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Abstract— For training registration networks, weak
supervision from segmented corresponding regions-of-
interest (ROIs) have been proven effective for a) supple-
menting unsupervised methods, and b) being used in-
dependently in registration tasks in which unsupervised
losses are unavailable or ineffective. This correspondence-
informing supervision entails cost in annotation that re-
quires significant specialised effort. This paper describes a
semi-weakly-supervised registration pipeline that improves
the model performance, when only a small corresponding-
ROI-labelled dataset is available, by exploiting unlabelled
image pairs. We examine two types of augmentation meth-
ods by perturbation on network weights and image resam-
pling, such that consistency-based unsupervised losses
can be applied on unlabelled data. The novel WarpDDF and
RegCut approaches are proposed to allow commutative
perturbation between an image pair and the predicted spa-
tial transformation (i.e. respective input and output of regis-
tration networks), distinct from existing perturbation meth-
ods for classification or segmentation. Experiments using
589 male pelvic MR images, labelled with eight anatomical
ROIs, show the improvement in registration performance
and the ablated contributions from the individual strategies.
Furthermore, this study attempts to construct one of the
first computational atlases for pelvic structures, enabled by
registering inter-subject MRs, and quantifies the significant
differences due to the proposed semi-weak supervision
with a discussion on the potential clinical use of example
atlas-derived statistics.

I. INTRODUCTION

A. Learning-based medical image registration
Pairwise image registration is the process of establishing

2D or 3D spatial correspondence between two images, often
termed moving and fixed images, such that the estimated
spatial-correspondence-representing transformation may be
used to align the moving image to the fixed image.
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Such correspondence can be useful in many clinical ap-
plications. Inter-subject image registration is the basis of the
atlas-based segmentation algorithms and population studies
that are important for epidemiology research [1]. Intra-subject
longitudinal image registration can track suspicious patholog-
ical regions for individuals by aligning images acquired from
different time points [2]. Registering images from different
modalities can combine complementary diagnostic informa-
tion from different imaging sources to make informed clinical
decisions or guide surgery and interventions [3]. Stemmed
from computer vision algorithms such as optical flow and pose
estimation, proving its usefulness in medical image analysis,
registration algorithms have been developed and adopted by
many multidisciplinary researches.

The recent development in deep-learning has promoted
the investigation towards learning-based registration meth-
ods [4]–[6]. Fully supervised training of a registration network
requires a number of pairs of moving and fixed images,
with corresponding ground-truth transformation. Ground-truth
transformations, especially deformable transformations, e.g.
with higher degrees of freedom than those in rigid or affine
transformations, are scarce and prohibitively infeasible to be
reliably obtained from many clinical applications. Therefore
many methods adopt unsupervised approaches, which rely on
the availability of effective and robust image similarity mea-
sures. Improved performance could be achieved by introducing
weak supervision from auxiliary information - manual tracing
of hippocampus head and body for intra-patient hippocampus
registration [7], lower pelvic landmarks for intra-patient and
multimodel registration [7]–[9] and left and right ventricle cav-
ity and myocardium for intra-patient cardiac registration [10].
In cases, these segmentations of corresponding structures may
be sufficient or even beneficial without image similarity being
used as part of the loss functions - the cardinal form of weakly-
supervised registration [8], [9].

B. Semi-weakly-supervised registration

First, it is important to clarify “weakly-supervised” and
“semi-supervised” approaches for the purpose of this study,
where the supervision comes from the available segmentation
of corresponding regions of interest (ROIs), between moving
and fixed images. As discussed in the original papers [7]–[10],
these segmented ROIs represent a different type and “weaker”
labels of correspondence at the ROI level, whilst the objective
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of registration network training is to learn (and therefore to
predict at inference) dense correspondence at voxel level.
Semi-supervised learning has also been used to refer to the
same class of registration network training methodologies [11],
perhaps emphasising that the required voxel-level supervision
are only partially available at a subset of all voxel locations
(i.e. segmented ROIs). This is particularly judicious when the
segmented ROIs represent point landmarks. However, to avoid
terminological confusion, we hereinafter refer this type of
segmentation-driven methods to as weakly-supervised training,
thus the “semi-weakly-supervised” (or semi-supervised in the
context of this work) is used to indicate the partially available
segmentation labels, that is a proper subset of training images
(or subjects) with labelled corresponding ROIs.

Second, it is also useful to point out that many clinical
applications lack a valid and robust image intensity-based
similarity measure that can be used for the unsupervised
loss between two unlabelled images [12]. It is this challenge
in many multi-modal registration problems did the weakly-
supervised approaches [7]–[9] intend to address. In these
applications, general training approaches (beyond the existing
intensity-similarity-based unsupervised losses) for utilising
images without segmented corresponding ROIs is desirable.
Although considered outside of the scope of this work, the
proposed semi-weakly-supervised approaches, which utilise
the “unlabelled image pairs”, could also be useful in combina-
tion with these intensity-similarity-based unsupervised losses,
which utilise “unlabelled voxel”.

In general, these segmentation labels for assisting reg-
istration require expert knowledge of radiological anatomy
and pathology as well as a significant amount of time. It
is therefore valuable to develop methods that require less
annotation effort without minimum sacrifice of performance
improvement. This paper investigates semi-weakly-supervised
registration approaches, which reduce cost in labelling by
training on the combination of a small labelled dataset and
a large unlabelled dataset, while minimising the registration
performance loss.

