and in the aftermath of natural or anthropogenic disasters.

These shocks are heterogeneous [Pichler and Farmer, 2022]. Disruptions can hinder

firms’ ability to produce, decreasing their total capacity. Demand shocks reduce the

sales of firms and, by backward propagation, also diminish the sales of their sup-

pliers. Supply shocks spread upstream and downstream. Downstream propagation

occurs when suppliers, constrained by their limited ability to produce, create supply

bottlenecks for their customers. Similarly, upstream suppliers are adversely affected

because firms with reduced productive capacity require fewer resources for their pro-

duction processes. Production shocks affect firms’ balance sheets, transforming into

financial shocks that can trigger defaults and propagate through the network of credit

that firms extend to each other. Events like the COVID-19 pandemic, where all these

shocks happen simultaneously and are relaxed asynchronously, reinforce the need for

analysis based on non-equilibrium simulation.

We calibrate our model with data on the US production network and study its re-

sponse to a vast set of different shocks. The model exhibits a rich dynamics depending

on the nature, target, and amplitude of the shocks.

This chapter is organized as follows. We describe the agent-based model in Sec. 4.1,

discuss some issues regarding its calibration in Sec. 4.2, and show the results of sim-

ulations in Sec. 4.3. The appendix to this chapter contains some analytical results for

the model and the details of the model’s calibration.

4.1 The model

4.1.1 Overview

Firms Our model is composed of N firms, each belonging to one of M industrial

sectors. Firms are the primary agents of our model. They are characterized by:

• Industry: Every firm belongs to a unique industrial sector and produces an

industry-specific, homogeneous product using intermediate goods. We use Latin

characters (i, j, . . .) to indicate firms, and Greek characters (α, β, . . .) to indicate

industries. We indicate with σ (i) the industry of firm i. We use bold Greek letters

(α,β,. . .) for the set of firms belonging to a given industry, i.e., i ∈ α⇔ σ (i) = α.
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• Maximum production capacity: Each firm can only produce up to a finite quan-

tity1 of output at each timestep. We call xmaxi the maximum level of output for

firm i.

• Production recipe: firms produce their output according to a specific produc-

tion recipe. Since firms in the same industrial sectors produce homogeneous

goods, the production recipe is encoded in the M ×N matrix Ã.

• Fixed costs: at each timestep, firms have to pay some fixed costs Γi . These costs

do not depend on the output of firm i.

• Non-input variable costs: at each timestep, firms pay some variable costs, de-

pending on their output. These costs come on top of what firms pay to their

suppliers. We call Υ max
i the variable cost that firm i pays to produce a quantity

xmaxi .

• Inventory: companies hold an inventory of necessary inputs. They resort to this

inventory to produce their goods. Like the production recipe, the inventory is

sector-specific. We let Sα,j denote the stock of goods from sector α held in j’s

inventory.

• Balance sheet: Balance sheets describe firms’ financial situation. Balance sheets

are updated at each time step as firms pay their suppliers, extend trade credit,

solve their debts, and incur fixed costs.

Timeline Our economy evolves in discrete time steps. During each time step:

1. Exogenous shocks may hit the firms,

2. Firms place orders for intermediate goods,

3. Firms produce as much as they can to satisfy demand; they could be restrained

by lack of inputs or structural limits (xmaxi ),

4. If firms do not produce enough, they allocate their product to customers accord-

ing to a partitioning rule,

5. Firms update their inventory levels,

6. Payments are settled and firms update their balance sheets.

1In our model, prices of goods are fixed, hence there is always a linear relationship between the
quantity of a certain good and its value and the two terms are, to a certain extent, interchangeable.
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Firms operate and interact on two grounds. The first is the production process:

placing orders, producing goods, and updating inventories. The other concerns a

firm’s financial activities: paying, being paid, receiving, and extending credit. We

now explain how these two levels work in more detail.

4.1.2 Production

Let xi,t indicate the total output of firm i at time t and Zji,t the intermediate consump-

tion by firm i of good j. We adopt the standard convention that in the input-output

matrix columns represent demand and rows represent supply. In our economy, at

each time step, there is no excess output: everything that is produced is also sold. The

output of i is then

xi,t =
N∑
j=1

Zij,t + fi,t,

where fi,t is the exogenous final demand.

We highlight that, in the previous formulas, Z and fi,t refer to the actual realized

transactions, which might differ from the orders placed by customers, which we refer

to as demand.

Demand The total demand faced by a firm i at time t (denoted as di,t) is the sum of

the demand from all its customers,

di,t =
∑
j

Oij,t + f di ,

where Oij,t (for Orders) denotes the demand from industry j, and f di is the exogenous

final demand (government consumption, exports, households consumption, etc.). We

assume that f di is constant in the absence of external shocks.

Production recipe. Each firm has a specific production recipe, but all firms in the

same sector produce one homogeneous good. The production recipe is encoded in the

matrix Ã, where each element is

Ãαj =
Z̃maxαj

xmaxj

,

where Z̃maxαj is the quantity of input from sector α needed from j to produce xmaxj .
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Suppliers Firms may have multiple suppliers in the same sector. Z̃maxαj can then be

computed as the sum of several contributions

Z̃maxαj =
∑
i∈α

Zmaxij . (4.1)

Zmax is aN ×N matrix whose entry Zmaxij identify j’s suppliers, and the volume of their

trade. They do not enter directly into the production recipe but tell us which firms

provide to j its input. Eq. (4.1) can be reframed in matrix form as

Z̃max = T f→sZmax,

where the M ×N matrix T f→s is such that T f→sαi = 1⇔ i ∈ α. T f→s is the sectoral (or

firm-to-sector) affiliation matrix.

Inventories and intermediate demand Firms use their inventories to produce. As

in Henriet et al. [2012], each company j believes its demand dj is going to be constant

for further nj time steps. Consequently, companies aim to keep a target stock Stargetαj

of every good required to guarantee this production. They are also aware of their

maximum capacity, so they will not expect to produce more than xmaxj in any single

time step. It follows that Stargetαj will never be greater than njZ̃
max
αj . If we call d∗j,t−1 =

min
{
dj,t−1,x

max
j

}
, we can write Stargetαj as

S
target
αj,t = njZ̃

max
α,j

d∗j,t−1

xmaxj
= njÃαjd

∗
j,t−1.

Intermediate demand follows the dynamics originally introduced by Henriet et al.

[2012] and adopted by Inoue and Todo [2019]. To satisfy the incoming demand (from

t − 1) and minimize the difference from its target inventory, each firm aims to acquire

goods from sector α

Õαj,t = Ãαjd
∗
j,t−1 +

1
τs

[
S
target
αj,t − Sαj,t

]
,

where τs controls how quickly firm j wants to fill the inventory gap. Smaller values of

τs lead to faster inventory replenishment.

Orders placement Once a firm computes its required input Õαj,t, it places orders

Oij,t to its suppliers. Õαj is split among j’s suppliers proportionally to Zmaxij ,

Oij,t =


Zmaxij∑
i∈αZ

max
ij
Õαj if i ∈ α,

0 otherwise.
(4.2)
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We can rewrite the previous formula concisely as

Oij,t =
Zmaxij

Z̃maxσ (i)j

Õσ (i)j,t.

In other words, whenever j needs a quantity Õσ (i)j from sector σ (i), it will turn to sup-

plier i to get a portion
Zmaxij

Z̃maxσ (i)j
of Õσ (i)j . The ratio

Zmaxij

Z̃maxσ (i)j
measures the relative importance

of supplier i in sector σ (i) to firm j.

Input bottlenecks Despite firms’ efforts to meet demand di,t and produce the re-

quired output, they face two constraints. First, they can never produce more than their

maximum production capacity xmaxi . Second, their production might be constrained

by an insufficient supply of input. A firm is indeed only able to produce

x
inp
i,t = min

α∈Vi

 Sαj,tZ̃maxαj

xmaxi

 ,
where Vi is the set required inputs for firm i. The actual output of firm i at time t will

then be the minimum between three values

xi,t = min
{
xmaxi ,x

inp
i,t ,di,t

}
.

The level of output determines the actual use of input, according to the production

recipe. Specifically, firm i uses an amount xi,t
xmaxi

Z̃maxαj = xi,tÃαj of input α.

Rationing When firms can’t produce enough to meet demand (xi,t < di,t), they apply

one of two rationing rules:

• Simple proportional rationing: Both customers and final demand get a portion

of the output equivalent to their initial order proportion,

Zij,t =Oij,t
xi,t
di,t

,

fi,t = f di
xi,t
di,t

.

• Prioritized proportional rationing: Customers first receive a proportion of the

output based on their initial order. Final demand then gets what remains,

Zij,t = min

Oij,t,Oij,t xi,t

di,t − f di

 ,
fi,t = max

xi,t −
∑
j

Zij,t,0

 .
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Inventory updating The inventory for every input is updated at the end of each

timestep according to

Sαj,t+1 = Sαj,t +
∑
i∈α

Zij,t − xi,tÃαj .

Shocks At any timestep, a firm can be hit by an exogenous shock. There are three

possible types of shocks: capacity, productivity, and final demand shocks.

• Capacity shock: A capacity shock to a firm is a reduction in its maximum pro-

duction capacity. If a shock δc ∈ [0,1] hits a firm i is at time t, i’s output will

be

xi,t = min
{
xmaxi (1− δc) ,xinpi,t ,di,t

}
.

• Productivity shock: Productivity shocks change the ratio between a firm’s in-

puts and outputs, without changing that between its inputs. In jargon, they

have an impact on a company’s Hicks Neutral Efficiency. We model them as a

transformation of a firm’s xmax. If a productivity shock δp - positive or negative

- hits i, xmaxi is updated as

xmaxi → xmaxi (1 + δp) .

• Final demand shock: A final demand shock is a contraction in a firm’s exoge-

nous final demand f di . If a shock δd ∈ [0,1] hits i, f di is updated as

f di → f di
(
1− δd

)
.

Supplier failure Each time a supplier of firm j fails, the company updates its way

of placing orders, encoded in the values Zmaxij . Let k be the failed firm and σ (k) be its

sector. Zmaxij are updated as

Zmaxij ←

Z
max
ij

Z̃maxσ (k)j

Z̃maxσ (k)j−Z
max
ki

if i , k and σ (i) = σ (k)

0 otherwise
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4.1.3 Payments

Balance sheets describe firms’ financial situation. In our model, balance sheets have

five entries: accounts receivable and other assets (on the credit side), accounts payable and

other liabilities (on the debit side), and equity. We consider other assets, ai , and other

liabilities, li , constant through time, while accounts receivable, ari , accounts payable, api ,

and equity, ei,t, are dynamically updated.

Figure 4.1: Stylized balance sheet of a firm

Trade credit, accounts receivable, accounts payable The extension of trade credit

impacts firms’ accounts receivable and accounts payable. At each timestep, i sells

some goods Zij,t to j, but is only paid back a fraction ρi,t ∈ [0,1] of the total bill. The

customer j settles the rest after τc timesteps. This creates a set of liabilities matrices{
Lkt

}τc
k=0

, indexed by their expiring date k.2 At every t, the following equation ,

Lkij,t =
(
1− ρi,t−τc+k

)
Zij,t−τc+k .

The account receivables ari and the account payables api can be computed from the set

of liability matrices
{
Lk

}
as

ari,t =
∑
k,j

Lkij,t,

a
p
i,t =

∑
k,j

Lkji,t.

2For each t, the debts in Lkt will be settled in timestep t + k
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Variable costs At each time-step, firms sustain variable costs which depend on their

output xi,t. We assume a simple linear relation between variable costs and output,

Υi,t =
xi,t
xmaxi,t

Υ max
i

Payments Each firm first pays its fixed costs Γi , and variable costs Υi,t, then settle its

debts with the other firms. Customer j must pay to supplier i a quantity

Ltotij,t = ρi,tZij,t +L0
ij,t,

where ρi,tZij,t is the portion of input received at t which has not been extended as

trade credit, and L0
ij,t is j’s debts towards i expiring in the current timestep t.

We use the Rogers and Veraart algorithm to compute the payment vector pt, that

is, the amount that each firm is actually able to repay to its creditors. The algorithm

relies on the following assumptions:

• Limited Liabilities. All the elements of the payment vector are less than or equal

to the available cash flow of the firm;

• Absolute Priority. Firms repay as much as they can, i.e., they are not allowed to

keep cash in their balance sheet as long as they have not fully repaid all their

liabilities;

• Proportionality. the individual payment of a given liability, i.e., the effective value

repaid to a firm, has to be proportional to the fraction of the total obligation that

the liability represents.

The algorithm also includes parameters to model bankruptcy costs; it computes the

cash flow between the companies and identifies those that are not able to repay their

debt.

The profit of i at time t will be

πi,t =
N∑
j

Πji,tpj,t − pi,t −Υi,t − Γi ,

where Π is the Relative Liabilities Matrix, Πij,t =
Ltotji,t∑
k L

tot
jk,t

,
∑N
j Πji,tpj,t is what i receives

from its debtors, and pi,t is what i pays to its creditors.
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Equity update and defaults Equity is updated as

ei,t = ei,t−1 +πi,t.

Whenever the equity of a firm hits the threshold ei < 0, the firm defaults. Defaulted

firms are removed from the network, and all their future debit/credit are cancelled.

4.2 Reconstruction of firms’ transactions.

We can calibrate the majority of the model’s parameters through FactSet data (see

Appendix D.2). However, we cannot calibrate the weights of the production network

Zmaxij , representing the monetary values exchanged between firms. In this section, we

describe our approach to derive suitable values for Zmaxij .

To enhance clarity, we will use a different notation in this section. We will denote

the weight of the (directed) link from i to j, Zmaxij , as wij . We use an asterisk w∗ij to

indicate a specific value of the variable wij . We call sii and soi the in and out-strength

node i, defined as

∑
j

wji = sii ,∑
j

wij = soi .

We call sii , s
o
i the observed values of sii , s

o
i .

To produce a network compatible with the observed values of
{
si
}

and {so}, we need

to find a set of values
{
w∗ij

}
that satisfies the linear system of equations∑

j

w∗ji = sii ,

∑
j

w∗ij = soi .

The following example provides some intuition. Let us consider the two-nodes net-

work, and assume we know the total in and out-strengths si1, s
i
2, s

o
1, s

o
2. To match the

observations, the four variables w11,w12,w21,w22 must satisfy the following linear sys-

tem of equations 
w11 +w21 = si1,
w11 +w12 = so1,
w22 +w12 = si2,
w22 +w21 = so2.

(4.3)
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w11

w12

w22

w21

1 2

The system can be written in matrix form as
1 1 0 0
1 0 1 0
0 1 0 1
0 0 1 1



w11
w12
w21
w22

 =


si1
so1
si2
so2

 , (4.4)

which we will write compactly as

Lw = s. (4.5)

All the solutions
{
w∗ij

}
s.t. w∗ij > 0 of this linear system, which for a generic graph with

N nodes and W links is composed by 2N equations of W variables, can be used to

build networks compatible with the observed values sii , s
o
i . However, there is no guar-

antee that the linear problem will have a solution. Even if the linear system is in

general underdetermined, i.e., has more variables than constraints, the sparsity of the

network can create incompatible constraints. A solution to this problem is the inclu-

sion of an external node connected in both directions to all the nodes in the network.3

The links from and to the external node account for the trades of our network with

the rest of the economy, not captured in the data.

w121 2 w121 2

E

Figure 4.2: The network on the left can only be solved if so1 = si2 and si1 = so2 = 0. In-
cluding the external node E creates other possible solutions.

4.2.1 Sampling different solutions

The linear system described in the previous section might accept infinitely many so-

lutions, and it is natural to ask to what extent these solutions differ from one another.

We outline below an algorithm to sample and examine such solutions.

3A similar solution can be found in Welburn et al. [2020]
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For the sake of simplicity, we will drop the double subscript for the vector w. For

instance, we will write the vector in Eq. (4.3) as [w11,w12,w21,w22]→ [w1,w2,w3,w4].

Let {vi}ki=1 be a normalized-vectors basis for the space of solutions of the equation

Lw = 0,

the solutions of the inhomogeneous linear system,

Lw = s,

can be written as the sum of a specific solution w∗ and a linear combination of the

vectors vi . If we call w̃ =
∑
i λivi + w∗, it is easy to see that

Lw̃ =
∑
i

λiLvi +Lw∗ = Lw∗ = s.

The algorithm. We can leverage this result to sample the space of the possible so-

lutions with a Monte Carlo Markov Chain approach. The core idea of this method is

to find a solution w∗0 and use it as a starting point for exploring the space of possible

solutions. Our method works in discrete time steps. At each step t, we pick a random

k-dimensional vector λ where λi ∼N
(
0, σ√

k

)
. We then build a new solution as

w∗t+1 = w∗t +
k∑
i

λivi .

If w∗i,t+1 ≥ 0 ∀i we keep the proposed solution, otherwise we set w∗t+1 = w∗t; {w∗t}
tmax
t=0 is a

series of possible solutions of L. Two properties hold. First, any possible solution w∗1 of

the linear system can be reached by any other solution w∗2 with non-zero probability.

Indeed, we saw that, if w∗0 is a solution for our linear system, we can write any other

solution as w∗ = w∗0 +
∑k
i λivi . Consequently, there exist two vectors λ1 =

[
λ1,1, . . . ,λ1,k

]
and λ2 =

[
λ2,1, . . . ,λ2,k

]
such that w∗1 = w∗0 +

∑k
i λ1,ivi ,w∗2 = w∗0 +

∑k
i λ2,ivi , and we can

move from w∗1 to w∗2 by picking λ1→2 = λ2 − λ1. Second, the probability of moving

from w∗1 to w∗2 is equal to the probability of going from w∗2 to w∗1. Since λi ∼N
(
0, σ√

k

)
,

we have

P (λ1→2) =
k∏
i

P
(
λ1→2,i

)
=

k∏
i

P
(
λ2,i −λ1,i

)
=

k∏
i

P
(
λ1,i −λ2,i

)
= P (λ2→1) .

Under these conditions, the theory of Markov Chains guarantees that, in the tmax →∞
limit, we will sample the full space of possible solutions. Let us give an example.
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w1

w2

1

2

3

Figure 4.3

Imagine the network in Fig. 4.3, and assume that we only know the out-strength so1
of node 1. The linear system L will be composed of a single equation,

L =
{
w1 +w2 = so1.

A solution for this system is w∗0 =
[
w∗1,0,w

∗
2,0

]
=

[
so1,0

]
. The basis for the null space of

the homogeneous linear problem

w1 +w2 = 0,

is composed by a single vector v = 1√
2

[1,−1]. We can sample different feasible solutions

by iteratively adding a term η = λv to the original solution w∗0 (Fig. 4.4).

Algorithm parameters. The algorithm has a few parameters. We list them below.

• σ : The squared distance between the proposed w∗t+1 and w∗t is

∥w∗t+1 −w∗t∥2 = ∥
k∑
i

λivi∥2 =
k∑
i

λ2
i ∥vi∥+2

k∑
i

∑
j<i

λiλjvi · vj =
k∑
i

λ2
i ,

since the vectors {vi} are normalized and orthogonal. The expected value is

E
[
∥w∗t+1 −w∗t∥2

]
=

k∑
i

E
[
λ2
i

]
= kE

[
λ2
i

]
=
σ2

k
k = σ2,

so that σ can be considered as a step length. The larger its value, the larger the

distance between two consecutive solutions.

• tmax: the number of steps. If the value of tmax is not large enough, the algorithm

will typically give a biased or incomplete sample of the space of solutions.

• thinning: Thinning means discarding some samples of the simulation. It is used

to reduce the autocorrelation between consecutive solutions.
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1 +
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v

w∗1

w∗2

w∗3

Figure 4.4

Mirror algorithm From a practical standpoint, when the number of variables wi in-

creases, it will be less and less likely for a new randomly-picked solution w̃∗ to satisfy

the condition w̃∗i ≥ 0 ∀i and be accepted. As the dimensionality of the problem gets

larger, the algorithm starts rejecting more and more moves and becomes very inef-

ficient. To solve this problem, we used the mirror algorithm. First proposed in den

Meersche et al. [2009], it is inspired by the reflections of light rays in mirrors and uses

the inequality constraints as reflecting planes. If w∗t is a solution of L for which the

inequality constraints w∗i > 0 are fulfilled, a new solution w∗t+1 can be sampled in the

following way: first w∗t+1,0 is sampled as described above, i.e.,

w∗t+1,0 = w∗t +
∑
i

λivi = w∗t +η.

