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Pancreas MRI Segmentation Into Head,
Body, and Tail Enables Regional

Quantitative Analysis of Heterogeneous
Disease

Alexandre Triay Bagur, MSc,1,2* Paul Aljabar, PhD,2 Gerard R. Ridgway, PhD,2

Michael Brady, PhD,2 and Daniel P. Bulte, PhD1

Background: Quantitative imaging studies of the pancreas have often targeted the three main anatomical segments, head,
body, and tail, using manual region of interest strategies to assess geographic heterogeneity. Existing automated analyses
have implemented whole-organ segmentation, providing overall quantification but failing to address spatial
heterogeneity.
Purpose: To develop and validate an automated method for pancreas segmentation into head, body, and tail subregions
in abdominal MRI.
Study Type: Retrospective.
Subjects: One hundred and fifty nominally healthy subjects from UK Biobank (100 subjects for method development and
50 subjects for validation). A separate 390 UK Biobank triples of subjects including type 2 diabetes mellitus (T2DM) sub-
jects and matched nondiabetics.
Field strength/Sequence: A 1.5 T, three-dimensional two-point Dixon sequence (for segmentation and volume assess-
ment) and a two-dimensional axial multiecho gradient-recalled echo sequence.
Assessment: Pancreas segments were annotated by four raters on the validation cohort. Intrarater agreement and inter-
rater agreement were reported using Dice overlap (Dice similarity coefficient [DSC]). A segmentation method based on
template registration was developed and evaluated against annotations. Results on regional pancreatic fat assessment are
also presented, by intersecting the three-dimensional parts segmentation with one available proton density fat fraction
(PDFF) image.
Statistical Test: Wilcoxon signed rank test and Mann–Whitney U-test for comparisons. DSC and volume differences for
evaluation. A P value < 0.05 was considered statistically significant.
Results: Good intrarater (DSC mean, head: 0.982, body: 0.940, tail: 0.961) agreement and interrater (DSC mean, head:
0.968, body: 0.905, tail: 0.943) agreement were observed. No differences (DSC, head: P = 0.4358, body: P = 0.0992, tail:
P = 0.1080) were observed between the manual annotations and our method’s segmentations (DSC mean, head: 0.965,
body: 0.893, tail: 0.934). Pancreatic body PDFF was different between T2DM and nondiabetics matched by body mass
index.
Data Conclusion: The developed segmentation’s performance was no different from manual annotations. Application on
type 2 diabetes subjects showed potential for assessing pancreatic disease heterogeneity.
Level of Evidence: 4
Technical Efficacy Stage: 3
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Pancreas pathology, such as fatty infiltration, diabetes,
chronic pancreatitis, and pancreatic cancer, is rising

rapidly with the increasing prevalence of obesity and the met-
abolic syndrome.1 Obesity leads to ectopic fat deposition in
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organs like the heart, liver, and pancreas.1 While nonalcoholic
fatty liver disease (NAFLD) is a well-recognized disease
entity, now affecting one fourth of the worldwide population
and one third of US adults,2 nonalcoholic fatty pancreas dis-
ease (NAFPD) was only coined relatively recently1,3 despite
showing similar prevalence described in a recent meta-analy-
sis.4 Analogously to NAFLD, NAFPD triggers inflammatory
processes that, if left untreated, may lead to chronic pancreati-
tis and pancreatic cancer.5,6 NAFPD has also been linked to
type 2 diabetes.7,8 Early detection of pancreatic disease is
therefore important; however, these are often “silent” condi-
tions that only become symptomatic at a late stage, when
they may already be irreversible.5 Incidental findings, where
the target organ is near the pancreas, for instance, in quantita-
tive imaging of the liver, potentially offer a way to detect pan-
creas pathology early.

Pancreatic disease processes, including fat infiltration,
fibro-inflammation, and pancreatic cancer, are also spatially
inhomogeneous.9,10 There is increasing interest in studying
pancreatic disease and the implications of disease heterogene-
ity, aiming to describe regional differences and localize pan-
creatic lesions. Early work using computed tomography
(CT) classified uneven pancreatic fat infiltration into multiple
subtypes or patterns, depending on the affected regions.10

