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Abstract Quantitative constraints on past mean ocean temperature (MOT) critically inform our historical
understanding of Earth's energy balance. A recently developed MOT proxy based on paleoatmospheric Xe, Kr,
and N2 ratios in ice core air bubbles is a promising tool rooted in the temperature dependences of gas solubilities.
However, these inert gases are systematically undersaturated in the modern ocean interior, and it remains
unclear how air‐sea disequilibrium may have changed in the past. Here, we carry out 30 tracer‐enabled model
simulations under varying circulation, sea ice cover, and wind stress regimes to evaluate air‐sea disequilibrium
in the Last Glacial Maximum (LGM) ocean. We find that undersaturation of all three gases was likely reduced,
primarily due to strengthened high‐latitude winds, biasing reconstructed MOT by − 0.38 ± 0.37°C (1σ).
Accounting for air‐sea disequilibrium, paleoatmospheric inert gases indicate that LGMMOT was 2.27 ± 0.46°
C (1σ) colder than the pre‐industrial era.

Plain Language Summary The ocean plays a central role in Earth's climate system as a major
reservoir of heat. Understanding how ocean heat content (OHC) changed in the past is therefore key to
unraveling the history of global climate. Xenon, krypton, and nitrogen trapped in ice core air bubbles offer a
means of reconstructing past OHC, because changes in global ocean temperature affect the solubilities of these
gases in seawater, leading to corresponding changes in their atmospheric abundances. For example, a colder
ocean can hold more xenon, meaning less xenon resides in the atmosphere. However, these gases in the ocean
today are slightly out of equilibriumwith the atmosphere (i.e., they are undersaturated), and it remains unclear to
what extent this disequilibrium could have changed in the past. We carried out global atmosphere‐ocean model
simulations, finding that undersaturation was likely reduced in the Last Glacial Maximum (LGM), a colder era
of global climate∼20,000 years ago. Our analysis suggests that a small component of the additional xenon in the
colder LGM ocean arose from this change in air‐sea disequilibrium. After accounting for this effect, ice core
noble gas measurements suggest a slightly warmer LGM ocean than previously thought.

1. Introduction
With a heat capacity three orders of magnitude larger than the atmosphere, the ocean plays a leading role in
modulating Earth's surface temperature. The global ocean has taken up over 90% of the excess heat in the Earth
system since the Industrial Revolution (Cheng et al., 2017; Levitus et al., 2012; Zanna et al., 2019), and ocean heat
uptake accounts for roughly half of the total planetary energy gain during the Last Glacial Termination (∼18–11
ka) (Baggenstos et al., 2019). Robustly quantifying past changes in ocean heat content (OHC) is therefore crucial
for understanding long‐term changes in Earth's energy balance. The recent development of an ice core proxy for
mean ocean temperature (MOT), based on past changes in the relative abundance of inert gases in the well‐mixed
troposphere, represents a major advance toward precisely constraining past OHC changes. Of particular climatic
interest is the change in OHC during the Last Glacial Maximum (LGM, ∼26–18 ka), when global surface
temperatures were cooler (Seltzer et al., 2021; Tierney et al., 2020), atmospheric CO2 concentrations were
reduced (Marcott et al., 2014), sea level was lower (Lambeck et al., 2014), and ocean circulation was altered
(Curry & Oppo, 2005).

The ice‐core MOT proxy makes use of the different solubility temperature dependency of Xe, Kr, and N2 in
seawater (Hamme & Emerson, 2004; Jenkins et al., 2019) to infer past MOT based on ice core measurements of
past atmospheric composition. The underlying principle is that cooling enhances gas solubilities in the global
ocean, leading to a net transfer of inert gases from the atmosphere to ocean, with the relative effect being largest
for Xe (most temperature sensitive) and smallest for N2 (least temperature sensitive). As the inventories of inert
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gases are conserved within the ocean‐atmosphere system, differential changes in global ocean gas content (e.g.,
between Xe and N2) will impact atmospheric gas ratios. For example, cooling of the global ocean will lower the
atmospheric Xe/N2 ratio because a greater fraction of atmospheric Xe, relative to N2, is transferred to the ocean. A
recent compilation of ice core inert gas measurements (Shackleton et al., 2023) from three Antarctic ice cores
(Baggenstos et al., 2019; Bereiter et al., 2018; Shackleton et al., 2019, 2020) precisely constrains the change in
Xe/N2, Kr/N2, and Xe/Kr in the LGM atmosphere to − 3.23± 0.36‰, − 1.15± 0.17‰, and − 2.07± 0.29‰ (1σ),
respectively, relative to the modern atmosphere, as shown in Figure S1 in Supporting Information S1. The
corresponding change in MOT based on these inert gas constraints is − 2.65 ± 0.27°C (1σ) relative to the pre‐
industrial ocean, if changes in air‐sea disequilibrium are neglected (Shackleton et al., 2023).