If w∗t+1,0 is in the feasible range (w∗t+1,0 ≥ 0 ∀i), w∗t+1,0 is accepted. If any inequality

is violated (Fig. 4.5), the new point w∗t+1,0 is mirrored consecutively in the hyperplanes

representing the unmet inequalities: the line segment w∗t→w∗t+1,0 crosses these hyper-

planes. For each of the crossed hyperplanes, a scalar α (i) can be calculated, for which

w∗t,i + α (i)ηi = 0. The hyperplane with the smallest non-negative α (i), call it α (s) is
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wj

w∗t

w∗t+1

w∗t+1,0 w∗t+1,1

Figure 4.5: MCMC jump with inequality constraints (wi ≥ 0,wj ≥ 0) functioning as
mirrors.

the hyperplane that is crossed first by the line segment. w∗t+1,0 is mirrored around

this hyperplane. If the new point (w∗t+1,0 in Fig. 4.5) still violates some inequalities,

a new set of α (i) is calculated from the line segment between the new point and the

intersection of the previous line segment and the first hyperplane. w∗t+1,1 is again

reflected in the hyperplane with smallest non-negative α (i). This is repeated until

all inequalities are met. The resulting point w∗t+1 is in the feasible subspace and is

accepted as a new sample point. In den Meersche et al. [2009], the authors found that,

especially in high-dimensional problems, the mirror algorithm is more efficient in

moving away from the initial particular solution. In the mirror algorithm, the values

λi are drawn from a normal distribution with zero mean and fixed standard deviation,

which - as we showed - can be interpreted as the jump length of the Markov Chain.

This jump length has a significant influence on the efficiency of the mirror algorithm,

as it defines the distance covered within the solution space in one iteration, but also

the number of reflections in the solution boundaries.

Fig. 4.6 shows weights’ cumulative density function obtained for the network com-

posed of the largest 500 firms in the U.S.; remarkably, the tail exponent of the function

is very close to the values found by Bacilieri et al. for VAT networks. Fig. 4.7 focuses

on the values obtained for the weights and the output multiplier (a property similar

to Katz Centrality and often connected to a firm’s ability to propagate shocks) of a ran-

domly selected node. We can see that, while the distribution of weights is quite stable
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across solutions, the specific weights vary substantially. The output multiplier, at least

in the example shown, seems to be subject to a lower variation across the different re-

alizations.

100 101 102 103 104 105

wij

10 3

10 2

10 1

100

CC
DF

Figure 4.6: The solid line shows the median value of the weights’ complementary
cumulative distribution (CCDF) across the different steps in the Markov Chain; the
coloured area shows the 5th and the 95th percentile. The distribution tail is approxi-
mately a power-law with slope ≈ −1.15 (red line), in line with the values found on VAT
networks by Bacilieri et al..

4.3 Results and simulations

We provide an analytical solution for the steady state of our model in Appendix

D.1. In this section, we show the simulations on the network of the largest 500 US

firms (Fig. 4.8). The experimental setting is the following. We run simulations for

50 timesteps, with each timestep accounting for two weeks. Every simulation is re-

peated over 50 randomly chosen possible configurations of the network, produced by

the algorithm described in Sec. 4.2.

In Fig. 4.9, we show the median value of firms’ total output and its 10th and 90th

percentile. The three quantities are often indistinguishable and collapse on the same

line. The system begins at equilibrium and is shocked at t = 5. At t = 15, the shock

is removed. We devised eight different target groups for the shocks. The ten largest

(smallest) firms of the system compose the first (second) target group. The ten most

(least) central firms compose the third (fourth) target group. The largest (smallest)
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Figure 4.7: Example of the algorithm outcome. We randomly selected a node (Node
296) as our focal node. (A) Left: node’s output multiplier (a feature similar to Katz-
Centrality) in five different Markov Chains. Right: Cumulative empirical distribu-
tions, and value of the Gelman-Rubin convergence test [Gelman and Rubin, 1992].
(B) Left: Weights of the node’s links in five different Markov Chains (links to the
external node excluded). Right: Cumulative Empirical distribution, and value of the
Gelman-Rubin convergence test. (C) Three examples of the reconstructed networks.
We only show (in yellow) nodes at a distance smaller than 2 from the focal node (in
red). The blue links are those depicted in (B); their width and colour vary based on
their values. The examples show how significantly the reconstructions can differ.

group of sectors is our fifth (sixth) target group. Finally, the seventh target group

comprises the firms in the extraction industry (SIC code 1000-1500), and an equal

number of firms in the retail sector (SIC code 5000-6000) compose target group eight.

These target groups are by demand and capacity of increasing magnitude (10%, 20%,

30%, 40%). We show in Fig. 4.9 A, the simulations for the target groups 1 and 2 (ten

largest and ten smallest firms), in Fig. 4.9 B the simulations for the target groups 3 and

4, and in the two following panels (Fig. 4.9 C and Fig. 4.9 D) the simulations for target

groups 5-6 and 7-8. The model seems to produce some sensible results, at least by

predicting an aggregated drop in the system’s total output when larger or more central

firms are hit, or by producing very different outcomes when firms ”upstream” of the

supply chain (e.g., firms in the extraction sector) of ”downstream” (e.g., retailers) are

shocked. It also highlights non-trivial dynamics when demand shocks are lifted: the
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Figure 4.8: The 500 largest firms in the US and their connections

miscoordination of firms, and the consequent, sub-optimal allocation of goods, cause

the total output to drop again before it starts rebounding towards its equilibrium level.

This phenomenon was already observed in Pichler et al. [2022].

4.4 Conclusions

In this chapter, we introduced an agent-based model for production networks. In

the model, firms satisfy intermediate and external demand by producing out of their

inventory with a sector-specific production recipe. They trade with other firms to re-

plenish the stocks and maintain them to a desired level. Firms have balance sheets and

can extend trade credit to one another. We included in our model a clearing algorithm

so that, in the presence of defaults, the allocation of funds divided among the cred-

itors is economically sensible - the amounts of money paid back to the creditors are

endogenously determined in proportion to the amounts of funds lent. We have also

described an algorithm used to produce network configurations matching observed

aggregate properties. We implemented the model, calibrated it with real data, and

showed simulations on a real portion of the US production network.

The model was originally designed to evaluate the short-term impact of exoge-

nous shocks on an economic system, with a specific focus on the COVID-19 pandemic.

Thus, it fits into the literature that tackles this question by non-equilibrium sectoral

models [Pichler et al., 2022], agent-based models [Mandel and Veetil, 2022, 2020], and

novel risk metrics [Diem et al., 2022]. It contributes to this literature by tying together

the production and financial layers of the economy and by proposing a novel method
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of calibrating the production network. The model exhibits a rich dynamics depending

on the nature, the intensity, and the target of the shocks.

However, the work presented in this chapter should still be considered as work-in-

progress. First, we have still not investigated systematically (even in simple network

models) the impact that trade credit has on aggregate output. We believe that this

is a crucial feature that makes our model closer to reality, and surely deserves more

attention. Second, we still have to run our model on a full-scale, realistic production

network. Achieving this will require solving some computational challenges, as the

weight-reconstruction algorithm scales roughly as ∼O(N 3), where N is the size of the

network.
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Figure 4.9: (A) Shocks on target groups 1 and 2. (B) Shocks on target groups 3 and
4. (C) Shocks on target groups 5 and 6. (D) Shocks on target groups 7 and 8. In the
figures, darker colours correspond to stronger shocks.
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Part II

Financial Markets
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Previously in this thesis, we saw that financial markets were one of the earliest

areas of economics contaminated by complex systems. For many natural scientists,

finance provided an ideal playground, due to the large volume of fine-grained data,

e.g., on stock prices. What this data showed, from a very early time [Mandelbrot,

1963], is that these prices exhibit both very rich dynamical behaviour and a series of

regularities that are often the hallmark of complex systems’ evolution (see Sec. 5.1 for

a very short survey).

These empirical realities are often incongruous with the classical way of modelling

financial markets, based on the efficient market hypothesis [Shiller, 1981]. This hypothe-

sis asserts that stock prices always reflect assets’ fundamental values, and only change

when an unexpected and unforeseeable piece of news (effectively, an external shock)

becomes available to perfectly rational investors.

However, the assumed rationality of market investors has increasingly come un-

der scrutiny, both within mainstream economics [Shiller, 2003, Akerlof and Shiller,

2010] and outside it [Cont and Bouchaud, 2000, Galla and Farmer, 2013, Bouchaud

and Farmer, 2023]. There is compelling evidence that relaxing the rationality pos-

tulate, thereby allowing for more diverse and realistic agent behaviour, can help us

understand some extreme behaviours of the market. Disentangling the relationship

between market investors and asset prices will be the focus of Chapter 5 and Chap-

ter 6.

In Chapter 5, empirical evidence is presented in support of the market ecology hy-

pothesis Farmer [2002], Lo [2004], Farmer and Skouras [2013]. In the Market Ecology

framework, investors’ trading strategies are akin to biological species, evolving to ex-

ploit market inefficiencies. The interactions among these species, like those in natural

ecosystems, are governed more by adaptive strategies than by strict rationality and

generate market fluctuations. In a simple market ecology model, Scholl et al. [2021]

revealed a connection between some specific trading strategies and market volatility.

Equipped with a massive dataset of stock prices, investment funds’ portfolios, and

investment funds’ trading strategies, we reproduce this finding in the U.S. financial

market.

Chapter 6 dives into the realm of cryptocurrencies. Here, the focus lies on the

role of institutional investors and their impact on market dynamics. We collect a large

dataset encompassing cryptocurrencies’ technical features (e.g., use cases, blockchain),

institutional investors, and market prices. We build a co-investment network, where

two currencies are connected if they share an investor. Finally, we show that the mar-

ket movements of cryptocurrencies connected in this network exhibit an excess cor-
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relation compared to the rest of the market. This insight provides a window into the

interconnectedness of the cryptocurrency market and the potential influence of insti-

tutional investors.
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Chapter 5

Testing the Market Ecology Hypothesis

5.1 Introduction

Markets’ behaviour is a puzzling behaviour. The efficient market hypothesis postu-

lates that stock prices always reflect assets’ fundamental values and only change when

an unforeseen piece of news becomes available to investors. However, it has long been

known that this is not entirely true. Prices’ dynamics exhibit a very diverse behaviour.

Their fluctuations are fat-tailed [Gopikrishnan et al., 1999, Malevergne et al., 2005]

and intermittent [Mandelbrot, 1963], exhibit long-range correlations [Bouchaud et al.,

2009] and cannot be fully explained by external news [Cutler et al., 1988, Joulin et al.,

2008, Marcaccioli et al., 2022]. Markets misbehave [Mandelbrot and Hudson, 2007],

and why they do is still an open question. Market Ecology [Farmer, 2002, Lo, 2004,

Hens and Schenk-Hoppe, 2009, Farmer and Skouras, 2013, Scholl et al., 2021] tackles

the problem by building an analogy between financial markets and biology. Trading

strategies are akin to biological species. Animals and plants evolve and specialize in

filling niches that provide food; similarly, trading strategies evolve and specialize to

exploit market inefficiencies. Each species interacts with the others via price setting,

and the wealth allocated to trading strategies grows or fades depending on their abil-

ity to generate returns. The interactions among the species, and between the species

and the external environment (e.g., regulators), generate the rich phenomenology of

financial markets.

The market ecology framework has already shown its potential to replicate and

explain a few of the market’s stylized facts in simple financial market models [Scholl

et al., 2021], like clustered volatility and mispricing. However, the extent to which the

paradigm is valid and its predictive power in real financial markets is yet to be proven.

Here we provide some empirical evidence supporting market ecology. We focus on one

of the findings of Scholl et al. [2021], showing that the volatility of a security depends
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on the allocation of its shares across different species of investors. We collect data

on stock prices, mutual funds’ portfolios, and funds’ investment styles. We compute

how much of a stock is owned by each investment style, and, by regressing stocks’

volatility against the different ownership patterns, we confirm the model’s prediction

on empirical data.

The rest of this chapter is structured as follows. Section 5.3 describes our data

sources and processing pipeline. In Section 5.4, we look for empirical evidence for the

market ecology framework. In Section 5.5, we conclude.

5.2 Model

In this chapter, we aim to provide empirical evidence for the market ecology hypoth-

esis. We focus on the findings in Scholl et al. [2021]. In the paper, the authors build

a stylized model of financial markets; its structure is summarized in Fig. 5.1. There

are two assets, a stock and a bond. The bond trades at a fixed price and yields an

annual 1% return. The stock pays a dividend modelled as a stochastic process, and its

price is set by the market. Three different strategies interact on the market: a Noise
Traders, who buy or sell stock somehow randomly, Value Investors, who look at the

dividend process, estimate the value of the stock, and trade accordingly, and Trend
Followers, who extrapolate the trend in the stock price, buy if the trend is upward,

and sell if the trend is downward. External agents invest or withdraw their money

into different strategies depending on the profitability of their trades so that success-

ful strategies end up managing larger portfolios and unprofitable ones fade out. The

Bond

Stock

Noise trader

Value investor

Trend follower

External investors

Figure 5.1: Stylized representation of the model in [Scholl et al., 2021].

authors have shown that the volatility in the price of the stock is highly correlated (in

fact, is caused) by the wealth dynamics of the trading strategies: when more wealth is
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invested in trend followers, prices are more volatile, and when more wealth is invested

in value investors, prices are more stable. We will try to find evidence of this result in

real market data.

5.3 Data

Our data is composed of three parts: the first covers the US stock market prices, the

second focuses on mutual funds’ portfolios, and the third classifies funds into differ-

ent species based on their investment style. The primary data source is the Center for

Research in Security Prices (CRSP) dataset, and specifically their Daily Stock, Portfo-
lio Holdings, and Fund Summary files. The Daily Stock file tracks the price of several

thousand stocks traded in the major US exchanges. Also, it provides a daily record

of stocks’ total number of outstanding shares. The data goes back to the sixties but

our analysis only starts in the 2000s. Portfolio holdings are reported quarterly by

US mutual funds. The data covers several thousand funds and provides information

on which and how many stocks they own. Finally, CRSP’s Fund Summary contains

Lippers’ fund classification. Lipper is a financial research firm owned by Thomson

Reuters. It classifies funds based on their investment style, by analyzing funds’ cur-

rent and past portfolios and looking at the price-to-earnings ratio, price-to-book ratio,

price-to-sales ratio, return on equity, dividend yield, and three-year sales-per-share growth
of the stocks they hold.1 After assembling all the pieces of information, we end up

with a coherent body of ∼ 15.000 stocks, owned by ∼ 18.000 funds, divided into two

hundred categories.

5.3.1 Classification and ownership

In the stylized model of Scholl et al. [2021], investors belong to one of three possible

classes: value investors, trend-followers, and noise traders. Lipper provides instead

roughly two hundred classes. We use a crude approach to transform each Lipper class

into one of the three classes in Scholl et al. [2021]. If the Lipper class name contains the

word Value, we consider it a value strategy; if it contains the word Growth, we consider

it a trend-following strategy. All the other strategies are assigned to a third category,

which we call generically Other.2 Details of the mapping can be found in Appendix

E.3. We define the total ownership of a stock i by a strategy α ∈ {value, growth, other}
1https://lipperalpha.refinitiv.com/wp-content/uploads/2016/01/HBC-Methodology-v3.

1-September2021.pdf, retrieved March 2023
2Note that, while a fund belongs to a single class at each time t, its class can change as its portfolio

evolves.
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at time t, ωi,α (t), as the sum of all the shares of i owned by funds classified as α at

time t divided by i’s total number of shares outstanding at t. The total ownership of a

stock traced at time t will be ωi (t) =
∑
αωi,α (t). Fig. 5.2 shows the distribution of ωi .

Figure 5.2: Distribution of ωi . The solid blue line shows the median value of the
distribution. The light blue area spans from the 5-th to the 95-th percentile of the
distribution. Each shade of colour covers five percentiles. The solid red line shows the
percentage of stocks found in at least one portfolio. The quarterly cyclicality is due to
funds’ different reporting schedules; ∼ 40% of the funds file reports in March, June,
September and December, ∼ 30% report in February, May, August and November, and
another ∼ 30% reports in January, April, July, and October. See Appendix E.1 for more
details.

5.3.2 Market Data

Stocks’ prices are processed in different steps:

1. For each security, we compute the log returns,

2. We centre and rescale the returns,

3. We clean the time series from the common eigenmodes,

4. We compute the volatility,

5. We drop the outliers.

Step 1 Given the closing price pi (t) of a security i on day t, we compute its log returns

as

ri (t) =
pi (t + 1)
pi (t)

. (5.1)
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Step 2 Each time series r (t) has an idiosyncratic mean and variance (volatility) and

the distribution of its entries is fat-tailed. Accordingly, we use the leave-one-out rescal-

ing [Bouchaud and Potters, 2003] to define the rescaled returns as,

r̃i(t) :=
ri(t)−Et′ [ri(t′)]√

Vt′,t [ri(t′)]
, (5.2)

where the average is computed over all times t′, but the variance is computed from

the time series where the observation corresponding to t′ = t has been removed. We

drop the tilde below for clarity, as we will not use the “bare” returns anywhere.

Step 3 We used two different strategies to clean the time series from their collective

behaviour. The first resembles the one described in Chapter 3. We computed the

correlation matrix C between stocks’ returns,

Cij = Et
[
ri(t)rj(t)

]
. (5.3)

We can rewrite C as

C =UΛUT , (5.4)

where U is a square matrix whose i-th column is the eigenvector ui of C, and Λ is the

diagonal matrix whose diagonal elements are the corresponding eigenvalues, Λij =

δijλi .3 The density of these eigenvalues is shown in Fig. 5.3. A few eigenvalues (∼ 10)

Figure 5.3: Density of eigenvalues λ of the returns’ correlation matrix C.

stand out of the bulk. The corresponding eigenmodes xi (t), defined as

xi (t) =
N∑
j=0

ui,jrj (t) , (5.5)

3In the following, we will assume that λ1, λ2, λ3 . . . are such that |λ1| > |λ2| > |λ3| > . . .
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describe the collective movements of the system [Bun et al., 2017]. By inverting the

previous formula, we rewrite ri (t) as a linear combination of the eigenmodes xi (t),

ri (t) =
N∑
j=0

qi,jxj (t) , (5.6)

where qi,j is the scalar product between ri and xj . We define the “clean” time series as

r ′i (t) =
N∑
j=k

qi,jxj (t) , (5.7)

where N is the total number of time series, and k is the number of eigenmodes we

want to clean. We have removed the eigenmodes corresponding to the twelve largest

eigenvalues. It is common to define the degrees of freedom n of a set of time series as

n =

(∑
i λ

2
i

)2∑
i λ

4 , (5.8)

where {λi} is the set of eigenvalues of the time series’ correlation matrix. Before clean-

ing the returns’ time series, the system has a number of degrees of freedom n ∼ 2; after

we remove the first twelve modes, the degrees of freedom become n ∼ 200.

In the second approach, we rewrite the time series r (t) as

ri (t) = r ′i (t) +αix (t) + βis (t) , (5.9)

where r ′i (t) is the idiosyncratic component we want to isolate, x (t) is the average return

at t,

x (t) =
1
N

∑
i

ri (t) , (5.10)

and s (t) is the average return of all the Ns stocks that belong to i’s same industrial

sector S,

s (t) =
1
Ns

∑
i∈S

ri (t) . (5.11)

After computing x (t) and s (t), we estimate αi and βi as

α̂i = ρ (ri ,x) ,

β̂i = ρ (ri , s) ,
(5.12)

where ρ (·, ·) is the Pearson correlation coefficient. Finally, we compute r ′i (t) as

r ′i (t) = ri (t)− α̂ix (t)− β̂is (t) . (5.13)
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Step 4 Given a time t and the corresponding time window w (t), we compute the

volatility of r ′i (t) as

σi (t) =
√

Vτ∈w(t)

[
r ′i (τ)

]
. (5.14)

We chose time windows w (t) of several different sizes (30, 90, and 90 days) and an-

chorage points (t being at one of the extremes or in the middle of the time window, see

Fig. 5.4). Note that the volatility can be computed daily, while ownership data comes

Figure 5.4: Different anchorage points for the time windows associated to t=2017-01-
01.

once per quarter. To harmonize the formalism, we will define σi (t) as the volatility

of stock i at the reporting date t, σi (t − 1) as the volatility of stock i computed at the

previous reporting date.

Step 5 We filter the outliers by dropping the values of the volatility σi (t) larger than

a threshold k. We have tried two values for k, 3 and 5.