It is interesting to postulate that, at the time of writing,
recent foundation models [13] having yet been applied in
segmentation-supervised registration tasks may be due to the
lack of unsupervised (or self-supervised) training methods
for such registration. Utilising a large amount of images
without labels has been proven effective or even necessary in
foundation model development [14]–[16], and may resort to
methodologies developed in this work for constructing and/or
adapting foundation models for registration tasks.

C. Commutative property for transformation prediction

Semi-supervised learning based on consistency regularisa-
tion has proven its efficacy on image segmentation - an-
other task requires pixel-level prediction. Such consistency
is enforced between predictions with and without various
perturbations applied to input images, network weights and
architectures. Image perturbation applies augmentations such
as affine transformation, CutOut, CutMix and ClassMix to the
input image, and penalises the difference between predictions

when the augmentation is applied before and after the infer-
ence. Specifically, given a randomly sampled augmentation
A, an image I could be augmented to Ĩ = A(I). The model
g is trained to minimise the distance between the prediction
from the augmented image M pre = g(Ĩ) = g(A(I)) and the
prediction from the original image after applying the same
augmentation M post = A(g(I)).

In other words, image perturbation for semi-supervised
segmentation assumes an intuitive functional commutative
property, between the image transformation (for augmentation)
A and segmentation prediction g, and minimises the difference
between g(A(I)) and A(g(I)).

However, learning-based registration networks have dif-
ferent types of model input and output, i.e. predicting the
corresponding transformation parameters U = g(Imov, Ifix),
given a pair of moving and fixed images (Imov, Ifix). The
model input and output are in two very different domains, the
“image-pair domain” and the “transformation domain”. There-
fore, the commutative relationship, between the transformation
prediction g and existing augmentation methods A used in
segmentation (or other task types), does not apply directly.

This motivates our development of a class of commutative
perturbation methods, such that the perturbed model output
(predicted transformation) is expectedly equivalent to the
model output based on a perturbed input (an image pair
to be registered), for consistent losses to be calculated be-
tween the two transformations. This paper proposes two cost-
efficient image augmentation techniques and the correspond-
ing consistency rule for semi-weakly-supervised registration.
Specifically, for each augmentation A applied to the image
pairs (Imov, Ifix), for generating an augmented image pairs
(Ĩmov, Ĩfix) = A(Imov, Ifix), a corresponding augmentation Ã
in the transformation domain is proposed, such that consis-
tency could be enforced by penalising the difference between
Upre = g(A(Imov, Ifix)) and Upost = Ã(g(Imov, Ifix)).

D. Summary of contributions
In this work, we report experimental results using an ex-

ample application of inter-subject registration between male
lower pelvic MR images from prostate cancer patients. The
clinical significance of this application is discussed with one
of the first atlas construction studies in this area (Sec. IV-C).

• We first adopted semi-supervision approaches and es-
tablished a baseline for comparison, in an inter-subject
lower-pelvic MR image registration task.

• We proposed two novel commutative image perturbation
methods and corresponding consistency rules designed
specifically for image registration.

• We carried out experiments on inter-patient multi-
structural lower-pelvic MR registration which proved the
efficacy of the proposed method.

• We presented extensive ablation studies on the effect of
image and weight perturbation, with an attempt to demon-
strate the value of semi-weak supervision in building a
first-of-its-kind lower-pelvic MRI atlas.

II. RELATED WORK
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A. Medical image registration

Early algorithms [17]–[25] formulate registration as an
iterative optimisation to maximise similarity between fixed
image and transformed moving image.

Nowadays, most of state-of-the-art methods adopt deep neu-
ral networks trained large training sets and allow single-step
inference. Due to the scarcity of ground-truth transformation,
especially for deformations, most deep-learning approaches
adopted unsupervised or weakly-supervised training which
maximises the similarity between fixed image and moving
image warped by the predicted transformation. Compared with
unsupervised methods that solely depend on image similarity
metrics [26]–[30], weakly-supervised approaches guide regis-
tration with auxiliary information like segmentation maps and
landmark achieved better and more robust performance. Hu
et al. [8], [9] improved multimodal registration performance
with weak-supervision from full gland segmentations, lower-
pelvic landmarks and patient-specific point landmarks. Hering
et al. [10] utilised annotations for left and right ventricle cavity
and myocardium of a clinical expert for better intra-patient
cardiac registration. Zhu et al. [7] validated the efficacy of
guidance from manual tracing of hippocampus and prostate
segmentation respectively for intra-patient hippocampus and
prostate registration.

B. Semi-supervised learning

Semi-supervised learning improves model performance
without increasing labelling expanse by incorporating a large
amount of unlabelled data during training. It is now commonly
adopted in image segmentation - another task which requires
pixel-level prediction.