Although the MOT proxy is conceptually based on the temperature dependency of equilibrium solubility func-
tions, concentrations of Xe, Kr, and N2 in the modern ocean are not in perfect solubility equilibrium with the
atmosphere. Each of these gases displays a characteristic undersaturation in the deep ocean of up to several
percent that is largest for Xe and smallest for N2. Prior studies have attributed these disequilibria to rapid cooling
in association with deep water formation, incomplete equilibration, and bubble injection from breaking waves
and/or the release of occluded air bubbles during submarine glacial ice melting (Hamme & Severinghaus, 2007;
Hamme et al., 2017; Jenkins et al., 2016, 2023; Loose & Jenkins, 2014; Loose et al., 2016; Seltzer et al., 2019,
2023). These processes have also been linked to the kinetics of global atmosphere‐ocean disequilibria and cor-
responding fluxes of chlorofluorocarbons, CO2, and O2 (Keeling et al., 1998; Takahashi et al., 1997; Wang
et al., 2021). A recent study suggested that changes in the magnitude of air‐sea disequilibria in the LGM ocean
could have an appreciable effect on paleoatmospheric inert gas ratios, raising the possibility that previous ice‐core
based MOT estimates—which have not accounted for changes in air‐sea disequilibrium—could be biased
(Pöppelmeier et al., 2023). Thus, for example, a reduction in air‐sea disequilibrium in the LGM ocean could
increase the ocean inventory of Xe and thereby reduce atmospheric Xe/N2 independent of ocean cooling, leading
to a cold bias in ice‐core estimates of MOT.

Here we carry out a suite of 30 tracer‐enabled ocean general circulation model (GCM) experiments to simulate the
solubility disequilibria of Xe, Kr, and N2 in the LGM ocean. Using the results of these simulations, we assess the
likely impact of past changes in air‐sea exchange on paleoatmospheric inert gas ratios and corresponding in-
ferences of MOT. Finally, we discuss the physical mechanisms underlying these simulated changes and present a
revised estimate and uncertainty range for LGM MOT change.

2. Model Simulations of Air‐Sea Disequilibrium in the LGM Ocean
To estimate changes in solubility disequilibria, we simulated physical air‐sea gas exchange and transport of gases
within the ocean interior. We define solubility disequilibrium, Δeq, for a dissolved gas as

Δeq ≡ (
C
Ceq

− 1 ) × 100 (1)

where C is the concentration of a gas (Xe, Kr, or N2) in a parcel of seawater and Ceq is the equilibrium con-
centration of that gas at the potential temperature and salinity of the water parcel at global‐mean sea level pressure
(SLP) (e.g., 1 atm in the present day).

The primary goal of this study is to determine sensitivities of global volume‐weighted mean Δeq of Xe, Kr, and N2