5.4 Results

5.4.1 Regressions

We ran several regressions to unravel the relationship between stock ownerships’

ωi,α (t) and market volatility σi (t). The general formula of these regressions is

σi (t) ∼ a+ ct + di +
∑
α

bαωi,α (t) + bσσi (t − 1) . (5.15)

We tried different variations by
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• Using the first, the second, or both procedures to clean stocks’ returns described

in Sec. 5.3.2,

• Including and excluding the time and security fixed effects (ct and di),

• Including and excluding the volatility in the previous time window (σi (t − 1)),

• Ignoring or considering data points where the total ownership
∑
αωi,α (t) is smaller

than a threshold τω = 0.3,

• Using the ”raw” ownership ωi,α (t) or its normalized version, ω̃i,α = ωi,α(t)∑
αωi,α(t)

4 .

When we used ω̃i,j , we dropped ωi, other to preserve the linear independence of

the variables.

• Using the difference ∆ωi,α (t) =ωi,α (t)−ωi,α (t − 1)

• Using different time windows, attachment points, and filtering thresholds for

the volatility σi (t), as explained in Sec. 5.3.2. d

• Weighting our regression using the total ownership traced
∑
αωi,α (t) as a weight

for each data point,

• Using the log-difference σ̃i (t) = log(σ (t)) − log(σ (t − 1)) as a target variable in-

stead of the volatility σi (t) .

The number of observations is different for each regression (depending, e.g., on

the thresholds applied to the total ownership and volatility), and spans a range going

from ∼ 44k to ∼ 83k. The results are summarized in Fig. 5.5. The figure shows the

distribution of the coefficients bα for the three different investment style classes. The

values of βvalue are usually negative: when value investors own more shares of a stock,

the stock is less volatile. Conversely, when growth investors own more shares of a

stock, the stock is more volatile. Finally, other types of investors’ ownership seem, on

aggregate, to have a negative impact on the stock’s volatility, even if not as large as the

one of value investors.

The R2 of the regressions spans from R2 ∼ 0.5 to R2 ∼ 2×10−5; however, most of the

variance is captured when the previous volatility σi (t − 1) is included in the regression

(see Fig. 5.7). The distribution of the coefficients’ p-values is shown in Fig. 5.6. Coeffi-

cients in the top 10% of the distributions by R2 are on average less significant (Fig. 5.6,

C). This is again due to the inclusion of previous volatility into the regressions, which

4Note that
∑
αωi,α doesn’t necessarily add up to 1.
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Figure 5.5: Distribution of the coefficients bvalue, bgrowth, bother obtained from the re-
gressions described in Eq. 5.15.

captures a lot of the volatility (i.e., results in a high R2) but usually makes other coef-

ficients less significant.

The effect of the other variables is harder to capture. The variables that seem to

most influence the regressions’ R2 coefficients are shown in Tab. 5.1. For each vari-

able, the table shows the average log10

(
R2

)
of the corresponding regressions and the

incidence of a variable in the top decile of regressions by R2. We also show the top five

regressions by R2 with and without previous volatility in Tab. E.1.

5.4.1.1 Granger Causality

The regression analysis reveals a correlation between the distribution of a stock’s share

among different investor classes and the stock’s volatility. We now aim to strengthen

our claim by establishing a causal relationship between the two.

Granger causality is a statistical hypothesis test that measures the causal relation-

ship between two time series. The test is based on the idea that if a time series X is

useful in predicting another time series Y , then X is said to ”Granger-cause” Y . It

involves comparing the predictive power of two models: one that includes only the

past values of Y , and another that includes the past values of both X and Y . If the

second model provides significantly better predictions than the first, then X is said to

Granger-cause Y .
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Figure 5.6: Distribution of the p-values for the coefficients bgrowth, bvalue, and bother .
(A) p-values distribution over the full set of regressions. (B) p-values distribution for
the top 10% of regressions by R2. (C) Cumulative distribution of the p-values for the
whole set of regressions and the top 10%. Coefficients in the top 10% tend to be less
significant.

Figure 5.7: R2 coefficients of regressions. The two distributions show the R2s for the
distributions that include and do not include σi (t − 1).

For each stock, we run six different Granger causality tests. Three of them deter-

mine if any of the ownership time series ω̃i,α (t) ”granger-causes” the volatility time

series. The other three test the opposite hypothesis,i.e., that the volatility time series

”granger-causes” ω̃i,α. We compare the real-data results with those of a random bench-

mark obtained by randomly shuffling the values of ωi,α. Results are shown in Tab. 5.2.

Unfortunately, the analysis does not reveal any clear causal direction between stocks’

ownership and volatility.

5.5 Conclusions

In this chapter, we provided empirical support for the market ecology hypothesis.

We collected a large dataset of funds’ holdings and crossed it with data on the US
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Average log10

(
R2

)
Top R2 decile composition

Variable Value

Previous volatility included False -3.22 0.0%
True -1.35 100.0%

Time windown length 30 -2.50 0.0%
90 -2.34 15.2%

180 -2.01 84.8%
Target volatility difference False -2.16 98.5%

True -2.40 1.5%
Fixed effects included False -2.19 58.4%

True -2.37 41.6%

Table 5.1: Average value of log10

(
R2

)
and incidence in the top R2 quantile for the

different regressions’ groups. E.g., the average value of log10

(
R2

)
across all the regres-

sions where we included the previous volatility is −1.35, and 100% of the regressions
in the top quantile included stocks’ previous volatilities.

stock market. We showed that the volatility of stocks’ returns is correlated with the

ownership of stocks across different funds’ species, i.e., returns are more volatile when

more shares of a security are owned by growth funds and more stable when more

shares are owned by value funds. This agrees with the findings in [Scholl et al., 2021].
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Value Growth Other

ω→ σ 39% (38%) 35% (38%) 38% (38%)
σ →ω 36% (38%) 38% (39%) 37% (38%)
ω→ σ & σ ↛ ω 19% (16%) 16% (17%) 18% (18%)
ω ↛ σ & σ →ω 15% (16%) 18% (18%) 17% (18%)
ω→ σ & σ →ω 21% (21%) 19% (21%) 20% (20%)
ω ↛ σ & σ ↛ ω 46% (46%) 46% (44%) 45% (44%)

Table 5.2: Result of the Granger Causality analysis. The values show the fraction of
stocks over which the test had a positive outcome (p-value < 10−2). Numbers be-
tween brackets are obtained with a random benchmark. We use x → y to say that
time series x granger causes time series y, and x ↛ y to say that time series x does not
cause y.
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Chapter 6

Cryptocurrencies co-investment network

6.1 Introduction

Since the introduction of Bitcoin in 2009 [Nakamoto, 2008], the cryptocurrency mar-

ket has experienced bewildering growth, surpassing an overall value of one trillion

dollars in early 2021. Beyond private investors, the development of the market was

fostered by cryptocurrency hedge funds and Venture Capital (VC) funds, with institu-

tional investments in cryptocurrency-related projects reaching an estimated amount

of 17 billion US dollars in 2021 [Kochkodin, 2022, Neureuter, 2021].

A growing number of traditional financial firms and investment funds in Europe

and the U.S. are also exploring avenues for investments in cryptocurrency via dif-

ferent channels, including, but not limited to, including cryptocurrency into their

portfolios, investing through tokenization in equity of blockchain companies, and ex-

ploiting more regulated tools such as crypto futures, options, and ETFs [Nassr and

Patalano, 2022, Neureuter, 2021]. Unfriendly regulations, high volatility, and lack of

reliable valuation tools, amongst other issues, have so far hindered widespread adop-

tion and institutionalisation of these assets [Rauchs et al., 2019, Neureuter, 2021].

Most cryptocurrency platforms, for instance, lack regulatory and supervisory over-

sight concerning trading, disclosure, anti-money laundering, and consumer protec-

tion measures, forming what has also been described as a “shadow financial system”

Auer et al. [2022]. Nonetheless, recent challenging events affecting the economy and

markets, i.e., the U.S. elections, Brexit in Europe, and the global pandemic, have grad-

ually accelerated the uptake [Neureuter, 2021].

Despite these developments, the effects of institutional investments on the cryp-

tocurrency market are still little understood, also due to the lack of comprehensive

quantitative data. A growing body of literature has so far focused on the properties of

the rapidly evolving crypto market ecosystem, shedding light on critical aspects such
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as market efficiency [Sigaki et al., 2019, Vidal-Tomás and Ibañez, 2018], asset pricing

bubbles [Chen and Hafner, 2019], the dynamics of competition between currencies

[Dowd and Greenaway, 1993, Luther, 2016], and the impact of collective attention

[ElBahrawy et al., 2019]. Given the digital and decentralised nature of crypto assets, a

major focus has been to understand the drivers of price fluctuations and how to prop-

erly value these assets. Studies using empirical data have focused on understanding

the price dynamics of cryptocurrencies (also called “tokens”) using machine learning

techniques [Alessandretti et al., 2018, Walther et al., 2019, ElBahrawy et al., 2019,

McNally et al., 2018, Chen et al., 2020, Akyildirim et al., 2020], also including socio-

economic signals (e.g., sentiment gathered from social media platforms) that appears

to be intertwined with the price dynamics [Garcia et al., 2014, Aste, 2019, Ortu et al.,

2022, Lucchini et al., 2020]. Research has also shown that movements in the market

can be tied to macroeconomic indicators, media exposure, and public interest [Lyócsa

et al., 2020, Corbet et al., 2020], policies and regulations [Borri and Shakhnov, 2020],

and indeed the behaviour of other financial assets [Nguyen, 2022].

In the context of institutional investments, the recent growing interest in mixed

portfolios of crypto and traditional assets [Nassr and Patalano, 2022] has paved the

way to research looking at optimal portfolio allocation. Studies have focused on the

composition of mixed portfolios,i.e., including traditional (bonds, commodities, etc.)

and crypto assets [Koutsouri et al., 2020, Platanakis and Urquhart, 2020], and crypto-

only portfolios [Hu et al., 2019, Ahelegbey et al., 2021] testing the performances of

different allocation and re-balancing strategies. It was suggested that the participa-

tion of institutional investors in both crypto and traditional markets might lead to

potential spillovers and increased contagion risks between traditional finance and de-

centralised finance (DeFi)1 [Nassr and Patalano, 2022].

Understanding the behaviour of institutional investors and its effect on the struc-

ture and evolution of the cryptocurrency markets is therefore of paramount impor-

tance to quantify the mutual impact between DeFi and traditional entrepreneurial

finance [Nassr and Patalano, 2022, Shakhnov and Zaccaria, 2020]. So far, most of the

research available is based on qualitative surveys by private companies of investors

in Europe and the U.S., which aim to identify market trends and issues, e.g., barriers

to adoption and current channels to exposure in cryptocurrencies [Neureuter, 2021,

Nassr and Patalano, 2022]. In Sun et al. [2021], for instance, the authors surveyed 33

1The term “decentralised finance” refers to financial services, such as lending or asset trading, pro-
vided through decentralized platforms, as opposed to traditional centralized financial institutions.
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Asian firms to investigate whether price volatility lowers institutional investors’ con-

fidence and to quantify the role played by the familiarity of investors with the tech-

nology in the selection of crypto assets. In Ciaian et al. [2022] the authors analysed the

connection between investors’ ESG preferences and crypto investments exposure us-

ing household-level portfolio data gathered from the Austrian Survey of Financial Lit-

eracy (ASFL). The analysis suggests that crypto investments are more strongly driven

by social and ethical preferences compared to traditional investments (e.g., bonds).

In Liu and Liu [2021] the authors provide a first quantitative exploration of the in-

vestor’s network focusing on data for investments on ∼ 300 ERC-20 tokens.2 Their

analysis shows that less central tokens in the investment network have also low mar-

ket capitalization (i.e., the overall dollar value of all the tokens) and trading volume,

poor liquidity, and high volatility.

This chapter aims to study the link between institutional investments and cryp-

tocurrencies’ market trends systematically and quantitatively, exploiting a novel com-

bination of data sources on a larger sample of cryptocurrencies. Our analysis ex-

ploits network science tools to study the structure and evolution of the co-investment

network, i.e., constructed as an undirected network of cryptocurrencies (nodes) con-

nected if they share a common investor. In particular, we aim to tackle the following

two main research questions: (i) does the presence of connections in the co-investment

network reflect intrinsic similarities (e.g., in terms of technology or use cases) between

cryptocurrencies? (ii) is the co-investment network related to cryptocurrencies’ mar-

ket dynamics? First, we investigate the connection between the co-investment network

structure and various features of cryptocurrencies, such as their supported blockchain

protocols and use cases. Then, we examine the relation between the co-investment net-

work structure and the correlation between the market behaviour of pairs of tokens

measured in terms of correlations of their returns (i.e., the percentage changes in their

prices over time).

The chapter is organised as follows: in Section 6.2, we describe how the data was

collected and integrated and the methodologies and algorithms employed for this

study; in Section 6.3.1, we describe the co-investment network and study how the

cryptocurrency features (e.g., type of blockchain protocol, use case) are related to the

network structure; in Section 6.3.2 we study the connection between the structure of

the co-investment network and market properties of different assets. In Section 6.4 we

conclude.
2An ERC-20 token is a type of digital asset that runs on the Ethereum blockchain, following a stan-

dardized set of rules so it can easily interact with other apps and tokens. Essentially, it is a special type
of currency that can be used in a variety of online applications and services.
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6.2 Dataset and methods

6.2.1 Data Description

In this chapter, we use three main data types, (i) cryptocurrency price time series

data, (ii) cryptocurrency metadata describing projects’ technological features and/or

their use case and functionalities, and (iii) data capturing information on investment

rounds in cryptocurrency projects.

Market data (i) and cryptocurrency metadata (ii) were extracted from the website

Coinmarketcap.3 Data covers 1324 cryptocurrency projects over 8 years, spanning

from 2014 to 2022. Market data consists of each cryptocurrency’s opening price, clos-

ing price, and traded volume, sampled weekly.

Coinmarketcap also assigns tags describing the main features of the different cryp-

tocurrencies. Metadata can be broadly classified into three categories. The first is

technology-related specifications, which refer to the underlying blockchain technology

that the cryptocurrency employs (e.g., Proof-of-Work vs. Proof-of-Stake algorithms–

these are different methods used to validate transactions and create new blocks in

the blockchain). The second is ecosystem-related information, indicating whether the

cryptocurrency operates on an independent blockchain or as part of an existing one, as

well as whether it is part of decentralized finance (DeFi) projects. The third category

relates to the use case, or the specific purpose and utility of the cryptocurrency (e.g., it

could be used for facilitating distributed storage, as a fan token for a particular brand

or celebrity, or simply as a digital store of value, like digital gold). See Appendix F.5 for

a list of available tags used to categorize these aspects and their respective frequency.

The dataset contains 226 unique tags. Cryptocurrencies’ tags might change over time

as, for instance, the project pivots its scope or new categories are invented. Thus, the

data we collected and used in the analysis should be understood as a snapshot of the

cryptocurrency environment at the time they were gathered (August 2021).

Coinmarketcap also provides cryptocurrencies’ webpage URLs, which are used to

merge market-related data with investment data.

Finally, the investments’ data (iii) is gathered from Crunchbase [Dalle et al., 2017],

a commercial database covering worldwide innovative companies and accessed by

75M users each year. The data is sourced through two main channels: an extensive

investor network and community contributors. Investors commit to keeping their

portfolios updated to get free access to the dataset. More than 600,000 executives,

3Coinmarketcap, Accessed: 2022-07-16
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entrepreneurs, and investors update over 100,000 company, people, and investor pro-

files per month. Crunchbase processes the data with machine learning algorithms to

ensure accuracy and scan for anomalies, ultimately verified by a team of data experts

at Crunchbase. Due to its broad coverage, the data has been used in thousands of

scholarly articles and technical reports [Dalle et al., 2017, den Besten, 2020]. Informa-

tion on Crunchbase includes an overview of the company’s activities, number of em-

ployees, and detailed information on funding rounds, including investors and - more

rarely - amounts raised. We provide detailed information on the features contained in

this dataset in Appendix F.4.

We merged the Crunchbase data on investment rounds with Coinmarketcap data

via the companies’ webpage URLs. After merging, the dataset includes 4395 invest-

ments made in 1458 rounds by 1767 investors to 1324 cryptocurrency projects appear-

ing on Crunchbase. The total investments amount to $13B US dollars in the period

considered (2008-2022). When merging with the time series data, we can still track

624 cryptocurrency projects.

6.2.2 Methods

In this section, we review the methods used for our analyses. We first describe the co-

investment network and the approach we used to cluster its nodes. Later, we explain

our analysis of the interplay between the network structure and the market dynamics.

Co-investment network. The main object considered in our study is the cryptocur-

rencies’ co-investment network. Fig. 6.1, A shows how the co-investment network is

constructed as a monopartite projection of the bipartite network where investors are

connected to cryptocurrency projects they have funded at least once. In the resulting

co-investment network (Fig. 6.1B) — which is unweighted and undirected — nodes

represent different cryptocurrencies, and the presence of a link means that the two

nodes share at least one common investor. Fig. 6.1C, shows the real co-investment

network composed of 624 cryptocurrency projects. The node sizes are proportional

to their degree, and the link widths are proportional to the number of common in-

vestors between two cryptocurrencies. In the rest of this chapter, the co-investment

network will be characterised by a binary and symmetric adjacency matrix A, with en-

tries aij ∈ {0,1}, recording only the information on whether at least one shared investor
exists between two cryptocurrencies.
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Figure 6.1: Cryptocurrencies co-investment network. (A) The Crunchbase dataset
can be mapped into a bipartite network where investors are connected to cryptocur-
rency projects they have invested in at least once. We use an approach similar to
Lucchini et al. [2020] (B) Projection of the bipartite investors-cryptocurrencies net-
work, where two cryptocurrencies are linked if they have at least a common investor.
(C) Real co-investment network of 624 cryptocurrency projects with at least one con-
nection. Node size is proportional to the number of connections, and link width is
proportional to the number of common investors between two cryptocurrencies (note
that link weights have been discarded in our analysis, where the co-investment net-
work is unweighted). Colours represent different groups of cryptocurrencies clustered
according to their tags’ similarity on Coinmarketcap (see Sec 6.2.2). We also report the
name of the top nodes by degree in five representative clusters (DODO, LUNA, NEAR,
ZRX, DOT).

Clustering algorithm We assign a vector xi to each cryptocurrency, where, for ev-

ery tag j, xi,j = 1 if the j-th tag (see Table F.6) is assigned to the i-th cryptocurrency,

and xi,j = 0 otherwise. We used the Ward Aggregative Clustering [Ward, 1963] al-

gorithm to divide the cryptocurrencies into different clusters based on the observa-

tions (x1,x2, . . . ,xn). The algorithm uses a ”bottom-up” approach: each observation

is initially placed in its own clusters, and clusters are merged sequentially according

to some criterion until the desired number of clusters is reached. Wards’ algorithm

specifically prescribes to merge, at each iteration, the pair of clusters Si , Sj that mini-

mizes the distance ∆
(
Si ,Sj

)
, defined as

128



∆
(
Si ,Sj

)
=

∑
l∈Si∪Sj

∥xl −µi+j∥2 −
∑
l∈Si

∥xl −µi∥2 −
∑
l∈Sj

∥xl −µj∥2 =
|Si |

∣∣∣Sj ∣∣∣
|Si |+

∣∣∣Sj ∣∣∣∥µi −µj∥2, (6.1)

where |Si | is the number of observations in cluster Si , µi is the mean of points in Si ,

µj is the mean of points in Sj , and µi+j is the mean of points in Si ∪ Sj . The number

of clusters k is an input of the clustering algorithm. Using the elbow method (see Ap-

pendix F.1.1) we set k = 12. We opted for Ward’s Agglomerative Clustering Algorithm

over alternatives such as k-means and k-modes due to its propensity for generating more

equal cluster sizes [Everitt et al., 2011, Murtagh and Legendre, 2014]. Minimizing the

total within-cluster variance, which often results in clusters that are similarly sized

in terms of variance, Ward’s method provides a more regular partitioning of the data.

Since our data is sparse (i.e., each cryptocurrency only has a handful of tags), other

alternatives would put most of the cryptocurrencies in a single cluster. However, we

show in Appendix F.1.1 that our conclusions are robust with respect to the clustering

algorithm choice.

Clustering evaluation and benchmarks We investigate whether the clusters ob-

tained via the previous procedure reflect the underlying network structure by study-

ing the in-density and out-density of links according to the partitioning defined by

the clusters. Given the the N ×N adjacency matrix A of our co-investment network

and the clustering S∗ = {S1, . . . ,Sk}, we define the in-density of a cluster Si as

ρii =
1

|Si | (|Si | − 1)

∑
j,k∈Si ,j,k

Ajk , (6.2)

and its out-density as

ρoi =
1

|Si | (N − |Si |)

∑
j∈Si ,k<Si

Ajk . (6.3)

These metrics are used to study whether cryptocurrencies with similar characteristics

– clustered according to the Coinmarket cap tags – are more strongly interconnected

(higher in-cluster density) in the co-investment network among themselves rather

than with groups of dissimilar cryptocurrencies. We, then, compare the in-densities
and out-densities of the clusters identified by the clustering algorithm with those of

random clusters. To generate the random clusters, we simply assign each cryptocur-

rency to one of the twelve possible clusters with equal probability. In Section F.3 of

the Supplementary Information, we repeat the analysis with several different node

similarity metrics including textitJaccard index, the cosine similarity (also known as
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Salton index), the Adamic-Adar index, and the resource allocation index, showing that

our findings are robust with respect to different metrics.

