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Abstract William Bayliss and Ernest Starling are not only famous as pioneers in cardio-
vascular physiology, but also responsible for the discovery of the first hormone (from the Greek
‘excite or arouse’), the intestinal signalling molecule and neuropeptide secretin in 1902. Our
research group focuses on neuropeptides and neuromodulators that influence cardiovascular
autonomic control as potential biomarkers in disease and tractable targets for therapeutic
intervention. Acute myocardial infarction (AMI) and chronic heart failure (CHF) result in
high levels of cardiac sympathetic stimulation, which is a poor prognostic indicator. Although
beta-blockers improve mortality in these conditions by preventing the action of the neuro-
transmitter noradrenaline, a substantial residual risk remains. Recently, we have identified the
sympathetic co-transmitter neuropeptide-Y (NPY) as being released during AMI, leading to
larger infarcts and life-threatening arrhythmia in both animal models and patients. Here, we
discuss recently published data demonstrating that peripheral venous NPY levels are associated

Neil Herring completed his DPhil andmedical degree at Oxford University before training in Cardio-
logy.Hewas awarded Intermediate and Senior Fellowships from the BritishHeart Foundation and now
leads a translational research group alongside clinical work as a Professor of Cardiovascular Medicine.
Ben Bussmann is a Cardiology Registrar undertaking a BHF funded DPhil who obtained his medical
degree from Cambridge and Oxford Universities. Thamali Ayagama is a postdoctoral researcher who
received an MSc from the University of Bangalore, India, and DPhil from Oxford. Kun (Kevin) Liu
obtained his medical degree from Huazhong University of Science and Technology, China, an MPhil
from Cambridge University and DPhil from Oxford where he is now a postdoctoral researcher. Dan
Li received her PhD from Chonbuk National University, South Korea before coming to the University
of Oxford where she is now an Associate Professor (photograph left to right: Kevin, Dan, Neil, Thamali and Ben).

© 2024 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society. DOI: 10.1113/JP285370

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution
and reproduction in any medium, provided the original work is properly cited.

https://orcid.org/0000-0003-3343-2590
https://orcid.org/0000-0003-2230-9300
https://orcid.org/0000-0001-8453-6133
https://doi.org/10.1113/JP285370#support-information-section
http://creativecommons.org/licenses/by/4.0/


2 B. Bussmann and others J Physiol 0.0

with heart failure hospitalisation and mortality after AMI, and all cause cardiovascular mortality
in CHF, even when adjusting for known risk factors (including brain natriuretic peptide). We
have investigated the mechanistic basis for these observations in human and rat stellate ganglia
and cardiac tissue, manipulating NPY neurochemistry at the same time as using state-of-the-art
imaging techniques, to establish the receptor pathways responsible for NPY signalling. We
propose NPY as a new mechanistic biomarker in AMI and CHF patients and aim to determine
whether specific NPY receptor blockers can prevent arrhythmia and attenuate the development
of heart failure.
(Received 5 March 2024; accepted after revision 1 May 2024; first published online 7 June 2024)
Corresponding author N. Herring: Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy
and Genetics, University of Oxford, Oxford OX1 3PT, UK. Email: neil.herring@dpag.ox.ac.uk

Abstract figure legend The hallmark of cardiac disease is autonomic dysregulation, characterised by a state of chronic
sympathoexcitation. Neuropeptide-Y (NPY) is a sympathetic co-transmitter that is released by sympathetic neurons
and circulating venous levels are elevated in a range of cardiac disease, such as myocardial infarction and chronic heart
failure. NPY has direct effects on cardiomyocytes, vascular smooth muscle cells and autonomic nerves through its Y
receptors, resulting in adverse cardiac remodelling, pro-arrhythmic electrophysiological changes, vasoconstriction and
parasympathetic inhibition. Large prospective cohort studies have demonstrated that these effects ultimately lead to
adverse cardiac events and increased mortality in patients. An understanding of the role of co-transmitters such as NPY
may ultimately lead to novel therapeutic targets and biomarkers to improve risk stratification and prognostication in
patients with cardiac disease.

Introduction

In 1902, Bayliss first described that an isolated blood vessel
responds to an increase in intravascular pressure with a
paradoxical decrease in diameter, and vice versa (Bayliss,
1902). Thus was borne the concept of autoregulation
of blood flow and, indeed, even today, the assessment
of myotonic tone through pressure myography remains
the gold standard for measuring blood vessel reactivity
(Wilson et al., 2022). A few years later, working on
canine heart–lung preparations, Starling and colleagues
described the ability of the ventricle to augment its force of
contraction as a function ofmyocardial stretch, allowing it
to match cardiac output to increased venous blood return
to the heart, the so called Frank–Starling law (Patterson
et al., 1914). These are two of the earliest examples of
intrinsic mechanisms within the circulatory system to
finetune regional function in the face of local physiological
perturbations.
Additionally, Bayliss and Starling, through experiments

investigating the mechanisms of peristalsis, discovered
that a substance released from the duodenum, named
secretin, could stimulate pancreatic acid secretion
independent of vagal tone (Bayliss & Starling, 1902). Sub-
sequently, in a lecture to the Royal College of Physicians,
Starling coined the word ‘hormone’ to describe the action
of secretin and adrenaline (the only other identified
hormone at the time) ‘These chemical messengers, however,
or hormones (in Greek meaning to excite or arouse) as we
might call them’ (Starling, 1905). Thus, it became clear that

extrinsic factors such as circulating hormones also play
important roles in regulating cardiovascular function.
The Physiological Society created the Bayliss Starling

Prize Lecture as a joint memorial in 1960, and in 1979
the Bayliss and Starling Society was established. Its main
objective was to ‘advance education and science by the
promotion, for the benefit of the public, the study of the
chemistry, physiology, and disorders of central and peri-
pheral regulating peptides and by the dissemination of the
results of such study and research’. It merged with the
Physiological Society in 2014 enabling an annual Bayliss
Starling Prize Lecture to be awarded. This was awarded
in 2023 to Professor Neil Herring whose research group
focuses on the role of neuropeptides and neuromodulators
in cardiac autonomic regulation.
The autonomic nervous system is now recognised