(see Text S1 in Supporting Information S1) to different ocean properties (e.g., circulation, temperature, salinity,
sea ice, wind stress) relative to a pre‐industrial control (PIC) experiment through a suite of model simulations.
Table S1 in Supporting Information S1 summarizes the details and results from 30 simulations, each of which was
carried out using the UVic Earth System Climate Model (UVic ESCM; Weaver et al., 2010), which has a 1.8°
latitude × 3.6° longitude grid with 19 vertical ocean layers. Climatological surface wind fields from Coordinated
Ocean Research Experiments version 2 (CORE‐2) (Large & Yeager, 2022) at 6 hourly resolution were used, with
windspeed enhanced or diminished by up to 50% in the high latitudes (poleward of 50°) across these experiments
(Table S1 in Supporting Information S1). The physical transport of dissolved gas tracers within the ocean is
performed offline using the transport matrix method (TMM; Khatiwala, 2007; Khatiwala, 2018) run to steady
state (8,000 years) in each experiment.
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Model experiments were carried out with transport matrices extracted from
the PIC and LGM configurations of UVic ESCM constrained by an extensive
set of modern oceanographic and sedimentary paleoproxy observations
(Khatiwala et al., 2019; Muglia & Schmittner, 2015). Depending on the
experiment, sea ice fields were prescribed using either the corresponding PIC
or LGM UVic simulation, or an enhanced LGM sea ice field (equatorward
shift of 1.8°) as shown in Figures S2–S4 in Supporting Information S1. Air‐
sea gas exchange was simulated using a bubble‐mediated parameterization
(Liang et al., 2013), and gas fluxes were scaled down linearly by sea ice area
fraction (e.g., no gas exchange occurs in a fully sea ice‐covered grid cell).
Imposed wind speed changes in our experiments directly influence gas ex-
change, but not circulation, which is separately prescribed from LGM or PIC
transport matrices. Fifteen sets of identical sets of simulations were carried
out implementing either the original model (L13b1) or a modification with
enhanced bubble fluxes (L13b2). The latter has recently been shown to better
reproduce a set of high‐precision inert gas tracer measurements in the modern
ocean (Seltzer et al., 2023). Global‐mean Δeq results for the L13b2 PIC
simulation were − 3.2%, − 2.3%, and − 0.4% for Xe, Kr, and N2, respectively,
closely resembling a recent compilation of global noble gas and N2 mea-
surements (Hamme et al., 2018). Whereas global‐mean Δeq values were lower
in the L13b1 PIC (− 4.5%, − 3.4%, and − 1.7% for Xe, Kr, and N2, respec-
tively), simulated changes in Δeq, relative to their respective PIC simulations,
across all experiments carried out in this study, were nearly identical between
the L13b1 and L13b2 sets of simulations, with a root‐mean‐squared deviation
of 0.1% or less for all gases (Figure S5 in Supporting Information S1).
Because the goal of this study is to constrain such changes in Δeq between the
LGM and pre‐industrial era, this indicates that our analysis is insensitive to
scaling of bubble fluxes. Hereafter, all results are from the L13b2 set of
simulations.

We first consider separately the influences of sea ice and circulation on air‐sea disequilibrium by holding near‐
surface (10 m) winds constant at PIC values. Figure 1 shows the results of three experiments implementing (a)
LGM circulation with PIC sea ice and winds, (b) LGM sea ice with PIC circulation and winds, and (c) LGM
circulation and sea ice with PIC winds. We find that slower overturning circulation in the LGM reduces
undersaturation while sea ice enhances undersaturation (Khatiwala et al., 2019), with the effects being largest for
Xe and smallest for N2. Crucially, we find that circulation and sea ice effects are not additive, as was previously
found for dissolved inorganic carbon and oxygen (Cliff et al., 2021; Khatiwala et al., 2019), and that simulta-
neously replacing PIC circulation and sea ice with LGM fields leads to virtually no change in Δeq (− 0.05%,
+0.03%, +0.19% for Xe, Kr, and N2, respectively). The lack of change in Δeq reflects compensation between a
reduced driving forcing toward disequilibrium (i.e., reduced sea‐to‐air heat flux in a more sluggish ocean) and a
reduced restoring force toward equilibrium (i.e., impedance of gas transfer by sea ice). A separate analysis of
experiments carried out with fixed LGM circulation but either PIC, LGM, or expanded LGM sea ice confirm that
sea ice extent, by itself, acts to enhance undersaturation (Figure S6 in Supporting Information S1). Given a lack of
quantitative knowledge about the extent of LGM sea ice, we adopt half the differences in Δeq between LGM
circulation experiments with LGM and PIC sea ice (Figures S2 and S3 in Supporting Information S1) as an
estimate of the 1σ uncertainty in Δeq associated with sea ice extent.

