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Opportunities for quantum computing
within net-zero power system optimization

Thomas Morstyn1,* and Xiangyue Wang2
CONTEXT & SCALE

Key conclusions: In this review, we

identify significant and wide-

ranging opportunities for recent

breakthroughs in quantum-

accelerated optimization to offer

value for the transition to net-zero

power systems. These

opportunities span a variety of

problems across planning and

operation, which are key for

reliable and affordable

decarbonization.

Seminal discoveries highlighted in

the review: We review the latest

work on quantum computing for

combinatorial power system

optimization applications,

including unit commitment, grid-

edge flexibility coordination, and

network expansion planning. In

addition, we map state-of-the-art

theoretical work to applications

where quantum computing is

underexplored, including convex

and machine learning-based

optimization.

Implications for research at

different scales: Quantum

computing creates opportunities

for faster, larger-scale, and

higher-fidelity optimization. This

is relevant for researchers from

engineering, economics, and

computer science, as well as

policymakers, network planners,

system operators, and flexibility

aggregators.
SUMMARY

Optimized power system planning and operation are core to deliv-
ering a low-cost and high-reliability transition path to net-zero car-
bon emissions. The major technological changes associated with
net zero, including the rapid adoption of renewables, electrification
of transport and heating, and system-wide digitalization, each in-
crease the scope for optimization to create value, but at the cost
of greater computational complexity. Although power system opti-
mization problems are now posing challenges for even the largest
exa-scale supercomputers, a new avenue for progress has been
opened by recent breakthroughs in quantum computing. Quantum
computing offers a fundamentally new computational infrastructure
with different capabilities and trade-offs and is reaching a level of
maturity where, for the first time, a practical advantage over clas-
sical computing is available for specific applications. In this review,
we identify significant and wide-ranging opportunities for quantum
computing to offer value for power system optimization. In addition
to reviewing the latest work on quantum computing for simulation-
based and combinatorial power system optimization applications,
we also review state-of-the-art theoretical work on quantum convex
optimization and machine learning and map this to power system
optimization applications where quantum computing is underex-
plored. Based on our review, we analyze challenges for industry im-
plementation and scale-up and propose directions for future
research.

INTRODUCTION

Electric power system decarbonization is a core component of the global transition

to net zero, requiring major infrastructure investments in renewable generation, grid

energy storage, and transmission infrastructure, along with the rapid adoption of

electric transport and heating.1 At the same time, power systems are being digita-

lized, with information and communication technology (ICT) for near-real-time

sensing and control being extended from the transmission level down to local distri-

bution networks and end customers.2 Together, these trends significantly increase

the scope for optimization across system planning and operation and the value

that can be created in terms of improved reliability, affordability, and sustainability.

Mathematical optimization involves the selection of decision variables that maximize

an objective function while satisfying constraints.3 Within this broad field, a wide

range of approaches exist for problem classes with different structural properties.

Optimization is relevant for various power system applications, from individual sites

up to the national transmission scale, and from near-real-time control to years-ahead

expansion planning. Figure 1 provides a high-level overview of key applications.
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Figure 1. Overview of key power system optimization applications across different spatial and

temporal scales

"BMS," battery management systems; "HEMS/BEMS," home/building energy management

systems; "VPP Control," control of DERs within VPPs; "VPP Form," formation of DERs into VPPs;

"TED/LED," transmission/local economic dispatch; "Market Bidding," bidding by flexible assets in

electricity markets; UC, unit commitment; and "TEP/DEP/MGEP," transmission/distribution/

microgrid expansion planning.

Potential future directions: To

address challenges for industry

implementation and scale-up, we

propose new research into (1)

benchmark problem definitions

and performance criteria; (2)

domain-specific algorithms and

hardware for current noisy

intermediate-scale devices; and

(3) holistic power industry

computing strategies integrating

quantum computing with more

immediate areas of classical

computing innovation.
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A core underlying method for power systems is the optimal power flow (OPF) prob-

lem, which considers how a set of generators should be dispatched to meet demand

at the lowest cost while respecting technical constraints such as generator power rat-

ings, line current flow limits, and bus voltage limits.4 The basic OPF approach and

more advanced variants are widely used throughout the power sector for applica-

tions including electricity market economic dispatch,5 unit commitment (UC) (i.e.,

deciding which generators to turn on/off ahead of operation),6 and network expan-

sion planning.7 Beyond OPF problems, optimization is also relevant for a wider

range of power system applications, including battery management,8 home/build-

ing energy management,9 and the formation of distributed energy resources

(DERs) into virtual power plants (VPPs).10

For practical implementation, optimization problems present a trade-off between (1)

solving problems quickly, (2) at large scale, and (3) with high model fidelity, each of

which increase computational requirements. Jointly optimizing the operation

of larger groups of resources closer to real-time based on a more accurate model

of the power network allows for less conservative utilization, creating the opportu-

nity for demand to be met at lower cost and with less pollution, without compro-

mising system reliability. Particularly when dispatching resources within constrained

systems, online optimization will have strict solution quality and timing require-

ments.11 For planning, time-to-solution requirements are generally less strict. How-

ever, computational burden is still a concern since robust and efficient planning

often requires the assessment of a large number of long-term scenarios.12 In recent

years, this has motivated the use of exa-scale supercomputers to enable high-fidelity

stochastic power system planning.13

An emerging opportunity is presented by quantum computing, which has funda-

mentally different operating principles and trade-offs compared with classical

computing. With the demonstration of quantum supremacy, quantum computing

has moved into the noisy intermediate-scale quantum (NISQ) era, where devices

with 100 or more qubits and moderate error rates are able to provide speedups

for specific applications.14 Although large general-purpose quantum computers

with full error correction are not expected in the next decade, hybrid computing ar-

chitectures combining NISQ devices with classical high-performance computing

(HPC) have the potential to unlock previously intractable computational bottlenecks.
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Reviews of early work on quantum computing for power systems discuss optimiza-

tion alongside analytics, simulation, and communication applications.15–19 How-

ever, for optimization, these reviews have primarily focused on initial work applying

quantum combinatorial optimization algorithms to UC problems, while wider poten-

tial applications are not covered in detail.

In this review, we identify significant and wide-ranging opportunities for quantum-

accelerated optimization to offer value for the transition to net-zero power sys-

tems. These opportunities are balanced by challenges for achieving the scale up

needed for industry implementation. First, we review emerging sources of compu-

tational complexity associated with power system optimization applications, which

are of central importance for a low-cost, high-reliability transition to net zero.

Beyond UC, we identify a broader set of combinatorial optimization problems

where quantum algorithms are relevant, as well as new opportunities for simula-

tion-based, convex, and machine learning-based optimization. We present a map-

ping from these applications to quantum algorithms offering polynomial and

exponential speedups and discuss current limitations and challenges for imple-

mentation and scale-up. We conclude by proposing key directions for future

research.
COMPUTATIONAL CHALLENGES FOR POWER SYSTEM
OPTIMIZATION

The transition to net zero is linked to new sources of computational complexity,

which can be broadly divided into five main areas. First is the integration of millions

of DERs, including small- andmedium-scale renewables, home batteries, electric ve-

hicles (EVs), and heat pumps. This will increase the number of controllable resources

within power systems by several orders of magnitude.2 Also, these DERs are

‘‘embedded’’ within local distribution networks, which have more extensive topol-

ogies and nonlinear characteristics than transmission networks.20

Second is the integration of energy storage technologies to provide reliable flexi-

bility in support of renewable generation. Efficiently dispatching energy storage

systems requires a large time-coupled optimization problem to be solved, where

previously dispatch problems for different time intervals could be solved separately

and in parallel.21 In addition, although linear storage models are often proposed for

system-level optimization, it has been shown that battery storage technologies often

have nonlinear characteristics related to efficiency, output power limits, and degra-

dation, which have important implications for optimal decision-making.8

Third is the increased need for uncertainty handling, due particularly to the weather-

dependence of renewable sources and the behavior-dependence of flexible loads.