as an important extrinsic regulator of the circulatory
system, able to co-ordinate the function of the heart and
vasculature. Modern techniques such as tissue clearing
allow 3-D imaging of cardiac innervation and reveal
a dense network of nerve fibres throughout the myo-
cardium (Hanna et al., 2021; Rajendran et al., 2019).
The autonomic nervous system consists of two efferent
arms: the sympathetic and parasympathetic systems. In
the simplest terms, these two arms exert reciprocal control
on cardiac indices acting like an ‘accelerator and brake’.
Sympathetic tone increases inotropy, chronotropy and
dromotropy, whereas parasympathetic tone results in a
decrease in these parameters (Kollai & Koizumi, 1979;
Levy & Martin, 1989). However, in reality, these are
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only part of a complex neurocardiac hierarchy containing
efferent motor neurons and afferent sensory neurons, as
well as local circuit neurons and interneurons (Armour,
2004). For conceptual purposes, this hierarchy can be
considered to consist of three levels: (1) higher cortical
centres in the brain stem and the spinal cord; (2)
intrathoracic ganglia that receive input from higher
cortical centres, afferent sensory neurons and local circuit
neurons; and (3) the intrinsic cardiac nervous system (or
‘little brain’ of the heart) consisting of intrinsic cardiac
neurons organised into ganglionic plexi that function as
the final beat-to-beat co-ordinator of regional cardiac
indices, under the influence of the higher levels of the
neurocardiac hierarchy (Armour, 2008; Armour et al.,
1997). All levels of this hierarchy are independently able
to influence cardiac performance, and collectively work
together through multiple interacting feedback loops to
provide cardiovascular stability (Ardell & Armour, 2016;
Shivkumar et al., 2016). Examples include the arterial
baroreceptor reflex, which is able to co-ordinate cardiac
output with vasomotor tone and renal water retention to
optimise blood pressure control (Kaufmann et al., 2020),
and respiratory sinus arrhythmia, which optimises heart
lung interactions (Elstad et al., 2015; Giardino et al., 2003).

Historically, neurotransmission was considered to
follow Dale’s principle, which states that neurons use
only a single neurotransmitter (Dale, 1935). In line
with this, it was long believed that the parasympathetic
system mediates it effects on the heart though ACh
activation of cardiac muscarinic G protein coupled
receptors (Saternos et al., 2018), whereas sympathetic
effects are mediated though noradrenaline acting on
alpha- and beta-adrenergic G protein coupled receptors
(Lymperopoulos et al., 2013). However, the discovery
of non-adrenergic, non-cholinergic nerves in the 1970s
has led to a the realisation that neurons can release more
than one kind of neurotransmitter, called co-transmission
(Burnstock, 1980). A large number of co-transmitters
have since been implicated in modulating autonomic
signalling such as ATP, nitric oxide (NO), and neuro-
peptides such as neuropeptide-Y (NPY), galanin and
vasoactive interstitial peptide (Burnstock, 2013).

Our group focusses on such neuropeptides and neuro-
modulators that influence cardiovascular autonomic
control as potential biomarkers in disease and novel
targets for therapeutic intervention. Here, we outline
several neuromodulators that may play a key role in
cardiovascular pathophysiology. We then focus on the
group’s current experimental approaches with respect to
investigating NPY dynamics and its receptors’ signalling
pathways in cardiomyocytes, the coronary vasculature
and autonomic neurones. Finally, we highlight our
recent translational clinical studies which demonstrate
the importance of this signalling in acute myocardial
infarction (MI) and chronic heart failure (CHF).

Sympatho-vagal balance

In health, the neurocardiac axis exists in a state of intricate
balance maintained through several mechanisms,
including intrinsic neuromodulation, paracrine and
endocrine effects, as well as via neuropeptides acting as
co-transmitters (Goldberger et al., 2019). Some of the key
neuromodulators discussed here are outlined in Fig. 1.

NO and intrinsic neuromodulation. NO is an important
modulator of autonomic neurotransmission. Its synthesis
in autonomic neurons is regulated by neuronal NO
synthase (nNOS) which has been localised to both
cholinergic neurons in the intrinsic cardiac nervous
system and efferent sympathetic neurons in the stellate
ganglia (Choate et al., 2001; Herring et al., 2002; Paton
et al., 2002).
Activation of nNOS in pre-junctional parasympathetic

neurons potentatesACh release (Herring et al., 2000). This
is mediated through a cGMP-PDE3-dependent pathway,
leading to cAMP-PKA-dependent phosphorylation of
N-type calcium channels, thus increasing calcium trans-
ients and ACh release (Herring & Paterson, 2001).
Conversely in sympathetic neurons, nNOS activation
reduces noradrenaline release (Choate & Paterson, 1999).
Here, NO acts via cGMP-PDE2-dependent reduction of
cAMP-PKAactivity to reduce neuronal calcium transients
and noradrenaline release (Li et al., 2007; Wang et al.,
2006, 2007).

Paracrine and endocrine modulation. Natriuretic
peptides are a group of peptide hormones that have
an important role in regulating cardiovascular homeo-
stasis. Atrial natriuretic peptide and brain-natriuretic
peptide (BNP) are released by cardiomyocytes in the
atria and ventricles in response to myocardial stretch,
especially in conditions of fluid overload, resulting in
elevated plasma levels in conditions such as heart failure.
BNP is well established in the diagnosis, assessment of
severity and prediction of mortality in CHF (McDonagh
et al., 2021). C-type natriuretic peptide (CNP) is primarily
expressed in endothelial cells. Whilst circulating plasma
concentrations of CNP are also increased in CHF, they
are comparatively low compared to atrial natriuretic
peptide and BNP (Kalra et al., 2003; Stingo et al., 1992).
However, CNP concentrations within cardiac tissue are
significantly elevated in CHF, suggesting that it acts locally
(Kuwahara, 2021). Natriuretic peptides are considered
cardioprotective because of their endocrine effects on
vascular tone and renal function, reducing blood pressure
and plasma volume (Chinkers et al., 1989; Espiner, 1994).
They have also been shown to attenuate cardiac negative
remodelling through anti-fibrotic and anti-hypertrophic
effects (Lee & Burnett, 2007; Soeki et al., 2005).

© 2024 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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Natriuretic peptides also have paracrine effects on
autonomic nerves. In vivo natriuretic peptides augment
vagal tone (Zeuzem et al., 1990). We have shown that
BNP acts pre-junctionally to increase ACh release.
Similar to nNOS signalling, this is also mediated through
cGMP-PDE3-dependent phosphorylation of N-type
calcium channels (Herring et al., 2001).
Natriuretic peptides have the opposite effect on

sympathetic neurons where they reduce calcium currents
and inhibit noradrenaline release. Here, BNP acts on
pre-junctional natriuretic peptide receptor (NPR)-A
receptors coupled to a cGMP/PKG-dependent pathway
(Li et al., 2015), whereas CNP acts through pre-junctional
NPR-B receptors (Buttgereit et al., 2016).
Finally, the renin–angiotensin–aldosterone system

(RAAS) has important endocrine effects on autonomic
nerves (Zucker et al., 2004). Angiotensin II acts centrally
on AT1 receptors in the brainstem to augment central
sympathetic outflow (Zhu et al., 2002, 2004). Peripherally,
AT1 receptor stimulation augments noradrenaline release
from sympathetic neurons (Sasaoka et al., 2008). We
have shown that AT1 receptors colocalise to sympathetic
neurons in the stellate ganglia, and that angiotensin-II
acts pre-juntionally to increase noradrenaline release
(Herring et al., 2011).