To assess the role of changes in high‐latitude near‐surface winds in the LGM, considering the non‐additivity of
sea ice and circulation effects, we carried out a set of simulations implementing both LGM circulation and LGM
sea ice while enhancing or diminishing high‐latitude wind speed (poleward of 50°) relative to the PIC. Figure 2
shows the results of these simulations, indicating that strengthened winds act to reduce undersaturation, while
weakened winds act to increase undersaturation of Xe, Kr, and N2. Enhancement of undersaturation induced by
weaker winds is largest for Xe, whereas reduction of undersaturation by stronger winds is largest for N2. Of these
three gases, Xe is the slowest diffusing, most soluble, and most temperature dependent (in terms of its solubility).
Reducing wind speed slows gas exchange, allowing a larger cooling‐induced undersaturation to persist without

Figure 1. Influence of Last Glacial Maximum (LGM) circulation and sea ice
on mean‐ocean gas saturation anomalies, Δeq. Changes in Δeq are shown for
Xe, Kr, and N2 by comparing three equilibrium simulation experiments to
the pre‐industrial control (PIC) simulation: (1) Circulation: LGM circulation
with PIC winds and sea ice; (2) Sea Ice: LGM sea ice with PIC winds and
circulation; (3) Both: LGM sea ice and circulation with PIC winds. The
individual variable experiments are useful in a diagnostic sense,
demonstrating that slower/shallower LGM circulation acts to reduce
undersaturation (increase Δeq) and enhanced LGM sea ice extent acts to
increase undersaturation (reduce Δeq). The individual effects are non‐
additive–i.e., simultaneously changing both circulation and sea ice to LGM
conditions results in virtually no change in Δeq, despite the different
magnitudes of Δeq responses to single‐forcing experiments.
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erasure by air‐to‐sea gas transfer, which affects Xe undersaturation the most.
Conversely, increasing wind speed enhances air‐to‐sea gas transfer due to
faster surface diffusion and enhanced bubble fluxes (both injection of
completely dissolving bubbles and exchange across partially dissolving
bubbles). This reduces or eliminates the undersaturation caused by cooling of
the high‐latitude surface ocean, the effect being largest for N2, because it is
the least soluble and thus most sensitive to bubble injection (Hamme &
Emerson, 2004, 2013). While Kr and Xe are less sensitive to injection of
completely dissolving bubbles, wind‐driven bubble fluxes still enhance gas
exchange across partially dissolving bubbles, which reduces or eliminates
cooling‐driven undersaturation. Recent Ar isotope constraints in the modern
ocean suggest that enhanced exchange of heavier noble gases across partially
dissolving bubbles is an important process (Seltzer et al., 2023).

Although considerable uncertainty exists regarding high‐latitude near‐surface
wind speed in the LGM, particularly in the Southern Ocean, numerous proxy
and model‐based studies suggest strengthened winds in the LGM (Kohfeld
et al., 2013; McGee et al., 2010; Moore et al., 2000; Sime et al., 2013, 2016).
Other studies indicate a mean LGM weakening of the Antarctic Circumpolar
Current and westerly winds (Gray et al., 2023; Lamy et al., 2015). Deep water
formation and ventilation of the interior ocean is largely a winter phenome-
non, and, to our knowledge, there are no proxy constraints on wintertime wind
speed changes in the high northern and southern latitude regions of deep water
formation in the LGM. Thus, we analyzed LGM‐PIC wind speed changes in
the third generation of Paleoclimate Modeling Intercomparison Project

(PMIP3), the most recent era with available climatological wind fields. Following the change in ocean water mass
volumes suggested by Bereiter et al. (2018), we assume that roughly one third of the global ocean is ventilated by
the wintertime high northern latitudes and two thirds by the wintertime high southern latitudes. The intermodel
mean increase in high‐latitude winds (poleward of 50°) is 25.6 ± 15.3% (1σ), based on PMIP3 models (Table S2
in Supporting Information S1; Adloff et al., 2018; Brady et al., 2013; Kageyama, Braconnot, Bopp, Caubel,
et al., 2013; Kageyama, Braconnot, Bopp, Mariotti, et al., 2013; Sueyoshi et al., 2013; Voldoire et al., 2013;
Yukimoto et al., 2012; Zheng & Yu, 2013). As an alternate test, we identified regions of deep‐water formation
based on UVic mixed layer depth anomalies (Figure S7 in Supporting Information S1) and calculated LGM‐PIC
changes in wind speed over these regions, finding a virtually identical result of 22.8 ± 18.4% (1σ; Table S2 in
Supporting Information S1). Adopting the PMIP3 high‐latitude LGM‐PIC change in near‐surface wind speed, our
air‐sea gas exchange simulations suggest mean changes in Δeq of Xe, Kr, and N2 of +1.51% (68% CI: +0.13 to
+2.83%), +1.44% (68% CI: +0.34 to +2.50%), and +2.02% (68% CI: +0.85 to +3.18%), respectively, in the
LGM ocean.