A range of approaches exist for decision-making under uncertainty, including robust

optimization,22 chance-constrained optimization,23 and multi-stage recourse

models.24 In general, these all result in larger and/or more complex problems.

Fourth is the increasing global recognition that major reforms to electricity market

arrangements are needed to deliver a low-cost path to net zero.25 This includes

the introduction of new local energy/flexibility markets,26 national mechanisms for

aggregated DERs, grid-scale storage, and renewables,27 and capacity mechanisms

supporting investment in firm and clean generation.28 Modeling strategic interac-

tions and market outcomes often involves computationally intensive game theoretic

methods based on combinatorial and multi-level optimization.
Joule 8, 1–22, June 19, 2024 3
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Last is the growing importance of long-term planning to achieve net-zero targets.

The distributed and variable nature of renewable resources puts added importance

on generation technology selection and location, as well as transmission network in-

vestment decisions. At the distribution network level, strategic reinforcement linked

to local flexibility is critical for the electrification of heating and transport. In general,

optimal network expansion planning involves a large number of discrete decision

variables due to fixed costs and limited sizing options. This gives these problems

a combinatorial search space, which expands exponentially with the number of de-

cisions. Further compounding this is the need to consider the decadal time horizons

associated with net-zero transition, rapid technology change,29 the growing impor-

tance of distribution level flexibility for national transmission,30 and greater coupling

between electricity, heating, transport, and water infrastructure.31

These sources of complexity have motivated significant work on classical computa-

tional scalability. For OPF problems, linear approximations and convex relaxations

have been proposed that can be solved in P time while offering near- or exact-accu-

racy under specific network conditions. However, scalability remains a concern

beyond around 104 devices, even using state-of-the-art solvers and taking advan-

tage of inherent sparsity.32 There has also been work on distributed optimization,

where a large problem is decomposed into smaller parallel subproblems and solved

iteratively.33 For convex problems, theoretical guarantees on optimality and

constraint satisfaction are generally available. However, these methods rely on hy-

perparameters, which introduce a trade-off between the initial rate of convergence

and later-stage solution quality, and beyond a certain level of parallelization, dimin-

ishing speedups are seen due to communication overheads.34

For combinatorial optimization, there has been particular progress on the special

case of mixed-integer linear programs (MILPs), which are relevant when solving

problems with discrete decisions (e.g., UC, expansion planning) combined with

linear power flow and resource models. New solvers are still providing algorithmic

speedups, but hardware improvements (e.g., more/faster cores) are offering dimin-

ishing returns.35 Mixed integer nonlinear problems (MINLPs) are relevant when

problems combine discrete decisions and nonlinear power flow and/or resource

models. MINLPs remain computationally challenging, with exact methods relying

on problem-specific structural properties,36 while general-purpose metaheuristic

methods scale poorly with increasing problem dimension.37

An expanding area of research is the application of machine learning for power system

optimization applications. Recent advances in grid metering and widespread roll-outs

have propelled the application of machine learning bymaking granular, near-real-time

data available. One branch of work has focused on training neural networks to emulate

OPF solvers38 or the outputs of iterative OPF solvers.39 Once a neural network has

been trained, it can provide an approximate solution two orders of magnitude faster

than state-of-the-art solvers. However, a large number of optimization problems must

be solved offline as part of the training process. Also, generalizability beyond the sys-

tem scenarios used for training is a concern, and constraint satisfaction requires pen-

alties or a final remediation step, which may result in a sub-optimal solution.40

Another set of work has focused on using machine learning models to speed up sub-

components of optimization algorithms. For example, in Xavier et al.41 classification

models are trained to identify redundant constraints within security-constrained

UC (SC-UC) problems, and in Biagioni et al.,42 neural networks are used to speed

up variable updates within a distributed OPF algorithm. An advantage of these
4 Joule 8, 1–22, June 19, 2024
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approaches is that although the machine learning models provide approximate so-

lutions, the algorithms they are embedded within can often be designed to retain

performance guarantees.

Finally, there is work focused on reinforcement learning (RL), which is relevant for

problems where a full system model is unavailable or computationally intractable,

and thus a mix of exploration/exploitation is valuable. Example applications include

battery energy storage optimization with nonlinear efficiency/degradation charac-

teristics and price uncertainty,43 and multi-agent RL (MARL) for decentralized DER

coordination.44 The trial-and-error nature of RL makes constraint enforcement a

particular challenge.
OPPORTUNITIES FROM QUANTUM COMPUTING

The computational challenges discussed so far have been considered from a clas-

sical computing perspective, where the operation of physical computing hardware

is designed to support reliable logical operations, enabling higher levels of abstrac-

tion and programming. Although individual components may make use of quantum

mechanical phenomenon (e.g., quantum tunneling in transistors), components are

not designed to maintain quantum coherence, and quantum information is not

used for computation.

Quantum computers are designed to make use of quantum information and quantum

mechanical phenomenon, such as superposition, entanglement, and adiabatic evolu-

tion.14 Within a quantum computer, the basic unit of information is a qubit (quantum

bit). Measuring a qubit yields a single classical bit of information (either a ‘‘0’’ or a ‘‘1’’).

However, although quantum coherence is maintained, a qubit may be in a super-

position state of both 0 and 1. There are exponentially more superposition states

than classical states, and the ability for a qubit to be in multiple states at once allows

it to represent and act onmany potential outcomes simultaneously. In addition, qubits

may be entangled to make the probability amplitudes associated with their super-

position states correlated. As a result, changes applied to one qubit will also affect

others it is entangled with, allowing for the creation of highly interconnected systems

for fast information processing. The ability to control coherent quantum states under-

pins quantum algorithms that can provide P or E speedups over the best-known clas-

sical alternatives. A range of hardware architectures for physically realizing quantum

computers exist, including superconducting qubits, gate-defined quantum dots, trap-

ped ions, silicon carbide color centers, and Majorana zero modes.45

There are currently two main models of quantum computing: (1) gate-based and (2)

quantum annealing (QA). Gate-based quantum computers rely on quantum gates,

which influence qubit probability amplitudes and are analogous to classical logic

gates. A limited set of one- and two-qubit gate operations is sufficient to provide

a universal computing framework that can implement any quantum state transforma-

tion.14 A range of gate-based quantum computing hardware platforms are being

developed by different organizations, with atom computing announcing the mile-

stone of a 1,180 qubit processor in October 2023.46 Quantum volume is used as a

summary metric to compare the capabilities of different devices since performance

depends on multiple factors beyond the number of qubits, including gate/measure-

ment error rates and qubit connectivity.47

QA provides a more limited form of quantum computing based on adiabatic evolu-

tion under gradually changing external conditions. It is specifically relevant for
Joule 8, 1–22, June 19, 2024 5



Table 1. Review of quantum computing algorithms applied to power system optimization

Cat. Ref. Quantum alg. Power application Hybrid NISQ Speedup

Sim.-based Eskandarpour et al.50 HHL DC power flow simulation 3 3 E

Gao et al.51 hybrid HHL ———— " ———— U U E

Feng et al.52 hybrid HHL AC power flow simulation U U U

Liu et al.53 VQLS ———— " ———— U U U

Feng et al.54 VQLS ———— " ———— U U U

Combinatorial Koretsky et al.55 iterative QAOA unit commitment
(without network constraints)

