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Abstract
Hypoplastic left heart syndrome (HLHS) is a rare, complex, and incredibly foetal
congenital heart disease. To decrease neonatal mortality, evolving HLHS (eHLHS) in
pregnant women should be critically diagnosed as soon as possible. However, diagnosis is
currently heavily dependent on skilled medical professionals using foetal cardiac ultra-
sound images, making it difficult to rapidly and easily examine for this disease. Herein, the
authors propose a cost‐effective deep learning framework for rapid diagnosis of eHLHS
(RDeH), which we have named RDeH‐Net. Briefly, the framework implements a coarse‐
to‐fine two‐stage detection approach, with a structure classification network for 4D
human foetal cardiac ultrasound images from various spatial and temporal domains, and a
fine detection module with weakly‐supervised localisation for high‐precision nidus
localisation and physician assistance. The experiments extensively compare the authors’
network with other state‐of‐the‐art methods on a 4D human foetal cardiac ultrasound
image dataset and show two main benefits: (1) it achieved superior average accuracy of
99.37% on three categories of foetal ultrasound images from different cases; (2) it
demonstrates visually fine detection performance with weakly supervised localisation.
This framework could be used to accelerate the diagnosis of eHLHS, and hence signif-
icantly lessen reliance on experienced medical physicians.
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1 | INTRODUCTION

Congenital heart disease (CHD) involves a congenital mal-
formation caused by abnormal development of the heart and
large blood vessels during the prenatal stage. Infant mortality
is most commonly caused by CHD, which occurs in about
1% of live births and is the leading cause of birth defect‐
related deaths [1, 2]. Currently, CHD detection is per-
formed via mass screening with 2D ultrasound, with po-
tential cases then being referral to specialist cardiologists.
However, a recent international survey reported that such
screening can only achieve prenatal detection of critical
CHD in about 50% of cases [3]. Prenatal detection is
important because if detection occurs only after birth, there
is less time to plan for and execute treatment and surgery,
leading to reduced survival rates and adverse long‐term
neurological outcomes. CHD disrupts normal blood flow
and can cause abnormal brain development, and delayed
post‐natal treatment contributes to poor neurological out-
comes. Prenatal diagnosis is also important because it
prompts a search for genetic abnormalities and extra‐cardiac
abnormalities, which can lead to discovery of the need for
other procedures. There is also a need to accurately predict
disease progression and birth outcomes, so as to accurately
advise and counsel parents.

Foetal aortic stenosis involves an abnormality in the foetal
heart. When this condition is coupled with specific abnor-
malities like monophasic mitral inflow and antegrade aortic
arch flow, there is a significant risk of the foetus developing
hypoplastic left heart syndrome (HLHS) malformation [4].
Such diseased hearts are thus termed as ‘evolving HLHS’
(eHLHS). These hearts have a more globular left ventricular
(LV) shape and reduced LV motion, and are used in the
current study as a sample of disease conditions for deep
learning detection.

Compared with other state‐of‐the‐art medical imaging
technologies (e.g., MRI and CT) [5, 6], ultrasound imaging is
widely used in prenatal examinations owing to its relative
safety, low cost, operator comfort, and operator experience
[7, 8]. Thus, cardiac ultrasound imaging is the main exami-
nation for CHD during pregnancy [9, 10]. Currently, ultra-
sound imaging includes 2D, 3D, and advanced 4D methods.
Compared with 2D and 3D ultrasound scans, 4D scans can
provide a wider range of spatial‐temporal foetal heart infor-
mation for diagnosis.

In previous decades, evaluation of foetal hearts was per-
formed primarily through echocardiography. However, such
evaluation is challenging because of the small size of foetal
hearts, limited resolution on ultrasound scanners, and limited
understanding of the implications of some measured param-
eters. With the rapid development of artificial intelligence
[11], deep learning presents enormous promise for medical
image analysis tasks, such as brain segmentation from MRI,
lesion detection on ultrasound, and liver segmentation on CT.
Deep learning can learn representations of images and
automatically discover similar representations for detection or
classification [12, 13].

