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Abstract: In this study, the viscoelastic properties of porcine kidney in the upper, middle and lower
poles were investigated using oscillatory shear tests. The viscoelastic properties were extracted in the
form of the storage modulus and loss modulus in the frequency and time domain. Measurements
were taken as a function of frequency from 0.1 Hz to 6.5 Hz at a shear strain amplitude of 0.01 and
as function of strain amplitude from 0.001 to 0.1 at a frequency of 1 Hz. Measurements were also
taken in the time domain in response to a step shear strain. Both the frequency and time domain data
were fitted to a conventional Standard Linear Solid (SLS) model and a semi-fractional Kelvin–Voigt
(SFKV) model with a comparable number of parameters. The SFKV model fitted the frequency and
time domain data with a correlation coefficient of 0.99. Although the SLS model well fitted the time
domain data and the storage modulus data in the frequency domain, it was not able to capture the
variation in loss modulus with frequency with a correlation coefficient of 0.53. A five parameter
Maxwell–Wiechert model was able to capture the frequency dependence in storage modulus and loss
modulus better than the SLS model with a correlation of 0.85.

Keywords: viscoelasticity; rheology; porcine kidney; lower pole; middle pole; upper pole; fractional
model; frequency test; relaxation test; strain test

1. Introduction

Soft tissues such as kidneys exhibit a stress–strain response that is viscoelastic, i.e., the
mechanical properties are dependent on the strain rate. Accurate and reliable constitutive
models that can accurately predict the stress–strain behaviour of soft tissues are useful for
developing numerical simulations of the tissue response to mechanical loads in physiologi-
cal conditions, trauma conditions and medical interventions [1]. Access to human tissue is
limited and complex; however, porcine kidneys are anatomical and physiological to human
kidney and so are commonly used for biomedical research [1]. Here, the shear modulus
at three different locations in porcine kidneys was measured and used to determine the
parameters of two constitutive models.

The primary motivation for this work is understanding the response of kidney tis-
sue to the mechanical load created either in shock wave lithotripsy (SWL) [2,3] or burst
wave lithotripsy (BWL) [4]. These are two non-invasive clinical methods for treating
kidney stones, where acoustic waves are focused onto stones in order to fragment them
into small enough pieces that can be passed naturally. In SWL, repetitive short-duration
(~2 µs) shock waves typically fired at 1–2 Hz have been shown to result in damage to
blood vessels and tubules in both clinical reports and experiments with pigs [2]. It has
been proposed that a cumulative build-up of shear may be responsible for the injury [5].
In BWL, tone bursts with a centre frequency of 170 kHz or 335 kHz are fired at 10–40 Hz
and are used to fragment stones. A study [6] with pig kidneys suggested that about half
the BWL-treated sites suffered injury (as determined by Magnetic Resonance Imaging and
histomorphometry), which was localised to kidney’s upper, middle and lower poles. Our
long-term goal is to be able to predict the tissue strain that can develop in kidney tissue
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during either SWL or BWL; this requires a constitutive model and an investigation as to
whether different regions of the kidney have different properties.

Commonly used techniques in biomechanical modelling are finite element analysis
(FEA) and experimental validation. The mechanical behavior of renal tissues under varied
loading conditions can be simulated using finite element analysis (FEA) [7–11]. Developing
a constitutive model for the kidney is another example where biomechanical modelling
can be used to gain insight into either an injury process or a medical procedure. For
example, stones that are too large to be treated by non-invasive or ureteroscopic procedures
can be treated percutaneously by placing creating a sheath access from the skin to the
kidney through which tools can be inserted [12]. Biomechanical modelling can also lead
to designing tools that minimise the loading and tissue damage [13,14]. Biomechanical
models are also employed in automotive safety research to understand damage to organs in
impact [15–17], sports injuries [18] and elastography methods [19–21]. The key parameters
considered in the biomechanical modelling of porcine kidney in our study were mechanical
properties and tissue deformation. Mechanical properties consist of parameters such as
the shear storage modulus and loss modulus and the changes in these parameters were
assessed as a response to frequency and time. Tissue deformation was investigated by
applying mechanical loads such as torsion and obtaining the stress–strain response of
kidney samples.