Early methods utilised GANs either to introduce auxiliary
tasks to discriminate real and unreal images generated by
GAN [31], or to train the model to fool a discriminator
which differentiates predictions and ground truth [32]. State-
of-the-art methods mostly adopt consistency regularisation,
which enforces consistency across predictions with various
perturbations. Weight perturbation methods [33]–[36] enforced
consistency between predictions from multiple networks with
the same architecture but different weights. Image perturbation
methods [36]–[39] augmented input images with techniques
and enforced consistency of predictions between augmented
images. Commonly adopted spatial augmentation techniques
include classical transformations such as rotation, scaling and
translation, as well as more strongly augmentation methods
such as CutOut, CutMix, ClassMix and so on. While these
augmentations could be directly applied to both image and
predicted segmentation to form matched pairs for segmentation
tasks, processing is required to reflect these transformation
on registration outputs (e.g. dense displacement field). This
paper proposed DDF-based transformation which could be
directly applied to the registration output and RegCut, a strong
augmentation designed for registration.

While registration has been utilised to generate pseudo-
labels for unlabelled images in some semi-supervised seg-
mentation algorithms [40]–[42], from our knowledge, no prior

work adopted semi-supervision directly on the segmentation-
supervised registration tasks.

III. METHOD

A. Task definition
Given a pair of moving image Imov ∈ RW×H×D and fixed

image Ifix ∈ RW×H×D, pairwise registration spatially aligns
the moving image towards the fixed image. W , H and D
indicating the width, height and depth of the 3D volumetric
images 1, respectively. The components of the images 2, imov

xyz

and ifix
xyz , are indexed by their voxel coordinates x = 1, ...,W ,

y = 1, ...,H and z = 1, ..., D, representing image intensity at
individual voxels, respectively. Registration networks predict
a dense displacement field (DDF), U ∈ R3×W×H×D with its
components udxyz , where d ∈ {1, 2, 3}, and u1xyz , u2xyz and
u3xyz indicating the x-, y- and z-displacement at voxel loca-
tion (x, y, z). A registration network g(·; θ) with parameters θ,
i.e. network weights, aims to predict a spatial transformation,
represented by DDF, from the given image pair:

U = g(Imov, Ifix; θ) (1)

For weakly-supervised training, a labelled training set D(lab)
is available, from which moving-fixed image pairs, Imov

(lab) and
Ifix
(lab) ∈ RW×H×D, together with a set of C-class segmentation

masks, Mmov
(c) and Mfix

(c) of the same image size RW×H×D, can
be sampled, (Imov

(lab), I
fix
(lab), {M

mov
(c) }, {Mfix

(c)}) ∼ D(lab), where
C indicates the number of classes (here, types of anatomical
ROIs) thus c = 1, ..., C. The components of Mmov

(c) and Mfix
(c)

are indexed as mmov
(c)xyz and mfix

(c)xyz , respectively. Both are
assigned with a value of 1, if voxel (x, y, z) belongs to the
ROI class c, 0 otherwise, i.e. [mmov

(1)xyz, ...,m
mov
(C)xyz]

⊤ be a
voxel-wise one-hot vector.

Semi-weakly-supervised training has access to an additional
unlabelled training set D(unl), such that the samples of un-
labelled moving-fixed image pairs, of the same image size,
can be drawn, (Imov

(unl), I
fix
(unl)) ∼ D(unl) without segmentation

masks. The following sections describe our proposed methods
to utilise both D(lab) and D(unl) for training the registration
network in Eq. 1.

B. Weak supervision loss on labelled data
A registration network U(lab) = g(Imov

(lab), I
fix
(lab); θ) can be

trained with the labelled set D(lab), by minimising a loss func-
tion Lweak-sup between the U(lab)-warped moving segmentation
masks Mwarp

(c) and the fixed masks Mfix
(c)), where

Mwarp
(c) = Mmov

(c) ◦ U(lab) (2)

where, the image resampling operation is denoted by “◦”,
resampling the left image-sized mask (or image) Mmov

(c) using
the right DDF U(lab), such that the indexed values mwarp

(c)xyz at its
(x, y, z) resampled voxel locations are spatially-interpolated

1The same size is assumed for both images for notional brevity, without
losing its generality in the proposed methods or discussion in this study.

2In this paper, uppercase Imov and Ifix indicate tensor-valued random
variables, whilst lowercase imov

xyz and ifix
xyz are scalar-valued tensor components

with the subscripts x, y and z.
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unlabelled student path

labelled student path

resampling

image aug

transformation aug

unlabelled teacher path

Fig. 1. The proposed semi-weakly-supervised registration pipeline with Lweakly supervised calculated from the labelled pair and Lcons calculated
from the unlabelled pair.

from the (x+ u1xyz, y+ u2xyz, z+ u3xyz) locations from the
original image mmov

(c)xyz coordinates. In practice, the inverse
fixed-to-moving DDF is implemented, for resampling at reg-
ular fixed image grid locations avoiding numerical inverting.
Substituting the predicted DDF U(lab), we have:

Lweak-sup = Ec[Ldice(M
mov
(c) ◦ g(Imov

(lab), I
fix
(lab); θ),M

fix
(c))] (3)

where Ec(·) denotes statistical expectation over C classes. In
this work, the Dice loss is used:

Ldice(M
warp
(c) ,Mmov

(c) )

= −
2 ·

∑
x,y,z m

warp
(c)xyzm

mov
(c)xyz∑

x,y,z m
warp
(c)xyz +

∑
x,y,z m

mov
(c)xyz

(4)

In experiments described in Sec. IV, the described weak
supervision loss is tested independently without using unla-
belled training set as a baseline. It is also used in conjunction
of the consistency losses introduced in the following Secs. III-
C and III-D for the proposed semi-weakly supervision.