Neuropeptides and cross-talk

NPY. NPY is a 36 amino acid peptide distributed
in many parts of the body. It is highly expressed in
sympathetic neurons (Lundberg et al., 1983) and is the
most abundant neuropeptide in the heart (Gu et al.,
1983). Biologically active NPY1–36 is generated from
pre-pro-NPY through a series of truncations. NPY1–36 can
be further truncated by dipeptidyl peptidase IV (DPP-4)
to give NPY3–36, which remains biologically active. In
peripheral sympathetic nerve endings, NPY is stored in
synaptic vesicles (Ekblad et al., 1984; Fried et al., 1985) and
co-releasedwith noradrenaline, particularly during strong
or persistent sympathetic activation (Lundberg et al., 1989,
1990).
NPY mediates its action through six known G-protein

coupled receptors, of which only Y1, Y2 and Y5 are
associated with cardiovascular effects. All three receptors
are coupled to inhibitory GαI pathways, resulting in
adenylyl cyclase inhibition and reduction in cellular
cAMP. Additionally, Y1 is also coupled to a phospholipase
C coupled pathway, causing calcium release from intra-
cellular stores via inositol triphosphate (Tan et al., 2018).
Generally, Y1 receptors are responsible for post-junctional
effects, whereas Y2 receptors mediate inhibitory

Figure 1. Schematic demonstrating the various mechanisms involved in regulating autonomic balance
at the end organ level
Black arrows indicate the action of primary neurotransmitters noradrenaline and acetylcholine. Red (inhibition) and
green (potentiation) arrows indicate the action of various co-transmitters and hormones in modifying autonomic
tone. In diseased states such as chronic heart failure and myocardial infection these mechanisms are perturbed,
favouring sympathoexcitation and vagal withdrawal. ACh, acetylcholine; AT II, angiotensin II; β1, beta 1 adrenergic
receptor; BNP, brain-natriuretic peptide; CAPON, carboxy-terminal PDZ ligand of nNOS; CHF, chronic heart failure;
CNP, C-type natriuretic peptide; M2, type 2 muscarinic receptor; MI, myocardial infarction; NA, noradrenaline;
nNOS, neuronal nitric oxide synthase; NPY, neuropeptide Y.
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J Physiol 0.0 Neuropeptide-Y being ‘unsympathetic’ to the broken hearted 5

pre-junctional neuromodulator effects (Westfall, 2004).
The role of Y5 is less well understood, but it appears
to function as a modulator of Y1 and Y2 activity. The
N-terminal portion of NPY1–36 determines its binding
affinity to the Y1 receptor. Conversation of NPY1–36 by
DPP-4 to NPY3–36 results in a loss of this N-terminal
potion, leading to a loss of Y1 affinity but retained high
affinity for Y2 and Y5 receptors. DPP-4 can thus be
considered as a molecular switch that shifts NPY activity
from Y1 to Y2 mediated effects (Zukowska et al., 2003).

Potter (1985, 1987) demonstrated that prolonged
sympathetic activation reduces parasympathetic activity.
This cross-talk effect remains even in the presence of
adrenergic blockade. Furthermore, it can be replicated
through exogenous NPY application even in the absence
of sympathetic stimulation.

We have shown that the Y2 receptor co-localises with
choline acetyltransferase containing neurons in the sinus
node. Furthermore, NPY acts on these Y2 receptors
to reduce ACh release from parasympathetic nerve
terminals, through a protein kinase C-dependent pathway
(Herring et al., 2008). The importance of this pathway in
mediating autonomic cross-talk is demonstrated by the
fact that genetic knockout of the Y2 receptor in mice,
or selective antagonism of the Y2 receptor, reduces vagal
bradycardia post synaptic stimulation (Ilebekk et al., 2005;
Smith-White et al., 2002).

NPY also acts as a negative-feedback modulator of
sympathetic transmission. Pre-junctional Y2 receptors
in sympathetic neurons reduce noradrenaline release
through a protein kinase C-dependent pathway (Martin
et al., 1998; Wahlestedt et al., 1986; Westfall et al.,
1987). Conversely, circulating noradrenaline increases
NPY release via neuronal beta receptors, which can be
blocked by propranolol (van Weperen et al., 2024).

Galanin. Galanin is another neuropeptide which is
distributed throughout the central and peripheral nervous
system (Crawley, 1995). Centrally galanin hasmodulatory
effects on sympathetic outflow from the nucleus of the
solitary tract (Díaz-Cabiale et al., 2010). It is also expressed
peripherally in sympathetic neurons (Kummer, 1987),
particularly in response to neuronal injury (Schreiber
et al., 1994; Strömberg et al., 1987). In humans, galanin
concentrations increase with sympathetic activation
during exercise (Legakis et al., 2000). Infusion of galanin
increases resting heart rate and supresses respiratory
sinus arrhythmia, suggesting anti-vagal effects (Carey
et al., 1993). We have shown that galanin co-localises with
sympathetic neurons in the stellate ganglion, and that
the GalR1 receptor co-localises to parasympathetic nerve
terminals in the sinus node. Indeed, galanin is released
following high frequency sympathetic stimulation, and
attenuates ACh release via a PKC-dependent pathway,
independent of NPY (Herring et al., 2012).

Autonomic imbalance in heart disease

The intricate balance within the autonomic nervous
system is lost in cardiac disease (Corr & Gillis, 1978). The
hallmark of awide range of cardiac diseases, irrespective of
aetiology, is sympathetic activation and parasympathetic
withdrawal (Florea & Cohn, 2014; Malliani et al., 1969).
In animal models of CHF, there is increased gain in

sympathetic reflexes leading to enhanced sympathetic
tone (Ishise et al., 1998; Ma et al., 1997; Motte et al.,
2005; Sun et al., 1999). Direct neuronal recordings in
dogs and sheep show persistently elevated sympathetic
activity in the stellate ganglia following MI (Han et al.,
2012; Jardine et al., 2005) and increased renal sympathetic
nerve activity in CHF (DiBona et al., 1995; Ramchandra
& Barrett, 2015; Zucker & Wang, 1991). Single-cell patch
clamp recordings of sympathetic neurons in the stellate
ganglia of spontaneously hypertensive rats reveal a hyper-
active phenotype, manifest as an increased firing rate and
a depolarised resting membrane potential (Davis et al.,
2020). These changes even precede the onset of hyper-
tension, suggesting a causal role in pathogenesis (Li et al.,
2012; Shanks et al., 2013).
Similar findings are seen in humans. AcuteMI andCHF

are both associated with increased plasma and urinary
catecholamines (Corr & Gillis, 1978; Gazes et al., 1959;
Nuzum & Bischoff, 1953) and noradrenaline spillover
from the heart (Meredith et al., 1993), which are strongly
predictive of adverse outcomes (Cohn et al., 1984).
Patients with CHF, hypertension and MI demonstrate
increased muscle sympathetic nerve activity according
to microneurography studies (Grassi, 2009; Grassi et al.,
1995; Gronda et al., 2014; Huang et al., 2022; Leimbach
et al., 1986). In patients with CHF, or following acute
MI, there is also a well-documented alteration in the
arterial baroreflex (Eckberg, 1997; Ferguson et al., 1992;
Olivari et al., 1983; Thames et al., 1993) characterised by
disinhibition of sympathetic output, and reduced vagal
tone (Eckberg et al., 1971; Saul et al., 1988), which is pre-
dictive of mortality in these patients (De Ferrari et al.,
2007; La Rovere et al., 1998, 2009; Pinna et al., 2005)
In addition to sympathetic activation, heart disease

is associated with extensive neurohormonal activation,
including elevated plasma levels of natriuretic peptides,
catecholamines and the RAAS (Cohn et al., 1984; Sohaib
et al., 2013). In particular, increases in angiotensin II
further entrenches autonomic imbalance by maintaining
central sympathetic activation via AT1 receptors in the
rostral ventrolateral medulla (Zucker et al., 2004).

