Supplementary information

¹⁰⁷¹ SIR+ models: Accounting for interaction-dependent disease suscepti-¹⁰⁷² bility in the planning of public health interventions

1073 Maria M. Martignoni, Aura Raulo, Omer Linkovski, Oren Kolodny

1074 Contents

1075	1	Introduction	3
1076	2	Model and Methods	4
1077		2.1 The SIR+ model	4
1078		2.2 Processes driving changes interaction-dependent health benefits	5
1079		2.2.1 Acquisition of interaction-dependent health benefits $\ldots \ldots \ldots \ldots$	5
1080		2.2.2 Loss of interaction-dependent health benefits $\ldots \ldots \ldots \ldots \ldots \ldots$	7
1081		2.3 Processes determining infection transmission and disease severity	8
1082		2.3.1 Infection resistance and the $\alpha(H)$ function	8
1083		2.3.2 Disease tolerance and the $p(H)$ function $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	9
1084		2.4 The role of the contact rate C and scenarios of interest	10
1085	3	Results	11
1086	4	Discussion	13
1087	5	Concluding remarks	17
1088	Α	Default parameters	32
1089	В	Function $p(H)$	33
1090	С	Acquisition and loss of interaction-dependent health benefits over time	33
1091	D	Results obtained for linear $\alpha(H)$ and $p(H)$, and for $\alpha_{min}, p_{min} = 0$	36

- - 2			
Symbol	Description	Unit	Default value
S	Proportion of susceptible population		
Ι	Proportion of infected population		I
R	Proportion of recovered population		Ι
Н	Average interaction-dependent health benefits of a population	Health benefits	I
C	Contact rate	Contact/time	0-30
k	Fractional contribution of each contact to an increase in H		0.25, 0.5, 0.75, 1
h	Maximal interaction-dependent health benefits acquired from each	Health benefits/contact	0.1
	contact		
7	Recovery rate	1/time	1/7
μ	Recovery rate (severe cases)	1/time	1/10
δ	Rate of loss of interaction-dependent benefit	1/time	0.1
α_{max}	Probability of infection transmission given a contact (low H)	1/contact	0.04
α_{min}	Probability of infection transmission given a contact (high H)	1/contact	0.02
p_{max}	Probability of severe illness from infection (low H)		blue 0.05
p_{min}	Probability of severe illness from infection (high H)		0.03
dI	Adjusted contribution of infected individuals to the acquisition of		0.6
	interaction-dependent health benefits		
p_R	Adjusted contribution of recovered individuals to the acquisition		0.8
	of interaction-dependent health benefits		
H_{max}	Critical value of H above which interaction-dependent health	Health benefits	10
	benefits can no longer be acquired through contact		
H_i^{lpha}	Critical value of H determining a change in infection resistance	Health benefits	5
H_i^p	Critical value of H determining a change of disease tolerance	Health benefits	IJ

 Table A.1: Variables and default parameter values chosen for the simulations.

1092 A

Default parameters

1093 **B** Function p(H)

Function p(H) represents the dependency on H of the probability p of experiencing severe illness from infection, and can be modelled equivalently to the probability of infection transmission $\alpha(H)$ (see Eqs. 3 and Eqs. 4, in the main manuscript). When considering that passumes a sigmoid form, we write

$$p(H) = p_{min} + \frac{p_{max} - p_{min}}{2} [1 - \tanh((H - H_i^p))].$$
(6)

1099 Alternatively, the function p(H) may assume a linear form, as

1

1098

$$p(H) = \begin{cases} -\frac{(p_{max} - p_{min})}{2 H_i^p} H + p_{max} & \text{for } H \le 2 H_i^p, \\ p_{min} & \text{for } H > 2 H_i^p. \end{cases}$$
(7)

¹¹⁰¹ The graphical representation of Eqs. (6) and (7) is provided in Fig. 2(b).

¹¹⁰² C Acquisition and loss of interaction-dependent health ¹¹⁰³ benefits over time

Consider changes in the average interaction-dependent health benefits H experienced by an initially susceptible population over time. From Eqs. (1) and (2), we know that:

$$\frac{dH}{dt} = \begin{cases} C k h - \delta H & \text{for} \quad \mathbf{H} \leq \mathbf{H}_{\max}, \\ -\delta H & \text{for} \quad \mathbf{H} > \mathbf{H}_{\max}. \end{cases}$$
(8)

Note that, for constant contact rate C and in a fully susceptible population (i.e., when S = 1 and I, R = 0), H reaches an equilibrium H^* which corresponds to

$$\lim_{t \to \infty} H(t) = H^* = \begin{cases} C k \frac{h}{\delta} & \text{for } C k \frac{h}{\delta} \le H_{max}, \\ H_{max} & \text{for } C k \frac{h}{\delta} > H_{max}. \end{cases}$$
(9)

As Eq. (8) is not continuous, in order to solve it numerically, we use a smooth version of the function dH/dt, for which $\zeta(H)$ is given by

1112
$$\zeta(H) = C k h \frac{1}{2} [1 - \tanh(3(H - H_{max}))]$$
(10)

and the differential equation dH/dt is given by

¹¹¹⁴
$$\frac{dH}{dt} = C k h \frac{1}{2} [1 - \tanh(3(H - H_{max}))] - \delta H.$$
(11)

A graphical representation of Eq. (10) is provided in Fig. C.1.

