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Determining the mechanisms for irradiation-induced ductility loss is crucial for the design of reactor structural 
components. Here, the deformation characteristics around nanoindents in Fe and Fe10Cr irradiated with Fe 
ions to ∼1 displacement-per-atom at 313 K are non-destructively studied. Slip steps surrounding the nanoindents 
indicate that deformation is localised in the irradiated materials. Lattice rotation and strain fields near the indent 
site show over 87% confinement of plasticity in the irradiated material. Cr has little effect on the irradiation-

induced changes in pile-up topography and deformation fields, suggesting it has limited impact on retaining 
strain hardening capacity and reducing irradiation-induced embrittlement.
1. Main text

Understanding the mechanical behaviour of structural materials is 
essential for the design and operation of next-generation nuclear reac-

* Corresponding author.

tors. Reduced-activation ferritic/martensitic steels are promising candi-

dates due to their good thermomechanical properties and resistance to 
irradiation swelling [1]. Nevertheless, neutron irradiation in reactor en-

vironments will still lead to increased hardening and reduced ductility 
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Table 1

Manufacturer-provided chemical compositions as measured by glow discharge mass spec-

trometry [36,37].

Alloy Cr (wt%) C (wppm) S (wppm) O (wppm) N (wppm) Grain Size (μm)

Fe <0.0002 4 2 4 1 187 ± 150

Fe10Cr 10.10 4 4 4 3 98 ± 55

Fig. 1. (a) The irradiation damage and injected ion profiles as calculated by SRIM [38]. (b) Representative load-displacement curves from each material.
of structural steels [2,3]. Studies into the effect of microstructure and 
composition to mitigate these irradiation-induced changes are crucial 
[4–6].

A well-known phenomenon following the deformation of irradiated 
materials is deformation localisation [7–12]. Here, localisation refers to 
deformation occurring preferentially in certain regions of the material, 
such as channels. The accepted mechanism is that glide dislocations 
annihilate irradiation-induced defects [13,14]. This creates easy glide 
channels with a locally reduced density of irradiation-induced defects 
that confine subsequent deformation [15]. The formation of these chan-

nels contributes to irradiation embrittlement and irradiation-assisted 
stress corrosion cracking [16].

Presently, the exact details of the mechanisms by which irradiation 
defects are removed still remain unclear. This is an active area for mod-

elling and simulations [17–19]. However, there is a lack of experimental 
investigations to validate modelling predictions. Transmission electron 
microscopy (TEM) is a common way to directly observe dislocation mi-

crostructures and channels [20–22]. However, TEM is unable to provide 
information, especially in 3D, on the local stress and strain states, which 
are key to compare with simulations. A non-destructive method such as 
X-ray diffraction can uniquely provide information over a greater vol-

ume and in 3D [23,24].

Here, we consider the deformation microstructure around nanoin-

dents in Fe and Fe with 10% Cr by weight, hereafter referred to as 
Fe10Cr, for both the unirradiated material and following irradiation 
with Fe ions at 313 K. This allows the study of the effect of irradi-

ation and Cr content. Surface topography around the indent site was 
examined with atomic force microscopy (AFM). 3D lattice rotation and 
strain fields under the surface were probed by X-ray Laue diffraction. 
The samples used in this study are the same as those in previous studies 
of irradiation-induced lattice strain, thermal and mechanical properties 
[25–27]. The materials from which the samples are taken have also 
been investigated extensively in other irradiation studies [28–34]. This 
is important, as it helps to build a comprehensive understanding of the 
different aspects of irradiation damage whilst maintaining consistent 
sample processing and irradiation history [35].

The Fe and Fe10Cr materials were manufactured under the Eu-

ropean Fusion Development Agreement (EFDA) programme (contract 
EFDA-06-1901) and their chemical composition is listed in Table 1. The 
materials were made by induction melting under an argon atmosphere 
2

followed by cold-forging and heat treatments [36,37].
The samples were mechanically ground with SiC paper, and then 
polished with diamond suspension and colloidal silica (0.04 μm). Fi-

nally, they were electropolished to achieve a deformation-free surface 
finish.

Ion irradiation was performed with 20 MeV Fe4+ ions using the tan-

dem accelerator at the University of Helsinki. The samples were actively 
held at 313 K during irradiation. The dose profile shown in Fig. 1(a) was 
calculated with SRIM (Stopping and Range of Ion in Matter) using the 
Quick K-P model [38] with 20 MeV Fe ions on a Fe target with 40 eV 
displacement energy [39] at normal incidence. The calculated damaged 
layer extends to 3.5 μm below the sample surface. The average dose in 
the top 580 nm, which is the maximum indentation depth (including 
creep), is 0.46 displacements-per-atom (dpa). The damage profile peaks 
at 5 dpa at a depth of 3 μm. The average dose of the whole damage 
layer is 1.7 dpa.

