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I. Abstract 

Treatment of mutant isocitrate dehydrogenase 1 (IDH1) glioma remains challenging; 

targeted allosteric inhibitors currently provide limited clinical effect. Resistance to mutIDH1 

inhibitors has also emerged in other cancers with mutant IDH1. IDH1 catalyses the 

decarboxylation of isocitrate to 2-oxoglutarate (2-OG) and concomitant reduction of NADP+ 

to NADPH. Upon mutation, the enzyme instead reduces 2-OG to (R)-2-hydroxyglutarate 

(2-HG) with NADPH. 2-HG accumulates to high levels in cells and is thought to promote 

tumorigenesis by e.g., disrupting DNA and histone methylation and impairing DNA repair. 

Altered central carbon, amino acid and lipid metabolism, as well as redox homeostasis, has 

been linked to expression of mutIDH1R132H and presence of high levels of 2-HG. Yet, the 

understanding of the mechanisms by which 2-HG affects metabolism, and what capacity 

those metabolic changes have to drive tumorigenesis, remains limited. A more detailed 

comprehension of the metabolic changes in mutIDH1 glioma and how they relate to 2-HG 

abundance would improve understanding of tumorigenesis and potentially uncover new 

therapeutic targets. The aim of this thesis was therefore to investigate mutIDH1 glioma 

metabolism by comparison to a matched wild-type (wt) IDH1 model and with metabolic 

inhibitors targeting the mutated enzyme or substrate availability.  

The glioblastoma cell line LN18 with mutant IDH1 expressed via lentiviral vector was 

compared to wtIDH1 LN18 cells and treated with mutIDH1 inhibitors (AG-120, AG-881, BAY 

1436032, GSK864 and FT2102) or glutaminase (GLS) inhibitor (CB-839) to investigate 

mutIDH1 glioma metabolism. Anion exchange chromatography (IC) and reverse phase 

liquid chromatography (RPLC), both coupled to mass spectrometers (MS) were used to 

measure metabolites in samples. Cell viability was measured by colorimetric assay. 

Univariate and multivariate statistical analyses were performed to identify altered 

metabolites and reveal correlative relationships to 2-HG abundance. Untargeted pathways 

analysis was used to assess metabolic changes at the pathway level.  

The abundance of 2-HG was significantly elevated in mutIDH1R132H LN18 cells and glutamine 

was the main carbon source. Amino acids and metabolic intermediates, nucleotides, 

lipid-related metabolites, N-acetylaspartylglutamate (NAAG) and B-citryl-L-glutamate 

(B-CG) were significantly altered in the mutant cell line. On the pathway level, amino acid 
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metabolism (lysine degradation, BCAA catabolism, glutamate, arginine & proline and 

aspartate & asparagine), butanoate & propanoate and vitamin B1 and vitamin C were 

significantly altered between the wtIDH1 and mutIDH1R132H LN18 cells. Certain metabolites 

required 2-OG or NADPH for biosynthesis, while others did not, suggesting that 2-HG 

affected metabolism both directly (e.g., competitive inhibition) or indirectly (e.g., altered 

transcription of enzymes).  

MutIDH1 inhibitors were capable of significantly decreasing 2-HG abundance in 

mutIDH1R132H LN18 cells. AG-120, AG-881 and GSK864 were also capable of inhibiting 

wtIDH1; isocitrate accumulated in treated cells. AG-881 was inferior in ability to decrease 

2-HG abundance and reached a maximum inhibition threshold at far lower concentration 

than the other three mutIDH1 inhibitors. None of the mutIDH1 inhibitors had a substantial 

impact on cell viability. Mutant cells treated with mutIDH1 inhibitors were metabolically 

more similar to wtIDH1 cells. Several metabolites correlated with 2-HG abundance. 

Nevertheless, it was difficult to determine the extent 2-HG abundance affected other 

metabolites due to concurrent inhibition of wtIDH1. GLS inhibition was assessed as an 

alternative treatment strategy; it indirectly decreased substrate availability by decreasing 

glutamate abundance. Cell viability was decreased significantly compared to treatment 

with mutIDH1 inhibitors. Despite 2-OG abundance decreasing, 2-HG levels were 

maintained. However, this effect was used to determine which metabolites were affected 

by 2-HG only or and which were also dependent on 2-OG.  

Amino acid metabolism was suggested to be affected by competitive inhibition by 2-HG. 

Amino acids are key for cell proliferation by providing energy and are substrates for 

anaplerosis and redox-active compounds. B-CG had a particularly strong correlative 

relationship to 2-HG abundance and the effect was likely indirect. The function of B-CG in 

human metabolism is not well understood, but its proposed redox protective abilities 

suggest a tumorigenic role in maintaining redox homeostasis. Collectively, the experiments 

in this thesis revealed that 2-HG abundance correlated consistently with certain metabolic 

changes and that altered metabolism was due to a combination of direct and indirect 

effects by 2-HG. Future work should focus on the potential contributions to tumorigenesis 

and therapeutic potential of B-CG and amino acid metabolism in mutIDH1 glioma.  
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2-HGDH 2-HG dehydrogenases  
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FDA USA Food and Drug Administration 

FET  Fishers exact test 
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GABA γ-aminobutyric acid 

GAD-1 Glutamate decarboxylase 

GBM Glioblastoma 
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GLUT Glucose transporter 

GOPOD glucose oxidase/peroxidase  
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GPCho Glycerophosphocholine 

GPE Glycerophosphoethanolamine 

HEK Human embryonic kidney 

HEPES 4-(2-hydroxyethyl-1-piperazineethansulfonic acid 

HILIC Hydrophilic interaction chromatography 

HMDB Human Metabolome Database 

HMGCR 3-hydroxy-3-methyl-glutaryl CoA reductase  

HOG Human oligodendroglioma 

HOT Hydroxyacid oxoacid trans-hydrogenase  

HRMS High resolution mass spectrometer 

IC Ion exchange chromatography 

IC50 Half maximal inhibitory concentration 

ICC Intrahepatic cholangiocarcinoma 

IDH Isocitrate dehydrogenase 

IPP Isopentenyl pyrophosphate 

IQR Interquartile range 

kDA kilo Dalton 

KEGG Kyoto Encyclopaedia of Genes and Genomes 

LC Liquid chromatography 

LDH Lactate dehydrogenase  

LOOCV Leave-one-out cross validation 

LRMS Low resolution mass spectrometer 

LV Latent variable 

m/z mass-to-charge ratio 

MCT Monocarboxylate transporter 
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MCTe Multiple comparison test 

MDH2 Malate dehydrogenase  

ME Malic enzyme 

MeOH Methanol 

MRS  Magnetic resonance spectroscopy 

MS Mass spectrometry 

mut Mutant 

MWCO Molecular weight cut-off (filter) 

NAD Nicotinamide dinucleotide 

NADP Nicotinamide dinucleotide phosphate 

NAM N-acetylmethionine 

NAMPT Nicotinamide phosphoribosyl transferase  

Naprt1 Nicotinate phosphoribosyl transferase 1 

NHA Normal human astrocytes 

NMR Nuclear magnetic resonance spectroscopy 

Nrf2 Nuclear factor erythroid 2-related factor  

NAA N-acetylaspartate 

NAAA N-acetylated amino acids 

NAAG N-acetylaspartylglutamate 

ODC Ornithine decarboxylase  

OGDH 2-oxoglutarate dehydrogenase 

oxPPP Oxidative pentose phosphate pathway 

PBS Phosphate buffered saline 

PC Pyruvate carboxylase 

PC Principal component 
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PCA Principal component analysis 

PCho Phosphocholine 

PDH Pyruvate dehydrogenase 

PDX Patient derived xenograft  

PE Phosphoethanolamine 

PGD 6-phosphogluconate dehydrogenase 

PHGDH Phosphoglycerate dehydrogenase  

PI Phosphatidylinositol 

PLS-DA Partial least squares-discriminant analysis 

PPP Pentose phosphate pathway 

PTB Patient tumour biopsy  

RF Radio frequency 

ROS Reactive oxygen species 

RP Reverse phase 

RPMI Roswell Park Memorial Institute  

RTK Receptor tyrosine kinase 

SREBP2 Sterol regulatory element-binding protein 2 

SSADH Succinate semialdehyde dehydrogenase 

TCA Tricarboxylic acid cycle 

UDP Uridine diphosphate 

UMP Uridine monophosphate 

VIP Variable importance in projection  

WHO World Health Organisation 

wt Wild type 
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Chapter 1. Introduction 

1.1.  Isocitrate dehydrogenase and its role in cancer 

1.1.1. The discovery of IDH1 and IDH2 mutations and the ‘oncometabolite’  

R-2-hydroxyglutarate 

Metabolic alterations are a hallmark of cancer, however, their role in tumorigenesis is not 

well understood [2, 3]. Point mutations in the gene for the metabolic enzyme isocitrate 

dehydrogenase 1 (IDH1) were first discovered in glioma in 2008 [4, 5] and in acute myeloid 

leukaemia (AML) in 2009 [6]. Analogous points mutations were also found in IDH2 [7-9]. 

Now IDH1 and IDH2 mutations have been found in at least 20 different cancers. IDH1 and 

IDH2 mutations are prevalent in grade II and III gliomas (> 70%) and secondary 

glioblastomas (GBMs) (55-88%), but not primary GBMs (5-14%) [4, 5, 9-13]. The mutations 

are also prevalent in certain cartilaginous and bone tumours (20-80%) [14-21], AML (15-

30%) [6, 8, 22-28], intrahepatic cholangiocarcinoma (ICC) (6-30%) [29-37], 

angioimmunoblastic T-cell lymphoma (20-30%) [38-41], sinonasal undifferentiated 

carcinoma (35-80%) [42-44], and solid papillary carcinoma with reverse polarity (>77%) [45, 

46]. In the remaining cancer types in which IDH1 or IDH2 mutations are reported, the 

incidence rates are low (< 5%). Interestingly, with rare exceptions [10, 22, 28], mutations 

of IDH1 and IDH2 appear to be mutually exclusive [10, 13, 27]. All reported frequency rates 

are summarised in Table 1.1.1. 
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Table 1.1.1. Reported frequency of canonical IDH1 and IDH2 mutations in cancers and benign tumours. 
IDH1/2 mutations were determined using DNA sequencing and antibodies. IDH1 or IDH2 mutations other 
than the missense mutation causing substitution at IDH1 R132 and IHD2 R172 or R140, known as non-
canonical mutations, are also listed (other mutIDH1/2). Table reproduced from Hvinden et al. [1]. 

Cancer type Reported occurrence (%) Source 

mutIDH1 
(R132) 

mutIDH2  
(R172 or 
R140) 

Other 
mutIDH1/2 

Central nervous system neoplasm 

Grade II and III glioma > 70 5 0.3-2.3 [4, 5, 9-12, 
47, 48] 

Secondary GBM (grade IV) 55-88 3.4 - [4, 5, 9, 12, 
13] 

Primary GBM (grade IV) 5-14 0.5 - [5, 9-13, 
49] 

Myeloid and lymphoid neoplasms 

Acute myeloid leukaemia 6-13 8-20 0.6 [6-8, 22-
28] 

B-cell acute lymphoblastic leukaemia 1.7 - - [50] 

Angioimmunoblastic T-cell lymphoma - 20-33 - [38-41] 

Peripheral T-cell lymphoma - < 5 - [41] 

Myelodysplastic syndrome < 4 < 4 - [26, 51] 

Myeloproliferative neoplasm – 
chronic- or fibrotic-phase 

< 3 < 1.5 - [52, 53] 

Myeloproliferative neoplasm – blast-
phase 

5-12 2-9 - [52, 53] 

Paediatric acute myeloid leukaemia <1.5 <2.5 - [54, 55] 

Paediatric acute lymphoblastic 
leukaemia  

0.4 0 - [55] 

Bile duct neoplasms 

Intrahepatic cholangiocarcinoma 6.5-32 1-9 0.3 [29-37] 

Extrahepatic 
cholangiocarcinoma/Clear cell 
extrahepatic cholangiocarcinoma 

0-10 < 4 - [29, 30, 35, 
56] 

Cartilage and bone neoplasms  

Chondrosarcoma 12-54 5-16 - [14-16, 18-
21, 57] 

Giant-cell tumour of the 
bone/Osteoclastoma 

- 80 25 [17] 

Osteosarcoma - 28 - [58] 

Ewing sarcoma family tumours 3.3 3.3 - [59] 

Ollier disease and Mafucci syndrome related neoplasms 

Ollier related enchondroma and 
chondrosarcomas 

>80 3  [60, 61] 

Mafucci related enchondroma and 
chondrosarcomas 

>80 
 

- - [60, 61] 

Mafucci syndrome related 
haemangioma 

1 reported 
case  

- - [61] 

Mafucci syndrome related spindle cell 
haemangioma 

70 - - [60]  
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The importance of IDH1/2 mutations in glioma is reflected by the fact that since 2016 they 

have featured as diagnostic criteria in the World Health Organisation’s (WHO) 

categorisation of central nervous system (CNS) tumours [73]. The updated 2021 WHO 

classification of CNS tumours further emphasizes the importance of the IDH1/2 mutations 

by reducing the number of types of adult diffuse glioma to three, i.e. astrocytoma, 

oligodendroglioma and glioblastoma, with both astrocytoma and oligodendroglioma now 

requiring the presence of an IDH1/2 mutation for diagnosis [74].  

Early reports suggested cancer-associated IDH1 mutations caused ‘simple’ loss of the ability 

to catalyse conversion of isocitrate to 2-oxoglutarate (2-OG) [9], also known as 

α-ketoglutarate, and that wild type (wt) IDH1 was dominantly inhibited by forming a 

heterodimer with mutant (mut) IDH1 [75]. In a seminal study, Dang et al. found that 

mutIDH1R132H catalyses production of the metabolite R-2-hydroxyglutarate (R-2-HG), also 

referred to as D-2-HG, showing apparent oncogenic selection for the production of a 

specific metabolite [76]. Soon after it was demonstrated that mutIDH2R172K and 

mutIDH2R140Q also catalyse enantioselective  production of R-2-HG [8]. Both the R- and 

S-2-HG enantiomers are present at low µM levels in healthy individuals [77-79], but their 

roles in normal metabolism are poorly understood. For the common mutations of IDH1 and 

IDH2 found in cancer, intracellular and extracellular R-2-HG levels are substantially 

increased [8, 76].  

Table 1.1.1. continued.  

Cancer type Reported occurrence (%) Source 

mutIDH1 
(R132) 

mutIDH2  
(R172 or R140) 

Other 
mutIDH1/2 

Other neoplasms 

Breast cancer (other) 0.2 - - [62] 

Solid papillary carcinoma with reverse 
polarity – rare breast cancer subtype 

- >77 - [45, 46] 

Gastric adenocarcinoma 2.7 - - [63] 

Irritable bowel syndrome–associated 
intestinal adenocarcinoma 

13 - - [64] 

Melanoma metastasis  1.3 - - [65] 

Non-small cell lung cancer 0.6 0.4 - [66] 

Paraganglioma 1.5 - - [67] 

Prostate cancer 0.3-2.7 - - [50, 68] 

Sinonasal undifferentiated carcinoma - 35-80 - [42-44] 

Spindle cell haemangioma  28 7.1 3.6 [69] 

Thyroid cancer - - 8-16 [70, 71] 

Wilms tumour - - 10 [72] 
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Mutation of IDH1 and IDH2 are reported to occur early in the development of solid tumour 

cells [12, 80], but not hematopoietic malignancies [53, 81, 82]. The current view is that in 

nascent tumour cells elevated R-2-HG may dysregulate multiple enzymes, including some 

2-OG dependent dioxygenases and metabolic enzymes, leading to altered cellular 

metabolism presumed to support or promote tumorigenesis [83-85]. In myeloid cancers, 

mutations in IDH1/2 are considered important for disease progression via similar 

mechanisms [82]. The presence of mutIDH1 or mutIDH2 in cell models results in alteration 

of covalent post-oligomerisation modifications (e.g., methylation) to both the nucleic acid 

and histone components of chromatin (‘epigenetic’ modifications) [86, 87].  

1.1.2. Wild-type functions of IDH 1, IDH2 and IDH3 

There are three isoforms of human IDH, the closely related homodimeric IDH1 and IDH2, 

and the heterotetrameric IDH3, all of which catalyse conversion of isocitrate to 2-OG and 

CO2. IDH3 simultaneously reduces nicotinamide adenine dinucleotide (NAD+) to produce 

NADH, whereas IDH1 and IDH2 reduce nicotinamide adenine dinucleotide phosphate 

(NADP+) to NADPH [88]. IDH1 and IDH2 can catalyse the reverse reaction, i.e. reductive 

carboxylation of 2-OG with CO2 [89, 90], but IDH3 is reported not to do this under 

physiological conditions [91].  

The human IDH isoforms have distinctive roles in ‘normal’ cellular metabolism. IDH1 

localises to the cytosol and peroxisomes, while IDH2 and IDH3 localise to the mitochondrial 

matrix [92-95]. IDH1 normally provides the cytosol and peroxisomes with NADPH, which is 

used in fatty acid synthesis or to protect from oxidative damage [96-98]. In cells with 

damaged mitochondria, or those in hypoxia for example, IDH1 can indirectly provide acetyl-

CoA for fatty acid synthesis by catalysing the reductive carboxylation of glutamine-derived 

2-OG to isocitrate; isocitrate is isomerised to citrate and then ATP citrate lyase cleaves it to 

acetyl-CoA and oxaloacetate [99, 100].  

IDH2 functions similarly to IDH1, but in the context of the mitochondrial matrix. It provides 

NADPH to help protect mitochondria against oxidative damage [101, 102] and also 

synthesises isocitrate under hypoxia by reductive carboxylation of glutamine-derived 2-OG 

[103]. IDH3 takes part in mitochondrial respiration by catalysing oxidation of isocitrate in 
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the tricarboxylic (TCA) cycle, producing NADH for ATP production [91, 94]. The metabolic 

roles of IDH1, IDH2 and IDH3 are summarised in Figure 1.1.1.  

1.1.3. Biosynthesis of 2-hydroxyglutarate in non-mutant IDH cells 

The role of 2-HG in healthy metabolism is not well understood, but both R- and S-2-HG 

enantiomers occur in low µM concentrations in plasma  [104, 105] and urine (low mmol 

per mole creatinine [78] for adults and low µmol per mmol of creatinine in neonates [77]). 

2-HG can be formed by multiple processes in cells. For example the R-2-HG enantiomer 

results from metabolism of 5-hydroxy-L-lysine [106] and by a coupled reaction involving 

oxidation of a hydroxyacid and reduction of an oxoacid by hydroxyacid oxoacid trans-

hydrogenase (HOT) (e.g. coupling of γ-conversion of hydroxybutyrate to succinic 

semialdehyde and 2-OG to R-2-HG) [107, 108]. R-2-HG and S-2-HG can also be formed by 

‘promiscuous’ reactions catalysed by phosphoglycerate dehydrogenase (PHGDH) and 

mitochondrial malate dehydrogenase (MDH2), respectively [109, 110]. In hypoxia the 

production of S-2-HG increases, at least in part catalysed by ‘promiscuous’ reactions of 

lactate dehydrogenase A (LDHA), MDH2 and cytosolic malate dehydrogenase (MDH1) 

[111]. It is proposed that S-2-HG supports the regulation of cellular redox homeostasis 

under conditions of cell stress, e.g. hypoxia [112]. The increased S-2-HG seen in hypoxia is 

 
Figure 1.1.1. Normal function of IDH1, IDH2 and IDH3. IDH1 is located in the cytosol and peroxisomes, 
while IDH2 and IDH3 is located in the mitochondrial matrix. IDH1 and IDH2 catalyse the oxidative 
decarboxylation of isocitrate (I-Cit) to 2-oxoglutarate (2-OG) and CO2 with concurrent reduction of 
NADP+ to NADPH. The reverse reaction is also possible. IDH3 can only catalyse oxidative decarboxylation 
of isocitrate to 2-OG and CO2 with concurrent reduction of NAD+ to NADH. Figure reproduced from 
Hvinden et al. [1].  
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likely due to the increased efficiency in the ‘promiscuous’ reactions by LDH and MDH under 

acidic conditions (pH 6.0-6.8) [113, 114]. Similarly, PHGDH leads to increased production of 

R-2-HG under acidic conditions [113].  

Levels of both 2-HG enantiomers are normally regulated by 2-HG dehydrogenases 

(2-HGDH), which convert 2-HG to 2-OG. Inborn errors of metabolism, arising from 

mutations to the genes for R- and S-2-HGDH, are known as D- or L-2-HG aciduria (D- or 

LHGA). DHGA can also be caused by mutation of IDH2 [115]. Loss of R-2-HG or S-2-HG 

dehydrogenase catalysis causes accumulation of R- or S-2-HG to high levels in urine, 

plasma, and cerebral spinal fluid [115-120]. Both D- or L-2-HG aciduria are associated with 

neurological abnormalities including developmental delay, epilepsy and cerebral ataxia, as 

well as cardiomyopathy for DHGA patients [116-121]. Interestingly, there appears to be a 

lack of association between DHGA and cancer types commonly reported to have mutations 

in IDH1 and IDH2 [122]. There are also a small number of reported cases of central nervous 

system tumours developing in LHGA patients [123, 124], but it is not always clinically 

observed [125].  All reactions are summarised in Figure 1.1.2.  

 

 
Figure 1.1.2. Enzymatic reactions other than mutIDH1&2 leading to biosynthesis of R-2-HG and S-2-HG. 
Solid lines indicate direct reactions, while dotted lines indicate multiple reactions. Abbreviations:  
HOT = hydroxyacid oxoacid trans-hydrogenase, PHGDH = phosphoglycerate dehydrogenase,  
LDHA = lactate dehydrogenase A, MDH = malate dehydrogenase, and 2HGDH = 2-HG dehydrogenase. 
Figure reproduced from Hvinden et al. [1]. 
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1.1.4. R-2-hydroxyglutarate synthesis is linked to IDH1 & IDH2 mutations 

IDH1 and IDH2 point mutations in cancer are heterozygous and occur most frequently at, 

or close to, their active sites. In IDH1, R132 is the most commonly substituted residue; in 

IDH2 either the analogous residue R172, or R140, are the most commonly altered. For all 

three of these mutation sites, the specific substituted residue is often linked to a particular 

cancer type. Histidine is the most common residue substitution for R132 in mutIDH1 in 

glioma [4, 5, 9-12], whereas cysteine is more common for chondrosarcoma [14, 15, 19-21] 

and ICC [30, 31], and in AML  both histidine and cysteine occur at a similar frequency [6, 7, 

22-25]. Residue R140 in mutIDH2 is most commonly substituted with glutamine in AML [22, 

23]. Substitution of R172 in mutIDH2 is usually by serine in chondrosarcoma [14, 15, 19-

21], lysine or tryptophan in ICC [30, 31], and lysine in glioma [9, 10]. 

Kinetic and structural analyses of the mutIDHs have revealed that substitution of an active 

site arginine (R132 IDH1) correlates with a lowered affinity for isocitrate and the NADPH 

dependent ability to reduce 2-OG to R-2-HG [8, 75, 76, 126]. However, it has also been 

shown that, when observed with NMR-based enzyme assays [127] rather than 

fluorescence-based assay [128], mutIDH1R132H is capable of producing R-2-HG from 

isocitrate [127] (see Figure 1.1.3). Cytosolic mutIDH1 is reported to rely on co-expression 

with wtIDH1 to elevate intracellular 2-HG [129-131], but substrate (2-OG and NADPH) is 

likely not channelled from wtIDH1 to mutIDH1 in a heterodimer [131]. At least in studied 

cases, mutIDH2 does not appear to bind to, or dominantly inhibit, wtIDH2 [132] and does 

not require wtIDH2 or IDH3 to produce R-2-HG [129]. WtIDH1 and wtIDH2 can produce 

small amounts of R-2-HG from 2-OG [8, 126], though the reaction is limited because 

isocitrate binding is more efficient than of 2-OG [126]. The ability of wtIDH1 to produce R-

2-HG is not pH-dependent unlike some other metabolic enzymes with similar ‘promiscuous’ 

reactions [113].  
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The extent of R-2-HG accumulation may in part depend on the residue and position that 

the active site arginine is replaced with. Studies on rare IDH1 substitutions, e.g. R132L/S/G, 

report significantly higher R-2-HG levels in glioma tumour tissue compared to mutIDH1R132H 

and mutIDH1R132C [133, 134]. In cell models with mutIDH2R172, R-2-HG levels were 

significantly higher than models with mutIDH2R140Q or mutIDHR132H [129, 135]. It is noted, 

however, that in HEK293T cells where mutIDH1R132H was co-overexpressed with wtIDH1, 

the intracellular R-2-HG levels were similar to those of HEK293T cells expressing 

mutIDH2R172K [129]. Furthermore, when mutIDH1R132H was expressed in the mitochondria 

of HEK293T cells, rather than the cytosol, R-2-HG levels were again comparable to HEK293T 

cells expressing mutIDH2R72K [129].  

1.2.  Metabolic changes in mutant isocitrate dehydrogenase cancers 

1.2.1. IDH mutant and wild-type cancer models  

Developing robust pathophysiological models to study metabolism in mutant IDH1/2 

glioma has been challenging. Early attempts to establish a stable patient-derived mutIDH1 

glioma cell line proved difficult [136] and it was reported that the mutant allele was lost 

after a small number of passages (< 10) [136, 137]. It has been suggested that cells with 

prior loss of the mutIDH1 allele have a selective growth advantage in tissue culture [138]. 

However, loss of either the mutant allele [138] or the wild-type allele can occur during in 

vitro culturing  [138-141].  

 
Figure 1.1.3. Reactions occurring with wild type and mutated IDH. WtIDH1/2 carry out reaction (I) in 
normoxic conditions and reaction (III) in hypoxic conditions. Reaction (II) can also be carried out by 
wtIDH1, but to a far smaller extent than reaction (I) and (III). MutIDH1/2 carry out reaction (II) and it has 
been shown that mutIDH1 can also do reaction (I). Reaction (III) appears to be lost upon mutation. Figure 
adapted from Hvinden et al. [1] and Liu et al. [127]. 
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Most studies, where insights into altered metabolism are reported using cell models, use 

genetically engineered cells that overexpress the mutant enzyme, such as in immortalised 

glioblastoma cell lines (e.g., U87, U251, LN18 or LN229), human oligodendroglioma (HOG) 

cells, or immortalized normal human astrocytes (NHA) [142-148]. These cell lines provide 

relatively stable models to study the effects of mutIDH1/2 enzymes, but do not account for 

some genetic, and subsequently metabolic, differences between wtIDH and mutIDH1/2 

gliomas [149-151]. Nevertheless, the models are useful in studying the metabolic effect of 

mutIDH1/2 alone and can be considered the first of several steps of investigating research 

questions. Findings from genetically engineered cell lines should be corroborated with 

other models and patient derived samples.   

A limited number of glioma cell lines that endogenously express mutant IDH1 have been 

successfully cultured from grade II astrocytomas [152], grade III gliomas and what were 

formerly known as secondary GBMs [139, 152-155]. Patient derived xenograft (PDX) mouse 

models bearing patient-derived cells with IDH1/2 mutations are potentially more 

physiologically relevant than cell culture using immortalised cell lines [150, 156, 157]. 

Several PDX-specific mutIDH1 glioma cell lines have been established [157-159],  but in 

comparison to cultured cells these can be less practical and straightforward to work with 

[reviewed in 150].  

In contrast with glioma cells bearing IDH mutations, there are several cell lines derived from 

chondrosarcomas that harbour endogenous mutIDH1 or mutIDH2 with little to no stability 

issues, e.g., HT1080 and L835 (IDH1R132C), JJ012 (IDH1R132G), CS1 (IDH2R172S) and SW1353 

(IDH2R172K) [129, 160-166]. Both JJ012 and CS1 have been successfully propagated in mice 

[165]. For AML, it has been common to use human primary AML cells, either as grafts in 

mice [167] or cultured cells [168, 169]. Transfected commercially available mutIDH1 cell 

lines have also been established (HL60 with mutIDH1R132H) [170]. There are at least two ICC 

cell lines with endogenous IDH1 mutations, RBE (IDH1R132S) and SNU-1079 (IDH1R132C), that 

have genetic characteristics comparable to biopsies from patients with ICC [36]. Inducing 

IDH1 or IDH2 mutations has also been achieved in intrahepatic biliary organoids [171], as 

well as hepatoblasts and adult mouse liver [172], to study how the mutations promote 

tumorigenesis. However, despite the wide variety of non-glioma cell lines with endogenous 

IDH1/2 mutations, there are very few comprehensive studies addressing metabolic 
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changes in these models. The literature has predominantly focussed on metabolic studies 

of glioma, using engineered or endogenous cell lines, PDX mouse models and patient 

tumour biopsies (PTBs).  

1.2.2. Altered metabolite levels in mutIDH glioma cancer cell and tumour models 

Although there is a lack of comprehensive studies on broader metabolism in mutant IDH1/2 

cancers, there have been numerous reports on elevated R-2-HG levels. Comparison of 

wtIDH1/2 and mutIDH1/2 cells has revealed >100-fold change (FC) in R-2-HG levels for 

chondrosarcoma cells (HT1080) [161], glioma cells (LN18) [148],  glioma PDX mouse models 

[157] and glioma PTBs [76]. A > 50 FC increase in  R-2-HG levels in mutIDH1/2 AML patient-

derived cells, when compared to wtIDH1/2 cells, has also been reported [7]. Multiple 

studies report significant differences, but no specific FC, in R-2-HG levels between 

wtIDH1/2 and mutIDH1/2 glioma cells (U251, NHA, U87, HOG) [144, 147, 173-175], 

chondrosarcoma cells (L835, JJ012, SW1353, L2975) [176, 177], glioma PDX mouse models 

[158], glioma, chondrosarcoma and  AML PTBs [8, 142, 178-181], and in ICC patient plasma 

[182].  

Studies investigating altered metabolite levels in mutIDH1/2 when compared to wtIDH 

glioma cell lines, PDX mouse models and PTBs, using a range of analytical approaches (gas 

chromatography-mass spectrometry (GC-MS), liquid chromatography (LC)-MS, MS imaging 

(MSI), nuclear magnetic resonance spectroscopy (NMR), magnetic resonance spectroscopy 

(MRS)), have reported significantly altered metabolite levels [142, 144, 147, 148, 158, 174, 

175, 178, 181, 183]. Comparison of metabolite levels is usually made between the 

wtIDH1/2 and mutIDH1/2 samples; often the difference is reported as a relative difference 

or FC rather than absolute concentrations. In contrast with R-2-HG, the abundance changes 

associated with other metabolites appear to be more context dependent [142, 144, 147, 

148, 158, 174, 175, 181].   

There are conflicting reports of altered lactate levels in IDH1/2 variant-bearing cells 

compared to wild type. For example, studies with mutIDH1R132H and wtIDH1 HOG cell line, 

PDX mouse models and PTBs, using capillary electrophoresis (CE)-, GC- or LC-MS or MSI, 

report no change in lactate levels [142, 158, 175, 181] (Table 1.2.1). However, three other 

studies report lower lactate levels in mutIDH1R132H U87, NHA and LN18 cells and PDX mouse 
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models compared to wild-type cells [144, 148, 183]. Lactate levels in mutIDH1R132H U87 

glioblastoma cells were reported as significantly increased [174]. An MRS study on patients 

with mutIDH1R132H and mutIDH2R172K (grade II and III glioma) reported increased lactate 

compared to wtIDH1/2 gliomas [178]. In mutIDH2R172K HOG and U87 cells, lactate levels 

have been reported as being unchanged [175] or decreased [174], respectively. A potential 

confounding issue with regards to reporting lactate levels, and indeed other metabolite 

levels including R-2-HG, is whether extracellular and intracellular pools of metabolites have 

been combined (e.g. when tissue samples are homogenised) or not (e.g. when 2-D tissues 

culture cells are harvested and metabolites extracted). For example, in the studies using 

cultured cells extracellular lactate was largely removed prior to intracellular metabolite 

extraction and analysis [144, 148, 174, 175]. In studies using PTBs or PDX mouse models, 

the extracts were from whole tissue [142, 158, 181] or used methods that are unlikely able 

to distinguish intracellular and extracellular lactate levels, i.e. MSI [158] or in vivo MRS [178, 

183].  

Pyruvate, as measured by LC-MS and MSI in mutIDH1R132H glioma tissue and PDX mouse 

models, as well as in mutIDH1R132H expressing LN18 or HOG cell lines, showed no significant 

differences in abundance when comparing IDH1 wild type and mutant samples [142, 148, 

158, 175]. No significant changes in pyruvate levels were observed between mutIDH2R172K 

and wtIDH2 expressing HOG cells [175]. Two studies reported pyruvate to be significantly 

decreased in abundance in mutIDH1R132H PTBs compared to wtIDH1 PTBs [158, 181].  
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Table 1.2.1. Analysis of glycolysis intermediates and related metabolites in mutIDH glioma samples. 
Changes in metabolite level in mutIDH glioma samples relative to wtIDH glioma samples. ▬ = not 
significantly different; ▼ = significantly lower in mutIDH1; ▲= significantly higher in mutIDH1. PTB = 
patient tissue biopsy; PDX = patient-derived mouse xenograft; CL = cell line; suppl = from 
supplementary information.  Table reproduced from Hvinden et al. [1]. 

Metabolite Change Mutation Model type Analysis Method Reference 

Glucose-1-phosphate ▬ IDH1R132H PTB CE-MS [142] 

▬ IDH1R132H CL (LN18) IC-MS [148] 

Glucose-6-phosphate ▬ IDH1R132H PTB CE-MS [142] 

▬ IDH1R132H PTB GC-MS/LC-MS [181] 

▼ IDH1R132H CL (U87) NMR [174] 

▬ IDH2R172K CL (U87)  NMR [174] 

6-phospho-gluconate ▬ IDH1R132H PTB CE-MS [142] 

▼ IDH1R132H PTB GC-MS/LC-MS [181] 

Ribulose-5-phosphate ▬ IDH1R132H PTB CE-MS [142] 

▼ IDH1R132H CL (LN18) IC-MS [148] 

▼ IDH1R132H CL (U87)  NMR [174] 

▲ IDH2R172K CL (U87)  NMR [174] 

Ribose-5-phosphate ▬ IDH1R132H PTB CE-MS [142] 

▬ IDH1R132H PTB GC-MS/LC-MS [181] 

▼ IDH1R132H CL (LN18) IC-MS [148] 

Seduheptulose-7-
phosphate 

▬ IDH1R132 PTB CE-MS [142] 

▬ IDH1R132H PDX  MSI/LC-MS [158] 

▼ IDH1R132H CL (LN18) IC-MS [148] 

Fructose-1,6-
bisphosphate 

▼ IDH1R132H PTB GC-MS/LC-MS [181] 

▬ IDH1R132H CL (LN18) IC-MS [148] 

Fructose-6-phosphate ▬ IDH1R132 PTB CE-MS [142] 

▬ IDH1R132H PTB GC-MS/LC-MS [181] 

▬ IDH1R132H CL (LN18) IC-MS [148] 

▬ IDH1R132H CL (U87)  NMR [174] 

▬ IDH2R172K CL (U87)  NMR [174] 

Dihydroxyacetone 
phosphate 

▬ IDH1R132H PTB CE-MS [142] 

Glyceraldehyde-3-
phosphate 

▬ IDH1R132H PTB CE-MS [142] 

▲ IDH1R132H CL (LN18) IC-MS [148] 

Phosphoenolpyruvate ▬ IDH1R132H PTB CE-MS [142] 

▼ IDH1R132H PTB GC-MS/LC-MS [181] 

▲ IDH1R132H CL (LN18) IC-MS [148] 

3-phospho-glycerate ▬ IDH1R132H PTB CE-MS [142] 

▼ IDH1R132H PTB GC-MS/LC-MS [181] 

▼ IDH1R132H CL (LN18) IC-MS [148] 

Acetyl-CoA ▲ IDH1R132H CL (HOG) LC-MS [175] 

▲ IDH2R172K CL (HOG) LC-MS [175] 

Pyruvate ▬ IDH1R132H PTB CE-MS [142] 

▬ IDH1R132H PDX MSI/LC-MS [158] 

▬ IDH1R132H CL (HOG) LC-MS [175] 

▬ IDH1R132H CL (LN18) IC-MS [148] 
▼ IDH1R132H PTB GC-MS/LC-MS [181] 

▼ IDH1R132H PTB LC-MS [158] 
(suppl.) 

▬ IDH2R172K CL (HOG) LC-MS [175] 
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The TCA cycle intermediates 2-OG, citrate, cis-aconitate, isocitrate and fumarate are 

reported to be either decreased or unchanged in all model types comparing mutIDH1R132H 

with corresponding wtIDH1 samples (Table 1.2.2) [142, 147, 148, 158, 174, 175, 181]. 

Succinate, oxaloacetate and malate are the only TCA cycle intermediates with reports of 

increased levels in mutIDH1R132H compared to wtIDH1, in cultured cells [147, 174, 175]. 

Other studies on succinate, oxaloacetate and malate, using either PTBs, PDXs or cultured 

cells, report decreased relative levels [148, 158, 175] or no significant change in abundance 

[142, 158, 174, 181]. Two independent studies reporting on relative levels of TCA cycle 

intermediates (using different cell lines and different analytical methods; LC-MS and NMR 

respectively), for mutIDH2R172K cells (HOG and U87), report decreased succinate levels [174, 

175].  

Table 1.2.1. continued.  

Metabolite Change Mutation Model type Analysis Method Reference 

Lactate ▬ IDH1R132H PTB CE-MS [142] 

▬ IDH1R132H PTB GC-MS/LC-MS [181] 

▬ IDH1R132H PTB LC-MS [158] 
(suppl.) 

▬ IDH1R132H PDX  MSI/LC-MS [158] 

▬ IDH1R132H CL (HOG) LC-MS [175] 

▼ IDH1R132H PDX MRSI [183] 

▼ IDH1R132H CL (U87)  NMR [144] 

▼ IDH1R132H CL (NHA) NMR [144] 

▼ IDH1R132H CL (LN18) IC-MS [148] 

▲ IDH1R132H CL (U87)  NMR [174] 

▬ IDH2R172K CL (HOG) LC-MS [175] 

▼ IDH2R172K CL (U87)  NMR [174] 
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Table 1.2.2. Analysis of TCA cycle intermediates in mutIDH glioma samples. Changes in metabolite level 
in mutIDH glioma samples relative to wtIDH glioma samples. ▬ = not significantly different; ▼ = 
significantly lower in mutIDH1; ▲= significantly higher in mutIDH1. PTB = patient tissue biopsy; PDX = 
patient-derived mouse xenograft; CL = cell line; suppl = from supplementary information. Table 
reproduced from Hvinden et al. [1]. 

Metabolite Change Mutation Model type Analysis Method Reference 

2-OG ▬ IDH1R132H PTB CE-MS [142] 

▬ IDH1R132H CL (U87)  NMR [174] 

▬ IDH1R132H CL (U251)  LC-MS [147] 

▼ IDH1R132H PTB GC-MS/LC-MS [181] 

▼ IDH1R132H PTB LC-MS [158] 
(suppl.) 

▼ IDH1R132H PDX  MSI/LC-MS [158] 

▼ IDH1R132H CL (LN18) IC-MS [148] 

▼ IDH1R132H CL (HOG) LC-MS [175] 

▬ IDH2R172K CL (HOG) LC-MS [175] 

▼ IDH2R172K CL (U87)  NMR [174] 

Oxaloacetate ▬ IDH1R132H PTB GC-MS/LC-MS [181] 

▲ IDH1R132H CL (U87)  NMR [174] 

▼ IDH2R172K CL (U87)  NMR [174] 

Citrate ▬ IDH1R132H PTB CE-MS [142] 

▬ IDH1R132H PTB GC-MS/LC-MS [181] 

▬ IDH1R132H PTB LC-MS [158] 
(suppl.) 

▬ IDH1R132H PDX  MSI/LC-MS [158] 

▬ IDH1R132H CL (U87) NMR [174] 

▬ IDH1R132H CL (LN18) IC-MS [148] 

▬ IDH1R132H CL (U251)  LC-MS [147] 

▼ IDH1R132H CL (HOG) LC-MS [175] 

▲ IDH2R172K CL (HOG) LC-MS [175] 

▼ IDH2R172K CL (U87)  NMR [174] 

Cis-aconitate ▬ IDH1R132H PTB CE-MS [142] 

▼ IDH1R132H CL (HOG) LC-MS [175] 

Isocitrate ▬ IDH1R132H PTB CE-MS [142] 

▼ IDH1R132H PTB GC-MS/LC-MS [181] 

Succinate ▬ IDH1R132H PTB CE-MS [142] 

▬ IDH1R132H PTB LC-MS [158] 
(suppl.) 

▬ IDH1R132H PDX  MSI/LC-MS [158] 

▼ IDH1R132H CL (LN18) IC-MS [148] 

▲ IDH1R132H CL (HOG) LC-MS [175] 

▲ IDH1R132H CL (U251)  LC-MS [147]  

▲ IDH1R132H CL (U87)  NMR [174] 

▼ IDH2R172K CL (U87)  NMR [174] 

▼ IDH2R172K CL (HOG) LC-MS [175] 

Fumarate ▬ IDH1R132H PTB CE-MS [142] 

▬ IDH1R132H PTB GC-MS/LC-MS [181] 

▬ IDH1R132H CL (U87)  NMR [174] 

▬ IDH1R132H CL (U251)  LC-MS [147] 

▼ IDH1R132H CL (HOG) LC-MS [175] 

▼ IDH1R132H CL (LN18) IC-MS [148] 

▬ IDH2R172K CL (U87)  NMR [174] 

▼ IDH2R172K CL (HOG) LC-MS [175] 
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Changes in amino acid abundances have often been reported for mutIDH cell models; but 

as with the aforementioned metabolites, other than R-2-HG, the abundance changes are 

generally not consistent across studies or model types (Table 1.2.3) [142, 144, 174, 175, 

181, 183], with comprehensive analyses only being reported in a small number of studies 

[142, 174, 175]. Only cysteine and proline, out of the 20 amino acids measured, were 

reported to have the same relative abundances between wtIDH1 and mutIDH1R132H in two 

studies including them [142, 175]. Despite a lack of agreement in abundance changes 

across models and techniques, the consistent modulation of amino acids in the context of 

IDH1 mutations does merit further study.  

Table 1.2.2. continued.  

Metabolite Change Mutation Model type Analysis Method Reference 

Malate ▬ IDH1R132H PTB LC-MS [158] 
(suppl.) 

▬ IDH1R132H CL (U87)  NMR [174] 

▼ IDH1R132H PDX  MSI/LC-MS [158] 

▼ IDH1R132H CL (LN18) IC-MS [148] 

▼ IDH1R132H CL (HOG) LC-MS [175] 

▲ IDH1R132H CL (U251)  LC-MS [147] 

▬ IDH2R172K CL (U87)  NMR [174] 

▼ IDH2R172K CL (HOG) LC-MS [175] 
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Table 1.2.3. Analysis of amino acids in mutIDH glioma samples. Changes in metabolite level in mutIDH 
glioma samples relative to wtIDH glioma samples. ▬ = not significantly different; ▼ = significantly 
lower in mutIDH1; ▲= significantly higher in mutIDH1. PTB = patient tissue biopsy; PDX = patient-
derived mouse xenograft; CL = cell line; suppl = from supplementary information.  Table reproduced 
from Hvinden et al. [1]. 

Metabolite Change Mutation Model type Analysis Method Reference 

Glutamate ▬ IDH1R132H PTB GC-MS/LC-MS [181] 

▬ IDH1R132H PDX MRSI [183] 

▼ IDH1R132H PTB CE-MS [142] 

▼ IDH1R132H PTB LC-MS [158] (suppl.) 

▼ IDH1R132H PTB NMR [184] 

▼ IDH1R132H CL (U87)  NMR [174] 

▼ IDH1R132H CL (HOG) LC-MS [175] 

▼ IDH1R132H CL (U87)  NMR [144] 

▼ IDH1R132H CL (NHA) NMR [144] 

▲ IDH1R132H CL (U251)  LC-MS [147] 

▬ IDH2R172K CL (HOG) LC-MS [175] 

▲ IDH2R172K CL (U87)  NMR [174] 

Aspartate ▬ IDH1R132H PTB CE-MS [142] 

▬ IDH1R132H PTB GC-MS/LC-MS [181] 

▬ IDH1R132H CL (NHA) NMR [144] 

▼ IDH1R132H PTB LC-MS [158] (suppl.) 

▼ IDH1R132H CL (HOG) LC-MS [175] 

▼ IDH1R132H CL (U87)  NMR [144] 

▼ IDH2R172K CL (HOG) LC-MS [175]  

Alanine ▬ IDH1R132H PTB CE-MS [142] 

▼ IDH1R132H PTB GC-MS/LC-MS [181] 

▼ IDH1R132H CL (U87)  NMR [174] 

▲ IDH1R132H CL (HOG) LC-MS [175] 

▼ IDH2R172K CL (U87)  NMR [174] 

▲ IDH2R172K CL (HOG) LC-MS [175] 

Arginine ▬ IDH1R132H PTB CE-MS [142] 

▲ IDH1R132H CL (HOG) LC-MS [175] 

▼ IDH2R172K CL (HOG) LC-MS [175] 

Asparagine ▼ IDH1R132H PTB CE-MS [142] 

▲ IDH1R132H PTB GC-MS/LC-MS [181] 

▲ IDH1R132H CL (HOG) LC-MS [175] 

▲ IDH2R172K CL (HOG) LC-MS [175] 

Cysteine ▬ IDH1R132H PTB CE-MS [142] 

▬ IDH1R132H CL (HOG) LC-MS [175] 

▬ IDH2R172K CL (HOG) LC-MS [175] 

Glutamine ▬ IDH1R132H PTB GC-MS/LC-MS [181] 

▬ IDH1R132H PTB LC-MS [158] (suppl.) 

▬ IDH1R132H CL (NHA) NMR [144] 

▼ IDH1R132H PTB CE-MS [142] 

▼ IDH1R132H CL (U87)  NMR [144] 

▲ IDH1R132H PDX MRSI [183] 

▲ IDH1R132H CL (HOG) LC-MS [175] 

▲ IDH2R172K CL (HOG) LC-MS [175] 
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Table 1.2.3. continued.  

Metabolite Change Mutation Model type Analysis Method Reference 

Glycine ▬ IDH1R132H PTB CE-MS [142] 

▼ IDH1R132H PTB GC-MS/LC-MS [181] 

▼ IDH1R132H CL (U87)  NMR [174] 

▲ IDH1R132H CL (HOG) LC-MS [175] 

▼ IDH2R172K CL (U87)  NMR [174] 

▲ IDH2R172K CL (HOG) LC-MS [175] 

Histidine ▬ IDH1R132H PTB CE-MS [142] 

▲ IDH1R132H CL (HOG) LC-MS [175] 

▬ IDH2R172K CL (HOG) LC-MS [175] 

Isoleucine ▬ IDH1R132H PTB CE-MS [142] 

▼ IDH1R132H CL (U87)  NMR [174] 

▲ IDH1R132H CL (HOG) LC-MS [175] 

▲ IDH2R172K CL (HOG) LC-MS [175] 

▲ IDH2R172K CL (U87)  NMR [174] 

Leucine ▬ IDH1R132H PTB CE-MS [142] 

▼ IDH1R132H CL (U87)  NMR [174] 

▲ IDH1R132H CL (HOG) LC-MS [175] 

▼ IDH2R172K CL (U87)  NMR [174] 

▲ IDH2R172K CL (HOG) LC-MS [175] 

Lysine ▬ IDH1R132H PTB CE-MS [142] 

▲ IDH1R132H CL (HOG) LC-MS [175] 

▲ IDH2R172K CL (HOG) LC-MS [175] 

Methionine ▬ IDH1R132H PTB CE-MS [142] 

▲ IDH1R132H CL (HOG) LC-MS [175] 

▲ IDH2R172K CL (HOG) LC-MS [175] 

Phenylalanine ▼ IDH1R132H PTB CE-MS [142] 

▼ IDH1R132H CL (U87)  NMR [174] 

▲ IDH1R132H CL (HOG) LC-MS [175] 

▼ IDH2R172K CL (U87)  NMR [174] 

▲ IDH2R172K CL (HOG) LC-MS [175] 

Proline ▬ IDH1R132H PTB CE-MS [142] 

▬ IDH1R132H CL (HOG) LC-MS [175] 

▼ IDH2R172K CL (HOG) LC-MS [175] 

Serine ▼ IDH1R132H PTB GC-MS/LC-MS [181] 

▲ IDH1R132H CL (HOG) LC-MS [175] 

▬ IDH2R172K CL (HOG) LC-MS [175] 

Threonine ▬ IDH1R132H PTB CE-MS [142] 

▼ IDH1R132H CL (U87)  NMR [174] 

▲ IDH1R132H CL (HOG) LC-MS [175] 

▲ IDH2R172K CL (U87)  NMR [174] 

▲ IDH2R172K CL (HOG) LC-MS [175] 

Tryptophan ▬ IDH1R132H PTB CE-MS [142] 

▲ IDH1R132H CL (HOG) LC-MS [175] 

▲ IDH2R172K CL (HOG) LC-MS [175] 

Tyrosine ▬ IDH1R132H PTB CE-MS [142] 

▲ IDH1R132H CL (HOG) LC-MS [175] 

▲ IDH2R172K CL (HOG) LC-MS [175] 



Chapter 1. Introduction 

18 

 

Comparisons of mutIDH1R132H/C, mutIDH2R172K/W/G and wtIDH1 glioma using in vivo MRS in 

human patients, has shown that N-acetylated amino acids (NAAAs) are consistently 

decreased in all tumour types measured compared to healthy tissue [178, 185, 186]. 

Orthotopic mutIDH1R132H and wtIDH1 glioma PDX mouse models similarly show lower levels 

of NAAAs compared to healthy tissue [158, 183]. In one study comparing the abundance of 

NAAAs in mutIDH1R132H to wtIDH1 glioma patients, MRS revealed that total NAAAs were 

slightly higher in mutIDH1R132H than wtIDH1 gliomas [178]. However, it was found that 

specific NAAAs were depleted in mutIDH1R132H cells compared to wtIDH1 cells [148, 175] 

(Table 1.2.4). These differences may be linked to concomitant differences in amino acid 

abundance in vivo and in vitro, but this link requires further confirmation. 

Table 1.2.3. continued.  

Metabolite Change Mutation Model type Analysis Method Reference 

Valine ▬ IDH1R132H PTB CE-MS [142] 

▼ IDH1R132H CL (U87)  NMR [174] 

▲ IDH1R132H CL (HOG) LC-MS [175] 

▲ IDH1R132H CL (U87)  NMR [144] 

▲ IDH1R132H CL (NHA) NMR [144]  

▲ IDH2R172K CL (U87)  NMR [174] 

▲ IDH2R172K CL (HOG) LC-MS [175] 
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Glutathione, in its thiol or disulphide forms, is reported to be decreased in mutIDH1/2 

compared to wtIDH1/2 cultured cells, in four studies [144, 148, 174, 175], except for  

mutIDH1R132H U87 cells (increased) [174] and mutIDH1R132H NHA cells (unchanged) [144] 

(Table 1.2.5). Interestingly, a different study, also using mutIDH1R132H U87 cells, reported 

lower glutathione disulphide levels compared to wtIDH1 U87 cells [144]. Both U87 studies 

used NMR measurements and both expressed mutIDH1 and wtIDH1 using a lentiviral 

vector; it is unclear why different relative glutathione levels were observed [144, 174]. The 

one study reporting on glutathione levels in tissues did not find a significant difference 

Table 1.2.4. Analysis of N-Acetylated amino acids in mutIDH glioma samples. Changes in metabolite 
levels in mutIDH glioma samples relative to wtIDH glioma samples. ▬ = not significantly different; ▼ = 

significantly lower in mutIDH1; ▲= significantly higher in mutIDH1. PTB = patient tissue biopsy; PDX = 
patient-derived mouse xenograft; CL = cell line; suppl = from supplementary information.  
NAAA = N-acetylated amino acids; NAAG = N-acetylaspartylglutamate; NAA = N-acetylaspartate.  Table 
reproduced from Hvinden et al. [1]. 

Metabolite Change Mutation Model type Analysis Method Reference 

Total NAAA ▲ IDH1R132H PTB MRS [178] 

IDH2R172K 

▬ IDH1R132H PDX MRS [183] 

NAAG ▲ IDH1R132H PTB LC-MS [158] 
(suppl.) 

▬ IDH1R132H PDX MSI [158] 

▼ IDH1R132H CL (HOG) LC-MS [175] 

▼ IDH1R132H CL (LN18) IC-MS [148] 

▼ IDH2R172K CL (HOG) LC-MS [175] 

NAA ▼ IDH1R132H PTB CE-MS [142] 

▼ IDH1R132H PTB LC-MS [158] 
(suppl.) 

▬ IDH1R132H PDX MSI [158] 
▼ IDH1R132H CL (HOG) LC-MS [175] 

▼ IDH2R172K CL (HOG) LC-MS [175] 

N-acetylalanine ▼ IDH1R132H CL (HOG) LC-MS [175] 

▼ IDH2R172K CL (HOG) LC-MS [175] 

N-acetylglutamine ▼ IDH1R132H CL (HOG) LC-MS [175] 

▬ IDH2R172K CL (HOG) LC-MS [175] 

N-acetylglutamate ▼ IDH1R132H PTB CE-MS [142] 

▼ IDH1R132H CL (HOG) LC-MS [175] 

▼ IDH2R172K CL (HOG) LC-MS [175] 

N-acetylglycine ▲ IDH1R132H CL (U87)  NMR [174] 

▼ IDH2R172K CL (U87)  NMR [174] 

N-acetylhistidine ▼ IDH1R132H PTB CE-MS [142] 

N-acetylmethionine ▼ IDH1R132H CL (HOG) LC-MS [175] 

▬ IDH2R172K CL (HOG) LC-MS [175] 

N-acetylserine ▼ IDH1R132H CL (HOG) LC-MS [175] 

▼ IDH2R172K CL (HOG) LC-MS [175] 

N-acetylthreonine ▼ IDH1R132H CL (HOG) LC-MS [175] 

▼ IDH2R172K CL (HOG) LC-MS [175] 
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between mutIDH1R132H and wtIDH1 PDX samples or PTBs [158]. Few studies have reported 

on levels of other redox metabolites directly, e.g., NADP/NADPH or NAD/NADH, or energy 

‘currency’ compounds, e.g., creatine, AMP/ADP/ATP [144, 148, 158, 174].   

In summary, studies into altered metabolite abundances in the presence of mutIDH (all 

reported as significant) are inconsistent across model types (e.g. cultured cells versus 

PTB/PDX) and/or analysis methods (e.g. MS, NMR, MRS) (Tables 1.2.1-1.2.5). The 

differences in reported relative levels of metabolites likely results from multiple factors, 

including the varied genetic backgrounds of the multiple cell models used. The cell lines 

discussed are especially relevant in this respect as they represent a mixture of cancerous 

and non-cancerous cell types (e.g. NHA and HOG) or gliomas with different mutational 

Table 1.2.5. Analysis of other metabolites in mutIDH glioma samples. Changes in metabolite level in 
mutIDH glioma samples relative to wtIDH glioma samples. ▬ = not significantly different; ▼ = 
significantly lower in mutIDH1; ▲= significantly higher in mutIDH1. PTB = patient tissue biopsy; PDX = 
patient-derived mouse xenograft; CL = cell line; suppl = from supplementary information.  Table 
reproduced from Hvinden et al. [1]. 

Metabolite Change Mutation Model type Analysis Method Reference 

Glutathione (oxidised) ▼ IDH1R132H CL (HOG) LC-MS [175] 

▼ IDH2R172K CL (HOG) LC-MS [175] 

Glutathione (reduced) ▬ IDH1R132H PTB LC-MS [158] 
(suppl.) 

▬ IDH1R132H PDX  MSI/LC-MS [158] 

▬ IDH1R132H CL (NHA) NMR [144] 

▼ IDH1R132H CL (HOG) LC-MS [175] 

▼ IDH1R132H CL (U87)  NMR [144] 

▼ IDH1R132H CL (LN18) IC-MS [148] 

▲ IDH1R132H CL (U87)  NMR [174] 

▼ IDH2R172K CL (U87)  NMR [174] 

▼ IDH2R172K CL (HOG) LC-MS [175] 

Cystathionine ▼ IDH1R132H PDX  MSI/LC-MS [158] 

Creatine ▬ IDH1R132H CL (NHA) NMR [144] 

 ▼ IDH1R132H CL (U87)  NMR [174] 

 ▼ IDH1R132H CL (U87)  NMR [144] 

 ▬ IDH2R172K CL (U87)  NMR [174] 

ATP ▬ IDH1R132H PTB LC-MS [158] 
(suppl.) 

▬ IDH1R132H CL (LN18) IC-MS [148] 

▼ IDH1R132H PDX  MSI/LC-MS [158] 

ADP ▬ IDH1R132H PDX  MSI/LC-MS [158] 

▲ IDH1R132H CL (LN18) IC-MS [148] 

AMP ▬ IDH1R132H PTB LC-MS [158] 
(suppl.) 

▬ IDH1R132H PDX  MSI/LC-MS [158] 

▬ IDH1R132H CL (LN18) IC-MS [148] 

NAD+ ▼ IDH1R132H CL (U87)  NMR [174] 

▲ IDH2R172K CL (U87)  NMR [174] 

NADH ▲ IDH1R132H CL (LN18) IC-MS [148] 
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landscapes (e.g. U87, U251 and LN18). In addition, ‘background’ mutations also have the 

potential to contribute to metabolic differences observed between cell types for mutIDH1 

and R-2-HG effects, previously highlighted by e.g. Carbonneau et al. [151].   

It is unclear to what extent the altered metabolite levels directly result from raised R-2-HG 

levels (for example directly affected by R-2-HG mediated enzyme inhibition) or result from 

secondary effects (for example the consequence of altered redox equilibrium due to 

changes in NADPH production mediated by mutIDH). It is also possible that differences in 

cell proliferation rates lead to metabolic differences, as has been reported for a number of 

isogenic cell lines [187-190], which are commonly used when studying the effects of 

mutIDH1 in glioma. The slower proliferation rate of mutIDH1 cells (compared to wild-type) 

has also been reported for patient-derived glioma cells [137] and human leukemic cells 

exposed to R-2-HG [191]. Currently, other than for elevated R-2-HG, it is difficult to form 

clear conclusions about metabolic adaptions in mutIDH1/2 glioma based on changes in 

metabolite levels alone. However, when combined with information from additional 

techniques (e.g., isotopic tracer experiments, proteomics and transcriptomics data), and 

information about the cancer models, a somewhat clearer picture of metabolic changes 

and pathways in mutIDH1/2 models starts to emerge.  