Fig. C.1: Function $\zeta(H)$ of Eq. (10), with $H_{max} = 10$, C = 10, h = 0.1 and k = 0.5.

In Fig. C.2, the solution H(t) of Eq. 11 is plot as a function of time for different contact 1116 rates (parameter C) and for different fractional contribution of each contact to H (parameter 1117 k). As given in Eq. (9), the solution H(t) tends to the equilibrium value $H^* = Ckh/\delta$ 1118 for $H \leq H_{max}$. When $H > H_c^m$, the value of H(t) would decrease and stabilize around 1119 $H^* = H_{max}$. Note that, for constant ratio h/δ , the equilibrium value H^* is reached much 1120 faster for a higher contact rates C and when a higher fraction of contacts contributes to 112 the acquisition of health benefits (parameter k). Increasing the ratio h/δ will also cause the 1122 equilibrium value to be reached faster. 1123

In Figs. C.3 and C.4 we show how interaction-dependent health benefits (H), the probability of infection transmission given a contact $(\alpha(H))$ and the probability of experiencing severe disease (p(H)) vary as a function of the contact rate C, in an initially fully susceptible population.

Fig. C.2: The average interaction-dependent health benefits H experienced by a population as a function of time, for different contact rates (from the thicker to thinner lines: C = 3, 5, 8, 15, 30, for (a) k = 0.25, and (b) k = 0.75. For the simulations, dH/dt is modeled according to Eq. 11, with $H_{max} = 10$

. Other default parameter values are provided in Table A.1.

Fig. C.3: Left vertical axis: Probability of infection transmission given a contact (i.e., function $\alpha(H)$, Eq. (4)), as a function of the contact rate C. An equivalent plot can be obtained when considering disease tolerance, and the probability of experiencing severe illness from infection (i.e., function p(H), see Fig. C.4). Right vertical axis: Average interaction-dependent health benefits H experienced by a population at equilibrium (H^* , Eq. (9)), as a function of the contact rate C. Both functions are represented for k = 0.25, 0.5, 0.75, 1, with k = 1 indicating that all contacts contribute to an increase in H, and k = 0.25 indicating that only 1/4 of the contacts contribute to an increase in H. Note that $H^* = Ckh/\delta$ for $Ckh/\delta \leq H_{max}$, and $H^* = H_{max}$ for $Ckh/\delta > H_{max}$ (see Eq. 9). The parameter range of C for which $H^* \to Ckh/\delta$ (i.e., $C = [0, H_{max}\delta/(hk)]$) for different values of k is indicated in blue at the bottom of the figure. The probability of infection given a contact $\alpha(H)$ decreases with increasing H^* , and thus with increasing C, where $\alpha(H)$ tends to its minimal value α_{min} when $H > H_i^{\alpha}$. The range $C > H_i^{\alpha} \delta/k$ for which $\alpha(H) \to \alpha_{min}$ is indicated for different values of k in orange at the bottom of the figure. Default parameter values chosen for the simulations are provided in Table A.1.

Fig. C.4: Left vertical axis: Plot of disease tolerance, expressed as the probability of experiencing severe illness from infection (i.e., function p(H), Eq. 6), as a function of the contact rate C. Right vertical axis: Average interaction-dependent benefits H experienced by a population at equilibrium (i.e., H^* , Eq. (9)), as a function of the contact rate C. Both functions are represented for k = 0.25, 0.5, 0.75, 1. See Fig. C.3 for a more detailed explanation of the figure.

¹¹²⁸ **D** Results obtained for linear $\alpha(H)$ and p(H), and for

1129

 $\alpha_{min}, p_{min} = 0$

¹¹³⁰ We would like to explore how the scenarios described in Fig. 3 may change when considering ¹¹³¹ linear $\alpha(H)$ and p(H) functions (Eqs. (3) and (7)), instead of a sigmoid function (Eqs. (4) ¹¹³² and (6)). Additionally, we investigate the impact of setting parameters α_{min} and p_{min} to zero ¹¹³³ on the dynamics. Results are shown in Figs. D.1 and D.2.

Fig. D.1: Plot equivalent to Fig. 3, but considering that (a,b) the probability of infection transmission given a contact $(\alpha(H))$, and (c) the probability of experiencing severe illness (p(H)), decrease linearly with increasing interaction-dependent health benefits (see Eqs. (3) and (7)).

Fig. D.2: Plot equivalent to Fig. 3, but considering that (a,b) the probability of infection transmission given a contact α_{min} and (c) the probability of experiencing severe illness p_{min} reduce to zero when interaction-dependent health benefits are high. Note that in this case (b) an epidemic outbreak, or (c) severe disease occurs only if physical distancing is in place.