Uneven distribution of islet cells that are responsible for insu-
lin secretion and blood sugar regulation has been reported
using histology.11 Fibrosis has been more commonly found
in the ventral pancreas than in the dorsal pancreas in patients
with ampullary carcinoma.12 The frequency of pancreatic
cancer also differs regionally, with 60%–70% occurrence in
the head of the pancreas, and the symptoms also vary by loca-
tion.13,14 From the imaging modalities commonly used for
pancreatic assessment, including histology, endoscopic ultra-
sound, contrast-enhanced CT, and MRI, only MRI can pro-
vide safe, noninvasive quantitative information of pancreas
state, while providing full coverage and measures of spatial
heterogeneity. Quantitative MRI biomarkers such as proton
density fat fraction (PDFF) and T1 have shown potential in
detecting pancreas steatosis and early-stage chronic pancreati-
tis, respectively15,16; PDFF has been used for longitudinally
monitoring total pancreatic fat deposition in a diabetes remis-
sion trial.17 Apparent diffusion coefficient from diffusion-
weighted imaging has shown potential at grading malignancy
of a certain pancreatic neoplasm type.18 While some studies
using MRI have reported clinically important quantitative dif-
ferences between pancreas subsegments,19,20 other studies
have not found such differences.21

The pancreas is anatomically divided into three seg-
ments: head, body, and tail. The pancreas head sits within a
C-shaped structure formed by the duodenum and joins with
the pancreas body via the pancreas neck, a narrowing or
“isthmus” that bends around the superior mesenteric vessels.
The pancreas neck is typically approximately 2 cm long and

is commonly included as part of the head. The pancreas body
spans from the left border of the superior mesenteric vein to
the left border of the aorta, where it is joined to the tail. It is
generally considered that the body–tail boundary is at the
midpoint lengthwise of the two segments.22 Other pancreas
subsegment classification systems have been proposed for the
purposes of surgical resection based on embryological founda-
tions.22,23 Most studies of pancreas pathology using MRI
have analyzed the images using regions of interest (ROIs),
particularly a standard 3-ROI placement strategy targeting
pancreatic head, body, and tail,20,21,24,25 although some have
placed an extra ROI in the pancreatic neck.19 While ROIs
have the advantage of avoiding artifactual regions, their choice
of placement inevitably adds interobserver variation that may
obscure clinically important differences between pancreatic
segments.

Pancreas segmentation that aims to delineate the whole
organ through the use of two-dimensional or volumetric scans
has been proposed as an alternative analysis method to the
3-ROI placement strategy, which may improve observer-
dependent bias and provide more advanced metrics for the
spatial assessment of chronic disease.26 Pancreas segmentation
can be performed using widely differing amounts of user
intervention, however, such is the variability in size and shape
of the pancreas that it is often considered too tedious to man-
ually delineate in practice. Manual segmentation is also too
costly and generally infeasible in large databases such as the
UK Biobank.27 Metrics derived from pancreas segmentations
are clinically important, for instance, total pancreatic volume
or the irregularity of the pancreas contour in the context of
diabetes.28,29 Pancreas segmentations may also be used for
subsequent characterization of the pancreas in functional or
structural quantitative imaging data acquired separately dur-
ing the same imaging session.

Automated pancreas segmentation methods that have
been proposed to date have been based on traditional multi-
atlas methodology or, more recently, convolutional neural
networks.30,31 However, while these may provide whole-
organ measurements, they do not characterize disease region-
ally by pancreas subsegments. One automated method for
pancreas subsegmentation was reported based on k-means
clustering32 that was applied to pancreas motion analysis
under radiation therapy. However, this method is dependent
on initial seed points and multiple images from multiple
breathing phases and was not validated for accuracy. For these
reasons, the validation of a robust, automated approach for
pancreas subsegmentation is desirable, with potential to
bridge the gap between currently available technology and
standard clinical assessment.

Starting from a segmentation of a whole-organ,
landmark-based approaches have been proposed for sub-
segmentation into the organ’s constituent parts, eg, the
Couinaud segments in the case of the liver, where
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“landmarks” define planes of separation between the liver seg-
ments.33 However, landmark localization is relatively sensitive
to noise and overall image quality. Other methods have
addressed organ subsegmentation as a single task, in which
segmentation models create a multilabel segmentation, each
label corresponding to an individual subsegment. For exam-
ple, atlas-based segmentation uses image registration to propa-
gate labels from a probabilistic template (constructed offline)
to a target dataset.34 Multiatlas segmentation (MAS) or deep
learning (DL) segmentation methods may also be used; how-
ever, these typically need individual annotations on training
subjects and may require large amounts of annotations.34

Some DL methods have drawn inspiration from traditional
atlas-based methodology.35

Thus, the aims of this study were to:

1. develop and validate an automated imaging-based method
for pancreas subsegmentation and

2. show initial application of the method in regional assess-
ment of pancreatic disease.

Materials and Methods
First, the data that were used for template creation are described
together with preprocessing of the training and validation data.
Then, a groupwise registration-based parts segmentation method is
presented, and the validation experiment is described. Finally, the
application of the method to a type 2 diabetes cohort of UK Bio-
bank is shown.