1.2.3. MutIDH1 glioma cells have been shown to be less glycolytic and have altered TCA 

cycle function compared to wild type cells 

Recent studies, in which levels of metabolic enzymes were measured in PDX mice or PTBs, 

found that mutIDH1R132H glioma appear to rely less on glycolysis and more on mitochondrial 

metabolism to alleviate mutIDH1-related metabolic stress [183, 192, 193]. These results 

support the proposal that some mutIDH1R132H glioma use lactate and glutamate as 

anaplerotic substrates for TCA cycle metabolism [183, 192, 193]. In contrast, it has been 

proposed that wtIDH1 glioma are more dependent on glucose, glutamine and acetate as 

anaplerotic substrates [183, 192, 194, 195]. In mutIDH1 glioma, glutamate and lactate 

appear to be further metabolised by deamination of glutamate to 2-OG and carboxylation 

of pyruvate (from imported lactate) to give oxaloacetate, respectively [183, 192, 193]. The 

differences in metabolism between wtIDH1 and mutIDH1R132H glioma are summarised in 

Figure 1.2.1.  
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MutIDH1R132H glioma are reported to have reduced glucose uptake compared to wtIDH1 

gliomas [137, 183, 192]. Cultured mutIDH1R132H NHA and glioma (BT142) cells have reduced 

expression of the mono-carboxylate exporters MCT-1 and MCT-4 compared to wtIDH 

glioma cells (NHA, U87) [196, 197], supporting the hypothesis that mutIDH1 gliomas are 

less glycolytic than wtIDH1 gliomas. LDHA, which catalyses oxidation of pyruvate to lactate, 

is downregulated in mutIDH1R132H glioma cell, PDX (mouse) and PTBs [193, 197, 198], while 

LDHB (which converts lactate to pyruvate) has increased expression in 

mutIDH1R132H-expressing BT142 cells, PTBs and PDX (mouse) glioma [183, 192, 193, 197]. 

Isotope tracer experiments show that production of intracellular lactate from 

 
Figure 1.2.1. Overview of reported metabolic differences between wtIDH1 and mutIDH1 glioma. Mutant 
isocitrate dehydrogenase 1 glioma cells are less glycolytic and have altered TCA cycle function compared 
to wild type cells. In mutIDH1R132H glioma cells, glutamate and lactate are favoured for anaplerosis of the 
TCA cycle, while wtIDH1 glioma are more glycolytic and use acetate and glutamate in anaplerosis of the 
TCA cycle. Abbreviations: PDH (pyruvate dehydrogenase), PC (pyruvate carboxylase), ACSS2 (acyl-
coenzyme A synthetase short-chain family member 2), CS (citrate synthase), OGDH (2-oxoglutarate 
dehydrogenase complex), GLUD2 (glutamate dehydrogenase), GLS (glutaminase), GLUT3 (glucose 
transporter 3), LDHA and B (lactate dehydrogenase A and B), MCT1/2/4 (monocarboxylate transporter), 
BCAT1 (branched chain amino acid transferase) and IDH (isocitrate dehydrogenase). Cit (citrate), I-Cit 
(isocitrate), 2-OG (2-oxoglutarate), Suc-CoA (succinyl-CoA), Suc (succinate), Fum (fumarate), Mal 
(malate), OAA (oxaloacetate), Pyr (Pyruvate), Ac-CoA (acetyl-CoA), Ace (acetate), Glc (glucose), Lac 
(lactate), Glu (glutamate), Gln (glutamine), BCAA (branched chain amino acids), and BCKA (branched 
chain α-ketoacids). Figure reproduced from Hvinden et al. [1]. 
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hyperpolarised [1-13C]-pyruvate is significantly lower in mutIDH1R132H versus wtIDH1 NHA 

cells [196]. A similar experiment comparing BT142 (mutIDH1R132H) to U87 (wtIDH1) cells, in 

both cell culture and mouse tumour models, showed that there is significantly less labelled 

lactate in mutIDH1 compared to wtIDH1 cells after perfusion with hyperpolarised 

[1-13C]-pyruvate [197]. However, levels of isotopically labelled lactate derived from 

[1-13C]-glucose tracer experiments were reported as being both significantly lower in 

mtIHD1R132H cells (NHA) [196] and unchanged in U87 mutIDH1R132H and wtIDH1 cells [199]. 

It was reported that it can take a number of cell-growth cycles (passages) for sufficient 

promoter region hypermethylation of, e.g. the LDHA gene, to affect expression levels [198, 

200]; therefore whether lactate level changes are particularly cell line dependent, or 

sensitive to passage number after induction of mutIDH1R132H, remains to  be determined.  

As an anaplerotic substrate for the TCA cycle, pyruvate can be converted to oxaloacetate 

by pyruvate carboxylase (PC) and to acetyl-CoA by pyruvate dehydrogenase (PDH). In 

mutIDH1R132H U87 and NHA cells, PC showed increased expression levels and activity, while 

PDH had reduced activity [143, 199]. Furthermore, the fractional flux of pyruvate through 

PC was increased in mutIDH1R132H NHA cells compared to wtIDH1 cells, and the fractional 

flux of pyruvate through PDH was decreased [143]. Thus, by reducing PDH activity and 

increasing PC levels, mutIDH1R132H glioma U87 and NHA cells have been shown to use 

pyruvate for the production of oxaloacetate, a process supported by separate studies [143, 

199]. In general, there appears to be experimental agreement that gliomas with 

mutIDH1RR132H are less glycolytic and rely more on oxidative phosphorylation than wtIDH1 

gliomas [147, 157, 158, 183, 192, 197, 198]. 

1.2.4. Glutamate is an important anaplerotic substrate in mutIDH1 glioma cells 

Glutamate dehydrogenase 1 and 2 (GLUD1&2), which catalyse oxidative deamination of 

glutamate to 2-OG, are significantly elevated in mutIDH1R132H glioma compared with 

wtIDH1 glioma [183, 192, 193, 201, 202], indicating the potential for increased glutamate 

utilization by the TCA cycle. Moreover, increased expression of nerve-tissue specific GLUD2 

leads to enhanced tumour growth in mutIDH1R132H glioma murine models [201, 202].  

Branched-chain amino acid transaminase 1 (BCAT1), which is located in the cytosol and 

widely expressed in the brain [203], is present at significantly lower levels in mutIDH1R132H 
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glioma PTB and PDX, compared to wtIDH1 glioma samples [183, 192, 204]. BCAT1 catalyses 

transamination of valine, leucine, and isoleucine; the α-amino group is transferred to 2-OG, 

producing glutamate and branched-chain α-ketoacids [205]. High expression of BCAT1 may 

be counterproductive to glutamate in its role as an anaplerotic substrate of the TCA cycle 

in IDH mutant tumours. The reduced level of BCAT1 in mutIDH1R132H cells is in part due to 

extensive hypermethylation of the promoter region of the BCAT1 gene [192, 204]. 

However, other mutIDH1-related mechanisms may be involved in regulation of BCAT1 

expression, as expression of mutIDH1 in immortalised human astrocytes caused BCAT1 

downregulation, but not by hypermethylation of its promoter region [204]. It is reported 

that R-2-HG can directly inhibit BCAT1 activity in mutIDH1R132H HOG cells at high (millimolar) 

concentrations [173], although this was not the case in mouse brain detergent extracts 

exposed to millimolar R-2-HG [204].  

Glutaminolysis, where glutamine is converted to TCA cycle intermediates, is a hallmark of 

metabolism in several types of cancers [reviewed in 206]. Inhibition of glutaminase (GLS), 

the enzyme catalysing conversion of glutamine to glutamate, decreased proliferation in 

certain cultured glioma cells (D54, U87) [142, 207], but had only a moderate 

antiproliferative effect on certain patient-derived cultured cell lines (BT142, TS603 and 

NCH1681) [208]. GLS expression is not significantly increased in mutIDH1R132H patient 

samples [183, 192]. Furthermore, the reliance on glutaminolysis in cultured cells could be 

due to the high levels of cystine present in standard culture media. When a variety of cancer 

cell lines were grown in the presence of high levels of cystine, the xCT glutamate/cystine 

antiporter led to a depletion of glutamate in cells, which was ameliorated via glutaminolysis 

[209]. Cells grown in low cystine media were significantly less sensitive to inhibition of 

glutaminolysis as the xCT glutamate/cystine antiporter no longer exported glutamate from 

the cells [209]. Patient derived mutIDH1R132H cell lines (BT142, TS603 and NCH1681) were 

also shown to have increased expression of asparagine synthetase (ASNS) and glutamate 

oxaloacetate transaminase (GOT) [208]. The enzymes allow the cells to circumvent GLS 

inhibition and produce glutamate via aspartate and glutamine (ASNS) or aspartate and 2-

OG (GOT). The importance and therapeutic relevance of GLS in mutIDH1 glioma thus 

remains to be determined.   
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1.2.5. Other pathways involved in tricarboxylic acid cycle anaplerosis 

Additional changes related to TCA cycle related metabolism reported in mutIDH1 cells 

include the γ-aminobutyric acid (GABA) shunt, lipid oxidation-derived acetyl-CoA and the 

2-OG dehydrogenase complex [147, 170, 183, 210]; the disease significance of these 

changes is unclear. In the GABA shunt, glutamate is decarboxylated forming GABA 

(catalysed by glutamate decarboxylase (GAD-1)), followed by deamination to give succinic 

acid semialdehyde (catalysed by 4-aminobutyrate aminotransferase (ABAT)) and finally 

oxidation to succinate by succinate semialdehyde dehydrogenase (SSADH). Levels of the 

enzymes involved in the GABA shunt pathway are significantly elevated in glioma tissue in 

general [147] or mutIDH1R132H glioma tissue specifically [183], but not in an orthotopic 

xenograft mouse model of mutIDH1R132H glioma [183]. In U251 glioma cells the expression 

of mutIDH1, or treatment of wtIDH1 cells with exogenous R-2-HG, leads to a reduction in 

the pro-proliferative effects of GABA [147]. Further studies are needed to understand the 

effects of R-2-HG on enzymes in the GABA shunt and its role in glioma metabolism.  

1.2.6. Altered redox homeostasis due to mutIDH1 consumption of NADPH 

Cells must control reactive oxygen species (ROS) to limit damage to nucleic acids, proteins 

and lipids and to maintain ROS-based signalling pathways [211]. Antioxidants are central to 

regulating ROS; glutathione is a ubiquitous antioxidant tripeptide thiol requiring NADPH for 

its production [212]. Cells employ multiple pathways for NADPH production; in the cytosol 

major contributors to ROS regulation are IDH1, malic enzyme 1 (ME1) and 

glucose 6-phopshate dehydrogenase (G6PD)/6-phosphogluconate dehydrogenase (PGD) in 

the oxidative pentose phosphate pathway (oxPPP) [213, 214]. IDH1 is especially important 

for NADPH production in the brain [215]. IDH2 plays an important role in mitochondrial 

redox balance and in protection against ROS [101, 102], protecting tissues such as lung, 

kidney, heart and liver from mitochondrial oxidative damage [216-219]. MutIDH1&2 have 

a substantially reduced ability to produce NADPH compared to the wild-type and instead 

consume significant amounts of NADPH during R-2-HG production [161, 215, 220, 221]. 

This puts pressure on maintenance of the cellular NADPH/NADP+ balance and redox 

homeostasis, potentially making mutIDH cells more vulnerable to ROS and metabolic stress 

[161, 220-225].  
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There is evidence that mutIDH1 cells employ compensatory pathways to ameliorate the 

increased use of NADPH for R-2-HG production. The pentose phosphate pathway (PPP) has 

been suggested to act in this role and there is evidence of increased flux through the PPP 

in mutIDH1R132H HCT116 and NHA cells [221]. However, such increased flux was shown not 

to fully compensate for R-2-HG mediated NADPH consumption, especially when the 

mutIDH1R132H cells were under metabolic stress [161, 221]. In mutIDH1R132H U87 glioma, 

primary GBM and immortalized astrocytes cell lines, NADPH levels were partially restored 

by phosphorylating NAD+ by NAD+ kinase [220]. The upregulation of NAD+ synthesis 

enzymes varies between immortalised astrocyte and GBM cell lines, as well as PTBs, 

indicating the changing role of mutIDH1 throughout tumorigenesis [220]. MutIDH1R132H 

glioma xenograft cell lines have reduced NAD+ levels, as well as lowered nicotinate 

phosphoribosyltransferase (Naprt1), an enzyme involved in NAD+ salvaging pathway [226]. 

The mutIDH1R132H glioma cells were sensitive to inhibition of nicotinamide 

phosphoribosyltransferase (NAMPT), the rate limiting enzyme of the NAD+ salvaging 

pathway, which left the mutIDH1R132H cells with fewer options to increase intracellular 

NAD+ [226].  

Glioma (BT142) cells rely on glutamate to boost redox homeostasis, both by increasing the 

NADPH/NADP+ and reduced/oxidised glutathione ratios [224]. Induction of mutIDH1R132H or 

mutIDH1R132C expression in U251 glioma cell increases expression of glutathione 

biosynthesis enzymes [225]. The nuclear factor erythroid 2-related factor (Nrf2), which 

regulates the response to oxidative damage including glutathione biosynthesis, has 

enhanced activity in mutIDH1R132C/H U251 cells [225]. MutIDH1 astrocytoma cells have 

displayed critical reliance on cystathionine-γ-lyase (CSE) both in vitro and in vivo [141]; CSE 

provides cysteine for glutathione synthesis via lysis of cystathionine. The reliance on CSE 

was most pronounced under limited cysteine availability [141]. Glioblastomas also have 

upregulated wtIDH1 expression [227, 228] and gene knockdown or pharmacological 

inhibition of wtIDH1 has been shown to lead to decreased NADPH and glutathione levels, 

along with increased ROS expression and apoptosis [227, 228]. Collectively these 

observations suggest the importance of wtIDH1 activity in maintaining redox homeostasis.  
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1.2.7. Altered lipid metabolism in cells expressing mutant isocitrate dehydrogenase  

The conversion of isocitrate to 

2-OG by wtIDH1 provides NADPH 

that is subsequently available for 

fatty acid synthesis [96] and both 

wtIDH1&2 support fatty acid 

synthesis under hypoxic 

conditions by providing isocitrate 

that is converted to acetyl-CoA 

via citrate [99, 103] (Figure 1.2.2). 

Since mutIDH1R132H loses both the 

ability to produce NADPH and to 

carry out reductive carboxylation 

[187, 229], it is reasonable to 

propose that cells carrying 

mutIDH1R132H may have altered 

lipid metabolism compared to wtIDH1 cells. 

In mutIDH1 glioma, alterations in phospholipid profiles have been observed in cultured cell 

models and tumours, as shown by LC-MS, MSI and 1H and 31P in vitro and ex vivo NMR and 

in vivo MRS [144, 158, 184, 230], in part summarised in Table 1.2.6. Independent studies 

using MRS/NMR show that phosphocholine (PCho) and glycerophosphocholine (GPCho) 

are increased in cultured glioma cells expressing mutIDH1R132H, xenograft models, and PTBs 

when compared to equivalent wtIDH1 glioma samples [184, 230]. However, a study 

measuring PCho with LC-MS in cultured HOG cells expressing mutIDH1R132H or mutIDH2R172K 

found that PCho was significantly lower compared to HOG wtIDH cells [175] and reported 

GPCho as increased. In addition to PCho and GPCho, phosphoethanolamine (PE) was 

significantly lower in mutIDH1R132H gliomas across all the sample types analysed [230]. In 

an MSI study, four putatively identified PE lipids were reported to be substantially 

increased in mutIDH1R132H glioma mouse PDXs [158]. However, the NMR methods 

employed were insufficiently sensitive to differentiate between the different PEs.  

 
Figure 1.2.2. Overview of IDH related lipid biosynthesis. Lipid 
biosynthesis require NADPH, which is sourced from the 
oxidative pentose phosphate pathway (PPP), citric acid 
shuttle, and IDH1. When IDH1 is mutated, copious NADPH is 
used to synthesise 2-HG. Abbreviations: Cit (citrate), I-Cit 
(isocitrate), 2-OG (2-oxoglutarate), Suc-CoA (succinyl-CoA), 
Suc (succinate), Fum (fumarate), Mal (malate), OAA 
(oxaloacetate), Pyr (Pyruvate) and Ac-CoA (acetyl-CoA). 
Figure reproduced from supplementary material from 
Hvinden  et al. [1].  
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In addition to PE and PCho, levels of phosphatidylinositol (PI) lipids are reported as being 

increased when comparing mutIDH1R132H and wtIDH1 glioma PDXs in mice [158]. When 

gliomas were analysed in patients using in vivo MRS measurements, no significant 

differences in ratios of PE/PCho, GPCho/glycerophosphoethanolamine (GPE) or 

(PCho+GPCho)/(PE+GPE), were detected between mutIDH1R132H and wtIDH1 glioma 

patients [231]. The apparently specific differences in lipid profiles in glioma may in part be 

due to cells compensating for loss of wtIDH1 activity [230] by increasing IDH2-enabled 

NADPH and lipid production. Cells from mouse PDXs of mutIDH1 glioma have been shown 

to have significantly higher mitochondrial density than corresponding wtIDH1 cells [157], 

an interesting observation given IDH2 localises to mitochondria. Additional mitochondria 

would also increase the lipid membrane content in cells, which could help explain the 

differences seen in the phospholipid composition of mutIDH1 and wtIDH1 gliomas [230].  

Table 1.2.6. Analysis of phosphorylated lipids in mutIDH glioma samples. Change in metabolite level in 
mutIDH glioma samples relative to wtIDH glioma samples. ▬ = not significantly different;  
▼ = significantly lower in mutIDH1; ▲= significantly higher in mutIDH1. PTB = patient tissue biopsy; 
PDX = patient-derived mouse xenograft; CL = cell line.  Table reproduced from Hvinden et al. [1]. 

Metabolite Change Mutation Model type Analysis Method References 

Phosphocholine ▲ IDH1R132H PTB 1H NMR [184] 

▬ IDH1R132H PTB 31P NMR [230] 

▬ IDH1R132H PDX 31P MRI [230] 

▲ IDH1R132H CL (U251) 31P NMR [230] 

▼ IDH1R132H CL (HOG) LC-MS [175] 

▼ IDH1R132H CL (U87) 1H NMR [144] 

▼ IDH1R132H CL (NHA) 1H NMR [144] 

▼ IDH2R172K CL (HOG) LC-MS [175] 

Glycerophosphocholine ▲ IDH1R132H PTB 1H NMR [184] 

▲ IDH1R132H PTB 31P NMR [230] 

▲ IDH1R132H PDX  31P MRI [230] 

▲ IDH1R132H CL (U251) 31P NMR [230] 

▲ IDH1R132H CL (HOG) LC-MS [175] 

▲ IDH1R132H CL (U87) 1H NMR [144] 

▬ IDH1R132H CL (NHA) 1H NMR [144] 

▼ IDH2R172K CL (HOG) LC-MS [175] 

Phosphoethanolamine ▬ IDH1R132H PTB 1H MRI [231] 

▼ IDH1R132H PTB 31P NMR [230] 

▼ IDH1R132H PDX  31P MRI [230] 

▼ IDH1R132H CL (U251) 31P NMR [230] 

Glycerophospho-
ethanolamine 

▬ IDH1R132H PTB 31P NMR [230] 

▬ IDH1R132H PDX  31P MRI [230] 

▬ IDH1R132H CL (U251) 31P NMR [230] 

Phosphatidylinositol ▲ IDH1R132H PDX MSI [158] 
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Cholesterol metabolism in mutIDH1/2 glioma has received limited attention to date, but a 

recent study suggests it may be of therapeutic relevance [232]. It was found that 

cholesterol levels were lower in brains from both mutIDH1R132H knock-in (KI) mice and 

mutIDH1R132H expressing U87 and U251 cells, when compared to corresponding wtIDH1 

samples [232]. MutIDH glioma cells had increased expression of de novo cholesterol 

synthesis enzymes 3-hydroxy-3-methyl-glutaryl CoA reductase (HMGCR) and sterol 

regulatory element-binding protein 2 (SREBP2). Inhibition of HMGCR by atorvastatin led to 

significant cell death in mutIDH1R132G-expressing U87 and U251 cells, but had little effect 

on the wtIDH1-expressing U87 and U251 cells [232].  

1.3.  Treating mutIDH1 cancer: direct inhibition or utilise metabolic 

vulnerabilities? 

The specificity of metabolic changes in mutIDH1 or mutIDH2 cancers, and the apparent lack 

of a critical metabolic role for R-2-HG in wtIDH cells, means mutIDHs are promising 

medicinal chemistry targets. Multiple small-molecule inhibitors have now been developed 

to target mutIDH and there are several current clinical trials underway for treatment of 

glioma, AML, chondrosarcoma, and ICC [55, 233-245]. The inhibitors are potent, for 

example three different mutIDH1 inhibitors (AG-120, BAY 1436032 and GSK864) report low 

nM half maximal inhibitory concentrations (IC50) (12.0-15.2) for in vitro assays. The 

mutIDH2 inhibitor AG-221 has a slightly higher in vitro IC50 at 100 nM, but a cellular assay 

was on par with two of the mutIDH1 inhibitors: cellular IC50 AG-221 = 10-20 nM,  

IC50 AG-120 = 8 nM and IC50 BAY 1436032 = 13-73 nM [246-248]. The cellular assays were carried 

out with glioma and GBM cells lines either endogenously expressing mutIDH1 or 

engineered to express it. A pan mutIDH inhibitor (AG-881) capable of inhibiting both 

mutIDH1 and mutIDH2, reports in vitro IC50 values of 31.9 nM and 31.7 nM, respectively 

[249]. The IC50 values for the aforementioned inhibitors are summarised in Table 1.3.1.   
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A variety of mutIDH1 and mutIDH2 inhibitors substantially decrease R-2-HG levels in in vitro 

and xenograft models [174, 176, 177, 226, 252-256], glioma patients [257] and in AML 

patients [258-261]. Some of these inhibitors are reported to initiate differentiation in AML 

and glioma cell lines and mouse models [253, 254]; differentiation of cancer stem cells has 

been suggested as a strategy to reduce treatment resistance and disease recurrence in 

cancer in general [reviewed in 262]. However, other glioma and chondrosarcoma cell lines 

did not have significant decreases in growth after treatment with mutIDH1 inhibitors, 

despite decreased 2-HG abundance [177, 226]. First generation therapeutic 

mutIDH-selective inhibitors were approved for AML treatment in 2018 by the USA Food 

and Drug Administration (FDA) [258, 261]. For solid tumours, promising initial results from 

clinical trials have been reported for advanced cholangiocarcinoma [245] and glioma [263]. 

Advanced mutIDH1 cholangiocarcinomas treated with the mutIDH1 inhibitor AG-120 

(ivosidenib) report significantly increased progression-free survival (PFS) (p-value < 0.0001) 

and improved overall survival [245], while a different trial of ivosidenib in advanced 

mutIDH1 gliomas reported improved disease control and reduced tumour growth [263].   

Resistance has been reported for these first-generation inhibitors (AG-120 and AG-221) 

[258, 264-266] which is generally categorized as primary or acquired and R-2-HG restoring 

or non-restoring [264-266]. Primary resistance to AG-120 and AG-221 (enasidenib), i.e., 

where non-restoration of R-2-HG levels is manifest, has been reported in AML patients. The 

non-responding patients had a higher mutational burden compared to responders, either 

as baseline mutations in genes of the receptor-tyrosine kinase (RTK) pathway [266] or of 

the Ras pathway  [258]. There have been two different types of acquired and R-2-HG 

restoring mechanisms described in the literature. The first type are second-site mutations 

that are proposed to reduce the binding affinity of the allosteric inhibitors AG-221 [264] 

Table 1.3.1. IC50 values reported for three mutIDH inhibitors, one pan mutIDH1 inhibitor (AG-881) and 
one mutIDH2 inhibitor (AG-221). Reported cell IC50

‡ values were for glioma or GBM cells, either 
harbouring mutIDH1R132H or engineered to express it. ‡Only cell EC50 data was found in the literature for 
treatment of engineered GBM cells with GSK864. 

Inhibitor Inhibits IC50 (enzyme) (nM) IC50 (cell) (nM) Reference 

AG-120 mutIDH1 12.0 8 [246] 

AG-881 mutIDH1 31.9 - [249] 

mutIDH2 31.7 - [249] 

BAY 1436032 mutIDH1 15.0 13-73 [247] 

GSK864 mutIDH1 15.2 - [250] 

mutIDH1 - 191‡ [251] 

AG-221 mutIDH2 100 10-20 [248] 
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and AG-120 [266], in mutIDH2 and mutIDH1 respectively. The second type of acquired R-2-

HG restoring mechanism is the emergence of the ‘opposite’ IDH mutation (isoform 

switching), i.e., mutIDH1 arising in previously mutIDH2 patients or vice versa [265, 266].   

Altered metabolism in mutIDH1&2 cancer cells after inhibitor treatment, beyond 

modulation of R-2-HG, has received limited attention to date. Three studies, all using NMR 

and two using cultured glioma cell lines (U87 and/or NHA, mutIDH1R132H), and one using 

patient derived cultured cell lines (BT142, TS603, NCH1681), confirm that R-2-HG levels are 

significantly decreased upon treatment with either AG5198 [174, 208], AG-120 or AG-881 

[255]. There is otherwise not necessarily a high degree of agreement between the studies 

with regards to changes in other metabolite levels. Lactate is reported as either unchanged 

[255] or significantly reduced [174] upon treatment. Glutamate was reported as being 

significantly increased after treatment for engineered cell lines (p-value < 0.001) [255] and 

certain patient derived cell lines (TS603 and NCH1681) (p-value < 0.05) [208]. Wen et al., 

also using engineered cell lines, reported that there was no significant change in glutamate 

levels [174]. Only the study using patient derived cell lines reported on glutamine levels, 

which were significantly elevated in TS603 and NCH1681 after treatment with AG5198 

[208]. In the two studies using the engineered cell line, both cell line (U87) and analysis 

method (NMR) were the same and therefore potentially the difference in glutamate 

response to treatment was due to the use of different cell media in the tissue culture 

experiments (Dulbecco’s Modified Eagle’s Medium (DMEM) [255] versus Roswell Park 

Memorial Institute (RPMI) Medium [174]). A third study using isogenic mutIDH1R132H/C 

clones of HCT116 cells reported that reductive carboxylation could not be rescued after 

treatment with mutIDH1 inhibitor IDH1iA [187].  

In more clinically relevant models, two further studies investigated the effect of mutIDH1 

inhibitors on the wider metabolism of mutIDH1 glioma cells [256, 257]. In orthotopic mouse 

tumours, either from mutIDH1R132H
 U87 or patient-derived mutIDH1 BT257 (astrocytoma) 

and mutIDH1 SF10417 (oligodendroglioma), both inhibitors AG-881 and BAY1436032 were 

able to significantly decrease R-2-HG levels and significantly increase glutamate and the 

combined MRS signal of glutamate/glutamine [256]. Interestingly, NAA was significantly 

increased across all tumours and drug combinations, but only at the first measurement 

timepoint after treatment induction (7 days) and not the final timepoint (14-15 days). The 
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first measurement was made prior to changes in tumour volume [256]. Finally, a clinical 

trial of the mutIDH1 inhibitor ‘IDH305’ in glioma, studying 5 patients, one week of 

treatment (550 mg/day, orally) led to a significant reduction in 2-HG levels (P < 0.05) [257]. 

Furthermore, there was a trend towards increased lactate levels and an inverse correlation 

between glutathione and 2-HG levels. Glutamine/glutamate levels, however, were 

reported as being unchanged [257].  

There has been some interest in alternative therapeutic approaches that take advantage 

of metabolic vulnerabilities in mutIDH [267]. For example, the apparent reliance of 

mutIDH1 cells on glutamine has been explored. Treatment with glutaminase inhibitors 

showed a greater reduction in viability for mutIDH1 compared with wtIDH1 glioma and 

AML cells [169, 207, 268, 269], although the antiproliferative effect has also been reported 

as cell line dependent for patient-derived mutIDH1 glioma cells [208]. There is an ongoing 

clinical trial using a glutaminase inhibitor (CB-839/telaglenastat) combined with radiation 

therapy and temozolomide for treatment of astrocytoma with mutIDH1 or mutIDH2 [270]. 

The use of glutaminase inhibitors in general would benefit from patient stratification to 

ensure that genetic mutations that confer vulnerability to glutamine starvation are present 

[271, 272]. As a single-agent treatment, it appears that telaglenastat stabilises disease 

rather than being cytotoxic [273].  

Chloroquine, best known as an antimalarial agent [274] and autophagy inhibitor [275], is 

also capable of inhibiting nerve-specific GLUD2 [276]. MutIDH1 glioma cells are likely reliant 

on GLUD2 for glutamate-dependent anaplerosis of the TCA cycle [183, 201] and express 

GLUD2 at significantly higher levels than wtIDH1 glioma [183, 192, 193, 201, 202]. 

Treatment with chloroquine could potentially render mutIDH1 glioma cells more 

metabolically vulnerable by limiting their ability to utilise glutamate. Extracellular 

glutamate has been reported to increase redox potential in mutIDH1 glioma cells [224] and 

chloroquine could combine synergistically with a treatment that applies oxidative stress to 

cells, e.g., radiation therapy. A preclinical study using wtIDH1 stem-like glioma cells 

demonstrated that treatment with chloroquine during radiation significantly increased cell 

death; however, in this context it was considered due to the autophagy inhibitory effects 

of chloroquine [277].  
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Unanswered questions remain in metabolism-focussed treatment of mutIDH1 glioma, 

including whether treatment with mutIDH1 inhibition alone is effective, whether it should 

be combined with other therapies, or whether potential metabolic vulnerabilities either 

originating from, or correlating with, the presence of the mutation should be targeted 

instead. A better understanding of the metabolic response to mutIDH1 inhibition is needed 

to make informed choices for therapeutic development. The wider metabolic effect after 

inhibition of mutIDH1 can inform on which parts of glioma metabolism are related to 

increase in 2-HG or mutIDH1 activity (i.e., altered redox state or increased 2-OG 

consumption) and can be used to inform on development and stratification of future 

therapeutic strategies. The next two sections will discuss the methodology that was used 

in this thesis to assess the wider metabolic effect of mutIDH1 and GLS inhibition in wtIDH1 

and mutIDH1R132H GBM cells.   

1.4.  Instrumentation for metabolomics analysis  

Metabolomics is the comprehensive study of the metabolism of a given biological system.  

Metabolism is comprised of the collection of metabolites (≤ 1500 Da) and the reactions 

they partake in, within the given biological system. Metabolites are also considered the 

‘end-point’ or output of a cascade of biochemical processes initiated in the genome, which 

collectively encompasses cellular function. Metabolomics analysis can be targeted, where 

a pre-defined set of metabolites are measured, or untargeted, where as many metabolite-

features as possible are measured. Targeted analysis is usually hypothesis driven, where a 

specific group of metabolites are quantified to answer a defined biological question. 

Untargeted analysis is usually hypothesis generating, where as many features as possible 

are measured, then various statistical analyses are applied to elucidate potential 

biomarkers or changes in activity across a metabolic pathway or network of pathways. The 

two analysis types can be combined in a semi-targeted analysis workflow, in which 

metabolites are identified based on comparison to known standards, but the unknown 

features are still included to allow for more comprehensive analysis of the biological system 

under review. Regardless of whether targeted, untargeted or semi-targeted analysis is 

carried out, choice of instrumentation remains a central part of any metabolomics study.  
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MS and NMR are the most commonly used instruments for sample analysis in 

metabolomics. In MS, charged chemical species in the gas phase are separated based on 

the mass-to-charge ratio (m/z) prior to detection [278]. There are a large number of 

different instrumentation options for MS and it is commonly used in combination with 

other analysis techniques, e.g., chromatography. Which specific application is used 

depends on the sample and analyte(s) of interest. The relevant techniques for 

metabolomics will be described further below.  

In NMR, the resonance frequency of nuclei in a constant and strong external magnetic field 

is measured. Only nuclei with angular momentum (spin) can be measured, as they can align 

with the external magnetic field and then be excited by pulses of electromagnetic radiation. 

The energy that is emitted as the nuclei return to a lower energy state is detected. The 

exact resonance frequency depends on the chemical and physical environment the nuclei 

is in, thus nuclei within a molecule can be distinguished from each other. Only nuclei with 

odd numbers of protons, neutrons or both have spin [279]. In biological applications, the 

most common nuclei to measure are 1H, 13C and 31P and both liquid and solid samples can 

be analysed.  

NMR is robust and provides repeatable analysis, but is currently lacking in coverage and 

sensitivity when compared to hyphenated MS techniques. MS alone is more sensitive than 

NMR, but without prior separation of metabolites there are issues with ion suppression 

and the annotation of isomeric compounds. Hyphenated MS was the main analytical 

technique used in the studies reported in this thesis and will be described in detail in this 

section. The technical aspects and considerations of MS instrumentation will be explained 

and the hyphenation of MS to liquid chromatography (LC) will be described. Finally, the 

different LC stationary phases most applicable to metabolomics study will be considered.  

1.4.1. Mass spectrometry 

The MS instrument is made up of components that allow for the introduction of sample 

(inlet) and ionisation of chemical species (ion source), the separation of charged species 

(mass analyser) and then detection (detector) [278]. The different types of sample inlet/ion 

source and mass analysers commonly used in metabolomics are described below.  



Chapter 1. Introduction 

35 

 

Gaseous, liquid or solid samples can be analysed by MS. Their introduction to the ion 

source, and type of ion source used, depends on the physical state of the samples. 

Desorption techniques are most common for solid samples and there are a number of 

different techniques available [reviewed in 280, 281, 282]. In short, the sample is dispersed 

through a matrix and then analytes are freed from the matrix by high energy ions, neutral 

atoms or photons [278]. In the biological sciences, secondary ion MS (SIMS) and matrix 

assisted laser desorption ionisation (MALDI) MS are the most commonly used techniques 

[reviewed in 281, 282]. MADLI is suitable for the study of large, non-volatile molecules, e.g., 

intact proteins [reviewed in 280, 282], but it can also be used in metabolomics [158]. 

However, in MS-based metabolomics applications it is more common to have samples in 

the liquid or gas phase prior to introduction to the MS instrument. The introduction of gas 

phase sample, e.g., after gas chromatography (GC) analysis, simply requires letting a part 

of the gas stream into the ion source. Similar to solid samples, liquid samples require an 

inlet that transitions the analytes in the sample to the gas phase. The most commonly used 

technique is electrospray ionisation (ESI), but atmospheric pressure chemical ionisation 

(APCI) is also applicable [reviewed in 283, 284].  

In ESI, the vaporisation of the liquid sample starts by passing it through a capillary tube with 

a high voltage applied (± 5 kV). At the other end of the ion source, the MS inlet, the opposite 

charge is applied. The charged liquid forms a cone at the end of the capillary tube and if 

high enough voltage is applied, a jet of liquid droplets forms. Heating can also be applied 

to the capillary tube to aid in droplet formation. Within the droplets, the analytes are either 

negatively or positively charged depending on the voltage applied to the capillary. A 

counter stream of gas, usually nitrogen, is directed at the droplet stream to help remove 

solvent. As droplets shrink from loss of solvent, the charge density increases and once the 

electrostatic forces are greater than the surface tension, the droplets break apart. This 

happens again and again until only gaseous charged species remain, known as the charge 

residue model. Ions can also be ‘emitted’ from a droplet when the field strength at the 

droplet surface is enough to overcome solvation forces. This known as the ion evaporation 

model. Both processes are believed to contribute to the formation of gaseous ions 

[reviewed in 285, 286]. The ESI source is schematically illustrated in Figure 1.4.1. The 

resulting ions from ESI are commonly protonated (positive mode) or deprotonated 
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(negative mode), but additional adducts with e.g., Na+ or K+ (positive mode) or Cl- (negative 

mode) also occur. Protonation or deprotonation can be aided by adjusting the pH of the 

solution being introduced to the capillary. 

ESI occurs at near 

atmospheric pressure, 

but mass analysers 

must operate at high 

vacuum. If not, there 

would be loss of ions 

by collisions with 

other gaseous species. 

Therefore, after the 

ion source, ions move 

through a series of ion guides by application of an electrical field. The geometry of the guide 

is such that neutral species cannot enter the mass analyser. Additionally, the acceleration 

ensures that the ions have the same kinetic energy, which is central to the performance of 

certain mass analysers. 

There are many different types of mass analysers available and an important distinction 

between them is whether they provide high or low mass resolution. The mass resolution is 

the ability to separate peaks of two different m/z values. Mass resolution is generally 

described using the mass resolving power (R): 

Equation 1.1      𝑅 =  
𝑚

∆𝑚
  

where m is the mass of an ion and Δm is the width of the peak of that ion, at a defined peak 

height, e.g. full-width half maximum [278]. Low resolution MS (LRMS) instruments usually 

have R ≤ 10,000, while high resolution MS (HRMS) instruments have R ≥ 60,000 [287]. HRMS 

instruments provide high enough accuracy in their mass measurements that molecular 

formulas can be determined. In semi- and untargeted metabolomics, this is invaluable 

information about the potential identity of a species and HRMS mass analysers are most 

commonly used. However, for tandem MS, where two mass analysers are connected 

sequentially, the first mass analyser does not need to be high resolution because the 

 
Figure 1.4.1. Schematic illustration of formation of gaseous ions from 
liquid phase by electrospray ionisation. The power supply is of high 
voltage, 2-5 kV. Figure adapted from [278].   
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resolving power ahead of detection is provided by the second mass analyser. The three 

mass analysers used extensively in this work are described below.  

Quadrupole mass analyser 

The quadrupole is a low-resolution mass analyser where ions are guided between four 

straight metal rods by an oscillating electric field. Fixed direct current (DC) is applied to two 

opposing rods and alternating radio frequency (RF) voltage through the other two. The 

electric field is adjusted by varying the RF and at certain frequencies ions of specific m/z 

have a trajectory that allows them to pass through the rods, schematically illustrated in 

Figure 1.4.2. The ions with an unstable trajectory collide with the rods and do not reach 

the detector. A range of m/z values can be scanned through to allow ions with different 

m/z to pass. 

Three quadrupoles can be connected 

sequentially for MS-MS analyses, 

where the second quadrupole is used 

as a fragmentation chamber, after 

ion selection by the first quadrupole. 

The third quadrupole is used to 

separate the fragments before 

detection. In hybrid tandem MS, the 

quadrupole is usually the first of two 

mass analysers due to its low mass 

resolution (R ≤ 3,000) [278, reviewed 

in 288].  

Time of Flight mass analyser 

Time of flight (ToF) mass analysers separate ions based on the difference in velocity 

between ions of different mass that have been accelerated with the same amount of kinetic 

energy. The relationship between kinetic energy, mass and velocity is: 

Equation 1.2    𝐸𝐾 =  
1

2
𝑚𝑣2 

 
Figure 1.4.2. Schematic illustration of quadrupole mass 
analyser. Adapted from [278]. 
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where EK is kinetic energy, m is mass and v is the velocity. The kinetic energy applied to an 

ion is dependent on the charge of the ion and the electric potential (voltage) applied: 

Equation 1.3    𝐸𝐾 = 𝑧𝑈 

where z is the charge of the particle, U is the electric potential. Finally, the relationship 

between velocity, time and distance is:  

Equation 1.4    𝑣 =  
𝐿

𝑡
 

where L is distance travelled and t is time. Replacing EK in equation 1.2 with Equation 1.3, 

and v in Equation 1.2 with equation 1.4, then rearranging, it follows that: 

Equation 1.5    𝑡 =  
𝐿

√2𝑈
× √

𝑚

𝑧
 

The distance travelled and voltage applied are the same for all ions entering the mass 

analyser, thus if two ions have the same charge, the heavier ion will have lower velocity 

than the lighter ion and take longer to reach the detector [278, reviewed in 288]. To 

increase the resolution, i.e., separation of ions, the flight length must be increased. This is 

both done by having longer flight tubes, but also by using reflectrons that turn ions around 

to travel down a second flight tube [reviewed in 288]. Commercially available HRMS ToF 

instruments generally have R = 60,000-70,000.  

Orbitrap™ mass analyser 

The Orbitrap™ consists of an inner spindle electrode and an outer barrel electrode, where 

an electric field is generated by applying a DC voltage between the two electrodes. Ions are 

collected and held in a modified quadrupole called a C-trap and then radially injected into 

the Orbitrap™ as a ‘packet’ of ions. The injection is achieved by ramping down the RF and 

applying short bursts of DC [289]. Once inside the Orbitrap™, the ions begin to oscillate 

around the spindle electrode and along it axially (z-axis). A schematic illustration of the 

Orbitrap™ mass analyser is provided in Figure 1.4.3. The oscillations frequency (ω) along 

the z-axis of the spindle electrode is related to the ion m/z: 

Equation 1.6    𝜔 ∝  
1

√
𝑚

𝑧
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The axial frequency is independent of 

the energy and spatial spread of ions, 

unlike the rotational and radial 

oscillation frequency. The axial 

oscillation induces a detectable image 

current that can be Fourier 

transformed to bring the time-

domain signal to mass-to-charge 

frequency [290-292]. The 

commercially available Orbitrap™ 

mass analysers have R ≥ 100,000. 

Direct detection of ions 

The detection of ions is a part of the mass analysis of ions in the Orbitrap™, but the 

quadrupole and ToF mass analysers rely on direct detection of ions after they have passed 

through the mass analyser. The most common form of detector used for direct detection 

are electron multipliers (EM). In essence, the EM contains a dynode that, when hit with an 

ion with enough kinetic energy, emits electrons. The emitted electrons are directed such 

that they will cause more electrons to be emitted and a cascade ensues that increases the 

original signal a million-fold or more. The resulting current is processed and digitised for 

simple readout on a computer. There are different EM geometries, broadly split into either 

continuous or discrete dynodes. Either geometry is fine for a quadrupole mass analyser, 

but a ToF requires fast detection. A common EM geometry for ToF is therefore 

multichannel plates where the electron path is short and the resulting pulse width is 

narrow. The plates can be stacked to increase the signal [reviewed in 293].  

1.4.2. Liquid chromatography 

MS alone can separate ions based on their m/z, but coverage suffers when complex 

samples are analysed. There are many isomeric metabolites and they cannot be separated 

by MS. Therefore, it is common to hyphenate MS with either GC or LC. GC requires 

compounds that can be volatilised, which can be difficult to achieve with the many highly 

polar and ionisable compounds found in human metabolism. Derivatisation can be used to 

 
Figure 1.4.3. Schematic illustration of the Orbitrap™ 
mass analyser. Adapted from [290, 291]. 
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achieve ionisation, but it adds additional sample preparation and sources of error. LC, with 

the use of ESI to achieve gas-phase ions prior to MS analysis, is better suited for the direct 

analysis of highly polar and ionised metabolites.  

No practically feasible LC-MS technique is able to provide robust coverage of all 

metabolites within the cellular metabolome, as the diversity in chemical structure and 

functional groups is currently beyond the capabilities of a single LC-MS method. Usually 

multiple LC-MS techniques have to be employed, but analysis of polar metabolites remains 

challenging. There are a number of LC column chemistries available, the most commonly 

used in metabolomics studies being reversed phase (RP) and hydrophilic interaction 

chromatography (HILIC). RP normally uses carbon chains (C2-C30, C18 most common) as the 

stationary phase. Common mobile phases are water (polar, weak eluent) and methanol or 

acetonitrile (less polar than water, stronger eluent). Increasing the less polar fraction of the 

mobile phase reduces affinity to the stationary phases. The retention time of ionic and 

polar metabolites is generally poor on standard reversed phase columns [294, reviewed in 

295], oftentimes requiring derivatisation to improve retention time [296, 297]. The 

derivatised RPLC-MS method employed here demonstrates the feasibility of this process, 

but as mentioned for GC, it adds time to sample preparation and is a source of error. More 

importantly, derivatisation is selective for a specific functional group and adds substantial 

complexity to the data analysis of untargeted metabolomics experiments. RP columns 

made specifically for more polar compounds are available, but in general it is challenging 

to reach adequate separation, i.e., retention for longer than the void volume of the column.   

HILIC comes with a variety of stationary phases: polar non-charged (e.g., amide, cyano or 

diol), cationic, anionic, and zwitterionic. Different combinations of anion and cation are 

possible for zwitterionic columns (e.g., sulfobetaine or phosphorylcholine). Polar mobile 

phases such as water or methanol are the stronger eluent in HILIC, while less polar eluents 

such as acetonitrile are weaker. The mechanism of retention on a HILIC column is 

multimodal. Water is adsorbed to the stationary phase and forms an immobilised layer. 

Analytes be separated based on different degree of partitioning between the immobilised 

water and the mobile phase passing through the column. In addition, ionic and hydrogen 

bonding interactions with the stationary phase itself occurs as well [reviewed in 298, 299]. 

Buffers are added to the mobile phase to improve peak shape and retention time, as they 
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reduce the electrostatic interactions between charged solutes and charged stationary 

phase. Furthermore, buffers provide pH control to ensure appropriately charged analytes 

and charged stationary phase, if acidic/basic [reviewed in 298]. A ZIC stationary phase with 

immobilised water layer is schematically illustrated in Figure 1.4.4. HILIC is capable of 

separating many different polar compounds with different chemical characteristics 

[reviewed in 298, 299], but it is not considered as robust as RPLC-MS with regards to 

retention time stability and peak shape quality. Ion-exchange chromatography is a reliable 

alternative for the analysis of charged analytes, if coupled to an ion suppressor that is 

capable of removing eluent ions prior to coupling with MS.  

In ion exchange chromatography, the stationary phase is charged (e.g., quaternary 

ammonium ion) and the mobile phase contains a counter ion (e.g., hydroxide ions). The 

analytes are separated based on the strength of their ionic interactions with the stationary 

phase. After the column, the elute is passed through the ion suppressor. The suppressor 

consists of a channel for eluent, which is flanked on each side by regenerant channels with 

flow counter to that of the eluent. Electrodes on the outside of the regenerant channels 

have a DC voltage applied to electrolyse water. The generated ions pass through an ion 

exchange membrane to the eluent. Depending on the type of ion suppressor, the 

membrane is either a cation exchange material, allowing hydronium ions through, or an 

anion exchange material, allowing hydroxide ions through. The hydronium or hydroxide ion 

 
Figure 1.4.4. Schematic illustration of the HILIC stationary phase and immobilized water layer. Here with 
phosphorylcholine as the stationary phase.  
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convert the eluent to a nonionised form. In anion exchange chromatography, the eluent is 

a sodium hydroxide, thus the membrane is a cation exchanger that only allows hydronium 

ions through to neutralise the hydroxide. Counter ions in the eluent are driven towards the 

opposite electrode and are removed from the eluent as well. Finally, the analytes are 

generally converted to their more conducive form [300]. A schematic illustration of the ion 

suppressor is provided in Figure 1.4.5.  

Despite the ability to separate highly polar compounds robustly, the technique has not 

been used widely in metabolomics to date. There is a relatively small number of papers 

reporting its application [301-305]. In work carried out by Dr John Walsby-Tickle (Services 

Manager, Mass Spectrometry Research Facility and former McCullagh Group member 

(DPhil in Metabolomics)), an anion exchange IC-MS method that provides robust 

separation of highly polar metabolites was established [148]. The method is suitable for 

measuring metabolites found in e.g., glycolysis, pentose phosphate pathway, TCA cycle, 

nucleotides and other carboxylic acids. Retention time stability is excellent (± 0.1 min) [148] 

and peak shapes are generally symmetric with stable peak areas. No additional sample 

 
Figure 1.4.5. Schematic illustration of an ion suppressor operating for the eluent suppression of 
hydroxide ions from an anion exchange chromatographic analysis. Adapted from [300].  
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preparation after filtration and sample normalisation (to DNA or protein concentration) is 

required. The method has been applied to a growing number of different metabolomics 

studies [127, 306-312]. Because of its coverage of highly relevant areas of mutIDH1 

metabolism, excellent chromatographic capabilities and simple requirements to sample 

preparation, the method was used extensively in this thesis for semi-targeted 

metabolomics analysis.   

1.5.  Metabolic functional analysis using untargeted pathway analysis 

Metabolomics data analysis usually includes univariate analyses, e.g., significance tests and 

calculation of FCs, as well as multivariate analyses, e.g., principal component analysis (PCA), 

partial least squares discriminant analysis (PLS-DA) or cluster analysis such as hierarchical 

cluster analysis (HCA). The statistical methods are appropriate for e.g., assessing similarities 

or differences between experimental groups and identifying biomarkers. However, they 

are focussed on individual variables or groups of variables without consideration of the 

pathways that the metabolites are a part of. Functional analysis is the analysis of whole 

pathways, but has traditionally been focussed on genes and genetic output like transcripts 

and proteins. The genome is studied to better understand how specific genes or gene 

products within a system contribute to the observed phenotype. Transcriptomics and 

proteomics provide closer links to the genome (DNA) than metabolites, but metabolites 

are more closely linked to the observed phenotype. The difficulty of using metabolites for 

functional analysis lies in their identification.  

The gold standard of metabolite identification in LC-MS based metabolomics is matching 

retention time, m/z, isotopic pattern and preferably fragmentation pattern to a known 

standard. This is a time-consuming and expensive process, with some metabolites lacking 

commercially available standards. However, high resolution LC-MS still provides valuable 

information in m/z values with sufficient accuracy to determine molecular formulas and an 

additional dimension of information from retention time. The latter improves the feasibility 

of matching fragments and adducts that originate from the same compound. However, 

there can still remain a lot of potential metabolite annotations for the same m/z value, as 

noted by Li et al. [313]. The authors of Li et al. reason that metabolites in a pathway are 

not independent of each other and any true biological change would be clustered or 
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enriched in a specific area of a metabolic network. Thus, when assigning metabolites to LC-

MS features, the ones that cluster together are more likely to be the correct identity than 

those distributed randomly across the network. Li et al. developed an algorithm that 

married functional analysis and metabolite annotation, by performing the processes 

together. In a later iteration, they added retention time as an additional option to improve 

the robustness of metabolite annotations [314].  

The algorithm requires a list of all m/z measured ranked by p-value from a Student’s t-test, 

and matching retention time if available. Two complementary analyses are carried out: 

module and pathway analysis. The results from both are combined for the final output. The 

module analysis is based on a metabolic network model (MNM) made by the authors using 

Kyoto Encyclopaedia of Genes and Genomes (KEGG), University of California San Diego 

(UCSD) Recon1 and the Edinburgh human metabolic network [315-318]. In module 

analysis, modules can form within and between pathways making it less biased than 

pathway analysis because it is not constricted to only pre-defined pathways. The significant 

features are used to search MNM for matched metabolites, identifying subnetworks of 

metabolites connected by reactions. From the subnetworks, structural modules with more 

connections than would be expected randomly are identified. The subnetworks and 

structural modules are considered candidate modules (G1, G2, …, GN), for which an activity 

score is calculated based the number of matched metabolites contributing and the degree 

of modularity. Li et al. defined  the activity score for a candidate module G as follows [313, 

p. 3]:  

Equation 1.7     𝐴 = 𝑄 ×
𝑁𝐼,𝐺

𝑁𝐺
 

where NG is the number of metabolites in G and NI,G is the number of significant 

metabolites. Q is the Newman-Girvan modularity: 

Equation 1.8    𝑄 =  √
𝑁𝐼

𝑁𝐺
× (

𝐸𝐺

𝑚
− ∑

𝑘𝑖

2𝑚

𝑘𝑗

2𝑚𝑖,𝑗 ) , 𝑖, 𝑗 ∈ 𝐺 

where ki was the network degree of metabolite i, m the total number of edges in the MNM, 

EG the total number of edges in G, and NI the number of “input metabolite” [313, p. 3]. 

Finally, Li et al. adjusted Q by the square root of NI/NG to decrease the bias towards larger 
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modules. Random models are made by sampling from the non-significant features with the 

same number of features as the significant list. The activity scores from the random 

samples are used to calculate a distribution that is then used estimate the significance of 

each module [313].  

The significance of the pathway module is estimated with a similar method. Random 

samplings of the non-significant features, at the same length as the list of significant 

features, are matched to pre-defined pathways. A right-tailed Fishers exact test (FET) is 

performed. The FET p-value indicates whether the pathway is significantly enriched or not. 

The process of random sampling, matching to pathways and calculating FET right-tailed 

p-values is performed multiple times. The p-values are needed to calculate a distribution 

that is later used to adjust the p-values of the ‘true’ model. The true model is made with 

significant features only. In addition to a FET p-value, an EASE1 score adjusted p-value is 

calculated as well. The EASE score adjustment involves removing one ‘hit’ from the 

pathway and then calculating the FET p-value [319].  

The final output is a list of pathways found and the p-values calculated from module and 

pathway analysis. The number of significant empirical compounds (ECs) found per pathway 

is reported, together with a separate list of ECs matched to KEGG compound codes. The 

exact identity of the EC is not provided, as multiple KEGG codes can match to the same EC. 

The ECs and matching KEGG codes can be used to assess whether the putative annotations 

are reasonable considering the column chemistry used for analysis. For the biological 

interpretation, however, it is the whole pathway that is of interest and less so specific 

metabolites.  

1.6.  Summary and aim of study 

In the study of IDH1 and IDH2 mutations in glioma, metabolomics has, in addition to 

proteomics, transcriptomics and techniques such as 13C tracer experiments, shown that 

remarkably high intracellular and extra-cellular levels of R-2-HG are accompanied by 

apparently wide-ranging, potentially context dependent, effects on metabolism and redox 

homeostasis. It has been proposed that many of the metabolic changes observed in mutant 

 
1 Expression Analysis Systematic Explorer (EASE) is a software application.  
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IDH1/2 cells are a consequence of elevated R-2-HG, in particular via inhibition of specific 

enzymes, but direct evidence for this is only available in a relatively small number of cases.  

Glioma cells harbouring mutIDH1 appear less glycolytic and rely to a greater extent on 

oxidative phosphorylation than their wtIDH1 counterparts. Altered metabolic flux in 

mutant IDH1 cells appears to compensate for reduced production of NADPH by wtIDH1/2 

and increased consumption by mutIDH1/2. However, the consumption of NADPH by 

mutIDH1/2 extends beyond upregulation of the PPP and the compensatory mechanisms 

are poorly understood. Glutathione metabolism is also modulated with likely pleiotropic 

effects on redox chemistry in cells. Amino acid and lipid metabolism are often reported to 

be altered in mutIDH1/2 cancer cells but the type and extent of changes appears to be 

highly context and disease-model dependent; a better understanding of what drives 

changes in amino acids levels in mutIDH1/2 cells is needed.  

Selective inhibition of mutIDH1 or mutIDH2 has been demonstrated as a chemically and 

biologically tractable therapeutic approach and inhibition of mutIDH1/2 leads to a clear 

reduction in R-2-HG levels in vitro and in vivo. In terms of patient benefit, the inhibitors 

have mainly been tested for efficacy on patients with more advanced disease and provide 

relief from disease progression. To date relatively little focus has been given to targeting 

metabolic vulnerabilities other than elevated R-2-HG. This is likely in part due to a lack of 

consistency across different models and how well the models reflect relevant 

disease-specific targets.  

A significant amount of research revealing altered metabolism in mutIDH cells has been 

conducted, but there needs to be a better understanding of the relationship between 

elevated 2-HG levels and other metabolic changes. Furthermore, it remains to be 

determined whether pursuing direct inhibition of the mutIDH1/2 enzymes using specific 

inhibitors, or modulating other metabolic targets, either alone or in combination with 

mutIDH1 inhibition, will lead to the most effective therapeutic approach for treatment of 

patients with mutIDH1/2 cancers. 

In order to further our understanding of the effects of IDH mutations on cell function the 

objectives of this thesis were therefore to: 
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1. Investigate the metabolic effects of IDH1 mutation and elevated 2-HG in 

glioblastoma cell models using a range of LC-MS-based metabolomics methods and 

asking the questions: 

i. How is 2-HG abundance altered in mutIDH1R132H cells? 

ii. Are other metabolites altered in abundance in mutIDH1 cells?  

2. Explore the effect of experimental and FDA approved mutIDH inhibitors on 2-HG 

levels in wtIDH1 and mutIDH1R132H GBM cells.  

i. How do different mutIDH1 inhibitors compare in their ability to decrease 

2-HG abundance in mutIDH1R132H GBM cells?   

3. Explore broader metabolic changes linked to treatment of cells with mutIDH1 

inhibitors 

i. Are other metabolites modulated in wtIDH1 and mutIDH1R132H GBM cells 

after treatment with mutIDH1 inhibitors?  

ii. Are abundance changes in other metabolites correlated to 2-HG abundance 

changes? 

iii. What can this pattern of changes tell us about altered metabolism? 

4. Explore the metabolic effect of inhibiting GLS in wtIDH1 and mutIDH1R132H cells: 

i. Is 2-HG abundance decreased with decreasing glutamate abundance? 

ii. Is the change in glutamine, glutamate or 2-HG levels correlated with 

additional metabolic modulation, and is there a difference in response 

between wtIDH1 and mutIDH1R132H cells? 
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Chapter 2. Methods and materials 

In chapter 2, the materials and experimental methods that were used to collect the data 

presented in chapter 3-6 are described. The first two sections (2.1 and 2.2) list the 

equipment, consumables, LC-MS systems and chemicals used. The next section (2.3) 

describes the solutions prepared for general use, tissue culture, as well as sample 

processing and analysis. The cell lines used throughout the thesis are described in 

section 2.4. How the cells were cultured, plated for specific experiments, and collected 

prior to further sample processing is presented in section 2.6. Preparation of standards, 

cell and media samples for LC-MS analysis is detailed in section 2.6. Sample analysis by 

LC-MS or plate reader is described in section 2.7, with data processing specifics provided 

in section 2.8.  

2.1.  Instrumentation  

2.1.1. Equipment and consumables  

Small instruments 

Water purification was done with a Milli-Q Direct 8 system, equipped with a Millipak® 

Express 40 filter with pore size of 0.22 µM, both from Merck Millipore (Burlington, MA, 

USA).  

Microscopy inspection of cells was done with a Motic AE31E trinocular microscope from 

Motic (Kowloon, Hong Kong). Cell counting was done with a Countess™ II FL Automated 

Cell Counter, using Countess™ Cell counting chamber slides, both from Thermo Fisher 

Scientific (Waltham, MA, USA). Spectroscopic measurements of samples were done with 

either a NanoDrop One microvolume UV-VIS spectrophotometer from Thermo Fisher 

Scientific (Waltham, MA, USA) or a CLARIOStar® Plus multi-mode plate reader (fitted with 

an LVis Plate) from BMG Labtech (Ortenburg, Germany). Sample centrifugation was carried 

out on a Megafuge 8R Small Benchtop Centrifuge from Thermo Fisher Scientific (Waltham, 

MA, USA), with either a 30-sample or 48-sample insert.  

Consumables: tubes, filters and vials 

Sterile polypropylene CryoPure tubes, 2mL, with QuickSeal screw cap were purchased from 

Sarstedt AG & Co. KG (Nümbrecht, Germany). Sartorius Minisart™ regenerated cellulose 
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(RC) syringe filters with 0.2 µm pore size and 15 mm filter diameter were acquired from 

Fisher Scientific (Waltham, MA, USA). Amicon® Ultra 0.5 mL RC filters with either 3 kDa or 

10 kDa molecular weight (MW) cut-off were purchased from Merck (Darmstadt, Germany). 