Consistent grain orientation across different samples is important 
as the pile-up morphology is expected to show orientation dependence 
from previous studies of body-centred cubic (BCC) materials [40,41]. 
Those studies also found that pile-up heights are the most sensitive to 
irradiation-induced changes when indenting along the ⟨001⟩ direction. 
In this study, electron backscatter diffraction was used to identify grains 
within 5◦ of ⟨001⟩ out-of-plane orientation on each sample for investi-

gation with AFM and X-ray Laue diffraction. Further information about 
the grain orientations can be found in the Supplementary File.

Nanoindentation was performed using an MTS Nano Indenter XP 
with a spherical diamond tip of 5 μm nominal radius (Synton-MDP). 
Load-controlled indentation was performed to a nominal depth of 500 
nm, with a hold segment of 10 s before unloading. The indentation 
depth was chosen to be less than 20% of the damaged layer thickness to 
ensure that a majority of the plastic zone is contained in the irradiated 
layer [42,43].

The load-displacement curves (Fig. 1(b)) for all materials show sim-

ilar initial Hertzian elastic contact segments. Pop-in events occurred in 
all samples, and the irradiated samples show lower pop-in loads than 
the unirradiated samples possibly due to irradiation defects acting as 
extra sources of dislocation nucleation [26,44,45].

Analysis of the peak loads of at least 6 indents on each sample was 
performed to obtain an indication of the material hardness. Large pop-

in loads were often observed for the unirradiated materials due to low 
populations of pre-existing dislocations. As a result, many indentation 
tests on the pre-identified grains exceed 500 nm in depth, and could not 

be used.



Journal of Nuclear Materials 596 (2024) 155104K. Song, D. Sheyfer, W. Liu et al.

Fig. 2. The pile-up topography surrounding the indent site for (a) unirradiated Fe and (b) irradiated Fe. The average pile-up heights are calculated from repeated 
measurements of the 4 pile-up lobes surrounding each indent, with the associated standard deviations shown. The white dashed line indicates the profile of pile-up 
height taken from the measurements and shown in (c). The same layout for Fe10Cr is shown in (d)–(f). Black arrows indicate evidence of slip steps (further details 
in the Supplementary File). (For interpretation of the colours in the figure, the reader is referred to the web version of this article.)
Solid solution hardening in the unirradiated materials is observed 
from a 20% (±6%) increase in peak load between Fe and Fe10Cr. Ir-
radiation resulted in a 21% (±8%) increase in peak load for Fe and a 
43% (±7%) increase for Fe10Cr. This agrees with hardness trends from 
previous measurements with Berkovich nanoindentation, which show a 
31% (±5%) increase for Fe and a 48% (±7%) increase for Fe10Cr fol-

lowing irradiation [27]. The creep distance from holding the peak load 
is greater in Fe than Fe10Cr for both the unirradiated and irradiated 
materials.

Pile-up topography around the indent sites (Fig. 2) was mea-

sured with a Veeco MultiMode 8 atomic force microscope (AFM) in 
ScanAsystTM mode. There is a four-fold symmetry in the pile-up pat-

tern due to the indents being made on grains with close to ⟨001⟩
out-of-plane orientation. The pile-up lobes are oriented along the ⟨110⟩
directions, which has been previously observed in other BCC materials 
[40,41,46,47].

For the unirradiated samples, the pile-up height increases with the 
addition of Cr from 37 ± 10 nm for Fe to 74 ± 9 nm for Fe10Cr. Pile-up 
has been found to increase with decreasing strain hardening exponents 
[48–50]. This suggests that the presence of Cr reduces strain hardening 
capacity. Indeed, this is consistent with our previous study of the same 
materials [26], which shows from nanoindentation stress-strain curves 
that strain hardening capacity decreases with Cr content in unirradiated 
FeCr.

Pile-up height increases after irradiation for Fe and Fe10Cr to 169 ±5
nm and 154 ± 25 nm, respectively. The increase in average pile-up 
height is consistent with previous findings of irradiation-induced strain 
hardening capacity reduction [26,51,52]. The presence of Cr has lit-
tle effect on the pile-up height following irradiation. This is consistent 
with previous findings from stress-strain studies of the same materials, 
where strain hardening exponents were reduced to zero regardless of 
Cr content, even for a dose that is 90% lower than the current study 
[26]. Hardie et al. [53] also observed an increase in pile-up height for 
Fe12Cr following irradiation to 6.18 dpa. However, the orientation of 
the grains was not specified, which is known to significantly affect pile-

up behaviour [40,41,54].