MRI Data
MRI data from the UK Biobank imaging substudy were used.27 UK
Biobank received ethical approval from the North West Multi-center
Research Ethics Committee, and written informed consent was
obtained for all subjects. One hundred subjects were used for
method development, 44 females and 56 males. All were nominally
healthy subjects aged 50–70 with a mean age of 55 years for females
and 57 years for males. The mean body mass index (BMI) was
25.5 kg/m2 for females and 27.1 kg/m2 for males. An additional
50 UK Biobank subjects were used for validation, 21 males and
29 females, with a mean age of 53 years and 57 years and a BMI of
25.9 kg/m2 and 26.5 kg/m2, respectively.

As an initial exploration of fat heterogeneity in diseased sub-
jects, a separate dataset of UK Biobank subjects was developed, com-
prising 390 triples of 1) self-reported type 2 diabetes mellitus
(T2DM) subjects; 2) gender-, age-, and BMI-matched nondiabetic
subjects; and 3) gender- and age-matched nondiabetic subjects with
chosen BMI of <25 kg/m2. These groups of subjects will be referred
to as: T2DM, matched high BMI nondiabetics, and matched low BMI
nondiabetics throughout this work. A total of 390 � 3 = 1170 sub-
jects were selected. Age was matched to within 5 years, and BMI
was matched within one point in all cases. The mean age and the
mean BMI for the three groups were 57 years and 31.0 kg/m2,
respectively, for T2DM; 57 years and 30.8 kg/m2, respectively, for
Matched high BMI nondiabetics, and 56 years and 23.0 kg/m2,
respectively, for matched low BMI nondiabetics.

All subjects had been scanned with a 1.5 T Siemens Aera
scanner (Siemens Healthineers, Erlangen, Germany) using a two-
point Dixon protocol covering neck to knee, acquired using six over-
lapping slabs and uploaded to the UK Biobank as Data-Field 20201.
Each slab was acquired using TE = 2.39/4.77, TR = 6.69 msec,
10� flip angle, and pixel bandwidth = 440 Hz. Only datasets from
the first imaging session of UK Biobank (instance 2) were used.
Slabs were stitched together, and the resulting neck-to-knee volume
was cropped to the abdominal region, resulting in a subvolume that
generally included slabs 2–4 (more details are available in the study
by Owler et al36). Slabs 2–4 each had a reconstructed voxel size of
2.23 mm � 2.23 mm � 4.5 mm, an image matrix size of
224 � 174 with 44 slices, a phase resolution percentage of 71%,
and a slice resolution percentage of 100%.

Multiecho gradient-recalled echo (GRE) two-dimensional single-
slice data were also obtained from a separate breath-hold scan for the
calculation of confounder-corrected PDFF maps, uploaded to the UK
Biobank as Data-Field 20260. The GRE scan had a reconstructed voxel
size of 2.5 mm � 2.5 mm � 6 mm and an image matrix size of
160 � 160, 10 echoes, TE1 = ΔTE = 2.38 msec, TR = 27 msec,
20� flip angle, and pixel bandwidth = 710 Hz. A confounder-corrected
magnitude-based chemical-shift encoding method37 was used to recon-
struct PDFF maps from the raw 10-echo GRE data, which uses a

multi-peak spectral model from liver fat38 and accounts for R*
2 decay.

The whole pancreas had been delineated manually on all
150 training and validation datasets by AB (5 years of experience) as
part of previous work.36 Figure 1 shows three-dimensional render-
ings of the whole-pancreas segmentations for all subjects in both the
template creation dataset and the validation dataset. The volumes
and the corresponding whole-organ segmentations were resampled to
2 mm isotropic resolution. We also minimally co-registered the sub-
jects by translating them to align their centroids. The centroid of
subject 1 was arbitrarily used as a reference. The prealignment pro-
vided a better starting point for the nonlinear registration algorithm,
both for template creation and for method inference. Currently, the
software is compatible with images that are isotropic, have identical
size and are in approximate alignment with each other.

Method Description
An overview of the groupwise registration method is shown in
Fig. 2. The method takes a whole-pancreas segmentation as input,
either delineated manually or with an automated approach; in this
part of the study, the input whole-pancreas segmentations were
manually obtained. First, an average pancreas template is constructed
offline using groupwise registration from the N = 100 method
development dataset of manual whole-pancreas segmentations.
Then, the pancreas parts (head, body, and tail) are manually anno-
tated on the constructed template, resulting in a pancreas parts tem-
plate. Method inference (parts segmentation) is performed by
registration of the pancreas parts template to a new target whole-
pancreas segmentation. Then, the registered parts template labels are
propagated to the target whole-pancreas segmentation, obtaining a
pancreas parts segmentation for that subject. Offline parts template
construction and parts segmentation inference steps are detailed in
the following paragraphs.