U U U

Ajagekar and You18 QA ———— " ———— 3 U U

Nikmehr et al.56 distributed QAOA ———— " ———— U U U

Mahroo and Kargarian57 distributed trainable QAOA ———— " ———— U U U

Morstyn58 QA combinatorial linear OPF 3 U U

Silva et al.59 QA distribution network reconfiguration 3 U U

Kea et al.60 QAOA EV smart charging 3 U U

Jing et al.61 QAOA networked microgrid reconfiguration 3 U U

Convex Amani et al.62 hybrid NR DC OPF U 3 U

Amani and Kargarian63 hybrid IPM ———— " ———— U 3 U

Quantum speedups are specified as polynomial (P), exponential (E), or unproven (U). ‘‘— " —’’ indicates same as above.
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quadratic unconstrained binary optimization (QUBO) problems, which are a problem

class within combinatorial optimization.48 A coupled lattice of qubits is first initial-

ized into an easy-to-prepare low-energy ground state, and then the qubit lattice is

slowly controlled so that it remains in a low-energy state, which eventually repre-

sents the solution of an optimization problem. The specialized nature of QA has

enabled the development of devices that are around an order of magnitude larger

than gate-based quantum processors, with D-Wave system’s quantum advantage

processors offering 5,760 qubits.49

We have identified opportunities for quantum computing algorithms to offer value

for four broad categories of optimization: (1) simulation-based, (2) combinatorial,

(3) convex, and (4) machine learning-based. Table 1 presents a summary review of

literature applying quantum computing algorithms to power system optimization

applications, and Table 2 identifies new opportunities. In these tables, quantum al-

gorithms are categorized and compared based on whether they use hybrid quan-

tum-classical computing (hybrid column), whether they are designed for NISQ-era

devices (NISQ column), and whether a polynomial, exponential, or unproven

(U) quantum speedup is provided (speedup column). For each category, subsequent

sections provide more detailed reviews of the relevant power systems and quantum

computing literature.
Quantum simulation-based optimization

Simulation-based optimization covers a range of approaches where an optimal (or

close to optimal) solution is found by simulating a system for many potential deci-

sion-variable configurations.89 This includes methods with theoretical guarantees,

such as dynamic programming, as well as metaheuristic approaches, such as evolu-

tionary algorithms and particle swarm optimization. Quantum computing can offer

value for these approaches based on its ability to speed up simulations.

Dynamic programming provides a systematic approach for finding the exact solution

for multi-time interval discrete optimization problems using Bellman’s equation and

recursive value calculations for various combinations of state and decision variables.

For power system applications, this often involves power flow simulations, i.e., sim-

ulations to find network power flows and voltages associated with a particular set of
6 Joule 8, 1–22, June 19, 2024



Table 2. Mapping of new opportunities for quantum computing algorithms within power system optimization (beyond existing applications from

Table 1)

Cat. Ref. Quantum algorithm Example power application Hybrid NISQ Speedup

Combin. Zhao et al.64 distributed QA Benders’ decomposition for power
system planning7

U U U

Venkatesh et al.65 QA VPP formation10 3 U U

Okrut et al.66 QA non-cooperative energy market
negotiation67

3 U U

Convex Brandão et al. 68 quantum Arora-Kale-based SDP exact SDP OPF relaxation69 U 3 P

Kerenidis and Prakash70 QIPM-based SDP ——— " ——— U 3 P

Bharti et al.71 variational QSDP ——— " ——— U U U

Kerenidis et al.72 QIPM-based SOCP exact radial SOCP OPF relaxation73 U 3 P

Machine
learning-based

Rebentrost et al.74 quantum SVM training classification of redundant constraints
for SC-UC41

3 3 E

Park et al. 75 variational quantum SVM training ——— " ——— U U U

Willsch et al.76 QA SVM training ——— " ——— 3 U U

Khadiev et al.77 quantum DT training ——— " ——— 3 3 P

Mannapov78 QAOA DT training ——— " ——— U U U

Yawata et al.79 QA DT training ——— " ——— 3 U U

Wiebe et al.80 RBM training OPF emulation38 3 3 U

Allcock and Zhang81 BM training ——— " ——— 3 3 U

Shingu et al.82 variational RBM training ——— " ——— 3 3 U

Adachi and Henderson83 QA BM training ——— " ——— 3 3 U

Gupta and Zia84 dissipative QNN ——— " ——— U U U

Killoran et al.85 continuous variable QNN ——— " ——— U U U

Dong et al.86 QRL Battery storage deep RL43 3 3 U

Cherrat et al.87 policy iteration QRL ——— " ——— 3 3 U

Chen et al.88 variational QRL ——— " ——— U U U

Quantum speedups are specified as polynomial (P), exponential (E), or unproven (U). ‘‘— " —’’ indicates same as above.
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real and reactive power injections. Dynamic programming has been proposed for a

range of power system applications, including OPF with energy storage90 and multi-

stage expansion planning.91 An important benefit of dynamic programming is the

ability to directly incorporate nonlinear network and resource characteristics, as

long as they can be efficiently simulated. Here, we focus on how quantum computing

can speed up these simulations, but it should be noted that this does not resolve the

E complexity of dynamic programming with respect to the number of decision vari-

ables. A separate strand of work focuses on quantum speedups for specific dynamic

programming problems based on Grover’s algorithm, which, in certain cases, can

provide a quadratic speedup.92

Metaheuristic optimization strategies, which are also simulation-based, focus on

finding approximate solutions for nonlinear problems that are not amenable to exact

methods. A variety of approaches exist, but they broadly involve iterative search

based on the evaluation of candidate solutions (i.e., system simulations for specific

decision variables). Metaheuristic optimization has been proposed for various power

system applications, including optimal distribution network reconfiguration, gener-

ation planning, and transmission network planning.93

Figure 2 provides an overview of potential quantum simulation-based optimization

design patterns for power system applications. One route for quantum computing to

speed up power flow simulations is the Harrow-Hassidim-Lloyd (HHL) algorithm,

which has an E speedup over the fastest classical algorithms for solving systems of

linear equations. In Eskandarpour et al.,50 HHL is used to solve a power flow problem

based on the linear direct current (DC) power flow approximation, which is widely
Joule 8, 1–22, June 19, 2024 7
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Figure 2. Overview of potential quantum simulation-based optimization design patterns for power system applications

Steps common to potential approaches include (1) problem formulation, (2) simulation selection (e.g., dynamic programming, metaheuristic search),

and (3) quantum-accelerated simulation (e.g., HHL, quantum Newton’s method).
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used for transmission systems where small voltage drops and reactive power flows

can be assumed. A 4-qubit circuit is designed to solve the power flows for a 3-bus

system and simulated using Qiskit. The same approach could also be extended to

linear power flow approximations for distribution networks.

Accurate alternating current (AC) power flow simulation requires the solution of

nonlinear equations. In Xue et al.,94 a quantum version of Newton’s method is pre-

sented, which offers a quantum speedup dependent on the problem size and

required accuracy. A quantum algorithm specific to AC power flow equations

based on iterative HHL is proposed in Feng et al.52 This algorithm was simulated us-

ing Qiskit for a 5-bus power system and was shown to match the solution quality of

the classical fast decoupled load flow method, with each approach converging over

6 iterations. The potential for a quantum speedup here is based on the need to solve

linear equations at each iteration. However, the time required to read from and write

to the quantum processor at each iteration is not analyzed in detail.

Three key challenges for achieving quantum speedups in practice are (1) efficiently

preparing input data for the quantum computer, (2) extracting output data back into

a classical computing environment, and (3) implementation on NISQ devices given

their limited size and high noise levels.