The pile-up topography is more spatially confined in the irradiated 
3

samples, only extending to ± 5 μm on either side of the indent centre 
along the ⟨110⟩ direction (Fig. 2(c) and (f)). In contrast, the lobes of 
the unirradiated materials extend up to 10 μm away from the indent. 
Slip steps are also observed in the pile-up of the irradiated material 
(black arrows in Fig. 2(b), (c), and (e)). Hardie et al. [55] previously 
found that slip steps on the surface of ion-irradiated Fe12Cr result from 
shear bands beneath the surface, associated with defect-free channels in 
the irradiated layer. These channels lead to irradiation-induced strain 
softening and localisation of deformation [56].

Lattice rotation and strains around the nanoindents were measured 
with micro-beam X-ray Laue diffraction at the 34-ID-E beamline at the 
Advanced Photon Source (Argonne National Laboratory, IL, USA). Dif-

ferential Aperture X-ray Microscopy (DAXM) was used to obtain depth 
resolution into the surface of the material. The technique has been de-

scribed in detail elsewhere [57–59]. Here, the sample was mounted in a 
45◦ reflection geometry. The polychromatic incident beam (7–30 keV) 
is focused on the sample surface with a size of 170 × 240 nm2. For each 
sample, a 30 × 40 × 20 μm3 volume was probed with 1.1 × 1.5 × 1 μm3

3D spatial resolution. Due to the sample mounting geometry, the path 
of the beam was at 45◦ to the sample surface. Hence the edges of the 
volume probed by X-rays are also confined by that angle (Fig. 3 and 4). 
Further details of the set-up are included in the Supplementary File.

The orientation distribution and strain refinement calculations [60]

were performed using LaueGo [61]. The calculation of lattice rotation 
from the orientation of each voxel, data interpolation, and visualisation 
of the lattice rotation and strain field were performed with code modi-

fied from [12,23]. The reference lattice orientation was calculated from 
the average orientation between 18–20 μm below the sample surface.

The lattice rotations in the unirradiated Fe extend to over 20 μm 
away from the indentation site (Fig. 3(a)). There is a long ‘streak’ 
present in the 𝜃𝑥 map, similar to previous measurements in tungsten 
[23,46]. The rotation fields of Fe10Cr (Fig. 3(c)) are similar in spatial 
extent and distribution to Fe.

The extent of the rotation field induced by indentation in the irradi-

ated samples is more confined than in the unirradiated material. This is 
particularly noticeable for the Fe sample (Fig. 3(b)), where the rotation 
field is predominantly the top 5 μm in the 𝒛-direction, and ∼7 μm in the 
𝒙- and 𝒚-directions. The distribution of lattice rotations in the irradiated 

Fe10Cr sample (Fig. 3(d)) is similar to the irradiated Fe, with some ex-
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Fig. 3. The lattice rotation under the indent for the different samples in this study. The 𝒙 − 𝒚 plane is parallel to the surface of the bulk sample, while 𝒛 points 
into the bulk material. For each sample, the lattice rotations components (𝜃𝑥 , 𝜃𝑦 , and 𝜃𝑧) are presented from 3 slices (parallel to the 𝒚 − 𝒛 plane). The middle slice 
(𝑥 = 𝑥𝑐 ) is taken through the centre of the indent. The slices on either side are at a distance of 4 μm from the centre in the 𝒙-direction. Magnified plots of each 
sample are included in the Supplementary File. (For interpretation of the colours in the figure, the reader is referred to the web version of this article.)

Fig. 4. The 3 principal components of the deviatoric strain tensor, 𝜖𝑥𝑥 , 𝜖𝑦𝑦, and 𝜖𝑧𝑧 in the samples. The orientation of the measurements and the slicing convention 
are the same as described in Fig. 3. Magnified plots of each sample are included in the Supplementary File. (For interpretation of the colours in the figure, the reader 
is referred to the web version of this article.)
tended regions of smaller lattice rotations (|𝜃| < 3 ×10−4 radians) up to 
10 μm from the indent centre. This represents a reduction of over 87% 
of the volume containing lattice rotations. This is the same ratio as de-

termined by the lateral extent of pile-up from AFM measurements, even 
though the absolute radius of the deformed volume measured by X-ray 
diffraction is twice as large. The volume over which the deformation 
zone is defined is illustrated in the Supplementary File.

The spatial distribution of tensile (positive) and compressive (neg-

ative) strain is similar between the unirradiated samples of Fe and 
Fe10Cr (Fig. 4). However, the spatial extent and magnitude of strain, 
both tensile and compressive, are greater in Fe10Cr than in Fe. This 
could be attributed to the greater peak load applied to Fe10Cr to reach 
the same indentation depth as in Fe (Fig. 1(b)), due to its higher yield 
strength, which in turn leads to greater residual stresses.