Deep learning computational approaches can alleviate
some of aforementioned difficulties by providing higher ac-
curacy than manual measurements and avoiding human er-
rors, enabling automatic interpretations that hasten
traditionally slow manual processes, and providing additional
predictive and interpolative capabilities that augment user
expertise. However, compared with adult ultrasound images,
the foetal ultrasound images studied here pose additional
difficulties, including the small size of the heart, obstructions
from foetal bones, and a greater number of signals from
tissue outside the epicardium that can be difficult to distin-
guish from the myocardium.

Here, we develop a deep learning framework for rapid
detection of eHLHS (named herein as RDeH‐Net) that can act
as a starting framework for future expansion to the detection
of a wider range of diseases and abnormalities. The main
contributions of our work are as follows.

� We develop a cost‐effective labelling scheme for rapid
eHLHS diagnosis, which uses bounding box labels to cover
regions of interest in the foetal heart without providing
explicit directions. Our approach simplifies the labelling task
while avoiding the use of overly complex annotations, which
distinguishes it from previous methods.

� We propose a two‐stage deep network for accurate foetal
cardiac nidus region detection, which incorporates a fine‐
detection module with weakly supervised localisation. This
enhances localisation precision, which aids segmentation
and provides valuable assistance to physicians.

� We establish a unique 4D foetal cardiac ultrasound dataset
with samples from early eHLHS cases and normal foetuses,
each sample with specific slice and timing information. This
dataset fills a crucial gap in CHD research because no public
dataset of 4D foetal cardiac ultrasound images currently
exists.

The remainder of this paper is organised as follows.
Related work is discussed in Section 2. In Section 3, the
framework of our proposed approach is outlined. Subse-
quently, the proposed coarse and fine detection methods are
elaborated on in detail in Section 3. The experimental results
and analysis are described in Section 4. Finally, in Section 5, we
summarise the content of this study.

2 | RELATED WORKS

2.1 | Traditional methods for analysing
foetal cardiac ultrasound images

To analyse and interpret foetal cardiac ultrasound images,
traditional automatic analysis approaches primarily use classic
image processing algorithms and models, with traditional
automatic analysis techniques relying primarily on thresholding
and manually determined characteristics [14, 15].

Nageswari et al. [14] proposed the transverse dyadic
wavelet transform algorithm to retain the border and
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curvature of four chambers on foetal cardiac ultrasound im-
ages. Then, Nageswari et al. [16] proposed a spatially
constrained‐distance regularised level set evolution segmen-
tation algorithm for foetal cardiac ultrasound images. To
detect the borders of the foetal heart, Song et al. [17] first
extracted ROI regions using a Gaussian filter and texture
analysis, and then applied an energy‐based active contour
model. Li et al. [18] proposed a Hough‐forest‐based detector
for detection and localisation in cardiac ultrasound diagnosis
and therapy recommendations. Sushma et al. [19] proposed a
method for automated recognition of CHD from ultrasonic
2D imaging, which made use of statistical features and
pattern classifiers such as the support vector machine. Bridge
et al. [20] proposed an automated description framework for
tracking key variables that described the content of each
frame of freehand 2D ultrasound scanning videos of healthy
foetal heart. Vargas‐Quintero et al. [21] designed a novel
multi‐texture active appearance model based on the Hermite
transform to perform segmentation of the LV. Mahmood
et al. [22] used the fundamental principle that the area closest
to the apex in a four‐chamber view is the LV region to
provide a new way of robustly finding the LV. However, it
remains challenging for traditional approaches to attain higher
accuracy and better performance because of the complex
properties of the embryonic heart.

3 | DEEP LEARNING METHODS FOR
ANALYSING FOETAL CARDIAC
ULTRASOUND IMAGES

With the rapid development of deep learning, a large number
of excellent deep learning networks have been proposed [23–
28], including AlexNet [29], ResNet [30], Yolo [31–34], and
SSD [35]. In medical image analysis, numerous deep learning
networks have recently been applied to diagnostic support [36–
39], with these including U‐Net [40], nnU‐Net [41], and Swin
UNETR [42].