For efficient preparation of input data, many applications of quantum algorithms,

including HHL, rely on quantum random access memory (QRAM) for parallel data
8 Joule 8, 1–22, June 19, 2024
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access. Various QRAM architectures have been proposed,95 but these have not yet

been practically demonstrated due to limitations of existing hardware.

Another important caveat is that although quantum state tomography can be used

to reconstruct the quantum output state as a classical output vector, reconstructing

the full output vector counteracts the speedup provided by HHL.96 HHL is useful

when only quantum observables are required or where its quantum output is used

by another quantum algorithm (e.g., for quantum machine learning). The use of

shadow tomography for efficiently approximating sparse quantum output states is

discussed in Liu et al.53 In Pareek et al.,97 the end-to-end complexity of HHL-based

power flow is investigated, including the complexity of quantum state preparation

and tomography. It is shown that for existing approaches, a quantum speedup is

not generally possible if the full output vector must be read out.

HHL generally requires a large number of qubits and has strict noise requirements,

limiting its application on current NISQ devices. To address this, hybrid algorithms

have been proposed, which combine classical computing with small quantum de-

vices to speed up specific parts of the overall calculation. A hybrid quantum-classical

algorithm for DC power flow based on HHL is presented in Gao et al.51 Another

hybrid algorithm for solving linear systems is the variational quantum linear solver

(VQLS). Here, the quantum computer implements an operation parameterized by

classical real values, referred to as an ansatz. These values are iteratively adjusted

by a classical computer, until the ansatz approximates a linear solver. Although a

general theoretical quantum speedup from variational algorithms is not available,

speedups under specific conditions have been shown.98

An AC power flow method based on VQLS is presented in Liu et al.53 At each itera-

tion, classical computing is used to update the Jacobian matrix, which is loaded onto

a quantum computer using QRAM, and VQLS is used to update the bus voltage vec-

tor. A VQLS step is simulated in Qiskit with a 6-qubit circuit for a 14-bus system. For

the noiseless case, convergence is achieved after approximately 30 iterations. Re-

sults from noisy simulations and implementation on a real quantum processor are

also shown. Another variational method for AC power flow is proposed in Feng

et al.,54 which involves optimizing a variational quantum circuit to approximate

the fixed Jacobian updates of the fast decoupled load flow method. This circuit is

then used as part of an iterative algorithm, which is shown to converge in 3 iterations

for a 118-bus system.

Quantum combinatorial optimization

So far, most work on quantum computing for power system optimization has focused

on combinatorial problems. Figure 3 presents an overview of relevant design

patterns.

QA offers the largest quantum computing devices available and can solve combina-

torial optimization problems, which can be formulated as QUBO problems. QA

directly incorporates binary decision variables, but continuous variables can also

be included by expressing these with auxiliary variables arranged in a binary expan-

sion.99 Also, linear constraints and certain quadratic constraints can be enforced by

adding appropriate quadratic penalty terms to the cost function.

QA for optimal UC is demonstrated in Ajagekar et al.18 with minimum turn-on

powers and start up costs but without network constraints. In Morstyn,58 QA was

demonstrated for combinatorial linear power flow optimization, considering
Joule 8, 1–22, June 19, 2024 9
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Steps common to potential approaches include (1) problem formulation, (2) reformulation as a QUBO, and (3) quantum combinatorial optimization
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network upgrades, generator placement/sizing, flexibility from on/off EV charging,

andmulti-phase linear network constraints. In Silva et al.,59 a QUBO formulation suit-

able for QA is presented for distribution network reconfiguration to minimize losses

assuming constant current loads. In Zhao et al.,64 a hybrid quantum-classical version

of Benders’ decomposition algorithm is proposed for MILPs, which involves itera-

tively solving integer problems using QA and solving LPs using classical computing.

Benders’ decomposition is widely used for network expansion planning problems

(see, e.g., Shahidehopour et al.7).

There are a number important caveats to the broad applicability of QA. Errors are

introduced into existing QA hardware due to issues such as flux noise and digital-

to-analog quantization error.100 Due to these errors, in practice, QA is run multiple

times and the lowest energy solution is selected. However, the best solution ob-

tained for a large problem may not be optimal, and constraints enforced via penalty

terms may not be satisfied. Also, analytic speedups from QA are only available for

specific problem types.101 Empirical work benchmarking QA against state-of-the-

art alternatives has shown variable results depending on the problem under study

and the hardware used.102

Another issue is the limited scale of existing QA hardware, which although much

larger than gate-based quantum computers, remains too small for most industrial

power system applications. Once a QUBO problem has been formulated, it needs
10 Joule 8, 1–22, June 19, 2024
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to be embedded on the annealer’s qubit lattice, with each binary variable associated

with a qubit, and qubit couplings encoding quadratic cost function weights. An

added complexity is that current annealers do not have fully connected qubit

lattices and thus cannot support arbitrary qubit coupling. To overcome this, a

feasible ‘‘minor embedding’’ needs to be found for the qubit lattice, where a single

logical qubit may be represented by a chain of multiple coupled physical qubits. This

increases the number of required qubits, and finding an optimal minor embedding is

itself a challenging problem, although fast heuristic algorithms are available.103 Us-

ing D-Wave’s 2,048-qubit 2000Q processor, the UC formulation in Ajagekar et al.18

can be scaled up to 12 U, with output powers discretized into 10 levels. However,

QA’s limited precision means that beyond 5 U the time required to obtain high-qual-

ity solutions rapidly increases above a classical mixed-integer formulation solved

using Gurobi on an i7 CPU. In Morstyn,58 combinatorial OPF problems solved using

D-Wave’s 5,760 qubit Advantage processor could scale to 9 EVs in a distribution

network, given a 24 h optimization horizon with 1 h intervals, placement/sizing for

3 PV generation sites, and voltage limits imposed on 3 node-phase pairs. The

required number of qubits varied by approximately G10% due to heuristic minor

embedding. Although the maximum problem sizes remain small, promising obser-

vations for future scaling are that the required number of qubits increases linearly

with both the number of EVs and the number of voltage constraints and that QA is

able to outperform classical simulated annealing on an i9 CPU.

For gate-based quantum computers, the quantum approximate optimization algo-

rithm (QAOA) is a hybrid quantum-classical variational algorithm that, similar to

QA, generates approximate solutions to QUBO problems. The potential for a quan-

tum speedup depends on the particular problem characteristics, as well as the quan-

tum device error rate, number of qubits, andmaximum circuit depth. QAOA for UC is

proposed in Koretsky et al.55 To avoid the need to discretize continuous variables,

QAOA is combined with an outer-loop classical optimizer. Problems with up to

10 U are simulated using IBM’s Qiskit software. The chance of high solution quality

increases with the number of QAOA training iterations and when the circuit depth is

increased from 1 to 2. However, for 10 U, the chance of a near-optimal solution is still

only 6% after 1,500 iterations.

In Nikmehr et al.,56 alternating direction method of multipliers (ADMM) is used to

decompose QAOA-based UC into subproblems that can be solved in parallel on

smaller quantum processors as part of an iterative distributed optimization process.