Time series processing The investigation of the co-investment network’s relation-

ship with the cryptocurrency market is conducted by computing cryptocurrencies’

returns correlation. The primary objects of this analysis are cryptocurrencies’ weekly

closing price (i.e., the final price at which the cryptocurrency is traded during a spe-

cific trading week) time series pi (t) , i = 1, . . . ,N .

We transform this time series in those of their returns, and clean them by removing

their common factor, as we explained in Sec. 3.2.

Network correlation and random benchmarks Similarly to what we did in Sec. 3.2,

we compute the average value of the raw and adjusted correlations C and C̃ (defined,

fort τ = 0, in Eq. (3.7)) restricted to the pairs of cryptocurrencies (i, j) that are linked

(i.e., share an investor) in the co-investment network. To explain again our approach,

given any (binary) adjacency matrix M characterising the co-investment network we

define

CM = Eij
[
CijMij |Mij > 0

]
, (6.4)

and

C̃M = Eij
[
C̃ijMij |Mij > 0

]
, (6.5)

where the average runs over all pairs (i, j) of connected nodes. We compute CA and C̃A

over the adjacency matrixA of the real co-investment network and compare them with

the values obtained on three random network models: the Erdős-Rényi model [Erdős

and Rényi, 1959], the Stochastic Block Model [Karrer and Newman, 2011], and the Con-
figuration Model [Newman, 2003]. Here - in order to mimic the properties of the real

co-investment network - we have constructed undirected and unweighted random net-

works as benchmarks.

The process is similar to that explained in Sec. 3.3.1. For every model, we sample

n = 1000 network instances R1, . . . ,Rn at random, and compute the mean and standard

deviation of the sets
{
CR1

, . . . ,CRn

}
and

{
C̃R1

, . . . , C̃Rn

}
. All models are parametrized to

match the empirical properties of the co-investment network. The probability of a

link p in the Erdős-Rényi model is set to match the co-investment network’s empirical

density,

p =
1

N (N − 1)

N∑
i=1

N∑
j>i

Aij .
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Blocks in the stochastic block model match the clusters found with the clustering algo-

rithm and the densities within- and across- clusters are equal to the empirical values.

Finally, the degree sequence in the configuration model matches the empirical degree

sequence.

C

Figure 6.2: Temporal evolution of institutional investments in cryptocurrency
projects. Yearly total amount raised in USD (blue line) and the number of invest-
ments (red line) in cryptocurrency projects retrieved from the Crunchbase dataset
for the period 2009-2012. The total capitalization of the cryptocurrency market in
USD is shown in yellow.

6.3 Results

6.3.1 Structure of the cryptocurrency co-investment network

In this section, we analyze the relationship between institutional investments and the

properties of the cryptocurrency market.

We start by quantifying the joint evolution of the number and volume of invest-

ments together with the growth of the cryptocurrency market. In Fig. 6.2, we show

the evolution of the total raised amount, number of investments, and market capi-

talization of the cryptocurrency ecosystem.4 Overall, we find that the number of in-

vestments, as well as the amount raised, has been steadily growing since 2012. More-

over, we find a positive correlation between the cryptocurrency market capitalization

(MC) and both the total volume of investments/raised amount in dollars (VI) and

4The market capitalization of a token is the total value of all its units in circulation, calculated by
multiplying the current price per token by the total number of tokens available.
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the number of investments (NI). The Spearman correlation amounts respectively to

ρMC−V I = 0.79 and ρMC−NI = 0.81, suggesting that the crypto market and the volume

of investments have evolved hand in hand.

Next, we turn to studying the evolution of the co-investment network in time (see

Figure 6.3). We find that, since 2014, the network has grown steadily in terms of the

cumulative number of nodes (Fig. 6.3A), i.e., cryptocurrency projects funded by insti-

tutional investors, and the cumulative number of edges (Fig. 6.3B), i.e., common in-

vestors between cryptocurrencies. Interestingly, the growth displays a steeper increase

around 2017-2019, consistently with the rapid increase in demand for cryptocurren-

cies and the rise of Bitcoin’s valuation over those years [Cointelegraph, 2018]. Turning

our attention to the number of connections per node, we observe that the degree distri-

bution of the co-investment network is heavy-tailed, with most nodes having a single

connection and only a few having hundreds of neighbours (see Fig. 6.1C). Interest-

ingly, the shape of the distribution has been relatively stable over time (see Fig. 6.1C),

in line with the findings discussed in Liu and Liu [2021], where the authors studied a

smaller co-investment network only.

Which factors may explain the observed structure of the cryptocurrency co-investment

network? In the following, we test the hypothesis that the structure of the co-investment

network is partly determined by the properties characterising different cryptocur-

rency projects (e.g., their underlying technology or their purpose) because investors

tend to specialize and invest in specific types of cryptocurrencies. More formally, we

assess whether two cryptocurrencies with similar properties are also more likely to be

connected in the co-investment network compared to any random pair of currencies.

To this end, we assign each cryptocurrency to a cluster, based on its properties (see

Sec. 6.2.2 for more details). Then - for each cluster i - we calculate the in-cluster den-

sity ρii and the out-cluster density ρoi , as defined in Eq. (6.2) and Eq. (6.3) respectively.

We then compare the in- and out-cluster densities: if ρii is significantly higher than ρoi ,

then there is a higher density of links among cryptocurrencies with similar properties.

Indeed, we observe that the densities inside clusters of similar cryptocurrencies

tend to be larger than those across clusters (see Figure 6.4), which confirms our hy-

pothesis. In practice, this implies that similar cryptocurrency projects (i.e., those that

share a common set of tags), tend to share a larger number of investors compared to

any two randomly chosen projects.

Importantly, we find that–when cryptocurrencies are assigned to random clusters–

the relation between the in- and out-density is significantly different (see red shaded

area in Fig. 6.4). Thus, our results reveal that there is a non-trivial connection between
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the topology of the network and the intrinsic features of cryptocurrency projects. In

particular, they hint at the presence of specialised investors who do not simply in-

vest in the whole cryptocurrency ecosystem but rather focus on specific technologies

and/or use cases.
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Figure 6.3: Time evolution of network metrics. In Panel A we report the cumulative
number of nodes in the co-investment network. Panel B represents the cumulative
number of edges, i.e., new investors supporting cryptocurrency projects. In Panel C
we plot the degree distribution for five representative years.

6.3.2 Interplay between the co-investment network structure and
returns correlations

In this section, we investigate the interplay between the structure of the co-investment

network and the cryptocurrency market properties. More specifically, we test if the

price returns of cryptocurrencies that share common investors are more correlated

than one would expect by random chance.

To this end, we compute the average returns correlation CA defined in Eq. (6.4)

across pairs of cryptocurrencies sharing a link in the real co-investment network (de-

scribed by its adjacency matrix A). We also compute average returns correlation of

cryptocurrency pairs sharing a link on random network benchmarks including (i) an

Erdős-Rényi network, (ii) a configuration model and (iii) a stochastic block model
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Figure 6.4: Comparison of in- and out- cluster densities. In- and out-densities
measured on 12 clusters generated by running the clustering algorithm on the cryp-
tocurrencies’ tags. Blue circles represent the different clusters (the size of the circle
is related to the cluster’s size) and the text indicates the most relevant tags per clus-
ter. The dashed red line is the diagonal, the red-shaded area represents the in- and
out-cluster density distribution for the randomised clusters. The clusters identi-
fied by the algorithm fall outside this area; thus their in- and out-densities are not
compatible with the random benchmark we tested.

parametrized to reproduce some of the features of the real network (e.g., number of

nodes, number of clusters, degree distribution - as detailed in Sec. 6.2).

Fig. 6.5 compares the values of the correlation for the real co-investment network

and the benchmarks respectively. The correlation values displayed can be found in

Tab. F.1 and Tab. F.2 of the Supplementary Information. In Figure 6.5A, the returns

correlation between cryptocurrency pairs is plotted against their network distance,

defined as the shortest path between the two nodes in the network. Our findings

indicate that the average correlation decreases as the distance in the network increases.

Cryptocurrencies that are “close” in the co-investment network are, on average, more

correlated than the random benchmarks; conversely, pairs of cryptocurrencies that are

distant in the network are less correlated than the benchmarks.

Fig. 6.5B summarizes the average returns correlation for the real network (blue)

and random networks (green, red, and orange). The lighter shades of colour display
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the values of the correlation C̃Ã for the adjusted time series, where the market com-

ponent has been removed (see Sec. 6.2.2). Once again, the figure shows that the aver-

age correlation on the real network is significantly larger than on all the benchmarks

tested, suggesting that the network’s structure may directly impact the cryptocurren-

cies’ market behaviour. Furthermore, the gap between real and random correlation

widens significantly after removing the time series as discussed in Sec. 6.2.2.

Overall, our results reveal that the returns of cryptocurrencies that share a com-

mon investor have a stronger correlation than one would expect by random chance,

revealing that assets with shared investors tend to be characterized by similar market

dynamics.
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Figure 6.5: Returns correlation of connected cryptocurrency pairs. A: Average cor-
relation between the return time series of a pair of cryptocurrencies, against their
network distance. The results are shown for the real network (“True network”, blue
circles) and three random network models: the “Configuration Model” (red circles),
the “Block Model” (green circles), and the “Erdős-Rényi” model (yellow circles). To
help interpretation, all correlations for a given Network Distance d were rescaled
dividing them by the average correlation obtained for the “True Network” at that
distance d. B: Average correlation ( CA) for cryptocurrencies connected in the co-
investment network (blue bars) and in random benchmarks (red - configuration
model, green - stochastic block model, orange - Erdős-Rényi). For each network, the
bottom bar shows the adjusted correlation obtained after removing the market com-
ponent (C̃A, see Methods). Correlation values were rescaled between [0,1] for visual
clarity (independently for the values of C and C̃).
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6.4 Discussion

In this chapter, we have analyzed an ecosystem of 1324 cryptocurrency projects that

received 4395 investments from 1767 investors for a total amount of $13B appearing

on Crunchbase. We have built and analysed the co-investment network, where two

cryptocurrencies are linked if they share an investor. We have also clustered cryp-

tocurrency projects based on metadata and tags from the Coinmarketcap website and

studied the community structure.

As hinted by previous research and surveys concerning institutional and individ-

ual crypto investors’ preferences [Neureuter, 2021, Nassr and Patalano, 2022, Ciaian

et al., 2016, Liu and Liu, 2021], our results show that investors tend to specialise and

focus on particular technologies, use cases, and features of the cryptocurrency projects

they decide to include in their portfolio.

We have also analyzed the relationship between the co-investment network and

the cryptocurrencies’ market properties. We showed that the presence of a link in

the co-investment network translates into a higher correlation in cryptocurrencies’

returns. The marginal increase in the correlation of cryptocurrency returns decreases

as the distance between the considered pairs of cryptocurrencies in the co-investment

network increases.

Our work has limitations that, hopefully, can be turned into future avenues of

research. As stated above, we also provide access to the co-investment network recon-

structed from Crunchbase to ease further explorations and extensions of our work.

Firstly, our data collection process stopped over the summer of 2021, before the sec-

ond major cryptocurrency crash and the default of established players such as Terra,

Celsius, and FTX. It is legit to wonder to what extent our results would hold in the

new regime, where the general sentiment towards cryptocurrencies has pivoted.

Secondly, some prominent players in the cryptocurrencies’ ecosystem are not as-

sociated with a company, but rather with different types of organizations including

Decentralized Autonomous Organizations (DAOs), foundations, or even no legal entity

at all. The nature of the investment may also vary substantially. For instance, instead

of buying a share of the company, investors may, e.g., lend money to DeFi protocols in

exchange for tokens as rewards (a practice known as liquidity mining [Fan et al., 2022]).

These new organization types and forms of investment are scarcely represented in our

dataset, therefore we can only offer a partial view of the cryptocurrencies’ investment

ecosystem. Finally, most of our analysis was performed on a static network. How-

ever, how the network grows, what the different investment strategies adopted by an

investor are, and how they depend on the market are also clearly worth analyzing.
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In light of the recent crypto market crash events - from the stablecoin pair Terra –

Luna to large exchanges [Briola et al., 2022, Hermans et al., 2022, Chipolina, 2022] –

understanding the crypto market connectedness at the investors level helps shed light

on possible contagion channels posing threat to the ecosystem overall stability.
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Concluding remarks

This thesis is divided into two parts. Part I primarily focuses on production networks.

Production networks consist of millions of firms producing and exchanging goods

and services. Recently, geo-political shocks (Brexit, Russia’s invasion of Ukraine),

the COVID-19 pandemic, and simple logistic misfortunes (e.g., the Ever Given ob-

struction of the Suez Canal) highlighted the role of these networks in the diffusion of

economic shocks, while researchers have shown that a detailed knowledge of supply

chains is necessary to make accurate economic forecasts, enforce human rights and en-

vironmental standard, and decarbonize the economy. Unfortunately, there is very lit-

tle data on supply chains, and researchers often have to resort to reconstruction tech-

niques to reveal the details of these networks. In Chapter 1, we surveyed the literature

on network reconstruction, i.e., on the set of mathematical methods used to infer the

fine-grained topology of networks in the presence of partial or aggregate information.

After a brief general overview, we focused on the application of these methodologies to

the reconstruction of production networks. In Chapter 2 and Chapter 3, we proposed

two original contributions to this problem. In Chapter 2, we used machine learning

classifiers to infer the presence of commercial relationships between companies. Our

approach performs consistently well across different production networks and out-

performs some established benchmarks. We also tested whether a model trained on

the national production network of one country could be used to predict links in a

second, unobserved country. Our results seem to suggest that, as long as the data col-

lection process is uniform across the countries, the model makes relatively accurate

predictions, and thus could be employed to reconstruct production networks in coun-

tries where no data is available. In Chapter 3, we studied if the correlation between

firms’ growth time series could be useful in reconstructing production networks. Us-

ing FactSet’s supply chain network as a use case and several random network models

as benchmarks, we showed that the growths of firms connected in the production net-

works are on average more correlated than those of randomly selected firms’ pairs.

We have tried to exploit this observation to reconstruct the production network by

framing the problem in the context of Gaussian graphical models. The results do not
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allow us to claim a significant improvement over the benchmarks; nevertheless, we

believe that our approach could be significantly enhanced by more high-resolution

time series, more sophisticated data-cleaning protocols, and better generative mod-

els for production networks. In Chapter 4, we introduced an agent-based model for

production networks. The model builds upon previous works and tries to model the

short-term impact of economic shocks transmitted through the supply chains. Also,

we introduced an algorithm that, taking an unweighted version of the production net-

work, generates sets of weights that are compatible with firms’ overall sales and inter-

mediate consumption.

Part II focuses on financial markets. In Chapter 5, we provided empirical sup-

port to the market ecology hypothesis. Market ecology frames financial markets as

ecosystems where trading strategies evolve and specialize to exploit market inefficien-

cies; strategies interact with each other through price setting, and they prosper or

fade out depending on their ability to generate returns. Simple models have shown

that when trend-following strategies dominate the markets, the volatility of assets in-

creases. Leveraging a large dataset of funds’ holdings, funds trading strategies’ classi-

fications, and US stock market data, we substantiated this observation.

Finally, in Chapter 6, we further explore the relationship between investors and

market behaviour, focusing on the cryptocurrency market. We assemble a large dataset

of investments in cryptocurrency firms and show that the returns of currencies shared

by a single investor are statistically more correlated than the market average.

As we mentioned in our introduction, despite the diverse range of topics that this

thesis spans, our central intent was to provide a more nuanced understanding of eco-

nomic phenomena, showing that machine learning, network theory, agent-based mod-

els, and complex systems theory, can contribute to a more realistic and comprehensive

modelling approach.
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Appendix A

Appendix to Chapter 1

A.1 Similarity scores

This section provides a summary of the local, quasi-local, and global similarity scores

surveyed in Lü and Zhou [2011].

A.2 Statistical performance metrics

Statistical indicators for deterministic outcomes often employ a combination of four

primary metrics: the True Positives (TP), the False Positives (FP), the True Negatives
(TN), and the False Negatives (FN). We define these as follows. Assume that the target

network G has an adjacency matrix A and that the reconstructed network G′ has an

adjacency matrix A′. We have,

TP =
∑
ij

AijA
′
ij ,

FP =
∑
ij

(
1−Aij

)
A′ij ,

TN =
∑
ij

(
1−Aij

)(
1−A′ij

)
,

FN =
∑
ij

Aij
(
1−A′ij

)
.

These four metrics are usually combined into more elaborate metrics, like the True
Positive Rate, the False Positive Rate, the Precision (also known as accuracy), and the
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Recall, defined as

TPR =
T P

T P +FN
,

FPR =
FP

FP + TN
,

Precision =
T P

T P +FP
,

Precision =
T P

T P +FN
,

When it is possible to assign a probability pij or a score sij to each link, the most

common metrics are the Area Under the Receiver Operating Characteristic Curve (AU-

ROC) and the Area Under the Precision-Recall Curve (PR-AUC). To compute the AU-

ROC and PR-AUC, consider a scenario where the reconstruction targets a network

G = (V ,E), with adjacency matrix A, and produces a score
{
sij

}
that ranks links from

most to least likely. This sequence of links is denoted {li}i=1,...,N2 .

To compute the AUROC, start with an empty graph G′0 = (V ,∅). Then, iteratively

include links from the most to least likely. At iteration n, the network G′n is G′n =

(V , {li} i = 1, . . . ,n). For eachG′n, we can compute the True Positive Rate, the False Positive
Rate, the Precision, and the Recall.

The series of tuples {(FPRi ,T P Ri)} and {(Reci , P ri)} form two curves in the FPR/TPR

plane and the Recall/Precision plane, respectively. The first curve is known as the

Receiver Operating Characteristic curve, while the second is the Precision-Recall curve.

The area under these curves estimates the quality of a prediction, with an area of 1

indicating perfect predictions.

Metrics for weighted networks include the cosine similarity θw between the weighted

adjacency matrices,

θw =
1 (W ′ ·W )1T

∥W ′∥2∥W ∥2
,

and the L1 and L2 distances

∥W ′ −W ∥1 =
∑
ij

|w′ij −wij |,

∥W ′ −W ∥2 =

√∑
ij

(
w′ij −wij

)2
.
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Name Definition Description

Common Neighbors |Γ (A)∩ Γ (B)| Counts the common neighbors
of A and B.

Salton Index |Γ (A)∩Γ (B)|√
|Γ (A)|×|Γ (B)|

The cosine similarity between
the neighbors of the two nodes.

Sørensen Index 2|Γ (A)∩Γ (B)|
|Γ (A)|+|Γ (B)| Used mainly for ecological

community data.
Hub Promoted index 2|Γ (A)∩Γ (B)|

min(|Γ (A)|,|Γ (B)|) Links adjacent to hubs are
likely to be assigned high scores
since the denominator is de-
termined by the lower degree
only.

Hub Depressed index 2|Γ (A)∩Γ (B)|
max(|Γ (A)|,|Γ (B)|) Links adjacent to hubs are

likely to be assigned low scores
since the denominator is de-
termined by the higher degree
only.

Leicht-Holme-Newmann index 2|Γ (A)∩Γ (B)|
|Γ (A)|×|Γ (B)| The index assigns high simi-

larity to node pairs that have
many common neighbors com-
pared to the expected number
of such neighbors.

Preferential Attachment index |Γ (A)| × |Γ (B)| Probability of a link in the
growth-less preferential attach-
ment model.

Adamic-Adar index
∑
C∈Γ (A)∩Γ (B)

1
logΓ (C) This index refines the simple

counting of common neighbors
by assigning the less-connected
neighbors more weight.

Resource allocation index
∑
C∈Γ (A)∩Γ (B)

1
Γ (C) This index refines the simple

counting of common neighbors
by assigning the less-connected
neighbors more weight.

Table A.1: Local similarity indices for link prediction. Knowing the neighbors of two
nodes A and B is enough to compute any of the local similarity scores.
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Appendix B

Appendix to Chapter 2

B.1 Model details

The experiments were performed on an Amazon AWS EC2 c5 machine. The model

we used is the gradient boosting classifier provided in the LightGBM python library,

which turned out to be the best-performing across the different experiments. Table

B.1 reports the models’ parameters for the different experiments. We performed a

grid search around a few of the parameters’ default values and the default values

of another well-known gradient boosting implementation (XGBoost) on a very coarse

grid. The tweaking of these parameters did not appear to make a significant difference

in our results, and we did not pursue a more fine-grained optimization.