3. Non‐Temperature Effects on LGM Atmospheric Gas Ratios and Inferred MOT
A reduction of undersaturation in the LGM ocean (i.e., an increase in Δeq) implies that the ocean held a larger
fraction of the total ocean‐atmosphere inventory of each these inert gases than would be expected if Δeq were
constant in time. The sensitivity of an atmospheric gas ratio to changes in global air‐sea disequilibrium is strongly
controlled by the change in Δeq of the more soluble gas, since a larger fraction of its total ocean‐atmosphere
inventory resides in the ocean. In other words, because ∼5% of global Xe–but only ∼0.5% of global N2–re-
sides in the ocean, an equal magnitude increase in Δeq of both Xe and N2 would act to decrease the atmospheric
Xe/N2 ratio. A decrease in atmospheric Xe/N2 due entirely to changes in global air‐sea disequilibrium (i.e.,
independent of changes in LGMMOT) would impart a cold bias on ice‐core Xe/N2‐based estimates of MOT that
assume no change in Δeq over time. Figure 3 illustrates this effect, showing how changes in Δeq of Xe and N2

influence both the atmospheric Xe/N2 ratio and corresponding estimates of MOT (Figures S8 and S9 in Sup-
porting Information S1 show equivalent effects for atmospheric Kr/N2 and Xe/Kr ratios.). Hereafter, we refer to
biases (relative to the assumption of constant Δeq) in atmospheric ratios and MOT due to changes in air‐sea
disequilibrium as δ′ and ΔMOT′, respectively.

Figure 2. Influence of changes in high‐latitude surface windspeed on mean‐
ocean gas saturation anomalies, Δeq. In each equilibrium simulation
experiment above, mean‐annual surface windspeed at high latitudes
(poleward of 50⁰) are enhanced or diminished relative to the pre‐industrial
control (PIC) simulation, and Last Glacial Maximum (LGM) ocean
circulation and sea ice fields are implemented. The shaded region reflects
Paleoclimate Modeling Intercomparison Project modeled high‐latitude
wintertime (DJF in NH; JJA in SH) surface wind speed change between
LGM and PIC experiments (inter‐model mean ± 1σ; Table S2 in Supporting
Information S1).
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To estimate LGM δ′ and ΔMOT′, we carried out 106 Monte Carlo simulations (see Text S2 in Supporting Infor-
mation S1) in which simulated LGM changes in Δeq (Section 2) lead to changes in the partitioning of inert gases
between the LGM atmosphere and ocean. For example, an LGM increase in Δeq for a particular gas would increase
the ocean inventory and decrease the atmospheric inventory of that gas. Thus, for changes in Δeq, we calculate
corresponding changes in atmospheric gas ratios (δ′) and their implied MOT bias (ΔMOT′). These Monte Carlo
simulations also account for regional changes in SLP over the glacial ocean, as some of the apparent air‐sea
disequilibrium (Δeq) of the modern ocean is attributable to the fact that the high‐latitude regions of ocean venti-
lation are characterizedbypersistent lowSLPanomalies (Allan&Ansell, 2006).Wedefine anomalies high‐latitude
wintertime SLP relative to global‐mean SLP as ΔPHL (e.g., ΔPHL is ∼− 2%, or ∼− 20 mbar, in the present) and
include PMIP3‐based changes in LGM ΔPHL (relative to the PIC) in the Monte Carlo analysis. The PMIP3 inter‐
model mean LGM‐PI change in ΔPHL is − 0.2± 0.2% (1σ), indicating a slight deepening of high‐latitude low SLP
systems in the LGM (Table S3 in Supporting Information S1). This leads to a small equal‐parts reduction in the
global ocean inventories ofXe,Kr, andN2, because a change in SLP changes the sea‐surface partial pressures—and
thus equilibrium dissolved concentrations—of all three gases by the same fraction (Jenkins et al., 2024).