C. Consistency following weight perturbation
For unlabelled training set D(unl), network weight perturba-

tion is introduced by adopting the student-teacher paradigm,
which includes a student model and a teacher model with the
same network architecture but separate weights, as illustrated
in Fig. 1. During training, the weights of teacher are a temporal
ensemble from the weights of student. Denote the student and
teacher weights as θ and θt, respectively. The teacher weights

are updated through an exponential moving average (EMA)
scheme based on the current student weights:

θt = γ × θt + (1− γ)× θ (5)

where γ ∈ (0, 1) is a hyperparameter controlling the transfer
weight between epochs.

Given an pair of unlabelled image (Imov
(unl), I

fix
(unl)), the

student and teacher model respectively predicts Us
(unl) =

g(Imov
(unl), I

fix
(unl); θ) and U t

(unl) = g(Imov
(unl), I

fix
(unl); θ

t). Weight per-
turbation enforces consistency between the two DDFs by a
consistency loss function Lcons:

Lcons = fmse(U
t
(unl), U

s
(unl)) (6)

where fmse is a mean-square-error loss defined using the same
tensor component notation as in Sec. III-A:

fmse(U
t
(unl), U

s
(unl)) = Ed,x,y,z[(u

t
(unl)dxyz − us

(unl)dxyz)
2] (7)

The student is trained through backpropagation to minimise
the weak supervision loss (Eq. 4) calculated on the labelled
pairs and the consistency loss (Eq. 6) calculated on the
unlabelled pairs, sampled from D(lab) and D(unl), respectively:

L = Lweak-sup + αLcons (8)

where α is the consistency loss coefficient. This loss func-
tion is considered task-agnostic, adapted from previous semi-
supervised classification or segmentation (Sec. II-B).
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unlabelled student path

labelled student path

resampling

image aug

transformation aug

unlabelled teacher path

Fig. 2. DDF-based augmentation transforms the fixed image Ifix
(unl) by

an augmentation dense displacement field ≊aug and seek consistency
between DDFs predicted from the original and augmented pairs. Note
segmentation masks are not available during training, they are included
here for illustration purpose.

D. Image perturbation for registration

Image perturbation generates an augmented image pair
(Ĩmov

(unl), Ĩ
fix
(unl)) = A(Imov

(unl), I
fix
(unl)) from the pair of unlabelled

image (Imov
(unl), I

fix
(unl)). During training, teacher model predicts

a DDF for the unaugmented pair U t
(unl) = g(Imov

(unl), I
fix
(unl); θ

t)
while student model predicts the DDF for the augmented
pair Ũs

(unl) = g(Ĩmov
(unl), Ĩ

fix
(unl); θ). Whilst A is an augmentation

function on the input image pairs, Ã is an augmentation
function applied on the output DDFs Ã(U t

(unl)), such that
the two DDFs Ũs

(unl) and Ã(U t
(unl)) can be compared and the

consistency loss may be enforced between the two:

Lcons = fmse(Ã(U t
(unl)), Ũ

s
(unl)) (9)

In the following subsections, two types of (input) image-
domain augmentation A are described, each with its cor-
responding Ã augmentation in the (output) transformation-
domain, for the proposed semi-weakly supervised training.

1) WarpDDF: Consider a randomly sampled spatial trans-
formation, represented by a DDF U aug ∈ R3×W×H×D, an
image-domain augmentation A transforms the fixed image
Ifix
(unl) using U aug, while the moving image Imov

(unl) remains
unchanged, that is:

Ĩmov
(unl) = Imov

(unl)

Ĩfix
(unl) = Ifix

(unl) ◦ U
aug (10)

Whilst, the corresponding transformation-domain augmen-
tation Ã becomes:

Ã(U t
(unl)) = U aug + U t

(unl) ◦ U
aug (11)

where the U t
(unl) ◦U

aug operation generalizes the image resam-
pling (described in Sec. III-B) to the left higher-order-tensor-
represented DDF U t

(unl), by independently interpolating each
x, y and z displacement components (i.e. when d = 1, 2, 3,
respectively) of U t

(unl), using the right DDF U aug.
We provide the following derivation to show that the two

DDFs, Ũs
(unl) and Ã(U t

(unl)), are expected to be consistent.

Ĩmov
(unl) ◦ Ã(U t

(unl)) = Ĩmov
(unl) ◦ (U

aug + U t
(unl) ◦ U

aug)

= Imov
(unl) ◦ U

t
(unl) ◦ U

aug

= Iwarp
(unl) ◦ U

aug

(12)

A key insight is that Eq. 11 represents a so-called “transfor-
mation composing” between U t

(unl) and U aug (further details
in Appendix VII), which is decomposed and applied to the
unchanged moving image Imov

(unl) in Eq. 12. This results in
applying U aug on the warped moving image Iwarp

(unl), which
is expected to be aligned with the augmented fixed image
Ĩfix
(unl) = Ifix

(unl) ◦ U
aug.

The proposed WarpDDF data augmentation pair A and Ã is
general for representing different types of spatial transforma-
tion, including rigid, affine and nonrigid variants. This study
adopts random rotation, translation and scaling as an example
of the proposed WarpDDF in the experiments reported in
Sec. IV, as plausible higher-order nonrigid transformation for
inter-subject registration remains an open research question.