LCGC clear glass total recovery vials with cap and pre-slit PTFE/silicone septum (1 mL 

volume) were acquired from Waters (Milford, MA, USA). Measurement of pH was done 

with pH-Fix 0-6 and pH-Fix 7-14 strips from Fisher Scientific (Waltham, MA, USA), as well as 

pH-Fix 6.0-7.7 strips from Macherey-Nagel (Düren, Germany).  

Petri dishes and multi-well plates 

Sterile polystyrene 60 mm and 100 mm petri dishes for adherent cells and with lids were 

from Sarstedt AG & Co. KG. Sterile, clear and flat-bottomed 12- and 96-well plates that 

were individually wrapped and had lids with condensation rings, were purchased from 

Scientific Laboratory Supplies (Galveston, TX, USA). Non-sterile, non-treated, clear, flat-

bottomed, polystyrene 96-well assay plates with low evaporation lids were acquired from 

Corning Inc (Corning, NY, USA). The freezing container, a Mr. Frosty™, was from Thermo 

Fisher Scientific (Waltham, MA, USA).  

Chromatographic columns 

A Dionex™ IonPac™ AS11-HC column (2 × 250 mm, 4 µm particle size) was acquired from 

Thermo Fisher Scientific (Waltham, MA, USA). A SeQuant® ZIC®-cHILIC (2.1 × 150 mm, 3 µM 

particle size, 100 Å) column was purchased from Merck (Darmstadt, Germany). The four 

following columns were all purchased from Waters (Milford, MA, USA): AccQ·Tag™ ULTRA 

C18 (2.1 × 100, 1.7 µM particle size), Atlantis Premier BEH Z-HILIC (2.1 × 100 mm, 1.7 µm 

particle size), ACQUITY UPLC® BEH Amide (2.1 × 100 mm, 1.7 µm particle size) and 

CORTECS®  UPLC® T3 C18 (2.1 × 100 mm, 1.6 µm particle size).  
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2.1.2. Chromatography systems and mass spectrometers 

Two different systems from Waters (Milford, MA, USA) were used: The Xevo G2-XS QToF 

and the Vion IMS QToF. Both instruments were equipped with a Zspray™ ion source with 

LockSpray™ set to H-ESI mode.  Furthermore, both were connected to Acquity UPLC® 

I-Class Pluss systems with flow-through needle (FTN) sample managers. The Xevo and the 

Vion had hybrid quadrupole and ToF mass analysers. The Vion also had a travelling wave 

ion mobility cell preceding the mass analyser.  

The Q-Exactive HF, a hybrid quadrupole-Orbitrap, was equipped with a HESI II probe, 

connected to a Dionex ICS 5000+ HPIC system, fitted with a Dionex 500e ERS suppressor. 

The Q-Exactive HF and HESI II probe were from Thermo Fisher Scientific (Waltham, MA, 

USA), while the ICS 5000+ was from Dionex (Sunnyvale, CA, USA). The Orbitrap Exploris 

240™, also a quadrupole-Orbitrap hybrid, was equipped with an EASY-IC™ ion source, both 

from Thermo Fisher Scientific (Waltham, MA, USA). The Exploris 240™was connected to an 

Ultimate-3000 UHPLC pump from Dionex (Sunnyvale, CA, USA). 

2.2.  Chemicals 

2.2.1. General use chemicals  

Water was purified on the MilliQ system to the requirements of type 1 water (resistivity 

18.2 MΩ·cm and low total carbon content (2 ppb). Unless otherwise mentioned, all water 

used was type 1 water. Methanol (≥99.9%, for HPLC), acetonitrile (≥99.9%, for HPLC) and 

isopropanol (≥99.9%, for HPLC) were from Sigma Aldrich (Saint-Louis, MO, USA). Unless 

otherwise mentioned, all methanol, acetonitrile and isopropanol used throughout was 

HPLC purity.  

2.2.2. Chemicals for cell culture  

Cell medium and supplements 

Non-USA origin foetal bovine serum (FBS) and liquid DMEM with phenol red, sodium 

bicarbonate (3.7 g/L), sodium pyruvate (1.0 mM), high (4500 mg/L) or low (1000 mg/L) 

glucose and without glutamine or HEPES (4-(2-hydroxyethyl-1-piperazineethansulfonic 

acid), were acquired from Sigma-Aldrich (Saint-Louis, MO, USA). Liquid Dulbecco’s 
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phosphate buffered saline (PBS), without calcium chloride or magnesium chloride, BioXtra 

D-(+)-glucose (100 g/L in water), and trypsin-EDTA solution (2.5 g porcine trypsin and 0.2 g 

EDTA·4 Na per litre of Hank’s Balanced Salt solution and phenol red) were also acquired 

from Sigma-Aldrich (Saint-Louis, MO, USA). L-glutamine (200 mM), L-glutamine-13C5 (98% 

13C) and D-glucose-[1,2]-13C2
 (99% 13C) was purchased from Merck Life Science (Darmstadt, 

Germany). Liquid DMEM without glucose, glutamine, sodium pyruvate or phenol red was 

purchased from Gibco, Thermo Fisher Scientific (Waltham, MA, USA). Sodium pyruvate 

(100 mM) and GlutaMAX™ (GM™) supplement (200 mM L-alanyl-L-glutamine in 

0.85% NaCl) were also purchased from Thermo Fisher Scientific (Waltham, MA, USA). All 

purchased solutions and FBS were sterile filtered by the manufacturers.  

Dimethyl sulfoxide (DMSO) (molecular biology grade, 99.9%) was purchased from Sigma 

Aldrich (Saint-Louis, MO, USA) and was sterile filtered in house with a 0.2 µm RC syringe 

filter. Trypan blue was included with the Countess™ cell counting chamber slides from 

Thermo Fisher Scientific (Waltham, MA, USA).  

Metabolic inhibitors 

MutIDH1 inhibitors BAY1436032, AG-120 and AG-881 were purchased from Enzo Life 

Sciences (UK) Ltd (Exeter, UK), all with purity 98% (HPLC), while GSK-864 (≥98%, HPLC) was 

purchased from Sigma-Aldrich (Saint-Louis, MO, USA) and FT2102 (98.35%) from 

MedChemExpress LLC (Monmouth, NJ, USA). Glutaminase (GLS1) inhibitor CB-839 (≥ 98%) 

was acquired from Cayman Chemical Company (Ann Arbor, MI, USA).  

2.2.3. Chemicals for sample processing and analysis 

AccQ-Tag™ Ultra derivatization kit containing sodium tetraborate decahydrate buffer, 

6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) reagent and acetonitrile was 

acquired from Waters (Milford, MA, USA). Amino acid standard (analytical standard) was 

purchased from Sigma Aldrich (Saint-Louis, MO, USA). MTS kits were purchased from 

Abcam PLC (Cambridge, CB2 0AX, UK) and Enzo Life Sciences (UK) Ltd. The D-glucose assay 

kit (glucose oxidase/peroxidase (GOPOD) format) was acquired from Megazyme/Neogen 

(Bray, Ireland and Lansing, MI, USA).  

Formic acid (99%, for analysis) was purchased from Thermo Fisher Scientific (Waltham, MA, 

USA). Ammonium formate (Optima® LC-MS grade) was acquired from Fisher Scientific 
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(Waltham, MA, USA). Ammonium hydroxide solution (~ 25% NH3, puriss), ammonium 

acetate (for MS, eluent additive for LC-MS), and ammonium bicarbonate (BioUltra, ≥ 99.5%) 

were from purchased Sigma Aldrich (Saint-Louis, MO, USA). The EGC 500 KOH potassium 

hydroxide eluent generator cartridge was from Dionex (Sunnyvale, CA, USA). AccQ-Tag™ 

Ultra Eluent A concentrate (1 L) containing phosphoric acid, triethylamine and sodium 

azide was purchased from Waters (Milford, MA, USA).  

NAD+, NADH, NADP+ and NADPH (98%) standards were acquired from Roche Diagnostics 

GmbH (Mannheim, Germany).  

2.3.  Solutions 

2.3.1. General use solutions 

An 80% aqueous methanol solution (v/v) (MeOH(aq)) was made by measuring the volumes 

of methanol (80 mL) and water (20 mL) separately in graduated cylinders before mixing in 

a glass Schott bottle. The solution was stored at 4 °C between use. 

2.3.2. Solutions for cell culture  

Cell culture stock solutions 

Stock solutions of all inhibitors (AG-120, AG-881, BAY 1436032, FT2102, GSK864 and 

CB-839) were dissolved in DMSO to 5 mM concentration. D-glucose-[1,2]-13C2 was dissolved 

in water (50 mM) and L-glutamine-13C5 was also dissolved in water (200 mM). All stock 

solutions were sterile filtered with 0.2 µm Sartorius Minisart™ filters, before storage 

at -20 °C between use.  

Cell medium and related solutions 

PBS and trypsin-EDTA were used as supplied. The trypsin-EDTA was aliquoted (8-12 mL) 

and stored at -20 °C prior to use, once thawed it was stored at 4 °C and used within two 

weeks. PBS was kept at room temperature, both prior to and during use. Both high and low 

glucose (HG or LG) DMEM were supplemented with 10% (v/v) FBS and 1% (v/v) GM™,.  

The DMEM without glucose, sodium pyruvate, glutamine or phenol red was used to make 

cell medium for several different experiments. In all experiments it was supplemented with 

10% (v/v) FBS and 1.0% (v/v) sodium pyruvate (100 mM). It was then either supplemented 
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with 1.0% (v/v) BioXtra D-(+)-glucose and 1.0% GM™; 1.0% (v/v) BioXtra D-(+)-glucose and 

0.1%, 0.5%, 1.0%, 1.5% or 2.0% (v/v) GM™; 1.0% (v/v) BioXtra D-(+)-glucose solution and 

1.0% L-glutamine solution (200 mM); 1.0% (v/v) of 50 mM D-glucose-[1,2]-13C2 and 

1.0% L-glutamine solution (200 mM); or 1.0% (v/v) BioXtra D-(+)-glucose solution and 

1.0% (v/v) 200 mM L-glutamine-13C5. Final glucose concentration in all media compositions 

was 5 mM and the media with glutamine or GM™ had a final concentration of 2 mM.  

Aliquots of FBS (50 mL) and GM™ (5 mL) were stored at -20 °C prior to use, 

non-supplemented medium was stored at 4 °C. The sodium pyruvate and glucose solutions 

were stored at 4 °C prior to first use and at -20 °C after opening. Once supplemented, the 

medium was stored at 4 °C between use and kept for a maximum of four weeks.  

2.3.3. Solutions for sample harvest and processing 

Routine and redox harvest solutions 

Routine metabolomics harvests used the 80% MeOH(aq) solution described previously. 

Redox harvests used two solutions: extraction and neutralising. The extraction solution was 

made by mixing 40:40:20 of acetonitrile, methanol and water by volume. The volumes of 

each solvent were measured separately. Finally, pure formic acid was added to reach a final 

concentration of 0.1M. The neutralising solution was 15% (w/v) NH4HCO3 in water, made 

by dissolving 1.5 g NH4HCO3 in 10 mL water. Both solutions were stored at 4 °C between 

use.  

Amino acid derivatisation reagent 

The reagent was prepared with solutions from the AccQ-Tag™ Ultra derivatization kit. From 

bottle 2B, 1.000 mL of solvent (acetonitrile) was transferred to bottle 2A (powder 

6-aminoquinolyl-N-hydroxysuccinimidyl carbamate). Bottle 2A was heated at 55 °C for 

10 minutes or until all solids were dissolved. The solution was stored at room temperature 

and used within a week of preparation, as recommended by the manufacturer.  

Acetonitrile solutions for denaturing and precipitating proteins in media samples 

An acidic protein precipitation/denaturation solution was prepared by adding 1% (v/v) 

formic acid to 200 mL of acetonitrile. A basic protein precipitation/denaturation solution 

was prepared by 1% (v/v) NH3 (aq) (~25 %) to acetonitrile. The solutions were stored at 4 °C 

in glass Schott bottles between use.  
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Glucose assay solutions 

The GOPOD reagent buffer (p-hydroxybenzoic acid and 0.095% (w/v) sodium azide was 

diluted to 1.0L in a volumetric flask with water. The dry reagent powder, containing glucose 

oxidase plus peroxidase and 4-aminoantipyrine, was dissolved in 20 mL of the diluted 

reagent buffer and then transferred to the volumetric flask. The solution was protected 

from light, aliquoted and stored at -20 °C before use.  

The concentration of the provided D-glucose standard solution was 1.0 µg/µL. Five dilutions 

were made to establish a calibration curve. The following dilutions were made: 

0.750 µg/µL, 0.500 µg/µL, 0.250 µg/µL, 0.125 µg/µL and 0.05 µg/µL. The diluent was water.  

2.3.4. Mobile phases and standards for chromatographic sample analysis  

All mobile phases were stored at room temperature after preparation.  

Mobile phases for amino acid analysis with derivatised RPLC-MS 

AccQ·Tag™ Ultra Eluent A concentrate was diluted by mixing 1 part eluent A concentrate 

with 9 parts water, measured separately with graduated cylinders. Eluent B, which was 

1.3% (v/v) formic acid in acetonitrile, was prepared by measuring the solvent and acid with 

graduated cylinders. Both mobile phases were mixed well prior to use by shaking. Eluent A 

was used within three months of preparation, eluent B was used within 6 months. 

Preparation of the amino acid standard is described in section 2.6.2.  

Mobile phases and standards for non-derivatised RPLC-MS 

Mobile phase A was 0.1% (v/v) formic acid in water and mobile phase B was 0.1% formic 

acid in methanol. Both solutions were made by measuring the solvent with a graduated 

cylinder and then adding formic acid to the bottle via a dispenser set to the appropriate 

volume. Both mobile phases were mixed well prior to use by shaking. Mobile phase A was 

used within a month of preparation, mobile phase B was used within 3 months.  

Standards (1 µM) of the mutIDH1 inhibitors (AG-120, AG-881, BAY 1436032, GSK864) were 

made by diluting the stock solutions with 80% MeOH(aq). A 5 µM standard of GLS1 inhibitor 

CB-839 was prepared the same way.  
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Mobile phase buffers and standards for HILIC-MS 

All volumetric measurements of solvents for mobile phase buffers were done with 

graduated cylinders. The mobile phases were kept in glass Schott bottles at room 

temperature after preparation. Buffers were used within a week of preparation. Seven 

different mobile phase buffers were prepared for the three different HILIC columns tested 

(amide (BEH amide), ZIC phosphorylcholine (ZIC® cHILIC), ZIC sulfobetaine (Z-HILIC)). 

In addition to the mobile phase buffers, pure acetonitrile was used as the second mobile 

phase. Adjustment of pH was done with ammonium hydroxide (25% w/v) or formic acid. 

The pH was measured using pH strips. 

For the amide column, a mobile phase buffer consisting of 95:5 water:acetonitrile with 

20 mM ammonium acetate and 20 mM ammonium hydroxide was prepared (pH 9). For the 

ZIC phosphorylcholine column two different mobile phases buffers were prepared: 20 mM 

ammonium acetate, one each at pH 6 and pH 9. Finally, for the ZIC sulfobetaine column, 

the following mobile phases were prepared: 20 mM ammonium acetate, one each at pH 6 

and 9; 5 mM ammonium formate (pH 6); and 20 mM ammonium formate, one each at pH 3, 

6, and 9.  

Stock solutions of NAD+, NADH, NADP+ and NADPH were made up in water at 

approximately 1-2 mg/mL concentration by weighing out a known amount of standard and 

diluting with 1 mL water. Then the exact molar concentration was determined and the 

diluted standards were made using the redox extraction solution and neutralising solution. 

Per 100 µL of extraction solution, 8.7 µL of neutralising solution was added. A mix of all four 

metabolites was prepared at 50 µM, which was further diluted to 3.0 µM. A calibration 

curve with the following concentrations was prepared in the same manner: 1.0, 0.75, 0.50, 

0.25, 0.10 and 0.05 µM.  
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2.4.  Cell lines 

The LN18 cell line was originally from ATCC (CRL-2610). The expression of mutIDH1R132H was 

done with a stable lentiviral insert, carried out by Dr Chiara Bardella and colleagues at the 

University of Birmingham and kindly gifted. Two different ‘generations’ of LN18 wtIDH1 

and mutIDH1 cells lines were used. The first-generation LN18 wtIDH1 cell line was 

untransmuted, while the mutIDH1R132H LN18 cell line was established using the methods 

described in [148, 320]. In the second generation, a different lentiviral vector was used 

(pUltra-Chili) and wtIDH1 LN18 was transduced with an empty lentiviral vector. Two 

different IDH1 mutant variants were provided: mutIDH1R132H and mutIDH1R132H+S280F. The 

methods for establishing the second generation are described by Reinbold et al. [312]. 

Unless otherwise noted, the second-generation wtIDH1 and mutIDH1R132H cell line was 

used.  
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2.5.  Tissue culture 

The following chapter section 

details the methods used during 

cell culture and preparation of cell 

samples for metabolomics and cell-

based assays. The methods applied 

in the different experiments were 

quite similar to each other, thus 

they are described in general terms 

in the sections outlined in Figure 

2.5.1. A detailed overview of all 

metabolomics experiments carried 

out, with specific LN18 cell line 

variants, media composition and 

inhibitors, as well as harvesting 

methods are provided in Table 

2.5.7.1 and Table 2.5.7.2 in Section 

2.5.7. Throughout this chapter 

section, any reference to 

incubation of cells will at all times 

mean incubation at 37 °C and 

5% CO2 under normoxic conditions. With regards to media, LG DMEM supplemented with 

10% (v/v) FBS and 1.0% (v/v) GM™ was used, unless otherwise specified. Finally, a biological 

replicate was defined as a sample consisting of cells or media from a single plate or well. 

An analytical replicate was a repeat measurement of e.g., a standard or a biological 

replicate.  

2.5.1. Thawing and freezing of cell aliquots 

Cell aliquots were thawed rapidly (2-3 minutes) in a heated water bath (35-40 °C) before 

transfer to a 15 mL Falcon tube with 10 mL of HG DMEM. The sample was centrifuged at 

0.2 relative centrifugal force (rcf) for 2 minutes to gently pellet the cells. The supernatant 

 

Figure 2.5.1. Overview of methods described in section 2.5.   
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was removed and cells were resuspended in 5- or 10-mL fresh medium for transfer to a T25 

or T75 flask, respectively. Media was replaced after 24 hours to remove cells that had not 

adhered after thawing.  

Stocks of cell aliquots were prepared by mixing resuspended cells with an equal amount of 

HG DMEM with 16% (v/v) DMSO. The final concentration of DMSO was 8% (v/v). Aliquots 

of 1.0 or 1.5 mL were transferred to cryovials. The aliquots were frozen slowly by being 

placed in a Mr. Frosty™ freezing container with isopropanol, overnight, at -80 °C. Once fully 

frozen, the cell aliquots were stored at -80 °C until thawing.  

2.5.2. Passaging and scaling up cells 

Prior to detaching cells, media was removed from the flask by pouring and cells were 

washed with an equivalent volume of PBS (e.g., 5 mL PBS for a T25 flask). After the PBS was 

removed by aspiration, the cells were washed with trypsin-EDTA (0.5 mL for T25 flask, 1.0 

mL for T75 flask and 2.0 mL for T175 flask). The flask was incubated until cell detachment 

(2-5 minutes). Once detached, the cells were washed with fresh media and aspirated to 

disperse the cells. Resuspended cells were diluted by transfer to a new flask with fresh 

media. Exact dilution ratios depended on cell line and confluency, and could range from 1:1 

to 1:10. To increase the number of cells, e.g., for large experiments requiring many plates, 

the resuspended cells would be diluted at ratios from 1:1 to 1:10 into an increased number 

of and/or larger flasks.  

2.5.3. Plating for metabolomics and cell-based assay experiments 

Plating for metabolomics experiments 

Plating cells and subsequent harvest for metabolomics analysis was done with 60 mm 

dishes or 12-well plates. Cells were resuspended as described for passaging and then 

counted with the Countess™ II FL Automated Cell Counter using Countess™ Cell counting 

chamber slides. Counting was done by mixing 11 µL of trypan blue dye with 11 µL 

resuspended cells in a 0.5 mL microtube and then transferring 10 µL of the mixture to each 

side of the slide.  

Once counted, cells were either diluted down to the equivalent of the most dilute cell line 

being plated at the time or an appropriate number depending on plate/dish size and cell 
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line growth rate. For the 60 mm dishes the maximum number of cells plated was 

300,000 cells/mL and for 12-well plates it was 200,000 cells/mL. Cells were counted again 

post-dilution. The dilution ratio of resuspended cells depended on the size of the 

plate/dish. For 60 mm dishes, 1.0 mL of re-suspended cells was mixed with 2.0 mL fresh 

media. For 12-well plates, 0.700 mL of resuspended cells were transferred to each well 

without further dilution. In a long time-course experiment, cells grown for timepoints 

24 and 48 hours were plated as described for 12-well plates. Cells grown for timepoints 

72 and 96 hours were diluted 1+1 and 1+3 (resuspended cells + fresh media) before transfer 

to individual wells. The final cell number after dilution for the 72- and 96-hour timepoint 

were 100,000 and 50,000 cells/mL, respectively.  

Plating for colorimetric-based assays 

Colorimetric cell-based assays were carried out in sterile, flat-bottom, clear-walled 96-well 

plates. The spaces between all wells were filled with 50 µL PBS. Cells were resuspended as 

when passaging, then counted as previously described and diluted to approximately 

100,000 cells/mL. After dilution the count was repeated. The outer edge of wells (row A, 

row H, column 1 and column 12) were left empty. For each well containing cells, 100 µL of 

resuspended cells were transferred. The final number of cells per well was approximately 

10,000. For the long time-course (L-TICO) colorimetric assay, cells grown for the 24- and 

48-hour timepoints were plated as described, i.e., final cell number per well was 

approximately 10,000. The cells grown for the 72- and 96-hour timepoints were diluted to 

approximately 50,000 and 25,000 cells, respectively, with final number of cells per well 

5,000 and 2,500.  

2.5.4. Treatment with different cell medium composition or metabolic inhibitors 

In all experiments, except for a metabolomics L-TICO treatment with mutIDH1 inhibitors, 

cells were incubated for a minimum of 24 hours after plating before treatment was added.  

Treatment of cultured cells with metabolic inhibitors or different media composition: 60 mm dish 

The 60 mm plates had a total media volume of 3 mL. After 24 hours of incubation, 1 mL of 

spent media was removed and 1 mL of fresh media containing 15 µM inhibitor was added, 

for a final concentration of 5 µM of drug. Control medium containing the drug stock 

solution solvent (DMSO) had DMSO added to the equivalence of the inhibitor media. For 
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all experiments in 60 mm dishes, the final amount of DMSO in the control media was 

0.1% (v/v). Treatment and control medium were left on the cells for 24 hours. The only 

exception to this methodology was for the 13C tracer experiment. All spent medium was 

removed after 24 hours and 3 mL of either media without labelling, media with 13C-labelled 

glucose and unlabelled glutamine, or media with unlabelled glucose and 13C-labelled 

glutamine was added. The cells were incubated for an additional 24 hours before harvest.  

All experiments carried out in 60 mm dishes are listed in Table 2.5.7.1. The table 

summarises cell lines, inhibitors, treatment concentration and number of biological 

replicates.  

Treatment with metabolic inhibitors: 12-well plate 

For 12-well plates, all spent media (0.700 mL) was removed and replaced with media 

containing the appropriate concentration of drug after 24 hours of incubation. All media 

was made up with the same percentage (v/v) DMSO, i.e., media with lower concentration 

of inhibitor had DMSO added to match the DMSO percentage of the control media as well 

as the media with highest drug concentration. Media with the following concentration of 

mutIDH1 inhibitors (AG-120, AG-.881, BAY 1436032 and GSK864) were used: 0.05, 0.50, 

5.00 and 10.0 µM, and 0.2% (v/v) DMSO. Media with the following concentrations of 

glutaminase inhibitor (CB-839) were used (in a separate experiment): 0.05, 0.10, 0.30, 0.70, 

1.00, 3.00 and 5.00 µM, with 0.1% (v/v) DMSO. In all experiments, treatment was left on 

the cells for 24 hours, except the time-course experiments which are further described 

below. All experiments carried out in 12-well plates are listed in Table 2.5.7.2. The table 

summarises cell lines, inhibitors, treatment concentration and number of biological 

replicates.  
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Metabolomics time-course experiments 

In both the L-TICO and short time-course experiments (S-TICO), mutIDH1 inhibitors AG-120, 

AG-881, BAY1436032 and GSK864 were used. The plate layout used for all timepoints in 

the short and long time-course experiment is shown in Figure 2.5.1.  

The S-TICO experiment had time points at 1, 2, 4, 

8, 12 and 24 hours. After 24 hours initial 

incubation the spent media was completely 

removed and replaced with 0.700 mL of media 

with 5.0 µM inhibitor or 0.1% (v/v) DMSO. The 

cells were incubated for the duration of their 

timepoint.  

In the L-TICO experiment, cells destined for 48, 72 

or 96 hours of inhibitor exposure had treatment 

added to the resuspended cells before plating. Cells treated for 24 hours had treatment 

(inhibitor or DMSO only) added after 24 hours of incubation, as described for the other 12-

well experiments. The cells treated with inhibitor for 48, 72 and 96 hours were further split 

into two groups: in group 1 where media was swapped completely every 24 hours until 

harvest, and in group 2 where media was left on for the duration of timepoint. 

Experimental group name, treatment length and number of media swaps is summarised in 

Table 2.5.1. 

Table 2.5.1. Summary of experimental groups in the long time-course 
experiment, including total treatment length and number of media swaps.  

Experimental group 
name 

Total treatment length 
(hours) 

Number of media 
swaps 

A 24 1* 

B1 48 1 

B2 48 0 

C1 72 2 

C2 72 0 

D1 96 3 

D2 96 0 

*Cells were plated without inhibitor and the media was swapped after 24 
hours to media with inhibitors for a final 24 hours of incubation. 

 

 

Figure 2.5.2. Plate layout for short and 
long time-course experiments. Inhibitor 
concentration was 5.0 µM and control 
cell media had 0.1% (v/v) DMSO.   
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Treatment with metabolic inhibitors: cell-based assay in 96-well plate 

After plating, cells were incubated for 24 hours before spent media was removed and 

200 µL of fresh media with inhibitor or DMSO was added. Two different cell-based assays 

were carried out: L-TICO with three inhibitor concentration levels (0.50, 5.00 and 10.0 µM) 

and glutaminase inhibitor (CB-839) concentration range (0.05-5.00 µM). The layout of each 

assay is illustrated in Figure 2.5.3.  

For glutaminase inhibitor (CB-839) concentration range assays, DMEM without phenol red 

was used. The inhibitor concentrations were 0.05, 0.10, 0.30, 0.70, 1.00, 3.00 and 5.00 µM. 

All media, including control, had a DMSO concentration of 0.1% (v/v). The cells were 

incubated with inhibitor for 24 hours and the total incubation time after plating was 

48 hours. Media aliquots (50 µL) were removed from each sample prior to performing the 

MTS assays.  

For the L-TICO assay, media with inhibitor (AG-120, AG-881, BAY 1436032 or GSK864) was 

added to all plates after 24 hours of initial incubation. Inhibitor concentration was 0.50, 

5.00 and 10.0 µM. All media, including control media, had a DMSO concentration of 

0.2%  (v/v). Media was left on for the duration of incubation, i.e., same as group 2 in the 

metabolomics experiment.  

The MTS reagent was thawed at room temperature. Two wells (position 6A and 7H) were 

used for blanks with 200 µL unused media transferred into each. Then 10 µL MTS dye was 

transferred into each well, blank and containing cells. The plate was incubated for a 

minimum of 45 minutes at 37 °C and 5% CO2 before any further measurements (described 

in Section 2.7.5). 
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2.5.5. Arresting metabolism and extracting metabolites: Routine harvest of metabolomics 

samples 

In this project, the phrase ‘cell harvest’ included arresting cellular processes and extracting 

metabolites from cells plated on 60 mm dishes or in 12-well plates. Arrestment and 

extraction for each method will be described in detail below. Prior to any harvest, cells 

were briefly inspected with a Motic trinocular microscope (×4) magnification, phase 

contrast objective 0) and cell confluency and morphology were noted. All harvests from 

60 mm dishes were done in randomised order. The random order was generated by 

assigning a random number between 0 and 1 in Excel (=rand()) to each sample name and 

then sorting from smallest to largest number. Harvest order within a 12-well plate was not 

randomised.  

Harvesting cells from 60 mm dishes 

Three dishes were taken from the incubator into the laminar flow hood at a time. Media 

aliquots were pooled for each experimental group from each dish, generally 50 or 100 µL 

from each plate. Then, one dish at a time, media was poured off and the dish was washed 

 

 

Figure 2.5.3. Layout of 96-well inhibitor assays. (a) L-TICO mutIDH1 inhibitor assay layout. Each well for 
the 24- and 48-hour timepoints was plated with 10,000 cells, the 72-hour timepoints with 7,500 cells 
and the 96-hour timepoints with 5,000 cells. Colour codes: control = red, orange = AG-120,  
yellow = AG-881, pink = BAY1436032 and maroon = GSK864. Inhibitor concentration: L = 0.50 µM,  
M = 5.0 µM and H = 10.0 µM. (b) CB-839 treatment assay layout. One plate each of mutIDH1R132H and 
wtIDH1 LN18 cells was prepared. Each well was plated with 10,000 cells. Medium was swapped after 
24 hours of incubation. Colour code: green = control, grey = CB-839. The inhibitor concentrations were 
0.05, 0.10, 0.30, 0.70, 1.0, 3.0 and 5.0 µM.  
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with approximately 5 mL PBS twice. Excess PBS was removed by dabbing a tissue at the 

edge of the dish, taking care not to touch the cells. Finally, approximately 5 mL liquid 

nitrogen was poured into the dish to arrest metabolic activity.   

Once the third dish was set with liquid nitrogen, the nitrogen in the first dish had boiled 

off. Subsequently 180 µL 80% MeOH(aq) was transferred to the first dish to extract 

metabolites and denature proteins to further arrest cellular processes. A cell scraper was 

used in circular motions, and then the cells were scraped down to one side of the plate. 

The plate was turned 90° counter-clockwise and the scraping was repeated. The solution 

and cell debris were transferred to a 1.5 mL microtube. The process of adding 

80% MeOH(aq), scraping and transferring to microtube was repeated for the second and 

third dish. Samples were kept on ice until all dishes were done. If the liquid nitrogen boiled 

off a dish before 80% MeOH(aq) was added, the dish was placed on ice until its turn. Once 

the three samples were harvested, they were placed on dry ice until all samples were 

harvested. After harvest, samples were stored at -80 °C before further processing 

(described in Section 2.6.1).  

Harvest from 12-well plates 

One 12-well plate was harvested at a time. Media was aliquoted (50 µL), but only pooled 

for the glutaminase inhibitor concentration experiment. In all other 12-well metabolomics 

experiments, the media from each well was saved as a separate sample (0.700 mL). Media 

was removed row by row and kept on ice until the whole harvest process of the plate was 

completed. After removal of media for one row, PBS (0.700 mL) was added. Once all wells 

contained PBS, the process was repeated (remove PBS and replace with fresh PBS row by 

row). Final removal of PBS included an additional aspiration to remove any remaining PBS.  

The plate was placed on dry ice and 100 µL of cold 80% MeOH(aq)
 was added to each well, 

except in the pilot 12-well experiment where 70 µL was added. The 80% MeOH(aq)
 was kept 

on dry ice. The combination of being on dry ice and adding cold 80% MeOH(aq)
 to the wells 

arrested metabolic activity. The 80% MeOH(aq)
 was also used to extract the metabolites 

from the cells. The cells were scraped loose in all wells and then the 12-well plate was 

tipped upwards. For each well, the solution was pipetted over the well surface, followed 

by transfer of solution and cell debris to a 1.5 mL microtube. The microtubes were kept on 
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ice. Wells were harvested column by column. Once all 12 wells were harvested, the cell and 

media were kept on dry ice until all plates were finished. After harvest, samples were stored 

at -80 °C before further processing (described in Section 2.6.1).  

2.5.6. Arresting metabolism and extracting metabolites NAD+, NADH, NADP+ and NADPH: 

Redox harvest for analysis  

Harvest for analysis of redox metabolites (NAD+, NADH, NADP+, NADPH) was only done 

from 60 mm dishes. The metabolite extraction protocol was adjusted to better preserve 

the redox metabolites (NAD+, NADH, NADP+, NADPH). Three plates were taken into the 

laminar flow hood at a time. Media aliquots were not taken. One plate at a time, media 

was poured off and the plate was washed with PBS twice; approximately 5 mL each time. 

Excess PBS was removed by dabbing a tissue at the edge of the plate, taking care not to 

touch the cells. Finally, ca. 5 mL of liquid nitrogen was poured into the dish, which arrested 

metabolic activity. 

Once the third dish was set with liquid nitrogen, the nitrogen in the first dish had boiled 

off. Subsequently, 150 µL of extraction solution (40:40:20 ACN/MeOH/H2O with 0.1M FA) 

was added to the dish. A cell scraper was used in circular motions, and then the cells were 

scraped down to one side of the plate. The plate was turned 90° counter-clockwise and the 

scraping was repeated. The solution and cell debris were then transferred to a 1.5 mL 

microtube. Then 13.1 µL of neutralising solution (15% NaHCO3 in water (w/v)) was added 

to the tube. The process of adding extraction solution, scraping, transferring to microtube 

and then adding neutralising solution was repeated for the second and third dish. Samples 

were kept on ice until all dishes were done. If the liquid nitrogen boiled off a dish before 

extraction solution was added, it was placed on ice until its turn. Once the three samples 

were harvested, they were placed on dry ice until all samples were harvested. After harvest, 

samples were processed the following day (described in Section 2.6.1) and then stored at 

-80 °C if further analysis could not be carried out immediately after.  

2.5.7. Summary of all metabolomics experiments carried out 

In total, nine different metabolomics experiments were carried out. The 12-well plate 

layouts are illustrated in Figure 2.5.4, with exception for the time-course experiments 
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layouts, which are provided in Figure 2.5.2 in Section 2.5.4. The experiments using 60 mm 

dishes are listed in Table 2.5.2 and the experiments using 12-well plates are listed in 

Table 2.5.3. The tables include experiment name, LN18 generation and IDH mutational 

status, inhibitors used and concentration, percentage DMSO in media, treatment length 

and total incubation length, biological replicates per experimental group, total number of 

samples, harvest method (Table 2.5.2 only) and notes on plate layout (Table 2.5.3 only).  

 

 

 

Figure 2.5.4. Plate layout for 12-well metabolomics experiments described in Table 2.5.2, except 
time-course experiments. (a) Layout of 12-well plates for the mutIDH1 inhibitor concentration range 
experiment. For each inhibitor (AG-120, AG-881, BAY 1436032 and GSK864) this layout was used. (b) 
Layout of 12-well plates for the glutaminase inhibitor (CB-839) concentration range experiment. The 
layout was used for wtIDH1 and mutIDH1R132H LN18 cells separately.  
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*No inhibitor was added in the 13C tracer experiment, but non-labelled media, or media with either [1,2-13C2]-glucose and unlabelled 

glutamine, or media with unlabelled glucose and [U-13C5]-glutamine was added.   

Table 2.5.2. Summary of all metabolomics experiments carried out using 60 mm dishes. The table includes experiment name, LN18 generation and IDH mutational 
status, which inhibitors were used and concentration, percent DMSO in media, treatment and total incubation length, number of biological replicates per experimental 
group, total number of samples and harvest method. Routine harvest method was described in Section 2.5.5 and the redox harvest method was described in Section 
2.5.6. 

Experiment 
name 

LN18 
generation 

IDH 
mutational 
status 

Inhibitor(s) 
used 

Inhibitor 
concentration 
(µM) 

Percentage 
(v/v) 
DMSO  

Treatment/ 
total 
incubation (h) 

Biological replicates 
per experimental 
group 

Total 
number of 
samples 

Harvest 
method 

mutIDH1 
inhibitor single 
concentration, 
metabolomics 
 

Second wtIDH1 
mutIDH1R132H 

AG-120 
AG-881 
BAY 1436032 
GSK864  

5.0 0.1 24/48 10 × treated  
20  × control 

120  
(60 × 2) 

Routine 
 

Redox Second wtIDH1 
mutIDH1R132H 

-  - - 0/48 10  × wild type 
10 × mutant 

2a0 Redox 

13C tracer First wtIDH1 
mutIDH1R132H 

* - 0.0 0/24 
12/36 
24/48 

3 × unlabelled media 
5 × D-glucose-[1,2]- 13C2 
5 × L-glutamine-13C5 

58 Routine 



Chapter 2. Methods and materials 

68 

 

Table 2.5.3. Summary of all metabolomics experiments carried out with 12-well plates. The table includes experiment name, LN18 generation and IDH mutational 
status, which inhibitors were used and concentration percent DMSO in media, treatment and total incubation length, number of biological replicates per experimental 
group, total number of samples and notes on plate layout. All samples were harvested with the routine harvest method described in Section 2.5.5. 

Experiment 
name 

LN18 
generation 

IDH mutational 
status 

Inhibitor(s) 
used 

Inhibitor 
concentration 
(µM) 

Percentage 
(v/v) 
DMSO  

Treatment/ 
total 
incubation (h) 

Biological 
replicates per 
experimental 
group 

Total 
number of 
samples 

Plate layout 

12-well pilot First wtIDH1 
mutIDH1R132H 

- - 0.0 0/48 12 12 One plate each of 
wtIDH1 and 
mutIDH1R132H 

Short 
time-course 
(S-TICO) 

Second mutIDH1R132H AG-120  
AG-881   
BAY 
1436032 
GSK864 

5.0 0.1 1/24 
2/26 
4/28 
8/32 
12/36 
24/48 

4 × treated 
8 × control 

144 Shown in Figure 
2.5.4.1.  

Long 
time-course 
(L-TICO) 

Second mutIDH1R132H AG-120 
AG-881   
BAY 
1436032 
GSK864 

5.0 0.1 24/48 
48/48 
72/72 
96/96 

4 × treated 
8 × control 

168 Shown in Figure 
2.5.4.1. 

MutIDH1 
inhibitor 
concentration 
range 

Second mutIDH1R132H AG-120 
AG-881   
BAY 
1436032 
GSK864 
 

0.05, 0.50, 
5.0, 10.0 

0.2 24/48 4 × treated 
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96 Shown Figure 
2.5.7.1 (a)  
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mutIDH1R132H 
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5.00 0.1 24/48 4 × treated 
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36 One row each of 
control, AG-120 
and FT2102 

Glutaminase 
inhibitor 
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mutIDH1R132H 

CB-839 0.05, 0.10, 
0.30, 0.70, 
1.0, 3.0, 5.0 

0.1 24/48 4 × treated 
8 × control 

72 Shown Figure 
2.5.7.1 (b) 
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2.6.  Sample processing  

2.6.1. The main steps in metabolomics cell sample preparation: filtration and sample 

normalisation 

Samples harvested for metabolomics (routine or redox) were thawed on ice. The centrifuge 

was cooled to 4 °C prior to use. Cells were spun down at either 14,000 rpm for 25 minutes 

or at 12,900 rpm for 28 minutes, for the 30-sample or 48-sample inserts respectively. 

Molecular weight cut-off filters (3 or 10 kilo Dalton (kDA)) were washed once with 500 µL 

H2O by centrifugation at the same settings as the cell samples. Remaining water in the filter 

was removed before further use. A fresh tube was used to collect cell sample filtrate. The 

entirety of sample supernatant was transferred to the filter before centrifugation at 4 °C 

and either 14,000 rpm for 25 minutes or at 12,900 rpm for 28 minutes, for the 30-sample 

or 48-sample inserts respectively.  

The timing of measurement of DNA concentration differed for 60 mm dish versus 12-well 

plate samples. Dish samples were measured after pelleting of cell debris, but before 

filtration. 12-well plate samples were measured after filtration and sample was taken from 

the sample remaining in the filter. Either the NanoDrop One or the ClarioStar plate reader, 

equipped with a LVis plate, were used to measure dsDNA (ng/µL). Sample volume was 

2.0 µL for measurements on the NanoDrop and 2.5 µL on the ClarioStar. The NanoDrop was 

cleaned by wiping with lint free wipes wetted with water prior to each measurement. It 

was blanked with 80% MeOH(aq) (2.0 µL). The ClarioStar LVis plate was wiped with lint free 

wipes and ethanol, checked for cleanliness (accepted at < 10 mOD difference) and then 

blanked with 80% MeOH(aq) (accepted at < 10 mOD difference). Blanking was only repeated 

when the instrument was used after a break or if repeated sample measurements were 

highly irregular. Each sample was measured at least twice when using the NanoDrop or 

ClarioStar. If the concentration of the second measurement differed more than 5-6 ng/µL 

or 10% of the total concentration of measurement 1, further measurements were taken.  

After DNA concentration was measured and samples were filtered, the relative DNA 

concentration was used for diluting the samples. Final total volume of samples harvested 

from 60 mm dishes was 80 or 100 µL and for samples from 12-well plates it was 40-50 µL. 
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Samples were transferred to total recovery vials during dilution. Long-term storage 

(> 1 week) of samples was at -80 °C, short-term storage (up to 1 week) was at 4 °C.  

2.6.2. Preparation of cell and media samples for amino acid analysis  

Metabolomics samples prepared per Section 2.6.1 were further processed for amino acid 

analysis using the Waters AccQ-Tag™ kit (Milford, MA, USA). For each standard or sample 

(media or processed cell lysate), 35 µL of borate buffer was mixed with 5 µL sample or 

amino acid standard to a total recovery vial. Following this, 10 µL amino acid derivatising 

reagent (described in Section 2.3.3) was added to the recovery vial and the mixture was 

heated for 10 minutes at 55 °C. The quality control sample was made by pooling 2-5 µL of 

each sample (not standard) in a total recovery vial after the samples had been heated and 

cooled down. A reagent blank was prepared by mixing 40 µL borate buffer with 10 µL 

derivatising reagent in a total recovery vial and heating for 10 minutes at 55 °C. Finally, a 

blank of just borate buffer was transferred to a 1.5 mL glass vial. All derivatised samples, 

standards and blanks were stored at room temperature for up to a week prior to analysis.  

2.6.3. Preparation of media samples for underivatised RPLC-MS analysis 

Media (supplemented DMEM) containing the mutIDH1 inhibitors AG-120, AG-881, 

BAY 1436032 or GSK864 were treated with acidic (1% (v/v) formic acid), neutral or basic 

(1% (v/v) ~25% NH3 in water) acetonitrile. In the method development (described in 

section 4.3), 100 µL of media and 300 µL of extraction solvent were transferred to a 

microtube and placed at -20 °C overnight. All three extraction solvents (acidic, neutral and 

basic) were used. The samples were thawed at 4 °C and 200 µL of the top phase layer was 

transferred to a total recovery vial.  

In the sample preparation of media from the concentration range experiment and S-TICO 

and L-TICO experiments, 100 µL of media and 200 µL of neutral acetonitrile were 

transferred to a microtube and placed at -20 °C overnight. The samples were thawed at 

4 °C and 100 µL of the top phase layer was transferred to a total recovery vial.  
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2.6.4. Preparation of glucose quantification assay for measurement of glucose in media 

samples 

Glucose concentration in media from the CB-839 concentration range experiment was 

measured. The original assay protocol was described for larger sample volumes 

(0.1 mL sample and 3.0 mL reagent solution) and was scaled down to fit into a 96-well plate 

format (8 µL sample and 240 µL reagent solution). Samples, standards and blanks (water) 

were transferred to non-sterile clear 96-well plates and mixed with 240 µL of reagent 

solution. The plate was incubated at 40 °C in the ClarioStar plate reader for 20 minutes.  

2.7.  Sample analysis 

In the following section, the different LC-MS methods used throughout the thesis are 

described, organised by column chemistry and sample type. The final sub-section details 

the plate-reader settings used for the MTS and glucose assays. The method described in 

section 2.7.1 and section 2.7.3 were developed by Dr Walsby-Tickle [148, 321].  

2.7.1. Anion-exchange chromatography-mass spectrometry (IC-MS) 

Sample volume was 5.0 µL with partial-loop injection. The sample manager was set to 4.0 °C 

and column temperature was 30 °C. Flow rate was 0.250 m/min and the following 

hydroxide gradient was used: 0.0 min, 5 mM; 1.0 min, 5 mM; 15.0 min, 60 mM; 25.0 min, 

100 mM; 30.0 min, 100 mM; 30.1 min, 5 mM; 37.0 min, 5 mM. Curve was set to 5 for all 

gradient steps. The ion suppressor was operated in external water mode with a 

0.500 mL/min flow rate and a continuously regenerated trap column removed ionic 

contaminants from the eluent. The ion suppressor current was set to 62 mA.  

Spray voltage was –3.60 kV (negative polarity), capillary temperature was 320 °C and the 

probe heater temperature was 350 °C. Gas flow rates were: sheath gas at 60, auxiliary gas 

was at 20 and spare gas at 0, all arbitrary units (a.u.). S-Lens RF level was set to 70.0%. The 

method was run with full MS and data dependent (dd) MS2 and the mass range was from 

60-900 m/z. The following settings were used for full MS: resolution 7.0 × 104; 

microscans, 2; AGC target, 1.0 × 106; and maximum IT, 120 ms. The following settings were 

used for ddMS2: resolution, 1.75 × 103; microscans, 2; AGC target, 1.0 × 105; and 

maximum IT, 250 ms.  



Chapter 2. Methods and materials 

72 

 

2.7.2. RPLC-MS for analysis of derivatised amino acids 

Sample volume was 2.0 µL with flow-through needle injection. The sample manager was 

operated without temperature control (i.e., room temperature) and the column 

temperature was 50 °C. Flow rate was 0.600 mL/min and the following gradient was used, 

with percent eluent A: 0 min, 99.9%; 0.54 min, 99.9%; 5.74 min, 90.9%; 7.74 min, 78.8 %; 

8.04 min, 40.4%; 8.05 min, 10.0%; 8.64 min, 10.0%; 8.73 min, 99.9%; 9.50 min, 99.9%. Curve 

was set to 6 for all steps except from 5.74-7-74 minutes, where it was set to 7.  

The source type was ESI, polarity was positive and the analyser mode was set to 

‘sensitivity’.  Capillary voltage was 2.00 kV, with sample cone voltage 40 V and source offset 

voltage 80 V. The source temperature was 130 °C and the desolvation temperature was 

450 °C. Cone gas flow was 50 L/h and desolvation gas flow was 900 L/h. Mass range was 

50-1000 m/z in high definition MSE mode. The scan time was 0.200 s. Low collision energy 

was 6 V and the high energy collision ramp was 20-30 V. Intelligent data capture was not 

enabled. IMS was enabled with standard transmission mode. Lock mass correction was 

carried out every 5 minutes, using leucine enkephalin (50 pg/µL) as the reference. 

2.7.3. RPLC-MS for analysis of non-derivatised samples 

The reverse phase method was used on both the Xevo G2-XS QToF and the Vion IMS QToF 

systems. The same chromatographic parameters were used for both. The sample volume 

was 5.0 µL with flow-through needle injection for cell samples. The sample manager was 

to set 4.0 °C and the column was set to 40 °C. Flow rate was 0.300 mL/min and the following 

gradient was used, with percent indicating the amount of mobile phase A (0.1% FA in 

water): 0 min, 95.0%; 4.0 min, 50.0%; 12.0 min, 0.1%; 15.0 min, 0.1%; 15.1 min, 95.0%; 18.0 

min, 95%; 30.0 min, 95.0%; 30.1 min, 95.0%. Curve was set to 6 for all steps.   

The MS settings for the Vion IMS QToF were ESI source type, positive polarity and 

‘sensitivity’ analyser mode. Capillary voltage was 2.50 kV, sample cone voltage was 40 V 

and source offset voltage was 80 V. The source temperature was 120 °C and the desolvation 

temperature was 250 °C. Cone gas flow was 50 L/h and the desolvation gas flow was 

600 L/h. Mass range was 50-1000 m/z in high definition MSE mode. The scan time was 

0.500 s. Low collision energy was 6.0 eV and the high energy collision ramp was 



Chapter 2. Methods and materials 

73 

 

20.0-40.0 eV. Intelligent data capture was not enabled. IMS was enabled with standard 

transmission mode. Lock mass correction was enabled with leucine enkephalin (50 pg/µL) 

as the reference. 

The MS settings for the Xevo G2-XS QToF were ESI source type in positive polarity. Capillary 

voltage was 2.0 kV, sampling cone voltage was 40 V and source offset was 80 V. Source 

temperature was 130 °C and desolvation temperature was 600 °C. Cone gas was 50 L/h and 

desolvation gas was 900 L/h. Mass range was from 50-900 m/z, in sensitivity analyser mode 

and MSE, with scan time of 0.5 s. The low collision energy was 6.0 eV and the high energy 

collision ramp was 20.0-40.0 eV.  

2.7.4. HILIC-MS 

The amide and ZIC phosphorylcholine column were only used with the Ultimate 3000 pump 

and Exploris 240™ MS, while the ZIC sulfobetaine column was used on both the 

Ultimate-3000 pump and Exploris 240™ MS and the Acquity UPLC® pump and Vion MS. In 

the following section, all of the methods for the Ultimate-3000 pump and Exploris 240™ 

are described first, followed by the methods for the Acquity UPLC® pump and Vion MS. 

Across both instruments the sample holders were kept at 4 °C and injection volume was 

5.0 µL.  

Ultimate-3000 pump and Exploris 240™ MS methods 

The amide column temperature was 25 °C. Mobile phase A was the 95:5 water: acetonitrile 

buffer described in section 2.3.4 and mobile phase B was acetonitrile. Flow rate was 

0.200 mL/min. The gradient, based on the method reported by Lu et al. [322], was: 0 min, 

90% B; 2 min, 90% B; 5 min, 50% B; 11 min, 0% B; 13.5 min, 0% B; 15 min, 90% B. The ion 

source was H-ESI and the MS was operated in negative mode. The spray voltage was -3.4 kV 

and the ion transfer tube was 320 °C, while vaporiser temperature was 0 °C. Sheath gas 

was 45, auxiliary gas was 7 and sweep gas was 3, all arbitrary units. Full scan at resolution 

1.2 × 106 and scan range 400-800 m/z was used. The RF lens was at 65%. The internal mass 

calibration (EASY-IC™) was disabled.  

The ZIC phosphorylcholine column temperature was 40 °C. Mobile phase A was 20 mM 

ammonium acetate at either pH 6 or 9 and mobile phase B was acetonitrile. Flow rate was 

0.300 mL/min. The gradient, based on the method reported by Smith et al. [310], was: 0 



Chapter 2. Methods and materials 

74 

 

min, 70% B; 1 min, 70% B; 10 min, 60% B; 10.5 min, 40% B; 15 min, 40% B; 15.5 min, 70% 

B; 19 min, 70% B. The ion source was H-ESI and the MS was operated in negative mode. 

The spray voltage was –3.4 kV and the ion transfer tube was 300 °C, while vaporiser 

temperature was 0 °C. Sheath gas was 50, auxiliary gas was 21 and sweep gas was 3, all 

arbitrary units. Full scan at resolution 1.2 × 106 and scan range 100-900 m/z was used. The 

RF lens was at 65%. The internal mass calibration (EASY-IC™) was disabled. 

The ZIC sulfobetaine column temperature was 50 °C. Mobile phase A was acetonitrile and 

mobile phase B was either 5 mM ammonium formate (pH 6), 20 mM ammonium formate 

(pH 3, 6 or 9) or 20 mM ammonium acetate (pH 6 or 9). Flow rate was 0.400 mL/min. The 

gradient was: 0 min, 5% B; 1 min, 5% B; 9 min, 50% B; 13 min, 50% B; 13.5 min, 5% B; 

18 min, 5% B. The ion source was H-ESI and the following parameters were used when 

operated in negative mode: spray voltage, – 3.5 kV; sheath gas, 20; auxiliary gas, 10; sweep 

gas, 0; scan type, full; resolution, 1.2 × 106 resolution; scan range, 350-850 m/z; 

RF lens, 65%. The internal mass calibration (EASY-IC™) was enabled. The ion transfer tube 

and vaporiser temperature were normally both set to 250 °C. Nine different combinations 

of temperatures were tested when using 20 mM ammonium formate (pH 9) as 

mobile phase B: low (200 °C), medium (250 °C) and high (300 °C). When the 20 mM 

ammonium formate buffer (pH 3) was used, the MS was operated in positive mode with 

the following parameters: spray voltage, 2.0 kV; sheath gas, 45; auxiliary gas, 11; sweep 

gas, 1; ion transfer tube, 300 °C; vaporiser temperature, 250 °C; scan mode, full; scan range, 

100-1000 m/z; RF lens, 65%. The internal mass calibration (EASY-IC™) was enabled. 

Acquity UPLC® pump and Vion MS methods 

Seven chromatographic methods were tested with the ZIC sulfobetaine column. Mobile 

phase A was in each case the buffer. The base method, adapted from the method reported 

by Smith et al. [310], had flow rate 0.400 mL/min, column temperature of 40 °C and used 

20 mM ammonium acetate (pH 6). The gradient was: 0.0 min, 30% A; 1.0 min 30% A; 

10.0 min, 40% A; 10.5 min, 60% A; 15.0 min, 60% A; 15.5 min, 30% A; 20.0 min, 30% A. The 

base method was adjusted by changing the gradient, but leaving column temperature and 

flow rate same as before. The new gradient was as following: 0.0 min, 15% A; 1.0 min, 15% 

A; 9.0 min, 40% A; 9.50 min, 70% A; 14.0 min 70% A; 14.5 min, 15% A; 20.0 min, 15% A. 
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Mobile phase A (20 mM ammonium formate) at pH 6 and pH 9 were tested with the new 

gradient.  

A shortened gradient was also tested: 0.0 min, 15% A; 1.0 min, 15% A; 4.0 min, 40% A; 

4.50 min, 70% A; 9.0 min 70% A; 9.5 min, 15% A; 15.0 min, 15% A. The short gradient was 

also tested with higher flow rate (0.500 mL/min), higher column temperature (50 °C) and 

both higher flow rate and higher temperature. All four methods were only done with 

20 mM ammonium acetate at pH 9.  

The following MS parameters were used for the previously mentioned pump settings: ion 

source, H-ESI; polarity, negative; analyser mode, sensitivity; IMS, standard transmission; 

capillary voltage, –2.50 kV; sample cone voltage, 40 V; source offset voltage, 80 V; source 

temperature, 150 °C; desolvation temperature, 300 °C; cone gas, 50 L/h; 

desolvation gas, 750 L/h; mode, MSE; mass range, 50-900 m/z; scan time, 1.0 s; collision 

energy low, 6.0 eV; collision energy high (ramp), 20.0-30.0 eV; intelligent data capture, 

enabled.   

Based on the previous methods, a final method was devised. It had column temperature at 

50 °C and flow rate at 0.500 mL/min, using 20 mM ammonium acetate (pH 9) and 

acetonitrile. The gradient was: 0.0 min, 5% A; 1.0 min, 5% A; 9.0 min, 50% A; 13.0 min, 

50% A; 13.5 min, 5% A; 18.0 min, 5% A. The following MS parameters were used: ion source, 

H-ESI; polarity, negative; analyser mode, sensitivity; IMS, standard transmission; capillary 

voltage, –2.50 kV; sample cone voltage, 40 V; source offset voltage, 80 V; source 

temperature, 125 °C; desolvation temperature, 300 °C; cone gas, 50 L/h; desolvation gas, 

750 L/h; mode, high definition MSE; mass range, 50-900 m/z; scan time, 1.0 s; collision 

energy low, 6.0 eV; collision energy high (ramp), 20.0-30.0 eV; intelligent data capture, 

disabled.   

2.7.5. Assay analysis with plate reader 

The ClarioStar plate reader was used to measure the absorbance at specific wavelengths 

(defined below for each experiment) per well of a 96-well plate. In the MTS cell 

proliferation assay, absorbance of treated cell samples was considered relative to the 

absorbance of control cell samples. In the glucose quantification assay, the absorbance of 
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known standards was used to create a linear calibration curve based on the correlation of 

concentration of solution to its absorbance, as per Beer-Lamberts law: 

Equation 2.1  𝐴 =  𝜖 × 𝐶 × 𝑝 

Where A = absorbance, ε the molar extinction coefficient (mol-1 cm-1), C is concentration 

(mol/L) and p is path length of the sample. In the glucose quantification assay, ε and p were 

the same for each sample as the absorbance of the same molecule was measured and each 

sample had the same volume (i.e., path length). The concentration range for the calibration 

curve was carried out based on the manufacturer’s recommendations, i.e., within the linear 

range specified for the assay.  

MTS cell proliferation assay 

The ClarioStar plate reader was set to 37 °C and 5% CO2 during MTS assays. Absorbance 

was measured at 490 nm and each well was orbital scanned (diameter 3 mm). The blank 

absorbance was subtracted from the absorbance of the sample wells. The L-TICO plates 

were measured once after 45 minutes of incubation. The glutaminase inhibitor (CB-839) 

concentration range 96-well plates were measured after 45 minutes of incubation, and 

then three additional times every 10-15 minutes.  

Glucose quantification assay 

After 20 minutes of incubation at 40 °C, samples were shaken (200 rpm) for 30s. The 

absorbance was measured at 510 nm and each well was orbitally scanned (diameter 3 mm). 

The blank absorbance was subtracted from the absorbance of the sample wells. Each plate 

was measured once. The plate layout mirrored that illustrated in Figure 2.5.3, with 

standards and blanks placed in the leftmost and rightmost columns.  
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2.8.  Data processing and statistical analysis 

2.8.1. Processing of raw instrument data and univariate statistical analysis of targeted 

LC-MS data 

Processing of data acquired with HILIC-MS 

Data processing was done in QualBrowser in XCalibur (Thermo Fisher Scientific (Waltham, 

MA, USA)) for data collected with the Exploris 240™ and UNIFI (Waters (Milford, MA, USA)) 

for data collected with the Vion IMS QToF. The most abundant adduct for all redox 

metabolites (NAD+, NADH, NADP+ and NADPH) was [M-H]- in both standard and cell 

samples. Integration in XCalibur was done manually with the “pick peak” tool. Integration 

in UNIFI was done with automatic peak width detection and detection threshold without 

smoothing. NAD+ and NADH peak width was generally 30-60 s, NADP+ and NADPH peak 

width was generally 5.0-6.0 minutes. Retention time varied depending on buffer 

composition.  

Pre-processing data acquired with IC-MS 

The isotope distributions of 2-HG in the 13C-tracer experiment (see Table 2.5.2) were 

measured by manually integrating the peak areas of the EICs of the [M-H]- adduct of the 

different 2-HG isotopes (M+1, M+2, M+3, M+4 and M+5) with 5 ppm mass accuracy. The 

“pick peak” tool in XCalibur was used for the manual integration. The average retention 

time for all isotopes of 2-HG was 9.88 ± 0.02 min, which was within one minute of the 

retention time of the known standard. Peak width was set to 1.0 minute.  