Compustat FactSet Ecuador Factset cross-country Factset-Ecuador
num leaves 50 100 150 200 200
num estimators 100 200 600 300 300
max depth 6 6 -1 -1 -1
min child weight 1 1 0.001 0.001 0.001
reg lambda 1 1 0 0 0

Table B.1: Model parameters across the different experiments. Values in bold font are
LightGBM’s default values.

B.2 Undersampling and evaluation of model performance

As the main text explains, our primary metric for comparing models is the Area Under

the Receiving Operating Curve (AUROC). This metric has a well-known drawback

in the case of strongly unbalanced datasets such as ours: The ROC curve uses the

FPR=FP/(FP+TN), so a large change in the number of FP leads to only a minor change

in the FPR due to the vast number of TNs. In other words, ROCs fail to put emphasis

on the performance obtained when predicting only a small number of existing links.
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This issue is well-known, and the main alternative suggested in the literature is

the Precision-Recall Curve (PRC) (see Fig 2.1B for definitions). While PRCs are very

intuitive and useful for link prediction tasks, there are three reasons why we prefer

to use AUROCs in the main body of the paper. First, to a large extent, ROCs and

PRCs convey the same information; in fact, it is not difficult to show that if a model

has a ROC that strictly dominates that of another model, then its PRCs also strictly

dominates, although the ranking between models can change when their ROCs cross

[Davis and Goadrich, 2006]. Second and more importantly, in contrast to ROCs, PRCs

depend substantially on the undersampling ratio: if we construct datasets with many

more positives, our guesses of positives are more likely to be true. In this paper, we

need to undersample the data to create training and testing samples of manageable

sizes, so the dependence of the performance metric on the undersampling ratio is

potentially problematic.

To explain the issue in more detail, we explore ROCs and PRCs for a large span of

values for the undersampling ratio for Compustat, which is small enough to allow us

to estimate the models even if we don’t undersample at all (see Table 2.1). Fig. B.1

shows the results, which are in line with Kosasih and Brintrup [2022, Figs. 5 & 6].

While ROCs are fairly stable under different undersampling ratios, the PRCs change

dramatically.
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Figure B.1: Compustat’s Receiver-Operating (Left) and Precision-Recall (Right)
curves, for different values of the undersampling ratio (SSR), with Area Under the
Curve (AUC) shown in the legend.
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Recall Precision # Links Predicted
0.23± 0.02 0.23± 0.02 310

0.0645 0.8 67
0.5 0.0989 1446

Table B.2: Precision and Recall at various points of the PRC, corresponding to the
darkest line in Fig. B.1, right panel. The first row corresponds to the true number of
links in the testing set.

Essentially, if we remove many negatives, it becomes easier for any guess of a pos-

itive to be correct. This observation also serves to note a trivial but important point:

in a case where we really do not know the labels (positive/negative), we cannot un-

dersample the dataset. Therefore, to get a sense of the performance of the model in a

genuine out-of-sample task, we need to compute these metrics in a non-undersampled

test set. Since Compustat is small enough to do this, we provide a few specific points

along the PR-curve (Table B.2). If we predict as many links as the true number of links,

we recover 23% of the true links, and 23% of our predicted links are indeed existing

links. If we wanted to be sure that 80% of our predictions are correct, we should only

pick ≈ 67 links, thus identifying roughly 6% of the links in the network. If, instead,

we wanted to identify half of the links in the network, we would have to make ≈ 1446

guesses, of which only ≈ 10% would correspond to an existing link.

We expect these numbers would be somewhat lower for Factset and Ecuador, but

we have not tested them.

While we could have compared all the various models using AUPRCs throughout

the chapter (see Online Appendix B.6 for additional results), here we prefer to report

AUROCs, which provide a more robust benchmark for future researchers, who will

use undersampling ratios appropriate to their network density and computational ca-

pability.

B.3 FactSet Data processing

For the purposes of Chapter 2 and Chapter 3, we accessed three different FactSet prod-

ucts: Standard Datafeed - Fundamentals V3 - Advanced - Global, Standard Datafeed - Sup-
ply Chain relationship, and APB - Standard Datafeed - Supply Chain Shipping Transac-
tion. We parsed information on companies’ fundamentals (sales, R&D expenses, num-

ber of employees, industrial sector, and geographical location) from the first dataset

and used the other two to identify supply-chain relationships. The link prediction
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code takes three datasets as inputs: a dataset with firms’ fundamentals (indexed by

firm-date), a dataset of links (indexed by supplier-customer-year), and a dataset of ge-

ographical information (indexed by firm). We provide below a high-level summary of

the construction of these inputs and refer to the code (available upon request) for the

details.

Fundamentals The fundamentals dataset is built from the following FactSet files:

1. Fundamentals

• ff basic eu v3 full 5315/ff basic af eu.txt

• ff advanced eu v3 full 4524/ff advanced af eu.txt

• ff basic ap v3 full 5276/ff basic af ap.txt

• ff advanced der ap v3 full 4460/ff advanced der af ap.txt

• ff basic am v3 full 5258/ff basic af am.txt

• ff advanced der am v3 full 4484/ff advanced der af am.txt

2. FX Rates

• fx rates usd.txt

3. Symbology

• sym hub v1 full 9915/sym coverage.txt

• sym hub v1 full 9915/sym entity sector.txt

• f sec hub v3 full 5299/ff sec entity hist.txt

The Fundamentals files contain the (yearly) information regarding companies’ sales,

number of employees, and R&D expenses, and a currency column that states the fea-

tures’ currency. We can convert all these features in USD through the FX Rates table

provided by FactSet. The original fundamentals files are at the security level, not at

the company’s one. To create a dataset at the company level, FactSet provided us with

the following example query,

Select a.factset entity id, c.fsym id,c.date,c.ff sales

from [sym v1].[sym sec entity] a

join [sym v1].[sym coverage] b on a.fsym id = b.fsym id

join [ff v3].[ff basic qf] c on c.fsym id = b.fsym regional id

where a.factset entity id =’05HK0W-E’and a.fsym id = b.fsym primary equity id
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that we “translated” to python. We used sym hub v1 full 9915/sym entity sector.txt

to assign the correct SIC code to each of the firms.

Supply Chain edgelist The Supply Chain’s edgelist is built from the following Fact-

Set files:

1. Supply Chain

• ent supply chain v1 full 2354/ent scr supply chain.txt

2. Shipments

• sc ship trans current v1 full 1146/sc ship trans curr 1.txt

• sc ship trans current v1 full 1146/sc ship trans curr 2.txt

• sc ship trans current v1 full 1146/sc ship trans curr 3.txt

• sc ship trans current v1 full 1146/sc ship trans curr 4.txt

3. Mappings

• ent entity advanced v1 full 6896/factset entity structure.csv

• sc ship trans hub v1 full 1120/sc ship parent.txt

The Supply Chain and Shipment files both contain an edgelist (supplier-to-customer

and shipper-to-consignee respectively). The mapping files have two columns “FACT-

SET ENTITY ID” and “FACTSET ULT PARENT ENTITY ID”. We assume that every

FACTSET ENTITY ID that is not present in the mapping is an ultimate parent com-

pany.

Coordinates The firms’ geographical coordinates were computed from the following

files:

1. FactSet’s Addresses

• ent supply chain hub v1 full 2355/ent scr address.txt

• sc ship trans hub v1 full 1120/sc ship address coord.txt

• sym hub v1 full 9915/sym address.txt’

2. Geographical Coordinates

• cities1000.txt, (GeoNames)
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The firms’ addresses and geographical coordinates were merged on companies’

city, country, and state (in the case of U.S.). Some manual adjustments have been done

to deal with non-ASCII characters and the different names of some cities (e.g., Geneva

vs. Geneve). In the end, we were able to assign a geographical coordinate to ∼ 93% of

the available addresses.

B.4 Exponential-Family Random Graph Models

An ERGM is a probability distribution over the set of possible networks connecting a

collection of N nodes. It takes the form:

P (X = x) = k(θ)−1 exp(θ · z(x)) ,

where

• X =
[
Xij

]
is a random adjacency matrix,

• x is a specific realization of X,

• θ is a vector of model parameters,

• z(x) is a vector of network statistics,

• k(θ) is a normalization constant.

ERGMs are popular in the study of socio-economic networks because they can deal

with nodes’ covariates (e.g., the sales of a firm), dyadic properties (e.g., the reciprocity

of an edge), and the features of the full network (e.g., the expected density); as a result,

they can shed light on the mechanisms driving network formation (see Krichene et al.

[2019]). We briefly discuss how we fitted this model and used it for link prediction.

Fitting. The ergm R library is a standard for working with ERGMs. From a network

and a list of features to include, it provides estimates of the coefficients of an ERGM

through a (pseudo) likelihood maximization procedure. ERGMs are hard to calibrate

on large networks, and we have only succeeded in making the calibration process con-

verge for Compustat, the smallest of our networks. For FactSet and Ecuador we have

adopted a different strategy. First, we have subsampled ten different subnetworks for

each of the two datasets. These smaller networks were sampled by randomly choos-

ing a node and then retaining all its tier-1 and tier-2 neighbors (a procedure known as

snowball sampling). We have calibrated an ERGM for each subnetwork and computed
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the average of their coefficients. We have used the average coefficients to make predic-

tions on the larger network. The statistics used in the three datasets are reported in

Table B.3.

Compustat FactSet Ecuador

edges number of edges X X X
transitive number of triangles / transitivity X
nodecov(f)

∑
(i,j)∈X+

(
fi + fj

)
X X X

nodeicov(f)
∑

(i,j)∈X+ fj X X X
absdiff(f)

∑
(i,j)∈X+

∣∣∣fi − fj ∣∣∣ X

Table B.3: ERGM statistics. The first column shows the R functions used, and the
second column shows their explanation. X+ is equal to the set of the coordinates of
existing links and f is either sales, productivity, R&D intensity. The first two functions
have a straightforward interpretation: they measure the expected number of edges
and transitive triads in the network. The following two measure the effect of the fea-
ture f (i.e., they answer questions like: is a link more likely to exist if the suppliers’
sales are larger?). The last one computes the expected difference between connected
firms’ features. For a complete description of these functions, see the ergm package
documentation [Handcock et al., 2019].

Link prediction. Once the distribution is fitted to the data (i.e., once we have an

estimate for θ), using an ERGM for link prediction is straightforward. Consider pre-

dicting a link between firm i and firm j, that is, predicting whether the adjacency

matrix entry Xij is equal to one or equal to zero. Let us define Xc as the rest of the net-
work, Xc = {Xkl} ∀ (k, l) , (i, j). For example, consider the following network G, where

we know the presence/absence of each link except the one between 2 and 3:

1

2

34

We may represent the adjacency matrix as

x =


0 1 1 0
0 0 ? 1
0 0 0 1
0 0 0 0

 .
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We want to find the probability that x2,3 = 1, while the rest of the matrix xc is equal

to

xc =


0 1 1 0
0 0 · 1
0 0 0 1
0 0 0 0

 .
We can define two networks: G+23, where x23 = 1 (figure on the left), and G−23,

x23 = 0 (figure on the right); we call x+ and x− their adjacency matrices.

1

2

34

1

2

34

Now let us assume we know xc, so we can define

p+ = P (x23 = 1|xc) ,

p− = P (x23 = 0|xc) .

We have

p+ + p− = 1.

We also know that

p+ = P (G+23) = k(θ)−1 exp(θ · z (x+)) ,

p− = P (G−23) = k(θ)−1 exp(θ · z (x−)) .

If we now define δ23 = z (x+)− z (x−), we can write

log
(
p+

p−

)
= log

(
p+

1− p+

)
= θ · δ23,

and

p+ =
eθ·δ23

1 + eθ·δ23
.

This procedure can be generalized to any desired network and link. Note that through-

out the previous discussion, we assumed a fixed value for θ,i.e., we assumed that -

once calibrated - the parameters of our model would not change. This assumption

150



is coherent with our experimental procedure: we first calibrate the model using the

whole network data (thus obtaining a single value for θ) and later use this model for

link prediction. The previous discussion would have been in agreement with a differ-

ent yet sensible approach: calibrate the model on the observed portion of the network,

again obtaining a single θ, and then use this model for link prediction.1 A conse-

quence of using a single θ is that, as can be seen in the last formula for p+, one does

not need to go through the difficult challenge of computing the normalizing constant

k (θ) (also known as the partition function) to find a link’s odds to exist. However, it is

worth mentioning that in the literature, one can encounter a different approach, where

p+ and p− are computed using two different models, one fitted on G+ and the other

fitted on G−. This procedure leads to a slightly different formula (see Kumar et al.

[2020]), which falls back to the one we showed, assuming that, in a large network, the

presence or absence of a single link would not generate a significant difference in the

values of θ.

B.5 Categorical Features

As we saw in the main body of the chapter, the industrial sector of firms plays a crucial

role in predicting supply connections, and it is represented as a categorical variable in

our work. Consequently, it is important to provide the most salient facts on how the

LightGBM implementation deals with categorical variables.

Tree-based models can, in theory, deal gracefully with categorical variables. Given

a variable x that can take a set of N categorical values {A,B,C,D, . . .}, the model can

find splitting points by asking questions as ”is x = A?”, ”is x = B?”, etc. While intuitive,

this approach is not straightforward to implement, as algorithms can usually only deal

with numerical features; hence, some transformation of categorical variables to nu-

merical ones (a process known as encoding) is needed. A common choice for encoding

is the so-called One-Hot encoding. In one-hot encoding, the variable x is replaced by

the set of binary variables {xA,xB,xC ,xD , . . .}.2 One-Hot encoding is, however, subopti-

mal for tree learners. Particularly for high-cardinality categorical features, a tree built

on one-hot features tends to be unbalanced and needs to grow very deep to achieve

1While sensible, this approach is technically more challenging to implement with the standard li-
braries used to fit ERGMs.

2When x takes a given value K , the new variable xk is set equal to one, while all the others are set
equal to zero. Usually, if the total number of x’s possible values is N , only N − 1 binary variables are
created. For example, if x takes the values {A,B,C}, the corresponding encoding would be x→ (xA,xB),
where x = A→ (xA = 1,xB = 0), x = B→ (xA = 0,xB = 1), and x = C→ (xA = 0,xB = 0).
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good accuracy. One hot encoding is also generally less efficient from a computational

perspective, transforming a series of m values in a m× (N − 1) matrix.

Consequently, LightGBM implements a different encoding strategy to find the op-

timal split between the categories, first described in Fisher [1958]. The official package

documentation,3 nevertheless, recommends another approach in the presence of vari-

ables with a high number of possible categories. The recommendation is that it often

works best to treat the feature as numeric, either by simply ignoring the categorical

interpretation of the integers or by embedding the categories in a low-dimensional

numeric space. This corresponds to mapping the categories {A,B,C,D . . .} into the nu-

merical values {0,1,2,3, . . .}. Conditions such as “is x = A?” can then be transformed as

shown in Fig. B.2. This simple numerical encoding is not inconsequential because it

assumes an order across the categories that usually do not exist. For small datasets or

in the presence of noise, this can easily lead to false splitting rules. However, we spec-

ulate that this way of encoding categorical features is useful in the case of industrial

sectors. Indeed, sector codes are organized with an intrinsic order (at a coarse level,

Agriculture, Manufacturing, and Services), and this order is preserved in the numeri-

cal encoding. We speculate that this is picked up by the Gradient Boosting model in

the training phase and exploited to find good splitting points.

Category

A

B

C

D

Encoding

0

1

2

3

...

... x = B

... ...

...

... x > 0.5 and x < 1.5

... ...

Figure B.2: Same decision rule implemented with a categorical variable or its ordinal
encoding.

Encoding sector pairs as numerical features provides the important advantage of

making predictions for sector-pairs that have not been seen in training (as long as the

encoding is done before splitting the dataset). For instance, if the training set does

3https://lightgbm.readthedocs.io/en/latest/Advanced-Topics.html, retrieved October
2022
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not contain the industry-pair “C”, the numerical rules learned in training can still be

applied in testing and might in fact be effective, because the decision rules found by

observing their “neighbor” sector codes might still apply to them.

Because this treatment of categorical variables is arbitrary, we checked that the

results do not change if we shuffle the ordering before converting to numeric. Per-

forming one experiment and using FactSet, we found a very slightly lower AUROC of

0.943 (against AUROC 0.943 when preserving the original ordering).

B.6 PR-AUCs results

Here we show some of our main results using AU-PRC as a performance metric.

Fig. B.3 shows the equivalent of Fig. 2.4. There is somewhat higher variability

in the performances when evaluated using PR-AUCs compared to AUROCs. The per-

formance on Factset is now more clearly lower than on Compustat. The performance

on Ecuador is higher, which is because PRCs are sensitive to undersampling ratios

(Appendix B.2).

Fig. B.4 shows the PR-AUC for the three different datasets and all their respective

benchmarks. Again, this confirms the higher performance of the GBM.

Fig. B.5 shows the PR-AUCs for the Factset cross-country prediction task, for dif-

ferent models, to be compared with Fig. 2.7, showing similar qualitative conclusions.
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Figure B.3: Area under the Precision-Recall curves for the three different datasets for
the subsampling ratio specified in the main body of the chapter.
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Figure B.4: Area under the Precision-Recall curves for the three different datasets
and the respective benchmarks.
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Figure B.5: Area under the Precision-Recall curves for the three different splits of
FactSet into different countries’ networks.
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Appendix C

Appendix to Chapter 3

C.1 Correlation benchmarks

Table C.1 reports the distributions of the correlations’ values across the different net-

work benchmarks we tested.

Unprocessed Clean

Min 25% 50% 75% Max

Real 22.7 22.7 22.7 22.7 22.7
Erdős–Rényi 10.1 10.2 10.2 10.3 10.4

Industrial sector BM 11.9 12.0 12.0 12.1 12.2
Configuration Model 15.9 16.0 16.1 16.1 16.2

Country BM 11.8 11.8 11.8 11.9 12.0
Community BM 10.9 11.0 11.1 11.1 11.2

Min 25% 50% 75% Max

8.2 8.2 8.2 8.2 8.2
0.1 0.2 0.2 0.2 0.4
1.4 1.5 1.6 1.6 1.7
0.5 0.6 0.6 0.6 0.7
2.7 2.7 2.8 2.8 2.9
0.9 1.0 1.1 1.1 1.2

Table C.1: Values of the raw and cleaned correlations (in scale 0-100) for the real
production network and the random null models tested.