2) RegCut: RegCut augments the training data by mixing
unlabelled moving images with unlabelled fixed images, us-
ing a random binary mask M aug ∈ {1, 0}W×H×D, indexed
with maug

x,y,z . In each training iteration, a rectangular cuboid
B = (rx, ry, rz, rw, rh, rd) is sampled, inside which the mask
voxels maug

xyz are labelled as 1, i.e. if x ∈ [rx, rx + rw),
y ∈ [ry, ry + rh) and x ∈ [rz, rz + rd), 0 otherwise.

The mask M aug is used to generate an augmented moving
image Ĩmov

(unl), by replacing intensity values with those from the
fixed image Ifix

(unl) at voxel locations defined by M aug, while,
in this case, the fixed image remains unchanged:

Ĩmov
(unl) = M aug ⊙ Ifix

(unl) + (1−M aug)⊙ Imov
(unl)

Ĩfix
(unl) = Ifix

(unl)

(13)

where ⊙ is component (element)-wise multiplication and 1 is
a constant-valued tensor of the same image size.

The corresponding transformation-domain augmentation
Ã(U t

(unl)) is defined as follows:

Ã(U t
(unl)) = (1−M aug)⊙ U t

(unl) (14)

To show the consistency expected between the augmentation
pair A and Ã (defined in Eqs. 13 and 14) in the proposed
RegCut, we compare the augmented moving image warped
by the augmented transformation Ĩmov

(unl) ◦ Ã(U t
(unl)) and the
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unlabelled student path

labelled student path

resampling

image aug

transformation aug

unlabelled teacher path

Fig. 3. RegCut mix unlabelled moving image with unlabelled fixed
image following a randomly sampled mask and seek consistency be-
tween DDFs predicted from the original and augmented pairs. Note
segmentation masks are not available during training, they are included
here for illustration purpose.

augmented fixed image Ĩfix
(unl) = Ifix

(unl):

Ĩmov
(unl) ◦ Ã(U t

(unl))

=(M aug ⊙ Ifix
(unl) + (1−M aug)⊙ Imov

(unl)) ◦ (1−M aug)⊙ U t
(unl)

=M aug ⊙ Ifix
(unl) + (1−M aug)⊙ (Imov

(unl) ◦ U
t
(unl))

=M aug ⊙ Ifix
(unl) + (1−M aug)⊙ Iwarp

(unl)
(15)

where Iwarp
(unl) = Imov

(unl) ◦ U t
(unl) indicates the warped moving

image. Eq. 15 shows that both regions inside and outside of
the mask, M aug and 1 −M aug, are expected to be consistent
between the image- and transformation-domain augmentation.

3) Combining WarpDDF and RegCut: By design, the two
proposed WarpDDF and RegCut augmentation A can readily
be combined together in the input image domain:

Ĩfix
(unl) = T (Ifix

(unl), u
aug)

Ĩmov
(unl) = M aug ⊙ Ĩfix

(unl) + (1−M aug)⊙ Imov
(unl)

(16)

Using the similar derivation in Eqs. 12 and 15, the correspond-
ing output transformation-domain augmentation thus is:

Ã(U t
(unl)) = (1−M)⊙ (U aug + U t

(unl) ◦ U
aug) (17)

IV. EXPERIMENTS

A. Dataset and Implementation Details
The evaluation is performed on a male lower-pelvic MRI

dataset [43] which includes 589 T2-weighted images acquired

from the same number of patients. For each image, eight
anatomical structures of planning interest, including bladder,
bone, central gland, neurovascular bundle, obturator internus,
rectum, seminal vesicle, peripheral zone were labelled. The
images are randomly sampled into training and testing subsets
in a 3:1 ratio, resulting in a training set with 442 images and
a test set with 147 images.

All images were normalised, resampled and centre-cropped
to an image size of 256 × 256 × 48, with a voxel dimension
of 0.75 × 0.75 × 2.5 during pre-processing. LocalNet [8]
was adopted as the architecture for both student and teacher
model with implementation from the MONAI repository [11].
Image perturbation augmented fixed image through random
rotation between -5 to 5 degree, scaling between 0.75 to 1.25
and translation between -20 to 20 voxels. The models were
trained for 4000 epochs with the first 2000 epochs warmed
up on the labelled dataset using only the weakly-supervised
loss before adding the weight and image consistency loss for
semi-weakly supervision. Training adopts an Adam optimiser
starting at a learning rate of 0.00005 with a minibatch size
of 1. The implementation code has been released at https:
//github.com/kate-sann5100/LowerPelvicReg.

Experiments are carried out at various labelled-unlabelled
ratios r, such that 442×r images are provided with labels and
442 ∗ (1− r) images are unlabelled. To investigate the effect
of utilising unlabelled images, both results with only labelled
images and with all training images are reported. Classical
intensity-based registration algorithms, ‘NiftyReg’ [44], are
also compared as a non-learning baseline method.

B. Ablation Studies on Registration Performance
To investigate the effectiveness of the proposed image

perturbation methods, we report Dice and the 95th per-
centile Hausdorff distance (HD95) results on all eight available
anatomical ROIs, after the following variants of registration
training strategies,

• ’NoAug’: No image perturbation is applied such that
teacher and student receive the same image pair.