Remodelling of the autonomic nervous system in
cardiac disease

The observed autonomic imbalance in cardiac disease
is accompanied by functional and morphological

© 2024 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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remodelling within the neurocardiac hierarchy. This
is outlined in detail in the translational white paper
published in this issue of The Journal of Physiology. Here,
we focus specifically on changes in neuromodulator
expression and remodelling.
Cardiac disease is associated with changes in the

nNOS pathway that predispose to sympathetic activation.
In guinea-pigs exposed to chronic intermittent cardiac
ischaemia, enhanced sympathetic activity is associated
with reduced nNOS expression (Mohan et al., 2001).
Similarly, the heightened sympathetic activity seen in
spontaneously hypertensive rats (Shanks et al., 2013) is
associated with reduced expression of nNOS in the stellate
ganglia, and can be reversed by targeted transgene nNOS
delivery (Li et al., 2007). In Langendorff perfused rat
hearts, inhibition of nNOS attenuates the anti-fibrillatory
action of the parasympathomimetic carbamylcholine,
demonstrating the clinical importance of this pathway
(Kalla et al., 2016).
Furthermore, we recently showed that reductions

in CAPON (carboxy-terminal PDZ ligand of nNOS)
expression, also known as nNOS activator protein
(NOS1-AP), led to sympathetic activation (Lu et al.,
2015). CAPON interacts with nNOS to escort it to
specific protein targets within the cell (Jaffrey et al., 2002).
This is important because the action of NOwithin a cell is
determined by the location of nNOS as a result of the short
half-life and high reactivity of NO as a free radical gas. In
spontaneously prehypertensive rats, CAPON co-localises
to sympathetic neurons in the stellate ganglia, although
its expression is reduced compared to wild-type controls.
Delivery of CAPON to sympathetic neurons using a
specific adenovirus vector can correct the heightened
sympathetic phenotype observed in these animals. It is
worth noting that genome-wide association studies have
highlighted single nucleotide polymorphisms in NOS1AP
associated with QT interval variation (Arking et al., 2006)
and sudden cardiac death (Eijgelsheim et al., 2009). Poly-
morphisms in NOS1AP have also been identified as risk
modifiers for arrhythmic events and sudden cardiac death
in patients with LQTS type 1 (Crotti et al., 2009) where
sympathetic drive is a key trigger (Schwartz et al., 2001).
Sympathetic neurons also show an altered ion

channel expression profile which predisposes to
increased excitability. Single cell mRNA sequencing
in spontaneously hypertensive rats reveals reduced
expression of subunit genes associated with the M current
(Davis et al., 2020), an inhibitory potassium current
that has important influence on neuron resting potential
and restricting neuron firing (Wladyka & Kunze, 2006).
Similarly, in rats with ischaemic cardiomyopathy, there
is enhanced sympathetic excitability due to increased
N-type calcium currents (Tu et al., 2014).
Finally, PDE2A activity is upregulated in patients

with heart failure (Mehel et al., 2013; Mongillo et al.,

2006) and in the stellate ganglia of spontaneously hyper-
tensive rats (Li et al., 2015) or patients with refractory
arrhythmia (Liu et al., 2018). PDE2A is a dual sub-
strate esterase able to breakdown both cAMP and cGMP,
with its selectivity depending on cAMP and cGMP
coactivation (Zaccolo & Movsesian, 2007). In cardio-
myocytes, activation of PDE2A leads to reduction in
cAMP and thus a blunted response to beta-adrenergic
stimulation (Mehel et al., 2013; Mongillo et al., 2006). In
sympathetic neurons, however, PDE2A appears to favour
hydrolysis of cGMP while cAMP levels are less affected.
In spontaneously hypertensive rats, increased PDE2A
expression in sympathetic neurons depletes cGMP levels
and reduces PKG activity, leading to increased calcium
currents and augmented noradrenaline release. This
upregulation of PDE2A also leads to a blunted response to
BNP, thus limiting its sympathoinhibitory effects (Li et al.,
2015; Liu et al., 2018).
The importance of natriuretic peptide mediated

sympathoinhibition is illustrated in a rat model of
sympathetic neuron-specific overexpression of a negative
mutant of NPR-B (Buttgereit et al., 2016). In these
animals, the blunted sympathoinhibitory action of CNP
results in heightened sympathetic tone, leading to raised
blood pressure, resting tachycardia and impaired left
ventricular systolic function. Importantly, the fact that
increased sympathetic tone results in heart failure even in
the absence of cardiac injury demonstrates a causal role
for sympathoexcitation in the pathophysiology of heart
failure. Similar observations have been made in mice
where genetic disruption alpha2 adrenergic receptors
results in sympathoexcitation and heart failure before
4 months of age (Brum et al., 2002; Hein et al., 1999).
Cardiac disease is also associated with morphological

remodelling within the neurocardiac hierarchy. In both
ischaemic and non-ischaemic heart failure, nuclear
imaging consistently demonstrates reduced uptake of
radiolabelled catecholaminergic tracers in the heart,
consistent with denervation (Parthenakis et al., 2002). MI
causes sympathetic denervation, which can even extend
beyond the infarction zone, particularly in areas distal to
the infarcted territory (Barber et al., 1983; Dae et al., 1991,
1995). Over time, there is some neuronal regeneration
characterised by sympathetic nerve sprouting at the
infarct border zone (Cao et al., 2000; Li & Li, 2015).
The resultant hyperinnervation adjacent to denervated
infarcted myocardium causes regional heterogeneity in
sympathetic innervation, which is highly pro-arrhythmic
(Cao et al., 2000; Dajani et al., 2023; Vaseghi et al., 2012),
whereas homogeneity of stimulation is anti-arrhythmic
(Tomek et al., 2019). Furthermore, denervation leads to
supersensitivty to catecholamines (Tapa et al., 2020). MI
also leads to morphological changes within the intrinsic
cardiac nervous system, such as neuronal enlargement,
which are associated with reduced functional network

© 2024 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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connectivity and altered responses to cardiac pre-load
and pacing (Rajendran et al., 2016).