C.2 Network Reconstruction Algorithm

The algorithm used to solve the problem in Eq.(3.21) has first been proposed by Ku-

mar et al. [2019, 2020] in the context of structured Graph Learning. The authors for-

mulate the problem as follows. Let x =
[
x1,x2, . . . ,xp

]T
be a p-dimensional, zero-mean,

random vector (in the practical case, this would be the collection of the ”cleaned” time

series g̃1, . . . , g̃N ) associated with an undirected graph G = (V ,E), where V = {1,2, . . . ,p}
is a set of nodes corresponding to the elements of x, and E ∈ V × V is the set of edges

connecting nodes. In the Gaussian Graphical modeling framework, learning a graph
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corresponds to solving the optimization problem

max
Θ∈Sp++

logdet(Θ)− tr (ΘS)−αh (Θ) , (C.1)

where Θ ∈ Rp×p denotes the desired graph matrix, Sp++ denotes the set of p×p positive

definite matrices, S ∈ Rp×p is the covariance matrix obtained from the data, S = 1
nx

T x,

h (·) is a generic regularisation term, and α is a coefficient tuning the strength of the

regularisation. As we saw in 3.4, a matrix Θ ∈ Rp×p is called a combinatorial graph

Laplacian matrix if it belongs to the set

SΘ =

Θ|θij = θji < 0 for i , j,θii = −
∑
j,i

θij

 . (C.2)

The Laplacian Matrix Θ is a symmetric, positive semi-definite matrix with zero row

sums. In the framework of network theory, a Laplacian matrix Θ is computed from

a graph’s adjacency matrix A as Θ = D − A, where D is a diagonal matrix and Dii
is the degree of node i. It is straightforward to see that the adjacency matrix of a

graph can be recovered from the Laplacian matrix simply as A = Θ ⊙ (I − 1), where

I is the identity matrix, 1ij = 1, and ⊙ is the element-wise product. The structural

properties of a graph are encoded in the eigenvalues of its Laplacian so that being able

to constraint the spectrum of the matrix Θ in the optimization problem in Eq.(C.1)

allows to enforce some structural constraints on the reconstructed network. The goal

hence becomes that of solving the problem

max
Θ

loggdetΘ − tr (SΘ)−αh (Θ) ,

subject to Θ ∈ SΘ , λ (Θ) ∈ Sλ,
(C.3)

where gdet(Θ) denotes the generalised determinant of the matrix Θ,1 defined as the

product of its non-zero eigenvalues, λ (Θ) denotes the set of eigenvalues of Θ, and Sλ
is the set containing the spectral constraints on the eigenvalues. As the authors in Ku-

mar et al. [2019] point out, from the probabilistic perspective, if the data is generated

from a multivariate Gaussian distribution N
(
0,Θ†

)
, then Eq.(C.3) can be viewed as

a penalized maximum likelihood estimation of the structured precision matrix of an

attractive Gaussian Markov Random Field model, while, if x is arbitrarily distributed,

the problem in Eq.(C.3) corresponds to minimizing a penalized log-determinant Breg-

man divergence (a common measure of distance for probability distributions), and

1Note that in the main text, we have not made explicit the difference between gdet(Θ) and det(Θ)
to improve readability.
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Figure C.1: Given a Laplacian matrix Y , the operator L−1 flattens the upper-
triangular part of −Y into a vector w. L inverts the process.
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Figure C.2: The adjoint operator L∗ transforms a symmetric matrix in a vector.
Above, an example of a 4× 4 matrix.

hence its solution should anyway result in a meaningful graph. In the main body of

Chapter 3, we saw how we assume to know the spectrum λ̄ of the target matrix is

known, so we can define Sλ as

Sλ =
{
λi = λ̄i , ∀i ∈ [1,p]

}
. (C.4)

To solve the optimisation problem in Eq.(C.3), the authors in Kumar et al. [2019] first

introduce a Graph Laplacian linear operator L to transform a generic, non-negative

vector w ∈ R
p(p−1)/2
+ to a Laplacian matrix Lw ∈ Rp×p. The linear operator L : w ∈

R
p(p−1)/2
+ →Lw ∈ Rp×p is formally defined as

(Lw)ij =


−wi+dj i > j,

(Lw)ji i < j,∑
i,j (Lw)ij i = j,

(C.5)

where dj = −j + j−1
2 (2p − 1). The adjoint operator L∗ : Y ∈ R(p×p) → L∗T ∈ R

p(p−1)
2 is

derived to satisfy ⟨Lw,Y ⟩ = ⟨w,L∗Y ⟩. While the definition of the two operators might

seem cumbersome at first glance, their interpretation is fairly straightforward (see Fig,

C.1).

The Laplacian operator L allows reformulating the optimization problem in a sim-

pler way. First, by the definition of L, the set of constraints in Eq.(C.2) can be ex-

pressed as SΘ = {Θ = Lw|w ≥ 0}. Second, if we choose h (Θ) to be the L1-regularisation
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function, since (Lw)ij < 0 for i , j and (Lw)ij > 0 for i = j, the regularisation term

αh (Lw) = α∥Lw∥1 can be written as tr(LwH), where H = α (2I − 1), which implies

tr (LwS) +αh (Lw) = tr(LwK) , (C.6)

where K = S +H . We can now reformulate Eq.(C.3) as

min
w,U

− loggdet
(
UDiag

(
λ̄
)
UT

)
+ tr(LwK) +

β

2
∥Lw −UDiag

(
λ̄
)
UT ∥2F ,

subject to w > 0,UTU = I.
(C.7)

whereLw is the Laplacian matrix that we would like to decompose asLw =UDiag
(
λ̄
)
UT ,

Diag
(
λ̄
)
∈ Rp×p is a diagonal matrix containing

{
λ̄i

}
on its diagonal, and U ∈ Rp×p is an

orthogonal matrix. The constraints on the spectrum of the reconstructed matrix are

enforced (softly) thanks to the spectral penalty term β
2∥Lw−UDiag

(
λ̄
)
UT ∥2F . It is well

known that every Laplacian matrix Θ will have at least one eigenvalue equal to zero,

since Θ · 1 = 0 by definition. Consequently, when solving (C.7), the first eigenvalue

and the corresponding eigenvector can be dropped from the optimization formula-

tion. Now λ̄ only contains q = p − 1 non zero eigenvalues in increasing order,
{
λj

}p
j=2

;

we can replace the generalized determinant in (C.7) with the standard determinant

on Diag
(
λ̄
)
, and redefine U as U ∈ Rp×q, containing the eigenvectors correspond-

ing to non-zero eigenvalues in the same order. The orthogonality constraint becomes

UTU = Iq. In Kumar et al. [2019], the authors show how the problem in (C.7) can be

solved with an iterative approach. If we define the vector c,

c =
[
L∗

(
UDiag

(
λ̄
)
UT − 1

β
K

)]
, (C.8)

and the function f (w),

f (w) =
1
2
∥Lw∥2F − c

Tw, (C.9)

at each step t, we can update w and U , as

wt+1 =
[
wt − 1

2p
∇f

(
wt

)]+

, (C.10)

U t+1 = Λ (Lw) [2 : p], (C.11)

where Λ (Lw) is the matrix of the eigenvectors of Lw, sorted by the corresponding

eigenvalue. The algorithm can be run until convergence, wt+1 = wt = w∗, and the

vector w∗ can be used to reconstruct the Laplacian Θ = L∗w∗, and the corresponding

adjacency matrix. To reconstruct off-diagonal blocks of our Laplacian matrix, we have,
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at each iteration step, only updated the components of w corresponding to off-diagonal

blocks, and again run the algorithm until convergence. While there is no theoretical

guarantee that the algorithm will converge to the optimal solution of the optimization

problem, our results suggest that this approach is still effective in reconstructing the

network.

C.3 Dataset construction

The dataset construction for Chapter 3 follows the same steps adopted for Chapter 2.

Appendix B.3 provides a detailed description of the procedure.

C.4 Other cleaning strategies

While working on the chapter, we tested two other methods to process the correlation

matrix in a way to maximize the gap between the average correlation along the supply

chain and those of the random benchmarks (see 3.3). After cleaning the market mode,

we tried to see whether we could remove some sector-specific trends from the time

series. For each industrial sector α we defined the quantity

sα (t) =
∑
i,i∈α

xi (t) ,

where xi (t) is the growth time series of firm i, and the sum runs on all the firms in

sector alpha. We assumed that we could write the time series xi (t)as

xi (t) = ξi (t) + kisα (t) ,

We estimated the coefficient ki as the correlation between xi and sα, and cleaned the

time series by computing the difference

ξi(t) = xi (t)− k̂isα(t),

where k̂i is the estimated value for ki .

We also investigated if more signal could be extracted by considering lags between

firms’ time series. We defined the lagged correlation matrix C (τ), defined as

C (τ) = Et
[
xi(t)xj(t + τ)

]
,

and its symmetrised version C′ (τ) as

C′(1) =
1
2

[C(1) +C(−1)] .
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We then computed a linear combination [C′(0) +C′(1)], and computed the average

value of this matrix over the supply chain and the random benchmarks.

None of the two approaches improved significantly the outcomes we discussed.

However, we can’t exclude that a more thorough investigation of these techniques,

their combination, and the analysis of other time series (e.g., firms’ market returns)

could improve the results of this chapter.
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Appendix D

Appendix to Chapter 4

D.1 Analytical solution

D.1.1 Steady-state analytical solution for a ring of firms

In this section, we derive the steady state of the model we presented in Chap 5 for the

specific case of firms arranged on a ring.

We consider a ring of n+ 1 firms, where each firm fi is a supplier of the next firm

fi+1, and fn+1 = f0. In our model, firm i’s output is given by

Figure D.1: Ring of 10 Firms

xi,t =
n∑
j=0

Zij,t + ci,t,

162



which can be restated as

xi,t =
n∑
j=0

Zmaxij

xmaxj

xj,t + ci,t,

If the firms are arranged in a ring, the equation can be simplified in

xi,t =
Zmaxi+1i

xmaxi+1
xi+1,t + ci,t. (D.1)

Before moving on, we introduce the two regimes under which a firm can operate.

We know that each firm is only able to produce up to a quantity xi,0. If the demand

that a firm receives is smaller than xi,0, the firm will be able to satisfy it fully. We

call this the Demand-Constrained regime. If, instead, the demand is bigger than xi,0,

the firm will only be able to satisfy part of it. We call this the Capacity-Constrained

regime.

D.1.1.1 Steady State in the Demand-Constrained regime

In the following, we assume that firms are always able to produce as much as they are

asked for, i.e.,

xi,t = di,t ∀i, t. (D.2)

We define the steady state as a condition where each firm has a constant inventory,

∆Si,t = 0 ∀ i, t > t∗,

where t∗ is the time the system needs to reach equilibrium. We know that

∆Sij,t+1 = Sij,t+1 − Sij,t =Oij −
Zij
xmaxi

xi,t, (D.3)

where Sij is the inventory of the good produced by firm j held by firm i.1 Since our

firms are arranged in a ring, they all have only one supplier, and we can rewrite Equa-

tion D.3 as

∆Si,t+1 =Oi i−1,t −
Zi i−1

xmaxi
xi,t. (D.4)

The equilibrium condition is

Oi i−1,t −
Zi i−1

xmaxi

xi,t = 0. (D.5)

We know that

Oi i−1,t =
Zmaxi i−1

xmaxi

di,t−1 +
1
τ

[
ni
Zmaxi i−1

xmaxi

di,t−1 − Si,t
]
.

1For simplicity we will not consider sectors here.
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From Eq. (D.2), we know that di,t−1 = xi,t−1. Moreover, in the steady state, production

will be constant, so xi,t−1 = xi,t. Let us call x∗i the steady state production value and S∗i
the equilibrium inventory. Plugging these conditions in Eq. (D.1.1.1), we get

Oi i−1,t =
Zmaxi i−1

xmaxi

x∗i +
1
τ

[
ni
Zmaxi i−1

xmaxi

x∗i − S
∗
i

]
,

and Eq. (D.5) becomes

Zmaxi i−1

xmaxi

x∗i +
1
τ

[
ni
Zmaxi i−1

xmaxi

x∗i − S
∗
i

]
− Zi i−1

xmaxi

x∗i = 0,

from which we can compute the steady state value S∗i,t,

S∗i,t = ni
Zmaxi i−1

xi
x∗i . (D.6)

Notice that the parameter τ disappeared. This is encouraging, as τ controls how

quickly the system reaches the steady state, but should not determine the steady state

itself.

We now need an explicit expression for x∗i (to simplify the notation, we drop t in

the subscript). We can use Eq. (D.1). Let us start with the simple example of a ring

with two firms, f0 and f1. Consider firm f0. We know from Eq. (D.1) that

x∗0 =
Zmax10

xmax1
x∗1 + f0;

we also know that

x∗1 =
Zmax01

xmax0
x∗0 + f1.

Plugging one equation into the other we get

x∗0 =
xmax1 xmax0

xmax1 xmax0 −Zmax10 Zmax01

[
Zmax10

xmax1
f1 + f0

]
,

And

S∗0 = n0
Zmax01

xmax0

xmax1 xmax0

xmax1 xmax0 −Zmax10 Zmax01

[
Zmax10

xmax1
f1 + f0

]
.

The case with n+ 1 firms is a straightforward extension of this case. For each firm, we

need to sequentially plug the equations (D.1) into one another until we get back to the

firm we started from. The analytical expression is

S∗0 = n0
Zmax01

xmax0

∏n
i=0x

max
i∏n

i=0x
max
i −

∏n
i=0Z

max
i i−1

 n∑
i=1

i∏
j=1

Zmaxj j−1

xmaxj−1
fj−1 + f0

 . (D.7)

Fig. D.2 proves the validity of our analytical results.
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Figure D.2: Simulation Results for a 2-firms ring. All the firms have the same
parameters.xmax = P0, Zmaxij = Aij . (Upper Left) Varying n: Z = 0.5, x0 = 1.5, c = 1.
(Upper Right) Varying x0: n = 3, Z = 0.5, c = 1. (Bottom Left) Varying c: n = 3,
Z = 0.5,x0 = 2. (Bottom Right) Varying Z: n = 3, x0 = 2, c = 0.5

D.1.1.2 Steady state in the Capacity-Constrained regime

The condition expressed by Eq. (D.2) is not always satisfied. Indeed, a firm might

receive too much demand for its production capacity. The steady state in this scenario

is different from the one we found in Sec. D.1.1.1, and its derivation will be the focus

of the current section.

The Capacity-Constrained regime, at least in the homogeneous ring framework,

can be further divided into two cases:2

1. The demand di,t is above the firm’s production capacity xmaxi , but the firm still

receives enough input to produce at full capacity,

2If we denoteOeqi as the demand of fi at equilibrium, the two scenarios correspond to the conditions
xmaxi

1+ ci
Oeq
≥ Zmaxi ,

xmaxi

1+ ci
Oeq

< Zi,0
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2. The demand di,t is above the firm production capacity xmaxi , and the firm does

not receive enough input to produce at full capacity.

Let us consider the first case. In the under-production regime, the inventory is

updated as

∆Si,t+1 =Oi i−1,t −
Zi i−1

xmaxi

xi,t.

The firm is now producing at full regime, so xi,t = xmaxi . If i’s supplier is also in the

over-production regime, it won’t be able to satisfy i’s entire demand, and it will only

be able to ship to i a quantity

xmaxi−1

Oi i−1,t + fi−1
Oi i−1,t.

Plugging these results in Eq. (D.4) we obtain

∆Si,t+1 =
xmaxi−1

Oi i−1,t + fi−1
Oi i−1,t −Zi i−1. (D.8)

To simplify our derivation, we assume that all the xmaxi , Zi,i−1, fi are the same among

the firms (the ring is homogeneous) and drop the suffix i in the following equations.

To find the steady state, we proceed as before, we put the left side of Eq. (D.8) equal

to zero, and get

xmax ∗O −Z ∗ (O+ f ) = 0,

and using the usual expression forO with d = x0, at the end of the computation we get

S∗ =
τZ

xmax −Z

[
(xmax −Z)

(
1 +

n
τ

)
− f

]
. (D.9)

Differently from the demand-constrained regime, we see that τ now appears in the

equation of the steady state. A larger τ means that firms will place bigger orders and,

as a consequence, receive a higher share of what the suppliers managed to produce.

We can rewrite equation D.9 as

S∗ = nZ
[
1 +

τ
n(xmax −Z)

(xmax −Z − f )
]
. (D.10)

As we can see, the solution of the over-production and under-production regime co-

incide in the limit xmax = Z + f , the condition that divides the two regimes.

Eq. (D.10) can be generalized for non-homogeneous rings as

S∗i = niZi i−1,0

1 +
τ

ni
(
xmaxi−1 −Zi i−1

) (xmaxi−1 −Zi i−1 − fi−1

) .
Fig. D.3 compares the analytical results with the simulations on a ring of two firms.

The analytical results match the simulation outcome.
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Figure D.3: Simulation Results for a 2-firms ring in the first over-production regime.
All the firms have the same parameters, τ is always 5.xmax = P0, Zij = Aij . (Upper
Left) Varying n: Z = 0.5, xmax = 2, f = 2. (Upper Right) Varying x0: n = 3, Z = 0.5,
f = 2. (Bottom Left) Varying f : n = 3, Z = 0.5,x0 = 2. (Bottom Right) Varying Z: n = 3,
xmax = 2, f = 1.5

What if the firm does not receive enough input? Let’s now focus on what happens

in the second scenario of the capacity-constrained regime, when the demand di,t is

above the firm’s production capacity xmaxi and the firm does not receive enough input

to produce at its full capacity.

The steady state in this scenario is straightforward. As the firm constantly receives

less than what it consumes, it should end up with an empty inventory. Simulations in

Fig. D.4 support this intuition.

In this parameter range, Eq. (D.10) has negative solutions, implying that the cond-

tions
xmaxi

1 + fi
Oeq

< Zmaxi ,
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Figure D.4: Simulation Results for a 2-firms ring in the first over-production regime.
All the firms have the same parameters, τ is always 5.xmax = P0, Zij = Aij . (Upper
Left) Varying n: Z = 0.5, xmax = 2, f = 2. (Upper Right) Varying xmax: n = 3, Z = 0.5,
f = 2. (Bottom Left) Varying f : n = 3, Z = 0.5,xmax = 2. (Bottom Right) Varying Z:
n = 3, xmax = 2, f = 1.5

and

nZ

[
1 +

τ
n(xmax −Z)

(xmax −Z − c)
]
< 0,

are equivalent.

D.1.1.3 Demand shocks

We now focus on the impact of demand shocks on the aggregate output. In the fol-

lowing, we will assume that the firms are in a demand-constrained regime. As we

explained earlier, in the capacity-constrained regime the production is constant, and

a shock on the demand would have no impact on the production.3

3This is only if the shock is not large enough to move the firm in the demand-constrained regime.
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Let us look again at equation D.7. We know that steady-state production for a firm

is

x∗ =

∏n
i=0x

max
i∏n

i=0x
max
i −

∏n
i=0Z

max
i i−1

 n∑
i=1

i∏
j=1

Zj j−1,0

xmaxj−1
fj−1 + f0

 .
As we can see, the production is linear in each term fj . More precisely

∂x∗0
∂fk

=
1

1−
∏n
i=0

Zmaxi i−1
xmaxi−1

k+1∏
i=0

Zmaxi i−1

xmaxi−1
.

We can further simplify this formula for a homogeneous ring. If we call d the firm

that is at a distance d from firm 0 in a ring of n firms, the equation becomes

∂x∗0
∂fd

=
1

1−
(
Zmax
xmax

)n (
Zmax

xmax

)d
.

The difference ∆x∗0 in the output of 0 due to a demand shock δD that hit a firm d is

∆x∗0 = x∗0,bef ore shock − x
∗
0,af ter shock =

1

1−
(
Zmax
xmax

)n (
Zmax

xmax

)d
δDf .

This equation reveals two facts. First, the contraction in production is linear in the

shock’s intensity. Second, it decreases exponentially with the distance of the shock.

The simulations (Fig. D.5 and D.6) match the analytical results.

D.1.1.4 Productivity Shocks

We now turn to productivity shocks. Let us start again with the equation

x∗0 =

∏n
i=0x

max
i∏n

i=0x
max
i −

∏n
i=0Z

max
i i−1

 n∑
i=1

i∏
j=1

Zmaxj j−1

xmaxj−1
fj−1 + f0

 .
A productivity shock would come as a change in one of the ratios

Zmaxk k−1
xmaxj−1

. Let us call it

Ak k−1. The derivative of x∗0 with respect to this quantity is

∂x∗0
∂Akk−1

=
∏
i,kAii−1

(1−
∏
iAii−1)2

 n∑
i=1

i∏
j=1

Ajj−1fi−1 + f0

+
1

1−
∏
iAii−1

 n∑
i=k

i∏
j=1

Ajj−1fi−1

 .
Under the assumption of a homogeneous ring, for a shock at distance d, we can rewrite

the previous equation as

∂x∗0
∂Ad

=
An−1

(1−An−1Ad)2

d−1∑
i=1

Aifi +
n∑
i=d

Ai−1Adfi

+
1

1−An−1Ad

 n∑
i=d

Ai−1ci

 .
The simulation (Fig. D.7 and D.8) agree with our results.
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Figure D.5: Percentage drop in a firm’s production when another firm is hit by a de-
mand shock. The contraction decreases exponentially with the shock’s distance. All
the simulations were performed with x0 = 4, Z = 1, c = 2

D.1.2 General Solution in the demand-constrained regime

Let us now compute the analytical solution for a generic network where all the firms

are in a demand-constrained regime.

Let A be the matrix

Aij =
Zmaxij

xmaxj

.

If we call x̄ the vector containing each firm’s production at equilibrium, we see that x̄

satisfies the equation

x̄ = Ax̄+ f̄ , (D.11)

where fi is the external demand for firm i. We can solve Eq. (D.11) in two ways; each

of them gives us an interesting interpretation of x̄. First, we can rewrite it as

x̄ = lim
n→∞

Anx̄+
∑
n

Anf̄

 ,
which, since each Aij < 1∀ i, j by definition, becomes

x̄ =
∞∑
n

Anf̄ . (D.12)
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Figure D.6: Percentage drop in a firm’s production when another firm is hit by a de-
mand shock. The contraction increases linearly with the shock’s intensity. All the
simulations were performed with x0 = 4, Z = 1, c = 2

If A is the adjacency matrix of the directed graph G, the matrix An has an interesting

interpretation: the element (i, j) is the number of walks of length n from vertex i to

vertex j. If we call P nij this set of walks we have

Anij =
∑
p∈P nij

1.