Pre-processing data acquired with underivatized RPLC-MS 

For each inhibitor, the peak area of the most abundant adducts were determined using the 

extracted ion chromatogram (EIC). The EICs for extracted media samples were smoothed 

and integrated (peak-to-peak amplitude = 2,000) in MassLynx. The smoothing parameters 

were: window size (scans), 3; number of smooths, 2. The EICs for the cell samples (S- and 

L-TICO and mutIDH1 inhibitors concentration range) were integrated in Unifi (Waters 

(Milford, MA, USA)). Integration was done with automatic peak width detection and 

detection threshold without smoothing. For all inhibitors [M+H]+ was the most abundant 

adduct; GSK864 in media samples also had a substantial [M+Na]+ adduct and this was 
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included in the calculation of total peak area. The m/z of the most abundant adduct(s) and 

the retention time of each inhibitor are listed in Table 2.8.1.  

Univariate statistics and regression analyses 

All statistical analyses were performed in Prism 9.4.0 from GraphPad (San Diego, CA, USA). 

For single binary comparisons, an unpaired parametric Student’s t-test was used. For 

multiple comparisons, one-way ANOVA followed with Tukey’s, Šidák or Dunnett’s multiple 

comparison tests (MCTe) was used. The Dunnett’s test was used when a single group 

(control) was compared to a number of others (treated)). Šidák and Tukey’s test were used 

when multiple comparisons were carried out, per recommendations by Prism. Simple linear 

regression was carried out without forcing the line through x = 0, y = 0.   

2.8.2. Pre-processing of raw instrument data: semi-targeted analysis 

Progenesis QI: Uploading data, alignment and peak picking 

The raw files (Thermo for IC-MS data and Waters UNIFI for derivatised RPLC-MS data) were 

uploaded to the Progenesis QI from Nonlinear Dynamics/Waters (Langley-on-Tyne, 

Northumberland, UK/Milford, MA, USA). For the two different file formats, type of 

instrument was ‘high resolution mass spectrometer’ and data format was ‘profile data’. 

Ionisation polarity was negative for IC-MS data and positive for Waters UNIFI data. The 

following adducts were chosen for samples analysed in positive ionisation mode: [M+H]+, 

[M+H-H2O]+, [M+2H]+2, and [2M+H]+, while for negative ionisation mode the following 

adducts were chosen: [M-H]-, [M-H-H2O]-, [M-2H]-2 and [2M-H]-. 

After data was uploaded, all files were aligned based on a reference chromatogram chosen 

by the software. All runs (i.e., a LC-MS data file for the analysis of a single sample) were 

assessed for suitability, in which each run is compared to all of the others and the run with 

most similar alignment to all is chosen as the reference. Alignment was checked and 

generally accepted if it was ≥ 90% in agreement with the reference run. Next the software 

Table 2.8.1. Adduct(s), m/z values and retention time (min) of inhibitors analysed with RPLC-MS.  

Inhibitor Name Adduct m/z Retention time (min) 

AG-120 [M+H]+ 583.147 7.34 ± 10s 

AG-881 [M+H]+ 415.087 8.64 ± 10s 

BAY 1436032 [M+H]+ 490.231 8.35 ± 10s 

GSK864 [M+H]+ 559.246 8.95 ± 10s 

[M+Na]+ 581.221 
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picked peaks in all runs, i.e., found retention time and m/z pairs judged as a genuine 

peak/ion. The peak picking sensitivity was set to default, and the software used a noise 

estimation algorithm to decide between ‘noise’ and ‘peak’. No minimum peak width or 

retention time limits were set. Peak picking also included peak integration, which was done 

with default settings.  

Compound identification in Progenesis QI 

Compound identification was completed using an in-house database. The IC-MS database 

is provided in Table A.I.1 and the derivatised RPLC-MS database is provided in Table A.I.2, 

both in Appendix I. When searching the IC-MS database, maximum retention time 

deviation was set to 2.0 minutes, maximum precursor mass error tolerance was set to 5 

ppm and maximum fragment mass error tolerance was set to 12 ppm. For the derivatised 

RPLC-MS database, maximum retention time deviation was set to 1.0 minutes and 

maximum precursor mass error tolerance was to 5 ppm. No fragmentation data was 

collected for the derivatised RPLC-MS data.  

The following identification parameters were used during metabolite identification: 

retention time error, mass error, fragmentation score (IC-MS data only), isotope similarity, 

minimum coefficient of variation (CV) and maximum abundance. The different parameter 

cut-offs used to determine whether an identification was confident, putative or not 

accepted are given in Table 2.8.1.2. Retention time and mass error were used to decide 

whether an identification was confident or putative. Fragmentation score was used to 

differentiate between suggested identifications with otherwise similar retention time and 

mass error. The score was calculated with an algorithm developed by Progenesis QI, based 

on the cosine similarity method [323]. The fragmentation of a standard was compared to 

the feature of interest, and this was only available for data collected by IC-MS analysis. 

Isotope similarity could determine whether a metabolite identification was confident, 

putative or not accepted. Minimum CV and maximum abundance were used to rule out 

suggested identifications that were most likely noise, i.e., it was not used to decide 

between confident and putative identifications. An identification was also considered 

putative if more than one metabolite was suggested and all of the parameters (retention 

time error, mass error, fragmentation score and isotope similarity) were too close to call. 
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The final output from Progenesis was a peak intensity table of all compound ions (m/z and 

retention time) for picked peaks. The raw data was used for further statistical analysis 

described in the next section.  

2.8.3. Processing and statistical analysis of untargeted metabolomics data 

The data was processed with R (version 4.0.5) in RStudio (2022.02.3 Build 492) [324] mainly 

using the following packages: MetaboAnalystR [325], tidyverse [326], ggplot2 [327], and 

rstatix [328]. Packages used within the tidyverse included dplyr, purrr, stringr, tibble, rio 

and pacman. Additional packages were used for supporting the tasks performed by the 

main packages: png [329], grid [324], gridExtra [330], memoise [331], plyr [332], scales 

[333], qpcR [334], fs [335], janitor [336], and rlist [324]. The R code used for data processing 

is provided in Appendix X. Prism 9.4.0 was used for additional plotting. The general 

workflow of data processing and statistical analysis is outlined in the flowchart in Figure 

2.8.1. The workflow was applied to all data acquired with IC-MS and derivatised RPLC-MS.  

 

  

Table 2.8.2. Metabolite identification parameters and their cut-offs for confident, putative or 
unaccepted suggestions by Progenesis QI.  

Data/ 
Acquisition 
Instrument 

Identification 
considered 

Retention 
time error 
(minutes) 

Mass 
Error 
(ppm) 

Isotope 
similarity 
(%) 

Maximum 
abundance 

Minimum 
CV% 

IC-MS  
Acquired with 
QExactive 

Confident < 1.0 2.5 > 90  - - 

Putative < 2.0 5.0 > 85 - 30-50% 

Not accepted - - < 85 < 50 > 50% 

Derivatised RPLC-MS 
Acquired with Vion 
IMS QToF 

Confident < 0.5 2.5 > 90  - - 

Putative < 1.0 5.0 > 85 - 30-50% 

Not accepted - - < 85 < 1.5 > 50% 
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Filtration, normalisation, transformation and scaling 

All peak intensity tables were filtered by interquartile range, removing near-constant 

values and bringing total number of features down to 2,500. A PCA scores plot (PC1 × PC2) 

was generated and samples falling outside of the 95% confidence interval were considered 

outliers and removed. Then data normalisation, transformation and scaling were assessed 

by applying all possible combinations of none, median, sum and quantile normalisation, 

none or log transformation, and none, auto- or pareto-scaling. The mathematical 

operations of each normalisation, transformation and scaling parameter is described in 

 

Figure 2.8.1. Overview of processing and statistical analysis of untargeted metabolomics data. The 
Progenesis output (peak intensity table with raw data) was filtered, then PCA scores plot (PC1 × PC2) 
was used to determine outliers. Then different combinations of normalisation (none, median, quantile 
and sum), transformation (none and log) and scaling (none, auto and pareto) were considered. The 
processed data table was used for multivariate (PLS-DA and hierarchical clustering) analysis. Filtered and 
normalised data, but not scaled/transformed, was used for univariate analysis (Tukey’s significance test, 
t-tests with FDR adjustment (Benjamini-Hochberg), fold change calculations and correlation analysis), 
generation of box and/or line plots and untargeted pathway analysis.  
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Table 2.8.3. The resulting peak intensity table of a specific combination of parameters was 

used to plot feature and sample distribution plots, and a heatmap of all features and 

samples. In the heatmap, the features were autoscaled and neither samples nor features 

were clustered.   

All plots were assessed and the combination of parameters that provided normal (or as 

close to normal) distributions of features and samples, as well as even heatmaps without 

clear outlier columns, were chosen. After an appropriate choice of normalisation, 

transformation and scaling parameters was made, this was applied to the peak intensity 

table and the resulting data table was used for multivariate analysis (PLS-DA and 

hierarchical clustering). Untargeted pathway analysis and univariate analysis, as well as 

generation of box- or line-plots, was carried out with filtered and normalised data, but not 

transformed or scaled.  

Univariate statistical analysis of processed untargeted metabolomics data 

The univariate statistical analysis of processed untargeted metabolomics data included 

calculation of FC ratios, performing significance tests and correlation analysis (CA).  The FC 

of individual features and identified metabolites were calculated as ratios, i.e., average 

normalised ion count of group 1 divided by average normalised ion count of group 2. The 

average was calculated as the mean, excluding any outliers identified in the data 

processing. FC was calculated with R code written for the task, see Appendix X.  

Table 2.8.3. The mathematical operations performed when normalising, transforming and scaling peak 
intensity tables of metabolomics data. Notation: the peak intensity table (D) has rows (X) corresponding 
to samples (1, 2, …, s) and columns (Y) corresponding to metabolites (1, 2, …, m). Thus, Xm is a row of 
metabolites for a given sample and Ys is a column of samples for a given metabolite. Any given ion count 
for a specific metabolite of a specific sample is xi. After normalisation/transformation/scaling the ion 
count is denoted xi

n. Standard deviation is σ. Notation and operations were based on van der Berg et al. 
and Wulff et al. [337, 338]. Description of quantile normalisation was based on Karaman [339].  

Operation type Parameter name Mathematical operation 

Normalisation Sum 
𝒙𝒊

𝒏 =  𝒙𝒊 ∑ 𝒙𝒊𝒋

𝒎

𝒋=𝟏
⁄  

Median 𝒙𝒊
𝒏 =  𝒙𝒊 𝒎𝒆𝒅𝒊𝒂𝒏(𝑿𝒎)⁄  

Quantile 1) Rank rows highest to lowest 
2) Rank columns by highest to lowest 
3) Calculate new row mean 
4) Apply new mean to initial ranking of rows 

Transformation Log 𝒙𝒊
𝒏 =  𝐥𝐨𝐠𝟏𝟎(𝒙𝒊) 

Scaling Auto 𝒙𝒊
𝒏 =  𝒙𝒊 − 𝒎𝒆𝒂𝒏(𝒀𝒔) 𝝈𝒀𝒔

⁄  

Pareto 𝒙𝒊
𝒏 =  𝒙𝒊 − 𝒎𝒆𝒂𝒏(𝒀𝒔) √𝝈𝒀𝒔

⁄  
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The statistical significance tests were t-tests and ANOVA with appropriate correction 

applied when carrying out multiple comparisons. For binary comparisons of experimental 

groups, Tukey’s test was used if the number of replicates was the same between two 

experimental groups (N ± 1). A two-sided unpaired t-test with FDR adjustment 

(Benjamini-Hochberg procedure) was used if the number of replicates were not the same 

between two experimental groups for a specific binary comparison. The two-sided t-tests 

were performed on identified metabolites only, generally between control and treated 

groups or between treated groups of the same inhibitor but different concentration or 

exposure time. The Tukey’s test and t-test with FDR was calculated with R code written for 

the task, see Appendix X. The CA was performed on www.metaboanalyst.ca, where it is 

called PatternSearch or  PatternHunter. Spearman rank correlation was used as the 

distance measure and correlation to the template and the FDR adjusted significance of that 

correlation were reported. The template was either 2-HG, 2-OG or isocitrate abundance.  

Generating line plots of features and identified metabolites 

Plots were either made with a self-written R script or in Prism 9.4.0. In the R script, the 

package ggplot2 was used. The concentration plots were made by calculating the mean and 

standard deviation of each feature or metabolite for each group, and plotting that as point 

and line plots with error bars. The code for generating line plots is provided in Appendix X.  

Multivariate statistical analysis of processed untargeted metabolomics data 

PCA, PLS-DA and HCA were generated on the website www.metaboanalyst.ca, using 

version 5.0 of MetaboAnalyst. PCA was also performed with the R package 

MetaboAnalystR, see Appendix X for code. The PCA and PLS-DA scores plots were 

generated with 95% confidence regions. For the PLS-DA specifically, variable importance in 

projection (VIP) scores were provided by the website. Cross validation (CV) was done for 

the first 5 components, using leave-one-out CV (LOOCV). R2 (goodness of fit), Q2 (predictive 

ability) and accuracy were reported for the CV. Finally, a permutation test with 2,000 

repeats, using prediction accuracy during training as the test statistic, was performed.  

Hierarchical cluster analysis (HCA) was performed with autoscaled features for 

standardisation, Euclidian distance measure and Ward’s clustering method. Euclidian 

distance measures the shortest straight line between two data points and can be calculated 



Chapter 2. Methods and materials 

84 

 

for n-dimensional data [340]. Ward’s linkage method is based on calculating the error sum 

of squares (ESS) between clusters and clustering two groups that lead to the smallest 

increase in ESS [340]. The top 50 features ranked by one-way ANOVA (calculated by 

MetaboAnalyst) were used to generate clusters. In HCAs where the clustering of features 

was included, samples were not concomitantly clustered. Feature clusters also included a 

heatmap to show relative abundance.   

Putative feature identification with the Human Metabolome Database 

The multivariate statistical analyses of IC-MS data sometimes revealed features of interest. 

The LC-MS search function available on the Human Metabolome Database (HMDB) 

(www.hmdb.ca/spectra/ms/search) was used for putative identification. The ionisation 

mode was set to negative and mass error was set to 5 ppm. The following adducts were 

used during the search: [M-H]-, [M-H2O-H]-, [M-2H]-2, [2M-H]-, [M-3H]-3, and [3M-H]-. 

Collision cross section values were not available and were therefore not included.  

Untargeted pathway analysis of IC-MS data  

Untargeted pathway analysis (UPA), called ‘functional analysis’ in the MetaboAnalystR 

package, was only carried out with IC-MS data. The wtIDH1 control and mutIDH1 control 

data were used for UPA. For each binary comparison, a Student’s t test was performed for 

all 2,500 features in the peak list table, without multiple comparison correction. The 

Student’s t test was from the package rstatix. The features in the peak list were ranked by 

p-value, and a file including m/z, retention time, p-value and t score was generated.  

The file was then used to perform the UPA provided by the MetaboAnalystR package. The 

mass error was set to 5.0 ppm, MS mode was negative and retention time was in minutes. 

The algorithm used in the UPA was mummichog and the organism library was Homo 

sapiens MFN, a manually curated library originated from KEGG, BiGG and the Edinburgh 

model [313, 318]. The number of permutations was set to 100 (default) and the number of 

metabolites needed to consider a set of metabolites as a pathway was 3. Finally, per the 

recommendations of the MetaboAnalyst website, p-value cut-off was chosen such that ca 

10% of all features were considered significant, usually p-value = 0.05. After the UPA had 

been carried out, additional R code matched ECs to KEGG codes from the output files 

provided by the MetaboAnalystR UPA. The R code is provided in Appendix X.  

http://www.hmdb.ca/spectra/ms/search
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Chapter 3. Investigation of metabolic differences between wtIDH1 

and mutIDH1R132H glioma cells  

3.1.  Introduction 

A hallmark of mutIDH1R132H glioma is the production of substantial amounts of R-2-HG 

[reviewed in 1]. The mutation has also been shown to correlate with wider metabolic 

change such as increased anaplerosis of the TCA cycle; decreased glucose uptake, GABA 

shunt and BCAT1 activity; altered phospholipid and cholesterol metabolism; and redox 

metabolism under pressure of increased utilisation of NADPH [reviewed in 1]. However, 

surprisingly, there have been relatively few hypothesis-generating experiments that 

explore metabolic changes associated with IDH1 mutations using deep metabolome 

coverage.  In this chapter, the LN18 cell model expressing mutIDH1R132H via lentiviral 

overexpression is compared to the empty vector LN18 cell line and metabolic differences 

will be explored and discussed in the context of what has been reported previously for 

other glioma cell lines, mouse models and PTBs. 

When reviewing previous published research (see chapter 1), a large degree of variability 

in significantly altered metabolite levels was found. It appeared to often, but not always, 

be dependent on the tissue model chosen. Although the metabolomic analysis of wtIDH1 

and mutIDH1R132H glioma presented in this chapter was limited to a single cell line, 

metabolic changes similar to those reported in the literature were explored in addition to 

changes in the wider metabolome. Multiple LC-MS approaches, including IC-MS, were used 

to validate the cell model and explore the scope of broader metabolite changes. Targeted 

and untargeted metabolomics data collected on wtIDH1 and mutIDH1R132H LN18 cells will 

be explored using a variety of statistical analysis tools, including significance tests with 

MCTe, PLS-DA, HCA and functional analysis by UPA. The purpose was to expand our 

understanding of the metabolic effects associated with IDH1 mutations. 

The aims of this chapter therefore are: 

1. Measure 2-HG levels in mutIDH1 LN18 glioblastoma cells and compare difference 

with wtIDH1 cells. 
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2. Investigate other individual metabolite changes linked to IDH1 mutation status, 

including a focus on redox metabolites. 

3. Predict metabolic pathway changes associated with the IDH1 mutation and 

elevated 2-HG in mutIDH1R132H LN18 cells. 

4. Compare individual metabolite and pathway changes to those already reported in 

the literature for other glioma models.  
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3.2.  2-HG abundance significantly and substantially elevated in mutIDH1R132H 

LN18 glioblastoma cells  

The hallmark of mutIDH1 glioma is the high levels of 2-HG [reviewed in 1]. Therefore, it was 

essential that the glioma model used in this project, LN18 GBM cells expressing 

mutIDH1R132H via lentiviral vector, had a substantially elevated 2-HG abundance.  

Data processing and analysis 

LN18 GBM cells stably transfected with either an empty lentiviral vector or one encoding 

for mutIDH1R132H were used. The overexpression of mutIDH1R132H in transfected cells was 

confirmed with quantitative reverse transcription polymerase chain reaction (qRT-PCR) in 

work carried out by collaborator Dr Bardella (University of Birmingham) [312]. Twenty 

biological of replicates each LN18 variant were grown in supplemented DMEM (1.0 g/L 

glucose) with 0.1% (v/v) DMSO and incubated for 48h. Cells from each sample were then 

harvested and samples processed, as described in Section 2.5.3, 2.5.4 and 2.6.1. The 

metabolite extracts were normalised by dilution to relative DNA concentrations (values 

provided in Table A.II.1 in Appendix II). The samples were analysed by untargeted IC-MS 

[148], as described in Section 2.7.1. One wtIDH1 sample was not analysed with IC-MS due 

to an injection error, therefore N = 19 for wtIDH1 LN18 cell samples. The IC-MS data was 

processed in Progenesis QI (section 2.8.2) and 2-HG was identified by comparing retention 

time (-0.88 min), m/z (2.54 ppm), isotopic similarity (99.8%), and fragmentation pattern 

(81/100 similarity score) to a known standard, as described in section 2.8.2. Ion abundance 

was measured by integration of the identified peak in Progenesis QI.  

Results 

The ion abundance of 2-HG in cell samples were significantly and substantially higher in 

mutIDH1R132H versus wtIDH1 LN18 cells (FC = 52.9 (MUT/WT) and p-value < 0.0001, Tukey’s 

test). The box plot of median normalised 2-HG abundance is shown in Figure 3.2.1.(a). The 

extracted ion chromatograms (EICs) of the most abundant 2-HG adduct, [M-H]- 

(147.0299 m/z), further illustrated the substantial difference in 2-HG abundance between 

the two different cell lines. To be able to observe the EICs from the wtIDH1 samples, the y-

axis maximum had to be reduced 150-fold, as shown in Figure 3.2.1.(b) and (c). IC-MS could 

not distinguish between the R and S isomers of 2-HG, but the level of S-2-HG is naturally 
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low [77-79]. The majority of 2-HG measured by IC-MS was therefore concluded to be 

R-2-HG, but it will be written as 2-HG when referring to measurements done by IC-MS.  

 

  

 
Figure 3.2.1. Abundance of 2-HG in wtIDH1 and mutIDH1R132H LN18 cells. (a) Box plot of median 
normalised 2-HG abundance. Number of biological replicates was: N = 20 for mutIDH1R132H and N = 19 
for wtIDH1. **** = Tukey’s test p-value < 0.0001. The box plot limits are the 25th and 75th percentile, the 
middle line is the data median. The whiskers are the minimum and maximum measured values.  
(b) EIC of [M-H]- adduct of 2-HG (147.0299 m/z) in mutIDH1R132H and wtIDH1 LN18 cells. Enlarged area 
has lower maximum y-axis to show the 2-HG abundance in wtIDH1 cells. In (b-c) N = 3 biological 
replicates for both wtIDH1 and mutIDH1R132H cell samples.  
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3.3.  Multivariate statistical analyses reveal metabolite changes beyond 2-HG in 

wtIDH1 and mutIDH1R132H cells 

After confirming the high levels of 2-HG in mutIDH1R132H LN18 cells, it was of interest to 

compare the wider metabolome of the wild type and mutant cell lines. The ability of the 

IC-MS data to capture differences in metabolome composition between wtIDH1 and 

mutIDH1R132H LN18 cells was explored with multivariate statistical analysis tools PLS-DA and 

HCA. PLS-DA is a supervised dimension reducing multivariate analysis based on finding 

components, also known as latent variables (LV), that maximise the covariance between 

the explanatory and response variables [341, 342]. HCA is an unsupervised multivariate 

statistical tool that is complimentary to PLS-DA. In HCA, data is separated based on distance 

between samples rather than covariance.  

Data processing and analysis 

The IC-MS method described in section 2.7.1 and used to measure 2-HG abundance was 

also used for semi-targeted analysis of the wider cellular metabolome. From the IC-MS 

data, 6,645 compound-features were peak-picked and integrated (Progenesis QI) and 141 

metabolite identifications were made (86 confident/55 putative). The metabolite 

identification process and criteria for confident versus putative identification are described 

in Section 2.8.2. A full list of identified metabolites and identification criteria are provided 

in Table A.II.2. Data filtration and processing was performed as described in section 2.8.3. 

The IC-MS data was median normalised and pareto scaled. Median normalisation was 

chosen as it most effectively minimised the small amount of systematic bias evident in the 

heatmap output, see Figure A.II.1. Pareto scaling was chosen for multivariate data analysis 

as it ensured that the feature distribution was normal, see Figure A.II.1. PLS-DA and HCA 

were performed as described in section 2.8.3. In the HCA, the top 50 features ranked by 

t-test scores were used.  
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Results 

In the PLS-DA scores plot (component 1 × component 2), which shows the separation of 

samples along the LVs, there was complete separation of wtIDH1 and mutIDH1R132H LN18 

cell samples along the x-axis (first component/LV), see Figure 3.3.1.(a). The separation in 

the scores plot indicated a metabolic difference between wtIDH1 and mutIDH1R132H LN18 

cells. However, before assessing which metabolites contributed to the separation, the 

model had to be validated by assessing goodness of fit (R2 score), predictive ability (Q2 

score) and how the model performed under permutation. The validation was performed to 

assess whether the model was overfitted; an overfit model would have poor predictive 

ability and potentially emphasize noise. Leave-one out cross-validation (LOOCV) was used 

to calculate the R2 and Q2 score for the first five components of the model. Both scores 

were above 0.80 from the first component onward, and Q2 was within 0.20 of R2 at all 

components, which meant the model had a good fit and predictive ability. The accuracy 

score was 1.0 for all 5 components calculated suggesting the model was able to 

discriminate the two groups very effectively. The cross-validation results are summarised 

in Figure 3.3.1.(b). In the permutation test, the model was calculated with sample labels 

applied randomly several times and the original model was compared to determine 

whether it had better predictive ability than random iterations. The permutation test of the 

wtIDH1 and mutIDH1R132H model did not reach significance (p-value = 0.179). The test was 

done with prediction accuracy during training as test statistic and 2,000 permutations, 

plotted in Figure 3.3.1.(c). The outcome of the permutation test meant that the original 

model did not perform significantly better than the randomly labelled data. In other words, 

the IC-MS data was not able to provide enough distinguishing features to confidently assign 

samples to the correct experimental group. Therefore, any features or metabolites that 

contributed to the PLS-DA model should be evaluated with additional statistical analyses.  

The variable importance in projection (VIP) score of a feature reflects its contribution to an 

LV or, in other words, the degree of variation contributed to the LV [343, 344]. 2-HG was 

ranked highest by VIP scores for component 1 by a substantial margin, as shown in Figure 

3.3.1.(d). The VIP score of 2-HG was 38.07, while the second ranked feature 

(14.11_96.9695m/z) had a VIP score of 11.43. Additional identified metabolites in the top 

15 features ranked by VIP score were B-citryl-L-glutamate (B-CG), myo-inositol, 
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N-acetylaspartylglutamate (NAAG), uridine 5’-diphosphate (UDP), adipate semialdehyde 

and uridine 5’-monophosphate (UMP). The first five had higher abundance in wtIDH1 than 

mutIDH1R132H LN18 cells, while the latter two had lower abundance. Thus, the PLS-DA 

model revealed additional metabolites to 2-HG, with similar and opposite abundance 

profiles, which helps differentiate the metabolic phenotype of the two experimental 

groups.  

Seven unidentified compound-features were among the top 15 features ranked by VIP 

score, as shown in Figure 3.3.1.(d). Two of the features, m/z 101.0244 and neutral mass 

104.0473, had the same retention time as 2-HG: 9.90 minutes. Both features were present 

at higher abundance in mutIDH1R132H than wtIDH1 LN18 cells similar to 2-HG, and it was 

interpreted as fragments of 2-HG. A feature (neutral mass 217.0853) with the same 

retention time as B-CG (19.94 minutes) was present at higher abundance in wtIDH1 

compared to mutIDH1R132H LN18 cells, similar to B-CG and the feature was likely a fragment 

of B-CG. The remaining features did not match the retention time of previously identified 

metabolites. The m/z values were used to search HMDB as described in section 2.8.3. The 

feature with retention time 14.11 minutes and m/z 96.9695 was interpreted as the [M-H]- 

adduct of phosphate (1 ppm ME). The cells are washed with PBS prior to quenching with 

liquid N2 during harvest, but the difference in free phosphate should not be due to 

difference in sample harvest or processing because the samples were handled in 

randomised order. Potentially there was more total phosphate present in the wtIDH1 

samples and the free phosphate was from degradation of phosphorylated metabolites. 

Total phosphate amount would have to be measured to confirm this assumption, e.g., with 

31P NMR. It was an otherwise useful observation, as this is a species unlikely to have been 

picked up with conventional chromatographic methods used in metabolomics such as e.g., 

RP-LC or HILIC. The feature 15.65_607.0815n could be UDP N-acetyl-glucosamine ([M], 0 

ppm ME), but the authentic standard had a retention time of 17.77 min (in-house 

database). Potentially it could be the isomer UDP N-acetyl-galactosamine. None of the 

remaining features (14.11_195.9536n, 3.36_242.0798m/z and 12.63_339.0737n) 

produced any database matches to HMDB. 
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In the HCA, see Figure 3.3.2, 2-HG and adducts (retention time 9.90 min) dominated in one 

of the two main feature clusters (I). In the other main feature cluster (II), which had 

elevated metabolite abundance in wtIDH1 relative to mutIDH1R132H cells, the following 

identified metabolites were present: B-CG, NAAG, O-phosphoserine, methylisocitrate and 

oxoadipate. Features with retention times matching B-CG (19.94 min) dominated 

otherwise. The domination of features with matching retention time to 2-HG and B-CG was 

likely due to the high abundance of both metabolites in the cell samples. The high 

abundance of the parent ions would allow different adducts (e.g. [M-2H]-2, [2M-H]- or 

[M-H2O-H]-) and fragments to themselves be present at high enough abundance and with 

little enough variation that IQR filtering would not remove them and the statistical tests 

would not fail. From experience, the fragmentation and adduct formation in IC-MS is 

 

Figure 3.3.1. PLS-DA of IC-MS data of wtIDH1 and mutIDH1R132H LN18 cells. (a) PLS-DA scores plot. (b) 
Top 15 metabolites and features ranked by VIP scores. Blue arrow indicates higher abundance in wtIDH1 
cells and red arrows indicate higher abundance in mutIDH1R132H cells. (c) LOOCV was carried out for 
5 components. (d) Prediction accuracy during training was used as the test statistic in the permutation 
calculation, and a total of 2,000 permutations were performed.  N = 20 for mutIDH1R132H LN18 cell 
samples and N = 19 for wtIDH1 LN18 cell samples. 
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usually scaled with parent ion abundance such that differences between experimental 

groups remains. Thus, a parent ion with a particularly significant difference between 

experimental groups, and with high enough abundance, can generate adducts and 

fragments that contribute to untargeted multivariate analyses, such as those performed 

here. The features could be removed to ‘make space’ for other features, but the 

multivariate analyses in this section were exploratory in nature and it was of interest to 

determine the contribution of the different features. Several of the features did not match 

the retention time to known compounds and were included in case they provided 

additional information about wtIDH1 and mutIDH1R132H LN18 cells. The identified 

metabolites that were in common between the PLS-DA and HCA were 2-HG, B-CG, and 

NAAG.  
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In summary, 2-HG contributed substantially to separation between wtIDH1 and 

mutIDH1R132H cells in PLS-DA and HCA. Additional metabolites also strongly differentiated 

the two groups as indicated in both supervised and unsupervised multivariate analyses. 

These features will be investigated further using univariate analysis in the next section. 

  

 
Figure 3.3.2. HCA of wtIDH1 and mutIDH1R132H LN18 cell data collected by IC-MS analysis. The HCA was 
performed with top 50 features ranked by t-test (FDR adjusted), with Euclidian distance measure and 
Ward’s clustering method. Both features and samples were clustered. The data was interquartile range 
filtered, median normalised and pareto scaled. The colour bar indicates relative ion abundance. N = 20 
for mutIDH1R132H LN18 cell samples and N = 19 for wtIDH1 LN18 cell samples. 
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3.4.  Nucleotides, amino acids and related metabolites altered in abundance in 

mutIDH1R132H LN18 cells 

The multivariate methods used in section 3.3 indicated that metabolites in addition to 2-HG 

had altered abundance in mutIDH1R132H LN18 cells. To further probe metabolites beyond 

2-HG, Tukey’s significance tests were performed and FC ratios were calculated for all 

measured compound-features and identified metabolites. Identified metabolites from the 

IC-MS data were included, in addition to metabolites identified with the derivatised 

RPLC-MS method.  

Data processing 

Samples were prepared for RPLC-MS analysis by using the AccQ-Tag derivatisation kit, 

detailed in section 2.6.2. Aliquots of each sample were prepared as individual samples and 

analysed as described in section 2.7.2. From the derivatised RPLC-MS data, 53 metabolite 

identifications were made (34 confident/19 putative). The metabolite identification and 

criteria for confident versus putative identification are described in Section 2.8.2. A full list 

of identified metabolites and identification criteria are provided in Table A.II.3. The data 

was IQR filtered and median normalised prior to univariate analysis. Significance tests and 

FC calculations were carried with a bespoke R code written for efficient output, as the 

analyses were carried out for all 2,500 features in each dataset from IC-MS and derivatised 

RPLC-MS analysis, see section 2.8.3 for further methodology details. A feature was 

considered significant if the Tukey’s test p-value < 0.05 and the FC was considered 

appreciable if the FC ≥ 1.2 (WT/MUT or MUT/WT). Only the identified metabolites that 

fulfilled these criteria will be presented in this section.  
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3.4.1. Results 

Based on the criteria, the IC-MS data yielded 15 appreciably and significantly altered 

identified metabolites, including 2-HG. The derivatised RPLC-MS data yielded 10 

appreciably and significantly altered identified metabolites. The 25 metabolites and their 

FC and Tukey’s test p-values are listed in Table 3.4.1.  

Considering all significant and appreciably elevated identified metabolites, different areas 

of metabolism become apparent as being affected in IDH1 mutant cells compared to wild 

type: nucleotide metabolism, amino acid metabolism, lipid related metabolites, and 

metabolites that were not as easily categorised. Each area of metabolism will be presented 

more in-depth below.  

Table 3.4.1. Overview of identified metabolites that were significantly and appreciably different 
between wtIDH1 and mutIDH1R132H LN18 glioma cell samples. Significantly different was defined as 
Tukey’s test p-value < 0.05 and appreciably different was defined as a FC ratio ≥ 1.2 (WT/MUT or 
MUT/WT). FC and Tukey’s test was carried out on median normalised, but not scaled or transformed, 
data. Red FC = MUT/WT and blue FC = WT/MUT. P-values: * < 0.05, ** < 0.01, *** < 0.001, **** < 0.0001.  

Measured by IC-MS 

Metabolite Higher in wtIDH1 (■)  
Higher in mutIDH1R132H (●) 

FC p-value  
(Tukey’s test) 

2-Hydroxyglutarate ● 52.9 **** 

2-Oxoglutarate ■ 1.30 ** 

3-methyl-2-oxovalerate ■ 1.35 ** 

B-Citryl-L-glutamate ■ 1.77 **** 

Deoxyadenosine diphosphate ● 1.50 * 

Deoxyribose 5-phosphate ● 1.27 * 

Glycerate ■ 1.26 ** 

Isopentenyl pyrophosphate ■ 1.29 ** 

Methylisocitrate ■ 1.84 **** 

N-Acetylaspartylglutamate ■ 1.92 **** 

N-Acetyl-L-methionine ● 1.20 * 

N-carbamoyl-L-aspartate ● 1.46 * 

O-Phosphoserine ■ 2.45 **** 

Oxoadipate ■ 1.70 **** 

Uridine 5'-monophosphate ● 1.54 ** 

Measured by derivatised RPLC-MS 

2-aminoadipate ■ 1.38 *** 

4-Hydroxyproline ● 1.27 * 

Asparagine ● 1.26 * 

B-Alanine ● 1.21 ** 

Cysteine ● 1.30 * 

Histidine ● 1.21 ** 

Isoleucine ● 1.20 * 

Methionine ● 1.24 * 

Pipecolate ■ 1.29 ** 

Putrescine ● 1.45 * 
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Nucleotides and related metabolites elevated in mutIDH1R132H cells 

The purine metabolite deoxyadenosine diphosphate (dADP) was appreciably and 

significantly higher in abundance in mutIDH1R132H than wtIDH1 cells (FC = 1.50 (MUT/WT) 

and p-value < 0.05, Tukey’s test). None of the other identified purines (adenosine 

diphosphate (ADP), adenosine triphosphate (ATP), deoxyguanosine diphosphate (dGDP) 

and guanosine diphosphate (GDP)) had appreciably or significantly different in abundance 

between wtIDH1 and mutIDH1R132H LN18 cells. The metabolite deoxyribose 5-phosphate 

(DR5P) was also appreciably and significantly higher in abundance in mutIDH1R132H 

compared to wtIDH1 cells (FC = 1.27 and p-value < 0.05, Tukey’s test), see Figure 3.4.1.(a). 

DR5P is generally considered a part of the PPP, but it can also be released from purines by 

2’-deoxynucleoside 5’-phosphate N-hydrolase 1 (DNPH1) [345]. DR5P can be further 

metabolised to acetaldehyde and glyceraldehyde 3-phosphate, the latter a glycolysis 

intermediate, by deoxyribose 5-phosphate aldolase (DERA) [346]. DERA can also catalyse 

the reverse reaction and is activated by polycarboxylic acids, of which citric acid was the 

most effective and 2-OG one of the least effective [347, 348]. It is not known whether DERA 

is activated by 2-HG, nor what that activation may mean with regards to which reaction 

would be favoured (breakdown or formation of DR5P).  

The pyrimidine UMP was appreciably and significantly increased in mutIDH1R132H compared 

to wtIDH1 LN18 cells (FC = 1.54 and 1.50, respectively). UDP was ranked in the top 15 

compound features by VIP score in the PLS-DA, but there was no appreciable or significant 

difference in abundance between wtIDH1 and mutIDH1R132H cells, see Figure 3.4.1.(b). The 

pyrimidine metabolites B-alanine and N-carbamoyl-aspartate, which are up/downstream 

of UMP, were also significantly elevated in mutIDH1R132H LN18 cells (FC = 1.21 and 1.46, 

respectively). The overall increase of pyrimidine metabolites in mutIDH1R132H cells indicate 

a potential link to mutIDH1 activity and/or elevated 2-HG abundance.  
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Altered amino acid abundances in IDH1 mutant cells 

A number of amino acids and metabolic intermediates emerged from the univariate 

statistical analysis as significantly altered in abundance (see Table 3.4.1). It was noted that 

several depended on 2-OG for transamination. In transamination, an amine group is 

transferred from one amino acid to a free keto-acid to form another amino acid (e.g., 2-OG, 

forming glutamate). There was an appreciable and significant decrease of 2-OG in 

mutIDH1R132H compared to wtIDH1 LN18 cells (FC = 1.30 (WT/MUT) and p-value < 0.01, 

Tukey’s test, see Figure 3.4.2), but far smaller than the increase in 2-HG. 2-HG was 

substantially accumulated in mutIDH1R132H LN18 cells and it was speculated that the 

abundance of 2-OG could be decreased because of its role as a precursor for 2-HG. 

 
Figure 3.4.1. Box plots of normalised abundance of nucleotides and related metabolites in wtIDH1 and 
mutIDH1R132H LN18 cells. The box plot limits are the 25th and 75th percentile, the middle line is the data 
median. The whiskers are the minimum and maximum measured values. * = p-value < 0.05 and ** = p-
value < 0.01, calculated with a Tukey’s test. For all metabolites, except B-alanine, number of biological 
replicates was N = 20 for mutIDH1R132H and N = 19 for wtIDH1. For B-alanine N = 18 for mutIDH1R132H and 
N = 20 for wtIDH1. 
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Glutamate, which can be oxidised to 2-OG by GLUD, was not appreciably or significantly 

altered in abundance between wtIDH1 and mutIDH1R132H cells. Both 2-OG and glutamate 

partake in many metabolic reactions [reviewed in 349, 350] and utilisation of 2-OG in 2-HG 

biosynthesis may be compensated for by other reactions.  

The lysine degradation pathway has two transamination 

reactions that require 2-OG. Three intermediates of the 

lysine degradation pathway (pipecolate, 2-aminoadipate 

and oxoadipate) were all appreciably and significantly 

decreased in mutIDH1R132H LN18 cells (FC = 1.38, 1.70 and 

1.29 (WT/MUT), respectively. P-value < 0.01, Tukey’s 

test)), see figure 3.4.3.(a). The lysine degradation pathway 

is split into the saccharopine pathway and the pipecolate 

pathway [reviewed in 351]. The saccharopine pathway 

requires 2-OG for transamination of lysine to 

L-2-aminoadipate-6-semialdehyde via formation of 

saccharopine, which involves loss of the ε-amine from 

lysine [352]. However, there was no appreciable or 

significant difference in lysine or saccharopine abundance 

between wtIDH1 and mutIDH1R132H cells. In the pipecolic 

pathway, the α-amine is removed by oxidation rather than 

transamination, and α-keto-ε-caproic acid is formed [353]. 

The two pathways eventually converge at 

L-2-aminoadipate-6-semialdehyde, which is oxidised to 2-aminoadipate. A second 2-OG 

dependent step of lysine degradation then occurs, deaminating 2-aminoadipate to 

oxoadipate. Thus, it appeared that the pipecolic pathway branch and the end of the lysine 

degradation was affected by 2-HG/mutIDH1 activity due to the decreased abundance of 

pipecolate, 2-aminoadipate and oxoadipate in mutIDH1R132H LN18 cells.   

Isoleucine accumulated in mutIDH1R132H LN18 cells (FC = 1.20 (MUT/WT) and p-value < 0.05, 

Tukey’s test). The ketoacid that results from transamination of isoleucine, 

3-methyl-2-oxovalerate (3M2OV), had lower abundance in mutIDH1R132H than wtIDH1 LN18 

cells (FC = 1.35 (WT/MUT) and p-value < 0.01, Tukey’s test). Leucine was significantly 

 
Figure 3.4.2. Box plot of 
normalised abundance of 2-OG 
in wtIDH1 and mutIDH1R132H 
LN18 cells. The box plot limits 
are the 25th and 75th percentile, 
the middle line is the data 
median. The whiskers are the 
minimum and maximum 
measured values. ** = p-value < 
0.01, calculated with a Tukey’s 
test. Number of biological 
replicates was N = 20 for 
mutIDH1R132H and N = 19 for 
wtIDH1. 



Chapter 3. Investigation of metabolic differences between wtIDH1 and mutIDH1R132H glioma cells 

100 

 

accumulated in mutIDH1R132H LN18 cells (p-value < 0.05, Tukey’s test), but the FC was small 

(FC = 1.17 (MUT/WT)). Valine abundance was not appreciably or significantly different 

between the two LN18 variants (FC = 1.13 (MUT/WT)). The ketoacids of leucine and valine 

had not been analysed with standards and it was therefore not known whether their 

abundance was affected in mutIDH1R132H cells or not. See Figure 3.4.3.(b) for box plots of 

isoleucine and 3M2OV. Valine, Leu and Ile are all branched chain amino acids (BCAA) and 

BCAA metabolism also requires 2-OG for transamination. The BCAA transaminase enzyme, 

BCAT1, has previously been found to have decreased expression levels in mutIDH1R132H 

glioma cells [reviewed in 1]. BCAT1 has been shown to be inhibited at millimolar levels of 

2-HG, although that is disputed [reviewed in 1]. Nonetheless, the accumulation of 

isoleucine and decrease of 3M2OV suggests that BCAA metabolism is also affected in 

mutIDH1R132H LN18 cells, potentially by a similar mechanism.  

An additional related amino acid that was altered in abundance and is linked to 2-OG 

and/or glutamate metabolism is O-phosphoserine. However, the biosynthesis of 

O-phosphoserine requires glutamate to donate an amine group to 3-phosphate-

hydroxypyruvate (3PHP). The abundance of O-phosphoserine was appreciably and 

significantly decreased in mutIDH1R132H compared to wtIDH1 LN18 cells (FC = 2.45 

(WT/MUT) and p-value < 0.0001, Tukey’s test), see Figure 3.4.3.(c). Serine had slightly 

higher abundance in mutIDH1R132H cells than wtIDH1 cells (FC = 1.17 (MUT/WT) and p-value 

< 0.05, Tukey’s test). The precursor of O-phosphoserine is from glycolysis and wtIDH1 

glioma is considered more glycolytic than mutIDH1 glioma [reviewed in 1], so potentially 

there was more precursor available in the wtIDH1 than mutIDH1R132H LN18 cells.  
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The other amino acids and metabolic intermediates were not as closely linked to 2-OG or 

glutamate. Cysteine and methionine abundance was appreciably and significantly 

increased in mutIDH1R132H cells (FC = 1.30 and 1.24, respectively (MUT/WT) and 

p-value < 0.05, Tukey’s test), see Figure 3.4.4.(a). Cysteine is needed for biosynthesis of 

glutathione, together with glutamate and glycine. Glycine abundance was not appreciably 

or significantly different between wtIDH1 and mutIDH1R132H LN18 cells. Methionine can be 

used to indirectly biosynthesise cysteine, via formation of L-homocysteine and then 

 
Figure 3.4.3. Box plots of amino acids and related metabolites in wtIDH1 and mutIDH1R132H LN18 cells.   
(a) lysine degradation intermediates, (b) isoleucine and ketoacid, and (c) 2-OG/glutamate dependent 
amino acid intermediate. The box plot limits are the 25th and 75th percentile, the middle line is the data 
median. The whiskers are the minimum and maximum measured values. * = p-value < 0.05 and  
** = p-value < 0.01, *** = p-value < 0.001 and **** = p-value < 0.0001, calculated with a Tukey’s test. 
For oxoadipate, 3-methyl-2-oxo valeric acid, succinic acid semialdehyde and O-phosphoserine N = 20 for 
mutIDH1R132H and N = 19 for wtIDH1. For 2-aminoadipate, pipecolate and isoleucine, N = 18 for 
mutIDH1R132H and N = 20 for wtIDH1. N = biological replicates. 
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cystathionine. The biosynthesis of 2-HG utilises large amounts of NADPH [161, 215, 220, 

221], which affects the redox homeostasis of mutIDH1 glioma cells, as discussed in the 

introduction [reviewed in 1]. Potentially, increased cysteine and methionine indicate 

increased utilisation of the metabolites for glutathione biosynthesis, a key cellular 

antioxidant [reviewed in 354]. However, glutathione was not identified in this IC-MS data 

set and any abundance changes cannot be commented on.  

Free methionine can also be rapidly acetylated to N-acetylmethionine (NAM) in a variety 

of brain derived cell types [355]. In this experiment, NAM was significantly increased in 

mutIDH1R132H cells (p-value < 0.05, Tukey’s test), but the difference to wtIDH1 cells was 

small (FC = 1.20 (MUT/WT)), see Figure 3.4.4.(a). It has been suggested that the acetylation 

of methionine is either to produce an acetyl group donor or for maintaining a pool of 

methionine [355]. NAM can also be sourced from protein degradation. Due to the 

uncertainty in the metabolic role of NAM in healthy brain cells it remains unclear why it is 

accumulating in mutIDH1R132H cells.  

Putrescine is derived from arginine either via agmatine or ornithine, and was appreciably 

and significantly elevated in mutIDH1R132H cells (FC = 1.45 (MUT/WT) and p-value < 0.05, 

Tukey’s test), see Figure 3.4.4.(b). Putrescine can be further metabolised to GABA, as a way 

for astrocytes to source GABA in addition to a pathway via glutamate [reviewed in 356]. 

The formation of GABA from putrescine does not require 2-OG, but further metabolization 

of GABA does. However, GABA abundance was not appreciably or significantly different 

between wtIDH1 and mutIDH1R132H LN18 cells and it remains unclear how 2-HG or 

mutIDH1R132H activity may be affecting putrescine levels.  

The metabolite 4-hydroxyproline was appreciably and significantly elevated in 

mutIDH1R132H cells (FC = 1.27 (MUT/WT) and p-value < 0.05, Tukey’s test), see Figure 

3.4.4.(b). It is not directly derived from proline, but is instead formed during post-

translational modification of proline in pre-collagen [reviewed in 357]. The modification is 

carried out by 2-OG dependent procollagen-proline dioxygenase, which can be inhibited by 

2-HG at concentrations achieved by mutIDH1R132H cells [84]. The presence of mutIDH1 and 

2-HG has been shown to impair collagen maturation [358]. Increased 4-hydroxyproline 

indicates either increased production or decreased break down of mature collagen. 
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Increased production would be counterintuitive due the inhibitory effects of 2-HG on 

collagen maturation [358]. However, the breakdown of 4-hydroxyproline requires 2-OG to 

convert L-erythro-4-hydroxyglutamic acid to (R)-4-hydroxy-2-oxoglutarate and potentially 

the increased consumption of 2-OG for 2-HG biosynthesis is limiting the breakdown of 

4-hydroxyproline. 

 

  

 

 
Figure 3.4.4. Box plots of additional amino acids and related metabolites in wtIDH1 and mutIDH1R132H 
LN18 cells.  (a) cysteine and methionine metabolism and (b) arginine and proline intermediates. The box 
plot limits are the 25th and 75th percentile, the middle line is the data median. The whiskers are the 
minimum and maximum measured values. * = p-value < 0.05 and ** = p-value < 0.01,  
*** = p-value < 0.001 and **** = p-value < 0.0001, calculated with a Tukey’s test. For N-acetylmethionine 
N = 20 for mutIDH1R132H and N = 19 for wtIDH1. For putrescine, 4-hydroxyproline, cysteine and 
methionine N = 18 for mutIDH1R132H and N = 20 for wtIDH1. N = biological replicates. 
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Lipid related metabolites increased in wtIDH1 cells  

It has been reported in the literature that mutIDH1 glioma cells, mouse models and patient-

derived samples have altered phospholipid metabolism (reviewed in [1]), potentially due 

to higher mitochondrial density to compensate for the decrease in wtIDH1 activity [230]. 

The harvest and analysis methods in this experiment were not optimised for phospholipid 

analysis and changes in phospholipid metabolism may not be fully revealed. However, two 

metabolites related to lipid metabolism were detected and both were appreciably and 

significantly more abundant in wtIDH1 than mutIDH1R132H LN18 cells: glycerate (FC = 1.28, 

p-value < 0.01) and isopentenyl pyrophosphate (IPP) (FC = 1.29, p-value < 0.01), 

FC = WT/MUT and p-values from Tukey’s test). The lipid related metabolites are 

summarised in Figure 3.4.5.  

Glycerate can be phosphorylated and enter glycolysis, or metabolised further to the 

O-phosphoserine precursor 3-phosphatehydroxypyruvate. O-phosphoserine can be 

dephosphorylated to serine, which can be further metabolised to cysteine and glutathione 

(as described above). If there is a difference in glutathione metabolism between wtIDH1 

and mutIDH1R132H cells, the effect of that may be observed as far back as glycerate and 

O-phosphoserine.  However, this would have to be confirmed with enzyme expression 

levels and potentially also 13C tracer studies using different labelled metabolites to probe 

the contribution of different pathways.  

 
Figure 3.4.5. Box plots of lipid metabolism related metabolites in wtIDH1 and mutIDH1R132H LN18 cells. 
glycerate and IPP. The box plot limits are the 25th and 75th percentile, the middle line is the data median. 
The whiskers are the minimum and maximum measured values. * = p-value < 0.05 and ** = p-value < 
0.01, *** = p-value < 0.001 and **** = p-value < 0.0001, calculated with a Tukey’s test. N = 20 for 
mutIDH1R132H and N = 19 for wtIDH1 for all metabolites shown. N = biological replicates. 
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IPP is an intermediate of the mevalonate pathway [reviewed in 359]. Previously, U87 and 

U251 glioblastoma cells expressing mutIDH1R132H were reported to have increased 

expression of de novo cholesterol synthesis enzymes and were more sensitive than their 

wtIDH1 counterparts to inhibition of HMG CoA reductase [232], the rate limiting step of 

the mevalonate pathway. The decreased level of IPP in mutIDH1R132H LN18 cells could 

indicate increased consumption for cholesterol biosynthesis; this would have to be 

confirmed with e.g., measurement of expression levels of pathway related enzymes and 

13C flux analysis.  

Other metabolites 

The metabolites NAAG and B-CG are closely related as they are biosynthesised by 

homologous enzymes [360] and catabolised by structural homologues [361-363]. NAAG is 

a neurotransmitter [364], while B-CG is found in developing brain tissue [365, 366] and 

testes [367]. Neither biosynthesis nor breakdown of either metabolites are thought to 

require 2-OG or NADPH, but glutamate is required for biosynthesis in both cases. The 

metabolite abundances were appreciably and significantly higher in wtIDH1 than 

mutIDH1R132H cells (FCNAAG = 1.92 and FCB-CG = 1.77 (WT/MUT) and p-value < 0.0001, Tukey’s 

test), see Figure 3.4.6. A final metabolite without a clear connection to either 2-OG or 

NADP+/NADPH was methylisocitrate, which was also significantly decreased in 

mutIDH1R132H LN18 cells (FC = 1.84 (WT/MUT) and p-value < 0.0001, Tukey’s test), see 

Figure 3.4.6. Methylisocitrate exists in all living species, but its role in human metabolism 

is not well understood.  
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In summary, in addition to 2-HG, a number of metabolites related to a variety of metabolic 

pathways were identified as significantly altered in abundance. Notably, nucleotides and 

related intermediates appear to generally be elevated in mutIDH1R132H rather than wtIDH1 

LN18 cells. Amino acid intermediates requiring 2-OG for direct synthesis had lower 

abundance in mutIDH1R132H LN18 cells, while other amino acids and intermediates with less 

direct link to 2-OG were increased in abundance in mutIDH1R132H LN18 cells. Two 

metabolites considered a part of lipid metabolism, glycerate and IPP, were decreased in 

mutIDH1R132H LN18 cells. Finally, NAAG, B-CG and methylisocitrate were also decreased in 

mutIDH1R132H LN18 cells, but none of the metabolites have clear links to 2-OG or 

NADP+/NADPH and the reason for their decreased abundance remains unclear.  

  

 
Figure 3.4.6. Box plots of other metabolites in wtIDH1 and mutIDH1R132H LN18 cells.  NAAG, B-CG and 
methylisocitrate. The box plot limits are the 25th and 75th percentile, the middle line is the data median. 
The whiskers are the minimum and maximum measured values. * = p-value < 0.05 and ** = p-value < 
0.01, *** = p-value < 0.001 and **** = p-value < 0.0001, calculated with a Tukey’s test. N = 19 for 
mutIDH1R132H and N = 18 for wtIDH1 for all metabolites shown. N = biological replicates.  
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3.5.  Untargeted metabolic pathway analysis reveals changes in amino acid, 

short chain fatty acid and vitamin C and B1 metabolism in mutIDH1R132H 

LN18 cells 

Individual metabolite changes associated with IDH1 mutations were reported in the 

previous section and also in the literature [reviewed in 1]. However, there has not always 

been agreement in the literature over which metabolites are significantly altered, as 

described in Chapter 1. The differences in reported metabolite abundance changes are 

likely due to a variety of factors, including sample type (patient sample, mouse model or 

cultured cells), sample preparation and suitability of the analysis methods used. A more 

functional approach to investigate altered metabolism beyond accumulation of 2-HG is to 

perform pathways analysis. The aim of UPA is to provide a biological interpretation of 

LC-MS metabolomics data. The UPA methodology highlights pathways of interest without 

relying on prior metabolite identification, as described in chapter 1.  

Data processing and analysis 

Untargeted metabolic pathway analysis using the functional analysis [313] methodology 

provided by the MetaboAnalystR [325] package was performed using the IC-MS data. The 

derivatised RPLC-MS data was not used because of the added complexity of the additional 

mass of the derivatising agent (The mass could be subtracted from each feature, but 

compounds containing more than one amine group can be derivatised more than once. 

The double derivatised compound would result in a different retention time and m/z value 

than the single derivatised version of the same compound. It is not possible to readily tell 

whether a specific LC-MS feature is from a single or double derivatised compound, or in 

fact if it has been derivatised at all. Sorting out these ambiguities was beyond the scope 

and time available for this project).  

The m/z and retention times peak-picked by Progenesis QI in the IC-MS data were used and 

the data was otherwise processed as previously described for univariate analysis (IQR 

filtration and median normalisation). The p-values and t-scores were calculated without 

MCTe. Features were ranked by p-value and the cut-off for including a feature as significant 

was set to p-value ≤ 0.05. The mummichog algorithm and the human MFN organism library 

were used [313, 318]. R code was written with the packages MetaboAnalystR [325] and 



Chapter 3. Investigation of metabolic differences between wtIDH1 and mutIDH1R132H glioma cells 

108 

 

rstatix [328] to enable efficient analysis and data output. Calculation of p-values and t-

scores was included in the code. Further detailed description of the parameters is provided 

in Section 2.8.3 in Chapter 2 and the code is provided in Appendix X.  

Results 

The analysis output provided a list of metabolic pathways, the overall significance of a 

pathway, and the number of significant empirical compound (EC) hits within that pathway. 

In the analysis, a total of 66 pathways were found, of which 10 had significant EASE score 

adjusted p-value (< 0.05). That suggested there were a number of metabolic pathways that 

were significantly altered due to the presence of mutIDH1R132H in the LN18 cells. In 

Figure 3.5.1, a plot of pathway -log(p) versus enrichment factor is shown, and the top 10 

pathways ranked by EASE score adjusted p-value are labelled. The enrichment factor 

(x-axis) is a ratio between the number of significant EC hits within a pathway to the total 

number of metabolites in the pathway. The top 10 pathways are also listed in Table 3.5.1 

and all pathways are provided in Table A.II.4.  
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Figure 3.5.1. Plot of enrichment factor versus -log(p) for pathway hits in the UPA of IC-MS data of wtIDH1 
and mutIDH1R132H LN18 cells. The UPA was carried out using the mummichog algorithm and the human 
MFN organism library.  

 
 

Table 3.5.1. Overview of metabolic pathways with significant (< 0.05) EASE score adjusted p-values 
found in the UPA of IC-MS data of wtIDH1 and mutIDH1R132H LN18 cells. The pathway name, total number 
of metabolites in the pathway, number of hits for each pathway and number of significant hits are 
included. All output provided by the UPA can be found in Table A.II.4.  

Pathway name Pathway 
total 

Hits 
total 

Hits 
significant 

EASE score 
adjusted p-value 

Amino acid related metabolism 

Valine, leucine and isoleucine degradation 25 25 12 0.0007 

Arginine and Proline Metabolism 33 33 14 0.0008 

Lysine metabolism 25 25 11 0.0030 

Aspartate and asparagine metabolism 55 55 17 0.0081 

Glutamate metabolism 22 22 9 0.0156 

Urea cycle/amino group metabolism 37 37 12 0.0239 

Fatty acid related metabolism 

Butanoate metabolism 26 26 12 0.0011 

Propanoate metabolism 25 25 9 0.0346 

Vitamin related metabolism 

Ascorbate (Vitamin C) and Aldarate Metabolism 47 47 17 0.0013 

Vitamin B1 (thiamine) metabolism 12 12 7 0.0062 
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Only ECs were listed in the pathway output, not KEGG metabolites codes. The analysis did 

provide a list of matches between ECs and KEGG metabolite codes. R code was therefore 

written to match significant ECs for a given pathway to KEGG metabolite codes, as well as 

retain the m/z values and retention times (see Appendix X for the codes). Based on the EC 

to KEGG matches, the top 10 pathways consisted mostly of putative annotations of various 

carboxylic acids, which the anion-exchange column used in the IC-MS method is capable of 

separating [148]. Certain pathways had amino acids suggested that were unlikely to be 

measured, but they did not comprise a majority of the empirical compounds in the 

pathways. However, in five pathways, ECs with the same retention time as 2-HG 

(9.901 minutes) were included, but the annotation was not 2-HG. Considering the high 

significance of 2-HG changes (p-values < 9.0E-16)), often also reflected in adducts and 

fragments, it was important to assess whether the features at 9.901 minutes were 

disproportionately favouring specific pathways. The analysis was therefore repeated after 

removing all m/z values with retention time 9.901 minutes. The same top 10 pathways as 

in Table 3.5.1 still had EASE score adjusted p-values < 0.05 and no additional significant 

pathways were found. Therefore, finding an occasional metabolite that, from experience is 

either a different metabolite or known as unsuitable for separation and/or detection by 

IC-MS, did not compromise the overall predictive capability of the UPA. That supported the 

justification of the mummichog algorithmic approach, which relies on putative 

identifications, but only reports significance at a pathways level [313].  