For human cardiac ultrasound image diagnosis, automated
analysis methods can be coarsely classified into adult cardiac
ultrasound image analysis methods and foetal cardiac ultra-
sound image analysis methods. Many studies have been per-
formed on adult cardiac ultrasound image analysis methods.
Ghorbani et al. [43] applied deep learning to echocardiogra-
phy to identify local cardiac structures. By using a deep
learning model, their approach was able to estimate cardiac
function and predict systemic phenotypes. Bello et al. [44]
proposed a deep‐learning cardiac motion analysis method for
human survival prediction, which involved training a fully
convolutional network on anatomical shape priors to predict
cardiac motion. Dezaki et al. [45] proposed a deep residual
recurrent neural network to automatically recognise cardiac
cycle phases.

Foetal cardiac ultrasound image analysis methods
combine the advantages of adult heart analysis methods while
taking into account foetal heart disease characteristics and

foetal posture when designing classification, detection, and
segmentation algorithms. Arnaout et al. [46] proposed neural
network‐based prenatal detection of complicated CHD. In
this detection, a view classifier categorised the ultrasound
view, and then three CHD diseases could be detected inde-
pendently by successive detection classifiers. Komatsu et al.
[2] proposed a convolutional neural network to detect cardiac
substructures and structural abnormalities on foetal ultra-
sound videos. This detection method only adopted a super-
vised learning scheme from a dataset of normal cases. Pu
et al. [47] proposed an AI‐based method for segmenting
anatomical structures in the foetal apical four‐chamber view.
They divided a MobileNet backbone network into four stages
and designed an FPN network to enhance multi‐scale se-
mantic information.

4 | PROPOSED APPROACH

Our proposed RDeH‐Net approach can be visualised in
Figure 1. In our approach, we devised a two‐stage deep
learning framework. To begin with, we designed a binary deep
learning neural network to achieve coarse structure classifica-
tion on human foetal ultrasound images. Then, we designed a
fine‐detection module with weakly‐supervised localisation.
This module includes a fine detection network and weakly‐
supervised localisation.

4.1 | Human foetal cardiac substructure
classification

According to the theory of human cardiac anatomy, the hu-
man cardiac substructure is made up primarily of aorta (AO),
pulmonary artery, left atrium, right atrium, LV, and right
ventricle. A normal human foetal heart is shown in Figure 2.
However, an abnormal human foetal heart with HLHS has an
LV pattern variation differing from the substructure of a
normal human foetal heart. Compared with a normal human
foetal heart, the LV of a human foetal heart with eHLHS
appears larger and brighter. Clinicians can use this knowledge
to distinguish an eHLHS foetal heart.

Using the knowledge of these substructural differences
between normal and eHLHS human foetal heart, we can find
the features on their ultrasound images, as shown in Figure 2.
From 4D ultrasound images of the human foetal heart, we
can further detect two different types of image substructures
of the eHLHS human foetal heart. One is a classic salient
four‐chamber human cardiac substructure that is referred to
as HLHS‐1 in this paper, as shown in Figure 2b. The sub-
structure of this HLHS‐1 human heart is similar to that of a
normal human heart with four‐chambers, as shown in
Figure 2a. For clinicians with little training in clinical diag-
nosis, this presents a significant barrier. The other type is a
non‐salient four‐chamber human cardiac substructure, called
HLHS‐2 in this paper, which is shown in Figure 2c.
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Applying this substructural knowledge of the eHLHS hu-
man foetal heart, we designed a binary deep learning neural
network to achieve coarse structure classification on human
foetal ultrasound images. The binary network can classify four‐
chamber human cardiac substructure images into two groups:
normal human cardiac images and HLHS‐1 human cardiac
images forming one group, and non‐salient four‐chamber
human cardiac substructure images from the HLHS‐2 type
forming the other group.