If the graph is weighted, the equation becomes

Anij =
∑
p′ij∈P

n
ij

ωp
′
ij ,

Where we call ωp
′
ij the Path Coefficient of p′ij ,

ωp
′
ij =

∏
(k,k′)∈p′ij

Akk′ .

We can now rewrite Eq. (D.12) as

x̄i =
∑
j∈G

∞∑
n=0

∑
p′ij∈P

n
ij

ωp
′
ijcj . (D.13)
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Figure D.7: ∆ in a firm’s production when another firm is hit by a demand shock.
The simulations were performed with xmax = 8, Zmax = 2, f = 1.

Eq. (D.13) tells us that each firm j contributes to the production of firm i with its

external demand fj , weighted by the sum of the path coefficients, computed over all

the paths linking i to j. An equivalent interpretation would be: each path p from a

firm i to a firm j contributes to the production of firm i with a term ωpfj .4 Our result,

in line with the results obtained for other models (see, e.g., Acemoglu et al. [2012])

links external demands firms’ equilibrium production, and the production network

through firms’ Katz-Bonacich centrality [Newman, 2018], defined as

x̄ = (I −A)−1 f̄ ,

D.1.2.1 Computing the Path Coefficients

Each path p′ij from i to j contributes to the production of firm i by a term
∑
p′∈Pij ω

p′ijcj ,

where we call Pij = ∪∞n=0P
n
ij .

If our graph is undirected and acyclic, computing ωp
′
ij is easy. Each path has a

weight

ωp
′
ij =

∏
(k,l)∈p′ij

Akl .

4Each firm also gives an indirect contribution, by being part of a path and creating links to other
firms.
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Figure D.8: ∆ in a firm’s production when another firm is hit by a demand shock.
The simulations were performed with xmax = 8, Zmax = 2, f = 1.

The computation gets more complicated if the graph contains loops. In the presence of

loops, we will have an infinite number of paths from and to all the nodes that belong to

any loop. A simple example helps to clarify this point. In the graph show in Fig. D.9,

the only path between a and c is p : a→ b → c, and ωp = AabAbc. If we add a link

Figure D.9

between b and d (Fig. D.10), we generate infinitely many paths from a to c,

• p0 : a→ b→ c

• p1 : a→ b→ d→ b→ c

• p2 : a→ b→ d→ b→ d→ b→ c

• ...
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Figure D.10

The coefficients ωp0 ,ωp1 , ... for these paths satisfy the equation

ωpn = (AbdAdb)
nAabAbc,

Hence, summing over all the ωpi , we get

ω
p
tot =

∞∑
n

wpn =
∞∑
n

(AbdAdb)
nAabAbc =

1
1−AbdAdb

AabAbc.

The total contribution ωptot given by this set of paths is equal to the simple-path coef-

ficient ωp,5 multiplied by a correction coefficient γpL arising from the loop

ω
p
tot = γpLω

p,

In the presence of multiple loops ℓ1, .., ℓn, the loop coefficient of a simple path γpL
will be the total correction factor, and will depend on all the loops γpL = γ

p
L (ℓ1, ..., ℓn)

that the path crosses. We will now show how to compute these coefficients for generic

graphs. Let us start with the definition of simple loop. We say that a loop ℓ is simple if

it does not share any of its nodes with another loop ℓ′ in the set L of the graph’s loops,

ℓ is simple ⇐⇒ ℓ∩ ℓ′ = ∅ ∀ℓ′ ∈ L,ℓ′ , ℓ.

For each simple loop ℓi , let us define πsℓi =
∏

(j,k)∈ℓi Ajk. If a simple path p crosses

several simple loops {ℓi}ni=1, its total loop coefficient will be

γ
p
L =

n∏
i=1

1
1−πsℓi

. (D.14)

This can be easily proved by induction.

What happens when loops are not simple? Let us call ℓ the loop s.t. ℓ∩p , ∅, then:

• if ∃ ℓ′ s.t. ℓ∩ ℓ′ , ∅ and ℓ′ ∩ p = ∅, we say that the loop is nested

• if ∃ ℓ′ s.t. ℓ∩ ℓ′ , ∅ and ℓ′ ∩ p , ∅, we say that ℓ and ℓ′ form a multiple loop.
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Figure D.11: The two loops in (a) form a multiple loop w.r.t. the path a → b → c (in
light blue). The loop b→ d→ e→ b is nested w.r.t. the path a→ b→ c.

We saw that each simple loop enters in γ
p
L with a factor 1

1−πsℓ
. The factor for a

multiple loop ℓm will instead be 1
1−πmℓ

, where

πmℓm =
∑
ℓmi

πsℓmi
,

and
{
ℓmi

}
are the simple loops forming ℓm. The factor 1

1−πnℓ
for a nested loop ℓn, com-

posed by an outer loop ℓouter and an inner loop ℓinner , is instead

πnℓn =
1

1−πs
ℓinner

πsℓouter .

We can generalize this expression in the case of more complicated nested loops as

πnℓn = γℓ
outer

L πsℓouter .

Once we take the corrections to πsℓ into account for multiple and nested loops, we can

still write γpL as

γ
p
L =

∏
ℓi

1
1−πℓi

,

where now πℓi is equal to πsℓi ,π
m
ℓi

or πnℓi depending on ℓi . If we call P sij the set of

simple paths between nodes i and j, the production x̄ can be computed as

x̄i =
∑
j

∑
p∈P sij

γ
p
Lω

pcj .
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Figure D.12: Simulation results on a random network.

Simulations confirm our analytical results. We provide an example in Fig. D.12.

D.2 Data

D.2.1 Data sources

For both the production network and financial statements we rely on the data pro-

vided by FactSet. FactSet constructs companies’ supply chains from three main sources:

the US Bill of Lading, US Federal Accounting Standard mandatory filings, and ship-

ment data. The data set is at the parent level, meaning that we use consolidated

balance sheets, income statements, and statements of cash flows. Accordingly, we

attribute subsidiaries’ supplier-customer relations to the respective parent company.

We discharge self-loops as these arise from intra-group sales that cancel out at the

consolidated level (consolidated income statements and balance sheets). FactSet does

not keep track of mergers and acquisitions; therefore, we have to rely on the latest

available information on companies’ family structures.

To assure time consistency between the formation of supplier-customer relations

and financial statements, we use the fiscal year instead of the calendar year. The fiscal

year goes from June to May, meaning that if a company’s fiscal year end-month falls

between January and May, the fiscal year is the current calendar year minus one, oth-

erwise it is the current calendar year. The same applies to supplier-customer relations,

of which we know the year, month, day, and hour. The start and end dates correspond

5In graph theory, a simple path is a path in a graph that does not have repeating vertices. In our set
of paths, the only simple path is p0
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to when the record was first published and when the ending was announced. The ear-

liest year with relations still ongoing is 2003. However, we use data only from 2016

onward for quality reasons.

For each company, we also have information on the sector (NACE Rev.2 codes) and

the country where the company’s headquarters are located.

D.2.2 Coverage

The data set we use to calibrate the model goes from 2016 to 2019. As we explain

in more detail below, to calibrate the model we average the variables in the financial

statements over the period 2016–2019, and use all the production network’s links that

FactSet records in that time period. Table D.1 shows the number of firms and edges

over time both for the yearly networks as well as the cumulative network. The number

of nodes increases over time except for 2019. In 2019, the decrease is due to the month

the data set was downloaded (April 2020).

Year 2016 2017 2018 2019 Cumulative network

N. companies 12,180 12,632 12,968 8,152 14,864

N. edges 73,353 79,554 84,116 44,993 120,206

Average degree 6.0 6.3 6.5 5.5 8.1

Table D.1: Number of firms, edges and average degree for the yearly networks and
the cumulative network. To calibrate our model we average the financial variables
over 2016-2019; therefore, we employ the cumulative network over those four years.
The summary statistics for the cumulative network are shown in the last column
“Cumulative network”.

For each year, we compute the sum of firms’ sales and compare it to the world’s

gross output. We compute the global gross output from 2015 to 2018 using data from

the World Input-Output Database and the World Bank. Over time, we capture on

average 23% of world gross output (Figure D.13). When forecasting world gross out-

put, besides our central estimate, we also calculate a best and worst case; these yield

a lower bound of 20% and upper bound of 27% on the central estimate of the average

percentage of world gross output captured by our data set. The growth rates of world

gross output are 6.4% for 2017 and 2018, while for our data set is, respectively, 6.4%

and 7%.
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Figure D.13: Comparison of world gross output as in the WIOD and total sales of
companies in FactSet. Values in millions of U.S. dollars. The plot of world gross
output shows error bars because we forecast gross output from 2015 to 2018 using
world GDP from the World Bank.

D.2.3 Model variables and parameters

Table D.2 shows the list of parameters we need to calibrate and the variables for which

we need to set initial conditions. Variables are initialized using income statements (IS),

balance sheets (BS), and the production network. There is no straightforward way to

estimate the parameters nj , τs, ρ, τc. While some information on their likely values

might be found in the literature, we prefer to perform a sensitivity analysis.

Firm-to-firm sales. We do not observe the monetary values of firm-to-firm sales (i.e.,

the network is binary), thus missing values are estimated. A detailed description of

the procedure is given in Sec 4.2.

Final demand. We do not observe firms’ final demands; thus, we infer their final

demands using sector-level input-output tables. Let xα be gross output of sector α, xi
be total sales of firm i and fα be final demand of sector α; then final demand of firm i

is given by

f di = xi
f dα
xα

. (D.15)

Fixed costs. A firm’s fixed costs are costs that do not vary with output and that can be

changed only in the long run. These mostly relate to tangible and intangible assets; for

instance, expenses on property, plant, and equipment as well as costs associated with

patents and R&D. Other fixed costs, less considered in the literature, are insurance

costs, loan payments, and advertising costs.
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Type Description IS BS Network

Variables
N n. firms ×
M n. sectors ×
Zmaxij transaction value estimated

xmaxi output/production capacity sales
f di final demand Eq. (D.15)
Sαj j’s inventory from sector α inventory
Γi fixed costs Eq. (D.16)
Υ max
i variable costs Eq. (D.18)
ei shareholders’ equity tot. equity

Parameters
nj ≈ inven

sales future n. time steps firm j
aims to keep inventory at
dj,0 levels

sales inventory

nj ≈ av inven
cogs ×

365
future time steps firm j aims
to keep inventory at dj,t−1
levels

cogs inventory

ρi,t fraction of the order paid in
cash

τs industry speed of adjust-
ment of an inventory-
demand gap

τc n. time steps within which
the trade credit has to be
repaid

Table D.2: List of variables to initialize and parameters. Starting from the first col-
umn onward, we report the symbol used for a specific variable, its description in
our model and where the variable was taken from (income statement, balance sheet
or network) along with its name used in financial statements. IS stands for income
statement and BS for balance sheet. We use financial statements filed from 2016 to
2019 (fiscal year).
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It is not always possible to discern fixed costs from variable costs using income

statements and balance sheet items because some of the items include both fixed and

variable costs. We can distinguish amortization, depreciation, R&D expenditure, and

interest expenses for leases on tangible assets. But we cannot differentiate between

interest expenses paid on short- versus long-term debt, and variable versus fixed costs

falling under selling, general and administrative expenses. To get around this prob-

lem, we calculate a firm’s fixed costs using two definitions. In this work, we defined

them as

Γi = dep expi + amort intangi + amort dfd chrgi + rd expi . (D.16)

Variable costs. Variable costs vary with the amount of output produced and can thus

be changed in the short run. Some examples are costs incurred to buy raw materials

and services necessary to produce the final goods, direct labor costs, and those costs

of selling, general and administrative expenses that can be changed in the short run.

In our model, we distinguish between costs related to the production of the final

goods and other variable operating expenses. We label variable operating expenses

Υ max
i and account for costs related to material and services used to produce the final

goods in the transaction matrix Z. Variable operating costs are, for instance, labor

costs, and marketing and administrative expenses. Not all firms disclose material and

service costs (those in Z) separate from labor costs. Indeed, most firms group those

three costs together in what is called the ‘cost of goods sold’. For firms that group

those costs together, we need a method to distinguish labor costs from material and

service costs. We remove labor costs from the cost of goods sold and calculate variable

operating costs as a residual. Variable operating costs are what is left after detracting

from revenues material and service costs, net profit, and fixed costs. To calculate

variable operating costs, we start with the following accounting identity

xmaxi =
∑
α∈Vi

Z̃α,i +Υ max
i + Γi +χi , (D.17)

we then calculate variable operating costs as a residual

Υ max
i = xmaxi −

∑
α∈Vi

Z̃α,i − Γi −χi . (D.18)

As a proxy for net income χi , we use net income excluding discontinued operations

since discontinue operations occur seldom, when a company decides to divest or shut

down part of its core business or a product line. We exclude firms with net income

greater than sales as they violate the accounting identity as well as firms with negative
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variable operating costs. By the same token, we also eliminate firms for which fixed

costs are greater than sales.

Equity. Shareholders’ equity is composed of share capital and retained earnings.

Share capital is constant in our simulations as we do not model firms’ behavior re-

lated to share issuance or buybacks. We exclude firms with negative equity.

D.2.3.1 Model’s income statement and balance sheet

Table D.3 shows the income statement and balance sheet implied by the model; these

are the same for all companies. Bad debt expense is the amount of accounts payable

that the firm does not collect from its customers at time t.

Table D.3: Model’s income statement (left) and balance sheet (right).

Sales
- Cost of goods sold

Gross profit
- Other variable costs
- Bad debt expense
- Labor costs
- Fixed costs

Net income

Assets Liabilities

Accounts payable Accounts receivable
Inventory Other liabilities

PPE Shareholders equity
Intangibles Share capital
Other assets Retained earnings
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Appendix E

Appendix to Chapter 5

E.1 Report schedules

Funds report their portfolios quarterly, but not synchronously. They can either report

in January, April, July, and October (JAJO), in February, May, August, and November

(FMAN), or in March, June, September, and December (MJSD). The number of reports

filed each month is shown in Fig. E.1. As we can see, roughly ∼ 40% of the reports are

filed in MJSD, ∼ 30% in FMAN, and ∼ 30% in JAJO.

Figure E.1: Number of reports filed at each date.

There is no trivial way to account for the reporting mismatch in our regressions.

We could focus only on one reporting schedule, but that would lead to discarding

most of our data while leaving the data as it is could lead to misestimations in the

regression coefficients. Aggregating reporting periods (i.e., taking all the reports as

if they were filed in MJSD) could lead to double counting of shares. At the moment,

we have not found a definitive way to deal with this issue. Our hope is that when

we use the rescaled coefficients ω̃i,α, the misalignment in reporting becomes inconse-

quential. This is equivalent to assuming that funds in value, growth, and other classes

182



submit the same proportion of reports in the months that correspond to the same

quarters. Fig. E.2 shows the median value (across stocks) for ω̃i,α. The difference be-

tween submission in MJSD and the other reporting schedules is minimal, supporting

our assumption.

Figure E.2: Median value of ω̃i,α for α ∈ {value, growth, other}.

E.2 Top regressions

Tab. E.1 shows the top five regressions by R2 with and without previous volatility.

E.3 Lipper classes

Table E.2 shows the original Lipper funds classes and their mapping to the three cat-

egories value, growth, and other.
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lipper class name new class
lipper class

A Corporate Debt Funds A Rated other
ABR Absolute Return Funds other
ACF Alternative Credit Focus Funds other
AE Alternative Energy Funds other
AED Alternative Event Driven Funds other
AGM Alternative Global Macro Funds other
AL Alabama Municipal Debt Funds other
ALT Alternative Other Funds other
AMS Alternative Multi-Strategy Funds other
ARB Absolute Return Bond Funds other
ARM Adjustable Rate Mortgage Funds other
AU Precious Metals Equity Funds other
AZ Arizona Municipal Debt Funds other
B Balanced Funds other
BBB Corporate Debt Funds BBB-Rated other
BM Basic Materials Funds other
BT Balanced Target Maturity Funds other
CAG California Municipal Debt Funds other
CAI California Insured Municipal Debt Funds other
CAM California Tax-Exempt Money Market Funds other
CAS California Sh-Intmdt Municipal Debt Fds other
CAT California Intermdt Municipal Debt Funds other
CG Consumer Goods Funds other
CH China Region Funds other
CMA Commodities Agriculture Funds other
CMD Commodities Funds other
CME Commodities Energy Funds other
CMG Commodities General Funds other
CMM Commodities Base Metals Funds other
CMP Commodities Precious Metals Funds other
CMS Commodities Specialty Funds other
CN Canadian Funds other
CO Colorado Municipal Debt Funds other
CPB Core Plus Bond Funds other
CRX Alternative Currency Strategies Funds other
CS Consumer Services Funds other
CT Connecticut Municipal Debt Funds other
CTM Connecticut Tax-Exempt Money Market Fds other
CV Convertible Securities Funds other
DL Diversified Leverage Funds other
DSB Dedicated Short Bias Funds other
EIEI Equity Income Funds other
ELCC Extended U.S. Large-Cap Core Funds other
EM Emerging Markets Funds other
EMD Emerging Mrkts Hard Currency Debt Funds other
EML Emerging Markets Local Currency Debt Fds other
EMM Emerging Markets Mixed-Asset Funds other
EMN Alternative Equity Market Neutral Funds other
EMP Energy MLP Funds other
EU European Region Funds other
FL Florida Municipal Debt Funds other
FLI Florida Insured Municipal Debt Funds other
FLT Florida Intermediate Municipal Debt Fds other
FLX Flexible Income Funds other
FM Frontier Markets Funds other
FS Financial Services Funds other
FX Flexible Portfolio Funds other
G Growth Funds growth
GA Georgia Municipal Debt Funds other
GB General Bond Funds other
GEI Global Equity Income Funds other
GFS Global Financial Services Funds other
GH Global Health/Biotechnology Funds other
GHY Global High Yield Funds other
GIF Global Infrastructure Funds other
GL Global Funds other
GLCC Global Large-Cap Core Fds other
GLCE Global Core other
GLCG Global Large-Cap Growth Fds growth
GLCV Global Large-Cap Value Fds value
GLGE Global Growth growth
GLI Global Income Funds other
GLVE Global Value value
GM General