The backbone for template construction is the large deforma-
tion diffeomorphic metric mapping (LDDMM) via geodesic
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shooting algorithm developed by Ashburner and Friston39 and avail-
able under the “Shoot” toolbox of the SPM12 software (https://
www.fil.ion.ucl.ac.uk/spm/software/spm12/). The toolbox uses dif-
feomorphic transformations to co-register all the template construc-
tion segmentations iteratively into a population average, i.e. the
“template” image. MATLAB R2021a (The MathWorks, Inc,
Natick, MA, USA) and the batch processing capability of SPM12
were used to run template creation. A probabilistic template (0–1)
was obtained from this step after four iterations, that were binarized
by thresholding at 0.5.

Pancreas head, body, and tail were annotated on the template
image by AB. Note this template-based approach enables annotation
of parts on the constructed template, instead of annotating each of
the training subjects individually, thus requiring a single annotation
step. The initial assumption was that this approach would be sub-
stantially equivalent to annotating each “training” subject individu-
ally. One additional advantage of this annotation strategy was that
some salient features appear on the template after groupwise registra-
tion, which correspond to the landmarks defining the pancreas sub-
segments. These landmarks may otherwise be difficult to identify in

Template creation dataset Validation dataset

FIGURE 1: Manual whole-pancreas segmentations from the template construction (“training”) dataset and the validation dataset,
sorted by subjects’ age from youngest to oldest (females in red and males in blue).

FIGURE 2: Method description. (top) Overall pipeline for whole-pancreas segmentation and parts segmentation. (bottom-left):
(1) Offline groupwise registration of the whole-pancreas segmentation generated a population average (“template”), on which
(2) the parts were manually annotated (“parts template,” head: blue, body: green, tail: yellow). (bottom-right) For a new subject, the
method (1) computes a registration transformation from the subject’s segmentation to the template, (2) applies the inverse
transformation on the parts template, and (3) propagates the warped parts template labels to the segmentation.
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individual cases, and correct landmark identification is highly depen-
dent on image quality. Annotation was performed by defining one
boundary plane between head and body and another boundary plane
between body and tail.

Given a whole-pancreas segmentation for a new subject, which
can be either manually delineated or computed automatically, the
method first computes a registration transformation from the sub-
ject’s whole-pancreas segmentation to the template (again initialized
by aligning the centroid). The method then applies the inverse of
that registration transformation onto the parts template. Finally, it
propagates the labels of the warped parts template toward the whole-
pancreas segmentation, obtaining a parts segmentation for that new
subject.

Validation
The initial manual pancreas segmentations from the validation
dataset were subsegmented using the described groupwise registra-
tion method and also the method based on k-means proposed by
Fontana et al.32 The latter was implemented for a single image (sin-
gle “breathing phase”), choosing the initial cluster centroids using
the k-means++ algorithm. A dedicated annotation protocol based
on the three-dimensional “scalpel” tool of ITK-SNAP (http://www.
itksnap.org/)40 was developed that demonstrated the manual annota-
tion of a whole-pancreas segmentation into parts. The protocol gave
instructions for the drawing of two separation planes, one plane at
the head–body boundary and one plane at the body–tail boundary,
both as perpendicular to the pancreas centerline as possible. The
protocol was distributed to four separate medical imaging scientists
with ranging degrees of experience in annotating abdominal medical
images for research: AB (5 years of experience), MB (25 years of
experience), PA (10 years of experience), and JR (<1 year experi-
ence), namely R1 to R4, to produce reference annotations. R4, who
we refer to as naïve observer, was a recently hired technologist with
no prior experience with pancreas anatomy or pancreas imaging and
was included in the study so that the robustness of the annotation
protocol to rater experience could be estimated. Of the 50 subjects,
10 were included at random twice in the dataset for the purpose of
assessing intraobserver variability (referred to as annotation a and
annotation b). This yielded a total of 60 annotations per rater. Inter-
observer variability was also assessed by comparing annotations over

multiple raters. The interobserver performance may be used as a
comparative benchmark for the automatic results.

For automated and manual segmentations, the volumes of
individual parts were determined, as was the pancreatic fat by parts
from PDFF maps (when available). For the latter, the median PDFF
values from head, body, and tail were reported after reslicing the
parts segmentation onto the reconstructed PDFF map. The three-
dimensional parts segmentation volume was intersected with the
two-dimensional PDFF map using the DICOM Reference Coordi-
nate System information, as illustrated in Fig. 3. Differences in vol-
umes and PDFF between the automated parts segmentation and the
manual parts segmentations were reported for each subject. As a
quality control (QC) step, segment masks with an area of ≤30 pixels
were excluded from the comparisons. The median PDFF of the seg-
ment masks was reported after excluding pixels with values exceeding
50%, followed by morphological opening with a disk structuring ele-
ment of 3 pixels in diameter. The 50% PDFF threshold aimed to
exclude nonparenchymal pancreatic tissue, eg, surrounding visceral
adipose tissue that could have been introduced due to slight subject
motion between breath-holds. Individual segments were excluded
from further statistical analysis if they did not meet these QC
criteria.