A drawback with UPA in its current iteration was that it did not provide the opportunity to 

include known metabolic alterations such as the IDH1 mutation. The functional analysis 

output therefore did not incorporate 2-HG as a putative identification or within the proper 

pathway and context. As demonstrated above, removing 2-HG and adducts from the 

dataset still led to the same significant pathways, yet it was not known how that may have 

changed if a pathway with the IDH1 mutation accounted for was present as well. Caution 

was therefore exercised during the interpretation of the significant pathways. In general, 

the output from functional analysis should be examined for accuracy in putative 

identifications, robustness in loss of significant features and placed within the context of 

complementary data.   
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With that in mind, the functional analysis performed here identified multiple pathways 

linked to amino acid metabolism, metabolites of which also appeared in the univariate 

analysis or have been reported in the literature. The valine, leucine and isoleucine 

degradation pathway was significant in the UPA, while isoleucine and transaminase 

product 3M2OV acid were observed in univariate analysis. The pathway lysine degradation 

was found by UPA and the degradation intermediates oxoadipate, 2-aminoadipate and 

pipecolate were observed in univariate analysis. Decreased 2-aminoadipate had also 

previously been reported in HOG cells expressing mutIDH1R132H compared to empty vector 

cells [175], but lysine degradation as a pathway has received little attention. Glutamate, 

arginine & histidine, aspartate & asparagine pathways were also significant in the pathway 

analysis and several intermediates were observed in the univariate analysis 

(4-hydroxyproline, putrescine, asparagine and 2-OG). Glutamate is an important 

anaplerotic substrate for mutIDH1R132H cells and supplies the majority of carbon for 2-HG 

biosynthesis (see section 3.6) [147, 208]. Arginine & proline metabolism had previously 

been reported as a pathway distinguishing wtIDH1 from mutIDH1 glioma based on 

abundances of identified metabolites from analysis of plasma samples [368]. The urea cycle 

pathway was significant, but the two identified intermediates, citrulline and arginine, were 

not significantly different between wtIDH1 and mutIDH1R132H LN18 cells in the univariate 

analysis (FC < 1.10 and p-value > 0.05, Tukey’s test).   

Butanoate and propanoate metabolism included several different carboxylic acids, one of 

which was also found in the univariate analysis (methylisocitrate). The pathways have not 

previously been reported in the literature, but will be discussed further in section 3.8. The 

vitamin B1 pathway did not include thiamine phosphates in the list of potential 

identifications, but instead had oxoadipate, pyruvate, malonic semialdehyde and 2-OG. The 

suggested metabolite annotations for vitamin C metabolism included intermediates shown 

in the KEGG pathway, and also included a compound observed in the univariate analysis 

(methylisocitrate). Metabolites from vitamin C metabolism have been reported as 

correlated with onset of GBM in a prospective serum study [369], but otherwise there are 

few reports on either vitamin B1 or vitamin C and mutIDH1 glioma in the literature.  

In summary, ‘functional analysis’ from the MetaboAnalystR package is a data analysis tool 

used to perform UPA. Despite the current iteration not being able to take the IDH1 mutation 
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into account, it suggested several pathways that were supported by univariate statistical 

analysis and previous reports in the literature. The features that were known as 2-HG or 

adducts and fragments were used in the UPA, yet removing them did not change which 

pathways were considered significantly altered. The output was therefore validated, both 

experimentally and by previously known metabolic differences between wtIDH1 and 

mutIDH1 glioma.  

3.6.  The major carbon source for 2-HG in both wtIDH1 and mutIDH1R132H LN18 

cells is glutamine not glucose 

In both univariate and functional analysis, metabolites and pathways closely related to 

2-OG and glutamate were altered. Previous studies have reported that glutamine, rather 

than glucose, is the major carbon source for 2-HG (a patient-derived mutIDH1R132H glioma 

cell line (TS603) [208], a GBM cell line expressing mutIDH1R132H via lentiviral vector (U251) 

[147], chondrosarcoma cell lines (JJ02 and CS1) [165] and human myeloma cell lines 

(RPMI-8226 and MM1S) [370]). In this section a 13C experiment was performed to assess 

whether that was the case in LN18 cells as well. The 13C tracer experiment used 

[1,2-13C2]-glucose and [U-13C5]-glutamine to confirm whether the current LN18 cell model 

preferentially utilised glutamine or glucose in 2-HG biosynthesis.  

Data processing and analysis 

The 13C labelling experiments are described in detail in section 2.5.3-2.5.4, and harvested 

and processed as described in sections 2.5.5 and 2.6.1. In short, the cells were incubated 

with either unlabelled glucose and glutamine, [1,2-13C2]-glucose and unlabelled glutamine, 

or unlabelled glucose and [U-13C5]-glutamine. The cells were incubated with labelled or 

fresh non-labelled media for 24 hours. The glucose and glutamine concentrations matched 

that of standard supplemented LG DMEM, i.e., 1.0 g/L glucose and 2 mM glutamine. The 

DNA concentrations used to normalise the samples prior to analysis with IC-MS are 

provided in Table A.III.6 in appendix III. The isotope distributions were measured by 

manual integration, as described in section 2.8.1.  
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Results 

The total 2-HG abundance was significantly and substantially higher in mutIDH1R132H than 

wtIDH1 LN18 cells for each comparison of cells cultured in non-labelled, [1,2-13C]-glucose 

or [U-13C]-glutamine labelled media (FC > 100 (MUT/WT) and p-value < 0.0001, one-way 

ANOVA with Šidák MCT). Thus, the labelling did not affect the difference in 2-HG levels 

between wtIDH1 and mutIDH1R132H LN18 cells. The 2-HG abundance was not significantly 

different for cells of the same mutational status grown in media with labelled or 

non-labelled glucose and glutamine (p-value > 0.05, one-way ANOVA with Šidák MCT), i.e., 

the labelling did not cause more or less biosynthesis of 2-HG. 

In the wtIDH1 and mutIDH1R132H LN18 cells cultured with non-labelled media, the isotope 

distribution of 2-HG was not significantly different between wtIDH1 and mutIDH1R132H cells 

for any of the five isotopes (p-value > 0.05, two-tailed t-test). The [M+0] isotopologue was 

94.7 ± 0.4% of the total 2-HG pool and the [M+1] isotopologue was 5.3 ± 0.4%. The other 

isotopologues  ([M+3], [M+4] and [M+5]) were not detected. The wtIDH1 and mutIDH1R132H 

LN18 cells cultured with [1,2-13C2]-glucose also did not have significantly different labelling 

of 2-HG (p-value > 0.05, two-tailed t-test). However, the [M+0] isotopologue was now only 

89 ± 2% of the total 2-HG pool, and the [M+1] and [M+2]  isotopologues were 5 ± 2% and 

5.2 ± 0.4%, respectively. The other three isotopologues were the combined 0.5% of the 

remaining 2-HG pool. In the mutIDH1R132H LN18 cells that were cultured with 

[U-13C5]-glutamine, the [M+0] and [M+5] isotopologues of 2-HG were 13.1 ± 0.2% and 72 ± 

1% of the total 2-HG pool, respectively. While in the wtIDH1 LN18 cells that were cultured 

with [U-13C5]-glutamine, the [M+0] and the [M+5]  isotopologues of 2-HG were 26 ± 2% and 

58 ± 3% of the total 2-HG pool, respectively. The [M+0] 2-HG isotopologue was a 

significantly larger part of the total 2-HG pool in the wtIDH1 LN18 cells (p-value > 0.0001, 

one-way ANOVA with Šidák MCT). Unsurprisingly, the [M+5] 2-HG isotopologue was 

significantly larger part of the total 2-HG pool in the mutIDH1R132H LN18 cells 

(p-value > 0.0001, one-way ANOVA with Šidák MCTe). The [M+1], [M+2] and [M+3] 

isotopologues were not significantly different between wtIDH1 and mutIDH1 LN18 cells 

(p-value > 0.05, one-way ANOVA with Šidák MCTe). The isotope distributions of 2-HG in the 

non-labelled, [1,2-13C2]-glucose and [U-13C5]-glutamine media are summarised in Figure 

3.6.1.  
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The data presented above confirmed that glutamine, rather than glucose, was the main 

carbon source for 2-HG in both wtIDH1 and mutIDH1R132H LN18 cells. It was somewhat 

surprising that there was a significant difference in isotope distribution for labelled 

glutamine only. If there was a difference in carbon source then glucose would be 

considered the most likely source, yet the labelling from glucose was the same. Potentially 

other carbon sources, e.g., amino acids from the FBS in the media, contributed to the pool 

of 2-OG to a greater extent in wtIDH1 than mutIDH1R132H LN18 cells. However, the pool of 

2-HG in mutIDH1R132H LN18 cells was also significantly larger than in wtIDH1 cells. Thus, if 

the amount of carbon from other amino acids was the same it would have a far smaller 

relative contribution to the total 2-HG pool in mutIDH1R132H LN18 cells.  

In summary, glutamine was the major carbon source for 2-HG in both wtIDH1 and 

mutIDH1R132H LN18 cells, in accordance with previous reports in the literature. The isotope 

distribution of 2-HG was the same for wtIDH1 and mutIDH1R132H LN18 cells cultured with 

 
Figure 3.6.1. 13C labelling of 2-HG in mutIDH1R132H and wtIDH1 LN18 cells cultured with non-labelled, 
[1,2-13C2]-glucose or [U-13C5]-glutamine media. The 2-HG pool was quantified by measuring the peak area 
of the [M-H]- EICs of the up to six 2-HG isotopes present ([M+0], [M+1], [M+2], [M+3], [M+4] and [M+5]). 
The isotope distribution of 2-HG in mutIDH1R132H LN18 cells cultured with (a) non-labelled, (b) [1,2-13C2]-
glucose and (c) [U-13C5]-glutamine media.  The isotope distribution of 2-HG in wtIDH1 LN18 cells cultured 
with (d) non-labelled, (e) [1,2-13C2]-glucose and (f) [U-13C5]-glutamine media. The number of biological 
replicates was N = 3 for cells grown in non-labelled media and N = 5 for cells grown in labelled media. 
Each bar is the percentage of the total 2-HG pool and the error bar was one standard deviation.  
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non-labelled and [1,2-13C2]-glucose. The percentage of the total 2-HG pool that was labelled 

from [U-13C5]-glutamine was significantly higher in mutIDH1R132H than wtIDH1 LN18 cells. 

That was potentially due to the contribution of non-labelled amino acids from FBS being, 

relatively speaking, smaller for 2-HG in mutIDH1R132H cells than wtIDH1 cells because the 

total 2-HG pool was significantly larger for the former.  

3.7.  Measuring redox metabolites NAD+, NADH, NADP+ and NADPH with HILIC-

MS 

The main focus thus far has been on the 2-OG to 2-HG axis of mutIDH1R132H, but upon 

mutation, IDH1 changes from predominantly producing NADPH by oxidative 

decarboxylation of isocitrate, to consuming NAPDH for the reduction of 2-OG to 2-HG. This 

has potentially profound effects on cellular redox homeostasis as it presumably places a 

greater demand on other NADPH-producing pathways. Changes in redox homeostasis have 

been reported for glioma and other cell lines expressing mutIDH1R132H via lentiviral vectors 

[220-222]. Therefore, it was of interest to measure NADP+ and NADPH concentrations in 

cellular samples. The redox metabolites NAD+, NADH, NADP+ and NADPH can be measured 

with NMR [371], colorimetric assays [372, 373], genetically encoded fluorescent probes 

[374-377], or LC-MS methods such as ion-paired RPLC-MS or HILIC-MS [310, 322, 378]. 

HILIC-MS was chosen as the preferred approach in this project and an LC-MS method was 

developed and optimised for this. This is described below, followed by the measurement 

of cellular levels of the redox metabolites.  

Prior to measurement of the redox metabolites, they had to be extracted from the cell 

samples. The four redox metabolites (NAD+, NADH, NADP+ and NADPH) are all sensitive to 

degradation and interconversion [322, reviewed in 379, 380] so sample preparation and 

storage were important factors to consider. The sample preparation was done following 

the recommendations by Lu et al. [322]. They developed a protocol to quench metabolic 

activity and decrease interconversion between the reduced and oxidised forms of the 

metabolites. The recommended method was an extraction solution of 40:40:20 

acetonitrile:methanol:water with 0.1M formic acid. After cell scraping and transfer to a 

sample tube, 15% (w/v) ammonium bicarbonate in water was added to neutralise the 

sample (8.7 µL neutralising solvent per 100 µL extraction solvent). Samples were stored at 
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-80 °C, but due to column and instrument issues, the samples were stored for several 

months prior to analysis.  

3.7.1. HILIC-MS method development 

Three different stationary phase column chemistries were evaluated during method 

development: amide (BEH Amide, 21. × 100 mm, 1.7 µm particle size), ZIC with 

phosphorylcholine (SeQuant® cHILIC, 2.1 × 150 mm, 3 µm particle size) and ZIC with 

sulfobetaine (BEH Z-HILIC, 2.1 × 100 mm, 1.7 µm particle size). The former two were tested 

based on previous publications [310, 322], while the lattermost was chosen based on 

recommendation from the manufacturer (Waters Ltd.). Columns were assessed with 

standards of NAD+, NADH, NADP+ and NADPH (3.0 µM) dissolved in the extraction and 

neutralising solutions described for redox harvest of cells, see section 2.3.4 for preparation 

details.  

The amide column was tested under the chromatographic conditions and MS parameters 

described by Lu et al. [322], which is detailed in section 2.7.4. In brief, the two mobile 

phases were 95:5 water:acetonitrile with 20 mM ammonium acetate and  20 mM 

ammonium hydroxide (pH 9.5) (mobile phase A) and pure acetonitrile (mobile phase B). 

The total chromatographic method length was 20 minutes, with an 11.5-minute gradient 

starting at 90% and ending at 0% mobile phase B, with flow rate of 0.200 mL/min. The most 

abundant adduct for all four redox metabolites was [M-H]-. Only NAD+ and NADH achieved 

acceptable peak shape (base peak width < 1 min). NADP+ and NADPH had broad peaks 

(base peak width > 5 min) and poor sensitivity. EICs for all four metabolites are shown in 

Figure 3.7.1.(a). Peak shape was not improved with changing flow rate or gradient length.  

The ZIC phosphorylcholine column was used with a method adapted from Smith et al. [310], 

which is detailed in section 2.7.4. Mobile phase A was 20 mM ammonium acetate (pH 6) 

and mobile phase B was pure acetonitrile. Total method length was 19 minutes, with a 

14-minute gradient starting at 70% and ending at 40% mobile phase B, with a flow rate of 

0.300 mL/min. Similar to the amide column, NAD+ and NADH had acceptable sensitivity and 

peak shape (base peak width < 0.5 min). NADP+ had a broad peak and a tenth of the peak 

hight achieved by NAD+ and NADH. NADPH had even poorer sensitivity. The EICs are 

summarised in Figure 3.7.1.(b). Efforts to improve sensitivity by adjusting MS parameters 
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and increasing the pH of mobile phase A to pH 9 were not successful. Furthermore, the 

column had issues with high back pressure after less than 100 sample injections. The same 

back pressure issues occurred again with a new column and it was decided to no longer 

pursue this specific column for the measurement of redox metabolites. 

The final column tested, a ZIC column 

with sulfobetaine stationary phase, was 

more robust than the previous ZIC 

column with regards to stable back 

pressure during use. It was first tested 

with the Vion MS system and 

accompanying Acquity pump. Mobile 

phase A was 20 mM ammonium acetate 

(pH 6) and mobile phase B was 

acetonitrile. The initial gradient was 

based on Smith  et al. [310]. Flow rate 

was 0.400 mL/min and column 

temperature were 40 °C. Similar to the 

two previous columns, NAD+ and NADH 

had acceptable peak shape and ten-fold 

higher peak height relative to NADP+ 

and NADPH, as shown in Figure 

3.7.2.(a).  

A number of parameters were adjusted 

to improve peak shape of NADP+ and 

NADPH, including increasing the pH of 

mobile phase A from 6 to 9, increasing column temperature (from 40 °C to 50 °C), 

increasing flow rate (from 0.400 mL/min to 0.500 mL/min) and increasing or decreasing the 

length and steepness of the gradient. Major challenges remained with the sensitivity of 

measuring NADP+ and NADPH, which were found to be due to issues with the detector in 

the MS, rather than chromatographic settings. Cleaning instrument components (cone, ion 

step wave) and adjusting parameters such as cone voltage and temperature did not help. 

 
Figure 3.7.1. Extracted ion chromatograms of NAD+, 
NADH, NADP+ and NADPH from analysis with (a) the 
HILIC amide column and (b) the ZIC 
phosphorylcholine column. The mobile phases for the 
amide column was acetonitrile and 95:5 
water:acetonitrile with 20 mM ammonium acetate 
plus 20 mM ammonium hydroxide (pH 9). Mobile 
phases for the ZIC phosphoryl column were 
acetonitrile and 20 mM ammonium acetate (pH 6). 
Both columns were tested on the Ultimate-3000 
pump plus Exploris 240™ MS.  EICs are from a single 
injection of a mixed standard (3 µM) of NAD+, NADH, 
NADP+ and NADPH, all EICs are of the [M-H]- adduct. 
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However, based on NAD+ and NADH, the chromatographic method was at least optimised 

to start at a higher amount of acetonitrile as this increased retention time of NAD+ and 

NADH (from 2 to 6 minutes). Higher column temperature (50 °C) improved back pressure, 

without having much of an effect on peak shape. Higher flow rate did not improve peak 

shape. EICs of NAD+, NADH, NADP+ and NADPH from the final chromatographic method are 

shown in Figure 3.7.2.(b). The final chromatographic method had the following gradient, 

where mobile phase A was 20 mM ammonium acetate (pH 9) and mobile phase B was 

acetonitrile: 0.0 min, 95% B; 1.0 min 95% B; 9.0 min, 50% B; 13.0 min, 50% B; 13.5 min, 95% 

B; 18.0 min, 95% B.  

The ZIC sulfobetaine column 

was then tested on the 

Ultimate-3000 pump and 

Exploris 240™ MS system, 

with improved sensitivity of 

NADP+ and NADPH. A variety 

of buffers were tested to 

assess their effect on the 

peak shape of NADP+ and 

NADPH: 5 mM ammonium 

formate (pH 6), 20 mM 

ammonium formate (pH 3, 6 

and pH 9), and 20 mM 

ammonium acetate (pH 9). 

When the 20 mM 

ammonium acetate (pH 3) 

was used, the MS was 

operated in positive mode 

due protonated species 

being more likely than de-protonated species when the mobile phase was acidic. Only 

NADH was detected in positive mode and the EIC is not shown.  

 
Figure 3.7.2. Extracted ion chromatograms of NAD+, NADH, NADP+ 
and NADPH from analysis with the ZIC sulfobetaine column. (a) 
First chromatographic method with 20 mM ammonium acetate 
(pH 6). (b) Final chromatographic method with 20 mM ammonium 
acetate (pH 9) and highest percent starting acetonitrile (95%). EICs 
are from a single injection of a mixed standard (3 µM) of NAD+, 
NADH, NADP+ and NADPH, all EICs are of the [M-H]- adduct. 
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The main effect the different buffers had was on retention time and not peak shape, 

although 20 mM ammonium formate (pH 9) led to somewhat narrower peaks and was 

therefore chosen for analysis of cellular samples. Extracted ion chromatograms of NAD+, 

NADH, NADP+ and NADPH analysed with 20 mM ammonium acetate at pH 6 or 9, 5 mM 

ammonium formate at pH 6, and ammonium formate at pH 6 and 9 are provided in Figure 

3.7.3.(a)-(e). 

Finally, the ion transfer tube and vaporiser temperature were assessed to find the settings 

that provided the highest sensitivity (largest EIC peak area). Per recommendations from 

the manufacturer (Thermo Fisher), temperatures in the range of 200-300 °C were tested. 

A low, medium and high temperature were chosen: 200 °C, 250 °C and 300 °C. Nine 

different combinations of the three different temperatures for the ion transfer tube and 

vaporiser were carried out. Higher peak area of NADP+ and NADPH was prioritised over 

NAD+ and NADH.  Medium (250 °C) ion transfer tube and high (300 °C) vaporiser 

temperature led to the highest peak area for NAD+, NADP+, NADPH and second-highest for 

NADH and was therefore used for future analyses. The peak areas of the EICs of each redox 

metabolite at each temperature combination is provided in Figure 3.7.4.   
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Figure 3.7.3.  Extracted ion chromatograms of NAD+, NADH, NADP+ and NADPH from analysis with the ZIC sulfobetaine column with the ULTIMATE-3000 pump and 
Exploris 240™ MS. (a) Mobile phase A = 20 mM ammonium acetate (pH 6). (b) Mobile phase A = 20 mM ammonium acetate (pH 9). (c) Mobile phase A = 5 mM ammonium 
formate (pH 6). (d) 20 mM ammonium formate (pH 6). (e) Mobile phase A = 20 mM ammonium formate (pH 9). Mobile phase B = acetonitrile. The same chromatographic 
and MS parameters were used for all analyses. EICs are from a single injection of a mixed standard (3 µM) of NAD+, NADH, NADP+ and NADPH,  all EICs are of the [M-
H]- adduct.  
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3.7.2. NADPH/NADP+ ratio not significantly altered between wtIDH1 and mutIDH1R132H 

LN18 cells 

LN18 wtIDH1 and mutIDH1R132H cells were grown as described previously in Section 2.5.3, 

but harvested with the method from Lu et al. optimised for decreasing the interconversion 

between the reduced and oxidised form of the redox metabolites [322], see Section 2.5.6. 

See Table A.III.2 for DNA measurements used for normalisation of the samples. The 

samples were analysed using the Z-HILIC LC-MS method as described in Section 2.7.4, with 

20 mM ammonium formate (pH 9) as mobile phase A and pure acetonitrile as mobile phase 

B. The vaporiser and ion transfer tube temperature set to 250 °C and 300 °C, respectively. 

NADP+ and NADPH were quantified using an external calibration curve. The calibration 

standard solutions were made as described in section 2.3.4 with the extraction and 

neutralising solutions used for redox harvest. The most abundant adduct for NADP+ and 

NADPH was [M-H]- for both standards and cell samples. Extracted ion chromatograms of 

NADP+ and NADPH in cell samples are provided in Figure 3.7.5.  

 

 
 

Figure 3.7.4. Peak area of extracted ion chromatograms NAD+, NADH, NADP+ and NADPH from analysis 
with the ZIC sulfobetaine column under different ion transfer tube and vaporiser temperatures. Low = 
200 °C, medium = 250 °C and high = 300 °C. The first temperature is for the ion transfer tube and the 
second temperature is for vaporisation. N = 4, which was repeat injections of the same standard. The 
standard was made as one large solution, split into 9 vials. All EIC are of the [M-H]- adduct.  
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There was no significant difference in NADPH concentration between wtIDH1 (0.13 ± 0.04 

µM) and mutIDH1R132H (0.13 ± 0.04 µM) LN18 cells (p-value > 0.9999, unpaired two-sided 

t-test). NADP+ trended toward significantly different between wtIDH1 (1.1 ± 0.2 µM) and 

mutIDH1R132H (0.8 ± 0.3 µM) LN18 cells (p-value = 0.0731, unpaired two-sided t-test). A ratio 

of NADPH/NADP+ was calculated for each sample (N = 10 biological replicates per 

experimental group) and the ratios were averaged. The ratio of NADPH/NADP+ was not 

significantly different between wtIDH1 (0.17 ± 0.06) and mutIDH1R132H (0.2 ± 0.1) LN18 cells 

either (p-value = 0.1155, unpaired two-sided t-test). Box plots of ratios and individual 

measurements are provided in Figure 3.7.6, as well as the calibration curves.  

NAD+ and NADH were also measured. There was no significant difference between wtIDH1 

and mutIDH1R132H LN18 cells for the peak areas of the extracted ion chromatograms of 

NAD+, using the [M-H]- adduct (p-value = 0.5657). The peak area of the extracted ion 

chromatograms of NADH ([M-H]-) in the cell samples were too variable to perform 

meaningful statistical tests (up to 98.8% CV). The large degree of variability was seen in 

biological samples only, not standards. All four redox metabolites had variable peak areas 

in the biological samples: 9-15% CV for NAD+, 19-40% CV for NADP+ and 40% CV for NADPH. 

The harvesting method and storage time (at -80 °C) will need to be assessed further to 

determine whether the variability is due to experimental or biological variation. The 

variability is likely not just analytical, as the standards generally had a CV of 2.1-14.7% 

(analytical N = 3-5). 

 
 

Figure 3.7.5. Extracted ion chromatograms of NADP+ and NADPH in LN18 cell samples. All EIC are of the 
[M-H]- adduct for NADP+ and NADPH. (a) EIC of NADP+ in wtIDH1 (blue) and mutIDH1R132H (red) LN18 
cells. (b) EIC of NADPH in wtIDH1 (blue) and mutIDH1R132H (red) LN18 cells. All chromatograms are of a 
single injection.  
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In summary, a HILIC-MS method for measuring and quantifying the four redox metabolites 

NAD+, NADH, NADP+ and NADPH was developed. The method had issues with peak shape 

of NADP+ and NADPH and efforts to improve the peak shape had marginal impact. Sample 

stability was poor for all metabolites, but total cellular NAD+, NADP+ and NADPH could be 

measured. There was no significant difference in NAD+ levels, NADP+ or NADPH 

concentrations, nor in the ratio of NADPH/NADP+, between wtIDH1 and mutIDH1R132H LN18 

cells. Cellular NADH levels were too variable to perform statistical tests upon. Sample 

collection, preparation and analysis requires further consideration to obtain a workable 

quantitative method. 

  

 

Figure 3.7.6. Measurement of NADP+ and NADPH in wtIDH1 and mutIDH1R132H LN18 cells. (a) Total 
cellular concentration (µM) of NADP+ (b) Total cellular concentration (µM) of NADPH. (c) Ratio of 
NADPH/NADH. The number of biological replicates (N) was 10 for wtIDH1 and mutIDH1R132 LN18 cell 
samples. The box plot limits are the 25th and 75th percentile, the middle line is the data median. The 
whiskers are the minimum and maximum measured values. (d) Calibration curve of NADP+ and NADPH. 
Simple linear regression, slopes were significantly non-zero (p-value < 0.0001). R2 for the NADP+ = 0.978; 
R2 for the NADPH = 0.984. N = 4 (analytical replicate, i.e., repeat injection of standards: 0.05, 0.10, 0.25, 
0.50, 0.75 and 1.00 µM). Each data point is the mean and the error bars are one standard deviation.  
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3.8.  Discussion 

3.8.1. 2-HG is substantially increased in mutIDH1 cells while 2-OG is decreased to a lesser 

extent 

In studies of mutIDH1 glioma cell lines, mouse models and patient tissue biopsies, 2-HG 

was significantly increased in the mutIDH1 samples compared to the wtIDH1 samples [76, 

143, 144, 147, 148, 157, 158, 173-175]. There are few reports in the literature of FC values 

of 2-HG in mutIDH1 versus wtIDH1 gliomas patient samples (reviewed in [1]), but one 

publication notes that mutIDH1R132H patient samples had a 100-fold higher 2-HG levels than 

wtIDH1 samples [76]. The LN18 mutIDH1R132H cells used here had significantly and 

substantially higher 2-HG levels than the wtIDH1 LN18 cells (FC = 52.9 (MUT/WT), Tukey’s 

test p-value < 0.0001).  The FC was lower than what was found in a first generation LN18 

with mutIDH1R132H expressed via lentiviral vector, which was over 100-fold higher than 

wtIDH1 LN18 cells [148]. The two generations of LN18 were prepared separately and with 

different lentiviral vectors (first generation: pCC.sin.36.MCS.PPTWpre.CMV.tTA-S2tet [148, 

320] and second generation: pUltra-Chilli [312]). The difference in FC of 2-HG was therefore 

likely due to different expression levels of the mutIDH1R132H enzymes in the two cell lines. 

However, since both generations of mutIDH1R132H LN18 cell lines led to high levels of 2-HG 

a difference in FC was acceptable because the cell lines did not need to match in expression 

levels to each provide a useful model for the research questions outlined previously. All 

later direct comparisons of experiments, e.g., where mutIDH1 inhibitors were compared, 

were carried out with the second-generation cell line to ensure different enzyme 

expression levels would not bias the analysis.    

The level of 2-OG in mutIDH1R132H glioma cells is slightly lower than in wtIDH1 glioma cells 

(FC = 1.30 (WT/MUT), Tukey’s test p-value < 0.01), but nowhere near the change in 2-HG 

levels (FC = 52.9 (MUT/WT)). Published papers using glioma cell lines expressing 

mutIDH1R132H via lentiviral vector report either a significant decrease in 2-OG in 

mutIDH1R132H relative to wtIDH1 glioma cells [148, 175] or find no significant difference 

[174, 221]. As discussed in the introduction, reported metabolite levels vary between 

different research papers. 2-OG is a central metabolite [reviewed in 349] and it is 

unsurprising that it is not equally lowered in mutIDH1R132H cells as 2-HG is elevated. There 
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are multiple enzymes that produce 2-OG [reviewed in 349], and its utilisation by 

mutIDH1R132H is likely compensated for by these enzymes, at least when the cells are not 

placed under further metabolic duress.  

3.8.2. Altered amino acid metabolism is indicated by changes in amino acid abundance and 

UPA in mutIDH1R132H LN18 cells 

Amino acid metabolism in cancer cells facilitates continued cell proliferation, even under 

limited nutrient availability [reviewed in 381, 382, 383]. In mutIDH1 glioma, the focus has 

up-to-date been on the key role of glutamate mutIDH1 glioma in e.g., TCA cycle anaplerosis 

and the decreased expression levels and activity of BCAT1. All 20 proteogenic amino acids 

and several related intermediates of amino acid metabolism have been measured in 

wtIDH1 and mutIDH1 glioma cell lines [reviewed in 1]. However, there was little consensus 

in reported amino acid abundance differences between wtIDH1 and mutIDH1 glioma cell 

lines and additional insights into amino acid metabolism remains limited [reviewed in 1].   

Glutamate and 2-OG are closely linked in amino acid metabolism. The first step of 

catabolising most other amino acids is to transfer an amine group to 2-OG and form 

glutamate. Glutamate can also be oxidised ‘back’ to 2-OG by GLUD [reviewed in 384]. GLUD 

is expressed at significantly higher levels in mutIDH1R132H than wtIDH1 glioma [183, 192, 

193, 201, 202]. The increased expression indicates increased breakdown of glutamate to 

2-OG in mutIDH1R132H compared to wtIDH1 glioma cells. The increased utilisation of 

glutamate to form 2-OG, which can then be reduced to 2-HG, is supported by the dual 

tracer experiments with 13C labelled glucose and glutamine shown in section 3.6. 

Glutamine carbon atoms were incorporated into 2-HG to a much greater extent than 

glucose carbon atoms, which has also been reported in the literature previously [165, 208, 

370]. Despite its central role in 2-HG production, glutamate was not significantly decreased 

in mutIDH1R132H compared to wtIDH1 LN18 cells. In the literature, glutamate was reported 

as significantly lower in mutIDH1 than wtIDH1 glioma cell lines, PDX mouse models and 

PTBs [142, 144, 158, 174, 175, 181, 183, 184]. However, the pool of available glutamate is 

relatively large for the LN18 cells, as the media was supplemented with 2 mM GM™ which 

meant the cells were not restricted in glutamine supply. Thus, despite not having the 

expected decrease in cellular glutamate levels, the mutIDH1R132H LN18 cell line 
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biosynthesised 2-HG with the expected carbon source (glutamate via glutamine) and 

behaved similarly to other glioma models in this regard.  

Glutamate is linked to the metabolic pathways of amino acids such as arginine, proline and 

aspartate. From the UPA, arginine & proline and aspartate & asparagine metabolism, as 

well as the urea cycle, were predicted to be significantly different between wtIDH1 and 

mutIDH1R132H
 LN18 cells. The pathways and their interconnectivity are illustrated in Figure 

3.8.1. The only significantly and substantially altered identified metabolites from those 

pathways were putrescine, 4-hydroxyproline and asparagine denoted with * in Figure 

3.8.1. All three had higher abundance in mutIDH1R132H than wtIDH1 LN18 cells. Putrescine 

can be further metabolised to either GABA or to spermine, neither of which can be used to 

replenish glutamate levels, see area II in Figure 3.8.1. The increase in putrescine over other 

intermediates in arginine metabolism may indicate that arginine is not a source for 

glutamate replenishment. Arginine metabolism and how it may be affected by IDH1 

mutations in glioma or other cancers has not been explored to a great extent in the 

literature.  

Proline can be metabolised to glutamate, but not via 4-hydroxyproline, as shown in area I 

in Figure 3.8.1. Instead, 4-hydroxyproline is produced during post-translational 

modification of proline in pre-collagen [reviewed in 357]. As noted in the results section, 

increased production of 4-hydroxyproline would be counterintuitive due the inhibitory 

effects of 2-HG on collagen maturation [358]. However, the breakdown of 4-hydroxyproline 

does require 2-OG and it is more likely that catabolism is limited by either limited 2-OG or 

inhibition by 2-HG (indicated by a red 4-pointed star in Figure 8.3.1). The exact metabolic 

fate of 4-hydroxyproline has not been studied in detail in the context of mutIDH1 glioma. 

Yet it originates from matured collagen and collagen maturation is likely affected by high 

2-HG levels, indicating that the LN18 model is potentially capturing that effect to some 

extent.  
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BCAAs (valine, leucine and isoleucine) and their catabolism has been discussed in the 

literature previously in relation to metabolic effects in mutIDH1 cells. It has been shown by 

others that expression of BCAT1, which catalyses the first step of BCAA catabolism 

(transamination), was significantly lower in mutIDH1R132H glioma PTB and PDX, compared 

to wtIDH1 glioma samples [183, 192, 204]. It has been found that 2-HG is able to directly 

inhibit BCAT1 at millimolar concentrations [173], although there are contradicting reports 

[204]. BCAA transamination would be counterproductive to replenishing 2-OG via 

glutamate. Thus, the accumulation of isoleucine in mutIDH1R132H LN18 cells and decrease 

in the resulting ketoacid, 3M2OV, is sensible and in agreement with previous reports in the 

literature.  

Three metabolites in the lysine degradation pathway were significantly depleted in 

abundance in mutIDH1R132H cells: 2-aminoadipate, oxoadipate and pipecolate. The lysine 

degradation pathway was significantly different between wild type and mutant cells in the 

 
 

Figure 3.8.1. Metabolic pathways of aspartate, asparagine, arginine, proline and glutamate and the urea 
cycle in H. sapiens. Adapted from KEGG [385]. The amino acids are in orange filled boxes. Colour coding: 
orange = amino acid metabolism, red = TCA cycle and green = urea cycle. Grey regions I and II were 
placed to highlight that 4-hdyroxyproline and putrescine are not metabolic intermediates to glutamate 
from proline and arginine, respectively. The * denoted metabolites that were significantly and 
appreciable different between wtIDH1 and mutIDH1R132H LN18 cells (p-value < 0.05, Tukey’s test and 
FC > 1.20).  Reactions with a red 4-pointed star denoted reactions speculated to be inhibited by 2-HG or 
affected by decreased 2-OG abundance. Abbreviations: 2-HG = 2-hydroxyglutarate, 
2-OG = 2-oxoglutarate; GABA = γ-aminobutyric acid; sig. diff = significant difference. 
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UPA. The degradation pathway for lysine relies on 2-OG for the first step of transamination 

of lysine to saccharopine and for a second transamination of 2-aminoadipate to 

oxoadipate. The pathway is summarised in Figure 3.8.2, with 2-OG included where the 

reactions require it as a substrate. There have been few reports on lysine degradation in 

the literature, but 2-aminoadipate was also found as significantly depleted in mutIDH1R132H 

expressing HOG cells compared to HOG cells with empty vector [175].  

Potentially, the lower levels of 2-aminoadipate and oxoadipate are due to lower levels of 

2-OG, or because 2-HG is inhibiting the enzymes reliant on 2-OG. Other 2-OG dependent 

enzymes can be inhibited by 2-HG when present at high enough concentrations (mM), 

which can be achieved in mutIDH1 expressing cells [84, 386]. The relevant reactions where 

this was speculated to take place are denoted with a 4-pointed red star in Figure 3.8.2. The 

decrease in pipecolate abundance is more unclear. The loss of the α-amine in lysine is via 

oxidation rather than transamination, thus formation of pipecolate is not dependent on 

2-OG. Further experiments examining the expression levels of the enzymes or the 

biochemical properties of the enzymes is warranted. Specifically, which branch of the lysine 

degradation is most active in the LN18 cells and are the activities of any of the enzymes 

affected by 2-HG?  

 
Figure 3.8.2. Lysine degradation pathway in H. sapiens. Adapted from KEGG [385]. Amino acids and 
related metabolites are shown in orange. Black denoted butanoate metabolism, which is how glutaryl-
CoA is further metabolised to acetyl-CoA before entering the TCA cycle (blue).  The * denoted 
metabolites that were significantly and appreciable different between wtIDH1 and mutIDH1R132H LN18 
cells (p-value < 0.05, Tukey’s test and FC > 1.20).  Reactions with a red 4-pointed star were speculated to 
be inhibited by 2-HG or affected by decreased 2-OG abundance. Abbreviations: 2-HG = 
2-hydroxyglutarate, 2-OG = 2-oxoglutarate; sig. diff = significant difference. 
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Methionine and NAM were slightly, but significantly, elevated in mutIDH1R132H cells, but 

the cysteine and methionine pathways did not quite reach significant in the UPA (EASE 

score adjusted p-value = 0.0929). The relevant portion of the pathway is illustrated in Figure 

3.8.3. Methionine was reported as unchanged in PTBs [142], significantly increased in 

mutIDH1R132H HOG cells, while NAM was reported as depleted in the same HOG cell line 

[175]. A connection between NAM and mutIDH1 glioma has not been reported on in the 

literature. However, methionine is needed for the biosynthesis of L-homocysteine, which 

combines with serine to form cystathionine. Serine was also significantly, but only slightly, 

elevated in mutIDH1R132H LN18 cells (FC = 1.17, p-value < 0.05, Tukey’s test). Cysteine is 

used for glutathione synthesis and can be sourced from cystathionine, shown in Figure 

3.8.3. MutIDH1 astrocytoma cells show critical reliance on the CSE enzyme [141].  

The accumulation of methionine and serine could be indicative of decreased cystathionine 

synthesis, but that would not explain the concomitant accumulation of cysteine. 

Additionally, U251 glioma cells expressing mutIDH1R132H were shown to increase the 

expression of glutathione synthesis related enzymes [225]. Thus, it would be expected that 

cysteine levels would decrease in mutIDH1 cells relative to wtIDH1 cells, as the cysteine 

would be used for increased glutathione biosynthesis. Glutathione was not significantly 

different between wtIDH1 and mutIDH1R132H LN18 cells. However, reduced and oxidised 

glutathione cannot be confidently measured with the current sample preparation, as it is 

not optimised towards maintaining the two pools of metabolites. The LN18 cell line may be 

an appropriate model to study this section of amino acid and glutathione metabolism, as 

clearly several different components are significantly altered in the pathway compared to 

wtIDH1 cells. Further work must be done to ensure more confident measurement of 

oxidised/reduced glutathione levels and therefore be able to more thoroughly understand 

the processes occurring in the cells. Measurement of expression levels of relevant enzymes 

could indicate whether the pathway was significantly upregulated upon introduction of 

mutIDH1R132H into the cells.  

An additional metabolite related to this area of cellular metabolism is O-phosphoserine. It 

was significantly depleted in mutIDH1R132H compared to wtIDH1 LN18 cells (FC = 2.45, 

p-value < 0.0001, Tukey’s test). It can be produced by the reversible transamination of 

3PHP using glutamate, see Figure 3.8.3. If the transamination of O-phosphoserine to 3PHP 
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was decreased due to either decreased availability of 2-OG or direct inhibition from 

elevated 2-HG, the expectation would have been an accumulation of O-phosphoserine in 

mutIDH1R132H LN18 cells. However, since O-phosphoserine decreased in mutant cells it was 

more likely that either the dephosphorylation to serine was increased or that 

transamination of 3HPH was decreased. 3PHP can be biosynthesised from 

3-phospho-D-glycerate, which is a glycolysis intermediate. WtIDH1 glioma is considered 

more glycolytic than mutIDH1 glioma [reviewed in 1]. It may simply be that there was less 

of the glycolysis intermediate available to utilise for O-phosphoserine biosynthesis and that 

is why the differences were observed. Furthermore, 3-phospho-D-glycerate can also be 

produced via phosphorylation of glycerate followed by isomerisation. Glycerate abundance 

was significantly higher in wtIDH1 cells (FC = 1.28 (WT/MUT) and p-value < 0.01, Tukey’s 

test). Potentially mutIDH1R132H cells were utilising glycerate to a greater extent than wtIDH1 

cells for biosynthesis of serine via O-phosphoserine. Thus, whether the decrease of 

O-phosphoserine abundance in mutIDH1R132H LN18 cells was due to direct inhibition by 

2-HG or indirect consequences due to other metabolic differences between wtIDH1 and 

mutIDH1R132H LN18 cells remains unclear.  
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3.8.3. Significantly altered nucleotide abundances indicated by univariate and multivariate 

statistical analysis 

Nucleotides dADP and UMP, as well as DR5P and pyrimidine related metabolites 

N-carbamoyl-aspartate and B-alanine, were significantly increased in mutIDH1R132H 

compared wtIDH1 LN18 cells.  Other purines and pyrimidines were measured by the IC-MS 

method, but were not significantly different between mutIDH1R132H and wtIDH1 LN18 cells. 

Nucleotide metabolism has been an area of interest in both mutIDH1 glioma and wtIDH1 

glioblastoma studies. Glioma cell lines expressing mutIDH1 endogenously have been shown 

to use both de novo and salvage pathways for nucleotides, while wtIDH1 glioma cell lines 

have been shown to rely on de novo synthesis to a greater extent [137]. However, a 

different study, that also used a glioma cell with endogenous mutIDH1R132H expression, 

 
Figure 3.8.3. Interconnectivity of serine, cysteine and methionine metabolism. Adapted from KEGG 
[385]. The reactions show here are not exhaustive lists of the reactions the metabolites can partake in. 
Star denotes a transaminase reaction using 2-OG/glutamate.  Amino acids and related metabolites are 
shown in orange. Black denoted glycolysis/gluconeogenesis.  The * denoted metabolites that were 
significantly and appreciable different between wtIDH1 and mutIDH1R132H LN18 cells (p-value < 0.05, 
Tukey’s test and FC > 1.20). Reactions with a red 4-pointed star were speculated to be inhibited by 2-HG 
or affected by decreased 2-OG abundance. Abbreviations: 2-HG = 2-hydroxyglutarate, 2-OG = 
2-oxoglutarate; sig. diff = significant difference. 
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reported that the cells predominantly relied on de novo synthesis of pyrimidines and 

salvage pathways for purines [387]. Furthermore, both patient-derived mutIDH1 glioma 

cell lines and genetically engineered mutIDH1 glioma mouse models were more sensitive 

to pyrimidine synthesis inhibition than wtIDH1 glioma [387].  

The work in this thesis was limited in scope with regards to a detailed analysis of the 

implications of increased purine and pyrimidine metabolites in mutIDH1R132H LN18 cells 

based on the small number of metabolites identified as significantly altered. In addition, 

isogenic cell lines respond differently to e.g. radiation-induced DNA damage than when 

patient-derived endogenous mutIDH1 glioma cell lines are compared to wtIDH1 glioma cell 

lines, indicating a model-dependent response [137]. However, the presence of DR5P and 

the fact that the enzyme DERA is activated by polycarboxylic acids such as citric acid and 

2-OG, merits further study.  

3.8.4. Changes in lipid metabolism related to isoprenoid precursors synthesis and amino 

acid degradation 

Lipid metabolism involves both the biosynthesis and catabolism of fatty acids, as well as 

biosynthesising plasma membrane components such as phospholipids, triglycerides, and 

cholesterol and its derivatives [388]. The LN18 model was not analysed with methods 

developed for lipid metabolite measurements. It is not possible to comment on how well 

it recapitulates e.g., changes in phospholipid profiles or detailed analysis of cholesterol 

metabolism, which have received the most attention to date in mutIDH1 glioma lipid 

metabolism [reviewed in 1]. However, two metabolites related to lipid metabolism were 

observed in the univariate analysis, glycerate and IPP. The most likely role glycerate plays 

is in relation to O-phosphoserine metabolism. The isoprenoid precursor IPP is likely related 

to cholesterol metabolism, as noted in the section 3.4. Expression of de novo cholesterol 

metabolism enzymes has been reported as increased in mutIDH1R132H expressing GBM cell 

lines (U87 and U251). However, as noted, the analysis here is limited due to lack of 

measurement of other intermediates and cholesterol itself. The LN18 cell lines may be an 

appropriate model to study the impact of mutIDH1 on lipid metabolism in glioma, but it 

would require other analytical methods more suited for lipid analysis to determine that 

suitability.  
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In addition to the metabolites described above, the butanoate and propanoate pathways 

involved in the metabolism of short chain fatty acids (SCFAs) acetate, propionate and 

butyrate were found in the functional analysis. In the human body, SCFAs are usually 

supplied by the gut microbiome via fermentation of dietary fibres [389]. Glioblastoma 

patients and mouse models showed changes in the caecal and faecal metabolome, 

indicating potential effects on the gut-brain axis due to the cancer [390, 391]. The cells used 

in this experiment were not co-cultured with bacteria, therefore changes in butanoate and 

propanoate metabolism can only be considered within the context of mutIDH1R132H 

expression and increased 2-HG levels.  The specific metabolites proposed by the untargeted 

analysis for the two pathways are summarised in Figure 3.8.4. Most of the proposed 

metabolite identities from the two pathways overlap, therefore the pathways are reported 

together.  

Several of the metabolites in the two pathways arise from BCAA and lysine catabolism: 

propionyl-CoA, crotonoyl-CoA, (S)-3-hydroxy-methylglutaryl-CoA, methyl malonate and 

(S)-3-hydroxy-isobutyric acid. The lysine and BCAA degradation pathways were also found 

to be significantly altered in the UPA, and individual metabolites in the pathways were 

significantly decreased in mutIDH1R132H LN18 cells. Additionally, the GABA shunt is 

considered a part of butanoate metabolism in the KEGG pathway, which has previously 

been reported as upregulated in mutIDH1R132H glioma tissue [183]. Thus, the appearance 

of the butanoate and propanoate pathways in the UPA could be due to the inclusion of 

‘end stage’ metabolites emerging from the amino acid degradation pathways. The final 

steps of the catabolism of these metabolites coincide with what is considered the 

butanoate and propanoate pathways in human metabolism.  
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3.8.5. Vitamin B1 and Vitamin C metabolism  

Vitamin B1 is not an endogenous metabolite, but the cells were supplemented with 

0.012 mM thiamine hydrochloride in the media. Thiamine pyrophosphate, the active form 

of vitamin B1, is a co-factor for a number of enzymes including pyruvate dehydrogenase, 

2-OG dehydrogenase, transketolases in the pentose phosphate pathway, and 

branched-chain keto-acid dehydrogenase [395]. However, the UPA did not suggest 

 
Figure 3.8.4. The butanoate and propanoate pathway in H. sapiens. Adapted from KEGG [385]. The 
metabolites proposed by the UPA are highlighted based on if they only appear in the butanoate pathway 
analysis results (blue), only in the propanoate pathway analysis result (yellow) or both (green). (1) Only 
the 2-HG dehydrogenase reaction is included in the KEGG butanoate pathway, but the mutIDH1 reaction 
is included here for clarity. (2) The synthesis of 2-methylcitric acid from propionyl-CoA, and the 
conversion of 2-methylcitrate to methylisocitrate, are not catalysed by enzymes expressed in humans 
according to the KEGG database, but the compounds are found in humans [392, 393]. The reactions are 
included for clarity. (3) The reaction is not shown as occurring in human cells, but a gene encoding for a 
protein that is highly similar to bacterial acetolactate synthase is reported as expressed in human 
tissues, including brain [394].   
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thiamine pyrophosphate, nor any other thiamine forms, as potential metabolite 

annotations. Instead oxoadipate, pyruvic acid, malonic semialdehyde and 2-OG were 

suggested, indicating that perhaps this pathway was highlighted instead due to role of 

thiamine pyrophosphate as a co-factor in reactions with these metabolites [395, 396]. The 

IC-MS method is suited for the analysis of phosphate-containing metabolites and it would 

be worth pursuing analysis of thiamine and thiamine phosphate standards to expand on 

the coverage of this pathway.  

The ascorbate (vitamin C) and aldarate pathway had a number of potentially identified 

metabolites that were sensible to expect from IC-MS analysis as they are produced or used 

by enzymes present in humans and carboxylic acids that the method could detect (e.g., 

gluconate/gulonate, gluconolactone/gulonolactone and ascorbate). Gluconate, 

gulonolactone and ascorbate were found in the samples with in-house standards as well, 

although not significantly altered. Ascorbate has previously been reported as not 

significantly different between wtIDH1 and mutIDH1R132H glioma PTBs [397]. Myo-inositol 

was also a putatively identified metabolite in the UPA that had been identified with the 

in-house database. It was not significantly different between wtIDH1 and mutIDH1R132H 

LN18 cell samples. However, myo-inositol was in the top 15 metabolites by VIP score in the 

PLS-DA. It is a highly abundant metabolite in the human brain and an osmolyte [398], and 

is considered a part of ascorbate and aldarate metabolism where it is oxygenated to form 

D-glucuronate. Vitamin B1 and vitamin C metabolism have not been thoroughly 

investigated within the context of mutIDH1 glioma. Ascorbate is a cofactor for enzymes 

that are have previously been studied in relation to 2-HG and mutIDH1, e.g., in collagen 

maturation [358, 399], thus further study is merited.  

3.8.6. N-acetylaspartylglutamate and B-citryl-L-glutamate  

NAAG and B-CG are biosynthesised and catabolised by homologous enzymes [360-363] 

(see Figure 3.8.5 for chemical structure and overview of reactions). Both NAAG and B-CG 

were significantly lower in abundance in mutIDH1R132H than wtIDH1 LN18 cells 

(FCNAAG = 1.92 and FCB-CG = 1.77 (WT/MUT), Tukey’s test p-value < 0.0001). There has only 

been one other report of B-CG levels in mutIDH1 glioma to date, in the first generation 

LN18 wtIDH1 and mutIDH1R132H cell lines. There FCNAAG > 3 and FCB-CG > 4 ((WT/MUT), both 
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FDR adjusted p-value < 0.0001) [148]. The higher FC for the first generation compared to 

the FC reported here might be due to the cells being grown in DMEM with different glucose 

concentrations (4.5 g/L versus 1.0 g/L). Or, if the degree that NAAG and B-CG suppression 

in mutIDH1R132H cells was related to 2-HG levels, that could also explain the difference as 

the first generation LN18 mutIDH1R132H cells had higher 2-HG levels (FC1st > 100 versus 

FC2nd > 50 (MUT/WT)). The relationship between 2-HG levels and NAAG/B-CG will be 

explored further in chapter 4.  

NAAG has also been reported as significantly and substantially lower (FC = 50 (WT/MUT)) 

in HOG cells expressing mutIDH1R132H than non-transduced cells [175], but there was no 

significant difference when comparing wtIDH1 to mutIDH1 PDX mouse models [158]. NAAG 

has also been suggested as a glutamate reservoir in cancer cells [400] and it would be 

sensible for mutIDH1R132H cells to utilise it as a source of glutamate either for 2-HG 

biosynthesis or to compensate for biosynthesis. The functional role(s) of B-CG remain 

unclear, but it may act as a glutamate reservoir similar to NAAG. B-CG has also been shown 

to chelate with Fe(II), Fe(III), Cu(II) and Zn(II) [401] and it activates aconitase when in a 

 
Figure 3.8.5. Overview of B-CG and NAAG metabolism. (a) Chemical structure of B-CG. (b) Chemical 
structure of NAAG. (c) Biosynthetic reactions of B-CG and NAAG, which are catalysed by homologous 
enzymes [360]. (d) Catabolic reactions of B-CG and NAAG, which are catalysed by homologous glutamate 
carboxy peptidase (GCP) II and III  [361-363]. Structures in (a-b) made with ChemDraw 20.1.  



Chapter 3. Investigation of metabolic differences between wtIDH1 and mutIDH1R132H glioma cells 

137 

 

[Fe(II)(B-CG)] complex [402]. The [Cu(II)(B-CG)] complex is capable of inhibiting xanthine 

oxidase (XO) activity, similar to glutathione [403]. XO takes part in purine catabolism by 

breaking down hypoxanthine to xanthine and then uric acid [388], in which the electrons 

are transferred to molecular oxygen and hydrogen peroxide is formed [404]. Thus B-CG, 

when in complex with Cu(II), could have a redox protective role in cells by decreasing XO 

activity and the production of hydrogen peroxide. The decrease in B-CG levels in 

mutIDH1R132H might thus result in cells that are more vulnerable to redox mediated 

damage.  

3.8.7. Measuring redox metabolites NAD+, NADH, NADP+ and NADPH  

The importance of measuring redox metabolites led to significant effort being put into 

method development for the measurement of the four redox metabolites NAD, NADH, 

NADP+ and NADPH. The use of HILIC-MS was based on the possibility of expanding the 

method to include other redox related metabolites in the future, e.g., oxidised and reduced 

glutathione. Additionally, sample preparation was similar to the standard metabolomics 

method, allowing for confident normalisation of samples. Colorimetric assays require 

simple instrumentation, but often involve several preparation steps and generally do not 

have robust sample normalisation included in protocols. In addition, to measure the redox 

metabolites independently and not just as ratios, one assay per metabolite commonly has 

to be performed. Finally, it would not be possible to as easily expand upon the number of 

analytes as in e.g., LC-MS or NMR based applications. NMR was a potential option, but due 

to the lack of temperature control available on the highest field NMR instrument, it was 

considered less appropriate due to the sensitivity toward interconversion and degradation 

of the compounds. Finally, ion-pairing RPLC-MS has been used for measuring redox 

metabolites [310, 322], and would also allow for the measurement of other compounds. 

However, the ion-pairing agents typically used are known for causing high background 

signals on MS instruments. Thus, HILIC-MS balanced practical (i.e., temperature, 

instrument availability) and technical (i.e., sample preparation, expanding the method) 

considerations. 

Three different HILIC columns were tested and NAD+ and NADH were possible to measure 

on all with desirable peak shapes (peak width at base < 2.0 min and without substantial 
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asymmetry). NADP+ and NADPH proved considerably more challenging, with substantial 

tailing and resulting low peak height. Efforts to minimise tailing and improve sensitivity 

involved testing different column chemistries and adjusting the buffer salt, buffer 

concentration and pH. The tailing remained for NADP+ and NADPH, but did not prohibit 

quantification of the two metabolites in cellular samples.  

Phosphate groups are known for interacting with metal components in LC-MS systems, 

which can contribute to peak broadening [405, 406]. Similarly, silica-based ZIC HILIC has 

been reported as a challenging system to analyse phosphorylated metabolites (e.g. 

nucleotides) [407]. Several different strategies can be employed to improve peak shape, 

including increasing mobile phase pH [406], lining metal surfaces with a barrier to reduce 

interactions [405], or swapping to an organic polymer based stationary phase [407]. The 

first option was tried without success, as demonstrated in section 3.7. Peak shape did not 

change appreciable depending on the mobile phase pH. Lining metal surfaces with a barrier 

is an option, but care must be taken to not add something that might disrupt other analyses 

also carried out on the same systems. Finally, for future work, an organic polymer based 

HILIC column appears to be the best option to try first. It was not carried out in this project 

due to time constraints.   

The final method used provided acceptable linearity (R2 > 0.97) for NADP+ and NADPH 

standards in the tested concentration range (0.05-1.00 µM). Broader concentration ranges 

should be tested in future work, as the cellular concentration of NADP+ was at the limit of 

the calibration curve. The limit of detection was 0.05 µM, but lower standards should be 

tested as well. However, considering the low peak height and tailing observed for NADP+ 

and NADPH, it is unlikely that the limit of detection can be much lower without the peak 

shape improving. Finally, the reproducibility of the method was poor for NADH, NADP+ and 

NADPH with regards to biological samples with peak areas varying 19-99%. The poor 

reproducibility is considered mostly due to the biological samples, as the standards had 

lower peak area variability (2-15%). Overall, the redox metabolites remained a challenge to 

measure with confidence and further work assessing sample stability must be carried out 

to improve method repeatability. Without reproducible methods the confidence in the 

quantification of the redox metabolites would remain low, limiting in-depth investigation 

of redox metabolism.  



Chapter 3. Investigation of metabolic differences between wtIDH1 and mutIDH1R132H glioma cells 

139 

 

3.8.8. NADP+, NADPH and NADPH/NADP+ were not significantly different between wtIDH1 

and mutIDH1R132H LN18 cells 

After the method development had been carried out, the ZIC sulfobetaine column with the 

optimised chromatographic and MS settings was used to analyse the abundance of the four 

redox metabolites in wtIDH1 and mutIDH1R132H LN18 cell samples. No significant difference 

in NADP+ or NADPH concentrations between wtIDH1 and mutIDH1R132H cells were identified 

(p-value = (p-value = 0.0731 and 0.954, respectively. Unpaired parametric t-test), nor in the 

NADPH/NADP+ ratios (p-value = 0.1105, unpaired parametric t-test). Previously, the 

NADPH/NADP+ ratio has been reported as significantly decreased  in astrocytes and 

colorectal cancer cells (HCT116) expressing mutIDH1R132H via lentiviral vector when 

compared to wtIDH cells with a colorimetric assay [221]. Similarly, NADPH levels and the 

NADPH/(NADP+ + NADPH) ratios were lower in glioblastoma and astrocyte cells expressing 

mutIDH1R132H via lentiviral vector compared to wtIDH1 cells (empty vector), also measured 

by colorimetric assay [220].   