Insured Municipal Debt Funds other
GMLC Global Multi-Cap Core Fds other
GMLG Global Multi-Cap Growth Fds growth
GMLV Global Multi-Cap Value Fds value
GNM GNMA Funds other
GNR Global Natural Resources Funds other
GRE Global Real Estate Funds other
GS Global Small-Cap Funds other
GSMC Global Small/Mid-Cap Core other
GSME Global Small-/Mid-Cap Funds other
GSMG Global Small/Mid-Cap Growth growth
GSMV Global Small/Mid-Cap Value value
GTK Global Science/Technology Funds other
GUS General U.S. Government Funds other
GUT General U.S. Treasury Funds other
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GX Global Flexible Port Funds other
H Health/Biotechnology Funds other
HI Hawaii Municipal Debt Funds other
HM High Yield Municipal Debt Funds other
HY High Current Yield Funds other
I Income Funds other
ID Industrials Funds other
IEI International Equity Income Funds other
IF International Funds other
IFCE International Core other
IFGE International Growth growth
IFVE International Value value
IID Intermediate Investment Grade Debt Funds other
ILCC International Large-Cp Core Fds other
ILCG International Large-Cap Growth growth
ILCV International Large-Cp Val Fds value
IMD Intermediate Municipal Debt Funds other
IMLC International Multi-Cp Core Fds other
IMLG International Multi-Cap Growth growth
IMLV International Multi-Cp Val Fds value
IMM Instl Money Market Funds other
INI International Income Funds other
INR India Region Funds other
IRE International Real Estate Funds other
IS International Small-Cap Funds other
ISMC International Small/Mid-Cap Core other
ISMG International Small/Mid-Cap Growth growth
ISMV International Small/Mid-Cap Value value
ITE Instl Tax-Exempt Money Market Funds other
ITM Instl U.S. Treasury Money Market Funds other
IUG Intermediate U.S. Government Funds other
IUS Instl U.S. Government Money Market Funds other
IUT Treasury Inflation Protected Securities other
JA Japanese Funds other
KS Kansas Municipal Debt Funds other
KY Kentucky Municipal Debt Funds other
LA Louisiana Municipal Debt Funds other
LCCE Large-Cap Core Funds other
LCGE Large-Cap Growth Funds growth
LCVE Large-Cap Value Funds value
LP Loan Participation Funds other
LSE Alternative Long/Short Equity Funds other
LT Latin American Funds other
MA Massachusetts Municipal Debt Funds other
MAM Massachusetts Tax-Exempt Money Market Fd other
MAT Massachusetts Intermediate Muni Debt Fds other
MATA Mixed-Asset Target 2010 Funds other
MATB Mixed-Asset Target 2020 Funds other
MATC Mixed-Asset Target 2030 Funds other
MATD Mixed-Asset Target 2030+ Funds other
MATE Mixed-Asset Target 2050+ Funds other
MATF Mixed-Asset Target 2015 Funds other
MATG Mixed-Asset Target 2025 Funds other
MATH Mixed-Asset Target 2040 Funds other
MATI Mixed-Asset Target 2045 Funds other
MATJ Mixed-Asset Target Today Funds other
MATK Mixed-Asset Target 2055+ Funds other
MATL Mixed-Asset Target 2060 Funds other
MATM Mixed-Asset Target 2060+ Funds other
MCCE Mid-Cap Core Funds other
MCGE Mid-Cap Growth Funds growth
MCVE Mid-Cap Value Funds value
MD Maryland Municipal Debt Funds other
MDI Insured Municipal Debt Funds other
MFF Alternative Managed Futures Funds other
MI Michigan Municipal Debt Funds other
MIM Michigan Tax-Exempt Money Market Funds other
MLCE Multi-Cap Core Funds other
MLGE Multi-Cap Growth Funds growth
MLVE Multi-Cap Value Funds value
MM Money Market Funds other
MN Minnesota Municipal Debt Funds other
MO Missouri Municipal Debt Funds other
MSI Multi-Sector Income Funds other
MTAA Mixed-Asset Target Alloc Agg Gro Funds growth
MTAC Mixed-Asset Target Alloc Consv Funds other
MTAG Mixed-Asset Target Alloc Growth Funds growth
MTAM Mixed-Asset Target Alloc Moderate Funds other
MTRI Retirement Income Funds other
NC North Carolina Municipal Debt Funds other
NJ New Jersey Municipal Debt Funds other
NJM New Jersey Tax-Exempt Money Market Funds other
NR Natural Resources Funds other
NY New York Municipal Debt Funds other
NYI New York Insured Municipal Debt Funds other
NYM New York Tax-Exempt Money Market Funds other
NYT New York Intermdt Municipal Debt Funds other
OH Ohio Municipal Debt Funds other
OHM Ohio Tax-Exempt Money Market Funds other
OHT Ohio Intermediate Municipal Debt Fds other
OR Oregon Municipal Debt Funds other
OS Options Arbitrage/Opt Strategies Funds other
OSS Other States Short-Intmdt Muni Debt Fds other
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OST Other States Intermediate Muni Debt Fds other
OTH Other States Municipal Debt Funds other
OTM Other States Tax-Exempt Money Market Fds other
PA Pennsylvania Municipal Debt Funds other
PAM Pennsylvania Tax-Exempt Money Market Fds other
PAT Pennsylvania Intermediate Muni Debt Fds other
PC Pacific Region Funds other
RE Real Estate Funds other
RR Real Return Funds other
S Specialty/Miscellaneous Funds other
SC South Carolina Municipal Debt Funds other
SCCE Small-Cap Core Funds other
SCGE Small-Cap Growth Funds growth
SCVE Small-Cap Value Funds value
SESE Specialty Diversified Equity Funds other
SFI Specialty Fixed Income Funds other
SHY Short High Yield Funds other
SID Short Investment Grade Debt Funds other
SII Short-Intmdt Investment Grade Debt Funds other
SIM Short-Intmdt Municipal Debt Funds other
SIU Short-Intermediate U.S. Government Funds other
SMD Short Municipal Debt Funds other
SPMC S

P Midcap 400 Index Funds other
SPSP S

P 500 Index Objective Funds other
SSIM Single-State Insured Municipal Debt Fds other
SUS Short U.S. Government Funds other
SUT Short U.S. Treasury Funds other
SWM Short World Mulit-Market Income Funds other
TEM Tax-Exempt Money Market Funds other
TK Science

Technology Funds other
TL Telecommunication Funds other
TM Target Maturity Funds other
TN Tennessee Municipal Debt Funds other
TX Texas Municipal Debt Funds other
USM U.S. Mortgage Funds other
USO Ultra-Short Obligations Funds other
USS U.S. Government Money Market Funds other
UST U.S. Treasury Money Market Funds other
UT Utility Funds other
VA Virginia Municipal Debt Funds other
VAT Virginia Intermediate Municipal Debt Funds other
WA Washington Municipal Debt Funds other
XJ Pacific Ex Japan Funds other

Table E.2: Lipper classes mapping
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Appendix F

Appendix to Chapter 6

F.1 Methods

F.1.1 Clustering algorithms

We have tested four algorithms to cluster our set of cryptocurrencies based on the asso-

ciated Coinmarketcap tags, namely Ward’s iterative clustering, k-means Lloyd [1982],

k-modes Huang [1998], and an agglomerative clustering algorithm based on cosine

distance between data points. We eventually settled for Ward’s algorithm due to its

propensity to generate more equally-sized clusters Everitt et al. [2011], Murtagh and

Legendre [2014]. However, other algorithms resulted in similar, non-random parti-

tions of cryptocurrencies into clusters as shown in Fig. F.1.

However, the algorithm choice might be not optimal, and more sophisticated clus-

tering algorithms could lead to more insightful partitions of our data. Specifically, it

should be mentioned that Ward’s algorithm, as well as k-means, computes Euclidean

distances to divide data points into clusters, which is, arguably, not the optimal way

of computing distances when dealing with binary data.

To select the total number of cryptocurrencies’ clusters we employ the elbow method.

For each possible partition S = S1, . . . ,Sk of the dataset, we define a loss function L (S)

as

L (S) =
k∑
i=1

∑
j∈Si

∥xj −µi∥2 , (F.1)

where xj is the vector of tags observations for cryptocurrencies belonging to the parti-

tion Si and µi is its mean. We ran the clustering algorithm for several different values

of k, and computed the value of the loss function for the set of optimal partitions{
S∗k=1,S

∗
k=2, . . . ,S

∗
k=N

}
, where N is the total number of cryptocurrencies considered in

our study.
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Figure F.1: In- and out-densities measured on 12 clusters generated by running the
clustering algorithm on the cryptocurrencies’ tags. Different colours show clusters
obtained with different algorithms.

The elbow method prescribes choosing the maximum number of clusters before

the curve becomes flat. Intuitively, the method recommends picking a point where

the marginal decrease in the loss function is not worth the additional cost of creating

another cluster. Figure F.2 shows that a value around k = 12 is compatible with the

elbow method in our case.

F.2 Results

The tables below report the results used to build Fig. 6.5. In particular, we show the

mean correlation defined in Eq. (6.5) and its variance computed over 1000 realiza-

tions of the random networks and on the real co-investment network (Eq. (6.4)). In

Table F.1 we report the results as a function of the network distance, while in Table

F.2 computed over all pairs of cryptocurrencies, including the raw correlation values

as well as correlations computed on ‘cleaned data’ obtained by removing the market

mode (see Eq. (3.7), Chapter 3) and rescaling the correlation to be in the range [0,1]

and included in the figure.
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Figure F.2: Values of the loss function for the different number of clusters. The curve
becomes flat when the number of clusters is around k = 12.

Distance True Network Configuration Model Block Model Erdős-Rényi
1 0.38 0.354±0.002 0.355±0.001 0.316±0.002
2 0.331 0.329±0.001 0.330±0.000 0.316±0.000
3 0.281 0.294±0.001 0.291±0.000 0.316±0.001
4 0.268 0.274±0.003 0.309±0.001 0.316±0.003
5 0.17 0.215±0.010 0.323±0.002 0.317±0.012

Table F.1: Correlation values as a function of the distance for Fig. 6.5 A comparing
results for the real co-investment network and the three random benchmarks (Con-
figuration Model, Block Model and Erdős-Rényi).

F.3 Clusters analysis

To better characterise the similarity between nodes belonging to the same clusters as

defined in Sec.F.1, we compute four well-known similarity measures [Lü and Zhou,

2011], the Jaccard index, the cosine similarity (also known as Salton index), the Adamic-
Adar index, and the resource allocation index. The Jaccard index measures the similarity

between two nodes’ sets of neighbours and is defined as the size of the intersection

divided by the size of the union of the sets. The cosine similarity counts the number of

common neighbours but penalizes nodes that have a higher degree. The Adamic-Adar

index and the resource allocation index count the number of common neighbours, but

they assign a lower weight to neighbours that have a high degree. If we call Γ (i) the

set of neighbors of a node i, we can define these measures as

dJaccardij =
|Γ (i)∩ Γ (j) |
|Γ (i)∪ Γ (j) |

,
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Model Correlation Rescaled Correlation, Cleaned Data Rescaled, Cleaned Data
True Network 0.380 1.000 0.010 1.0

Block Model 0.355±0.001 0.935±0.002 6.64e-03±8.96e-04 0.645±0.087
Configuration Model 0.354±0.002 0.932±0.006 1.06e-03±2.90e-03 0.103±0.282

Erdős-Rényi 0.316±0.002 0.833±0.004 7.33e-04±1.94e-03 0.071±0.188

Table F.2: Correlation values for the real co-investment network and the three ran-
dom benchmarks (Configuration Model, Block Model and Erdős-Rényi) used in
Fig. 6.5, B.

dcosineij =
|Γ (i)∩ Γ (j) |√
|Γ (i) | × |Γ (j) |

,

dAdamic−Adarij =
∑

k∈Γ (i)∩Γ (j)

1
log |Γ (k) |

,

dRAij =
∑

k∈Γ (i)∩Γ (j)

1
|Γ (k) |

.

For each cluster Sk, we compute the average value of each metric within and out-

side the cluster. The average similarity inside the cluster is

dink =
1

|Sk | × (|Sk | − 1)

∑
i,j∈Sk ,i,j

dij ,

and the average similarity outside the cluster is

doutk =
1

|Sk | × (N − |Sk |)

∑
i∈Sk ,j<Sk

dij ,

where dij represents one of the four metrics defined above. Fig. F.3 shows the values of

the in- and out-average similarity metrics for the 12 cryptocurrency clusters described

in Sec. 6.3 and compares them with those obtained for 1000 random clustering assign-

ments. Nodes belonging to the same cluster tend to be more similar, in a way that is

not compatible with a random benchmark.

F.4 Crunchbase dataset

Crunchbase provides information on worldwide innovative companies. The dataset

covers several aspects of the companies, spanning from a basic description of the busi-

ness description to their financial status, board composition, and even media exposi-

tion. The dataset is organized in different bundles that reflect this different informa-

tion. The bundles are:

• Company-related: organizations (including information on parent companies,

organization descriptions, and their division in categories) and investment funds.
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Figure F.3: Inside and outside average similarities measured on 12 clusters generated
by running the clustering algorithm on the cryptocurrencies’ tags. Blue circles rep-
resent the different clusters (the size of the circle is related to the cluster’s size). The
dashed red line is the diagonal, the red-shaded area represents the inside and outside
average distance density distribution for the randomised clusters.

• Investment-related: funding rounds (group of investments in a single company),

investments (specific investor-to-company transaction), investors, acquisitions, IPOs.

• People-related: people covered in the dataset, the jobs they have, and the degrees
they hold, with a focus on investment partners.

• Event-related: events description and event appearances of specific companies.

For the sake of Chapter 6, the relevant bundles concern organization, funding

rounds, and investments. We detail their content in Tables F.3, F.4, F.5.

F.5 Coinmarketcap cryptocurrency tags

We include below a table containing all the tags together with their respective fre-

quency gathered from Coinmarketcap for all the cryptocurrency projects analysed in

Chapter 6. Given the heterogeneity of the cryptocurrency market in terms of use case

and/or supporting technology, the tags created by Coinmarketcap help label and dis-

tinguish the different types of cryptocurrencies based on ‘intrinsic’ features related to

the nature of the project.
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Bundle Columns Name Description

Organization uuid Organization unique Identi-
fier

name Company’s name
permalink

cb url Company url on Crunchbase
rank Crunchbase rank

created at Record creation date
updated at Last record update
legal name Company legal name

roles Company, Investor, or both
domain Company’s website domain

homepage url Company’s hompage URL
country code

state code
region

city
address

postal code
status

short description
category list Company classification

(e.g., Enterprise Software,
Financial Services, Social
Media)

category groups list Company classification
(e.g., Content and Pub-
lishing, Internet Services)

num funding rounds Number of funding rounds
total funding usd Total Funding raised in USD

total funding Total funding raised
total funding currency code Funding currency

founded on
last funding on

closed on
employee count

email
phone

facebook url
linkedin url

twitter url
logo url

alias1 Other company’s names
alias2
alias3

primary role Either ”company” or ”in-
vestor”

num exits

Table F.3: Data entries in the organization Crunchbase bundle.
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Bundle Columns Name Description

Funding Rounds uuid Funding round unique
identifier

name Funding round name (e.g.,
Angel Round - Facebook)

permalink
cb url Crunchbase url
rank Crunchbase company rank
created at Record creation date
updated at Record last update
country code
state code
region
city
investment type Investment type (e.g., angel,

seed, series a)
announced on
raised amount usd
raised amount
raised amount currency code
post money valuation usd
post money valuation
post money valuation currency code
investor count Number of investors
org uuid Investee unique identifier
org name Investee name
lead investor uuids Lead investor’s unique iden-

tifier.

Table F.4: Data entries in the Crunchbase funding rounds bundle.

Bundle Columns Name Description

Investments uuid Investment unique identifier
name Investment’s name (e.g.,

Accel investment in Series A
- Facebook)

permalink
cb url Crunchbase’s investment url
created at Record creation date
updated at Record last update
funding round uuid
funding round name
investor uuid
investor name
investor type Either ”organization” or

”person”
is lead investor

Table F.5: Data entries in the Crunchbase investment bundle.
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0 mineable: 465 defi: 333 platform: 188
1 collectibles-nfts: 139 yield-farming: 129 payments: 127
2 pow: 98 marketplace: 97 binance-smart-chain: 86
3 masternodes: 84 decentralized-exchange: 83 smart-contracts: 82
4 exnetwork-capital-portfolio: 72 hybrid-pow-pos: 72 medium-of-exchange: 65
5 polkadot-ecosystem: 53 governance: 53 scrypt: 53
6 dao: 49 enterprise-solutions: 47 ethereum: 47
7 privacy: 42 gaming: 41 media: 40
8 pos: 38 asset-management: 37 kinetic-capital: 36
9 stablecoin: 32 centralized-exchange: 32 distributed-computing: 31
10 services: 28 ai-big-data: 28 content-creation: 27
11 cosmos-ecosystem: 26 staking: 26 iot: 26
12 pantera-capital-portfolio: 23 alameda-research-portfolio: 23 filesharing: 23
13 tokenized-stock: 22 sha-256: 22 substrate: 22
14 polkastarter: 20 amm: 20 memes: 19
15 sports: 18 gambling: 18 derivatives: 18
16 storage: 17 x11: 16 oracles: 16
17 rebase: 16 solana-ecosystem: 16 stablecoin-asset-backed: 16
18 entertainment: 15 store-of-value: 14 polkadot: 14
19 yield-aggregator: 14 wallet: 14 dao-maker: 14
20 coinbase-ventures-portfolio: 13 duckstarter: 13 binance-launchpad: 13
21 wrapped-tokens: 12 seigniorage: 12 interoperability: 12
22 lending-borowing: 10 binance-chain: 10 cms-holdings-portfolio: 10
23 dapp: 10 insurance: 10 dcg-portfolio: 9
24 multicoin-capital-portfolio: 9 launchpad: 9 polychain-capital-portfolio: 9
25 hashkey-capital-portfolio: 9 fan-token: 9 synthetics: 8
26 poolz-finance: 8 binance-labs-portfolio: 8 three-arrows-capital-portfolio: 8
27 placeholder-ventures-portfolio: 7 blockchain-capital-portfolio: 6 scaling: 6
28 social-money: 6 fabric-ventures-portfolio: 6 crowdfunding: 6
29 dpos: 5 boostvc-portfolio: 5 arrington-xrp-capital: 5
30 framework-ventures: 4 defi-index: 4 trustswap-launchpad: 4
31 discount-token: 4 state-channels: 3 coinfund-portfolio: 3
32 logistics: 3 dex: 3 a16z-portfolio: 3
33 marketing: 3 e-commerce: 3 tourism: 3
34 health: 2 research: 2 loyalty: 2
35 dragonfly-capital-portfolio: 2 identity: 2 energy: 2
36 parafi-capital: 1 huobi-capital: 1 metaverse: 1
37 yearn-partnerships: 1 defiance-capital: 1 ledgerprime-portfolio: 1
38 data-provenance: 1 sharing-economy: 1 zero-knowledge-proofs: 1
39 paradigm-xzy-screener: 1 electric-capital-portfolio: 1 1confirmation-portfolio: 1
40 binance-launchpool: 1 video: 1 analytics: 1
41 music: 1 cybersecurity: 1 prediction-markets: 1
42 fenbushi-capital-portfolio: 1 options: 1 education: 1
43 real-estate: 1 x13: 1 aave-tokens: 1
44 avalanche-ecosystem: 1 mobile: 1 galaxy-digital-portfolio: 1
45 crowdsourcing: 1 hardware: 0 reputation: 0
46 usv-portfolio: 0 jobs: 0 stablecoin-algorithmically-stabilized: 0
47 quark: 0 multiple-algorithms: 0 equihash: 0
48 events: 0 winklevoss-capital: 0 art: 0
49 atomic-swaps: 0 cryptonight: 0 communications-social-media: 0
50 neoscrypt: 0 social-token: 0 dag: 0
51 heco: 0 retail: 0 eth-2-0-staking: 0
52 philanthropy: 0 commodities: 0 ringct: 0
53 transport: 0 sharding: 0 quantum-resistant: 0
54 ethash: 0 vr-ar: 0 hospitality: 0
55 asset-backed-coin: 0 layer-2: 0 blake2b: 0
56 hybrid-dpow-pow: 0 hacken-foundation: 0 adult: 0
57 manufacturing: 0 sha-256d: 0 search-engine: 0
58 ontology: 0 dagger-hashimoto: 0 poc: 0
59 pos-30: 0 blake256: 0 blake: 0
60 hybrid-pos-lpos: 0 geospatial-services: 0 m7-pow: 0
61 fashion: 0 cryptonight-lite: 0 tron: 0
62 mimble-wimble: 0 lp-tokens: 0 poi: 0
63 lyra2rev2: 0 agriculture: 0 posign: 0
64 timestamping: 0 pop: 0 lpos: 0
65 sidechain: 0 platform-token: 0 eos: 0
66 hybrid-pow-npos: 0 lelantusmw: 0 groestl: 0
67 cosmos: 0 x11gost: 0 scrypt-n: 0
68 food-beverage: 0 tpos: 0 qubit: 0
69 x15: 0 sha-512: 0 data-availability-proof: 0
70 cuckoo-cycle: 0 escrow: 0 rollups: 0
71 hybrid-pos-pop: 0 yescript: 0 rpos: 0
72 x14: 0 post: 0 blake2s: 0
73 nist5: 0 bulletproofs: 0 sigma: 0
74 argon2: 0 lyra2re: 0 xevan: 0
75 waves: 0

Table F.6: Coinmarketcap cryptocurrencies tags and their frequency characterising
the cryptocurrencies present in the co-investment network.
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[34] Jean-Noël Barrot and Julien Sauvagnat. Input Specificity and the Propaga-

tion of Idiosyncratic Shocks in Production Networks. The Quarterly Journal of
Economics, 131(3):1543–1592, May 2016. ISSN 0033-5533. doi: 10.1093/qje/

qjw018. URL https://doi.org/10.1093/qje/qjw018.

[35] Jean-Noël Barrot, Basile Grassi, and Julien Sauvagnat. Sectoral effects of so-

cial distancing. AEA Papers and Proceedings, 111:277–81, May 2021. doi:

10.1257/pandp.20211108. URL https://www.aeaweb.org/articles?id=10.

1257/pandp.20211108.

[36] Silvia Bartolucci, Fabio Caccioli, Francesco Caravelli, and Pierpaolo Vivo.

Inversion-free leontief inverse: statistical regularities in input-output analy-

sis from partial information. ArXiv, 2020. URL https://doi.org/10.48550/

arXiv.2009.06350.

[37] Silvia Bartolucci, Fabio Caccioli, Francesco Caravelli, and Pierpaolo Vivo.

Ranking influential nodes in networks from aggregate local information.

Physical Review Research, 5(3):033123, 2023. doi: https://doi.org/10.1103/

PhysRevResearch.5.033123.

[38] Stefano Battiston, Domenico Delli Gatti, Mauro Gallegati, Bruce Greenwald,

and Joseph E. Stiglitz. Credit chains and bankruptcy propagation in production

networks. Journal of Economic Dynamics & Control, 31:2061–2084, 2007. doi:

https://doi.org/10.1016/j.jedc.2007.01.004.
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