• ‘WarpDDF’: Only WarpDDF (Sec. III-D.1) is applied to
the unlabelled fixed image.

• ‘RegCut’: Only RegCut (Sec. III-D.2) is used to generate
the augmented unlabelled moving image.

• ‘WarpDDF+RegCut’: Both WarpDDF and RegCut are
applied (Sec. III-D.3).

C. Computational Atlas for Pelvic MR Images
To demonstrate the potential clinical relevance of the semi-

weakly supervised registration networks, a lower-pelvic atlas
is constructed by registering clinical image samples, from the
test set, using the different registration networks. For a set of
samples {Ii}Ni , an atlas is initialised by choosing the sample
that is the most similar to the average of all samples, based
on the binary Dice score on their segmentation masks. The
final atlas is updated iteratively as the average of samples
after registering each sample to the initialised atlas, until
convergence is reached, as illustrated in Algorithm. 1. In this
experiment, we define a population diversity σ2

pop based on the

https://github.com/kate-sann5100/LowerPelvicReg
https://github.com/kate-sann5100/LowerPelvicReg
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labelled
method

Dice
ratio Bladder Bone Obturator Peripheral Central Rectum Seminal Neurovascular Mean(%) Internus Zone Gland Vesicle Bundle
0.0 NifityReg 9.87±4.53 7.61±3.65 17.53±4.03 6.66±3.39 7.58±3.98 43.26±5.27 3.51±3.21 3.74±2.87 12.47

10.0

sup only 73.90±4.32 83.20±3.28 74.95±2.33 57.59±4.07 75.84±3.58 83.07±2.88 44.70±4.31 37.82±3.88 66.38
NoAug 74.36±4.64 87.46±3.15 79.44±2.11 63.20±3.95 78.87±3.72 84.57±3.17 49.68±4.74 43.68±4.29 70.16

WarpDDF 78.50±4.30 89.49±3.03 80.73±2.16 65.86±4.03 81.05±3.26 86.86±2.62 53.71±4.73 47.16±4.31 72.92
RegCut 77.02±4.68 88.43±3.53 80.21±2.17 65.65±3.89 80.04±3.52 86.07±2.75 55.60±4.67 45.56±4.22 72.32

WarpDDF+RegCut 78.04±4.57 89.56±3.26 81.23±2.11 66.05±4.00 79.58±3.50 87.50±2.79 55.10±4.76 46.99±4.44 73.01

20.0 sup only 77.20±4.42 83.71±3.28 76.19±2.16 61.65±3.73 77.34±3.53 83.80±2.94 50.97±4.19 43.26±3.86 69.26
WarpDDF+RegCut 75.68±4.47 86.31±3.15 78.63±2.25 65.98±3.49 78.89±3.77 85.77±2.62 54.71±4.69 49.44±3.70 71.93

50.0 sup only 85.15±3.06 83.89±3.42 76.07±2.05 68.84±2.76 83.38±2.67 86.88±2.20 58.69±3.83 48.98±3.48 73.99
WarpDDF+RegCut 82.55±3.88 85.14±3.36 77.87±1.96 69.45±2.79 84.49±2.41 87.12±2.30 59.73±3.99 50.68±3.78 74.63

100.0 sup only 83.32±3.81 85.96±3.38 79.56±1.94 69.65±2.90 84.17±2.52 87.47±2.27 60.68±4.20 51.49±3.81 75.29

TABLE I
DICE(%) OF THE PROPOSED ALGORITHMS AND ITS VARIANTS AT WHEN LABELS ARE AVAILABLE FOR 10%, 20%, 50% AND ALL TRAINING IMAGES.

labelled
method

95%HD
ratio Bladder Bone Obturator Peripheral Central Rectum Seminal Neurovascular Mean(%) Internus Zone Gland Vesicle Bundle
0.0 NifityReg 9.48±4.27 42.77±6.52 29.95±3.46 30.95±4.34 17.84±4.45 24.79±3.28 14.82±4.42 37.44±3.95 26.01

10.0

sup only 24.92±3.06 24.81±3.15 20.63±2.72 19.98±2.87 21.84±3.05 23.96±2.79 23.79±2.89 24.18±2.89 23.01
NoAug 23.68±2.96 23.62±3.10 19.55±2.66 19.42±2.93 20.92±2.93 25.20±2.78 21.70±2.86 23.72±2.99 22.23

WarpDDF 23.62±2.96 24.22±3.31 19.74±2.61 19.03±2.80 21.21±2.95 22.84±2.67 21.99±2.95 22.42±2.90 21.89
RegCut 27.33±3.33 25.64±3.36 20.55±2.69 18.53±2.84 20.72±3.00 24.03±2.74 22.56±3.05 23.00±2.93 22.79

WarpDDF+RegCut 23.63±2.98 23.96±3.26 20.03±2.64 18.54±2.79 20.52±2.90 22.56±2.66 22.29±3.00 21.52±2.96 21.63

20.0 sup only 23.79±3.02 25.35±3.24 20.48±2.71 19.87±2.84 22.82±3.06 24.32±2.60 23.22±2.93 23.67±2.79 22.94
WarpDDF+RegCut 24.10±3.02 24.35±3.11 19.69±2.63 19.60±2.91 21.89±3.11 23.96±2.64 22.34±2.99 23.23±2.76 22.40