To design the binary network, we first defined 4D ultra-
sound images as follows:

V ¼ vt;s
� �T ;S

t¼1;s¼1 ∈ R
T�H�W�S

ð1Þ

where vt,s represents the s‐th H �W ultrasound slice image at
the t‐th time, H represents the height of the ultrasound image,
and W represents the width of the ultrasound image.

Then, we defined our binary network as follows:

Zvt;s ¼ΦBinary
�
vt;s; t; s

�
¼

C1
C2

�

ð2Þ

where ΦBinary is the binary network classification function, C1

represents a category of normal human foetal cardiac and HLHS‐
1 human foetal cardiac ultrasound images, and C2 represents a
category of HLHS‐2 human foetal cardiac ultrasound images.

We employed ResNet‐50 as the fundamental binary network
in our binary approach. Because of our incorporation of struc-
tural prior knowledge for the two‐group US images, even con-
ventional simple networks can demonstrate outstanding
classification performance in this task.

4.2 | Fine detection with weakly‐supervised
localisation

After finishing the first stage of coarse classification based on
the cardiac substructure saliency in 4D ultrasound images, we

F I GURE 1 Framework of the proposed approach.

F I GURE 2 Structural representation characteristics of three foetal cardiac ultrasound image cases: (a) normal foetal heart, (b) HLHS‐1, and (c) HLHS‐2.
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designed a fine‐detection module with weakly‐supervised
localisation. As seen in Figure 1, this module includes a fine
detection network and weakly‐supervised localisation.

The fine detection network uses YOLOv5 as the backbone
network, and can achieve output of detection results with
prediction labels and bounding boxes. Then, we employ a basic
focal loss function as our loss function. To obtain the high‐
precision localisation of cardiac nidus regions, our approach
introduces CAM‐based weakly‐supervised localisation. By us-
ing the weakly‐supervised localisation, we can optimise pre-
diction bounding boxes.

The fine detection network can output three scale feature
maps, which are defined as follows:

Pkvt;s ¼ Γ
�
vt;s;Zvt;s

�
ð3Þ

where Pkvt;s represents the k‐th feature map of vt,s under the
classification of Zvt;s.

Each feature map generates prediction bounding boxes
according to a non‐maximum suppression (NMS) threshold,
and the optimal prediction bounding boxes of the network can
be given by the following:

Bpre ¼ Θ
k∈N

�
Pkvt;s ;B

k
�

ð4Þ

where Pkvt;s represents the k‐th feature map of vt,s,N is 3, and Bk

represents the prediction bounding boxes on the k‐th
feature map.

As NMS is a simple bounding box selection strategy using
a threshold, it can result in misjudged bounding boxes. Thus,
we use a weakly‐supervised localisation algorithm to enhance
the selection strategy. Our approach can calculate the impor-
tance weight on three feature maps with different scales. Ac-
cording to the importance weight of each feature map, we
obtain the final output prediction bounding box.

To calculate the importance weight, we first give the
gradient of the class score

Y ¼
X

k

δkλ
XH

i

XW

j

Pkvt;sði; jÞ ð5Þ

where δk is the feature weight in the k‐th feature map, and λ is
a proportionality constant that gets normalised out during
visualisation.

The importance weight on the k‐th feature map can be
given by the following:

Wk ¼ λ
X

W

X

H

∂Y
∂Pvt;s

k
ð6Þ

The total importance weight of a foetal cardiac ultrasound
image can be given by

Wtotal ¼
X

k

mkWk s:t:
P

k
mk ¼ 1 ð7Þ

where mk represents the weight of the importance weight on
the k‐th feature map. In our approach, the small‐scale feature
map and middle‐scale feature map cannot efficiently obtain the
important weight values, as can be seen in Figure 1. However,
the large‐scale feature map can obtain a better important value,
so we set m3 = 1, m1 = 0, m2 = 0.