Most constitutive models to date have represented the kidney as a small number
of springs and dashpots such as the Kelvin–Voigt model, Maxwell model, Standard Linear
Solid (SLS) model and Maxwell–Wiechert model [22–25]. The limitations of the Kelvin–
Voigt model include its assumption of a constant storage modulus (i.e., stiffness) over
frequency, which has not been observed in soft biological matter, and that it cannot cap-
ture stress relaxation. Limitations of the Maxwell model include a prediction of decreasing
loss modulus with frequency, which is not observed [26,27], and that it cannot capture strain
creep [28–32]. The SLS model uses two springs and a dashpot and can capture both creep
and stress relaxation response of soft tissues [28,33], but the model cannot capture soft tis-
sues with multiple time scales or power-law properties. The Maxwell–Wiechert model uses
a series of parallel elements to capture multiple time scales [22–25] as are often observed in
biological tissues and has been used to capture a variety of tissues including tendons [34],
breast [35] and skin [36].

An alternative constitutive framework to capture the frequency dependence of soft tis-
sue is to use fractional viscoelastic models that employ elements with fractional derivatives
that effectively operate as convolutions in the time domain and inherently have viscous and
elastic properties [37]. Fractional or springpot elements capture the power law dependence
that is often observed in soft tissue [38]. Fractional viscoelastic models have been applied to
biological materials such as brain [23,39], epithelial cells [40,41], breast tissue cells [40,42,43],
lung parenchyma [40,44] and red blood cell membranes [40,45].

There are several studies that have also investigated the mechanical properties of
porcine kidney. Mechanical testing on kidneys in uniaxial compression [46] reported that
the average rupture stress in the radial direction of porcine kidney cortex tissue amounted to
about 0.25 MPa; the corresponding rupture strain was ~50% and the average rupture stress
in the tangential direction was about 0.18 MPa with the same rupture strain of ~50%. A
nominal stress of ~0.14 MPa and a nominal strain of ~30% was obtained from the uniaxial
tensile tests on the cortex tissue [46]. Shear punching tests were also performed and the
punching shear stress varied from 0.025 MPa to 0.035 MPa [46]. Oscillatory shear tests were
performed on porcine kidney [1], which suggested a linear viscoelastic strain limit of 0.2%
and a shear storage modulus of ~2.5 kPa.

In this paper, the viscoelastic mechanical behaviour of porcine kidney was charac-
terised using dynamic testing to determine the storage and loss moduli as a function of
frequency, and a step shear measurement in the time domain. One novel aspect of the
work is measurements were taken for samples taken from the lower pole, middle pole and
upper pole regions of the kidney. The frequency and time-domain data were fitted to a SLS
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model and fractional derivative model and the properties associated with the models were
compared. This paper is based on work reported in the lead author’s doctoral thesis [47].

2. Materials and Methods
2.1. Preparation of Samples

Porcine kidneys of eleven Yorkshire female pigs weighing between 45 kg and 50 kg
were acquired from a local butcher and the samples were stored in University of Wisconsin
(MP-UW) solution (Machine Perfusion Solution-Belzer UW; Bridge to Life (Europe) Ltd.,
London, UK) at 4 ◦C. The UW solution effectively preserves kidneys for 48–72 h [48,49].
All mechanical tests were performed within 3–4 h of collection and 24 h after slaughter.

Samples were extracted from the upper pole, middle pole and lower pole of the porcine
kidney using a 25-mm diameter cork borer, see Figure 1. Samples were cut to 5–6 mm
thick slices using a surgical blade. A Physica MCR 301 stress-controlled rheometer was
used to measure the properties of the sample. It is a two-plate device in which the lower
plate is fixed while the top plate applies torque to the sample, see Figure 2. The torque
applied and the angle of deformation are measured by the rheometer, which translates
these into shear stress and strain, and then calculates the storage modulus G′ and loss
modulus G′′. For the data here, the sample was compressed axially by 0.1 N load. To
minimize slippage at the sample-plate interface, 200-grit sandpaper was affixed to the
rheometer’s top and lower plates. A specially designed metallic container was fastened
to the rheometer’s bottom plate in order to hydrate the samples with Phosphate Buffered
Saline (PBS) solution during tests in order to maintain pH and osmolarity of the sample.
The temperature of metallic container was kept at 37 ◦C.
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2.2. Viscoelasticity

Viscoelastic materials possess both viscous (fluid-like) and elastic (solid-like) proper-
ties. The response of a viscoelastic material is dependent both on the strain and the strain rate:

σ = σ(ε,
.
ε) (1)

where σ is the stress, ε is the strain and
.
ε is the strain rate. It is common to model

viscoelastic media as a combination of springs and dashpots for examples the Maxwell–
Wiechert model show in Figure 3. The frequency domain response of the system in Figure 3
can be expressed as:

G∗(ω) = G∞ + ∑K
k = 1 Gk

ω2τk
2

1 + ω2τk
2 + i∑K

k = 1 Gk
ωτk

1 + ω2τk
2 (2)

where G∗(ω) is the complex modulus and ω is the angular frequency, and τk = ηk/Gk is
the relaxation time [50,51]. For the case of a network with just three components, G∞, G1
and η1, the model reduces to what is referred to the SLS model or Zener model [28,52].
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An alternative approach for materials that exhibit a power law dependence, including
tissues, polymers, gels, emulsions, composites and suspensions, is a fractional derivative
model that employs a springpot: a component having intermediate properties between
a purely elastic element and a perfectly viscous element [45]. The relationship between
its stress (σ) and strain (ε) for a springpot is represented by a fractional order derivative:

σ = Kα
dαε
dtα

(3)

where Kα is the coefficient of consistence (with units of Pa·(s)α) and α is the order of
fractional derivative (0 ≤ α ≤ 1). The bounding values of α represent the discrete elements
employed in conventional viscoelastic models, which is a spring when α = 0 and Kα = G
(elastic shear modulus) and a dashpot when α = 1 and Kα = η (viscosity). The fractional
viscoelastic model used in this study uses a springpot in parallel with a dashpot (see
Figure 4) referred to as semi-fractional Kelvin–Voigt (SFKV) model, which results in the
following stress–strain relationship:

σ = Kα
dαε
dtα

+ η
dε

dt
(4)

In the frequency domain, the storage and loss modulus of the SFKV can be written as [40]:

G
′
(ω) = Kα (ω)α cos

(απ

2

)
(5)
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G′′ (ω) = 0572 ω + Kα (ω)αsin
(απ

2

)
(6)
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3. Results
3.1. Strain Sweep

The rheometer was used to determine the storage modulus and loss modulus while
increasing the strain amplitude from 0.001 to 0.1 at a frequency of 1 Hz. The dependence
of both moduli as a function of strain for five porcine kidneys is depicted in Figure 5. The
kidney appears to act as a linear viscoelastic material up to a strain amplitude of 0.01 (the
horizontal portions of the curve).
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of kidneys.

3.2. Frequency Sweep

In the frequency sweep studies, the frequency varied from 0.1 Hz to 6.5 Hz. The
upper frequency was where inertial effects in the measurement system were observed to
affect the results. The strain amplitude was maintained at 0.01 (i.e., in the linear regime).
Figure 6 shows that storage and loss modulus as a function of frequency for the three
locations in each of the three kidneys. The experimental data was fit to three models:
SFKV, SLS and a five-parameter Maxwell–Wiechert model using MATLAB’s least square
fit function. The curves are shown in Figure 6 and the fitted parameters in Tables 1–3. It
can be seen that all three models match the storage modulus well, but for the loss modulus
the SFKV model captures the experimental data best with a correlation coefficient of 0.99.
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The SLS with a single relaxation time does not capture the frequency domain response well
and has a correlation coefficient of 0.53. The five-parameter Maxwell–Wiechert model with
the second relaxation time added does significantly better that the SLS, with a correlation
coefficient of 0.85.
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Table 1. Values of SFKV model parameters extracted from kidney 1, 2 and 3.

Kidney Pole Kα [Pa·(s)α] α η [Pa·s]

Kidney 1
Lower 473 0.09 10.46
Upper 613 0.11 6.45
Middle 576 0.11 5.19

Kidney 2 Lower 773 0.10 6.17
Upper 577 0.11 8.27
Middle 482 0.11 4.75

Kidney 3 Lower 513 0.10 9.07
Upper 595 0.08 16.99
Middle 472 0.13 1.61

Average 564 ± 96 0.10 ± 0.01 7.66 ± 4.36

Table 2. Values of SLS model parameters extracted from kidney 1, 2 and 3.

Kidney Pole G1 (Pa) G∞ (Pa) η1 (Pa·s)

Kidney 1 Lower 125 393 199
Upper 227 515 146
Middle 227 471 167

Kidney 2 Lower 291 647 190
Upper 213 446 313
Middle 190 398 129

Kidney 3 Lower 158 425 177
Upper 150 491 311
Middle 263 388 103

Average 205 ± 54 464 ± 82 193 ± 74

Table 3. Values of a five-element Maxwell–Wiechert model parameters extracted from kidney 1, 2 and 3.