50.0 sup only 23.76±3.12 25.32±3.22 20.86±2.70 19.81±2.79 21.53±2.99 22.85±2.74 22.49±2.95 22.47±2.72 22.39
WarpDDF+RegCut 23.36±3.09 25.02±3.23 20.31±2.65 19.40±2.82 21.43±2.99 23.91±2.86 22.75±3.01 21.71±2.83 22.24

100.0 sup only 23.41±3.07 25.30±3.25 20.21±2.65 19.21±2.78 21.36±3.02 23.50±2.85 22.00±2.93 21.37±2.78 22.05

TABLE II
95% HAUSDORFF DISTANCE (MM) OF THE PROPOSED ALGORITHMS AND ITS VARIANTS AT WHEN LABELS ARE AVAILABLE FOR 10%, 20%, 50%

AND ALL TRAINING IMAGES.

computational atlas, as an example measure that can be used
for subsequent clinical quantitative analysis. The adopted pop-
ulation diversity σ2

pop indicate the variance of the established
correspondence, represented by the registration-produced dis-
placement field, over all available subject samples. It is calcu-
lated as the variance of paired distance between voxels regis-
tered to the same atlas locations, averaged over spatial voxel
locations, σ2

pop = Ex,y,z[Var({∥[ui
(1)xyz, u

i
(2)xyz, u

i
(3)xyz]

⊤ −
[uj

(1)xyz, u
j
(2)xyz, u

j
(3)xyz]

⊤∥2}i<j)] With udxyz denotes the
registration-produced displacement. This measure is an exam-
ple indicator of morphological and imaging features, which
can potentially be predicting or confounding factors for clini-
cal conditions. For example, the benign prostate enlargement
is positively indicated by the size of the prostate gland, while
the prostate cancer is negatively correlated with gland size.
Statistics about gland volume have been found reliable to
measure and straightforward to apply for positioning indi-
vidual subjects in different (e.g. healthy and pathological)
patient cohort populations, in other areas such as preclinical
and human neuroimaging studies. The construction of the
computational atlas should facilitate such population studies
in pelvic organs. In this study, we present experimental results
of the above-defined population diversity to quantify their
differences due to semi-weakly-supervised registration, where
specific hypothesis generation is made and discussed in Sec. V,
when interesting results are observed.

Algorithm 1: Atlas generation
input : Neural network g with parameters θ.

A set of sample {Ii}Ni .
output: Atlas A.
for i ∈ 1, ..., N do

Compute similarity between the sample and the
average: Si = Sim(Ii, Iavg)

end
Choose the sample with highest similarity:
c = argmaxi Sim(Ii, Iavg)

Initialise atlas: A0 = Ic

for i ∈ 1, ..., N do
Predict DDF that register the sample to the current

atlas: ui
t = g(Ii, A0; θ)

Warp the sample with the predicted DDF:
Iit = T (Ii, ui

t)
end
Update atlas: A = 1

N

∑N
i=0 I

i

V. RESULTS

Table IV and IV respectively summarised Dice score and
95% Hausdorff distance achieved by the proposed algorithms
and its variants at when labels are available for 10%, 20%,
50% and all training images. The proposed method with both
strong augmentations achieved an improvement of 6.63%,
2.67% and 0.66% in Dice score with p-value being 8.91e-37,
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Fig. 4. (a) The resulting atlas and associated segmentation masks. (b)
The probability maska of the atlas for the eight structures.

labelled method CG
ratio (%) top 20% bottom 20% ratio

10.0

sup only 22.67 37.52 0.60
NoAug 22.94 40.59 0.57

WarpDDF 20.78 28.65 0.73
RegCut 30.05 49.45 0.61

WarpDDF+RegCut 17.68 23.93 0.74

20.0 sup only 25.76 41.42 0.62
WarpDDF+RegCut 20.85 33.55 0.62

50.0 sup only 25.03 35.88 0.70
WarpDDF+RegCut 21.86 31.00 0.71

100.0 sup only 19.06 24.00 0.79

TABLE III
POPULATION DIVERSITY ACROSS THE TOP AND BOTTOM 20%

COHORTS MEASURED BY CENTRAL GLAND VOLUME OF THE PROPOSED

ALGORITHMS AND ITS VARIANTS AT WHEN LABELS ARE AVAILABLE FOR

10%, 20%, 50% AND ALL TRAINING IMAGES. THE RATIO BETWEEN

TOP AND BOTTOM 20% POPULATION DIVERSITY IS REPORTED IN THE

LAST COLUMN.

7.43e-12 and 2.81e-3 as well as a reduction of 1.37 mm, 0.61
mm and 0.24 mm in 95% Hausdorff distance when labels are
available for 10%, 20%, 50% of the training images. Intuitively
the improvement decreases as the labelled ratio increases.
Notably, the proposed method trained with a labelled ratio
10% outperformed the fully supervised method trained on the
same amount of labelled images, at a labelled ratio of 50%,
and has a difference of only 2.28% in Dice score to the fully
supervised baseline.

Trained on a training set with 10% of the images labelled,
the semi-supervision without image perturbation with the
proposed augmentations achieved an improvement of 2.78% in
Dice score. Adding the warp augmentation, RegCut augmen-
tation and both augmentations respectively achieved a further
improvement of 2.76%, 2.16% and 2.85% with p-values being
1.93e-11, 9.47e-9 and 2.37e-10 (paired t-tests at a significance
level of α=0.05), respectively, proving the efficacy of both
proposed augmentations.