Finally, we can obtain the ultimate prediction bounding
box as follows:

Bout ¼
Wtotal ∩ Bpre q ≥ 2

Bpre others

8
<

:
ð8Þ

where q represents the number of output prediction bounding
boxes from the fine detection network according to the NMS
threshold.

Our proposed approach combines the detection network
with weakly‐supervised localisation to achieve high‐precision
localisation of foetal cardiac nidus regions. In the first stage,
the binary deep learning neural network is able to achieve
coarse structure classification of human foetal ultrasound im-
ages. In the second stage, the fine‐detection module can obtain
the ultimate prediction bounding box by computing the
importance weight from the feature map of the deep learning
network. A detailed description of our proposed approach is
shown in Algorithm 1.

Algorithm 1 Coarse-to-fine detection with weakly-
supervised localisation for 4D foetal cardiac
ultrasound images
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5 | EXPERIMENTS

5.1 | Datasets and training set

Establishing datasets was essential for the training and veri-
fication of our proposed RDeH‐Net approach. Since no
publicly available 4D human foetal cardiac datasets for
eHLHS can be found, we used our previously collected 4D
human cardiac ultrasound images (with diagnostic results for
other tasks) as our original source images [15, 48, 49]. All
images were acquired at the National University Hospital in
Singapore using procedure number 2014/00056, which was
authorised by the Domain Specific Review Board and pa-
tients. A Voluson 730 ultrasound system with an RAB 4–8L
transducer (GE Healthcare, Chicago, IL, USA) was used to
acquire raw 4D ultrasound images in the Spatio‐Temporal
Image Correlation (STIC) mode. With the four‐chamber
view displayed, STIC imaging was captured. The STIC
sweep took place across 10–15 s with an image capture rate
of 70–90 frames per second, giving 29–37 volumes for one
cardiac cycle. The volumetric images were exported from
each time point as a stack of 30–40 slice images parallel to
the four‐chamber view, and separated by 0.5 mm. All
foetal cardiac images were acquired at more than 21 weeks
gestation.

To establish our training dataset and train our detection
network model, we labelled 4D human foetal cardiac ultra-
sound images. We started by manually labelling 2676 original
source images, including normal and patient cases. Then, we
used a data augmentation tool to augment our data, a process
that can improve the robustness of a deep learning network
model. This augmentation included rotation, scaling, flipping,
shifting, and adding noise. After finishing data augmentation,
our 4D human foetal cardiac ultrasound image dataset con-
tained 16056 images. In the training stage, our proposed
approach was to train using our dataset. We randomly parti-
tioned the dataset into a training set, validation set, and test set
in the ratio of 8:1:1.

5.2 | Experimental setting

We adopted common indicators to evaluate the proposed
RDeH‐Net approach. Then, we set an experimental training
and test environment.

To evaluate the performance of the method on all classes,
we adopted the mAP indicator as the measurement with a
threshold score = 0.5 and score = 0.5:0.95.

The recall indicator was selected to evaluate the miss rate:

Recall¼
TP

TP þ FN
ð9Þ

where TP represents the number of sample images truly
belonging to a class assigned to that same class by the model,
and FN represents the number of sample images of a

particular class not appearing in that class in the output of the
model.

All experiments were conducted on the same computer
with a single NVIDIA GeForce GTX 2080TI GPU. Benefiting
from the GPU, it took around 40 h to train our deep learning
network with 150 epochs.

5.3 | Performance evaluation

In this part, we compare the performance of our RDeH‐Net
method on our validated dataset with other state‐of‐the‐art
methods in terms of mAP@0.5, mAP@0.5:0.95, precision,
and recall. Moreover, we thoroughly compare the detection
results of all methods applied to various scenarios by visual-
ising them.