Finally, there is well documented neural remodelling
within the stellate ganglia. In animal models of CHF,
there is an increase in synaptic density and size of
sympathetic neurons (Han et al., 2012), as well as
increased numbers of adrenergic and NPY containing
neurons (Ajijola et al., 2015). Inflammation appears to
play an important role in stellate ganglion remodelling. In
rats, myocardial infarction is associated with macrophage
expansion and expression of pro-inflammatory cytokines
tumour necrosis factor-alpha and interleukin-1B in the
stellate ganglia (Zhang et al., 2021) and stellate ganglion
injection of interleukin-1B leads to increased sympathetic
activity and reduced nNOS expression (Wang et al., 2017).

Stellate ganglion remodelling is also well documented
in humans. In stellate ganglia of patients with cardio-
myopathy or recurrent ventricular arrhythmias,
sympathetic neurons demonstrate signs of oxidative
stress and adrenergic profiles in keeping with sympathetic
activation. There are also pro-inflammatory changes such
as neutrophil and T-cell infiltration, as well as activation
of satellite microglia (Ajijola et al., 2017; Rizzo et al.,
2014).

Causal role of autonomic imbalance in cardiac disease

Sympathetic activation is initially a physiological response
to maintain cardiac output and blood pressure following
acute cardiac injury (Zucker et al., 2004, 2012). However,
in the long-term, persistent sympathetic hyperactivation
becomes maladaptive, contributing to the progression
of cardiac disease and predisposing to ventricular
arrhythmias and sudden cardiac death (Herring et al.,
2019a; Lymperopoulos et al., 2013; Vaseghi & Shivkumar,
2008).

In rodents, increased sympathetic activation leads to
heart failure and fibrosis even in the absence of direct
cardiac injury (Brouri et al., 2004; Brum et al., 2002;
Buttgereit et al., 2016; Hein et al., 1999). Conversely,
attenuating sympathetic activation is protective against
negative remodelling (Wang et al., 2014; Yoshie et al.,
2020) and reduces myocardial inflammation (Ziegler
et al., 2017) following myocardial infarction. Chronic
adrenergic stimulation of cardiomyocytes leads to
desensitisation and downregulation of beta-adrenergic
receptors via G-protein-coupled receptor kinase 2,
resulting in progressive loss of inotropic reserve
(Eschenhagen, 2008; Huang et al., 2011). Furthermore,
chronic sympathetic stimulation increases energy
consumption (Spindler et al., 2003) and alters ventricular
excitation–contraction coupling through alteration of
cellular calcium handing (Joca et al., 2020). Ultimately,
chronic sympathetic overstimulation causes calcium over-

load and the formation of reactive oxygen species, leading
to cardiomyocyte hypertrophy and apoptosis (Communal
et al., 1998; Fu et al., 2004).
Sympathetic stimulation is also highly

pro-arrhythmogenic. In animal models, stimulation
of the stellate ganglia decreases fibrillatory threshold
and induces ventricular arrhythmia (Harris et al., 1971;
Schwartz &Vanoli, 1981; Schwartz et al., 1985). In patients
with MI, arrhythmic risk increases with sympathetic
activation (Huang et al., 2022). Beta-adrenergic
stimulation increases intracellular calcium loading in
myocytes, predisposing to delayed afterdepolarisations,
which are triggers for most pathological arrhythmias
(Lubbe et al., 1992; Shiferaw et al., 2012; Tsien et al.,
1986). Indeed, increasing sympathetic activation to the
heart through stellate ganglion stimulation has been
shown to induce delayed afterdepolarisations in vivo
(Priori et al., 1988). The substrate required to sustain
arrhythmias is usually in the form of re-entry around
an area of anatomical or functional block. In general,
slow conduction velocities and shorter action potential
durations are pro-arrhythmic because they allow faster
myocardial recovery from previous depolarisation,
thus enabling reactivation as part of a re-entry circuit.
Beta-adrenergic stimulation in known to increase IKS
(slow outward potassium current), which results in
shorter action potential duration (Sanguinetti et al.,
1991). Furthermore, because of regional differences in
sympathetic innervation, sympathetic activation has
been shown to produce heterogeneity in cardiac myocyte
electrical properties in the heart which predisposes to
arrhythmia (Ng et al., 2009). In vivo stellate ganglion
stimulation increases the time interval from the peak
to the end of the electrocardiographic T wave, which is
considered as a marker of dispersion of repolarisation
in the heart, and is an independent predictor for risk
of sudden cardiac death (SCD) (Yagishita et al., 2015).
This effect is further accentuated by sympathetic nerve
sprouting and supersensitivity following myocardial
infarction (Cao et al., 2000).
Sympathetic activation also reduces parasympathetic

tone through autonomic cross-talk. Vagal nerve
stimulation is generally cardioprotective, increasing the
fibrillation threshold, preventing negative remodelling
and having anti-inflammatory effects (Beaumont et al.,
2015; Del Rio et al., 2008; Díaz et al., 2020; Nash et al.,
2001; Shinlapawittayatorn et al., 2013; Vanoli et al.,
1991). By mitigating these protective effects, sympathetic
activation further contributes to disease progression.
Overall, it is intuitive that pharmacological sympathetic

blockade is cardioprotective. Indeed, beta-blockers reduce
adverse remodelling, are anti-arrhythmic, and ultimately
reduce mortality post MI and during CHF, as shown in
randomised controlled trials such as CIBIS-II (1999) and
MERIT-HF (1999). Similarly, pharmacological inhibition
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of the RAAS reduces sympathetic tone (Cody et al.,
1982), increases vagal tone (Osterziel et al., 1990; Townend
et al., 1992) and leads to improved survival in heart
failure and following myocardial infarction (Pfeffer,
1995; Study, 1993; Yusuf et al., 1991). However, despite
optimal medical therapy, the risk of arrhythmia and
death in heart failure remains high, at ∼7–10% annually
(Bardy et al., 2005; Moss et al., 2002). Increasingly,
it is becoming clear that these residual adverse effects
of sympathoexcitation are mediated by co-transmitters
such as NPY. Indeed, sympathoexcitation through stellate
ganglion stimulation results in pro-arrhythmic electro-
physiological effects, even in the presence of supra-clinical
doses of beta-blockers. However, this effect is blockedwith
the addition of a selective Y1 antagonist (Hoang et al.,
2020).