After irradiation, there is a large tensile strain in the 𝒛 direction for 
4

Fe and Fe10Cr at a depth of ∼3 μm (Fig. 4(b) and (d)). This is likely 
due to the presence of injected Fe ions from irradiation, as previously 
observed [25,27]. There is a corresponding compressive strain of lower 
magnitude in the 𝒙- and 𝒚-directions. Furthermore, the magnitudes of 
𝜖𝑥𝑥 and 𝜖𝑦𝑦 are similar, which is consistent with irradiation-induced 
lattice swelling and the presence of the external boundary condition 
requiring geometric continuity between the irradiated layer and the 
unirradiated bulk [59].

For both the irradiated Fe and Fe10Cr materials, the spatial extent 
of the strain field beneath and surrounding the indent is predominantly 
present in the top 3–4 μm along the 𝒛-direction (Fig. 4(b) and (d)). The 
confinement of the strain field is largely within the irradiated layer, 
with rapidly vanishing strains at depths beyond that. Similar to lattice 
rotation fields, the extent of the strain fields in the 𝒙- and 𝒚-directions 
is also reduced following irradiation for both Fe and Fe10Cr. The ‘high 
strain’ zone volume is illustrated in the Supplementary File. It appears 

that the presence of 10% Cr content does not significantly affect the 
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strain states following irradiation and deformation. This is despite a 
∼50% increase in applied load for the irradiated Fe10Cr material to 
achieve the same indentation depth as the irradiated Fe sample.

The confinement of lattice rotation and strain fields in the irradiated 
Fe and Fe10Cr is consistent with previous observations of plastic zone 
confinement in irradiated Fe12Cr [53,55]. From TEM lift-outs taken 
through indent cross-sections, it was observed that the spatial extent of 
dislocation propagation reduced by 24–31% in the irradiated material.

Combining the nanoindentation, AFM, and DAXM measurements, 
we can formulate a comprehensive picture of plasticity in ion-irradiated 
Fe and Fe10Cr. Without irradiation, the presence of Cr causes solid solu-

tion hardening. This necessitates a greater indentation load for Fe10Cr 
than Fe to reach the same indentation depth. As such, the residual 
strains are greater. Furthermore, the presence of Cr also reduces the 
strain hardening capacity of the material, which leads to a greater pile-

up height in Fe10Cr.

Ion irradiation introduces defects in the material that act as obstacles 
to glide dislocations, causing hardening. Even though the inclusion of 
10%Cr causes a similar amount of net hardening as introducing irradia-

tion defects in Fe, the respective pile-up topography and residual lattice 
rotation and strain fields are very different. The great increase in pile-up 
height due to irradiation (∼450% for Fe) reflects a dramatic reduction 
in strain hardening capacity, as previously observed from nanoindenta-

tion stress-strain curves of the same materials [26]. In comparison, the 
pile-up height only increases ∼200% from the addition of 10%Cr to Fe 
in the unirradiated case, despite showing similar hardening. The mech-

anism of strain softening in the irradiated material can be explained by 
the observation of slip steps, an indication of dislocation channelling, 
which provides paths for subsequently-generated glide dislocations to 
move at a lower stress. This causes slip localisation where deformation 
preferentially occurs in the dislocation channels. Irradiation-induced 
strain softening also causes a corresponding confinement in the lateral 
extent of pile-up topography. We directly observed plastic zone con-

finement of over 87% in the irradiated materials from the localisation 
of lattice strain and rotation fields surrounding the indents.

The effect of Cr on the post-irradiation deformation behaviour is lim-

ited. Even though the irradiation-induced hardening is much greater 
in Fe10Cr than in Fe, the height and spatial extent of the pile-up to-

pography are very similar for both irradiated materials. This supports 
previous observations that post-irradiation reduction in strain harden-

ing capacity does not depend on Cr [26]. In this study, we also observed 
the effect of this on the lattice rotation and strain fields in both Fe and 
Fe10Cr, which were reduced to similar extents following irradiation. 
The 3D measurements in this study also provide valuable comparisons 
for future modelling studies, which will be crucial to understanding the 
mechanical properties of reactor structural materials in operation.

In summary, deformation localisation has been characterised in ion-

irradiated Fe and Fe10Cr following nanoindentation. Following irradi-

ation, there is an increase in pile-up height, spatial confinement of the 
pile-up topography, and formation of slip steps, indicating slip locali-

sation. Lattice rotation and strain fields surrounding the indent in the 
irradiated material are confined to a volume less than 13% of that in the 
unirradiated materials. In practice, the localisation of deformation and 
the confinement of plastic zones means that a material is less able to 
absorb energy associated with deformation, leading to embrittlement. 
Despite significant differences in irradiation hardening, the irradiated 
Fe and Fe10Cr materials show very similar pile-up topography and de-

formation fields. Our results suggest that Cr content does not seem to 
mitigate the loss of strain hardening capacity. This means that strate-

gies other than varying the composition of steels are required to retain 
post-irradiation ductility, a key consideration to guide the design of fu-
5

ture reactor component materials.
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