Simulation case studies are completed, including for a 9 DER system, which is solved

using 3 simulated QAOA circuits. A similar approach combining ADMM with QAOA

is proposed in Mahroo et al.,57 with recurrent neural networks used to speed up the

convergence of quantum circuit parameters. QAOA has also been proposed for on/

off EV smart charging,60 and networked microgrid reconfiguration based on its po-

tential to speed up the graph max-cut problem.61

In addition to the applications discussed so far, power system game theory is an un-

explored area where QA and QAOA-accelerated combinatorial optimization could

also be valuable. In particular, a QA-based algorithm for coalition structure genera-

tion games is presented in Venkatesh et al.,65 where the aim is to divide agents into

coalitions to maximize overall social welfare. This is relevant for the formation of local

energy trading coalitions104 and VPPs.10 Non-cooperative game theory is also

widely used for energy market analysis and design.67 In Okrut et al.,66 QA is demon-

strated for finding the Nash equilibrium of stylized two-player games (i.e., the solu-

tion where neither player is motivated to unilaterally deviate).
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Quantum convex optimization

Convex optimization involves minimizing a convex objective function (or equiva-

lently maximizing a concave objective) with a convex feasible set for decision vari-

ables.105 Exact and approximate convex formulations for power system optimization

applications are of significant interest due to the availability of polynominal time

classical algorithms suitable for solving large convex problems. Important convex

problem classes include linear programs (LPs), convex quadratic programs (QPs),

second-order cone programs (SOCPs), and semi-definite programs (SDPs). These

form a hierarchy since the set of LPs is a subset of the set of convex QPs, which is

in turn a subset of SOCPs, and SDPs are the most general.

Using linear power flow approximations, the OPF problem can be formulated as an

LP or QP depending on the cost function.4 For radial distribution networks, an SOCP

power flow relaxation is available, which is exact under broadly applicable condi-

tions,73 and for mesh networks, an exact SDP relaxation is available.69 SOCP is

also relevant for linear OPF under chance constraints, assuming Gaussian

uncertainty.23

Also, local optima for non-convex problems can be found using sequential convex

optimization. For example, in Sadat et al.106 nonlinear AC OPF is solved using

sequential linear programming. Beyond OPF, convex optimization can be used for

energy storage system control8 and home/building energy management.9

The use of quantum computing to speed up convex optimization is an emerging area

of theoretical research. Figure 4 presents an overview of potential design patterns

for quantum convex power system optimization. An initial application of quantum

computing to convex OPF is presented in Amani et al.,62 where a hybrid approach

integrating HHL with a Newton Raphson (NR)-based solver is proposed for linear

DC OPF. This algorithm was simulated using Qiskit and applied to a 3-bus case

study, where a 90% HHL success probability requires 14 qubits, and convergence

takes between 4 and 7 iterations for different power system load levels. The conver-

gence of the NR-based solver is also investigated for a larger case study based on

the IEEE 14-bus test system, considering different error-rate bounds on the quantum

calculations at each iteration. This work is extended in Amani et al.,63 where a

hybrid interior point method (IPM) is proposed combining HHL-based updates

with classical updates to address noise. Qiskit simulations show the potential for a

4.53 speedup for a 300-bus network over classical IPM, and this speedup is shown

to be stable across various network load levels.

In Brandão et al.,68 a quantum algorithm for SDPs is presented, based on the clas-

sical Arora-Kale framework, which provides a quadratic speedup over classical algo-

rithms in terms of both the number of decision variables and constraints. Full quan-

tum state reconstruction is a challenge, and the algorithm is instead designed to

provide the objective function at optimality. The approach has a strong runtime

dependence on the upper bound of the primal variable norm, which has been

improved by subsequent work, and shadow tomography has been integrated allow-

ing low-rank decision vectors to be recovered.107

In Kerenidis et al.,70 a quantum IPM (QIPM) is proposed that also provides a P

speedup for SDPs. The speedup is not as strong as Brandão et al.68 in terms of

the number of decision variables but has less dependence on other parameters.

Another QIPM is proposed in Kerenidis et al.,72 which provides a P speedup for

SOCP problems. These algorithms include efficient approaches for state vector
12 Joule 8, 1–22, June 19, 2024
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Steps common to potential approaches include (1) problem formulation, (2) convex relaxation (e.g., to an LP, SOCP, and SDP), and (3) quantum convex

optimization (e.g., QIPM, variational SDP).
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tomography but require QRAM. Another caveat is that the quantum speedups

depend on intermediate matrices being well-conditioned, which is difficult to guar-

antee theoretically, meaning that speedups remain problem dependent and require

empirical validation.

The quantum algorithms for convex optimization discussed so far require much

larger and lower error-rate gate-based devices than are currently available. In Bharti

et al.,71 a hybrid variational algorithm is presented for solving SDPs using NISQ de-

vices. This method still involves a classical SDP solver, but it is used to solve a series

of problems with a much lower dimension than the original problem. A quantum

speedup is not proven, but numerical evidence from an eigenvalue calculation prob-

lem shows that, for a given number of qubits, the solution error reduces exponen-

tially with the number of ansatz states, supporting the method’s potential scalability.
Quantum machine learning-based optimization

Complex statistical relationships can be captured with limited amounts of quantum

data, creating the potential for quantum computing to outperform classical

computing for a range of machine learning tasks. Quantum machine learning is an

active research field and has been applied to power system analytics applications

such as transient stability assessment.108 As discussed, in recent years there has

been significant interest in the development of machine learning-based power sys-

tem optimization strategies, including neural network-based optimization emulation

(e.g., Pan et al.38), machine learning-assisted optimization (e.g., Xavier et al.41), and
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Steps common to potential approaches include (1) objective definition and data collection, (2) model training (either quantum-accelerated training of a

classical model or quantummodel training), and (3) machine learning-based optimization (e.g., machine learning-assisted, optimization emulation, and

reinforcement learning).
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RL (e.g., Cao et al.43). In this section, we are interested in the opportunity for quan-

tum computing to offer value for these approaches, either by using quantum com-

puters for training classical machine learning models or by implementing machine

learning models on quantum hardware. Figure 5 presents an overview of potential

design patterns.

Support vector machines (SVMs) are a popular supervised learning method for clas-

sification and regression and are relevant for machine learning-assisted optimization

(see, e.g., Xavier et al.41). A series of work has focused on using quantum computers

to improve SVM training. An E speedup for training SVMs with P kernel functions is
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available using gate-based quantum computing and QRAM.74 A variational algo-

rithm for training SVMs using NISQ devices is presented in Park et al.,75 with empir-

ical results showing a sub-quadratic training time. In Willsch et al.,76 SVM training is

reformulated as a QUBO problem, which can be solved using QA. The stochastic

nature of QA means that an ensemble of approximately optimal models is readily

produced, which, when operated jointly, can often outperform individual classifiers

produced by classical SVM training.

Decision trees (DTs) are another supervised learning method with different trade-

offs to SVMs. In Khadiev et al.,77 a hybrid quantum-classical algorithm for DT training

is presented, which provides a near quadratic speedupwith respect to the number of

attributes. A DT training algorithm making use of QAOA is presented in Mannapov

et al.,78 and in Yawata et al.,79 a QA formulation for training regression trees with

multi-feature splitting conditions is presented.

The literature on quantum computing for neural networks can broadly be divided

into work on training acceleration for classical neural networks and work on quantum

circuits that are analogous to classical neural networks. Quantum computing is

particularly relevant for accelerated training of restricted Boltzmann machines

(RBMs), which are a type of generative stochastic neural network. In Wiebe

et al.,80 quantum algorithms with and without QRAM are presented for efficient

RBM training. These algorithms are also relevant for full Boltzmann machines

(BMs), which offer additional expressive power but are generally considered intrac-

table for classical training.81 RBMs and BMs can also be trained using NISQ varia-

tional algorithms82 and QA.83

A range of different concepts for quantum neural networks (QNNs) have been pro-

posed, each combining different elements of quantum computing and neural

computing.109 For NISQ devices, QNN research has focused on variational algo-

rithms,110 where the variational parameter updates are done in a manner analogous

to training a feed-forward classical neural network. Within the variational QNN

framework, there are different implementations, such as dissipative QNNs84 and

continuous variable QNNs.85 In Du et al.,111 it is shown that QNNs can provide

greater expressive power than classical neural networks for generative tasks. How-

ever, QNNs are not yet fully mature, and existing implementations can exhibit un-

trainability without a good initialization.