Figure 4 shows the results of thisMonte Carlo analysis, which suggests median δ′ values (and 68%CI) of − 0.70‰
(− 1.42 to+0.05‰), − 0.27‰(− 0.52 to − 0.14‰), and − 0.43‰(− 0.90 to+0.06‰) forXe/N2,Kr/N2, andXe/Kr
ratios, respectively. In other words, reduced LGM air‐sea disequilibrium acts to lower all three atmo-
spheric gas ratios, independent of a change inMOT. By adoptingMOT sensitivities of 1.85‰°C− 1, 0.71‰°C− 1,
and 1.14 ‰°C− 1 (determined by perturbing the LGM ocean box model of Bereiter et al. (2018) by 1°C), each of
these δ′ values independently implies virtually the same ΔMOT′ of − 0.38°C (68% CI: − 0.74 to − 0.01°C).
Approximating ΔMOT′ as normally distributed and incorporating uncertainty estimates of Shackleton
et al. (2023), which account for both analytical and systematic sources of uncertainty, this analysis suggests a
revised LGMMOT of − 2.27 ± 0.46°C, relative to the pre‐industrial era ocean. This uncertainty estimate reflects
the quadrature sum of uncertainties associated with random measurement errors, firn air corrections, and air‐sea
disequilibria.

4. Discussion
Our finding of a cold bias in LGMMOT is consistent with the findings of a recent modeling study that suggested a
ΔMOT′ value of − 0.50 ± 0.67°C (Pöppelmeier et al., 2023). However, our analysis differs from Pöppelmeier

Figure 3. Biases in panel (a) Last Glacial Maximum (LGM) atmospheric Xe/N2 ratio, δ′(Xe/N2)atm, and (b) corresponding
LGM mean‐ocean temperature (ΔMOT′) arising from (unaccounted‐for) changes in mean‐ocean gas saturation anomalies,
Δeq. Black markers and error bars refer to the mean and standard deviation of simulated LGM changes in Δeq in this study.
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et al. (2023) in several fundamental ways, providing an important and independent update for the ice core MOT
proxy. Pöppelmeier et al. (2023) ran several air‐sea gas exchange simulations, but could not reconcile their results
with ice core noble gas data and constraints on LGM surface cooling. As a result, they ultimately adopted anMOT
estimate based on the underlying GCM potential temperature, rather than ice core data or independent estimates of
air‐sea disequilibrium. Pöppelmeier et al. (2023) suggest that their findings are supported by an observed offset in
reconstructed MOT from Kr/N2 and Xe/N2 for two ice cores, but they do not consider a third core (Shackleton
et al., 2020, 2023) that displays the opposite offset. Notably, none of these Kr/N2 versus Xe/N2 offsets fall outside
the reported uncertainty bounds. The mismatch of ice core data with the model of Pöppelmeier et al. (2023) led the
authors to include a wide uncertainty estimate in noble gas disequilibria (translating to a 0.7°C error bar in MOT)
and to call for future studies to revisit disequilibrium in the LGM.

Our approach offers an important update because it (a) ultimately relies on MOT constrained by ice core ob-
servations rather than a GCM, (b) includes all available LGM ice core constraints, and (c) indicates that changes
in air‐sea disequilibria of Xe, Kr, and N2 likely occur in near‐exact proportions to changes in MOT such that
biases in MOT arising from air‐sea disequilibria are virtually identical. That is, our estimates of MOT′ from Xe/
N2, Kr/N2, and Xe/Kr all agree, on average, to within 0.01°C, serving as an important internal consistency check
that provides additional confidence in our result.

One potential limitation of our analysis is that, because the effects of sea ice and circulation are nearly equal and
opposite, changes in Δeq are predominantly controlled by high‐latitude wind speed in the LGM, which is poorly
constrained. While the PMIP inter‐model mean and spread arguably represents the best available estimate of
LGM wind speed and its uncertainty, if new constraints on LGM wind strength emerge in the future, our analysis
would provide a useful scaling factor with which to update ice‐core MOT estimates. That is, approximating the
dependences of Δeq on high‐latitude wind speed as linear (Figure 2), for a 10% increase in high‐latitude wind
speed in the LGM, the corresponding cold bias in MOT is ∼0.15°C. Thus, for example, if evidence were to
emerge indicating that the mean LGM wintertime high‐latitude wind speed change relevant for ocean ventilation
was in fact +15% (instead of the +25.6% value adopted in this study), a corresponding revised estimate of LGM
MOT would be ∼0.15°C colder.