NPY concentrations are elevated in heart disease

It has recently been shown that the heart is innervated
predominantly by NPY-expressing sympathetic neurons.
Single cell mRNA sequencing ofmouse stellate ganglia has
identified a subpopulation of sympathetic neurons that
express NPY and poses a distinct transcriptomic profile
associated with increased excitability, a finding that has
also been validated in humans. Viral retrograde tracing
shows that that the heart is predominantly innervated
by these NPY expressing neurons. Furthermore, selective
targeting of these neurons in NPY-hrGFP mice confirms
they possess distinct electrophysiological properties, and
that they are required to achieve maximal cardiac
sympatho-excitation (Sharma et al., 2023).
Indeed, it has long been observed that plasmaNPY-like

activity is elevated in states of sympathetic hyper-
activity such as CHF and MI (Maisel et al., 1989;
Omland et al., 1994). Stellate ganglia from patients
with heart failure show decreased NPY immunoreactivity
despite unchanged NPY mRNA expression, implying
increased release of NPY to the heart (Ajijola et al.,
2020). Modern assays enable measurement of NPY levels
without cross-reactivity to similar peptides. As part
of the Oxford Acute Myocardial Infarction (OxAMI)
study, we confirmed that peripheral venous levels of
NPY are significantly elevated in patients presenting
with ST-elevation myocardial infarction (STEMI) and
remained elevated for at least 48 h despite successful
culprit vessel percutaneous coronary intervention (PCI).
Furthermore, NPY elevation was greatest in patients with
angiographic no-reflow despite successful PCI, and those
with microvascular dysfunction as measured by coronary
flow reserve and index ofmicrovascular resistance (Cuculi
et al., 2013).
However, because the liver and gut contribute

significantly to NPY plasma levels, it remained unclear

to what extent peripheral venous levels of NPY reflect
cardiac NPY release (Morris et al., 1997). By measuring
coronary sinus (CS) NPY levels, we were able to confirm
that NPY elevations seen in STEMI where indeed a result
of cardiac release (Herring et al., 2019b). We showed that,
in addition to worsemicrovascular function, patients with
higher cardiac levels of NPY experience more ventricular
arrhythmias within 48 h of index PCI, have larger infarct
size and end up with worse left ventricular function at
6 months post STEMI (Herring et al., 2019b; Kalla et al.,
2020).
Importantly, NPY is also a predictor of mortality in

both MI and CHF (Fig. 2). Following STEMI, plasma
NPY levels are independent predictors of heart failure and
death (Gibbs et al., 2022). In heart failure patients under-
going cardiac resynchronisation implantation, elevatedCS
NPY concentrations are associated with major adverse
cardiac events (Ajijola et al., 2020). Similarly, in a cohort
of 833 CHF patients, peripheral NPY concentrations are
associated with all cause mortality and cardiovascular
death, independent of serum BNP levels (McDowell et al.,
2024). Interestingly, in heart failure, the degree of NPY
elevation is not associated with severity of left ventricular
systolic impairment or heart failure hospitalisations.
Rather, the observation that NPY selectively predicts
mortality in these patients suggests it plays a role in
arrhythmogenesis, which is the most common mode of
death in patients with structural heart disease (Mitrani &
Myerburg, 2016).
Another important observation is that elevations in CS

NPY concentrations are generally mirrored by elevations
in peripheral venous concentrations, supporting the use
of peripheral venous NPY levels as a surrogate for cardiac
NPY levels. This is clearly illustrated by comparing CS and
peripheral venous NPY concentrations in patients across
a spectrum of coronary artery disease and heart failure, as
seen in Fig. 3.
Finally, it is worth noting that NPY has also been

implicated in the pathogenesis of takotsubo syndrome
where peripheral venous levels are acutely elevated
(Szardien et al., 2011; Wittstein et al., 2005). Although the
pathophysiology of takotsubo is still poorly understood,
it is generally accepted that transient left ventricular
impairment results from a surge of sympathetic
stimulation of the heart (Ghadri et al., 2018; Lyon et al.,
2021; Pelliccia et al., 2017). The resultant mass release
of catecholamines and NPY then has direct cardio-
toxic effects, and through vasoconstrictive effects on the
microvasculature may lead to ischaemic stunning of the
myocardium (Galiuto et al., 2010). In a mouse model of
takotsubo syndrome, there is increased NPY expression
in the stellate ganglia. Furthermore, elimination of NPY
expression using small interfering RNA reduced the
incidence of takotsubo in these mice, suggesting a causal
role of NPY in this mouse model (Arai et al., 2022).
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Pathophysiological role of NPY in heart disease

NPY can directly influence cardiac and vascular function
through its Y receptors, independent of adrenergic
activity.

NPY has positive inotropic effects on cardio-
myocytes via its Y1 receptor. This is mediated through a
phospholipase C-dependent pathway leading to increased
calcium transients (del Puy Heredia et al., 2005). NPY
is also a potent vasoconstrictor. Infusion of NPY into
human coronary arteries is able to induce ischaemic chest
pain and ST elevation, even in the absence of epicardial
coronary constriction (Clarke et al., 1987). Immuno-
histology confirms extensive expression of Y1 receptors
on coronary microvascular smooth muscle cells. We
have demonstrated that NPY acts directly on micro-
vascular smooth muscle cells via its Y1 receptor to cause
dose-dependent vasoconstriction. This vasoconstrictive
effect causes an increase in coronary vascular resistance
in Langendorff perfused rat hearts. In the context of
myocardial ischaemia, this leads to increased infarct size
presumably though microvascular vasoconstriction
in the vulnerable peri-infarct zone (Herring et al.,
2019b).

We have also demonstrated that NPY is pro-
arrhythmic, independent of beta-adrenergic stimulation
(Kalla et al., 2020). In isolated Langendorff heart pre-
parations, stellate ganglion stimulation causes significant
NPY release to the heart. Even in the presence of
combined beta- and alpha-adrenergic blockade, stellate
ganglion stimulation causes an increase in ventricular
calcium transients and reduced ventricular fibrillation

threshold. This effect is abolished by selectiveY1 blockade.
Similar effects are seen in amousemodels of subarachnoid
haemorrhage, a condition associated with increased risk
of ventricular arrhythmias (Michael Frangiskakis et al.,
2009), where upregulation of Y1 receptors is associated
with a reduction in ventricular fibrillation threshold
(Chen et al., 2023).
NPY also has trophic effects on cardiomyocytes.

In vitro administration of NPY to isolated ventricular
cardiomyocytes increases protein synthesis and causes
hypertrophy through Ca2+/calmodulin-dependent
calcineurin signal pathways (Chen et al., 2005; Millar
et al., 1994; Nicholl et al., 2002). This is also true in vivo
where chronic administration of NPY causes cardiac
dysfunction and hypertrophy (Zhang et al., 2015). NPY
has also been shown to disrupt energy metabolism
and mitochondrial integrity, adversely affecting cardio-
myocyte viability (Hu et al., 2017; Luo et al., 2015).
Transgenic mice with overexpression of NPY are more
prone to doxorubicin mediated cardiomyopathy, whereas
NPY knockout rats have improved cardiac function
and reduced apoptosis following MI (Huang et al.,
2019). However, unexpectedly, a different study using
NPY knockout mice demonstrated larger infarct size
and worsening cardiac function following MI in NPY
knockoutmice (Qin et al., 2022), leading to the suggestion
that NPYmight be cardioprotective in theirmousemodel.
The cause of this discrepancy is unclear but might be a
result of different co-transmitter profiles in mice and rats.
Interestingly in wild-type mice, high concentrations of
NPY remained detrimental.