The cells in the referenced articles were grown in a variety of media (Basal Minimum Eagle, 

DMEM, minimum essential media (alpha modification) [220], McCoy 5A modified media 

and astrocyte media [221]) with different glucose concentrations. A major contributor to 

cellular NADPH is the oxPPP [213, 214] and high levels of available glucose would allow for 

more flux through the oxPPP. Potentially the glucose levels can affect the extent of 

differences in redox homeostasis between wtIDH1 and mutIDH1 expressing cells, although 

the assumption would be that lower glucose levels would exacerbate any difference and 

not decrease it. The more likely explanation for the lack of difference in the concentrations 

and ratios reported here is due to experimental variability. The measurements reported in 

this thesis were quite variable and that could be masking small, but significant differences 

in redox metabolism between the wtIDH1 and mutIDH1R132H LN18 cells. A major issue, in 

addition to peak shape, was peak area stability. Even with the most optimised LC-MS 

method and repeat analysis of the same standard sample, peak area variability was 

2.1-14.7% CV. The variability was even more severe for cell samples (18.1-43.1% CV for 

NADP+ and NADPH, up to 98.8% for NADH). It is likely that both analytical variability and 

harvesting, processing and sample storage all had a role in the overall outcome.  
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3.9.  Summary and conclusions 

The mutIDH1R132H LN18 cell line had substantial and significant accumulation of 2-HG and 

a significant decrease in 2-OG abundance when compared to wtIDH1 LN18 cells. Glutamine, 

rather than glucose, was the major carbon source for 2-HG. The presence and activity of 

the mutIDH1R132H enzyme in LN18 cells led to a number metabolic differences compared to 

the otherwise isogenic wtIDH1 LN18 cells. In amino acid metabolism, there were a number 

of individually altered metabolites, and differences on the pathway level, between wtIDH1 

and mutIDH1R132H LN18 cells. That included lysine degradation, BCAA degradation, 

aspartate & asparagine and arginine & proline metabolism, as well as cysteine, serine, 

methionine and related metabolites. The different pathways and metabolites were closely 

linked to 2-OG because it is the most common acceptor of an amine group during 

transamination reactions, which are ubiquitous in amino acid metabolism. Decreased 

transamination due to either decreased availability of 2-OG or direct inhibition by 2-HG 

were considered likely explanations for the differences observed between wtIDH1 and 

mutIDH1R132H LN18 cells. Further work will be carried out to investigate a potential 

correlation to 2-OG and/or 2-HG for the aforementioned metabolites and pathways.  

The metabolites NAAG and B-CG, related by biosynthesis and degradation by homologous 

enzymes, were both significantly decreased in mutIDH1R132H LN18 cells. The metabolites 

were not directly associated to 2-OG or NADP+/NADPH, thus their role in mutIDH1R132H 

LN18 metabolism remained poorly understood. It was only possible to speculate on why 

the metabolites were decreased in mutIDH1R132H LN18 cells. A better understanding of the 

relationship between NAAG and B-CG abundance to 2-HG abundance/mutIDH1R132H 

activity could help point toward a potential mechanism behind the difference between 

wtIDH1 and mutIDH1R132H glioma.  

Nucleotide metabolism was another major avenue explored with regards to mutIDH1 

glioma in the literature, and the LN18 model pointed toward an effect being present there 

too. However, because the model is isogenic and previous work had shown that there are 

differences between endogenous and isogenic cell lines, care should be taken during 

interpretation of changes in nucleotide metabolism. Nucleotide metabolism would be an 

ideal therapeutic target, as cancer cells divide rapidly and require nucleotides for growth. 
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Despite the limitations of the current isogenic cell model, it will be of interest to examine 

whether nucleotide metabolites are affected by decreased mutIDH1R132H activity and 2-HG 

abundance.    
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Chapter 4. The effect of mutIDH1 inhibitors on wtIDH1 and 

mutIDH1R132H in glioblastoma cells 

4.1.  Introduction 

Mutation of IDH1 occurs early in the development of cancers with solid tumours [12, 80] 

and elevated 2-HG is thought to contribute to tumorigenesis [reviewed in 408], e.g., by 

inhibiting 2-OG dependent enzymes needed for DNA and histone methylation [27, 83, 84, 

409] and disrupting DNA repair [410-412]. MutIDH1 activity and elevated 2-HG levels have 

also been linked to changes in central carbon, amino acid and lipid metabolism, as well as 

redox homeostasis [reviewed in 1]. However, the significance and role of these metabolic 

changes in tumorigenesis remains less well understood.  

The mutIDH1 enzyme is considered an ideal target in mutIDH1 cancers, due to its presumed 

role in tumorigenesis and absence in non-cancer cells. Multiple small-molecule allosteric 

inhibitors of mutIDH1 have been developed and reported in the literature [176, 246, 247, 

249, 250, 413-418]. Two of these mutIDH1 inhibitors have been approved by the FDA for 

AML [419, 420], and one for cholangiocarcinoma [421]. There are no mutIDH1 inhibitors 

approved for glioma at this time. The inhibitors have been shown to reduce 2-HG 

abundance in glioma, AML and chondrosarcoma cell lines and xenograft mouse models, as 

well as glioma and AML and patients [174, 176, 177, 226, 251-259, 261]. However, in 

cancers with solid tumours, such as glioma and chondrosarcoma, the effect of the inhibitors 

on cell viability [177, 226] and patient survival has been limited [245, 263, 422, 423]. 

Furthermore, resistance to mutIDH1 and mutIDH2 inhibitors, through a variety of 

mechanisms, has been reported in case studies of AML patients [264-266, 424-426] and 

cholangiocarcinoma patients [265, 427]. Considering the lack of comprehensive 

understanding of the role of 2-HG in tumorigenesis, in addition to limited effect of the 

inhibitors and developing resistance to these drugs, new approaches, therapies and drug 

targets are needed.  

Generally, in earlier studies only one inhibitor was tested across multiple cell lines. Only 

three studies comparing two or more inhibitors can be found in the literature [251, 255, 

256] so there is little comparative literature on their efficacy and impact on metabolism. 
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Furthermore, there is no data in the literature on the effect of mutIDH1 inhibitors in the 

LN18 GBM cell line studied here. Consequently, it was of interest to compare multiple 

mutIDH1 inhibitors to assess their relative effectiveness in decreasing 2-HG abundance in 

LN18 cells expressing mutIDH1R132H. Four inhibitors (AG-120, AG-881, BAY 1436032 and 

GSK864) were chosen based on reported efficacy in enzymatic and cellular assays, as well 

as efficacy in mouse models [247, 249, 250, 416]. AG-120 was also included because it, at 

the time, was the only FDA approved mutIDH1 inhibitor [419]. AG-881 is a pan-mutIDH 

inhibitor, i.e., capable of inhibiting both mutIDH1 and mutIDH2 [249]. It was included 

because it was shown to be brain-penetrant in orthotopic mouse models of glioma [416].  

MutIDH1 inhibitors AG-120, AG-881 and GSK864 have been shown as capable of inhibiting 

wtIDH1 in enzymatic assays (IC50 4-467 nM) [246, 250, 416]. However, that effect has not 

been studied in depth in wtIDH1 GBM or glioma cells. Additionally, the IDH1 mutation is 

usually heterozygous [reviewed in 428] and active wtIDH1 may be present in mutIDH1 

glioma tumours as well. Therefore, it was also pertinent to investigate the effect of the 

inhibitors on wtIDH1 activity in addition to mutIDH1 in the cellular context.  

This chapter focusses on comparing multiple inhibitors to investigate their effect on LN18 

cell viability and the abundance of key metabolites 2-HG, 2-OG and isocitrate. These 

activities are compared across different treatment concentrations and treatment 

time-points. The aims of the research presented in this chapter are therefore to:   

1. Develop and test a miniaturised cell culture, harvesting and sample preparation 

protocol to enable larger-scale metabolomics experiments for comparing multiple 

drug treatments at different time and concentration points.  

2. Measure mutIDH1 inhibitors in cell and media samples: 

i. Develop a sample preparation method to enable measurement of mutIDH1 

inhibitors in media. 

ii. Assess column chemistry and LC-MS parameters for the analysis of mutIDH1 

inhibitors. 
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3. Measure the effect of four different mutIDH1 inhibitors (AG-120, AG-8812, BAY 

1436032 and GSK864) on cell viability of mutIDH1R132H LN18 GBM cells at different 

treatment concentrations and treatment time-points.  

4. Characterise the ability of the four different mutIDH1 inhibitors to decrease 2-HG 

abundance and modulate 2-OG and isocitrate levels: 

i. In wtIDH1 and mutIDH1R132H LN18 GBM cells.  

ii. In mutIDH1R132H LN18 GBM cells treated with different concentrations of 

mutIHD1 inhibitor.  

iii. In mutIDH1R132H LN18 GBM cells treated with mutIDH1 inhibitors for 

different exposure times.   

  

 
2 AG-881 is a pan mutIDH1 and mutIDH2 inhibitor, but will be labelled as a mutIDH1 inhibitor for brevity.  
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4.2.  A more efficient tissue culture approach for higher-throughput 

metabolomics  

Metabolomics experiments are usually performed as a single batch process, where 

possible, to limit systematic errors that can occur due to multiple factors such as variations 

in cell media and cell growth, as well as drift in retention time and ion counts during analysis 

by LC-MS. If this is not possible, careful attention needs to be given to ensure multi-batch 

normalisation. Common QCs are usually used across multiple batches and such 

experiments can be more challenging.  Based on the routine method used so far (described 

in section 2.5.5), the highest number of 60-mm dishes that could be physically harvested 

in a single batch was 60. The 60 samples would take approximately 5 hours to harvest. 

Increasing the number of dishes would require certain cells to be harvested with even 

greater difference in incubation time, and also increase the risk of random error due to 

fatigue. A method with smaller sample plates, however, would take less time per plate to 

harvest and enable larger experiments to be performed as a single experiment. The new 

method developed here was used for up to 120 samples harvested simultaneously.  

An initial pilot experiment was used to measure 2-HG levels in each sample of wtIDH1 and 

mutIDH1R132H cells, and for future experiments to focus on 2-HG before and after treatment 

with mutIDH1 inhibitors. It was envisaged that a relatively low ratio of cell number to 

harvest solvent volume could be tolerated due to the high abundance of 2-HG in 

mutIDH1R132H cells. The previous plating methods used 60- or 100-mm dishes, where the 

extraction solvent volume was 180 or 500 µL and final sample volume was 100 or 300 µL, 

respectively. The lower final volume compared to extraction volume was determined by 

three main factors: it was not possible to transfer all of the sample volume from plate to a 

microtube, a small volume of sample remained in the MWCO filter (~15 µL), a small volume 

of sample was used for measurement of DNA concentration (5-10 µL) and to be set aside 

for a QC sample (2-5 µL). The downscaled method therefore had to provide enough sample 

to account for these fixed volumes, as well as provide enough sample to inject 3-4 times 

for LC-MS analysis (30-40 µL). The minimum sample volume that would be sufficient for an 

experiment was therefore chosen as 70 µL.  
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The cell seeding density of a 60-mm dish was 100,000 cells/mL, with a total volume of 3 mL 

leading to a total of 300,000 cells per dish. The cells would approximately double after 

48 hours of incubation, which meant that there were 500,000-600,000 cells per dish when 

samples were harvested. The ratio of cell number to solvent volume at harvest was 

2,778-3,333 cells/µL. LN18 cells were cultured as an adherent monolayer, therefore the 

surface area of a dish or plate dictated how many cells could be cultured. The growth area 

of a 60-mm dish was 21 cm2, while 6-well and 12-well plates were 9.5 and 3.8 cm2, 

respectively. The 6-well plate would provide cell extracts with higher cell number to solvent 

volume ratio, as more cells could fit per well. However, the time saved during harvest was 

significantly improved for 12-well plates, and these were therefore chosen for the pilot 

study. If the same seeding density of cells were used for 12-well plates as a 60-mm dish, 

then the final ratio of cell number to solvent volume was projected to be 1,292-1,551 

cells/µL.   

The harvesting method required adjustments to be made for 12-well plates. All 12 wells on 

the plate would have to be harvested at the same time, to avoid issues of e.g., cooling of 

neighbouring wells or cross contamination. The original pouring on/off of PBS was replaced 

with pipetting to avoid cross-contamination between samples. PBS was left on cells while 

other wells had media removed, to avoid drying out and to minimise cellular stress. Liquid 

nitrogen was deemed too difficult to work with such small sample containers, and the risk 

of splashing between wells was too great. Instead, it was decided to cool the extraction 

solvent (80% MeOH(aq)) on dry ice and place the plate on dry ice during extraction and 

scraping.  

Sample preparation after harvest remained largely the same as the method used for 

60-mm dishes, except for when the DNA concentration was measured. After having 

processed a set of pilot samples and an additional large sample set (120 replicates), it 

became clear that extraction volume at harvest was too small for the subsequent sample 

processing. First, the loss at harvest from not being able to transfer all of the extraction 

solvent from a well to a sample tube was greater than expected. Second, the amount of 

sample left after DNA measurement and filtration was sometimes too small to allow for 

both multiple (3-4) analyses of a sample and to remove a small volume for the QC sample. 
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To ameliorate the volume challenges, the extraction volume was therefore increased to 

100 µL for subsequent experiments.  

Additionally, the protocol was modified to utilise the sample left in the filter for DNA 

measurements instead of discarding it as there was sufficient volume left in the filter 

(15 µL) for multiple DNA measurements. An experiment was carried out to compare DNA 

concentrations before and after filtration to what was left in the filter. A cell sample was 

diluted 1+3, 1+1 and 3+1 (v+v). The DNA concentration was measured in unfiltered and 

filtered samples, as well as of what was left inside the filter. The DNA concentration of the 

in-filter samples was significantly higher than the before and after filtered samples 

(p-value < 0.05, one-way ANOVA and Šídák MCTe), bar graph provided in Figure 4.2.1.(a). 

However, the ratio of the DNA concentrations of diluted/original samples were the same 

for unfiltered, filtered and ‘in-filter’ samples (Figure 4.2.1.(b)). Because normalisation of 

samples was performed based on relative DNA concentrations, the increase in DNA 

concentration was not an issue. The ratios between the different diluted samples would be 

maintained. Relative dilution of samples would be correct as long as DNA was measured 

from the same type of sample.  

A pilot study of the new 12-well method was carried out to assess the adjusted plating, 

harvesting and sample processing methods. First generation LN18 wtIDH1 and 

mutIDH1R132H cells were transferred to separate plates, 0.7 mL of suspended cells at 

 
Figure 4.2.1. DNA concentrations of an extracted cell sample before and after filtration and what 
remained in the MWCO filter. (a) Absolute DNA concentration of the same before and after filtration, 
and of what remained in the filter. Error bars are one standard deviation (b) Linear regression of the 
ratio of DNA concentration in samples to the average DNA concentration in the original sample. Each 
data point was the mean DNA concentration and error bars are one standard deviation. N = 3 repeat 
measurements. The same cell sample was used to make the dilutions, which were filtered individually.  
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200,000 cell/mL in supplemented HG DMEM per well, and incubated for 48 hours. The cells 

were harvested and processed as described in section 2.5.5 and 2.6.1, with the exception 

being that volume of extraction solvent (80% MeOH(aq)) was 70 µL and not 100 µL. Initially 

three samples from each plate were processed and analysed as a pre-pilot, followed by the 

nine remaining samples. The data from the nine samples will be presented here, as it 

provided the best overview of data quality. The DNA concentrations used for sample 

normalisation are provided in Table A.IV.1 in Appendix IV.  

Underivatised samples were analysed by IC-MS (see section 2.7.1) and derivatised samples 

by RPLC-MS (see section 2.6.2 and section 2.7.2). The data was processed with Progenesis 

QI, as described in sections 2.8.2, to assess the total number of features and how many 

metabolites could be identified. The 12-well pilot was compared to the 60-mm dish 

experiment described in chapter 3, as both had similar experimental conditions. The total 

number of features were similar in the IC-MS data (> 6,000) and derivatised RPLC-MS data 

(> 7,000), see Table 4.2.1 for exact number of features. The number of identified 

metabolites based on authentic standards was somewhat lower in the 12-well pilot than 

the 60-mm dish experiment: 127 versus 141 for IC-MS data and 38 versus 53 for derivatised 

RPLC-MS data. In the IC-MS data, the difference was mainly due to fewer putative 

identifications (43 versus 55). In the derivatised RPLC-MS data, the 12-well pilot had both 

fewer confident and putative identifications, see Table 4.2.1 for details. The identified 

metabolites and identification criteria for the IC-MS and derivatised RPLC-MS data are 

listed in Table A.IV.2 and Table A.IV.3 in Appendix IV, respectively. The 12-well pilot 

showed that far more metabolites than just high abundance 2-HG could be identified. It 

was therefore of interest to perform univariate and multivariate statistical analyses with 

the data and compare to the results reported in chapter 3.  

Table 4.2.1. Summary of total number of features and identified metabolites (confident/putative) from 
the IC-MS and derivatised RPLC-MS data of the 12-well pilot and 60-mm dish experiment from chapter 3.  

Experiment IC-MS Derivatised RPLC-MS 

Analysis 12-well pilot 60-mm dish 12-well pilot 60-mm dish 

Total features 6,523 6,645 7,205 7,619 

 Identified metabolites 

Total 127 141 38 53 

Confident 84 86 23 34 

Putative 43 55 15 19 
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Prior to univariate and multivariate statistical analysis, further data processing was 

performed, as described in section 2.8.3. The IC-MS and derivatised RPLC-MS data were 

IQR filtered. The IC-MS data was quantile normalised and auto-scaled, but not transformed. 

Quantile normalisation and auto-scaling were chosen because together they reduced the 

small amount of bias found in the heatmap and led to normal or near-normal sample 

distribution plots. In the derivatised RPLC-MS data, one replicate of mutIDH1R132H LN18 

cells was outside of the 95% confidence interval in the PCA scores plot (PC1 × PC2). Closer 

inspection of the raw data revealed that the abundance of features was elevated in the 

sample compared to others. That was most likely due to experimental error during sample 

preparation, i.e., more sample or less buffer was transferred to the sample vial. The data 

from the sample was removed prior to further data processing. The data was then median 

normalised as this reduced the small amount of bias found in sample distribution plot. The 

PCA plot used for identification of outliers is provided in Figure A.IV.1 and assessment of 

normalisation is provided in Figure A.IV.2, both in Appendix IV. Scaling was only applied to 

multivariate statistical analysis.  

In the univariate analysis of the IC-MS and derivatised RPLC-MS data, a total of 44 identified 

metabolites (34 IC-MS/10 derivatised RPLC-MS) were appreciably (FC ≥ 1.20) and 

significantly different (p-value < 0.05, Tukey’s test). The abundance of 2-HG was 

significantly and substantially higher in mutIDH1R132H than wtIDH1 cells (FC = 391 

(MUT/WT) and p-value < 0.0001, Tukey’s test), see Figure 4.2.2.(a). Key metabolites from 

Chapter 3 that were also significantly and appreciably different in the 12-well pilot are 

shown as box plots in Figure 4.2.2.(b). Thus, the 12-well pilot provided univariate analyses 

that were largely similar to the 60-mm dish experiment.  
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PLS-DA and HCA were performed with the IC-MS data. The two multivariate statistical 

analysis methods were chosen to assess whether the two experimental groups could be 

distinguished from each based on the collected data, as was possible for the 60-mm data 

in Chapter 3. As noted in chapter 3, the two methods are complementary to each other 

because one measures similarities between experimental groups by covariance (PLS-DA) 

and the other by a distance measure (HCA). The analyses were performed as described in 

section 2.8.3, the exception being that all features were included in the HCA.  

In the HCA performed with the IC-MS data, wtIDH1 and mutIDH1R132H LN18 cell samples 

were completely separated with all 2,500 features included, see Figure 4.2.3.(a).  The 

60-mm dish experiment in chapter 3 did not have separate clustering of wtIDH1 and 

mutIDH1R132H with all features included. Thus, the IC-MS data from the 12-well experiment 

outperformed the previous data set by retaining separation of experimental groups even 

with all features used during clustering. The PLS-DA performed with the IC-MS data had 

clear separation of wtIDH1 and mutIDH1R132H cell samples in the first component of the 

scores plot, see Figure 4.2.3.(b). The LOOCV had R2 and Q2 > 0.80 for component 1, as 

 
 
Figure 4.2.2. Summary of univariate statistical analysis 12-well pilot metabolomics data. (a) 2-HG in 
wtIDH1 and mutIDH1R132H first generation LN18 cells. (b-d) Key metabolites that were significantly and 
appreciably different in both the univariate analysis carried out in Chapter 3 and in the 12-well pilot. 

NAAG = N-acetylaspartylglutamic acid, -CG = B-citrylglutamic acid, 2-AA = 2-aminoadipate, OAA = 
oxoadipate, and P = phosphate. P-values (Tukey’s test): * = p-value < 0.05, *** = p-value < 0.001,  
**** = p-value < 0.0001. The box plot limits are the 25th and 75th percentile, the middle line is the data 
median. The whiskers are the minimum and maximum measured values. N = 9 biological replicates, 
except N = 8 for mutIDH1R132H LN18 cell samples for 2-AA and isoleucine 
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shown in Figure 4.2.3.(c). The permutation test did not reach significance (p-value = 1; 

2,000 permutations and prediction accuracy as test statistic). Neither the 12-well or 60-mm 

dish data sets had significant permutation tests, but they did have separation in the first 

component and acceptable cross validation. Additionally, 2-HG and B-CG were among the 

top 15 VIP scoring features for the PLS-DA model of the 12-well data, similar to the PLS-DA 

model calculated in chapter 3. Overall, the 12-well pilot data retained biological differences 

between wtIDH1 and mutIDH1R132H cell samples, evident through the ability to distinguish 

the two experimental groups in both univariate and multivariate data.  

In summary, a downscaled tissue culture method for metabolomics which provided data 

with only slightly lower coverage and sensitivity than the standard method with 60-mm 

dishes was developed. The data from the 12-well pilot led to similar outcomes from 

univariate and multivariate statistical analysis as that reported in chapter 3. Thus, the 

method could be used to harvest larger numbers of metabolomics samples and still 

facilitate targeted and untargeted metabolic analysis.  

  

 

 
Figure 4.2.3. Summary of multivariate statistical analysis 12-well pilot metabolomics data. (a) HCA 
heatmap. The Ward clustering method and Euclidian distance measure was used. Both features and 
samples were clustered. The colour bar indicates relative ion abundance. (b) PLS-DA scores plot 
(component 1 × component 2) of IC-MS data. (c) LOOCV with 5 components of the PLS-DA. Number of 
biological replicates: N = 9.  
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4.3.  Assessing sample preparation and analysis of mutIDH1 inhibitors in cell 

and media samples 

The measurement of the relative abundance of mutIDH1 inhibitors AG-120, AG-881, 

BAY 1436032 and GSK864 in cell and media samples was performed to support the 

interpretation of metabolomics data collected with IC-MS and derivatised RPLC-MS. 

Experiments were carried out to confirm that an appropriate sample analysis method was 

used and to establish sample preparation protocols. First, all four inhibitors were assessed 

with regards to retention time and peak shape, as well as ionisation efficiency in positive 

and negative polarity mode. Sample analysis was carried out with a RPLC-MS method 

previously developed by Dr John Walsby-Tickle [321]. Second, the potential loss of inhibitor 

from sample filtration by the MWCO filters used in cell sample preparation was tested. 

Third, a protocol for the preparation of media samples was developed due to loss of 

sensitivity after filtration.   

Porous silica beads  

functionalised with C18 alkyl 

chains are a commonly used 

stationary phase for LC analysis 

of pharmaceuticals [reviewed in 

429]. It was therefore tested 

first for analysis of the 

inhibitors, structures of which 

are shown in Figure 4.3.1. Single 

standards of each inhibitor 

(1.00 µM) in 80% MeOH(aq) were 

analysed in positive ionisation 

mode with a CORTECS® UPLC® 

T3 C18 column. The four inhibitors had retention time past the system void volume 

(> 2 min), with symmetric peaks and baseline separation, see Figure 4.3.2. C18 was 

therefore considered the appropriate stationary phase for analysis of the inhibitors and no 

further optimisation of the LC parameters was needed.  

 
Figure 4.3.1. MutIDH1 inhibitor molecular structure. (a) AG-
120. (b) AG-881. (c) BAY 1436032. (d) GSK864. Structures made 
in ChemDraw 20.1 based on canonical SMILES.  
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The ionisation efficiency the four 

inhibitors in positive and negative 

mode ESI was assessed next. Single 

standards of each inhibitor 

(5.00 µM) in 80% MeOH(aq) were 

analysed with five injections in each 

polarity mode. All four inhibitors 

had significantly higher peak area in 

positive mode ESI than negative 

mode ESI (p-value < 0.05, unpaired 

Student’s t-test), see Figure 4.3.3. 

ESI with positive polarity was 

therefore used as the ionisation 

mode. 

After the analysis method had been decided, sample preparation was evaluated next. Cell 

samples were filtered prior to analysis with MWCO filters (3 or 10 kDa) made of 

regenerated cellulose. To determine whether there was loss of inhibitor from filtration, 

5.00 µM standards in 80% MeOH(aq) were filtered and both the filtered and nonfiltered 

 
Figure 4.3.2. Extracted ion chromatograms of mutIDH1 inhibitor standards (1.00 µM) with RPLC-MS in 
positive polarity mode. Single injection (40.6 ppm). 

 
Figure 4.3.3. Peak area of EICs of all four inhibitors in 
positive and negative mode . N = 5 repeat injections of the 
same standard. P-values: * = p-value < 0.05 and 
**** = p-value < 0.0001, unpaired Student’s t-test. Error 
bars are one standard deviation. 
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standards were analysed with RPLC-MS in positive mode. There was not a significant 

difference in peak area between filtered and non-filtered standard solutions of any of the 

four mutIDH1 inhibitors (p-value > 0.05, unpaired t-test). The sample preparation of cell 

samples therefore did not have to be modified.  

Filtered and unfiltered media samples were also compared, but here filtration led to either 

complete loss of the EIC peak (AG-120, BAY 1436032 and GSK864) or substantial decrease 

in EIC peak area (1,000 versus 334,000 for AG-881). It was unlikely that the inhibitors were 

lost by interaction with the filter, as there was no substantial or significant loss of inhibitor 

in the previous filtration experiment using standard solutions in 80% MeOH(aq). Instead, 

non-specific binding of the inhibitors to protein in the media was considered a possible 

explanation. The supplemented media contained 10 % (v/v) FBS, which has a high protein 

concentration (32-42 mg/mL [430]). In order to explore the possibility of non-specific 

protein binding of inhibitors, acetonitrile was tested as a protein precipitating agent 

because it is also an effective protein denaturant [431]. The ratio between sample and 

precipitating solvent was determined based on a publication on protein precipitation in 

serum samples, where a 2:1 ratio (or higher) led to > 95% of proteins being precipitated 

[431]. The pilot experiment was carried out with 3:1 ratio of precipitating solvent to sample, 

which was decreased to 2:1 for experimental samples to limit sample dilution. Assessment 

of increasing or decreasing the sample acidity or basicity was included to determine 

whether it improved the disruption of inhibitor-to-protein binding. Acetonitrile was 

therefore either acidic (1% (v/v) formic acid), neutral, or basic (1% (v/v) NH3 in water 

(~25 %)). After mixing with media, the pH of the samples was 4, 8 and 11, respectively. The 

pH was measured with pH strips.  

LG DMEM containing 10% FBS (v/v) and either 0.50 µM or 5.00 µM of AG-120, AG-881, 

BAY 1436032 or GSK864 were extracted with either acidic, neutral or basic acetonitrile. The 

samples were left at -20 °C overnight. Despite acetonitrile being miscible with water, the 

samples were phase separated with a pink phase at the bottom of the sample tubes, even 

after 12 hours at -20 °C and when thawed. The pink colour was due to the presence of 

phenol red in the DMEM. In the acidic extraction, the lower phase was yellow and in the 

basic extraction it was dark pink, indicating the decreased/increased pH. The phase 

separation was potentially due to high concentration of salts, lipids and proteins, which 



Chapter 4. The effect of mutIDH1 inhibitors on wtIDH1 and mutIDH1R132H in glioblastoma cells 

155 

 

may have decreased the miscibility of water and acetonitrile. There was no visible 

precipitated protein and no pellet appeared after centrifugation at 14,000 rpm for 

10 minutes. The inhibitors were assumed present in the upper phase (acetonitrile), 

therefore only the upper phase was transferred to a total recovery vial for further analysis.  

The peak area of the inhibitors in the extracted samples was within the same order of 

magnitude as the unfiltered media samples (105). The extraction/precipitation of inhibitors 

from media therefore decreased protein present in the sample without simultaneous loss 

of signal, as was observed for filtered samples. There was no significant difference in the 

peak areas of EICs comparing acidic, neutral and basic precipitations/extractions for any of 

the different inhibitors (p-value > 0.05, one-way ANOVA followed by Šídák MCTe). This 

applied to both high (5.00 µM) and low (0.50 µM) concentration samples. Since adding 

formic acid or aqueous ammonia did not significantly improve signal intensity of the 

inhibitors, the neutral acetonitrile was used for future experiments because it was simpler 

to prepare.   

In summary, the mutIDH inhibitors AG-120, AG-881, BAY1436032 and GSK864 could be 

analysed with RPLC-MS as the retention time was sufficient (> 2 min). Analysis with positive 

ECI LC-MS provided significantly higher EIC peak areas than in negative ion mode 

(p-value < 0.05, unpaired Student’s t-test). There was not a loss of inhibitor when filtering 

standards with 10 kDa MW cut-off filters (p-value > 0.05, unpaired two-sided t-test) but 

significant loss was observed when filtering inhibitor standards made with media known to 

contain proteins. The protein in the media samples was denatured/precipitated by 

acetonitrile. There was no significant difference in peak area of EICs of inhibitors between 

acidic, neutral or basic acetonitrile precipitation/extraction. Neutral/pure acetonitrile was 

chosen as the protein precipitation/metabolite extraction solvent for future sample 

preparations. 
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4.4.  MutIDH1R132H LN18 cell viability not substantially decreased by mutIDH1 

inhibitors  

Experimental overview 

Prior to investigating the impact of mutIDH1 inhibitors on 2-HG, 2-OG and isocitrate 

abundance, it was of interest to assess the effect of inhibitors on cell viability. If cell viability 

was significantly decreased by treatment, it could have a confounding effect on the 

interpretation of alterations of 2-HG, 2-OG and isocitrate. In order to investigate the cell 

viability under treatment, mutIDH1R132H LN18 cells were cultured with AG-120, AG-881, 

BAY 1436032 or GSK864 at three concentrations (0.50, 5.00 and 10.0 µM) for 24, 48, 72 or 

96 hours. All cells, including control cells, were incubated with 0.2% (v/v) DMSO in the 

media. Supplemented LG DMEM media was used throughout. Cell viability was assessed 

with an MTS assay, where the absorbance (A) at 490 nm positively correlated to the 

number of metabolically active (viable) cells in each well [432]. Further experimental details 

are provided in sections 2.5.3 (preparation) and 2.7.5 (measurement). The treatment 

concentrations were chosen based on reports in the literature [246, 247, 250], while the 

timepoints were chosen based on the length of treatment planned for the metabolomics 

experiments.  

Results 

In general, there was no significant difference in cell viability between control and treated 

samples after 24 hours of incubation, except for cells treated with 0.50 µM AG-120 

(p-value < 0.05, one-way ANOVA with Dunnett’s test). This significant difference was due 

to the treated cells having higher absorbance at 490 nm, i.e., there were more viable cells 

after treatment than for control (Atreated/Acontrol = 1.19 ± 0.05). After 48 hours of incubation, 

cell viability decreased significantly only for cells treated with 10.0 µM AG-881 

(Atreated/Acontrol = 0.80 ± 0.05) and increased significantly for cells treated with 10.0 µM 

GSK864 (Atreated/Acontrol = 1.2 ± 0.1) (both p-value < 0.05, one-way ANOVA with Dunnett’s 

test). After 72 and 96 hours of incubation, cells treated with 5.00 or 10.0 µM of any 

mutIDH1 inhibitor had significantly decreased viability compared to control cells 

(Atreated/Acontrol = 0.85 ± 0.04, p value < 0.0001, one-way ANOVA with Dunnett’s test). Cells 

treated with 5.0 µM BAY 1436032 for 96 hours were the exception, they were not 

significantly different from control cells. The cells treated with 0.50 µM AG-881 had 
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significantly lower viability than control cells after 72 and 96 hours of incubation 

(Atreated/Acontrol = 0.85 ± 0.03, p-value < 0.0001, one-way ANOVA with Dunnett’s test). The 

absorbance ratio between treated and control for all timepoints and treatment 

concentrations are summarised in Figure A.VI.1 in appendix VI.  

In summary, all four inhibitors were capable of decreasing cell viability when both 

treatment concentration was high enough (5-10.0 µM) and incubation time with inhibitor 

present was sufficient (≥ 72 hours). However, the decrease remained small, with only a 15% 

reduction in cell viability on average across all four inhibitors. Shorter incubation time 

(24-48 hours) had less of an effect on cell viability, even at 5.00 µM treatment 

concentration. Thus, decreased cell viability would not be a confounding effect on the study 

of the metabolism of mutIDH1R132H LN18 cells treated with mutIDH1 inhibitors as long as 

treatment concentration was not too high or incubation time too long.   

 

4.5.  2-HG decreased and isocitrate increased in wtIDH1 and mutIDH1R132H LN18 

cells after treatment with mutIDH1 inhibitors 

Experimental overview 

The effect on 2-HG, 2-OG and isocitrate after treatment with mutIDH1 inhibitors was 

compared between wtIDH1 and mutIDH1R132H LN18 cells. The aim was to assess how 

efficient the different inhibitors were at reducing 2-HG abundance in mutIDH1R132H LN18 

cells and whether there was any inhibitory effect on wtIDH1 cells. Both cell lines were 

treated with AG-120, AG-881, BAY1436032 or GSK864 (5.00 µM) for 24 hours, with a total 

incubation time of 48 hours. Control samples had 0.1% (v/v) DMSO in their media to match 

the DMSO concentration of media containing inhibitor. All samples were grown in 

supplemented LG DMEM. There were 10 replicates of treated and 20 replicates of control 

each for wtIDH1 and mutIDH1R132H LN18 cells. The cells were plated, treated and harvested 

as described in section 2.5.3-2.5.5. Sample preparation was performed as described in 

section 2.6.1 and DNA concentrations were used for sample normalisation (Table A.II.1 in 

appendix II). The samples were analysed by IC-MS (see section 2.7.1) and 2-HG, 2-OG and 

isocitrate were identified using authentic standards (see section 2.8.2 and Table A.II.2 for 

identification criteria).  
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Results 

The control mutIDH1R132H LN18 cells, originally presented in chapter 3, had significantly and 

substantially higher 2-HG levels than the untreated wtIDH1 LN18 cells (FC = 52.9 

(MUT/WT), p-value < 0.0001, Tukey’s Test). In mutIDH1R132H LN18 cells, all four mutIDH1 

inhibitors led to significant and substantially decreased 2-HG abundances 

(p-value < 0.0001, unpaired t-test with FDR). Cells treated with AG-881 had a smaller 

decrease in 2-HG levels in mutIDH1R132H LN18 cells than the other inhibitors: FCAG881 = 16.7, 

FCAG120 = 40.5, FCBAY 1436032 = 35.8, and FCGSK864 = 45.2 (control/treated). AG-120, AG-881 

and GSK864 led to a significant decrease in 2-HG levels in treated wtIDH1 LN18 cells when 

compared to untreated wtIDH1 LN18 cells (p-value < 0.001, unpaired t-test with FDR). 

Unlike in the comparison of treated and control mutIDH1R132H LN18 cells, the FCs were 

small: FCAG120 = 1.27, FCAG881 = 1.30, and FCGSK864 = 1.20 (control/treated). 2-HG abundance 

in treated and control wtIDH1 and mutIDH1R132H LN18 cells are summarised in Figure 4.5.1.  
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The 2-3 times greater efficiency in 2-HG suppression by AG-120, BAY 1436032 and GSK864 

compared to AG-881 was larger than expected, considering that AG-881 had only a slightly 

higher IC50 than the other three inhibitors (30 nM vs 12-15 nM, in vitro assays [246, 247, 

249, 250]). This experiment only had a single time point and treatment concentration. 

Potentially AG-881 has improved ability to decrease 2-HG at higher concentrations or if 

cells were treated for longer. Different concentration ranges and treatment lengths with 

the four mutIDH1 inhibitors were therefore investigated and the results are presented in 

sections 4.6 and 4.7.  

 

Figure 4.5.1. 2-HG abundance in wtIDH1 and mutIDH1R132H cells treated with mutIDH1 inhibitors AG-120, 
AG-881, BAY 1436032 and GSK864 (5.00 µM) for 24 hours. Dotted lines indicate median 2-HG abundance 
in wtIDH1 LN18 cells (blue) and mutIDH1R132H LN18 cells (red). N = 19 for WT-Co, N = 20 for MUT-CO, N = 
9 for WT-BAY and N = 10 for the remaining experimental groups. P-value thresholds: *** = p-value < 
0.001 and **** = p-value < 0.0001, calculated with Tukey’s test for wtIDH1 versus mutIDH1R132H control 
samples and unpaired t-test with FDR for the treated versus control comparisons. Box plot whiskers are 
the minimum and maximum ratio calculated for each sample, box plot limits are 25th, 50th and 75th 
percentile. Abbreviations: WT = wtIDH1, MUT = mutIDH1R132H, Co = control, BAY = BAY 1436032 and GSK 
= GSK864.  
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WtIDH1 has previously been shown capable of producing small amounts of 2-HG under 

normal culturing conditions [113], therefore the decrease of 2-HG in wtIDH1 LN18 cells was 

likely due to inhibition of wtIDH1 activity. If wtIDH1 activity was inhibited, an accumulation 

of isocitrate and decrease in 2-OG would be expected, as they are the most common 

substrate and product of the enzyme. There was no significant decrease in 2-OG abundance 

in the wtIDH1 cells after treatment with any of the four inhibitors (p-value > 0.05, unpaired 

t-test with FDR; 1.06 < FC < 1.23 (control/treated)). In mutIDH1R132H LN18 cells, GSK864 led 

to a significant decrease in 2-OG (FC = 1.39 (control/treated), p-value < 0.01, t-test with 

FDR). The difference in 2-OG abundance between AG-120, AG-881 and BAY 1436032 

treated and control mutIDH1R132H LN18 cells were minimal. Isocitrate, on the other hand, 

accumulated appreciably and significantly in both wtIDH1 and mutIDH1R132H LN18 cells, 

when compared to their respective control cells (1.2 < FC < 1.7 (treated/control) and 

p-value < 0.05, unpaired t-test with FDR). The only exception was wtIDH1 cells treated with 

BAY 1436032, where the increase was appreciable (FC > 1.22 (treated/control)), but not 

significant. The abundance of 2-OG and isocitrate found in the different cells is summarised 

in Figure 4.5.2.  
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Figure 4.5.2. Abundance (a) 2-OG and (b) isocitrate in wtIDH1 and mutIDH1R132H cells treated with 
mutIDH1 inhibitors AG-120, AG-881, BAY 1436032 and GSK864 (5.00 µM) for 24 hours.  Dotted lines 
indicate median abundance in wtIDH1 LN18 cells (blue) and mutIDH1R132H LN18 cells (red). N = 19 for 
WT-Co, N = 20 for MUT-CO, N = 9 for WT-BAY and N = 10 for the remaining experimental groups. P-value 
thresholds: * = p-value < 0.05, ** = p-value < 0.01 and *** = p-value < 0.001, calculated with Tukey’s test 
for wtIDH1 versus mutIDH1R132H control samples and unpaired t-test with FDR for the treated versus 
control comparisons.  Box plot whiskers are the minimum and maximum ratio calculated for each 
sample, box plot limits are 25th, 50th and 75th percentile. Abbreviations: WT = wtIDH1, MUT = 
mutIDH1R132H, Co = control, BAY = BAY 1436032 and GSK = GSK864. 
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The mutIDH1R132H LN18 cells treated with mutIDH1 inhibitors were no longer accumulating 

2-HG and it was hypothesised that the ‘relief’ from mutIDH1 activity would lead to an 

increase in 2-OG abundance. It was therefore surprising that 2-OG abundance remained 

unchanged or even decreased overall in mutIDH1R132H LN18 cells after treatment with the 

mutIDH1 inhibitors. Cell viability also did not change significantly between treated and 

control cells at 5.00 µM inhibitor for 24 hours. The consumption-rate of nutrients was 

therefore judged as similar between control and treated cells. It was speculated that 2-OG 

previously used for 2-HG biosynthesis was therefore re-directed to other reactions. That 

re-direction could suggest a major change in 2-OG dependent metabolism in mutIDH1R132H 

LN18 cells, which will be investigated further in chapter 5.  

The appreciable increase of isocitrate in both wtIDH1 and mutIDH1R132H LN18 cells 

indicated that wtIDH1 activity was inhibited in both cell lines. The mutIDH1R132H LN18 cells 

were still able to express wtIDH1 as the gene had not been knocked down/out. WtIDH1 

may be present in patient tumours as well, as the IDH1 mutation is usually heterozygous 

[reviewed in 428]. Thus, the presence of active wtIDH1 and subsequent inhibition in the 

mutIDH1R132H LN18 cell model was not necessarily different from what occurs in tumour 

cells treated with mutIDH1 inhibitors.  

In summary, mutIDH1 inhibitors led to substantial and significant decrease in 2-HG 

abundance in mutIDH1R132H LN18 cells. The relative suppression of 2-HG in mutIDH1R132H 

LN18 cells by the different inhibitors were larger than expected based on the low IC50 values 

(in vitro assays) reported in the literature. In wtIDH1 cells, there was a small, but significant 

decrease in 2-HG abundance. Both cell lines had similar increase in isocitrate abundance 

after treatment with the mutIDH1 inhibitors, indicating that the wtIDH1 enzyme was 

inhibited in both cell lines. 
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4.6.  2-HG, 2-OG and isocitrate abundance in mutIDH1R132H LN18 cells is 

dependent on mutIDH1 inhibitor type and treatment concentration. 

The difference in potential to decrease 2-HG abundance between AG-881 and the other 

three mutIDH1 inhibitors warranted a concentration range experiment to investigate 

whether inhibition was improved at higher treatment concentrations. In addition, it was of 

interest to investigate how the cells responded to a range of inhibitor concentrations, in 

relation to 2-HG abundance and how that correlated with changes in the abundance of 

other metabolites.  

Data processing and analysis 

MutIDH1R132H LN18 cells were cultured with the following concentrations of AG-120, 

AG-881, BAY 1436032 or GSK864: 0.05, 0.50, 5.00 and 10.0 µM. WtIDH1 LN18 cells were 

not included because the focus of the experiment was on 2-HG suppression in mutIDH1R132H 

expressing cells. Incubation with treatment lasted for 24 hours. Each plate had 4 replicates 

of control samples, with a total of 32 control samples across 8 plates. Each treated 

experimental group had 4 replicates. Supplemented LG DMEM was used throughout. All 

samples, treated or control, had 0.2% (v/v) DMSO in the media. Samples were plated, 

harvested and processed as described in Section 2.5.3-2.5.5. Sample preparation was 

performed as described in section 2.6.1. DNA concentrations used for sample 

normalisation are provided in Table A.V.1 in appendix V. The samples were analysed with 

IC-MS and 2-HG, 2-OG and isocitrate were identified based on the criteria described in 

section 2.8.2 (see Table A.V.2 for identification criteria). 

Results 

Cells treated with AG-120 and AG-881 had a substantial and significant decrease in 2-HG 

abundance at the lowest concentration 0.05 µM inhibitor in media (FCAG-120 = 6.09 and  

FCAG-881 = 14.8 (control/treated), p-value < 0.0001, one-way ANOVA and Dunnett’s MCTe). 

Treatment with BAY 1436032 and GSK864 (0.05 µM) led to a more modest, but still 

significant, decrease in 2-HG abundance (FCBAY 1436032 = 1.94 and FCGSK864 = 1.36 

(control/treated), p-value < 0.0001, one-way ANOVA and Dunnett’s MCTe). Increasing 

AG-881 treatment concentration to 0.50 µM led to a significant drop in 2-HG levels 

compared to that achieved with 0.05 µM (p-value < 0.01, unpaired two-sided t-test). No 
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further significant decrease in 2-HG was achieved by increasing the concentration of 

AG-881 to either 5.0 or 10.0 µM. Cells treated with AG-120, BAY 1436032 or GSK864 did 

respond to increased treatment concentration. Cells treated with higher concentration of 

AG-120, BAY 1436032 or GSK864 had significantly lower 2-HG abundance than cells treated 

with lower concentration of the inhibitors (p-value < 0.01, t-test with FDR). Moreover, the 

linear regression of 2-HG abundance to mutIDH1 inhibitor concentration yielded 

significantly non-zero slopes for AG-120, BAY 1436032 and GSK864 (p-value < 0.05, 

R2 > 0.33), but not for AG-881. The effect of the different inhibitors at different 

concentrations on 2-HG levels in mutIDH1R132H LN18 cells is summarised in Figure 4.6.1.  

The depletion in 2-HG abundance after treatment with AG-881 remained modest 

compared to the other three inhibitors, even at 5.00 µM and 10.0 µM. AG881 reached only 

 

Figure 4.6.1. 2-HG abundance in mutIDH1R132H LN18 cells treated with four different concentrations 
(0.05, 0.50, 5.0 and 10 µM) of AG-120, AG-881, BAY 1436032 or GSK864. The data points are mean of 
sum normalised abundance of 2-HG and error bars are one standard deviation. The solid red line 
indicates the mean abundance of the control samples, the dotted lines are the mean ± one standard 
deviation. N = 32 for control, N = 4 for all treatment groups except AG881 (5.0 µM) where N = 3.  
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a maximum FC = 23 (control/treated). The other three inhibitors all achieved FC > 350 at 

the two highest treatment concentrations. All FCs are summarised in Table 4.6.1.  

The lack of correlation between treatment concentration and 2-HG abundance in cells 

treated with AG-881 was surprising. The mutIDH1 inhibitors were assumed to have a similar 

mechanism because all bound allosterically to mutIDH1 in the dimer interface [247, 249, 

312]. It was therefore expected that 2-HG abundance would decrease with increasing 

inhibitor concentration. One explanation for the non-correlative behaviour of AG-881 could 

be that it reached a threshold of 2-HG suppression, i.e., maximum inhibition efficiency, at 

a far lower concentration than the other inhibitors. AG-120, BAY1436032 and GSK864 only 

appeared to be approaching a threshold of maximum inhibition efficiency at 10.0 µM 

treatment concentration. However, it may also be that the cells needed to be treated for 

longer with AG-881 to achieve a high degree of 2-HG suppression. A time-course 

experiment was therefore performed and the results are presented in section 4.7. In 

addition, the uptake of AG-881 may have been lower than the other three inhibitors; this 

was also explored further by comparing the inhibitor levels in both cells and media. The 

results are presented in section 4.8.  

2-OG decreased significantly in mutIDH1R132H
 LN18 cells treated with AG-120 (5.00 µM, 

10.0 µM), BAY 1436032 (10.0 µM) and GSK864 (5.00 µM, 10.0 µM) (FC > 1.20 

(control/treated), p-value < 0.01, unpaired t-test with FDR). The decrease was linear with 

increased treatment concentration for AG-120, BAY 1436032 and GSK864 (non-zero slope, 

p-value < 0.0001, R2 > 0.74), but not for AG-881. The only significant and appreciable 

increase of isocitrate in treated cells was after treatment with 0.50 µM AG-120 (FC = 1.2 

(treated/control)), 5.0 µM AG-881 (FC = 1.33 (treated/control)), 10.0 µM BAY 1436032 (FC 

= 1.28 (treated/control)) or 10.0 µM GSK864 (FC = 1.50 (treated/control)) (all: p-value < 

0.01, t-test with FDR). The increase in isocitrate was only linear with a significantly non-

Table 4.6.1. FC of 2-HG (control/treatment) achieved at 0.05, 0.50, 5.00 and 10.0 µM treatment 
concentration with mutIDH1 inhibitors AG-120, AG-881, BAY 1436032 and GSK864 in mutIDH1R132H LN18 
cells.  

Inhibitor Fold-change of mean 2-HG in control versus treated mutIDH1R132H LN18 cells 

0.05 µM 0.50 µM 5.00 µM 10.0 µM 

AG-120 6.09 149 545 712 

AG-881 14.8 20.8 23.0 19.4 

BAY 1436032 1.94 15.0 355 469 

GSK864 1.46 12.1 401 467 
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zero slope for cells treated with GSK864 (p-value = 0.0031, R2 > 0.48). Figure 4.6.2 

summarises the ion abundance of 2-OG and isocitrate in control cells, as well as the linear 

regressions of 2-OG and isocitrate versus inhibitor concentration. 

As observed for 2-HG, the decrease in 2-OG abundance was dependent on inhibitor 

concentration for cells treated with AG-120, BAY 1436032 or GSK864. Isocitrate 

accumulation appeared to reach a threshold for cells treated with AG-120, AG-881 or BAY 

1436032 (5.00 µM), as there was no further increase in abundance at higher concentration 

(10.0 µM). The accumulation of isocitrate was not as apparent in this experiment compared 

with the observations in section 4.5, but coupled with the decrease in 2-OG, wtIDH1 was 

still regarded as inhibited at high concentrations of inhibitor.  

In summary, both 2-HG and 2-OG abundance decreased in a concentration dependent 

manner in mutIDH1R132H LN18 cells when treated with AG-120, BAY 1436032 or GSK864. 

Cells treated with AG-881 had decreased abundances of 2-HG and 2-OG, but not in a 

concentration dependent manner as there was no linear correlation between metabolite 

 
Figure 4.6.2. Abundance and linear regression of (a) 2-OG and (b) isocitrate in mutIDH1R132H LN18 cells 
treated with four different concentrations (0.05, 0.50, 5.0 and 10 µM) of AG-120, AG-881, BAY 1436032 
and GSK864. The data points are mean of median normalised abundance and error bars are one standard 
deviation. The dashed lines are the linear regressions of ion abundance of 2-OG and isocitrate versus 
mutIDH1 inhibitor concentration. * = significantly non-zero slope, p-value < 0.01. The solid red line 
indicates the mean abundance of the control sample, the dotted line mean ± one standard deviation. 
The lines were added for clarity. Number of biological replicates were N = 32 for control, N = 4 for all 
treatment groups except AG881 (5.0 µM) where N = 3.  
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abundance and treatment concentration. The decrease in 2-HG in cells treated with AG-881 

was significantly smaller than for cells treated with the other three inhibitors. Isocitrate 

increased after treatment with all four of the inhibitors, but only correlated linearly with 

increasing concentration of GSK864. Thus, both wtIDH1 and mutIDH1R132H were inhibited, 

but the efficiency in inhibition was drug dependent.  

 

4.7.  Length of exposure time to mutIDH1 inhibitor improves 2-HG suppression 

with maximum reached after 24 hours 

Data processing and analysis 

In order to assess the ability of the four mutIDH1 inhibitors AG-120, AG-881, BAY 1436032 

and GSK864 to decrease 2-HG abundance as well as their effect on 2-OG and isocitrate 

abundance over time, two different time course experiments were carried out. 

MutIDH1R132H LN18 cells were separately treated with 5.00 µM of each inhibitor. All media 

was supplemented LG DMEM with 0.1% (v/v) DMSO, including control sample media. The 

S-TICO experiment had timepoints of 1, 2, 4, 8, 12, and 24 hours, while the L-TICO 

experiment had timepoints 24, 48, 72 and 96 hours. The latter three long time points were 

further split into two groups: group 1 had media replaced every 24 hours and group 2 had 

media left on for the duration of the time point. Cells were grown in 12-well plates, then 

harvested and processed as described in sections 2.5.3-2.5.5. The number of biological 

replicates per timepoint was 8 for control and 4 per inhibitor, i.e., 24 samples in total per 

timepoint. Sample preparation was performed as described in section 2.6.1. DNA 

concentrations used for normalisation are provided in Table A.VI.1 and A.VI.2 in appendix 

VI in Appendix VI. The samples were analysed with IC-MS and 2-HG, 2-OG and isocitrate 

were identified based on the criteria described in section 2.8.2 (see Table A.VI.3 and A.VI.4 

for identification criteria).  

Results 

A significant decrease in 2-HG abundance in mutIDH1R132H LN18 cells treated with any of 

the four inhibitors was first reached at the 2-hour timepoint (FC = 1.64 (control/treated), 

p-value < 0.0001, one-way ANOVA and Dunnett’s MCTe). Up until the 8-hour timepoint the 

difference in 2-HG abundance between control and treated cells increased due to both a 
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continued increase of 2-HG abundance in control cells and decrease in treated cells. 

Between 12 and 24 hours, the difference between control and treated cells was largely due 

to an increase in 2-HG in control cells and not further decrease in treated cells. All inhibitors 

were capable of a similar degree of 2-HG suppression up until 4 hours of treatment 

(3.7 < FC < 6.2 (control/treated)), after which AG-881 plateaued (9.5 < FC < 14.1 

(control/treated)). The remaining three inhibitors continued to decrease 2-HG levels 

further and by 24 hours all cells treated with AG-120, BAY 1436032 or GSK864 had reached 

FC > 100 (control/treated). All FC calculations are ratios of mean 2-HG abundance between 

control and treated samples at the same time point. The 2-HG levels measured in the 

S-TICO experiment are summarised in Figure 4.6.1.  

The difference in 2-HG suppression between AG-881 and the other three inhibitors 

remained when treatment lasted 48, 72 or 96 hours. The FC of 2-HG was 9.54-24.7 for all 

timepoints of AG-881 treated cells, while it ranged from 151-349 for AG-120, 69.4-224 for 

BAY 1436032, and 172-452 for GSK864. FC was calculated as mean 2-HG level in control 

samples at a specific time point divided by the mean 2-HG level of treated samples at the 

same time point. All FCs are summarised in Table 4.7.1.  

 

Figure 4.7.1. 2-HG levels in mutIDH1R132H LN18 cells treated with AG-120, AG-881, BAY 1436032 and 
GSK864 (5.0 µM) for 1, 2, 4, 8, 12 and 24 hours. The number of biological replicates was N = 4 for treated 
samples and N = 8 for control samples. Data points are mean 2-HG and error bars are one standard 
deviations.   
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Changing media every 24 hours 

did not lead to further decrease 

in 2-HG abundance in treated 

cells, as the slope of a linear 

regression of elapsed time by 

ion abundance was not 

significantly different from zero. 

In cells where media was not 

swapped during the duration of 

treatment, 2-HG levels 

decreased over time (p-value < 0.001, slope of linear regression significantly non-zero). 

Control samples in both group 1 (swapped media) and group 2 (media not swapped), saw 

2-HG levels decrease over time (p-value < 0.0001, slope of linear regression significantly 

non-zero). Comparing group 1 and 2 cells treated with the same inhibitor revealed that 

2-HG abundance was higher in group 1 than group 2 cells (1.17 < FC < 2.94 (group 1/group 

2)), except for cells treated with AG-120 at time point 48 hours (FC = 1.29 (group 2/group 

1)). The 2-HG abundance for group 1 and 2 are shown in Figure 4.7.2.  

Table 4.7.1. FC of mean 2-HG levels between control samples 
and treated samples at a given timepoint in the L-TICO 
experiment. Media swaps occurred every 24 hours during 
incubation. N = 4 for treated samples and N = 8 for control 
samples. N is separate wells of cells processed and analysed as 
separate samples. 

Media 
swapped 

Timepoint 
(hours) 

FC (control/treated) 

AG120 AG881 BAY 
1436032 

GSK864 

- 24 210 15.9 110 200 

Yes 48 349 16.9 178 281 

Yes 72 175 11.9 89.5 172 

Yes 96 151 9.54 69.4 176 

No 48 243 21.0 213 452 

No 72 337 24.7 224 369 

No 96 200 20.3 207 362 

 

Figure 4.7.2. 2-HG levels in mutIDH1R132H cells treated with AG-120, AG-881, BAY1436032 and GSK864 
(5.0 µM) for 24, 48, 72 and 96 hours. Solid lines denote 2-HG abundance in group 1 cell samples and 
dotted lines denote 2-HG abundance in group 2 cell samples. Timepoint 24 hours was the same set of 
samples for group 1 and 2. The number of biological replicates was N = 4 for treated samples and N = 8 
for control samples. Data points are mean 2-HG and error bars are one standard deviations.   
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The difference in 2-HG abundance between control and treated cells was far greater than 

between cells cultured with or without refreshed media. Potential metabolic differences 

between group 1 and group 2 cells were therefore most likely not due to difference in 2-HG 

abundance, but rather the effect of replenishing nutrients by renewing media. That was 

beyond the scope of interest in this chapter, therefore comparisons of group 1 and 2 of 

metabolites other than 2-HG were not included. Further analysis of L-TICO data was 

focussed on group 2 because the potential confounding effect of renewing media was not 

present. 

In the S-TICO experiment, there was no significant difference in 2-OG abundance between 

control and any of the treated samples at any of the timepoints. The abundance of 2-OG 

increased in all cells from hour 1 to 24, but that was assumed to be due to cell growth, as 

it was similar for all experimental groups, see Figure 4.7.3.(a).  In the L-TICO experiment, 

cells treated with GSK864 had significantly and appreciably lower 2-OG abundance than 

control cells at timepoint 48, 72 and 96 hours (1.52 < FC < 1.74 (control/treated), 

p-value < 0.01, unpaired t-test with FDR). The abundance of 2-OG decreased over time in 

all experimental groups (non-zero slope in linear regression, p-value < 0.001), except cells 

treated with AG-120, see Figure 4.7.3.(b). In group 1 L-TICO cells, where media was 

refreshed every 24 hours, 2-OG did not change significantly or appreciably in any of the 

experimental groups (data not shown). The decrease in group 2 was therefore considered 

due to limited nutrient availability when cells were incubated for longer than 48 hours total.  
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There was no significant difference in isocitrate abundance between the treated and 

control cells at all timepoints of the S-TICO experiment. Isocitrate increased appreciably 

and significantly from hour 1 to 24 in control and AG-881 treated cells (FC > 1.4 

(hour 24/hour 1) and p-value < 0.05, t-test with FDR), but not in the cells treated with the 

other inhibitors. Unlike the abundance of 2-OG, which increased throughout, isocitrate 

levels fell slightly from hour 1 to 4 and did not increase until hour 12 to 24. In the L-TICO 

experiment, there was an appreciable increase in isocitrate abundance for all treated cells 

compared to control cells at all timepoints (FC > 1.2 (treated/control). The increase was 

only statistically significant for the following timepoints and inhibitors: 24 hours, AG-120; 

48 hours, AG-881; 72 hours, GSK864; and 96 hours, AG-120, AG-881 and GSK864 

(p-value < 0.05, t-test with FDR). Isocitrate abundance decreased in all cells from beginning 

to end of the time course and experimental groups had linear regressions with significantly 

non-zero slopes (p-value < 0.01). The overall trend was that of accumulation of isocitrate 

in treated versus control cells. The isocitrate abundance in the S-TICO and L-TICO 

experiment are shown in Figure 4.7.4.  

 
Figure 4.7.3. 2-OG abundance in mutIDH1R132H LN18 cells treated with AG-120, AG-881, BAY 1436032 and 
GSK864 (5.0 µM) in the S-TICO and L-TICO experiments. (a) S-TICO, timepoints 1, 2, 4, 8, 12 and 24 hours. 
(b) L-TICO, timepoints 24, 48, 72 and 96 hours.  The number of biological replicates was N = 4 for treated 
samples and N = 8 for control samples. Data points are mean 2-OG and error bars are one standard 
deviations.   
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Similar to the wtIDH1/mutIDH1 inhibition and concentration range experiments, the 

decrease in 2-OG and increase in isocitrate in treated cells compared to control cells was 

small (FC < 2 (control/treated)). The difference in abundance of 2-OG and isocitrate 

between control and treated cells took 24 hours to establish, compared to 2-HG which 

became apparent after 2 hours. Of the four inhibitors, GSK864 again was the most effective 

at decreasing 2-OG abundance, but all inhibitors led to a similar degree of accumulation of 

isocitrate in treated cells. Potentially the time lag in effect on 2-OG and isocitrate 

abundance could be due to uptake of inhibitor, i.e., that the concentration was not high 

enough in the cells to inhibit wtIDH1 until 24 hours of incubation. Or the consequence of 

limited wtIDH1 activity took longer to become apparent, i.e., the pools of 2-OG and 

isocitrate took longer to diminish/accumulate due to the metabolites being utilised and 

supplied by enzymes other than wtIDH1.  