Intriguingly, we find independent support for our revised estimate of MOT from the marine sedimentary record of
benthic foraminiferal oxygen isotope ratios, which are a function of deep‐sea temperature and ice volume.
Shackleton et al. (2023) combined ice‐core‐based MOT with global sea‐level reconstructions over the last
deglaciation (Lambeck et al., 2014; Yokoyama et al., 2018) to estimate their equivalent contributions to global‐
mean benthic foraminifera δ18O (Lisiecki & Stern, 2016). Using an ice‐core‐based MOT record that neglects
changes in Δeq, Shackleton et al. (2023) found that reconstructed LGM δ18O is higher than foraminifera ob-
servations by either 0.21 ± 0.17‰ or 0.08 ± 0.17‰, depending on whether the sea‐level reconstruction of

Figure 4. Probability distributions (based on 106 Monte Carlo simulations) for (a) biases in atmospheric gas ratios (δ′) and
(b) corresponding biases in reconstructed mean ocean temperature (MOT) (MOT′) that are determined from atmospheric gas
ratios. This analysis suggests that reduced undersaturation in the Last Glacial Maximum (LGM) ocean acted to lower
atmospheric Xe/N2, Kr/N2, and Xe/Kr, implying a median MOT bias of − 0.38°C and corresponding revised optimal
estimate for LGM MOT of − 2.27 ± 0.46°C (±1σ).
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Lambeck et al. (2014) or Yokoyama et al. (2018), respectively, is adopted. If we instead account for MOT bias
using the median air‐sea disequilibria found in this study, the combined sea‐level/MOT estimate of benthic δ18O
more closely matches the benthic stack. In particular, the constant LGM offset of ∼0.08‰ offset between the
benthic stack and composite noble gas and Yokoyama et al. (2018) sea‐level reconstruction found by Shackleton
et al. (2023) is equivalent to − 0.36°C, which virtually disappears when we apply the median − 0.38°C cold bias
suggested by our analysis. This provides key independent support for reduced undersaturation of noble gases in
the LGM ocean. Additionally, our updated LGM MOT cooling estimate of 2.27 ± 0.46°C is in good agreement
with a recent global deep‐sea temperature reconstruction that found 2.5 ± 0.3°C of LGM cooling (Rohling
et al., 2021), which marked a downward revision from a previous estimate of 3 ± 1°C (Elderfield et al., 2012).

5. Conclusions
In this study, we explored the solubility disequilibria of Xe, Kr, and N2 in the LGM ocean by carrying out a suite
of GCM experiments using an air‐sea gas exchange framework validated by inert gas observations in the modern
ocean. We find that slower meridional overturning circulation and enhanced sea ice in the LGM act to reduce and
increase inert gas undersaturation, respectively, and that their combined effects cancel each other, leaving
wintertime high‐latitude near‐surface wind speed as the primary driver of LGM changes in global ocean solubility
disequilibria. While proxy evidence on the strength of southern high‐latitude winds in the LGM is mixed, sim-
ulations from the Paleo Model Intercomparison Project indicate enhanced wind speeds in both the northern and
southern high‐latitude places (and seasons) of deep‐water formation. Our analysis correspondingly suggests that
inert gas undersaturation in the LGM ocean was likely reduced, leading to a lowering of atmospheric Xe/N2, Kr/
N2, and Xe/Kr ratios. Future improvements in our understanding of high‐latitude winds in the LGM will help to
substantially reduce uncertainties in LGM MOT, in addition to providing insight into other important climate
processes. Our analysis suggests a 0.38 ± 0.37°C (1σ) cold bias in LGM MOT (if changes in air‐sea disequi-
librium are neglected), reconciling ice‐core based MOT with benthic foraminiferal oxygen isotope and sea level
records. These records thus provide independent support for a revised LGM MOT estimate of − 2.27 ± 0.46°C
(1σ), relative to the preindustrial era ocean, which represents an important quantitative refinement to our un-
derstanding of past changes in planetary energy balance.
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