FIGURE 3: Pancreas segmentation (head: blue, body: green, and tail: yellow) enables quantification of pancreas imaging biomarkers
by parts, eg, PDFF, by intersection of the segmentation with the quantitative scan. PDFF = proton density fat fraction

FIGURE 4: Visualization of parts segmentations from rater
1 (5 years of experience), rater 2 (25 years of experience), rater
3 (10 years of experience), rater 4 (<1 year experience), A1:
Automated k-means method, A2: Automated groupwise
registration method, respectively (head: blue, body: green, and
tail: yellow). The first 10 subjects of the validation set are shown.
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Pancreatic Fat Quantification by Parts in Type
2 Diabetes
Since manual whole-pancreas delineations were not available for
these subjects, automated whole-pancreas segmentations obtained
previously in the study by Owler et al36 were used, computed using
the Attention U-Net model based on the work of Schlemper et al.31

The groupwise registration-based automated parts segmentation
method was run on the automated whole-pancreas segmentations.
The reslicing plus QC approach explained in the previous
section was run to measure median fat accumulation in the pancre-
atic head, body, and tail. Pancreatic fat quantification by parts was
compared between the three subject groups.

Statistical Analysis
Direct validation of automated pancreas subsegmentation was per-
formed using generally accepted segmentation performance metrics,
namely Dice similarity coefficient (DSC) and 95th percentile
Hausdorff distance (95%HD), as well as the reported volume of
each part. Intraobserver agreement, interobserver agreement, and
“manual vs. automated” agreement were evaluated using Bland–
Altman analysis and right-tailed Wilcoxon signed rank statistical test-
ing. For the 10 subjects used in intrarater variation assessment, the
following comparisons were generated for the experienced raters and
combined: R1a vs. R1b, R2a vs. R2b, R3a vs. R3b, yielding a total
of 30 datapoints (10 subjects � 3 raters). Intrarater agreement of the
inexperienced rater R4, R4a vs. R4b was reported separately and
compared to intrarater agreement of R1–R3. For interobserver varia-
tion assessment, three comparisons among raters were combined, R1
vs. R2, R1 vs. R3, R2 vs. R3, with 50 parts segmentations in each
comparison, yielding 150 datapoints. The robustness of the anno-
tation protocol was tested for rater experience by comparing
the segmentation performance in terms of DSC overlap of the
naïve observer R4 vs. themselves and vs. R1–R3. For manual
vs. automated (Auto), the following comparisons were performed
and combined for each automated method separately: R1 vs. Auto,
R2 vs. Auto, R3 vs. Auto, each with 50 parts segmentations, that
resulted in 150 datapoints.

Indirect validation was performed by evaluating agreement
between automated and manual parts segmentation quantification of
PDFF using Bland–Altman analysis and the Wilcoxon signed rank
test. Mann–Whitney U-test was used to compare quantification by
parts across groups of subjects with and without type 2 diabetes.

A P value < 0.05 was considered to be statistically significant.

Results
Direct Validation
Manual and automated parts segmentations for the first
10 subjects in the validation set are displayed in Fig. 4.
Three-dimensional renderings of parts segmentations from all
four raters, R1–R4, including the naïve rater (R4), as well as
automated parts segmentations from the k-means method
(A1) and the groupwise registration method (A2) are shown.

The intrarater agreement of the experienced observers
R1 (R1a vs. R1b), R2 (R2a vs. R2b), R3 (R3a vs. R3b) was
not significantly higher than the intrarater agreement of the
naïve observer R4 (R4a vs. R4b): for R1, head: P = 0.3848, TA
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body: P = 0.2158, tail: P = 0.3125); for R2, head:
P = 0.6875, body: P = 0.7539, tail: P = 0.7842; and for
R3, head: P = 0.9033, body: P = 0.8838, tail: P = 0.2783.
Similarly, the interobserver agreement between two given
experienced observers (R1 vs. R2, R1 vs. R3, and R2 vs. R3
combined) was not significantly higher than the interobserver
agreement between a given experienced observer vs. the naïve
observer R4 (R1 vs. R4, R2 vs. R4, R3 vs. R4 combined):
head: P = 0.9825, body: P = 0.9982, tail: P = 0.9915.