Figure 4 visualises the obtained atlas as described in

Sec. IV-C. Tables V clusters the computed population diversity
based on their gland zonal volumes (a negative predictor
of clinically significant cancer). Use the population diver-
sity difference at the bottom row as a reference, between
the top and bottom 20% of the cases (bottom row), when
supervised registration trained on 100% labelled data. This
difference, also indicated by the ratio of 0.79, decreases using
fewer labelled data. Compared to alternative methods using
a small amount (10%) of labelled data, this difference was
indeed increased by the combined DDF+RegCut, reflecting
the proposed approaches’ ability to recover the difference due
to reduction in labelled data.

VI. DISCUSSION AND CONCLUSION

This work proposed semi-weakly supervised methodolo-
gies with novel weight and image perturbation to reduce
annotation required for segmentation-supervised registration.
Experiments demonstrated the efficacy of using unlabelled
data with the proposed approaches and augmentations on
inter-subject multi-structural lower-pelvic MR registration. We
further demonstrated that, using the proposed semi-weakly-
supervised registration algorithms, a lower-pelvic anatomical
atlas can be constructed and potentially benefits from the
added unlabelled data.
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VII. APPENDIX - DDF COMPOSING AND DECOMPOSING

Sequential DDFs: An output image I (2) is resampled by
warping an original input image I (0), with two consecutive spa-
tial transformations, represented by two DDFs, UA followed
by UB.

I (2) = I (0) ◦ UA ◦ UB (18)

Let I1 denote the intermediate image, thus:

I (1) = I (0) ◦ UA (19)

I (2) = I (1) ◦ UB (20)

For the purpose of this proof, images I (0)(x0, y0, z0),
I (1)(x1, y1, z1) and I (2)(x2, y2, z2) are functions of spatial
coordinates, in their respective image coordinate systems.

Eq. 19 represents the interpolation-based image resampling
between the two imaging coordinates:

x1 + uA
(d=1)(x1, y1, z1) = x0

y1 + uA
(d=2)(x1, y1, z1) = y0

z1 + uA
(d=3)(x1, y1, z1) = z0

(21)

where uA
(d=1), u

A
(d=2) and uA

(d=3) are the DDFs in respective
x-, y- and z-directions. In practice, they are functions of the

spatial coordinates in the (transformed) image I (1) coordinate
system (for querying (x0, y0, z0) locations in grid data inter-
polation). Analogously, Eq. 20 leads to:

x2 + uB
(d=1)(x2, y2, z2) = x1

y2 + uB
(d=2)(x2, y2, z2) = y1

z2 + uB
(d=3)(x2, y2, z2) = z1

(22)

Therefore, the sequential transformation, applying UA and UB

as in Eq. 18, obtains:

x0 = x2 + uB
(d=1)(x2, y2, z2) + uA

(d=1)(x1, y1, z1)

= x2 + uB
(d=1)(x2, y2, z2) + uA

(d=1)

(x2 + uB
(d=1)(x2, y2, z2),

y2 + uB
(d=2)(x2, y2, z2),

z2 + uB
(d=3)(x2, y2, z2))

(23)

Composed DDFs: Now we consider composing UA and
UB, by first defining a new composed spatial transformation
UC, such that:

I (2) = I (0) ◦ UC (24)

Using the same notation as in Eqs. 21 and 22, this spatial
transformation in Eq. 24 represents:

x2 + uC
(d=1)(x2, y2, z2) = x0

y2 + uC
(d=2)(x2, y2, z2) = y0

z2 + uC
(d=3)(x2, y2, z2) = z0

(25)

Let UC = UB +UD, where UD = UA ◦UB is a generalisation
of the resampling in Eq. 20, applying UB on individual
displacement components of UA, i.e. d = 1, d = 2 and d = 3:

xD + uB
(d=1)(xD, yD, zD) = xA

yD + uB
(d=2)(xD, yD, zD) = yA

zD + uB
(d=3)(xD, yD, zD) = zA

(26)

where (xA, yA, zA) and (xD, yD, zD) are spatial coordinates
in the UA and UD DDF coordinate systems, respectively.

For resampling I (2), the image coordinate system I (2) defines
the UD coordinate system, that is:

x2 + uB
(d=1)(x2, y2, z2) = xA

y2 + uB
(d=2)(x2, y2, z2) = yA

z2 + uB
(d=3)(x2, y2, z2) = zA

(27)

Therefore, the composed transformation, applying UC as in
Eq. 24, obtains:

x0 = x2 + uC
(d=1)(x2, y2, z2)

= x2 + uB
(d=1)(x2, y2, z2) + uD

(d=1)(xA, yA, zA)

= x2 + uB
(d=1)(x2, y2, z2) + uA

(d=1)

(x2 + uB
(d=1)(x2, y2, z2),

y2 + uB
(d=2)(x2, y2, z2),

z2 + uB
(d=3)(x2, y2, z2))

(28)

Decomposed DDFs: Finally, comparing Eq. 28 and Eq. 23,
which also holds for y0 and z0, shows that:

I (2) = I (0) ◦ (UB + UA ◦ UB) = I (0) ◦ UA ◦ UB (29)
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