We first evaluated our RDeH‐Net approach and the
other state‐of‐the‐art methods on our established datasets.
Table 1 lists the results of mAP@0.5, mAP@0.5:0.95, and
precision on the dataset. As shown in Table 1, our RDeH‐
Net approach achieved mAP@0.5 of 99.37%, and
mAP@0.5:0.95 of 74.57% on the dataset, values that were
significantly better than the other state‐of‐the‐art methods.
In particular, while the mAP@0.5 value of our approach
was 99.37%, the mAP@0.5 value of the second‐best
method, YOLOv3, was 98.78%. The better performance
with our RDeH‐Net was due to the fact that it adopts a
coarse‐to‐fine detection approach, whereas the other state‐
of‐the‐art methods directly use an end‐to‐end approach.
Additionally, we made full use of prior knowledge to guide
the learning of the network. Figure 3b shows intuitive per-
formance comparisons for mAP@0.5 and mAP@0.5:0.95,
and another performance indicator comparison for different
methods. From Figure 3a,b, we can see that the results of
our proposed method are superior to those of the other
methods. Additionally, our method achieved high precision
of 94.99%.

TABLE 1 Test results of our method and other state‐of‐the‐art
methods.

Methods mAP@0.5 (%) mAP@0.5:0.95 (%) Precision (%)

YOLOv5l [50] 94.60 74.16 92.14

YOLOv5m [50] 97.38 78.00 96.08

YOLOv5s [50] 97.88 77.54 91.66

YOLOv5x [50] 94.42 73.82 89.60

YOLOv3 [34] 98.78 74.42 96.53

YOLOv3‐tiny [51] 95.26 64.54 93.93

SSD [35] 97.47 73.36 94.21

FLDS [52] 64.81 ‐ ‐

YOLOv8 [53] 98.34 75.86 95.55

RDeH‐net (ours) 99.37 74.57 94.99

6 - WANG ET AL.
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For medical images, a low miss rate is a crucial target,
meaning the probability of escaping diagnosis will be small.
To evaluate the miss rate, we adopted the recall indicator. To
obtain recall for each class, we initially randomly chose 269
samples with detection results from the test set. Then, we
counted the TP and FN values of the sample images.
Table 2 shows the TP and FN values of each class,
comparing the TP and FN of nine methods on each class.
From Figure 4, we can see that our RDeH‐Net approach
achieved better TP and FN performance than the other
methods.

After completing the TP and FN statistics, we used
Eq. (9) to calculate the recall indicator. Table 3 lists the results
of the recall indicator on each class in the test samples.
Compared with the other methods, our RDeH‐Net approach
maintained a higher recall rate. Notably, our RDeH‐Net
approach obtained the highest mAP@0.5 under this higher
recall rate. An intuitive comparison of the recall indicators of
the nine methods is shown in Figure 5. Figure 6 shows our
model's performance in the prediction of three foetal cardiac
ultrasound image classes in horizontal and vertical directions.
Figure 7 shows a comparison between the prediction loca-
tions of our RDeH‐Net approach and the ground truth
locations.

We also tested the detection inference time cost of our
RDeH‐Net approach. We implement the deployment on a
laptop with an NVIDIA GeForce RTX3060 GPU. Our
RDeH‐Net approach took an average of 39 ms for each ul-
trasound image. This implies that our RDeH‐Net approach
for daily diagnosis is convenient.

5.4 | Visual comparisons

Figure 8 shows visual comparisons for the normal case
detection performance of our proposed RDeH‐Net approach,
YOLOv5l, YOLOv5m, YOLOv5s, YOLOv5x, YOLOv3,
YOLOv3‐tiny, SSD, FLDS, and YOLOv8. As can be seen in
Figure 8, both our RDeH‐Net approach and YOLOv3

F I GURE 3 Performance comparisons according to the mAP indicator: (a) mAP@0.5 and (b) mAP@0.5:0.95.

TABLE 2 True positives and false negatives of the nine methods on
each class.