Intrarater agreement and interrater agreement were
reported for each rater, separately by pancreatic head, body,

and tail (Table 1). While no predefined time gap was speci-
fied between repeat annotations for intraobserver assessment,
the actual time between repeat annotations varied from
2 hours later for R2 to 1 month apart for R3. Excellent
intraobserver (Dice overlap, head: 0.982, body: 0.940, tail:
0.961, N = 30) as well as interobserver (Dice overlap, head:
0.968, body: 0.905, tail: 0.943, N = 150) agreement was
observed in terms of segmentation performance for the com-
bined R1, R2, and R3 metrics.

“Manual vs. automated” differences in DSC, 95% HD,
and volumes were reported combined across raters 1–3 for

FIGURE 5: Interobserver variation of derived PDFF quantification from the manual experts’ annotations. PDFF = proton density fat
fraction

FIGURE 6: Manual experts’ annotations vs. automated subsegmentations derived PDFF quantification: differences by parts. “Manual
vs. auto” comparisons are presented for both the k-means method and the groupwise registration method. PDFF = proton density
fat fraction
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both the k-means method and the groupwise registration
method (Table 2). A statistically significant difference was
found between “manual vs. k-means method” agreement and
“manual vs. groupwise registration method” agreement for
the head and body segments, using DSC, but not for the tail
(P = 0.6237).

“Manual vs. k-means method” agreement from Table 2
was significantly different to inter-rater agreement from
Table 1 in the head and body, using DSC, but not for the tail
(P = 0.3965). No significant difference was found between
“manual vs. groupwise registration method” agreement from
Table 2 and interrater agreement from Table 1, using DSC
(head: P = 0.4358, body: P = 0.0992, tail: P = 0.1080).

Indirect Validation
Thirty-eight of the validation set subjects (76%) had available
multiecho gradient echo data that enabled PDFF measure-
ment. Note that, since the pancreatic PDFF scan is single-
slice acquisition, the pancreatic head will not always be
present in the image due to variable slice positioning.
Similarly, when the slice position is too low, the pancreatic
tail will not be visible. After processing and QC, a total of
14 subjects with visible pancreatic head, 34 with visible body,
and 29 with visible tail remained for quantification.

Excellent interobserver agreement in PDFF quantification
was observed in the Bland–Altman comparisons by pancreatic seg-
ment, as shown in Fig. 5 (head: bias = 0.018, limits of agreement
[LoA] = [�0.5, 0.5]; body: bias = �0.062, LoA = [�1.1, 1.0];
tail: bias = �0.019, LoA = [�1.6, 1.5]). Both automated seg-
mentation methods, the k-means method, and the groupwise reg-
istration method showed comparable PDFF quantification
agreement to the interobserver comparisons (Fig. 6). No signifi-
cant differences were found between PDFF quantification from
the k-means method and PDFF quantification from the
groupwise registration method, reported separately by parts (head:
P= 0.5186, body: P= 0.1313, tail: P= 0.5841).

An example of a subject’s PDFF map with the resliced
parts segmentations from rater 1, rater 2, rater 3, the
groupwise registration method, and the k-means method is
shown in Fig. 7.

Pancreatic Fat Quantification by Parts in Type
2 Diabetes
Pancreatic fat quantification by pancreatic head, body, and
tail for the three groups, 1) type 2 diabetics, 2) matched high
BMI nondiabetics, and (3) matched low BMI nondiabetics, is
shown in Fig. 8. Total pancreatic fat was also included, which
was obtained after combining all the part labels into a single
“whole” label. The difference in PDFF of parts between
T2DM and matched low BMI nondiabetics was significant
when comparing whole-pancreas PDFF (means 12.5% and
7.2%, respectively), head PDFF (9.4% vs. 5.0%), body
PDFF (12.8% vs. 7.4%), and tail PDFF (12.9% vs. 7.7%).

Rater 1 Rater 2 Rater 3 Groupwise registration method K-means method

0
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20
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40
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70

80

90
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FIGURE 7: Example of regional pancreatic fat quantification for one subject in the validation set. The three-dimensional parts
segmentations for each of rater 1, rater 2, rater 3, groupwise registration method, and k-means method (respectively) were
separately intersected with the computed PDFF map and are shown overlaid (head: blue, body: green, tail: yellow). PDFF = proton
density fat fraction

FIGURE 8: Pancreatic fat quantification by parts in groups from
UK Biobank: (1) Type 2 diabetics (self-reported), (2) nondiabetics
matched by gender, age, and BMI, (3) nondiabetics matched by
gender and age and with low BMI. The number of segments
available is displayed next to the part. BMI = body mass index;
PDFF = proton density fat fraction
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The difference in PDFF of parts between T2DM and mat-
ched high BMI nondiabetics was significant when comparing
body PDFF values (means 12.8% vs. 11.7%, respectively)
but not significant when comparing whole-pancreas PDFF
(12.5% vs. 11.8%; P = 0.067; 95% CI = [11.8%, 13.3%]
and 95% CI = [11.0%, 12.6%], respectively), head PDFF
(9.4% vs. 9.1%; P = 0.943) or tail PDFF (12.9% vs. 12.7%;
P = 0.623).