Quantum computing has also been proposed for RL. Gate-based quantum RL (QRL)

was first proposed in Dong et al.,86 with superposition enabling simultaneous value

function updating across multiple classical states and the inherently probabilistic na-

ture of quantum measurement providing a natural action selection policy balancing

exploration and exploitation. A simulation of this approach was demonstrated for a

20320 Gridworld problem. Quantum policy iteration RL is proposed in Cherrat

et al.87 and demonstrated with the FrozenLake and InvertedPendulum OpenAI

Gym environments. For NISQ devices, variational algorithms can replace neural net-

works as function approximators within classical deep RL approaches.88

For all quantum machine learning methods, a major challenge is data loading, i.e.,

encoding enough data to represent a problem using the limited number of qubits

of NISQ devices. To address this, two leading approaches are tensor networks,112

which compress high-dimensional data into a manageable size, and data reload-

ing,113 where multiple steps of data uploading and processing are done in series

for each qubit in a quantum circuit.
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CONCLUSIONS AND FUTURE DIRECTIONS

Our review has found a rich variety of quantum computing algorithms with potential

applications for net-zero power system operation and planning. The most devel-

oped area is the use of quantum computing for combinatorial problems, which

include UC, dispatch for grid-edge devices with discrete flexibility, and network

expansion planning. Here, QA and variational algorithms are directly relevant and

suitable for NISQ-era devices. Promising empirical results have been obtained for

small-scale test cases, but so far, a practical quantum advantage has not been

demonstrated for industrial-scale problems, and it is challenging to prove theoret-

ical quantum speedups for thesemethods. However, this could change quickly given

that companies including D-Wave and IBM are rapidly improving their industrial

quantum computing offerings. There has also been substantial progress on quan-

tum-accelerated linear and nonlinear power flow simulation. These methods have

not yet been leveraged for power system optimization, but there are opportunities

for strategies based on dynamic programming and metaheuristics that rely on simu-

lating large numbers of scenarios.

Convex and machine-learning-based power system optimization have been identi-

fied as two underexplored areas where quantum computing could offer value in

future. For convex OPF in particular, quantum algorithms offer a potential counter

to new sources of computational complexity, including the growing number of

DERs, the use of chance constraints to handle uncertainty, and the transition from

linear approximations to more accurate SOCP and SDP formulations. Convex opti-

mization is still an emerging area of quantum computing research, with new algo-

rithms regularly being developed offering different trade-offs and speedups. Within

the power systems literature, machine learning-based optimization is an area of

rapid recent development. Here, quantum computing has the potential to speed

up training and increase the expressive power of models used for machine

learning-assisted optimization, optimization emulation, and RL.

It is important to caveat these potential opportunities with the recognition that

quantum computing is at an early stage of development and most theoretical quan-

tum speedups rely on large error-corrected devices that are likely a decade or more

away. Despite this, a number of implementation-focused industry initiatives are

already underway. The National Renewable Energy Laboratory (NREL) and Atom

Computing are building a quantum smart grid control testbed, linking a quantum

computer in-the-loop with a real-time digital grid simulator.114 Also, E.ON and

IBM are collaborating on quantum computing for several applications, including

vehicle-to-grid optimization,115 and Phasecraft is conducting a feasibility study

with the UK Department for Energy Security and Net Zero on quantum computing

for power system planning.116

The pressing need to address net zero and the rapid technological development of

quantum computing create significant opportunities, but also the risk for hype cycles

andmisdirected investment. To address this, three key future research directions are

proposed: (1) benchmarks and performance criteria, (2) domain-specific algorithms

and hardware, and (3) holistic power sector computing strategies.
Benchmarks and performance criteria

An important enabler for future progress would be a set of standardized power sys-

tem optimization benchmark problem definitions with clearly specified performance

criteria. This is important for directing research into quantum algorithm design and
16 Joule 8, 1–22, June 19, 2024
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for understanding how far quantum hardware performance metrics (e.g., quantum

volume, circuit layer operations per second) need to improve before practical quan-

tum advantage can be achieved for specific applications. Understanding when new

market opportunities would be realized could in turn help unlock and efficiently allo-

cate additional government and industry investment.

A major challenge for developing standardized optimization benchmarks for power

systems is their heterogeneity between regions in terms of network topology, size,

generation/demand characteristics, control/market mechanisms, and planning pro-

cesses. For OPF problems, important progress has been made with the release of

the Power Grid Library by the IEEE Power & Energy Society.117 This brings together

various network models and standardized formulations for AC OPF, OPF with HVDC

lines, and UC. Other sources of benchmarks include Sass et al.,118 which focus on

sector-coupled energy system optimization, and CityLearn119 and GridLearn,120

which provide standardized software environments for demand-response RL

training and testing.

Important applications where standardized benchmarks have yet to be developed

include the coordination of aggregated DERs, energy storage optimization, and

OPF under uncertainty. Also, although existing benchmarks are primarily focused

on system models and algorithms, there is a lack of linked benchmarks and design

patterns for computing hardware architectures. To properly assess whether quan-

tum computers can provide real value, it is critical to understand the computational

boundaries and trade-offs faced by the power sector at the state-of-the-art of clas-

sical computing, which involves interdependencies between data, algorithms, and

hardware.

Energy consumption is another important performance criteria for quantum

computing, particularly when considering its use for power system optimization.

However, it is challenging to assess this in the current NISQ era due to the variety

of hardware candidates and the rapid pace of development. The Quantum Energy

Initiative was established in 2022 to explore sustainable quantum computing ar-

chitectures.121 For large instances of problems where there is a quantum advan-

tage, it is expected that this will also translate into an energy consumption advan-

tage.122 As an example, analysis of Google’s quantum supremacy experiment

showed a 557,0003 reduction in energy usage compared with classical

computing.123 However, the potential for NISQ energy advantages is less clear

and will depend on the specific problem, hardware platform, and supporting en-

ergy and cooling infrastructure.124 In addition to energy efficiency, another impor-

tant area to explore for sustainable quantum computing is dynamic resource man-

agement, so that computing demand can be flexibly matched to variable

renewable generation.125

Domain-specific algorithms and hardware

During the current NISQ era, quantum speedups are expected to be heavily depen-

dent on the details of the application, algorithm, and hardware platform.14 This cre-

ates a role for domain-specific algorithm and hardware design analogous to the use

of application-specific integrated circuits for classical computing. For NISQ circuits,

noise is a key limiting factor for problem size and solution quality. Noise modeling is

challenging due to the complicated dependence on the circuit topology and under-

lying hardware, but can be made tractable using approximations.126 This provides

an important line of inquiry for noise-aware quantum circuit design and hardware

selection.
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Initially, practical implementation will likely involve hybrid quantum-classical

computing, with small quantum processors used for subroutines that are particu-

larly amenable to quantum computation. From our review, an early example of

this is Nikmehr et al.,56 where a NISQ circuit is used to solve mixed-integer sub-

problems for distributed UC. In general, power system optimization problems

are often amenable to decomposition, parallelization, and hierarchical approaches

since they involve network-based decisions across multiple spatial and temporal

scales.