Figure 2. Kaplan–Mayer plots
Kaplan–Mayer plots demonstrating cumulative incidence of outcomes in STEMI (n = 163) and heart failure
(n = 833) patients according to baseline plasma NPY concentrations. Reproduced from Gibbs et al. (2022) and
McDowell et al. (2024). NPY, neuropeptide-Y; STEMI, ST-elevation myocardial infarction.
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It appears that the effect of NPY on cardiac remodelling
depends on the local context, such as the ratio of Y1 to Y2
receptors andDPP-4 activity. In vitro, selective stimulation
of Y1 and Y2 receptors has opposite effects on inotropy.
Y1 simulation leads to positive inotropic responses,
whereas Y2 activation opposes the inotropic effects of
beta-adrenoreceptor stimulation (Allen et al., 2006). The
Y2 receptor pathway may be cardioprotective. Selective
activation of Y2 by NPY3−36 promotes angiogenesis (Lee
et al., 2003; Saraf et al., 2016) and has been demonstrated
to improve cell survival and reduce fibrosis in a swine
model of myocardial ischaemia (Matyal et al., 2013;
Robich et al., 2010). Conversely, Y1 signalling reduces
cardiomyocyte viability and induces apoptosis (Huang
et al., 2019). In patients with arrhythmogenic cardio-
myopathy, there is increased Y1 receptor expression in
cardiac mesenchymal stromal cells, leading to increased
adipogenesis and fibrofatty myocardial replacement
(Stadiotti et al., 2021). In CHF, there is a shift from Y1 to
Y2 expression, possibly as a compensatory response to
chronic sympathetic activation (Callanan et al., 2007).
DPP-4 plays an important regulatory role on the action

of NPY. For example, during exercise recovery, DPP-4
rapidly converts NPY1–36 to NPY3–36 as the sympathetic
tone declines (Eugster et al., 2022). DPP-4 is expressed in

human left ventricular cardiomyocytes and its expression
is reduced in heart failure (Vörös et al., 2022). The clinical
importance of DPP-4 activity has been highlighted by the
cardiotoxic effects seen in diabetic patients treated with
DPP-4 inhibitors (Scirica et al., 2013). Although inhibition
of DPP-4 prevents the degradation of incretins facilitating
insulin secretion (Thornberry & Gallwitz, 2009), it also
prevent conversion of NPY1–36 to NPY3–36, thus favouring
cardiotoxic Y1 receptor signalling.
Finally, NPY has well documented immunomodulatory

effects (Chen et al., 2020). It can influence macrophage
differentiation between M1 and M2 phenotypes, which
has important implications for cardiac remodelling
(Nahrendorf & Swirski, 2013). However, these effects
are again dependent on NPY concentration and DPP-4
activity (Chen et al., 2020; Dimitrijević et al., 2008).

Therapeutic and diagnostic implications

Autonomic modulation is an emerging strategy for the
treatment of heart failure and ventricular arrhythmia
(VA). Reducing sympathetic tone through deep sedation
has been shown to be effective with respect to reducing
VAs in patients refractory to anti-arrhythmic medication

Figure 3. Bar plot comparing mean coronary sinus and peripheral venous NPY concentrations across a
spectrum of cardiac disease
‘Non-flow limiting CAD’ are patients without flow limiting epicardial coronary artery disease at the time of
invasive coronary angiography. ‘Flow-limiting CAD’ are patients who required percutaneous coronary intervention
for significant epicardial coronary artery stenosis (including angina and non-ST elevation myocardial infarction).
Reproduced from Herring et al. (2019), Ajijola et al. (2020), Gibbs et al. (2022) and McDowell et al. (2024). CAD:
coronary artery disease, CHF: chronic heart failure, NPY: neuropeptide Y, STEMI: ST-elevation myocardial infarction.
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(Bundgaard et al., 2020). Percutaneous injection of
local anaesthetic into the epidural space at level T1–T4
temporarily reduces sympathetic outflow to the heart and
can be used to manage refractory arrhythmias in patients
with structural heart disease (Bourke et al., 2010; Do et al.,
2017). Stellate ganglion blockade through percutaneous
local anaesthetic injection has similar effects (Tian et al.,
2019).

A more permanent form of cardiac sympathetic
denervation (CSD) can be achieved through surgical
removal of the stellate ganglia. Surgical CSD is not
a novel concept and pre-dates coronary artery bybass
grafting by several decades. Its application for treatment
of angina was first suggested in 1899 (Francois-Franck,
1899). This inspired Jonnesco in 1916 to perform
surgical removal of the left stellate ganglion in a
patient with intractable angina, abolishing both anginal
attacks and ventricular arrhythmia (Jonnesco, 1921).
Subsequently, the surgical technique has been refined
and now involves resection of only the lower half of
the stellate ganglion (to reduce incidence of Horner’s
syndrome) and the T2–T4 sympathetic ganglia (Bourke
et al., 2010; Vaseghi et al., 2014), conducted as a
video-assisted thoracoscopic procedure. Studies have
established the use of surgical CSD for prevention of
sudden cardiac death in patients with long QT syndrome
(Schwartz et al., 1991) and catecholaminergic poly-
morphic ventricular tachycardia (Wilde et al., 2008),
where it is now guideline-endorsed with a similar level of
recommendation as implantable cardioverter defibrillator
(ICD) implantation (Zeppenfeld et al., 2022). This concept
has been further expanded by Vaseghi et al. (2017),
who demonstrated that bilateral surgical CSD is safe and
effective at preventing ventricular arrhythmia in patients
with structural heart disease. Indeed, it is strikingly
effective, with metanalysis demonstrating upward of 60%
reduction in VAs in patients in whom arrhythmias are
otherwise refractory to all other available treatments
including maximally tolerated doses of betablockade
(Shah et al., 2019). This observation may be related to
the fact that CSD reduces not only noradrenergic drive to
the heart, but also NPY release, thus also eliminating the
arrhythmic effects of NPY (Hoang et al., 2020; Kalla et al.,
2020). There is also limited evidence that bilateral surgical
CSD can improve cardiac function and symptoms in
patients with systolic heart failure (Conceição-Souza et al.,
2012) although these finding are hypothesis generating
only, and require larger clinical trials to be investigated
further.