Kidney Pole G1 (Pa) G∞ (Pa) η1 (Pa·s) G2 (Pa) η2 (Pa·s)

Kidney 1 Lower 68 370 368 86 79
Upper 131 491 264 356 46
Middle 135 438 358 258 48

Kidney 2 Lower 163 607 400 365 62
Upper 170 378 960 146 72
Middle 114 373 262 338 41

Kidney 3 Lower 110 404 313 117 32
Upper 79 447 772 119 185
Middle 109 355 249 614 62

Average 120 ± 34 429 ± 80 438 ± 252 266 ± 171 70 ± 46

Table 1 shows the SFKV model parameters extracted from lower pole, upper pole and
middle pole of kidneys 1–3 in the frequency domain. There was no significant difference in
the SFKV model parameters between different poles and pigs, and the correlation coefficient
is 0.99.

Table 2 shows the SLS model parameters extracted from the lower pole, upper pole
and middle pole of kidneys 1–3. No significant difference in the SLS model parameters
was observed between different poles and pigs. The SLS model well fitted the storage
modulus data and was unable to capture the variation in loss modulus with frequency. The
correlation coefficient of SLS model is higher than 0.53.

Table 3 shows the values for the five parameter Maxwell–Wiechert model extracted
from the lower pole, upper pole and middle pole of kidneys 1–3. There was no significant
difference in the Maxwell–Wiechert model parameters observed across different poles and
pigs. The Maxwell–Wiechert model well fitted the storage modulus data and was also able
to capture the variation in loss modulus with frequency better than the SLS model. The
correlation coefficient of Maxwell–Wiechert model is higher than 0.85.
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3.3. Stress Relaxation

The robustness of the frequency domain fitting was investigated by carrying out
a step-shear measurement in the time domain and measuring the relaxation modulus. The
measured data was then fitted to both the SLS and fractional models. For the SLS model,
the relaxation modulus is given by:

G = G∞ + G1 e−
t
τ ; t ≥ 0 (7)

For the fractional viscoelastic model, the relaxation modulus is given by:

G(t) = η δ(t) + Kα
t−α
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Figure 7. The relaxation modulus of porcine kidneys as a function of time across the lower pole,
middle pole and upper pole regions of kidneys 1–3 (a–c) along with the model fits. All the relaxation
tests were performed with samples given a step shear strain of 0.01.

Table 4. Values of SFKV model parameters fit to the time domain data from kidney 1, 2 and 3.

Kidney Pole Kα [Pa·(s)α] α

Kidney 1 Lower 443 0.10
Middle 409 0.14
Upper 321 0.15

Kidney 2 Lower 648 0.15
Middle 441 0.18
Upper 465 0.13

Kidney 3 Lower 541 0.16
Middle 468 0.14
Upper 423 0.16

Average 462 ± 91 0.15 ± 0.02

Table 5 shows the Standard Linear Solid (SLS) model parameters extracted from lower
pole, upper pole, and middle pole regions of kidney 1–3. There was no significant difference
in SLS model parameters across the poles or kidneys, and the correlation coefficient is 0.99.

Table 5. Values of Standard Linear Solid (SLS) model parameters fit to the time domain data from
kidney 1, 2 and 3. The equivalent viscosity η1 = τ1 × G1 for the average relaxation time is 466 Pa.

Kidney Pole G1 (Pa) G∞ (Pa) τ (s)

Kidney 1 Lower 128 331 2.49
Middle 148 268 2.69
Upper 121 202 2.84

Kidney 2 Lower 233 416 2.98
Middle 176 251 3.42
Upper 160 322 2.44

Kidney 3 Lower 208 341 2.66
Middle 160 312 2.85
Upper 167 259 2.78

Average 167 ± 36 300 ± 63 2.79 ± 0.29

4. Discussion

In this paper, the biomechanical measurements performed on porcine kidneys were re-
ported. It was observed that the kidneys acted as linear viscoelastic materials for shear strains
up to 0.01. This is within the range reported by other studies on porcine kidneys, with 0.1
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reported in reference [53] and 0.002 reported in reference [1]. Further we found there was a
monotonic increase in the storage modulus and loss modulus with frequency for all regions
of the kidney. This is consistent with measurements on fresh pig kidneys, which observed
a power law between 0.1 and 4 Hz for the storage and loss modulus [53].