In summary, the decrease in 2-HG in treated cells was apparent after 2 hours, but took at 

least 12 hours for the abundance to equilibrate. In the first 4 hours of exposure, the four 

inhibitors were similarly capable of decreasing 2-HG abundance. After 4 hours, the 

difference observed between AG-881 and AG-120, BAY 1436032 and GSK864 was 

established and remained for the duration of the time course experiments. Refreshing 

media did not lead to further decrease in 2-HG abundance in treated cells, nor a substantial 

increase in control cells.  There was no significant or appreciable difference between control 

 
Figure 4.7.4. Isocitrate abundance in mutIDH1R132H LN18 cells treated with AG-120, AG-881, BAY 1436032 
and GSK864 (5.0 µM) in the S-TICO and L-TICO experiments. (a) S-TICO, timepoints 1, 2, 4, 8, 12 and 24 
hours. (b) L-TICO, timepoints 24, 48, 72 and 96 hours.  The number of biological replicates was N = 4 for 
treated samples and N = 8 for control samples. Data points are mean Isocitrate and error bars are one 
standard deviations.   
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and treated cells for the abundance of 2-OG or isocitrate in the first 24 hours of exposure to 

inhibitor. After 24 hours, 2-OG decreased significantly in cells treated with GSK864 and 

isocitrate accumulated in all treated cells.  

 

4.8.  Cellular uptake and degradation were different for mutIDH1 inhibitors AG-

120, AG-881, BAY 1436032 and GSK864 

Data processing and analysis 

The lack of a correlation between AG-881 concentration and 2-HG abundance, as well as 

inferior ability to suppress 2-HG over time when compared to the three other inhibitors, 

was puzzling. In order to rule out that this was not due to lower cell uptake and inhibitor 

availability in the cells, the cell and media concentration of inhibitor was monitored over a 

range of concentrations and time. Cell and media samples from the concentration range 

experiment and the S-TICO and L-TICO experiments were analysed using the underivatised 

RPLC-MS. Media samples were extracted with acetonitrile to decrease any non-specific 

protein binding and subsequent loss of small molecules (section 4.3). The sample 

preparation and analysis are described in section 2.6.3 and 2.7.3, respectively.  

The four inhibitors had different ionisation efficiencies, therefore to compare the different 

inhibitors between cell samples or between media samples, a ratio was calculated between 

the abundance of an inhibitor in biological samples to standard samples. The abundance 

was measured by peak area of the EIC for each inhibitor, as described in section 2.8.1. The 

cell and media samples were not prepared with the same solvents, therefore different 

standards were used for each. Cell samples were compared to a solvent-matched (80% 

MeOH(aq)) standard (1.00 µM). The spent media samples were compared to the fresh media 

samples, which were extracted as described in section 2.6.3.  
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Results: concentration range experiment 

In the concentration range experiment, the concentration for all four inhibitors in spent 

and fresh media increased linearly with significantly non-zero slopes (p-value < 0.0001) and 

R2 > 0.96, as shown in Figure 4.8.1.(a)-(d). The slope of the linear regression of spent media 

was noticeably shallower than that of fresh media for AG-120 and GSK864, unlike AG-881 

and BAY 1436032 where the gradient was similar. The ratios of inhibitor in spent/fresh 

media were therefore calculated at each concentration; AG-120 and GSK864 had a ratio of 

0.59-0.80, AG-881 a ratio of 0.92-1.03 and BAY 1436032 a ratio of 0.90-1.27. The ratio of 

AG-120 and GSK864 was significantly lower than the ratios of AG-881 and BAY 1436032 

(p-value < 0.05, one-way ANOVA with Tukey’s MCT). The difference indicated that there 

was less AG-120 and GSK864 in media after incubation than for AG-881 and BAY 1436032, 

which suggested higher uptake into cells or greater rate of degradation. The different ratios 

are illustrated as box plots in Figure 4.8.1.(e)-(h).  
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Figure 4.8.1. MutIDH1 inhibitor levels in spent and fresh media in the concentration range experiment. 
The individual inhibitors and the linear regression of their average EIC peak area are plotted for (a) 
AG-120, (b) AG-881, (c) BAY 1436032 and (d) GSK864. N = 4 biological replicates for spent media, N = 3 
repeat injections of the same extracted sample for fresh media. Each data point is the mean peak area 
of the inhibitor EIC and the error bar is one standard deviation. Ratio of inhibitor in spent/fresh media 
are plotted as box plots for (e) 0.05 µM, (f) 0.50 µM, (g) 5.00 µM and (h) 10.0 µM. N = 4 biological 
replicates for spent media and N = 3 for repeat injections of the same extracted sample for fresh media. 
Box plot whiskers are the minimum and maximum ratio calculated for each sample, box plot limits are 
25th, 50th and 75th percentile. P-values calculated between ratios within a single concentration group 
with one-way ANOVA and Tukey’s MCTe. * = p-value < 0.05, ** = p-value < 0.01, *** = p-value < 0.001 
and **** = p-value < 0.0001. 



Chapter 4. The effect of mutIDH1 inhibitors on wtIDH1 and mutIDH1R132H in glioblastoma cells 

176 

 

To determine whether cellular uptake was higher for AG-120 and GSK864 than AG-881 and 

BAY 1436032, the inhibitors were measured in the cell samples. The inhibitors were 

compared as ratios to their respective standards, as described above. AG-120 had the 

lowest ratio to standard of all four inhibitors. It was significantly lower than the ratio 

measured for AG-881, BAY 1436032 and GSK864 at all four treatment concentrations 

(p-value < 0.05, one-way ANOVA followed by Tukey’s MCTe), except to BAY 1436032 at 

0.50 µM. AG-881 also had a significantly lower ratio to BAY 1436032 and GSK864 at all 

concentrations (p-value < 0.05, one-way ANOVA followed by Tukey’s MCTe), except for 

BAY 1436032 at 0.05 µM. Finally, GSK864 had the highest ratio between sample and 

standard of all the inhibitors, which was significantly higher than all other inhibitors at all 

treatment concentrations (p-value < 0.001, one-way ANOVA followed by Tukey’s MCTe). 

Despite the difference in cell abundance, all four inhibitors increased linearly in the cells 

with a significantly non-zero slope (p-value < 0.0001, R2 > 0.88). See Figure 4.8.2.(a-d) for 

the ratios of each inhibitor at the different treatment concentrations.  
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The media samples suggested that AG-120 and GSK864 were either taken up by the cells 

to a greater extent or degraded more rapidly than AG-881 and BAY 1436032. In the cell 

samples there was a higher relative abundance of GSK864 than for the other three 

inhibitors, which indicated that the greater decrease of GSK864 in spent media was due to 

higher cellular uptake. On the other hand, AG-120 had the lowest relative abundance in 

cells and that instead implied a greater degree of either active enzymatic degradation or 

poorer compound stability. AG-881 and BAY 1436032 had similar relative abundance in 

 
Figure 4.8.2. MutIDH1 inhibitor abundance in the concentration range experiment cell samples as a ratio 
to a standard (1.00 µM). (a-d) Ratio of inhibitors in cell samples to standard (1.0 µM) for cells treated 
with the following inhibitor concentrations present in the media: (a) 0.05 µM, (b) 0.50 µM, (c) 5.00 µM 
and (d) 10.0 µM. Each data point is a singular measurement of inhibitor in cell divided by the mean of 
the peak are of the inhibitor in the standard. N = 2-4 biological replicates for cell samples and N = 3 
repeat injections of the standard (1.00 µM in 80% MeOH(aq)). P-values calculated between ratios within 
a single concentration group with one-way ANOVA and Tukey’s MCTe. * = p-value < 0.05, ** = p-value < 
0.01, *** = p-value < 0.001 and **** = p-value < 0.0001. 
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cells, between that of AG-120 and GSK864. However, both were present at higher relative 

abundance in the media samples than AG-120 and GSK864. It was therefore considered 

unlikely that AG-881 and BAY 1436032 were degrading in the media, and instead the lower 

cellular abundance relative to GSK864 was either due to poorer uptake or greater 

enzymatic degradation within the cells.  

Finally, the inferior ability of AG-881 in reducing 2-HG levels in treated cells could not be 

explained by lack of uptake into cells. AG-881 was present in the treated cells at similar 

relative abundance to BAY 1436032. Furthermore, the inhibitor increased linearly in both 

media and cell samples. Thus, the lack of concentration dependent relationship between 

2-HG and AG-881 was not due to the inhibitor reaching a maximum cellular uptake rate. 

Instead, it was more likely that there was a difference in how AG-881 interacted with 

mutIDH1R132H compared to AG-120, BAY 1436032 and GSK864. That difference had to not 

previously been as apparent in enzyme assays, where IC50 values were similar (12-30 nM 

[246, 247, 250, 416]).   

In conclusion, all four inhibitors were present in media and cell samples. The abundance of 

inhibitor in cell correlated linearly with abundance of inhibitor in media, i.e., exposing the 

cells to more inhibitor meant that more was taken up by the cells. It was speculated that 

GSK864 had the highest cellular uptake, while AG-120 degraded to a greater extent than 

the other inhibitors. AG-881 and BAY 1436032 were not particularly decreased in media 

samples, therefore their lower cellular abundance than GSK864 was concluded to be due to 

either lower cellular uptake or greater enzymatic degradation within the cells.  

Results: time-course experiments 

The inhibitor uptake over time was considered next by investigating the abundance of 

mutIDH1 inhibitors in the S-TICO and L-TICO experiments. At all timepoints (1-96 hours), 

AG-120 and GSK864 had lower spent-to-fresh ratio for media samples than AG-881 and 

BAY 1436032 (see Figure 4.8.3). That was the same trend as observed in the concentration 

range experiment. In the L-TICO experiment, the level of AG-120, AG-881 and BAY 1436032 

did not change significantly over time in either group 1 nor group 2 media (p-value > 0.05, 

non-zero slope). However, GSK864 levels rose in media over time, in both group 1 and 2 

(p-value < 0.05, non-zero slope, R2
 = 0.42 and 0.30), see Figure 4.8.3(b).  
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The similar ratios between group 1 and 2 showed that refreshing media did not lead to 

higher or lower levels of inhibitor compared to media placed on cells for the duration of 

the timepoint. The exception was for AG-120 at timepoint 72 hours, where the ratio of 

spent-to-fresh media was higher in group 1 than group 2 media. However, the difference 

at this specific timepoint was likely due to a new fresh media being used, which could 

potentially have had a slightly different concentration of inhibitor compared to the media 

 

 

Figure 4.8.3. Ratio between spent and fresh media of mutIDH1 inhibitors in the (a) S-TICO and (b) L-TICO 
experiment. In (b) solid line is inhibitor level in group 1 (media swapped) and dashed line is inhibitor 
level in group 2 (media not swapped). MutIDH1 inhibitor concentration in the fresh media was 5.00 µM.  
N = 4 biological replicates for spent media and N = 3 for repeat injections of the same extracted sample 
for fresh media. Each data point is the mean of the ratio between spent and fresh media and the error 
bars are one standard deviation.  
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used for timepoints 24 and 48 hours for group 1. The difference between group 1 and 2 for 

AG-120 was otherwise minimal at timepoints 24, 48 and 96 hours. 

In cell extracts, all four inhibitors were detected in samples from the one-hour timepoint 

onward. The abundance decreased slightly in cell samples incubated for 2 hours, but then 

increased after 4 hours of incubation and plateaued for the remaining timepoints (8, 12 

and 24 hours). The order of lowest to highest ratio to standard (1.00 µM) was AG-120 

(0.009 ± 0.002), AG-881 (0.07 ± 0.02), BAY 1436032 (0.11 ± 0.04) and GSK864 (0.21 ± 0.09), 

see Figure 4.8.4. The order was maintained at all timepoints and was the same as in the 

concentration range experiment.  

The cell and media samples in the S-TICO experiment showed that a maximum abundance 

of inhibitor was reached after 4 hours of incubation. Subsequently a difference in 2-HG 

abundance between cells treated with AG-881 and the other three inhibitors was observed. 

It appeared that the inhibitor abundance in cells had to equilibrate prior to being able to 

observe a difference in inhibition efficiency. In the L-TICO experiment the lack of substantial 

change in inhibitor abundance in media, as well as 2-HG abundance in cells, indicated that 

the abundance of inhibitor remained stable in the cells after 24 hours. The lack of difference 

 

Figure 4.8.4. MutIDH1 inhibitor levels in the S-TICO experiment cell samples as a ratio to a standard 
(1.00 µM). (a) All four mutIDH1 inhibitors and (b) AG-120 only. The samples and standards were 
measured with underivatized RPLC-MS. N = 2-4 biological replicates for cell samples and N = 3 repeat 
injections of the standard (1.00 µM in 80% MeOH(aq)). The data points are mean of the ratio of EIC peak 
area of inhibitor in a cell sample divided by mean EIC peak area of inhibitor in the standard. Error bars 
are one standard deviation.  
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in inhibitor abundance between group 1 and 2 in media samples was expected considering 

2-HG abundance was similar in cell samples from both experimental groups.  

However, it is of interest that supplying the cells with fresh media did not lead to higher 

abundance of inhibitor in the cells. It was originally hypothesised that by replacing the 

media every 24 hours, degraded or metabolised inhibitor would be replaced and inhibition 

of mutIDH1 would be either maintained or increased. The cells were capable of taking up 

more inhibitor, because in the concentration range experiment there was a clear 

correlation between increased inhibitor in media leading to increased inhibitor in cells. 

Potentially an equilibrium between cells and media was present, whereby refreshing the 

media with the near-same concentration was not enough to push the cells to take up more 

inhibitor.  

In summary, the four inhibitors differed in abundance present in spent media and in cells. 

The difference was established after just 1 hour of incubation and remained at 96 hours of 

incubation. Refreshing media with the same concentration of inhibitor was not enough to 

push the apparent equilibrium between cells and media. The inferior ability of AG-881 to 

decrease 2-HG abundance could not be explained by a lack of uptake of inhibitor into cells, 

as it had similar uptake to BAY 1436032 (a superior inhibitor) across different 

concentrations and over time (1-96 hours).  

 

4.9.  MutIDH1 variant resistant to AG-120 successfully inhibited by allosteric 

mutIDH1 inhibitor FT2102 

The mutIDH1 inhibitor AG-120 was approved by the FDA for treatment of relapsed or 

refractory AML in 2018 [419]. However, the same year a case study was published where a 

second site mutation of IDH1 that conferred resistance to AG-120 was identified [264]. Five 

additional cases of resistance arising in AML after treatment with AG-120 have since been 

reported [266, 424]. The mutation leads to a double mutant enzyme (mutIDH1R132H+S280F) 

where the binding affinity of AG-120 to the dimer interface of the enzyme is reduced and 

the conversion of 2-OG to 2-HG is increased [312]. Resistance has not yet been reported 

for glioma, but because mutIDH1 inhibitors are being pursued as a therapy for glioma it 
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was of interest to investigate whether the double mutation could be treated effectively 

with new inhibitors. Biochemical assays performed by Dr Raphael Reinbold identified three 

allosteric inhibitors (FT2102, Ds1001b and IDH224) that could overcome the resistance of 

the double mutant enzyme [312].  

Data processing and analysis 

The inhibitor FT2102 was compared to AG-120 using three different LN18 cell lines: wtIDH1, 

single mutIDH1 (R132H) and double mutIDH1 (R132H+S280F), kindly provided by Dr 

Bardella. The cells were plated in 12-well plates, then treated and harvested as described 

in section 2.5.3-2.5.5. The cells were treated with 5.00 µM AG-120 or FT2102 for 24 hours, 

control cells were cultured with 0.1% (v/v) DMSO. Supplemented LG DMEM was used 

throughout. Sample processing was performed as described in section 2.6.1. DNA 

concentrations used for normalisation are provided in Table A.VII.1 in appendix VII. The 

samples were analysed by IC-MS as described in section 2.7.1. The IC-MS data was 

processed in Progenesis QI (section 2.8.2) and 2-HG was identified by comparing retention 

time (-0.87 min), m/z (-0.49 ppm), isotopic similarity (99.8%), and fragmentation pattern 

(45/100 similarity score) to a known standard, as described in section 2.8.2. Ion abundance 

was measured by integration of the identified peak in Progenesis QI.  

Results 

AG-120 and FT2102 led to significant and substantial decrease in the abundance of 2-HG in 

the AG-120-sensitive mutIDH1R132H LN18 cells (FCAG-120 < 92, FCFT2102 < 103, p-value < 0.0001, 

one-way ANOVA with Šídák MCT). The abundance of 2-HG was significantly decreased by 

both inhibitors in the AG-120-resistant mutIDH1R132H+S280F LN18 cells (p-value < 0.001, 

one-way ANOVA with Šídák MCT). The response to AG-120 was far more limited in the 

resistant cell line, with only a FCAG-120 < 1.27 (control/treated). The FC was small enough 

compared with the effect of AG-120 in mutIDH1R132H LN18 cells that the mutIDH1R132H+S280F 

LN18 cells was still considered resistant to the inhibitor. The AG-120-resistant cell line 

responded to FT2102 similarly as the non-resistant cell line: FCFT2102 < 152 (control/treated). 

The abundance of 2-HG did not change significantly in the wtIDH1 cells. 2-HG abundance 

in the three cell lines is summarised in Figure 4.9.1.  
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In summary, it was shown that resistance could be overcome by using updated allosteric 

inhibitors such as FT2102.  

 

4.10. Discussion 

Surgery, radiotherapy and adjuvant chemotherapy (usually using alkylating and 

antineoplastic agents) remain the standard treatment regimen for mutIDH1 glioma 

[reviewed in 433]. Therapies targeted more specifically to the tumour tissue, to improve 

survival and decrease side-effects, are needed. The specificity of mutIDH1 to cancer tissue 

and its apparent role in tumorigenesis, makes it an ideal target for therapeutic intervention. 

In the past 10 years, several small-molecule mutIDH1 inhibitors have been developed [176, 

246, 247, 249, 250, 254, 413-418]. The early clinical trials of the drugs performed in glioma 

so far have shown that the inhibitors are generally well tolerated, but that improvement in 

patient survival has been limited [245, 263, 422, 423]. The trials were conducted with 

patients that had advanced disease, which may have biased the outcome. It remains to be 

seen how mutIDH1 inhibitors can benefit patients with less advanced disease. At the same 

time, resistance to the inhibitors has emerged from case studies of AML patients [264-266, 

 
Figure 4.9.1. 2-HG abundance in wtIDH1, mutIDH1R132H and mutIDH1R132H+S280F LN18 cells treated with 
mutIDH1 inhibitors AG-120 and FT2102. Cells were treated with 5.0 µM AG-120 or FT2102 for 24 hours. 
Number of biological replicates N = 4 for all experimental groups. Box plot whiskers are the minimum 
and maximum ratio calculated for each sample, box plot limits are 25th, 50th and 75th percentile. P-values 
calculated between control and treated within each cell line with one-way ANOVA and Dunnett’s MCT.  
*** = p-value < 0.001 and **** = p-value < 0.0001. 
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424-426] and cholangiocarcinoma patients [265, 427]. It likely remains only a matter of 

time before similar reports emerge from the clinical trials of mutIDH1 inhibitors in glioma.  

A diverse array of resistance mechanisms have been identified for AML, including second 

site mutations [264, 266, 424], isoform switching [265], co-occurring mutations [425] or 

combinations thereof [266]. Second site mutations, where affinity for inhibitor binding is 

diminished, can be overcome by use of other inhibitors [312], also demonstrated above for 

FT2102 in the variant of LN18 expressing the AG-120-resistant mutIDh1R132H+S280F enzyme. 

The diversity of resistance mechanisms, as well as the likelihood of new mutations arising 

that render cells resistant to e.g., FT2102, means that the search for tractable and effective 

therapy continues.  

To improve upon therapies, a better understanding of the disease at hand and the current 

therapies available is been needed. The four inhibitors that were investigated in this 

chapter included an FDA approved drug for treatment of AML and cholangiocarcinoma 

(AG-120) [419, 421]. Three of the inhibitors were being assessed in phase I/II clinical trials 

for glioma at the time of selecting inhibitors to pursue (AG-120, AG-881 and BAY 1436032) 

[238, 263, 422]. None have yet been approved for treatment of glioma. GSK864 was 

included because of high efficacy in enzymatic and cellular assays, but it appears there are 

no clinical trials underway. Despite the wide array of inhibitors available for research, the 

main focus to date in the publications on mutIDH1 inhibitors has been to develop and 

characterise a specific inhibitor and compare it across different cell lines [246, 247, 250, 

415-418]. Alternatively, a single inhibitor was investigated for its ability to decrease 2-HG 

and cell viability [177, 226]. There have been few studies comparing the various available 

inhibitors to each other with regards to inhibition efficacy [251, 255, 256], and none that 

simultaneously compared all four used here.  

This study was therefore carried out to gain a better understanding of the relative efficacy 

of the inhibitors in a cellular environment over a range of concentrations and exposure 

time. On paper, all four had promising ability to inhibit mutIDH1R132H (IC50 12-30 nM) and 

were allosteric inhibitors binding in the enzyme dimer interface [246, 247, 250, 416]. 

AG-120, BAY 1436032 and GSK864 were similar in their ability to decrease 2-HG in 

mutIDH1R132H LN18 cells, although AG-120 was more effective at the lowest concentrations 
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of inhibitor (0.05 µM). The reduction in 2-HG abundance in mutIDH1R132H LN18 cells was 

comparable to that reported for AG-120 in primary mutIDH1 AML cells (99.8% versus 99.7% 

reduction of 2-HG compared to control, 5.00 µM treatment concentration) [246]. 

BAY 1436032 performed better in the mutIDH1R132H LN18 cells than in mutIDH1 HEK293 

cells (93% versus 70% reduction of 2-HG compared to control, 0.50 µM treatment 

concentration) [247]. AG-881, however, proved an inferior inhibitor in this study. It was 

consistently unable to attain similar reductions in 2-HG levels as the other three inhibitors, 

across concentration ranges and exposure time. It could not be blamed on lack of uptake, 

as the inhibitor was found in the cells at similar relative abundance as BAY 1436032.  

Surprisingly, a comparison of AG-881 to AG-120 and BAY 1436032 in the literature showed 

that it performed similarly or better than the other two inhibitors. There were two different 

studies and both used an orthotopic mouse model of U87 with lentiviral mutIDH1R132H 

expression [255, 256]. AG-881 and AG-120 were similarly capable in reducing 2-HG 

abundance compared to control samples (reduced 88 and 98%, respectively) [255]. 

BAY 1436032 was found to be inferior to AG-881 in the second study, only decreasing 2-HG 

abundance relative to control by 25% versus 58% [256]. The difference in efficacy between 

AG-881 and BAY 1436032 was also maintained in two patient-derived glioma cell lines 

[256]. The immediate assumption was that the higher efficacy of AG-881 was due to more 

of it being taken up by the tumour cells. However, the results presented here showed that 

increasing the cellular concentration of AG-881 did not necessarily lead to further decrease 

in the abundance of 2-HG, except an increase from the lowest concentration tested. 

Potentially the uptake of AG-120 and BAY 1436032 was so poor in comparison to AG-881 

that it made up for its lower inhibition efficacy by simply entering the tumour cells more 

easily.  

A time course experiment using multiple inhibitors has not previously been performed. The 

experiment (spanning 1-96 hours) revealed new information with regards to the efficacy of 

the inhibitors over time. All four inhibitors had comparable efficacy in reducing 2-HG levels 

up until the first 4 hours of exposure. That could indicate that it took a similar amount of 

time for the level of inhibitor to stabilise within the cells. The analysis of cellular uptake of 

inhibitors supported that hypothesis, as the maximum level of inhibitor in cells was reached 

at 4 hours. Once the inhibitor concentration had equilibrated in the cells, 2-HG abundance 
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did not decrease further. The level of inhibitor and abundance of 2-HG could not be easily 

altered by e.g., refreshing the media. Cells receiving fresh media only had a minor increase 

in 2-HG abundance compared to cells left in the same media for the duration of their 

timepoint. It should also be noted that the control cells receiving fresh media did not 

produce significantly more 2-HG either, despite a continuous supply of nutrients. The 

resilience to change in 2-HG abundance in the control cells implied that mutIDH1R132H 

activity was not readily affected by nutrient levels. That could indicate that treatments 

based on nutrient restriction alone may not be effective, if the goal is to decrease 2-HG by 

limiting more enzymes than just mutIDH1.  

The effect of mutIDH1 inhibitors on 2-OG and isocitrate in wtIDH1 and mutIDH1R132H cells 

has not previously been reported on in the detail presented here. It was hypothesised that 

the ‘relief’ from biosynthesising and accumulating high levels of 2-HG would lead to an 

increase in 2-OG. Therefore, the lack of increase in 2-OG abundance in mutIDH1 inhibitor 

treated mutIDH1R132H LN18 cells was surprising. Together with the lack of change in cell 

viability, it was concluded that 2-OG was re-directed to other reactions. The accumulation 

of isocitrate was not as consistent as the decrease in 2-HG abundance in mutIDH1R132H. Yet 

it was present in wtIDH1 cells as well, which indicated that there was enough inhibitor 

present in the cells at to at least partially inhibit wtIDH1 activity.  

4.11. Summary and conclusions 

The cellular response to the four allosteric mutIDH1 inhibitors AG-120, AG-881, 

BAY 1436032 and GSK864 was characterised and the inhibitors were compared to each 

other. In mutIDH1R132H LN18 cells, all four inhibitors led to a significant and substantial 

decrease in 2-HG abundance. AG-120, BAY 1436032 and GSK864 demonstrated a clear 

correlation between increased inhibitor concentration and decreased 2-HG abundance. 

The inhibition efficacy of AG-881 against mutIDH1R132H was not improved by exposing the 

cells to higher concentrations, nor incubating them in the presence of inhibitor for longer. 

The inferior efficacy was not due to lack of cellular uptake, as AG-881 and BAY 1436032 had 

similar relative abundance in cells. Thus, these experiments revealed that AG-881, within 

the context of cultured cells, was less effective of an inhibitor compared to AG-120, 

BAY 1436032 or GSK864. The difference between the inhibitors was greater than enzyme 



Chapter 4. The effect of mutIDH1 inhibitors on wtIDH1 and mutIDH1R132H in glioblastoma cells 

187 

 

assays in the literature had indicated. The results presented here therefore demonstrates 

the importance of comparing inhibitors in multiple model systems for a specific disease.   

The time course experiments showed that the inhibitors decreased 2-HG abundance to a 

similar degree for the first four hours of exposure. It took 4 hours for these inhibitors to 

reach an equilibrium when measured in cells. 2-HG abundances were considered fully 

stabilised only after 24 hours of treatment in treated and control mutIDH1R132H LN18 cells. 

Once stable, 2-HG abundance was not easily altered by refreshing media, not even in 

control cells. Only increased inhibitor concentration could reduce the intracellular 

concentration of 2-HG. This indicated that an equilibrium of inhibitor level between cells 

and media was established. Additionally, the lack of difference in 2-HG abundance between 

the control cells provided with fresh media and those that were not showed that 2-HG 

abundance was stable despite the cells facing nutritionally different environments. That 

could suggest a robustness towards therapies aimed at ‘starving’ mutIDH1 cancer cells of 

necessary substrates to biosynthesise 2-HG.  

The relatively consistent accumulation of isocitrate in treated cells indicated that the 

wtIDH1 enzyme was likely inhibited, at least to some extent, by the mutIDH1 inhibitors in 

both wtIDH1 and mutIDH1R132H LN18 cells. The effect was not as easy to measure as for the 

inhibition of mutIDH1R132H and warrants further work to fully appreciate whether a 

concentration dependent effect is also present in wtIDH1 cells. The concomitant inhibition 

of wtIDH1 and mutIDH1R132H in mutant IDH1 expressing cells has previously not received 

much attention, but it will be an important consideration when interpreting changes in 

wider metabolism after treatment with mutIDH1 inhibitors.  
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Chapter 5. Exploring the metabolic effects of mutIDH1 inhibitors in 

wtIDH1 and mutIDH1R132H glioblastoma cells  

5.1. Introduction  

MutIDH1 glioma metabolism has mainly been studied by comparing wtIDH1 and 

mutIDH1R132H-expressing primary and immortalised cell lines, PDX mouse models or PTBs 

[reviewed in 1]. Several different areas of metabolism have been identified as altered in 

mutIDH1 glioma in previous reports, including aspects of central carbon, amino acid and 

lipid metabolism, as well as redox homeostasis [reviewed in 1]. The presence of high levels 

of 2-HG has been directly ascribed as the cause of altered metabolism for e.g., lipids [434, 

435], BCAT1 activity [173], and up- or down-regulation of certain metabolites [175]. 

However, the mechanisms behind many of these metabolic changes remain unclear. Some 

of these metabolites require 2-OG or NADPH for biosynthesis and are likely affected by 

either direct inhibition by 2-HG or decreased availability of 2-OG or NADPH. For other 

metabolites that are altered, but are not thought to require 2-OG or NADPH, the link to 

mutIDH1 activity and 2-HG abundance remains unclear. Overall, how metabolites and 

pathways are altered in mutIDH1 glioma models remains poorly understood. To what 

extent do direct effects (e.g., enzymatic inhibition or lack of substrate) or more indirect 

effects (e.g., altered gene transcription) initiate the metabolic alterations? Refining the 

understanding of the influence and role of mutIDH1 in solid cancer metabolism has the 

potential to provide insight into the tumorigenic activity of the mutation. Furthermore, it 

could help uncover new therapeutic targets.  

Most studies of mutIDH1 inhibitors to date have focussed on the effect on 2-HG abundance 

and cell viability [165, 176, 177, 246, 247, 250, 252, 253, 416, 436] and specific areas of 

metabolism [221, 226]. The few metabolic studies on cells treated with mutIDH1 inhibitors 

have had a narrow scope with regards to metabolite coverage and number of inhibitors 

compared [174, 255-257]. Comparison of the metabolic changes following treatment with 

a variety of inhibitors has not been studied in-depth across treatment concentrations or 

treatment times. Whether the inhibitors lead to similar metabolic changes in treated 

mutIDH1 cells is therefore not comprehensively understood. Similar and dissimilar 
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downstream metabolic changes after treatment with different inhibitors would therefore 

be of interest to study. Similarities between inhibitors would indicate a metabolic change 

specific to mutIDH1-activity, since all four inhibitors led to a substantial decrease in 2-HG. 

Secondly, dissimilarities would reduce the number of spurious metabolic changes pursued 

and potentially help identify ‘off-target’ effects that could have therapeutic consequences.  

WtIDH1 cells have not routinely been included to aid in identifying off-target metabolic 

changes from those genuinely linked to the activity of the mutant enzyme. The mutIDH1 

inhibitors AG-120, AG-881 and GSK864 are capable of inhibiting wtIDH1 activity. A rigorous 

metabolomics study in which multiple mutIDH1 inhibitors are given to both wtIDH1 and 

mutIDH1R132H glioma cells would provide a better idea of genuine metabolic responses to 

mutIDH1 inhibition over other effects by the drugs. True responses to mutIDH1 inhibition 

could be identified and separated from responses to the inhibition of both wtIDH1 and 

mutIDH1R132H.  

The research aims for this chapter were therefore to:  

1. Perform targeted and semi-targeted metabolomics experiments on wtIDH1 and 

mutIDH1R132H LN18 GBM cells treated with four different mutIDH1 inhibitors 

(AG-120, AG-8813, BAY 1436032 and GSK864). 

2. Investigate metabolic changes associated with inhibitor treatment in wtIDH1 and 

mutIDH1R132H LN18 cells.  

a. Identify metabolic changes correlated with 2-HG abundance in 

mutIDH1R132H LN18 GBM cells.  

b. Identify metabolites that are affected by inhibition of both mutIDH1R132H 

and wtIDH1.  

c. Explore off-target effects of inhibitor treatment.  

  

 
3 AG-881 is a pan mutIDH1 and mutIDH2 inhibitor but will be labelled as a mutIDH1 inhibitor for brevity.  
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5.2.  Multivariate statistical analysis 

The metabolic differences between wtIDH1 and mutIDH1 glioma have largely been 

considered the result of mutIDH1R132H activity and accumulation of 2-HG [reviewed in 1]. 

The relationship has not been comprehensively interrogated by use of multiple mutIDH1 

inhibitors. This section aims to initiate the investigation of that relationship by use of 

multivariate statistical analyses (PCA, PLS-DA and HCA). The analyses are used to provide a 

broad and unbiased overview of the data and to help narrow the scope for detailed 

univariate analysis later on. The following six questions will guide the investigation of the 

relationship between mutIDH1 activity and wider metabolism:  

1) Was mutIDH1R132H cell metabolism brought closer to wtIDH1 cell metabolism after 

treatment with mutIDH1 inhibitors?  

2) Were there metabolites that were only altered in mutIDH1R132H cells after 

treatment, or in both wtIDH1 and mutIDH1R132H cells?  

3) Were there metabolites whose abundance correlated with increased inhibitor 

concentration/decreased 2-HG abundance?  

4) Did the four inhibitors elicit similar concentration dependent metabolic responses 

in the treated cells?  

5) Did metabolite abundance change over time in positive or negative correlation with 

2-HG abundance after treatment with mutIDH1 inhibitors?  

6) If there was a correlation between 2-HG abundance and other metabolites over 

time, at what timepoint did it emerge? 

The PCA, PLS-DA and HCAs were performed as described in section 2.8.3. These 

multivariate statistical methods were used to examine the degree of similarity between 

experimental groups and select metabolites of interest. PCA and PLS-DA both reduce data 

dimensionality and provide a simpler visualisation of the potential relationships between 

experimental groups and variables (metabolite levels). PCA is unsupervised, i.e., the 

experimental classifier does not contribute to the model. It can be used when the number 

of replicates is small (< 10) and was therefore performed for the concentration range and 

time course experiments. At higher numbers of replicates, the supervised PLS-DA can be 

used because the risk of overfitting the model is lower. In a supervised analysis, the 
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experimental classifier is included to e.g., build classifying models or find which features 

discriminate between experimental groups [437]. 

 It was therefore used for the experiment where wtIDH1 and mutIDH1R132H LN18 cells were 

treated with mutIDH1 inhibitors. HCA is also an unsupervised method and separates 

samples based on distance, rather than covariance. HCA was therefore used to 

complement the PCAs and PLS-DAs in examining similarities and differences between 

experimental groups. It was also used to identify metabolites with altered abundance 

between experimental groups that could inform on mutIDH1 metabolism. In all analyses, 

unidentified features were to ensure a broad and unbiased analysis and to assess whether 

the metabolic changes occurred beyond the narrower scope of identified metabolites.  

5.2.1. MutIDH1R132H LN18 cell metabolism closer to wtIDH1 LN18 cell metabolism after 

treatment with mutIDH1 inhibitors 

Question 1 and 2 stated in the introduction of this section will be considered here. The goal 

was to inform on which metabolic changes were related to 2-HG only and which were an 

intersection of mutIDH1 and wtIDH1 activity. The first question was whether the metabolic 

phenotype of mutIDH1R132H LN18 cells was brought closer to wtIDH1 cells after treatment. 

If that was the case, then a broad range of metabolic differences were likely diminished by 

inhibited mutIDH1 activity. The second question was to identify which metabolites only 

responded to treatment in mutIDH1R132H LN18 cells and which responded in both wtIDH1 

and mutIDH1R132H LN18 cells. The former would indicate a relationship to 2-HG only. The 

latter would indicate a more complex relationship, where metabolite abundance was 

affected by the interplay of 2-HG, 2-OG and potentially NADPH. The experiment where 

wtIDH1 and mutIDH1R132H LN18 cells were treated with 5.00 µM mutIDH1 inhibitors 

(AG-120, AG-881, BAY 1436032 or GSK864) for 24 hours was used to investigate.  

Data processing and analysis 

The IC-MS data was used for the semi-targeted analysis because it covered a broad range 

of relevant metabolic pathways, as shown in Chapter 3. Data processing and metabolite 

identification were performed as described in section 2.8.2. The IC-MS data yielded 6,645 

compound-features (Progenesis QI) and 141 metabolites identifications were made 
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(86 confident/55 putative). Identified metabolites and identification criteria are outlined in 

Table A.II.2 in appendix II. One wtIDH1 control sample was not analysed with IC-MS due to 

an injection error, as mentioned in section 3.2. The analysis was not repeated due to 

limited instrument availability. Filtration, normalisation, transformation and scaling 

parameters were assessed after outliers were removed, as described in section 2.8.3. One 

further sample was removed prior to data analysis, a wtIDH1 LN18 cell sample treated with 

BAY 1436032. It was outside the 95% confidence interval in the PCA scores plot (PC1 × PC2), 

as shown in Figure A.II.1.(a) in appendix II. This sample had visibly lower abundance across 

the range of detected features when compared to other biological replicates in the 

heatmap, it was concluded that an error during DNA normalisation had occurred.  The 

IC-MS data was median normalised and pareto scaled. The normalisation and scaling 

parameters reduced the small amount of systematic bias observed in the heatmap and led 

to normal or near-normal feature and sample distribution plots, shown in Figure A.II.2 in 

appendix II. The number of replicates was high enough (9-20) that PLS-DA could be 

performed. The PLS-DA and HCA were performed as described in section 2.8.3.  

Results: PLS-DA 

To examine whether there was a difference in the response to treatment between wtIDH1 

and mutIDH1R132H treated and control samples, individual PLS-DA models of treated versus 

control wtIDH1 and mutIDH1R132H LN18 cells for each inhibitor were performed.  In all 

individual PLS-DA models the outcome was similar: separation along component 1 between 

treated and control. The LOOCV led to R2 or Q2 > 0.80 (LOOCV, 5 components) by 

component 2 for all mutIDH1R132H models, but not the wtIDH1 models. The permutation 

tests were not significant (p-value > 0.05) for either wtIDH1 or mutIDH1R132H models. Due 

to the high degree of similarity between the different models, a PLS-DA model where the 

treated samples were considered a singular group, but still divided by mutational status, 

was performed instead.  

In the scores plot of this ‘combined’ PLS-DA model (component 1 × component 2), the 

mutIDH1R132H LN18 control samples were separate from the other three experimental 

groups along component 1. There was substantial overlap of control wtIDH1, treated 

wtIDH1 and treated mutIDH1R132H samples, see Figure 5.2.1.(a). The overlap indicated that 
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the three experimental groups were quite similar metabolically. The permutation test of 

the resulting PLS-DA model reached significance (p-value < 0.05, 2,000 permutations and 

prediction accuracy as test statistic), see Figure 5.2.2.(b). However, the cross validation of 

this model did not reach R2 or Q2 > 0.80 (LOOCV, 5 components), see Figure 5.2.2.(c). The 

poor cross validation may be due to the model being unable to distinguish wtIDH1 control, 

wtIDH1 treated and mutIDH1R132H treated from each other.  

VIP scores were used to assess which identified metabolites contributed the most to the 

PLS-DA model. Unsurprisingly, 2-HG was the main distinguishing feature in the ‘combined’ 

PLS-DA model, with a VIP score nearly three times that of the second highest ranked feature 

(33.5 versus 11.7), see Figure 5.2.2. In the individual PLS-DA models of treated versus 

control mutIDH1R132H cells, the same difference in VIP score between 2-HG and the second 

 
Figure 5.2.1. PLS-DA model of wtIDH1 and mutIDH1R132H LN18 cells treated with mutIDH1 inhibitors 
versus control cells. (a) PLS-DA scores plot (component 1 × component 2).  The number of biological 
replicates were N = 10 for treated cells, except N = 9 for cells treated with BAY 1436032, N = 19 for 
control wtIDH1 cells and N = 20 for control mutIDH1R132H cells. (b) Permutation test with prediction 
accuracy as test statistic and 2,000 permutations. (c) Cross validation and permutation test summary. 
The cross validation was LOOCV and done for 5 components. 
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highest ranked feature was observed. Meanwhile, in the individual PLS-DA models of 

treated versus control wtIDH1 cells, 2-HG did not have a high VIP score (< 0.20). Therefore, 

the contribution of 2-HG to the combined model was in separating mutIDH1R132H control 

from the other three experimental groups.  

In addition to 2-HG, seven identified 

metabolites had high VIP scores, i.e., 

were in the top 15 features ranked by 

VIP score: myo-inositol, UDP, B-CG, 

pantothenate, 1-pyrroline hydroxy-

carboxylate, taurine and lactate. 

Revisiting the individual models, five 

of these seven metabolites had high 

VIP scores (> 1.0) in both the wtIDH1 

and mutIDH1R132H PLS-DAs. The 

exceptions were B-CG and 

pantothenate. Since 2-HG did not 

contribute significantly to the 

individual models, it can be inferred 

that the other metabolites were 

affected by treatment in general 

rather the decrease in 2-HG 

abundance. B-CG was highly ranked by VIP score in all of the individual mutIDH1R132H 

treated versus control PLS-DA models, but only in the AG-881 treated versus control 

wtIDH1 model. Thus, B-CG may be more closely correlated to 2-HG abundance rather than 

the general treatment because 2-HG abundance mainly decreased in the treated 

mutIDH1R132H LN18 cells.  

Pantothenate only had a high VIP score (> 1.0) in the ‘combined’ model and in a PLS-DA 

model of treated wtIDH1 versus treated mutIDH1R132H. It did not have a high VIP score 

(> 1.0) when treated versus control or control versus control were compared in either a 

mutIDH1 or wtIDH1 model. Its importance in the PLS-DA models of treated cells therefore 

indicated there was a difference in response to treatment with mutIDH1 inhibitors in 

 
Figure 5.2.2. VIP scores from the PLS-DA model of 
wtIDH1 and mutIDH1R132H LN18 cells treated with 
mutIDH1 inhibitors versus control cells. The number of 
biological replicates were N = 10 for treated cells, 
except N = 9 for cells treated with BAY 1436032, N = 19 
for control wtIDH1 cells and N = 20 for control 
mutIDH1R132H cells.  
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wtIDH1 and mutIDH1R132H LN18 cells. This importance could not be attributed to a 

difference in 2-HG abundance between the two experimental groups, as it was low in both. 

Instead, the contribution of pantothenate to the PLS-DA models indicated that there were 

additional differences between wtIDH1 and mutIDH1R132H LN18 cells in their response to 

treatment with a mutIDH1 inhibitor.  

Results: HCA 

The PLS-DA models revealed that after treatment mutIDH1R132H LN18 cells were more 

similar to wtIDH1 (treated and control) cells and a number of metabolites were altered in 

both wtIDH1 and mutIDH1R132H cells after treatment. Only B-CG appeared to be closely 

correlated to 2-HG abundance changes. The IC-MS data was investigated with HCA, 

maintaining the grouping of samples as treated and control (separated by mutational 

status), to compare to the ‘combined’ PLS-DA model. The sample clustering was assessed 

first; the two major clusters of samples were treated versus control (cluster I versus cluster 

II), as shown in Figure 5.2.3. Within the cluster of control samples (II), mutIDH1R132H 

samples were entirely separate from wtIDH1 samples, while within the cluster (I) of treated 

samples, wtIDH1 and mutIDH1R132H samples were mixed. Four of the treated wtIDH1 

samples joined in the wtIDH1 control sub-cluster. None of the treated mutIDH1R132H 

samples clustered with their respective control samples.  

The HCA sample clustering was similar to the separation observed in the PLS-DA, where 

treated mutIDH1R132H LN18 cells were metabolically closer to treated wtIDH1 LN18 cells 

than mutIDH1R132H LN18 control cells. Both analyses also showed that there was less of a 

difference between control and treated wtIDH1 LN18 cells than control and treated 

mutIDH1R132H LN18 cells. The greater separation of treated and control mutIDH1R132H 

 
Figure 5.2.3. Hierarchical clustering of treated and control wtIDH1 and mutIDH1R132H LN18 cell sample. 
Top 50 features ranked by on-way ANOVA with FDR were used and rhe cluster analysis was with 
Euclidian distance and Ward’s linkage method. The data was IQR filtered, median normalised and pareto 
scaled prior to analysis. Biological replicates were: N = 10 for treated and N = 20 for control samples. 
Treatment concentration was 5.00 µM and treatment length was 24 hours. 
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samples was likely largely due to the substantial decrease in 2-HG abundance after 

treatment.  

The clustering of the features 

was assessed without 

concomitant sample clustering 

to improve visualisation of 

difference in abundance of 

features between the different 

experimental groups. The two 

major feature clusters 

contained either features with 

either elevated (I) or 

decreased (II) abundance in 

mutIDH1R132H control samples, 

see Figure 5.2.4. Within the 

major cluster with elevated 

abundance in mutIDH1R132H 

control samples, two further 

sub-clusters formed. The first 

sub-cluster (I.i) included 2-HG 

and features with the same 

retention time (9.90 min), all of 

which had substantially lower 

abundance in the other three 

experimental groups. The 

second sub-cluster (I.ii) 

included features with 

elevated abundance in the 

control cells and decreased 

abundance in the treated cells, 

regardless of mutational status. Adenine was the only identified metabolite in this 

 
Figure 5.2.4. Hierarchical cluster analysis of top 50 features and 
identified metabolites from the IC-MS data of control and 
mutIDH1 inhibitor treated wtIDH1 and mutIDH1R132H LN18 cells. 
The relative metabolite abundances were averaged for each 
experimental group. The features and identified metabolites 
were ranked by p-values from one-way ANOVA. The cluster 
analysis was with Euclidian distance and Ward’s linkage 
method. The colour bar indicates relative ion abundance. 
Biological replicates were: N = 39 for treated wtIDH1 samples, 
N = 40 for treated mutIDH1R132H samples, N = 19 for wtIDH1 
control samples and N = 20 for control mutIDH1R132H samples. 
Treatment concentration was 5.00 µM and treatment length 
was 24 hours.  
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sub-cluster, indicating either a wtIDH1 inhibition related effect or an off-target effect by 

the mutIDH1 inhibitors.  

The other major cluster (II) had similar sub-clusters, i.e., where wtIDH1 and mutIDH1R132H 

control were either similar abundance (II.i) or opposite (II.ii) abundance. In the former, 

features had increased abundance in both treated wtIDH1 and mutIDH1R132H cells 

compared to their respective control samples. The sub-cluster included isocitrate and 

citrate as the only identified metabolites. Accumulation of isocitrate in both wtIDH1 and 

mutIDH1R132H cells was likely due to inhibition of the wtIDH1 enzyme, as shown in 

chapter 4.  

In the latter sub-cluster (II.ii), features had low abundance in control mutIDH1R132H cells 

and high in wtIDH1 cells. It contained the following identified metabolites: B-CG, NAAG, 

methylisocitrate and oxoadipate. After treatment with mutIDH1 inhibitors the abundance 

of the features increased somewhat in mutIDH1R132H cells and decreased somewhat in the 

wtIDH1 cells. The final sub-cluster (II.ii) therefore contained metabolites which were 

assumed to be affected by the activity of mutIDH1R132H and/or presence of 2-HG because 

their abundance was higher in the wtIDH1 than mutIDH1R132H control cells. Additionally, 

treatment had the opposite effect on the wtIDH1 and mutIDH1R132H cells with regards to 

change in feature abundance. It indicated that the inhibition of mutIDH1R132H led to an 

increase in the abundance of the other metabolites. Yet, since decreased abundance was 

also observed in treated wtIDH1 cells, potentially the inhibition of wtIDH1 played a role in 

the response as well.  

The opposite effect of mutIDH1 inhibition treatment in wtIDH1 and mutIDH1R132H LN18 

cells could be explained by 2-HG inhibiting pathways where 2-OG was needed, i.e., upon 

decreased 2-HG abundance the inhibition relented. WtIDH1 inhibition, on the other hand, 

would potentially lead to diminished 2-OG availability and decreased metabolic activity of 

a 2-OG dependent pathway. This explanation would be most sensible for e.g., oxoadipic 

acid, which is an intermediate in the lysine degradation pathway, where 2-OG is a required 

substrate. However, neither NAAG, B-CG nor methylisocitrate have a known relationship 

to 2-OG within their respective metabolic pathways, as discussed in chapter 3. Further 
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evaluation of the metabolites was needed to understand potential correlation to 2-HG 

abundance and wtIDH1 activity, and this was done by univariate analysis in section 5.3.  

In summary, mutIDH1 inhibitors brought the metabolic profile of mutIDH1R132H LN18 cells 

closer to wtIDH1 LN18 cells in both the PLS-DA and HCA. The two analyses also revealed 

metabolites affected by treatment regardless of mutational status (e.g., adenine, isocitrate 

and citrate) and metabolites likely affected by the presence of 2-HG in cells (B-CG, NAAG, 

methylisocitrate, and oxoadipate). Only 2-HG and B-CG were present in both the PLS-DA 

and the HCA; B-CG was the metabolite with the clearest correlative relationship to 2-HG 

abundance thus far.  

5.2.2. MutIDH1 inhibitor concentration correlated with degree of separation between 

control and treated samples in PCA and HCA  

There are metabolic changes related to 2-HG only and to both mutIDH1 and wtIDH1 

activity. To understand them better it was necessary to also assess their correlation to 

inhibitor concentration and 2-HG abundance. A clear correlative relationship would 

increase the confidence of the relationship of a metabolite to 2-HG or mutIDH1/wtIDH1 

activity. In this section the two following lines of questioning will be considered. First, were 

there metabolites whose abundance correlated with inhibitor concentration/decreased 

2-HG abundance? Second, if a concentration dependent response was present, was it 

consistent across the four inhibitors or a drug-specific effect? The IC-MS data from the 

concentration range experiment was used to investigate the two questions. In the 

concentration range experiment, mutIDH1R132H LN18 cells were treated with 0.05, 0.50, 

5.00 or 10.0 µM of AG-120, AG-881, BAY 1436032 or GSK864 for 24 hours. 

Data processing and analysis 

Data processing and metabolite identification were performed as described in section 

2.8.2. The IC-MS data had 4,621 features, of which 135 were identified 

(78 confident/57 putative). The identified metabolites and identification criteria are listed 

in A.V.2 in appendix V. Data filtration, normalisation, transformation and scaling was 

carried out as described in section 2.8.3. No outliers were identified, and the data was 

median normalised and autoscaled for multivariate analysis. The normalisation and scaling 

diminished any small amounts of systematic bias present in the heatmaps and led to 
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normal or near-normal feature and sample distribution. Heatmaps and distribution plots 

are provided in Figure A.V.1 in appendix V.  

PCA and HCA were performed as described in section 2.8.3. PCA was used instead of 

PLS-DA due to the small number of replicates per treated group (3-4). To compare the 

different inhibitors, the treated samples were compared to the same set of control 

samples. Therefore, four different PCAs and HCA were carried out, each with the treated 

samples of all concentrations of a specific inhibitor and all the control samples.  

Results: PCA 

In the PCA scores plots (PC1 × PC2), there was separation along PC2 of control and treated 

samples for all treatment concentrations of AG-881 and high treatment concentrations 

(5.00 and 10.0 µM) of AG-120, BAY 1436032 and GSK864. The samples treated with lower 

concentrations (0.05 or 0.50 µM) of AG-120, BAY 1436032 or GSK864 overlapped with 

control samples. The PCA scores plots are summarised in Figure 5.2.5.  
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The PCA scores plots closely followed the trend in 2-HG abundance observed in section 4.6. 

Cells treated with AG-881 had a similar decrease in 2-HG across all treatment 

concentrations, conversely all treated samples were similarly distanced from the control in 

the scores plot. The other three inhibitors had a mutIDH1 inhibitor concentration 

dependent relationship to 2-HG abundance. Subsequently, the distance between control 

 
Figure 5.2.5. PCA scores plots (PC1 × PC2) of IC-MS data of mutIDH1R132H LN18 cells treated with a range 
of concentrations of mutIDH1 inhibitors. All PCA scores plots are made with the same control samples 
(N = 32 biological replicates). The inhibitor concentrations were 0.05, 0.50, 5.00 and 10.0 µM. The PCA 
scores plots are carried out for each inhibitor individually: (a) AG-120, (b) AG-881, (c) BAY 1436032 and 
(d) GSK864. N = 4 for all treated experimental groups, except N = 3 for cells treated with 5.00 µM AG-881.  
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and treated samples increased with increasing treatment concentration in the scores plot. 

However, the degree of separation in the scores plots was not only due to 2-HG. The PC2 

loadings revealed several additional metabolites with loading scores of similar absolute 

values to 2-HG. Loading scores indicate the contribution of a feature to the separation of 

experimental groups. The sign of the loading score for a metabolite showed whether the 

correlation to the PC was the same or opposite to 2-HG. Metabolites with the same sign 

and similar magnitude as 2-HG, observed in the PCAs for two or more inhibitors, were 

N-acetyl-L-methionine, DR5P, cytidine, gluconate, and thymidine monophosphate (TMP). 

Metabolites with similar magnitude, but opposite sign as 2-HG, included B-CG, NAAG, 

malonate, ethylmalonate, and ophthalmate. By having the same absolute loading score the 

identified metabolites contributed comparably to the second component as 2-HG. Thus, 

2-HG was not the largest or sole contributor to the separation of treated from control 

samples in the PCAs. The different inhibitors appeared to elicit similar metabolic responses, 

since several of the metabolites with high absolute loading scores were found in two or 

more of the PCAs.  

Results: HCA 

The PCAs were then compared to samples HCAs. In the sample HCAs of AG-120, 

BAY 1436032 and GSK864, samples treated with 0.05 or 0.50 µM of inhibitor joined the 

control samples in one of the two major clusters. However, the treated samples did not 

cluster among the control samples, as shown in Figure 5.2.6.(a, c, d). Samples treated with 

5.00 or 10.0 µM inhibitor formed their own major cluster from the first branching point of 

the HCAs. Only samples treated with AG-881 clustered separately from control samples 

from the first branching point onward, see Figure 5.2.6.(b).  
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The sample clustering in the HCAs mirrored to some extent the separation observed in the 

PCAs. All the samples treated with AG-881 at any of the four concentrations did not overlap 

with control samples in the PCA. In the HCA, the treated samples were separated from 

control samples at the first branching point. The other three inhibitors only achieved 

complete separation from control samples in the PCA and HCA for the samples treated with 

the highest concentrations of inhibitor (5.00 or 10.0 µM). The samples treated with lower 

concentrations of inhibitor (0.05 or 0.50 µM) overlapped with controls in the PCA but did 

not fall within the sub-cluster of the control samples. Potentially a metabolic difference 

was induced already at low concentrations of mutIDH1 inhibitor, which was not as clearly 

observed in the PCA.  

 
Figure 5.2.6. Hierarchical clustering of mutIDH1R132H LN18 cell samples treated with a range of 
concentrations of mutIDH1 inhibitors. (a) Samples treated with AG-120, (b) AG-881, (c) BAY1436032 and 
(d) GSK864. The concentration range for all inhibitors was 0.05, 0.50, 5.00 and 10.0 µM. The top 50 
features ranked by One-way ANOVA were used during the cluster analysis, as well as Euclidian distance 
and Ward’s linkage method. Biological replicates were: N = 4 for treated and N = 32 for control samples.  
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The evidence for metabolic response at low inhibitor concentrations was examined with a 

feature HCA. The clustering of features was examined without concomitant clustering of 

samples to make any abundance changes across treatment concentrations easier to 

observe. The two major clusters were separated based on the metabolite abundance in the 

control samples. The major cluster with higher abundance in control samples (I) included 

2-HG. The abundance of 2-HG decreased in a concentration dependent manner for samples 

treated with AG-120, BAY 1436032 and GSK864, while samples treated with AG-881 had 

similar abundance to each other (see Figure 5.2.7.).  

In the major cluster where metabolite abundance in control samples was low, four distinct 

sub-clusters formed (II-IV). In cluster II, abundance increased only in samples treated with 

5.00 or 10.0 µM of AG-120, BAY 1436032 or GSK864. In chapter 4, 2-HG abundance was 

shown as substantially decreased in those samples (FC > 350 (control/treated)). Taken 

together, it indicated that the metabolites in cluster II responded to high 2-HG abundance 

changes only. The response could not be due to wtIDH1 inhibition, as AG-881 was also 

capable of inhibition at high concentrations (≥ 5.00 µM) (see chapter 4). Ethylmalonate, 

which was present in cluster II, appeared to be more sensitive to 2-HG abundance changes 

than the other features. It increased in abundance in the treated samples with a FC2-HG ≥ 12. 

Again, wtIDH1 was not the likely explanation because ethylmalate was already increased 

compared to control cells at 0.05 µM AG-881 and AG-120 which was too low of a 

concentration to lead to inhibition of wtIDH1, as shown in chapter 4.  

In cluster III, feature abundance increased most in samples treated with 5.00 or 10.0 µM 

AG-120 and to some extent in samples treated with 5.00 and 10.0 µM BAY 1436032. The 

lack of increase in abundance for all inhibitors indicated that the response was not related 

to mutIDH1R132H or wtIDH1 activity in general, but the specific inhibitors instead. In cluster 

IV, the abundance increase was the inverse of the decrease observed for 2-HG in cluster I. 

This indicated a close relationship with 2-HG abundance. B-CG was the only identified 

metabolite present in this cluster. It has now been likely correlated to 2-HG abundance in 

two independent experiments.  

In cluster V, the feature abundance appeared to correlate with increasing inhibitor 

concentration in samples treated with AG-120 and AG-881, and to some extent 
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BAY1436032. Samples treated with GSK864 had an increase in abundance at 5.00 µM 

inhibitor and then a marked drop in abundance at 10.0 µM. If the metabolic changes in 

cluster V were due to wtIDH1 inhibition, the lower IC50 for wtIDH1 for AG-120 and AG-881 

than BAY 1436032 would explain the difference in response to the inhibitors (4-190 nM 

versus 20 µM [246, 247, 416]). However, the IC50 reported for GSK864 in the literature 

(467 nM [250]) was closer to AG-120 and AG-881 than BAY 1436032. Yet GSK864 did not 

have a similar trajectory for inhibitor concentration dependent increase in metabolite 

abundance. Likely there was an off-target effect the other three inhibitors did not exhibit. 

This effect dominated the changes in feature abundance in cluster V, rather than wtIDH1 

inhibition. One exception to the general trend in cluster V was the feature 

9.46_140.0119m/z. The abundance increase appeared to correlate with AG-881 and 

GSK864 concentration. However, the effect could not be considered due to wtIDH1 

inhibition, as no concentration dependent response could be observed for AG-120.  
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The feature HCA revealed that the four different inhibitors elicited both similar and 

dissimilar responses in wider metabolism. To assess whether there was an overall 

concentration dependent change in mutIDH1R132H cells upon treatment, the different 

inhibitors were grouped together into one treated group, now split by inhibitor 

concentration. A new feature HCA was performed, also as described in section 2.8.3. In the 

first of two major clusters, features and metabolites with high abundance in control 

  
Figure 5.2.7. Hierarchical cluster analysis of top 50 features from IC-MS data of mutIDH1R132H LN18 cells 
treated with a range of concentrations of AG-120, AG-881, BAY 1436032 and GSK864. I-V denote 
different sub-clusters of features. Treatment concentration was 0.05, 0.50, 5.00 and 10.0 µM. The 
features were ranked by One-way ANOVA. The cluster analysis was with Euclidian distance and Ward’s 
linkage method. The colour bar indicates relative ion abundance. N = 32 for control and N = 4 for treated 
samples, all biological replicates.  
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samples were found, labelled I and II in Figure 5.2.8. The second major cluster had features 

and metabolites with the low abundance in control samples (labelled III and IV).  