Even in the longer term, when large error-corrected quantum computers are avail-

able, domain-specific design will still be important for achieving practical quantum

advantage. It has been argued that quantum gate operations will always take longer

than classical operations due to their inherently higher complexity.127 This would

mean that classical computing remains superior for small instances of any particular

optimization application, particularly when the theoretical quantum advantage is

polynomial rather than exponential. Another issue is the input/output bandwidth

limits of quantum computing, which means it is most competitive for problems

where intensive computation is done on a relatively small dataset. Quantum advan-

tage is often lost if a large amount of input data needs to be loaded onto the quan-

tum device or where a quantum observable (e.g., the objective function value) is an

insufficient output and instead a full decision vector needs to be exported.96 This

motivates the design of problem-specific solutions that directly account for these

limitations.

Holistic power sector computing strategies

Computing is a key component of the trend toward power system digitali-

zation. Transmission system operators need computing architectures that can

support increasingly intensive offline analytics and planning and online

dispatch and control. These functions are also of growing importance at the local

level, as part of the distribution network operator (DNO) to distribution system

operator (DSO) transition. Related to this are the growing computing requirements

of platforms that manage fleets of DERs, including local energy/flexibility

markets, VPPs, EV charging networks, and building/microgrid energy management

systems.

When assessing the opportunities offered by quantum computing, system operators

should not consider the technology in isolation but instead as part of an ongoing

strategic roadmap for computing research and development, accounting for the

full range of technology readiness levels. Alongside quantum computing, key areas

for innovation in classical computing include graphical processor unit computing128

and cloud-to-edge computing.129 For new computing technologies to be of prac-

tical value, architectures are needed that address the domain’s stringent perfor-

mance, timing, reliability, and security requirements.

Policymakers and regulators will also have important roles to play as quantum

computing is adopted by the power sector. The cost required to develop quantum

computing infrastructure creates the risk of market concentration, which could limit

competition and innovation.130 Policymakers can help address this by supporting

open research and investing in widely accessible national quantum computing infra-

structure.131 There is also a need for careful regulation and controls that balance

risks posed by quantum computing, particularly for cybersecurity, against the poten-

tial benefits of open and collaborative science and innovation for the net-zero

transition.132
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(2021). Quantum algorithms for Second-
Order Cone Programming and Support
Vector Machines. Quantum 5, 427. https://
doi.org/10.22331/q-2021-04-08-427.

73. Gan, L., Li, N., Topcu, U., and Low, S.H. (2015).
Exact Convex Relaxation of Optimal Power
Flow in Radial Networks. IEEE Trans.
Automat. Contr. 60, 72–87. https://doi.org/
10.1109/TAC.2014.2332712.

74. Rebentrost, P., Mohseni, M., and Lloyd, S.
(2014). Quantum support vector machine for
big data classification. Phys. Rev. Lett. 113,
130503. https://doi.org/10.1103/PhysRevLett.
113.130503.

75. Park, S., Park, D.K., and Rhee, J.-K.K. (2023).
Variational quantum approximate support
vector machine with inference transfer. Sci.
Rep. 13, 3288. https://doi.org/10.1038/
s41598-023-29495-y.
76. Willsch, D., Willsch, M., De Raedt, H., and
Michielsen, K. (2020). Support vector
machines on the D-Wave quantum annealer.
Comput. Phys. Commun. 248, 107006. https://
doi.org/10.1016/j.cpc.2019.107006.

77. Khadiev, K., Mannapov, I., and Safina, L.
(2019). The Quantum Version of Classification
Decision Tree Constructing Algorithm C5.0.
Preprint at arXiv 1907. https://doi.org/10.
48550/arXiv.1907.06840.

78. Mannapov, I.M. (2023). The Improvement of
Decision Tree Construction Algorithm Based
on Quantum Heuristic Algorithms.
Lobachevskii J. Math. 44, 724–732. https://
doi.org/10.1134/S1995080223020269.

79. Yawata, K., Osakabe, Y., Okuyama, T., and
Asahara, A. (2022). QUBO Decision Tree:
Annealing Machine Extends Decision Tree
Splitting. In IEEE International Conference on
Knowledge Graph (ICKG), pp. 355–364.
https://doi.org/10.1109/ICKG55886.2022.
00052.

80. Wiebe, N., Kapoor, A., and Svore, K.M. (2016).
Quantum deep learning. Quantum Inf.
Comput. 16, 541–587. https://doi.org/10.
26421/QIC16.7-8-1.

81. Allcock, J., and Zhang, S. (2019). Quantum
machine learning. Natl. Sci. Rev. 6, 26–28.
https://doi.org/10.1093/nsr/nwy149.

82. Shingu, Y., Seki, Y., Watabe, S., Endo, S.,
Matsuzaki, Y., Kawabata, S., Nikuni, T., and
Hakoshima, H. (2021). Boltzmann machine
learning with a variational quantum algorithm.
Phys. Rev. A 104, 032413. https://doi.org/10.
1103/PhysRevA.104.032413.

83. Adachi, S., and Henderson, M.P. (2015).
Application of Quantum Annealing to
Training of DeepNeural Networks. Preprint at
arXiv 1510. https://doi.org/10.48550/arXiv.
1510.06356.

84. Gupta, S., and Zia, R.K.P. (2001). Quantum
neural networks. J. Comput. Syst. Sci. 63,
355–383. https://doi.org/10.1006/jcss.
2001.1769.

85. Killoran, N., Bromley, T.R., Arrazola, J.M.,
Schuld, M., Quesada, N., and Lloyd, S. (2019).
Continuous-variable quantum neural
networks. Phys. Rev. Research 1, 033063.
https://doi.org/10.1103/PhysRevResearch.1.
033063.

86. Dong, D., Chen, C., Li, H., and Tarn, T.J.
(2008). Quantum reinforcement learning. IEEE
Trans. Syst. Man Cybern. B Cybern. 38, 1207–
1220. https://doi.org/10.1109/TSMCB.2008.
925743.

87. Cherrat, E.A., Kerenidis, I., and Prakash, A.
(2023). Quantum reinforcement learning via
policy iteration. Quantum Mach. Intell. 5, 30.
https://doi.org/10.1007/s42484-023-00116-1.

88. Chen, S.Y.-C., Yang, C.-H.H., Qi, J., Chen,
P.-Y., Ma, X., and Goan, H.-S. (2020).
Variational Quantum Circuits for Deep
Reinforcement Learning. IEEE Access 8,
141007–141024. https://doi.org/10.1109/
ACCESS.2020.3010470.

89. Law, A.M., and McComas, M.G. (2002).
Simulation-based optimization. In Proc.
Winter Simul. Conf., 1Proc. Winter Simul.
Conf. (IEEE Publications), pp. 41–44. https://
doi.org/10.1109/WSC.2002.1172866.

90. Levron, Y., Guerrero, J.M., and Beck, Y. (2013).
Optimal Power Flow in Microgrids With
Energy Storage. IEEE Trans. Power Syst. 28,
3226–3234. https://doi.org/10.1109/TPWRS.
2013.2245925.

91. Petersen, E.R. (1973). A Dynamic
Programming Model for the Expansion of
Electric Power Systems.Management Science
20, 656–664. https://doi.org/10.1287/mnsc.
20.4.656.

92. Ronagh, P. (2021). The Problem of Dynamic
Programming on a Quantum Computer.
Preprint at arXiv 1906. https://doi.org/10.
48550/arXiv.1906.02229.

93. Cuevas, E., Barocio Espejo, E., and Conde
Enrı́quez, A. (2019). Metaheuristics
Algorithms in Power Systems, First edition
((Springer International Publishing)).