In our study, the average storage modulus across the different sites and animals was
G′ = 0.48 ± 0.03 kPa and the loss modulus of G′′ = 0.12 ± 0.02 kPa at 1 Hz. This compares
to: G′ = 1.8 kPa and G′′ = 0.2 kPa reported at 0.1 Hz in fresh porcine kidneys using rheome-
try [53]; G = 2.1 ± 0.35 kPa at 50 Hz to 200 Hz performed using Shear Wave Dispersion
Ultrasound Vibrometry measurements on ex vivo porcine kidneys [54]; G = 1.67 kPa at
75 Hz to 300 Hz in ex vivo porcine kidneys using magnetic resonance elastography [55].
A study across different regions of porcine kidneys [56] reported G = 5.2 ± 1 kPa in the
cortex region, G = 6.7 ± 1.7 kPa in the medulla region and G = 8.7 ± 2.4 kPa in the pelvis re-
gion. The shear modulus obtained in our study varied from a factor of ~4 to ~20 compared
to other studies. This is potentially due to the elastography data extracted at frequencies of
100 s of Hz.

Measurements from the kidneys of humans have been reported using ultrasound shear
wave elastography with results from the mid pole of the kidney cortex ranging from
9.34 ± 0.99 kPa to 13.05 ± 1.85 kPa [57]; on a finer spatial scale, values were reported to
be 4 kPa in glomeruli, 1.5 kPa in tubules and 1 kPa in the interstitium at 100–400 Hz [58].
These data are similar in range to what has been reported in porcine kidneys and support
the use of porcine kidneys as a biomechanical model for human kidneys.

In the time domain, a monotonic reduction in the relaxation modulus was observed
across all the renal regions with an average relaxation time of 2.7 s. This behavior is similar
to the other studies of porcine kidneys with measured relaxation times reported to be
~2 s [1] and ~3.5 s [59]. Therefore, the relaxation time reported in our study is in line with
other measurements.

The constitutive models fitted the frequency and time domain data well, with the
exception of the SLS model, which did not capture the frequency dependence of the loss
modulus. A five-parameter Maxwell–Wiechert model was able to capture the frequency
dependence of both the storage modulus and loss modulus better than the SLS model. This
is due to the higher number of parameters that represent the behavior of kidney tissue
across a wide range of frequencies. When comparing across the fits, it was observed that
for the SFKV model Kα was 30% higher for the frequency domain that for the time domain.
For the SLS model, the average value of G1 was 23% higher in the frequency domain than
the time domain, G∞ was 55% higher and η1 was 59% lower. This variation is about as
large as the differences between the different kidneys and so seems with the variability of
the measurements reported here.

Our data suggest that the SFKV model captures the shear moduli better than the SLS
with both models having three parameters. However, implementing the models in simula-
tions does not incur the same computational cost [60]. The advantage of the SLS model
is that with only three classical elements it is relatively simple to deploy in simulations
using standard differential solvers. On the other hand, the SFKV model only requires
a few parameters but in time-stepping computational codes it requires more complex
implementation, which can be a barrier to their use [39,61]. We do note that by using
additional branches in the SLS model, we have used a Maxwell–Wiechert model to improve
the agreement between the model and the data; however, this means more parameters
need to be specified and the computational cost increases.

Although significant work has been carried out in the biomechanical modelling of
kidneys and other soft tissues, there is a need for improved models to fully understand the
complex mechanical behavior of the kidney. The work here used linear isotropic models
with just a few parameters. Developing comprehensive models of kidney function and
pathology requires integrating data from different scales, such as tissue microstructure,
cellular and molecular mechanisms, and organ-level biomechanics. Reference [62] charac-
terized the nonlinear biaxial mechanical properties of human ureter. Reference [63] used
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a generalised hyperelastic model and decomposed the proposed strain energy functions
into an isotropic and an anisotropic part, which corresponded to the histological structure
of soft tissues. Reference [64] used the mathematical framework of oblique contravariant
tensors and their associated invariants to model damage in anisotropic soft tissues. These
models require robust calibration to experimental data, which has significant variability
within individual organs, within studies and across studies.

5. Conclusions

This research examined the rheological behavior of porcine kidneys in the linear
viscoelastic range from frequencies from 0.1 Hz to 6.5 Hz. The SFKV model best fitted
the frequency domain data with a correlation coefficient of 0.99. SLS model well fitted
the storage modulus in frequency domain and relaxation modulus in time domain but
was unable to capture the variation in loss modulus with frequency, and the correlation
coefficient was higher than 0.53. A five-element Maxwell–Wiechert model was able to
capture the frequency variation in storage modulus and loss modulus better than the SLS
model with a correlation coefficient higher than 0.85. Both SLS model and SFKV model
fitted the time-domain data with a correlation coefficient of 0.99. The SFKV, SLS and
Maxwell–Wiechert models will be useful in computational modelling of the stress–strain
response of kidneys for a variety of mechanical loads.
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