In terms of PDFF differences between parts within
given subject groups, a similar pattern was observed for all
three cohorts, namely significant differences were observed
between head PDFF and body PDFF, as well as between
head PDFF and tail PDFF, whereas the difference between
body PDFF and tail PDFF was not significant in any of the
groups: T2DM (P = 0.90072), matched high BMI nondia-
betics (P = 0.071693), and matched low BMI nondiabetics
(P = 0.65078).

Discussion
This work presented and validated a fully automated method
based on groupwise registration to subsegment the pancreas
into its main anatomical parts: head, body, and tail. The
method is based on a single population average or “template”
image and a single annotation stage on the template, which
yields a parts template that may be used for pancreas sub-
segmentation in new subjects. The method was validated
against manual annotations from expert observers in subjects
from the UK Biobank imaging substudy and was compared
to previously proposed methodology based on k-means clus-
tering.32 Validation metrics included segmentation perfor-
mance metrics as well as more clinically meaningful metrics
like volume of parts and fat quantification by parts, which
was obtained by intersecting the parts segmentations with
PDFF maps. Then, as an initial exploration of the clinical
value of parts segmentation, the method was applied to a sep-
arate UK Biobank cohort including type 2 diabetics (self-
reported) as well as gender-, age-, and BMI-matched
nondiabetic individuals, where the spatial distribution of pan-
creatic PDFF was evaluated.

Note that automated whole-pancreas segmentation could
have been used to generate both the template creation dataset
and the validation dataset. However, using manual whole-
pancreas segmentations minimized introducing errors in the
annotation of parts. This modular approach in which segmen-
tation of the whole pancreas and the constituent parts are
treated separately expedites validation of the subsegmentation
method and allows for the introduction of improved whole-
pancreas segmentation methods when they become available.
In the final experiment, which showed the potential of parts
segmentation, automated segmentations were used.

Excellent intrarater and interrater agreement was
observed among all raters for the proposed head, body, and

tail annotation protocol. This was true not only for the three
experienced raters (R1, R2, and R3) but also for the “naïve”
rater (R4), suggesting that the annotation protocol is robust
and repeatable and can be deployed by raters with a wide
range of experience. High interobserver agreement facilitates
(rather than discourages) automation, because it ensures con-
sistent training labels for a specific task.

Most literature quantifies imaging biomarkers by head,
body, tail,20,21,24 as in the work presented here, although
some researchers have considered the pancreatic neck sepa-
rately in the quantification.19 Considering the neck as an
additional segment during annotation, for instance, by sub-
dividing the head further into head and neck, could lead to
increased interrater variation. In any case, considering the
image resolution of the PDFF map in UK Biobank, the pan-
creatic neck area would be comprised of few pixels,
diminishing the reliability of neck PDFF quantification.
Other acquisitions and applications may be more suitable for
separate neck quantification, which we will revisit in future
work. Other pancreas subsegmentation systems, for instance,
those incorporating embryological basis,22,23 should also be
considered in the future, for they may provide complemen-
tary regional assessment of the pancreas.

Excellent agreement was observed between the manual
annotations and the automated groupwise registration
method, in terms of segmentation performance and derived
PDFF quantification. Significant differences were observed
between manual raters and the automated k-means method at
partitioning pancreatic head and body, although these did not
significantly impact derived PDFF quantification. The agree-
ment between expert raters’ and the automated methods’
quantification suggests that the latter may be used in data-
bases like the UK Biobank, where manual annotation is too
costly or infeasible. Automation also reduces friction for a
method’s deployment into a clinical setting.