Methods Classes TP FN

YOLOv5l [50] Normal 30 0

HLHS‐1 200 0

HLHS‐2 35 4

YOLOv5m [50] Normal 30 0

HLHS‐1 200 0

HLHS‐2 29 10

YOLOv5s [50] Normal 30 0

HLHS‐1 200 0

HLHS‐2 29 10

YOLOv5x [50] Normal 30 0

HLHS‐1 200 0

HLHS‐2 33 6

YOLOv3 [34] Normal 30 0

HLHS‐1 196 4

HLHS‐2 38 1

YOLOv3‐tiny [51] Normal 30 0

HLHS‐1 200 0

HLHS‐2 21 18

SSD [35] Normal 30 0

HLHS‐1 200 0

HLHS‐2 39 0

FLDS [52] Normal 23 7

HLHS‐1 175 15

HLHS‐2 27 2

YOLOv8 [53] Normal 30 0

HLHS‐1 178 0

HLHS‐2 38 0

RDeH‐net (ours) Normal 30 0

HLHS‐1 200 0

HLHS‐2 39 0

WANG ET AL. - 7
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achieved the highest performance, with accurate localisation
and high scores.

For eHLHS foetal heart ultrasound images, Figures 9 and
10 show visual comparisons of detection performance be-
tween HLHS‐1 and HLHS‐2 cases for our proposed RDeH‐
Net approach, YOLOv5l, YOLOv5m, YOLOv5s,
YOLOv5x, YOLOv3, YOLOv3‐tiny, SSD, FLDS, and
YOLOv8. As shown in Figures 9 and 10, our approach ach-
ieved obviously good detection performance in complex foetal
heart images. However, some of the state‐of‐the‐art methods
showed rather low scores and localisation accuracy for the
nidus heart. Moreover, YOLOv3 frequently generated the er-
ror concerning prediction box. This result is because our
approach includes a weakly‐supervised localisation module for
our detection network to adaptively select the optimal pre-
diction bounding box, while the other methods only depend
on the constant NMS threshold. Additionally, our weakly‐
supervised localisation module would be useful for clinicians,
aiding them to reduce the percentage of missed diagnoses. As
shown in Figure 10j, YOLOv3‐tiny missed the detection of
the nidus region. Therefore, our weakly‐supervised localisation
can achieve visualisation‐aided localisation, enabling less
experienced or weary doctors to comfortably and rapidly
visually capture the nidus region.

5.5 | Generalisation performance evaluation
on the CAMUS dataset

We also validated the performance of our proposed method
on the CAMUS dataset [54] on both end diastole (ED) and
end systole (ES) frames (Table 4). Because of the lack of
public foetal heart echo image datasets, we performed testing
on the CAMUS adult heart ultrasound dataset for cross‐
validation.

The performance of our proposed model on the CAMUS
dataset was comparable to its performance on the foetal
dataset, as shown in Table 5 and Figure 11, which suggests that
it is also capable of detection on adult ES and ED ultrasound
images.

F I GURE 4 Comparison of true positives and false negatives of nine methods on each class.

TABLE 3 Comprehensive analysis of the nine methods in terms of
the recall rate.

Methods Classes TP TP þ FN Recall (%)

YOLOv5l [50] Normal 30 30 100.00

HLHS‐1 200 200 100.00

HLHS‐2 35 39 89.74

YOLOv5m [50] Normal 30 30 100.00

HLHS‐1 200 200 100.00

HLHS‐2 19 29 65.52

YOLOv5s [50] Normal 30 30 100.00

HLHS‐1 200 200 100.00

HLHS‐2 29 39 74.36

YOLOv5x [50] Normal 30 30 100.00

HLHS‐1 200 200 100.00

HLHS‐2 33 39 84.62

YOLOv3 [34] Normal 30 30 100.00

HLHS‐1 196 200 98.00

HLHS‐2 38 39 97.44

YOLOv3‐tiny [51] Normal 30 30 100.00

HLHS‐1 200 200 100.00

HLHS‐2 21 39 53.85

SSD [35] Normal 30 30 100.00

HLHS‐1 200 200 100.00

HLHS‐2 39 39 100.00

FLDS [52] Normal 23 30 76.67

HLHS‐1 175 190 92.11

HLHS‐2 27 29 93.10

YOLOv8 [53] Normal 30 30 100.00

HLHS‐1 178 178 100.00

HLHS‐2 38 38 100.00

RDeH‐net (ours) Normal 30 30 100.00

HLHS‐1 200 200 100.00

HLHS‐2 39 39 100.00
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F I GURE 5 Comparison of different methods in terms of the recall rate on each class.