Sympathetic tone can also be reduced through
renal denervation (Hering et al., 2014). This has been
shown to improve blood pressure control in several
sham-controlled clinical trials (Azizi et al., 2023, 2024).
Furthermore, in animal models, renal denervation
increases ventricular fibrillary threshold and reduces VAs

(Ye et al., 2022; Zhang et al., 2018), and such findings have
been replicated in case series of patients with refractory
ventricular arrhythmia (Armaganijan et al., 2015).
Direct vagal nerve stimulation has shown promise in

preventing arrhythmia and adverse cardiac remodelling
in animal models (Myers et al., 1974; Nash et al., 2001;
Zhang et al., 2009) and, although clinical benefits in heart
failure patients were not seen in either the NECTAR-HF
or INOVATE-HF trials (Gold et al., 2016; Zannad
et al., 2015), the ANTHEM-HF study did demonstrate
improvements in symptoms and echocardiographic
parameters at both 6 months and 12 months of follow
up compared to baseline (Premchand et al., 2014, 2016).
The larger randomised controlled ANTHEM-HFrEF
Pivotal trial (NCT03425422) is yet to report (Konstam
et al., 2019). Vagal tone can also be increased through
percutaneous stimulation of the auricular branch of
the vagus nerve at the tragus (Jiang et al., 2020). In
patients with STEMI, tragal stimulation has been shown
to reduce inflammatory markers post infarct and lead to
reduced VAs and better myocardial function (Yu et al.,
2017). In patients with paroxysmal atrial fibrillation,
tragus stimulation reduces inflammatory cytokines and
supresses atrial fibrillation and NPY levels (Stavrakis
et al., 2015, 2020).
Future therapies selectively targeting signalling

pathways within the neurocardiac hierarchy could also
be used to re-establish autonomic balance. PDE2A is
emerging as an important modulator of autonomic
balance through its ability to modulate cAMP and cGMP
levels in pre-junctional sympathetic neurons. As already
described, increased PDE2A activity favours cGMP
breakdown, resulting in increased calcium transients
and noradrenaline release in sympathetic neurons, and
blunting of the sympathoinhibitoy effect of natriuretic
peptides (Li & Paterson, 2016; Li et al., 2015). Indeed,
PDE2A activity is elevated in the stellate ganglia of
spontaneously hypertensive rats and patients with
recurrent ventricular arrhythmias. Pharmacological
inhibition of PDE2A and noradrenergic neuron-specific
gene transfer of a non-functional form of PDE2A restores
cGMP mediated inhibition of noradrenaline release,
highlighting this as a potential therapeutic target to
reduce sympathetic tone (Liu et al., 2018).
Targeting the nNOS signalling pathway to restore

autonomic balance has shown promise in animal models.
Targeted gene transfer of nNOS to parasympathetic
neurons increases parasympathetic activity in pigs
(Heaton et al., 2005) and guinea-pigs (Mohan et al.,
2002), and also restores parasympathetic function in
spontaneously hypertensive rats (Heaton et al., 2007)
and guinea pigs following acute MI (Dawson et al.,
2008). Conversely, noradrenergic specific gene transfer
of nNOS to sympathetic neurons decreases sympathetic
neurotransmission in rats (Wang et al., 2006, 2007)
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and rescues impaired NO–cGMP signalling to reduce
Ca2+-dependent noradrenaline release in a rat model of
sympathetic hyperactivity (Li et al., 2007, 2013). Similarly,
delivery of CAPON to sympathetic neurons using a
specific adenovirus vector has been shown to correct
the heightened sympathetic phenotype of spontaneously
hypertensive rats (Lu et al., 2015).
Selective modulation of NPY signalling has also shown

therapeutic potential in animal models. Stimulation of Y2
receptors may be an emerging technique to encourage
angiogenesis followingMI. It has recently become possible
to deliver NPY3–36 to areas of oxidative stress by
incorporating it into H2O2 responsive copolyoxalate
containing vanillyl alcohol (i.e. PVAX) nanoparticles.
In mouse models of limb and myocardial ischaemia,
this resulted in significantly improved blood flow and
cardiac function compared to controls (Eshun et al.,
2017; Mahmood et al., 2020). Similarly, in pig models of
chronic cardiac ischemia, infusion of NPY3–36 resulted
in improved cardiac blood flow, restoration of fatty
acid metabolism, reduced fibrosis and improved left
ventricular function (Matyal et al., 2013; Robich et al.,
2010). Conversely, selective antagonism of Y1 receptors in
pigs has been shown to prevent pro-arrhythmic electro-
physiological changes without adverse effects on inotropy
(Hoang et al., 2020).
Finally, biomarkers such as NPY could also vastly

improve the ability to predict SCD. Current methods are
crude and, in CHF, primarily based on left ventricular
function, previous ventricular arrhythmias and myo-
cardial scar burden (Zeppenfeld et al., 2022). These
methods are imperfect and predicting the risk of SCD
remains challenging (Deyell et al., 2015). Although ICDs
improve overall mortality on a population level (Bardy
et al., 2005; Moss et al., 2002), many individuals never go
on to require ICD therapy. Such individuals, however, are
subjected to morbidity from device related complications
and inappropriate device therapies (Ezzat et al., 2015;
Hawkins et al., 2018). Elevated peripheral venous NPY
levels are strongly associated with mortality following
MI and CHF (Fig. 2) (Gibbs et al., 2022; McDowell
et al., 2024). Importantly peripheral venous NPY levels
appear to be an acceptable surrogate for cardiac NPY
release (Fig. 3), making this a practical clinical tool to
improve risk stratification. Indeed, the prognostic value
of peripheral venous NPY concentrations in STEMI
has recently been independently validated (Tiller et al.,
2024). Whether additional prognostic information can
be gained from investigating NPY dynamics in CHF
patients during exercise remains to be determined.
Numerous other measures of autonomic activity such as
heart rate variability, heart rate recovery after exercise,
abnormal baroreflex responses and altered sympathetic
innervation on nuclear imaging have also been shown to
independently predict mortality and SCD in patients with

cardiac disease (Cole et al., 1999; De Ferrari et al., 2007;
Fallavollita et al., 2017; La Rovere et al., 1998).

Conclusions

The autonomic nervous system is an importantmodulator
of cardiac function, and normally exists in a state of
balance between its parasympathetic and sympathetic
limbs. The hallmark of cardiac disease is a loss of
this intricate balance, leading to chronic hyperactivation
of sympathetic output, which directly contributes to
disease progression. Although beta-blockers improve
mortality in these conditions by preventing the action of
noradrenaline, a substantial residual risk remains. This
can be explained by the existence of co-transmitters
such as NPY, which can independently influence cardiac
remodelling and arrhythmic risk.
Neuromodulatory interventions to limit sympathetic

activation have recently been shown to be effective
treatment for some patients with resistant hypertension or
recurrent ventricular arrhythmias. This remains an area
of active research, with ongoing randomised clinical trials
recruiting patients with heart failure and high arrhythmic
risk (ClinicalTrials.gov. Identifier NCT01013714; Chin
et al., 2017; Zhouting et al., 2023). Interventions to
selectively target autonomic co-transmission and neuro-
nal signalling pathways have shown promise in animal
models but are not yet ready for human use. Finally,
biomarkers such as NPY may prove to be a vital tool with
respect to improving prediction of SCD and identifying
patients most probably benefiting from ICD therapy.
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