The k-means method has the advantage of being
unsupervised; however, the surrogate identification of pancre-
atic segments through clustering may not align well with the
actual anatomical definition, compared to, for instance, using
a template like in the groupwise registration method. This
could explain the observation that the k-means method was
overestimating the head segment in the qualitative compari-
son. One other advantage of groupwise registration methods
is that they may be used for subsequent statistical analysis of
biological variation across the population. Furthermore, since
the three-dimensional parts segmentations themselves could
eventually provide clinically important information, for
instance, individual pancreatic segment volumes, direct seg-
mentation performance metrics are important, for which the
k-means method did not provide comparable results to man-
ual annotations. For these reasons, the groupwise registration
method was used in the subsequent experiment, which char-
acterized regional quantification of fat in type 2 diabetics.
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As an initial exploration of the clinical application of
our parts segmentation, we considered three matched groups:
self-reported T2DM subjects, BMI-matched nondiabetics
(mean BMI: 31.0 kg/m2), and age- and gender-matched non-
diabetics with low BMI (mean BMI: 23.0 kg/m2). The signif-
icantly higher whole-pancreas PDFF in diabetics than that of
nondiabetics has been reported previously.25 However, we
have shown that PDFF in the pancreatic body is significantly
different between T2DM and BMI-matched nondiabetics,
demonstrating the potential importance of parts segmentation
beyond whole-pancreas measurements, which may obscure
subtle but clinically important differences. One other study
showed PDFF in the pancreatic tail to be most predictive for
T2DM development within 4 years.20 Our finding needs to
be examined in more detail in future validation, eg, using
dedicated T2DM cohorts with longitudinal follow-up. The
significant differences in pancreatic fat content between the
pancreatic parts reported in this study emphasizes the impor-
tance of segmentation-based approaches over ROI protocols,
which should at least be “balanced” when used, meaning they
should target all pancreatic segments, for instance, using mul-
tiple slices at different positions.

One method simplification could be introduced based
on detecting the body–tail boundary using the pancreas seg-
mentation centerline: the midpoint in length between the
head–body boundary and the tip of the pancreatic tail would
define the body–tail boundary more similar to the anatomical
definition used in this work, that is, the midpoint of the total
length of the body and tail, from the work of Suda et al.22

We may also choose to fit each predicted boundary to a
plane, similar to the planes drawn in manual annotation, that
is orthogonal to the pancreas centerline; in this scenario, the
scalar distance between the manual boundary and predicted
boundary planes may be used as the validation endpoint.

To date, we have studied regional differences in pancreatic
PDFF, but note the method that is suited to report differences
in other biomarkers, such as T1, so long as the corresponding
parametric maps are available within the imaging session.

Limitations
While our PDFF reconstruction accounted for major con-
founders, such as R*

2 decay, multipeak fat modeling, and
phase errors (although some T1 bias remained owing to the
flip angle), the two-dimensional nature of the PDFF scan cre-
ated some limitations, namely some pancreatic segments were
not visible on the two-dimensional PDFF map for a given
subject; in such cases, only the visible segments were included
in further statistical analysis. Most frequently, the pancreatic
head was not visible on the two-dimensional PDFF map,
which yielded an unpaired, imbalanced dataset of segmental
PDFF values. This also weighted “whole” PDFF quantifica-
tion toward the body and tail PDFF, relative to the head
PDFF. Moreover, the fact that PDFF came from a separate

breath-hold scan may have introduced unwanted misalignment
between the three-dimensional segmentation and the PDFF
map leading to PDFF quantification. The two-point Dixon scan
from the UK Biobank readily provided three-dimensional water
and fat images (with which fat fraction may be computed);
however, the presence of the mentioned confounders, as well as
potential fat-water swap artifacts, discouraged their use for
regional pancreatic fat quantification. The lower resolution of
two-point Dixon also complicates any postprocessing steps that
are taken to avoid surrounding structures that spuriously affect
fat quantification. In the future, three-dimensional multiecho
GRE acquisitions could be set up for simultaneous pancreas seg-
mentation and confounder-corrected three-dimensional PDFF
mapping, which would partially address these concerns.

One criticism of templates is that they might average out
differences between subjects. An approach that considers multi-
ple templates based on major components of variation may be
useful, eg, clinical metadata information or imaging-based and
radiomics features.30 However, this increases the number of
templates that need separate annotation. Evidently, in the
extrema of this approach sit MAS methods and DL methods,
for which individual subjects in the training set need manual
annotation of parts.34 Our approach seemed to balance well
both performance and annotation efficiency and also may gen-
eralize more robustly to various scan settings, compared to, for
instance, DL methods. The template method’s segmentations
on the subjects it was trained with may provide good estima-
tions of subsegmentations that could be used if labeling individ-
ual subjects is required, eg, in MAS or DL methods, speeding
the annotation process. The agreement observed between expert
annotations and our automatic method supports this claim.

One limitation of applying our method on type 2 dia-
betics is that the method was developed on UK Biobank data
comprising nominally healthy volunteers aged 50–70 with no
self-reported diabetes of any type. Applying the method to
the type 2 diabetes cohort might impair method performance
and needs more careful evaluation. We plan to expand the
method development cohort in a future version.

Conclusion
This study demonstrated the feasibility of automated pancreas
parts segmentation and downstream pancreatic imaging bio-
marker quantification by using groupwise registration of
whole-organ segmentations to a template and subsequent
annotation of the template image. This enables segmental
characterization of heterogeneous pancreatic disease.
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