F I GURE 6 Our performance for prediction of three foetal cardiac ultrasound image classes in horizontal and vertical directions: (a) horizontal location of
normal cases, (b) horizontal location of HLHS‐1 cases, (c) horizontal location of HLHS‐2 cases, (d) vertical location of normal cases, (e) vertical location of
HLHS‐1 cases, and (f) vertical location of HLHS‐2 cases.
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F I GURE 7 Comparisons between the prediction locations of our RDeH‐Net approach and the ground truth locations: (a) horizontal direction, and
(b) vertical direction.

F I GURE 8 Visual comparisons of the detection performance of our proposed approach (RDeH‐Net), and YOLOv5l, YOLOv5m, YOLOv5s, YOLOv5x,
YOLOv3, YOLOv3‐tiny, SSD, FLDS, and YOLOv8 for a normal case. Visual performance includes (a) ground truth, (b) weakly‐supervised localisation,
(c) YOLOv5l, (d) YOLOv5m, (e) YOLOv5s, (f) YOLOv5x, (g) YOLOv3, (h) YOLOv3‐tiny, (i) SSD, (j) FLDS, (k) YOLOv8, and (l) RDeH‐Net (ours).
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6 | CONCLUSION

Our proposed RDeH‐Net detection framework can classify a
large number of 4D ultrasound images and detect foetal
cardiac nidus regions and their localisation, thereby facili-
tating rapid detection of eHLHS. In our proposed detection
approach, a cost‐effective labelling scheme was designed to
support general labelling tasks without labour expenditure.
Additionally, the detection framework that we developed
introduces prior knowledge and weak‐localisation to increase

its accuracy. Furthermore, we constructed a dataset of 4D
foetal cardiac ultrasound images for deep learning tasks,
which should be extremely useful for CHD studies. Exten-
sive experimental results demonstrate that our RDeH‐Net
approach achieved superior average accuracy on three cate-
gories of foetal ultrasound images compared with eight other
state‐of‐the‐art methods. For future work, we plan to detect
the full range of the abnormalities afflicting foetal hearts by
collecting more ultrasound image cases from all over the
world.

F I GURE 9 Visual comparisons of the detection performance of our proposed approach (RDeH‐Net) and YOLOv5l, YOLOv5m, YOLOv5s, YOLOv5x,
YOLOv3, YOLOv3‐tiny, SSD, FLDS, and YOLOv8 for an HLHS‐1 case. Visual performance includes (a) ground truth, (b) weakly‐supervised localisation,
(c) YOLOv5l, (d) YOLOv5m, (e) YOLOv5s, (f) YOLOv5x, (g) YOLOv3, (h) YOLOv3‐tiny, (i) SSD, (j) FLDS, (k) YOLOv8, and (l) RDeH‐Net (ours).
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F I GURE 1 0 Visual comparisons of the detection performance of our proposed approach (RDeH‐Net) and YOLOv5l, YOLOv5m, YOLOv5s, YOLOv5x,
YOLOv3, YOLOv3‐tiny, SSD, FLDS, and YOLOv8 for an HLHS‐2 case. Visual performance includes (a) ground truth, (b) weakly‐supervised localization,
(c) YOLOv5l, (d) YOLOv5m, (e) YOLOv5s, (f) YOLOv5x, (g) YOLOv3, (h) YOLOv3‐tiny, (i) SSD, (j) FLDS, (k) YOLOv8, and (l) RDeH‐Net (ours).

TABLE 4 Description of the CAMUS dataset.

Classes Cases

ED 500

ES 500

TABLE 5 Performance of the proposed method on the CAMUS
dataset.

Method mAP@0.5 (%) mAP@0.5:0.95 (%) Precision (%)

Ours 96.14 51.45 90.57
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