94. Xue, C., Wu, Y.-C., and Guo, G.-P. (2021).
Quantum Newton’s method for solving
system of nonlinear algebraic equations.
Preprint at arXiv 2109. https://doi.org/10.
48550/arXiv.2109.08470.

95. Giovannetti, V., Lloyd, S., and Maccone, L.
(2008). Architectures for a quantum random
access memory. Phys. Rev. A 78, 052310.
https://doi.org/10.1103/PhysRevA.78.052310.

96. Aaronson, S. (2015). Read the fine print. Nat.
Phys. 11, 291–293. https://doi.org/10.1038/
nphys3272.

97. Pareek, P., Jayakumar, A., Coffrin, C., and
Misra, S. (2024). Demystifying Quantum
Power Flow: Unveiling the Limits of Practical
Quantum Advantage. Preprint at arXiv 2402.
https://doi.org/10.48550/arXiv.2402.08617.

98. Cerezo, M., Arrasmith, A., Babbush, R.,
Benjamin, S.C., Endo, S., Fujii, K., McClean,
J.R., Mitarai, K., Yuan, X., Cincio, L., et al.
(2021). Variational quantum algorithms. Nat.
Rev. Phys. 3, 625–644. https://doi.org/10.
1038/s42254-021-00348-9.

99. Yarkoni, S., Raponi, E., Bäck, T., and Schmitt,
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127. Hoefler, T., Häner, T., and Troyer, M. (2023).
Disentangling Hype from Practicality: On
Realistically Achieving Quantum Advantage.
Commun. ACM 66, 82–87. https://doi.org/10.
1145/3571725.

128. Zhou, G., Feng, Y., Bo, R., Chien, L., Zhang, X.,
Lang, Y., Jia, Y., and Chen, Z. (2017). GPU-
Accelerated Batch-ACPF Solution for N-1
Static Security Analysis. IEEE Trans. Smart
Grid 8, 1406–1416. https://doi.org/10.1109/
TSG.2016.2600587.

129. Li, J., Gu, C., Xiang, Y., and Li, F. (2022). Edge-
cloud Computing Systems for Smart Grid:
State-of-the-art, Architecture, and
Applications. J. Mod. Power Syst. Clean
Energy 10, 805–817. https://doi.org/10.
35833/MPCE.2021.000161.

130. De Wolf, R. (2017). The potential impact of
quantum computers on society. Ethics Inf.
Technol. 19, 271–276. https://doi.org/10.
1007/s10676-017-9439-z.

131. Monroe, C., Raymer, M.G., and Taylor, J.
(2019). The U.S. National Quantum Initiative:
From Act to Action. Science 364, 440–442.
https://doi.org/10.1126/science.aax0578.

132. Liman, A., and Weber, K. (2023). Quantum
Computing: Bridging the National Security–
Digital Sovereignty Divide. Eur. J. Risk Regul.
14, 476–483. https://doi.org/10.1017/err.
2023.44.

https://doi.org/10.1109/ICC45041.2023.10279010
https://doi.org/10.1109/ICC45041.2023.10279010
https://doi.org/10.1016/j.apenergy.2019.114436
https://doi.org/10.1016/j.apenergy.2019.114436
http://refhub.elsevier.com/S2542-4351(24)00155-7/sref105
http://refhub.elsevier.com/S2542-4351(24)00155-7/sref105
http://refhub.elsevier.com/S2542-4351(24)00155-7/sref105
https://doi.org/10.1016/j.ijepes.2021.107807
https://doi.org/10.1016/j.ijepes.2021.107807
https://doi.org/10.4230/LIPIcs.ICALP.2019.27
https://doi.org/10.4230/LIPIcs.ICALP.2019.27
https://doi.org/10.1109/TPWRS.2022.3160384
https://doi.org/10.1109/TPWRS.2022.3160384
https://doi.org/10.1007/s11128-014-0809-8
https://doi.org/10.1007/s11128-014-0809-8
https://doi.org/10.1109/ICUFN49451.2021.9528698
https://doi.org/10.1109/ICUFN49451.2021.9528698
https://doi.org/10.1103/PhysRevResearch.2.033125
https://doi.org/10.1103/PhysRevResearch.2.033125
https://doi.org/10.1088/2058-9565/aaea94
https://doi.org/10.22331/q-2020-02-06-226
https://doi.org/10.22331/q-2020-02-06-226
https://doi.org/10.1109/ATEE58038.2023.10108354
https://doi.org/10.1109/ATEE58038.2023.10108354
https://www.eon.com/en/about-us/media/press-release/2021/2021-09-02-eon-allies-with-ibm-quantum.html
https://www.eon.com/en/about-us/media/press-release/2021/2021-09-02-eon-allies-with-ibm-quantum.html
https://www.eon.com/en/about-us/media/press-release/2021/2021-09-02-eon-allies-with-ibm-quantum.html
https://www.newelectronics.co.uk/content/news/phasecraft-wins-contract-to-develop-quantum-algorithms-to-optimise-energy-grids/
https://www.newelectronics.co.uk/content/news/phasecraft-wins-contract-to-develop-quantum-algorithms-to-optimise-energy-grids/
https://www.newelectronics.co.uk/content/news/phasecraft-wins-contract-to-develop-quantum-algorithms-to-optimise-energy-grids/
https://www.newelectronics.co.uk/content/news/phasecraft-wins-contract-to-develop-quantum-algorithms-to-optimise-energy-grids/
https://doi.org/10.48550/arXiv.1908.02788
https://doi.org/10.48550/arXiv.1908.02788
https://doi.org/10.1016/j.compchemeng.2020.106760
https://doi.org/10.1016/j.compchemeng.2020.106760
https://doi.org/10.1145/3360322.3360998
https://doi.org/10.1145/3360322.3360998
https://doi.org/10.1016/j.epsr.2022.108521
https://doi.org/10.1016/j.epsr.2022.108521
https://doi.org/10.1103/PRXQuantum.3.020101
https://doi.org/10.1103/PRXQuantum.3.020101
https://doi.org/10.1088/2058-9565/acae3e
https://doi.org/10.1088/2058-9565/acae3e
https://doi.org/10.48550/arXiv.2107.05362
https://doi.org/10.48550/arXiv.2107.05362
https://doi.org/10.1109/TSUSC.2022.3190242
https://doi.org/10.1109/TSUSC.2022.3190242
https://doi.org/10.1109/TSUSC.2023.3236598
https://doi.org/10.1109/TSUSC.2023.3236598
https://doi.org/10.1038/s41567-021-01356-3
https://doi.org/10.1038/s41567-021-01356-3
https://doi.org/10.1145/3571725
https://doi.org/10.1145/3571725
https://doi.org/10.1109/TSG.2016.2600587
https://doi.org/10.1109/TSG.2016.2600587
https://doi.org/10.35833/MPCE.2021.000161
https://doi.org/10.35833/MPCE.2021.000161
https://doi.org/10.1007/s10676-017-9439-z
https://doi.org/10.1007/s10676-017-9439-z
https://doi.org/10.1126/science.aax0578
https://doi.org/10.1017/err.2023.44
https://doi.org/10.1017/err.2023.44

	Opportunities for quantum computing within net-zero power system optimization
	Introduction
	Computational challenges for power system optimization
	Opportunities from quantum computing
	Quantum simulation-based optimization
	Quantum combinatorial optimization
	Quantum convex optimization
	Quantum machine learning-based optimization

	Conclusions and future directions
	Benchmarks and performance criteria
	Domain-specific algorithms and hardware
	Holistic power sector computing strategies

	Acknowledgments
	flink5
	flink6
	References