Cluster I contained features that decreased substantially in abundance between control 

samples and samples treated with 0.05 µM inhibitor. 2-HG was present in this cluster. 

Cluster II also had an observable difference in abundance between control samples and 

samples treated with 0.05 µM inhibitor, however the overall decrease in abundance was 

smaller. To further illustrate the inhibitor concentration dependent decrease, a box plot of 

DR5P was included in Figure 5.2.8. DR5P decreased significantly compared to the control 

samples even at the lowest concentration of inhibitor (p-value < 0.05, one-way ANOVA with 

Dunnett MCTe). The relatively sensitive response to low inhibitor concentration indicated 

a 2-HG dependent effect.  

In cluster III, metabolite abundance increased compared to control samples at the lowest 

inhibitor concentration.  Ethylmalonate, B-CG, NAAG and glucuronate were included in this 

cluster. Investigating B-CG specifically, the abundance was increased significantly 

compared to control in cells treated with only 0.05 µM inhibitor (p-value < 0.0001 one-way 

ANOVA with Dunnett MCTe, see Figure 2.5.8). The sensitive response indicated a 2-HG 

dependent effect, as similarly speculated for DR5P. Finally, in cluster IV, abundance 

increased the most relative to control samples in samples treated with 5.00-10.0 µM 

inhibitor. Malonate, glutamylcysteine and pyroglutamate were present in cluster IV. The 

apparent lack of response until higher inhibitor concentration was confirmed for 

glutamylcysteine. There was no significant difference between control and treated samples 

at the lowest concentration of inhibitor, but there was a significant increase in 

glutamylcysteine after treatment with 0.50 µM inhibitor (p-value < 0.001, one-way ANOVA 

with Dunnett MCT, see Figure 2.5.8). Given the response was only significant at higher 

concentrations of inhibitor, this could indicate that decreased wtIDH1 activity contributed 

to the altered metabolite abundances. In general, certain features and identified 

metabolites were dependent on 2-HG abundance (cluster II and IV in Figure 5.2.7 and 

cluster II and III in Figure 5.2.8) and certain features and metabolites were potentially 

affected by wtIDH1 inhibited by mutIDH1 inhibitors (cluster V in Figure 5.2.7 and cluster 

IV in Figure 5.2.8).   
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Figure 5.2.8. Hierarchical cluster analysis of top 50 features from IC-MS data of mutIDH1R132H LN18 cells 
treated with a range of concentrations of mutIDH1 inhibitors (grouped). The relative metabolite 
abundances were averaged for each experimental group.  I-V denote different sub-clusters of features. 
Treatment concentration was 0.05, 0.50, 5.00 and 10.0 µM. The features were ranked by One-way 
ANOVA. The cluster analysis was with Euclidian distance and Ward’s linkage method. N = 32 for control 
and N = 16 for treated samples, all biological replicates. The box plots were of specific metabolites from 
cluster II (DR5P), III (B-CG) and IV (glutamylcysteine). Box plot whiskers are the minimum and maximum 
ratio calculated for each sample, box plot limits are 25th, 50th and 75th percentile. Significance was 
calculated with a one-way ANOVA with Dunnett MCT, comparing control to all treatment 
concentrations. Ns = not significant, * = p-value < 0.05, ** = p-value < 0.01, ** = p-value < 0.001, and 
**** = p-value < 0.0001.  
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In summary, the multivariate analyses revealed that the four inhibitors led to some similar 

and some dissimilar metabolic changes. Samples treated with AG-881 were distinguished 

from samples treated with the remaining three inhibitors in the PCA and sample HCA. The 

difference between AG-881 and the other three inhibitors was likely due to the poorer ability 

of AG-881 to decrease 2-HG and potentially a smaller subsequent effect on wider 

metabolism. AG-120 and GSK864 led to changes in metabolite abundance which were 

regarded as off-target effects. Thus, both mutIDH1 activity related and drug-specific related 

effects were present and care had to be taken in the interpretation of the data. Several 

metabolites in addition to 2-HG were affected in a concentration dependent manner after 

treatment with mutIDH1 inhibitors. Ethylmalonate, DR5P, B-CG, NAAG and glucuronate 

showed the clearest correlation with decreased 2-HG abundance, rather than wtIDH1 

inhibition or potentially other off-target effects. Malonate, glutamylcysteine, 

pyroglutamate and dUMP were potentially affected by wtIDH1 inhibition and not only 2-HG 

abundance/mutIDH1R132H activity. 

5.2.3. Incubation length and exposure time to mutIDH1 inhibitors both inform on cellular 

metabolic phenotype in the S-TICO and L-TICO experiments 

It was now clear that several metabolites had a correlative relationship to 2-HG or had an 

intersected relationship to both wtIDH1 and mutIDH1 activity. However, it remained 

unknown when the correlative relationship may have emerged as the previous 

experiments were just one timepoint (24 hours). When the metabolic change after 

treatment emerged could inform on the nature of the relationship. Substantial decrease in 

2-HG abundance in the S-TICO experiment was first detected after 2 or more hours (see 

chapter 4). Therefore, altered metabolite levels within 1-4 hours of exposure to inhibitor 

could indicate a direct relationship to 2-HG. If it took 4 ≥ hours to for alterations in 

metabolites levels to establish, then more distant effects such as changes in transcription 

levels were more likely. Differentiating the two changes would aid in interpreting the 

metabolic changes identified thus far. It would also inform on how to best pursue specific 

metabolites in future work. The IC-MS data from the S-TICO and L-TICO experiments were 

used. In the experiments, mutIDH1R132H LN18 cells were cultured with 5.00 µM AG-120, 

AG-881, BAY 1436032 or GSK864 for 1, 2, 4, 8, 12, or 24 hours (S-TICO) or 24, 48, 72 or 

96 hours (L-TICO).  
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Data processing and analysis 

Data processing and metabolite identification were performed as described in section 

2.8.2. The total number of features detected in the IC-MS data was 4,425 and 6,941 for 

S-TICO and L-TICO, respectively. A total of 137 (79 confident/58 putative) and 143 

(89 confident/54 putative) features were identified as metabolites for S-TICO and L-TICO, 

respectively. Identified metabolites and selection criteria are outlined in 

Table A.VI.3-A.VI.4 in appendix VI. Data filtration, normalisation, transformation and 

scaling was carried out as described in section 2.8.3. One sample was removed from the 

S-TICO IC-MS data, a control sample at timepoint 1 hour, because it had lower overall 

abundance. The sample was known to potentially be an outlier due to being the first sample 

injected after the analysis sequence was paused because of an instrument error. The S-TICO 

IC-MS data was median normalised, log transformed and pareto scaled, while the L-TICO 

IC-MS data was sum normalised and pareto scaled. The normalisation, scaling and 

transformation parameters were selected as they removed any small amount of systematic 

bias present in the heatmaps and ensured normal or near-normal sample and feature 

distribution plot. Heatmaps and sample and feature distribution plots of S-TICO are shown 

in Figure A.II.2, while L-TICO are shown in Figure A.VI.4, both in appendix VI.  

PCA and HCA were performed as described in section 2.8.3. The S-TICO and L-TICO IC-MS 

data had been collected as separate batches; the statistical analyses were therefore 

performed on each data set individually. The number of replicates per experimental group 

were low (4-8), and PCA was performed instead of PLS-DA. 

Results: PCA 

PCAs of the S-TICO and L-TICO IC-MS data were first performed keeping samples treated 

with different inhibitors as distinct experimental groups. In the scores plots (PC1 × PC2) of 

the S-TICO and L-TICO data, the different experimental groups of treated samples were 

significantly overlapped. The overlap remained in PCAs of single timepoints as well. To 

facilitate the analysis of treated versus control samples, further PCAs of the S-TICO and 

L-TICO experiments were instead performed with a single ‘treated’ group per timepoint. In 

the scores plot (PC1 × PC2) of the ‘combined’ S-TICO experiment, the treated and control 

groups overlapped at each timepoint. The only separation of experimental groups was 

along PC2 of samples from timepoint 24 hours and the rest, see Figure 5.2.9.(a). By 
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comparison, the treated and control samples had better separation in the scores plot of 

the L-TICO experiment, see Figure 5.2.9.(b). However, there was still overlap in the 95% 

confidence regions of treated and control samples. Thus, based on the PCA scores plot 

(PC1 × PC2) alone, it appeared that incubation length was the major driving force of 

metabolic difference between experimental groups in the S-TICO experiment. In the L-TICO 

experiment, a difference between treated and control had become more apparent.  

In the concentration range experiment, 2-HG was one of the features contributing 

substantially to the loadings of PC2, i.e., the component along which treated and control 

samples were separated. This was not the case for the PCA of the S-TICO experiment. 

Instead, 2-HG had one-tenth to one-fifth the loading score of the highest-ranking features 

in PC1 or PC2. None of the other previously identified metabolites of interest (e.g., B-CG, 

NAAG, UDP or malonate) had high absolute PC1 or PC2 loading scores either. In the L-TICO 

PCA, 2-HG did contribute substantially to the PC1 and PC2 loading (-0.28 and 0.52, 

respectively) and was among the top five features based on absolute value of the loading 

score. Additional metabolites that had high PC loading scores in the L-TICO PC1 and PC2 

were glutathione, UDP, B-CG and citrate.  

 
Figure 5.2.9. PCA scores plot of mutIDH1 inhibitor treated and control LN18 mutIDH1R132H LN18 cells in 
the S-TICO and L-TICO experiments. (a) PCA scores plot of S-TICO experiment, time points 1, 2, 4, 8 ,12 
and 24 hours. (b) PCA scores plot of L-TICO experiment, with timepoints 24, 48, 72 and 96 hours. 
Treatment was with 5.00 µM of either AG-120, AG-881, BAY 1436032 or GSK864. All samples, including 
control, had 0.1% (v/v) DMSO present in media. Number of biological replicates was N = 4 for treated 
cells and N = 8 for control cells at each timepoint.  
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The lower PC loading score of 2-HG in the S-TICO experiment versus the L-TICO experiment 

was not surprising. It was only after 24 hours that the 2-HG abundance in the treated cells 

had reached an equilibrium, which was largely maintained in the treated cells in the L-TICO 

experiment (as shown in section 4.7 in chapter 4). It is likely that the wider metabolic 

changes occurring due to mutIDH1R132H inhibition also took time to become established, as 

those metabolites only contributed to the PC loadings in experiments with a minimum of 

24 hours of treatment.  

Results: HCA 

The HCAs were also performed with all treated samples per timepoint combined into one 

experimental group. In the sample HCA of the S-TICO data, the major clusters were split 

based on incubation time. Cluster (I) contained the treated and control samples from the 

24-hour timepoint and cluster (II) the other timepoints (1-12h), see Figure 5.2.10.(a). The 

major clusters reflected the spread of the experimental groups observed in the PCA scores 

plot in Figure 5.2.9.(a). Within the major clusters, treated samples were separate from 

control samples from timepoint 4 hours and onward. This indicated there was a metabolic 

difference emerging between treated and control cells already after 4 hours, something 

the PCA did not show.  

The L-TICO HCA had one major subcluster with the treated and control samples from the 

24-hour time point (I), as well as certain replicates from treated samples from later 

timepoints, see Figure 5.2.10.(b). The other major cluster (II) contained the remaining 

experimental groups. Within each major cluster, the control groups formed separate 

clusters from the treated groups. The separation of treated and control mirrored the 

separation observed in the PCA in Figure 5.2.9.(b). The clear difference between the 

24-hour timepoint and the 48-, 72- and 96-hour timepoint indicated that treatment and 

incubation length also had an effect on metabolic activity.  

The decrease in metabolic activity over time could be assessed by re-examining the cell 

viability assay first described in section 4.4. Control and mutIDH1 inhibitor treated 

mutIDH1R132H LN18 cells were incubated for 24, 48, 72 or 96 hours (experimental details 

described section 2.5.3 and 2.7.5). In the MTS assay, absorbance (A) at 490 nm is positively 

correlated with cell viability [432]. The absorbance of cells incubated for 48, 72 or 96 hours 
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was 68%, 48% and 46%, respectively, of the absorbance of cells incubated for 24 hours 

(p-value < 0.001, one-way ANOVA with Dunnett’s MCTe). The cells were examined 

microscopically prior to performing the assay and cell confluency was similar at each 

endpoint, i.e., a similar number of cells were present when each time-point was measured. 

DNA concentrations were not measured; thus, the comparison of confluency was 

qualitative rather than quantitative. The substantial decrease in absorbance over time 

coupled with similar cell numbers at each time-point indicated metabolic activity in the 

cells had decreased, which was reflected in the sample HCA as well.  

In the feature HCA of S-TICO IC-MS data, the major clusters were metabolites with low 

abundance from hour 1-12 and then increased substantially by hour 24 (cluster I), or the 

opposite (cluster II), see Figure 5.2.11.(a). The trend was nearly identical for all features in 

both treated and control groups, with only a few exceptions. First and foremost, 2-HG 

started out as elevated in all experimental groups at hour 1 and then continued to increase 

in control samples for the entire duration of the experiment, including hour 24 (II.i). In the 

treated samples, the decrease in 2-HG abundance was apparent at earlier timepoints than 

for other metabolites. In cluster I, B-CG, N-acetylglutamate (NAG), glutamate, and 

 
Figure 5.2.10. Hierarchical clustering of mutIDH1 inhibitor treated and control LN18 mutIDH1R132H LN18 
cells in the S-TICO and L-TICO experiments. (a) Sample HCA of S-TICO experiment, time points 1, 2, 4, 8 
,12 and 24 hours. (b) Sample HCA of L-TICO experiment, with timepoints 24, 48, 72 and 96 hours. 
Treatment was with 5.00 µM of either AG-120, AG-881, BAY 1436032 or GSK864 and the treated samples 
were considered one experimental group with N = 16 biological replicates per timepoint. All samples, 
including control, had 0.1% (v/v) DMSO present in media. Number of biological replicates for control at 
each timepoint was N = 8. The top 50 features ranked by One-way ANOVA were used during the cluster 
analysis, as well as Euclidian distance and Ward’s linkage method.  
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4-hydroxyproline increased in abundance at an earlier timepoint in treated than control 

samples. The metabolites also appeared to have a higher ‘final’ abundance at 24 hours. The 

difference between the four metabolites in treated and control samples over time 

indicated a 2-HG-dependent response was occurring in the cells over time.   

The first major cluster (I) in the L-TICO HCA included 2-HG and other features where the 

abundance was high in control samples and low in treated samples at all timepoints, see 

Figure 5.2.11.(b). The second major cluster (II) had two distinct subclusters. The first (II.i) 

contained B-CG; the abundance was low in control samples and high in treated samples at 

all timepoints. The second sub-cluster (II.ii) had features with similar abundance at all 

timepoints for both control and treated samples; the features started with high abundance 

at the 24-hour timepoint and then decreased until to the 96-hour timepoint. Isocitrate, 

citrate, TTP and pantothenate started at a lower abundance in control samples compared 

to treated samples, and also fell to a lower overall abundance by 96 hours of incubation. 

The opposite was observed for phosphocreatine, N-acetyl-L-methionine and DR5P, i.e., the 

decrease in abundance from 24 to 96 hours was more apparent for treated than control 

samples.  
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Figure 5.2.11. Hierarchical cluster analysis of top 50 features from IC-MS data of the S-TICO and L-TICO experiments. MutIDH1R132H LN18 cells were treated with 5.00 
µM AG-120, AG-881, BAY 1436032 or GSK864 for 1, 2, 4, 8, 12 or 24 hours in (a) and 24, 48, 72 or 96 hours in (b). The treated cells were considered one experimental 
group per timepoint, with N = 16 biological replicates. The relative metabolite abundances were averaged for each experimental group. Control samples were cells 
cultured with 0.1% (v/v) DMSO in the media and had N = 8 biological replicates per time point. The features were ranked by one-way ANOVA. The cluster analysis was 
with Euclidian distance and Ward’s linkage method. The colour bars indicates relative ion abundance. 
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Most metabolite abundances were influenced by incubation time and less so by treatment 

with inhibitors. It was most apparent in the S-TICO experiment, but the effect of incubation 

time was also present in the L-TICO experiment. However, the abundance profile of B-CG in 

both the S-TICO and L-TICO experiment HCAs further underscored the correlative relationship 

between it and 2-HG that has emerged across all data sets considered in this section. The 

metabolites glutamate, 4-hydroxyproline, isocitrate, citrate, pantothenate, NAG and TTP also 

had dissimilar changes in abundance in treated versus control samples, i.e., indicating a 

correlative relationship to 2-HG and/or inhibitor concentration.  

In summary, the multivariate analyses of the S-TICO and L-TICO experiments revealed that 

incubation time had a substantial impact on the wider metabolism in both control and 

mutIDH1 inhibitor treated mutIDH1R132H LN18 cells. The effect was most clearly observed in 

the S-TICO experiment, as it was apparent in both the PCA, sample HCA and feature HCA. In 

the L-TICO experiment, the effect of incubation and treated versus control was not as easily 

observed in the PCA, but was apparent in the sample and feature HCAs. Between the PCA and 

feature HCA, the metabolites B-CG, NAG, NAAG, glutamate, 4-hydroxyproline, TTP, UDP, 

pantothenate, glutathione, citrate and isocitrate contributed to distinguishing treated from 

control samples in the S-TICO and L-TICO experiments.  
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5.3.  Univariate statistical analysis of wtIDH1 and mutIDH1R132H LN18 cells treated 

with mutIDH1 inhibitors 

Treatment with mutIDH1 inhibitors led to concentration- and time-dependent wider 

metabolic changes in mutIDH1R132H LN18 cells. However, several of the same metabolic 

changes were observed in both wtIDH1 and mutIDH1R132H cell lines after treatment, i.e., 

certain metabolic changes were not specific to treated mutIDH1R132H LN18 cells. The mutIDH1 

inhibitors were present at high enough concentration to likely inhibit wtIDH1 as well as 

mutIDH1R132H. Therefore, a metabolic response, other than decreased 2-HG abundance, could 

not exclusively be attributed to inhibition of mutIDH1 activity. The complexities related to 

inhibition of both wtIDH1 and mutIDH1R132H had to be resolved to be able to reach the aim of 

a more nuanced understanding of mutDIH1 glioma metabolism. In order to more confidently 

assign metabolic changes to mutIDH1 activity/2-HG abundance, the ambiguity of wtIDH1 

inhibition was reviewed. All identified metabolites from the IC-MS and derivatised RPLC-MS 

data were surveyed for significant difference between treated and control samples of both 

wtIDH1 and mutIDH1R132H LN18 cells. 

Data processing and analysis 

The samples of the three metabolomics experiments described in section 5.2 were 

derivatised and analysed by RPLC-MS as described in section 2.6.2 and 2.7.2, respectively. 

Metabolite identification and criteria for confident versus putative identification are 

described in Section 2.8.2. From the derivatised RPLC-MS data, the following number of 

identifications were made for each experiment: 53 (34 confident/19 putative) for the treated 

wtIDH1/mutIDH1 experiment; 37 (18 confident/19 putative) for the concentration range 

experiment; 35 (23 confident/12 putative) for the S-TICO experiment; and 35 (23 

confident/12 putative) for the L-TICO experiment. A full list of identified metabolites and 

identification criteria are provided in Table A.II.3, A.V.3, A.VI.5 and A.VI.6, respectively. The 

identified metabolites in the IC-MS data set described in section 5.2 were used. All data sets 

were median normalised, except the IC-MS data of the L-TICO experiment, which was sum 

normalised. The normalisation parameter was chosen based on what led to a normal or near-

normal sample distribution (see Figure A.II.3, A.V.2 and A.VI.5). No scaling or transformation 

was applied for univariate analysis.  
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The treated wtIDH1/mutIDH1 experiment was used to identify different metabolites that 

were significantly and appreciably altered after treatment with a mutIDH1 inhibitor. The 

treated samples were kept in experimental groups by mutIDH1 inhibitor. It was of interest to 

determine whether metabolic changes were consistent across the different inhibitors. 

Two-sided, unpaired t-tests were calculated for all identified metabolites between control 

samples and each inhibitor in turn, separated by mutational status. FDR was applied to 

account for multiple comparisons. If the abundance was significantly different (p-value < 0.05, 

FDR adjusted t-test) between control and treated for a single inhibitor for either the wtIDH1 

or mutIDH1 comparison, the FC was calculated. All FCs were calculated as ratios between 

treated/control, thus an FC below 1.0 would indicate a decrease in metabolite abundance 

after treatment and a FC above 1.0 would indicate an increase after treatment. FCs between 

0.833 and 1.20 were considered too small of a change in abundance to be of interest. 

Therefore, if the abundance of a metabolite was significantly different between treated and 

control, but all of the FCs of that comparison fell between 0.833-1.20, it would not be counted 

as ‘significantly and appreciably’ different. In addition, the FCs of the treated/control samples 

were compared to that of wtIDH1 control/mutIDH1 control. The comparison was to assess 

whether treatment with mutIDH1 inhibitors brought the metabolite abundance in 

mutIDH1R132H LN18 cells closer to that of the wtIDH1 LN18 cells, i.e., whether the metabolite 

abundance was ‘normalised’, after treatment. 

CA was used to assess correlation between 2-HG, 2-OG and isocitrate to the other identified 

metabolites in the concentration range experiment. The analysis was performed as described 

in section 2.8.3. Each CA was calculated per inhibitor across the full treatment concentration 

range (0.05, 0.50, 5.00 and 10.0 µM) and included the control samples. FC and two-sided, 

unpaired t-tests with FDR adjustment were performed for the TICO experiments, also as 

described in section 2.8.3. The FC, t-tests calculations for the TICO experiment and the CA of 

the concentration range experiment were performed to supplement the univariate analysis 

of the treated wtIDH1/mutIDH1 experiment and will be discussed when relevant.  
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5.3.1. MutIDH1 inhibitor metabolomics experiment suggests a combination of mechanisms 

involved in mutIDH1 glioma metabolism  

In chapter 3, wtIDH1 and mutIDH1R132H LNB18 metabolism was compared and 25 identified 

metabolites fulfilled the significance and FC criteria outlined above. After treatment, 22 of 

those metabolites had significantly and appreciably altered abundance for at least one of the 

inhibitors in either wtIDH1 or mutIDH1R132H LN18 cells. Of the 22 metabolites, six were 

significantly and appreciably altered exclusively in treated mutIDH1R132H LN18 cells, three 

exclusively in treated wtIDH1 LN18 cells and 13 in both treated cell types.  

The six metabolites that fulfilled the criteria of both being significantly and appreciably 

different between wtIDH1 and mutIDH1R132H control cells and in one or more treated 

mutIDH1R12H cells were: 2-OG, dADP, DR5P, oxoadipate, 3M2OV and N-carbamoyl-aspartate. 

The abundance of all of the metabolites, except 2-OG, were ‘normalised’ upon treatment. 

Only DR5P and N-carbamoyl-aspartate were significantly and appreciably decreased after 

treatment for more than one of the inhibitors. All three metabolites that were significantly 

and appreciably different from control in wtIDH1 cells only (glycerate, methionine, isoleucine) 

were so for a single inhibitor (GSK864 or AG-881). However, isoleucine was appreciably 

increased for two additional inhibitors (AG-120, BAY 1436032), but the increase did not reach 

significance (p-value > 0.05, FDR adjusted t-test). Of the 13 metabolites that showed a 

response to treatment in both wtIDH1 and mutIDH1R132H cells, five were decreased for all 

responding wtIDH1 and mutIDH1R132H cells: 2-HG, methylisocitrate, IPP, 2-aminoadipate and 

pipecolate. The remaining eight metabolites had a mixed response, either between wtIDH1 

and mutIDH1R132H cells (B-CG, NAAG and B-alanine) or between the inhibitors within the same 

mutational status (aspartate, cysteine, N-acetyl-methionine, O-phosphoserine and 

putrescine). The metabolites, their FC and whether they were significantly different from 

control cells is summarised in Figure 5.3.1.  
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The changes to metabolite abundance described above had the following three 

interpretations. First, a metabolite could be considered mainly affected by mutIDH1R132H 

activity if the abundance of the metabolite was brought closer to that of the wtIDH1 cells in 

treated mutIDH1R132H cells exclusively. Second, if a metabolite was only affected in wtIDH1 

cells after treatment, the inhibition of wtIDH1 potentially had a greater influence than the 

combined inhibition of mutIDH1R132H and wtIDH1. Or the response to the inhibitor was not 

apparent at the specific concentration (5.00 µM) used in the experiment the data in Figure 

5.3.1 was from. Third, a metabolite was considered affected by both mutIDH1R132H and 

wtIDH1 activity if the abundance of the metabolite was decreased or increased in both 

wtIDH1 and mutIDH1R132H cells after treatment. That was because if a metabolite relied on 

wtIDH1 activity, either directly for 2-OG or NADPH or indirectly by responding to downstream 

 
Figure 5.3.1. Metabolites that were significantly different between control wtIDH1 and mutIDH1R132H LN18 
cells and also after treatment with one of the mutIDH1 inhibitors (AG-120, AG-881, BAY 1436032 or 
GSK864). The dot denotes a comparison that had a p-value < 0.05 in a t-test with FDR adjustment. The fold 
change was calculated between the mean normalised abundances for each comparison. Fold change for 
control samples was between wtIDH1/mutIDH1 samples and for treated samples it was between 
treated/control for a specific mutational status.  
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outcomes from decreased activity, the same metabolite was likely affected by mutIDH1 

activity. MutIDH1 consumes 2-OG and NADPH, and 2-HG has previously been indicated to 

inhibit 2-OG dependent enzymes [84, 173]. Inhibiting mutIDH1 activity would therefore 

provide the cells with ‘relief’ from the use of 2-OG and NADPH, but the concomitant inhibition 

of wtIDH1 could obscure the decreased utilisation.  

DR5P and N-carbamoyl-aspartate were ‘normalised’ in abundance by multiple inhibitors and 

were therefore considered mainly affected by mutIDH1R132H activity. However, could a 

response be considered attributable to mutIDH1R132H activity if only one inhibitor led to a 

response in treated mutIDH1R132H cells, as for e.g., dADP, 3M2OV and oxoadipate? Afterall, all 

four inhibitors led to a substantial decrease in 2-HG abundance. Similarly, could a metabolic 

change be attributed to wtIDH1 inhibition if the response was only present for one or two of 

the inhibitors capable of inhibiting wtIDH1 at the concentrations used in the experiment 

(AG-120, AG-881, GSK864), as for e.g., glycerate, isoleucine and 2-aminoadipate? 

Furthermore, there were several metabolites with a mixed response to the mutIDH1 

inhibitors in the wtIDH1 and mutIDH1R132H cells, e.g., O-phosphoserine, putrescine, B-CG and 

NAAG. Could the mixed response be attributed to ‘relief’ from mutIDH1R132H activity, or was 

it a combined effect of inhibition of wtIDH1 and mutIDH1R132H? 

To better understand the effect of the inhibitors, the correlation to 2-HG and 2-OG in the 

concentration range experiment was quantified by CA [438, 439]. 2-HG and 2-OG had to be 

used as proxies for mutIDH1 and wtIDH1 activity, respectively, as the experiment had only 

been performed with mutIDH1R132H LN18 cells due to limited time. The metabolites were 

appropriate as proxies because 2-HG decreased in abundance at lower concentrations of 

inhibitor than 2-OG (0.05 and 0.50 µM versus 5.00 and 10.0 µM). Therefore, a considerably 

higher correlation to 2-HG than 2-OG would indicate a response in metabolites at lower 

inhibitor concentration, which was inferred as a stronger relationship to mutIDH1R132H 

activity. Conversely, a similar correlation to 2-HG and 2-OG would indicate activity of both 

wtIDH1 and mutIDH1 was affected. N-carbamoyl-aspartate, IPP, methionine and pipecolate 

were not identified in the concentration range experiment and therefore only 16 of 20 

metabolites could be analysed.  
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Because 2-HG and 2-OG both decreased in the treated compared to the control cells, a 

metabolite with positive correlation to either 2-HG or 2-OG would also have decreased 

abundance, while a negative correlation indicated an increase in abundance after treatment. 

DR5P, cysteine, NAM and O-phosphoserine had positive and significant correlation (FDR 

adjusted p-value < 0.01) to both 2-HG and 2-OG for two or more inhibitors. The correlation 

score (CoS) was similar (cysteine, NAM) or slightly higher (DR5P, O-phosphoserine) to 2-HG 

than 2-OG for all inhibitors. B-alanine was positively correlated to both 2-HG and 2-OG, but 

the effect was only significant in cells treated with GSK864 (FDR adjusted p-value < 0.05). 

Similarly, isoleucine had a positive correlation to both 2-HG and 2-OG, but it was only 

significant for 2-HG in cells treated with AG-120 (FDR adjusted p-value < 0.05). There were six 

metabolites significantly correlated to 2-HG with far less or no correlation to 2-OG: B-CG, 

NAAG, glycerate, oxoadipate, methylisocitrate and putrescine. The CoS was high (> |0.5|) and 

significant between two to four inhibitors for B-CG, NAAG, glycerate, oxoadipate and 

putrescine; methylisocitrate had CS > |0.4|. Finally, 2-aminoadipate, 3M2OV, dADP and 

asparagine were not significantly correlated to either 2-HG or 2-OG. The correlation scores 

and whether the relationship was significant are summarised in Figure 5.3.2 and the exact 

correlation scores and p-values are provided in Table A.VIII.1 in appendix VIII.  
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Of the metabolites assumed to be affected by mutIDH1R132H activity, but that responded to 

just one inhibitor in treated mutIDH1R132H cells, only oxoadipate had significant correlation to 

2-HG for more than one inhibitor. 3M2OV and dADP had no correlation to either 2-HG nor 

2-OG. Therefore, a response from only one inhibitor in a single concentration experiment was 

an indicator for a lack of a strong response to mutIDH1 inhibition, except for oxoadipate. 

Glycerate and isoleucine, which had appeared nearly unaffected by mutIDH1 inhibitors, were 

significantly correlated 2-HG. The exceptions of oxoadipate, glycerate and isoleucine 

demonstrated the importance of assessing the metabolic response of different inhibitors 

across a range of inhibitor concentrations. 

Further underlining the importance of performing metabolomics across a range of inhibitor 

concentrations was the fact that DR5P had high correlation scores to both 2-HG 

(0.73 < CS < 0.87) and 2-OG (0.57 < CS < 0.67), despite earlier experiments indicating a strong 

 
Figure 5.3.2. Heatmap of correlation scores to 2-HG and 2-OG from a selection of metabolites from the 
concentration range experiment. In the concentration range experiment, mutIDH1R132H LN18 cells were 
treated with 0.05, 0.50, 5.00 or 10.0 µM of mutIDH1 inhibitors AG-120, AG-881, BAY 1436032 or GSK864. 
The metabolites were selected because they were significantly different between wtIDH1 and mutIDH1R132H 
control cells and responded to treatment with one or more of the mutIDH1 inhibitors. The CoSs were 
separately calculated for each inhibitor and control samples were included. The CA was carried out using 
Spearman rank correlation as the distance measure. The p-values were FDR adjusted.  
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relationship to decreased 2-HG/mutIDH1R132H activity only. It should be noted that the 

abundance of both 2-HG and 2-OG decreased and potentially the high CoS for both was simply 

a consequence of that. However, this was not the case for other metabolites with similarly 

high CoS, e.g., B-CG and NAAG. The difference in CS between 2-HG and 2-OG for B-CG and 

NAAG was 0.3-0.5 rather than 0.05-0.3 as for DR5P. Therefore, the correlation analysis refined 

the understanding of the relationship between DR5P, B-CG and NAAG and mutIDH1R132H 

activity. DR5P was influenced by the abundance of both 2-HG and 2-OG, while B-CG and NAAG 

were mostly influenced by the abundance of 2-HG.  

The metabolites that responded to treatment in both wtIDH1 and mutIDH1 had a mixed 

outcome from the CA. Putrescine, B-CG and NAAG demonstrated a clear correlation to 2-HG 

over 2-OG, while O-phosphoserine, NAM and cysteine correlated similarly to both. The mixed 

results in both the wtIDH1/mutIDH1 treatment and concentration range experiments 

indicated that the role of O-phosphoserine, NAM and cysteine in mutIDH1 glioma metabolism 

was not straightforward to interpret. Potentially, altered redox homeostasis in the cells 

contributed to the responses observed, but redox metabolism in treated wtIDH1 and 

mutIDH1R132H LN18 cells was not measured. It was originally the aim to perform 

semi-quantitative analysis of the redox metabolites NAD+, NADH, NADP+ and NADPH.  

However, this was not possible due to issues with establishing a suitable analysis method (see 

chapter 3).  

Another potential explanation for the mixed response to different inhibitors was that instead 

of direct or one-reaction-removed inhibition of enzyme activity, the expression levels of key 

enzymes were affected by wtIDH1 and/or mutIDH1R132H inhibition. The time course 

experiments could yield clues as to which metabolites that would concern, as a delay of at 

least a couple of hours from treatment to onset of change in expression levels would be 

expected [440]. Most of the metabolites discussed in this section were not significantly or 

appreciably different in abundance between treated and control samples in the TICO 

experiments. Nor were most metabolites discernibly different when abundance was plotted 

against treatment length. Some metabolites were discernibly, but not necessarily significantly 

or appreciably, different between treated and control after 48-72 hours of incubation with 

inhibitor. However, after 72 to 96 hours of incubation cell viability decreased, as shown in 

section 4.3. Changes in metabolite abundance at that stage of the L-TICO experiment could 



Chapter 5. Exploring the metabolic effects of mutIDH1 inhibitors in wtIDH1 and mutIDH1R132H glioblastoma 
cells 

224 
 

simply be a response to diminishing cell health rather than a delayed response to treatment 

with mutIDH1 inhibitors. 

The only metabolites, of those presented so far, with a sustained significant and appreciable 

difference between treated and control mutIDH1R132H cells in the S-TICO and L-TICO 

experiments were B-CG and NAAG. The difference was apparent from 12 hours onward. The 

lysine degradation intermediates 2-aminoadipate, oxoadipate and pipecolate had a 

discernible, but not always significant or appreciable, difference in abundance between 

control and treated mutIDH1R132H cells from 1-8 hours onwards. The delay of clear and 

sustained abundance difference of B-CG and NAAG between treated and control cells 

indicated enzyme expression as an explanation for the metabolic difference to wtIDH1 cells 

observed for mutIDH1R132H LN18 cells. For the lysine degradation intermediates, both direct 

or one-reaction-removed inhibition was not unexpected, as 2-OG is a required substrate. 

However, the delay in discernible difference in abundance of pipecolate between treated and 

control did not rule out that enzyme expression levels also played a role in the metabolic 

variations occurring in mutIDH1R132H LN18 cells. Line plots of the abundance of B-CG in the 

S-TICO and L-TICO experiments and 2-aminoadipate, oxoadipate and pipecolate in the S-TICO 

experiment are provided in Figure 5.3.3.  
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Figure 5.3.3. Line plots of the abundance of B-CG, 2-aminoadipate, oxoadipate and oxoadipate in the TICO 
experiments. (a) Abundance of B-CG in the S-TICO experiment, (b) abundance B-CG in the L-TICO 
experiment, and abundance of (c) 2-aminoadipate, (d) oxoadipate and (e) pipecolate in the S-TICO 
experiment. The mutIDH1R132H LN18 cells were treated with 5.00 µM of AG-120, AG-881, BAY 1436032 or 
GSK864 for 1, 2, 4, 8, 12 and 24 hours in the S-TICO experiment and for 24, 48, 72 and 96 hours in the L-TICO 
experiment. Control cells were cultured with 0.1% (v/v) DMSO. Number of biological replicates at each 
timepoint were N = 4 for treated and N = 8 for control. The data points are mean normalised abundance 
and the error bars are standard deviation.  
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In summary, it was not possible to confidently assign the mechanism of action that led to 

increased or decreased metabolite abundance with the experiments performed thus far. The 

mutIDH1 inhibitors capable of inhibiting wtIDH1 activity complicated the analysis because 

mutIDH1 activity could not be independently manipulated. However, the experiments did 

provide a list of metabolites that are of interest to pursue further, due to their interplay with 

mutIDH1R132H and wtIDH1 activity. Furthermore, clues as to what had more influence, e.g., 

2-HG abundance or decreased wtIDH1 activity in addition to decreased mutIDH1 activity, were 

found for a number of metabolites. To improve understanding of the role of 2-HG in 

mutIDH1R132H metabolism, a metabolomics experiment where 2-HG or 2-OG, not both, were 

decreased without wtIDH1 and mutIDH1R132H activity concomitantly affected is needed. The 

experiment would then allow for one aspect of mutIDH1 metabolism (2-HG or 2-OG 

abundance) to be probed. That experiment was performed and can be found in Chapter 6. 

Future work should also include measuring redox metabolites and determining whether redox 

homeostasis was altered by treatment with mutIDH1 inhibitors. This could provide further 

clues as to how and why specific metabolites are affected by the IDH1 mutation. Furthermore, 

expression levels of relevant metabolic enzymes may be increased or decreased after 

treatment. Measuring expression levels of enzymes could lead to improved understanding of 

which mechanisms underlying mutIDH1R132H glioma metabolism and tumorigenesis.  

5.3.2. Certain similarities in metabolic response to decreased wtIDH1 activity between 

wtIDH1 and mutIDH1 glioma cells 

There were 25 metabolites that were not significantly different between control wtIDH1 and 

mutIDH1R132 LN18 cells, but that were significantly and appreciably increased and/or 

decreased in both wtIDH1 and mutIDH1R132H LN18 cells after treatment with mutIDH1 

inhibitors. Of those 25 metabolites, 22 either decreased or increased in both wtIDH1 and 

mutIDH1R132H cells after treatment. A small majority of the metabolites (13/22) were only 

affected by one or two inhibitors each in treated cells (dTDP-D-glucose, gluconate, 

glutaconate, butyrate, myo-inositol, glutamate, glycine, proline, acetylglycine, 

3-hydroxymethylglutarate, o-acetylserine, 4-hydroxybenzoate and sorbitol 6-phosphate). The 

remaining metabolites (9/22) were affected by three of four inhibitors (dUMP, galacturonate, 

isocitrate, citrate, 2-C-methylerythritol 4-phosphate, 1-pyrroline hydroxycarboxylate, GABA 

and glutathione). There were no metabolites with a mixed response to treatment when 
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comparing wtIDH1 to mutIDH1R132H cells. Only three metabolites, ATP, 

CMP-N-acetylneuraminate and sedoheptulose 1-phosphate, had a mixed response to 

different inhibitors within a cell line. The FC and outcome of the FDR adjusted t-test are 

provided in Figure 5.3.4.  

Metabolites that were not significantly or appreciably different between wtIDH1 and 

mutIDH1R132H control cells were not considered particularly related to the specifics of 

mutIDH1 metabolism. A response to treatment by mutIDH1 inhibitors by previously 

unaffected metabolites therefore led to different interpretations than for the metabolites 

discussed above. The metabolites that were increased or decreased in both wtIDH1 and 

 
Figure 5.3.4. Metabolites that were not significantly different between control and treated wtIDH1 and 
mutIDH1R132H cells, but were after treatment with one of the mutIDH1 inhibitors (AG-120, AG-881, BAY 
1436032 or GSK864). The dot denotes a comparison that had a p-value < 0.05 in a t-test with FDR 
adjustment. The fold change was calculated between the mean normalised abundances for each 
comparison. Fold change for control samples was between wtIDH1/mutIDH1 samples and for treated 
samples it was between treated/control for a specific mutational status. 
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mutIDH1R132H cells were likely mainly affected by wtIDH1 inhibition. There was a striking 

number of metabolites that consistently either decreased or increased in both wtIDH1 and 

mutIDH1R132H cells after treatment with mutIDH1 inhibitors (22/25 = 88%). In the previous 

sub-section that was the case for only 38.5% (5/13) of the metabolites (see Figure 5.3.1). 

Furthermore, none of the metabolites in Figure 5.3.4 had a mixed response between treated 

wtIDH1 and mutIDH1R132H cells, which occurred for 23% (3/13) metabolites in Figure 5.3.1. 

Finally, a mixed response to the different inhibitors within the two cell lines occurred for 

38.5% (5/13) of metabolites in Figure 5.3.1, but only 12% (3/25) here. Based on the 

consistency of the change in metabolite abundance between wtIDH1 and mutIDH1R132H cells 

in this experiment alone, decreased mutIDH1 activity could not be considered to have an 

effect on these specific metabolites.  

In the previous sub-section, the nuance provided by CA of the concentration range 

experiment was demonstrated. It was of interest to see whether the metabolites listed in 

Figure 5.3.4 correlated to 2-HG, 2-OG or isocitrate. The assumption was that the majority 

would correlate with isocitrate and/or 2-OG, as they are the substrate and product of wtIDH1. 

Adenine, ATP, dTDP-D-glucose, glutaconate, butyrate and 4-hydroxybenzoate were not 

identified in the concentration range experiment and were therefore not included. Isocitrate 

accumulated in the treated mutIDH1R132H LN18 cells with increasing treatment concentration, 

while 2-HG and 2-OG both decreased. Hence, a metabolite with positive correlation to 

isocitrate would indicate an abundance increase, while a metabolite with positive correlation 

to 2-OG or 2-HG would indicate an abundance decrease. 2-HG was again regarded as a proxy 

for mutIDH1 activity and 2-OG/isocitrate were proxies for wtIDH1 activity. 

Isocitrate and was not significantly correlated to either 2-HG or 2-OG. The only metabolite 

that correlated significantly and exclusively to 2-HG was dUMP. Surprisingly, there were no 

metabolites that correlated to 2-OG alone, but citrate and gluconate were significantly and 

positively correlated exclusively to isocitrate. Two metabolites correlated to 2-OG and 2-HG 

(gluconate and 2-C-methylerythritol 4-phosphate), only one correlated to 2-OG and isocitrate 

(1-pyrroline hydroxycarboxylate) and none to 2-HG and isocitrate. Finally, a number of 

metabolites correlated either positively or negatively to all three (CMP-N-neuraminate, 

sorbitol 6-phosphate, 3-hydroxymethylglutarate and o-acetylserine). Upon closer inspection, 

the metabolites all correlating negatively or positively to 2-HG, 2-OG and isocitrate did not 
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have appreciable abundance increases or decreases at the different inhibitor concentrations 

(0.833 < FC < 1.20 (treated/control)). Therefore, the metabolites correlating to all three were 

not of particular interest as the response in the concentration range experiment was minimal. 

The CA is summarised in Figure 5.3.5 and the exact correlation and significance test scores 

are provided in Table A.VIII.2 in appendix VIII.  

The CA showed a surprising lack of correlation to 2-OG and isocitrate. There was therefore 

little evidence for direct metabolic relation to isocitrate and 2-OG for the affected 

metabolites. Potentially the response to wtIDH1 inhibition was due to reduced availability of 

NADPH, but that would have to be confirmed with measurements of the relevant redox 

metabolites. Otherwise, expression levels of key enzymes may have been affected by the 

decreased wtIDH1 activity in the cells. The S-TICO and L-TICO experiment were again 

examined for the onset of metabolic response to the mutIDH1 inhibitors. None of the 

 
Figure 5.3.5. Heatmap of correlation scores to 2-HG, 2-OG and isocitrate from a selection of metabolites 
from the concentration range experiment. In the concentration range experiment, mutIDH1R132H LN18 cells 
were treated with 0.05, 0.50, 5.00 or 10.0 µM of mutIDH1 inhibitors AG-120, AG-881, BAY 1436032 or 
GSK864. The metabolites were selected because they were significantly different between treated and 
control wtIDH1 and mutIDH1R132H cells, but not between wtIDH1 and mutIDH1R132H control cells. The CoSs 
were separately calculated for each inhibitor and control samples were included. The CA was carried out 
using Spearman rank correlation as the distance measure. The p-values were FDR adjusted. 
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metabolites had a significant and appreciable difference between treated and control cells in 

the S-TICO experiment. However, the following metabolites maintained a significant 

difference between treated and control cells for one or more inhibitors in the L-TICO 

experiment: 2-C-methylerythritol 4-phosphate, citrate, isocitrate, and dUMP.  

In summary, the metabolites that were significantly and appreciably increased in both wtIDH1 

and mutIDH1R132H LN18 cells treated with mutIDH1 inhibitors were due to a response to 

wtIDH1 inhibition. Few of the metabolites correlated strongly with either 2-OG or isocitrate 

abundance, which was unlike the previous sub-section where a majority of the metabolites 

correlated to 2-HG or 2-HG/2-OG (10/16). A direct enzymatic effect on wider metabolism due 

to e.g., accumulated isocitrate was therefore unlikely. More likely the metabolites were the 

outcome of a response to either altered redox homeostasis and/or expression levels of 

enzymes. Neither effect was measured due to time constraints, but remains as a promising 

avenue for future work.  

5.3.3. WtIDH1 and mutIDH1R132H LN18 cells treated with mutIDH1 inhibitors produce ‘off-

target’ metabolic changes 

The final metabolites considered were not significantly different between control wtIDH1 and 

mutIDH1R132H LN18 cells, and were only significantly and appreciably altered in one of the two 

cell lines after treatment. A total of 30 metabolites were significantly and appreciably 

increased or decreased exclusively in one or the other cell line: nine in treated mutIDH1R132H 

LN18 cells and 21 in treated wtIDH1 LN18 cells. Of the 21 metabolites that were significantly 

and appreciably altered exclusively in wtIDH1 cells, 17 were included due to AG-881 leading 

to an increase (15) or decrease (2) after treatment. The majority of the metabolites affected 

by AG-881 were either amino acids (9) or related to amino acid metabolism (6). A further 

three metabolites were included due to a significant and appreciable difference after 

treatment with AG-120 (CTP) or GSK864 (TMP and glycerol-3-phosphate). The only metabolite 

affected by more than one inhibitor (AG-120, AG-881) was kojic acid. Treatment with 

BAY 1436032 did not lead to significantly and appreciably altered abundance of any of the 

identified metabolites in wtIDH1 cells only. An overview of the metabolites is provided in 

Figure 5.3.6.  
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Since the majority of the metabolites were only altered by a single inhibitor (AG-881), either 

the inhibitor had an off-target effect or it was a far more efficient wtIDH1 inhibitor than the 

others. The reported IC50 for wtIDH1 inhibition was quite similar for AG-120 and AG-881 

(24-71 nM and 4-190 nM respectively [246, 416]). AG-120 would be expected to lead to a 

similar outcome if the metabolic response was largely due to wtIDH1 inhibition. However, 

AG-881 is a dual mutIDH1 and mutIDH2 inhibitor and it also has a reported IC50 for wtIDH2 of 

31-372 nM [416]. The observed ‘off-target’ effect may have been due to the inhibition of 

wtIDH2. The other three mutIDH1 specific inhibitors were all poor mutIDH2 and wtIDH2 

inhibitors [246, 250]. The mutIDH1R132H LN18 cells were expected to still have active wtIDH2 

 
Figure 5.3.6. Metabolites that were only significantly different between control and treated wtIDH1 cells 
after treatment with one of the mutIDH1 inhibitors (AG-120, AG-881, BAY 1436032 or GSK864). The dot 
denotes a comparison that had a p-value < 0.05 in a t-test with FDR adjustment. The fold change was 
calculated between the mean normalised abundances for each comparison. Fold change for control 
samples was between wtIDH1/mutIDH1 samples and for treated samples it was between treated/control 
for a specific mutational status.  
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present and it was therefore not clear why a response to wtIDH2 inhibition would only be 

present in wtIDH1 cells. The main effect of the wtIDH2 inhibition, if present, was accumulation 

of amino acids and related metabolites. Potentially the inhibition of wtIDH2 activity 

decreased 2-OG availability in the wtIDH1 cells to the point where amino acid catabolism was 

slowed and amino acids accumulated. The mutIDH1R132H LN18 cells may already have altered 

metabolism to cope with decreased 2-OG availability from mutIDH1R132H activity and were 

more robust to the inhibition of wtIDH2.  

Despite far fewer metabolites significantly and appreciably increasing or decreasing 

exclusively in mutIDH1R132H LN18 cells (nine), seven were again due to just a single inhibitor. 

Perhaps surprisingly, treatment with AG-881 was only responsible for one of the eight 

metabolites (nonate). Significantly and appreciably altered metabolites after treatment with 

AG-120 were arabitol and N-acetyl-alanine, after BAY 1436032 was citrulline, and after 

GSK864 was ADP, CDP, and TDP. The only metabolite to respond to multiple inhibitors was 

5-hydroxyhexanoate (AG-120, AG-881, BAY 1436032). The metabolites are summarised in 

Figure 5.3.7.  

It would be easiest to simply consider the metabolites listed above as off-target effects; most 

were responding to only one inhibitor and nearly all without a particularly substantial fold 

 
Figure 5.3.7. Metabolites that were only significantly different between control and treated muttIDH1R132H 
cells after treatment with one of the mutIDH1 inhibitors (AG-120, AG-881, BAY 1436032 or GSK864). The 
dot denotes a comparison that had a p-value < 0.05 in a t-test with FDR adjustment. The fold change was 
calculated between the mean normalised abundances for each comparison. Fold change for control 
samples was between wtIDH1/mutIDH1 samples and for treated samples it was between treated/control 
for a specific mutational status.  
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change. Nevertheless, as previously demonstrated, a metabolite could correlate significantly 

to 2-HG or 2-OG in the concentration range experiment despite having a limited response in 

the wtIDH1/mutIDHR132H treatment experiment. Therefore, the outcome of a CA of the 

metabolites in Figure 5.3.7 were examined.  The following metabolites were not included 

because they were not identified in the concentration range experiment: 

5-hydroxyhexanoate, arabitol, CDP and citrulline.  

Only TDP significantly correlated to 2-HG and 2-OG for all inhibitors. N-acetylalanine 

correlated to both as well, but the relationship was likely stronger with 2-OG than 2-HG as 

the correlation was significant for three inhibitors for the former and only one inhibitor for 

the latter. The remaining metabolites, ADP, glucose and nonate, did not correlate significantly 

to either 2-HG or 2-OG. The CA is summarised in Figure 5.3.8 and the exact correlation and 

significance test scores are provided in Table A.VIII.3 in appendix VIII.  

TDP and N-acetylalanine were the only metabolites with a concentration dependent 

relationship to 2-HG and 2-OG. It was speculated TDP and N-acetylalanine were altered due 

to ‘relief’ from mutIDH1R132H activity in the cells. The metabolites without significant 

correlation to 2-OG or 2-HG could have responded to mutIDH1 inhibition in the mutIDH1R132H 

cells due to either altered redox homeostasis or changes in expression levels of related 

enzymes. However, off-target effects were not ruled out for the metabolites with low CoS, as 

 
Figure 5.3.8. Heatmap of correlation scores to 2-HG and 2-OG from a selection of metabolites from the 
concentration range experiment. In the concentration range experiment, mutIDH1R132H LN18 cells were 
treated with 0.05, 0.50, 5.00 or 10.0 µM of mutIDH1 inhibitors AG-120, AG-881, BAY 1436032 or GSK864. 
The metabolites were selected because they were significantly different between treated and control 
mutIDH1R132H cells, but not between wtIDH1 and mutIDH1R132H control cells. The CoSs were separately 
calculated for each inhibitor and control samples were included. The CA was carried out using Spearman 
rank correlation as the distance measure. The p-values were FDR adjusted. 
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the responses reported in Figure 5.3.7 were to one inhibitor only. The time course 

experiments revealed that none of the metabolites had an early or sustained separation 

between treated and control samples, as present for e.g., B-CG, NAAG and lysine degradation 

intermediates. A firm conclusion with regards to the mechanisms behind the response to 

mutIDH1 inhibitors for 5-hydroxyhexanoate, ADP, CDP, citrulline, glucose and nonate could 

therefore not be made based on the available data alone.  

In summary, the metabolites that were significantly and appreciably increased or decreased 

exclusively in wtIDH1 LN18 cells after treatment with mutIDH1 inhibitors were speculated to 

be due to wtIDH2 inhibition by AG-881. A small number of metabolites were significantly and 

appreciably increased or decreased exclusively in mutIDH1R132H LN18 cells. Only two were 

correlated to 2-HG and 2-OG abundance in the concentration range experiment. None of the 

metabolites were significantly and appreciably increased or decreased between treated and 

control samples in the time course experiments, which made it difficult to assess whether 

enzyme expression levels were behind the response to the mutIDH1 inhibitors. Based on the 

low number of metabolites and their relatively small abundance changes across the different 

experiments, it was characterised as an ‘off-target’ effect by the inhibitor eliciting a response 

in the abundances of these metabolites.    
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5.4.  Discussion 

The understanding of mutIDH1 glioma metabolism has to date mainly been shaped by studies 

comparing wtIDH1 and mutIDH1R132H glioma or GBM cell lines, mouse models and PTBs 

[reviewed in 1]. A small number of studies have expanded upon those findings by directly 

relating elevated 2-HG abundance to aspects of lipid metabolism [434, 435], BCAT1 activity 

[173], and up- or down-regulation of certain metabolites [175]. However, the mechanisms 

behind many of these metabolic changes remains poorly understood. Which aspects of 

metabolism are affected by 2-HG directly, e.g., enzymatic inhibition, or indirectly, e.g., 

transcriptional regulation? Characterising the nuances of the metabolic changes would 

provide guidance for more targeted studies of tumorigenic processes and therapeutic targets. 

In this chapter, mutIDH1 inhibitors were used as a tool to interrogate the metabolic 

differences between wtIDH1 and mutIDH1R132H LN18 cells.  

The use of multiple mutIDH1 inhibitors for simultaneous investigation of mutIDH1R132H GBM 

cell metabolism has not previously been described to the extent shown in this chapter. A small 

number of studies have been published where the metabolic effects of mutIDH1 inhibitors in 

GBM cells or PTBs were explored [174, 255-257]. Two of the studies compared AG-881 to 

AG-120 [255] and BAY 1436032 [256], but the number of metabolites covered was far smaller 

than the work presented here (12-17 versus > 170) [255, 256]. The broader coverage allowed 

for a more detailed assessment of the metabolic response to the four mutIDH1 inhibitors in 

treated wtIDH1 and mutIDH1R132H LN18 cells.  

Three of the studies focussed on measuring metabolism before and after treatment in 

mutIDH1 samples only [255-257]. A single study reported on the effect of mutIDH1 inhibitors 

in both wtIDH1 and mutIDH1R132H samples. U87 GBM cells, with the mutant expressed via 

lentiviral vector, were treated with mutIDH1 inhibitor AGI5198 [174]. Similar to the wtIDH1 

and mutIDH1R132H LN18 cells, the distance between treated mutIDH1R132H U87 cells and 

control wtIDH1 U87 cells was decreased along component 1 in a PLS-DA. There was also a 

small shift of treated wtIDH1 U87 cells away from control wtIDH1 U87 cells along 

component 1 [174]. The response to treatment with mutIDH1 inhibitor in wtIDH1 and 

mutIDH1R132H variants of U87 and LN18 GBM cells was quite similar.  
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One study reported on metabolic changes during treatment [256]. The time-course was over 

a matter of days, rather than hours, because the aim was to measure predictors of survival in 

orthotopic mouse models [256]. Here, the measurement of metabolic change over a matter 

of hours presented a dataset (S-TICO) that could be used to search for when trends in altered 

metabolite levels emerged. The L-TICO experiment provided insight into whether metabolic 

changes were sustained. Care had to be taken in interpreting the data from both experiments, 

as cell growth and viability had a substantial impact on the metabolic behaviour. With that in 

mind, the S-TICO data still revealed that the difference between treated and control cells did 

not necessarily arise within the first few hours of treatment, with a few exceptions (B-CG, 

NAAG, lysine degradation intermediates). Furthermore, the L-TICO dataset showed that the 

difference in abundance between control and treated samples for several metabolites was 

maintained once established (isocitrate, citrate, B-CG, NAAG, 2-C-methylerythritol 

4-phosphate, dUMP). To minimise the effect of cell growth on the data, future S-TICO type 

experiments should reverse the order of the timepoints, i.e., adding treatment 24-12-8-4-2-1 

hours before harvest. Then the shortest exposure times are close to time of harvest and the 

cells are in a more similar metabolic state as those at the end of the longer time points.  

B-CG emerged as the metabolite with the most consistent correlative relationship to 2-HG. It 

was one of few metabolites that was found in both the treated wtIDH1/mutIDH1 experiment 

that also had a consistent and sensitive correlation to 2-HG in the concentration range 

experiment. Moreover, the steady and growing difference between control and treated cells 

in the S-TICO experiment was only observed for B-CG and NAAG. It was surprising that B-CG, 

rather than the number of other metabolites that had previously been linked to other 

mutIDH1 glioma models, had such a strong relationship to 2-HG. B-CG has previously only 

been detected in the first generation wtIDH1 and mutIDH1R132H LN18 cell line by Dr Walsby-

Tickle [148]. The metabolite has four carboxylic acid functional groups, which means IC-MS 

was a fitting analytical technique for measuring it. Potentially it has been missed in previous 

studies simply by not being detected. It is unlikely that the metabolite is just a quirk of the 

LN18 cell line, as the metabolite has been identified in new born rat brain [365] and primary 

neurons from chick and rat brain [366].  

Because of the limited knowledge of the role of B-CG in human metabolism, it is challenging 

to pinpoint a potential tumorigenic role. However, as previously noted, B-CG in complex with 
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Cu(II) had a redox protective effect through inhibition of XO activity [403]. Based on the 

delayed response to 2-HG inhibition in the S-TICO experiment, it was speculated that the 

transcription of B-CG synthase was decreased in cells with high 2-HG levels. The decreased 

transcription and subsequent low B-CG levels would deprive the mutIDH1R132H cells of redox 

protection. Initially, that was judged as counterintuitive because the cells already are 

considered vulnerable to oxidative species due to the increased consumption of NADPH [161, 

215, 220-222, 224]. However, heightened levels of ROS can promote tumorigenesis through 

activating proliferative responses and inducing genomic instability [reviewed in 441]. 

Decreased B-CG could be contributing to a cellular environment where tumorigenesis is 

promoted by ROS-mediated effects. If B-CG metabolism were to be pursued as a therapeutic 

target, better understanding of its metabolic function is needed first. Currently it is not clear 

if restoring B-CG or further decreasing it would be the most beneficial. Restoring could mean 

rendering the cells less sensitive to ROS, but decreasing it further could also further drive its 

speculated tumorigenic role.  

In mutIDH1 glioma, the concentration of 2-HG is high enough (mM) [76] for it to act as a 

competitive inhibitor of a number of 2-OG dependent enzymes [84, 173, 386]. Some of the 

metabolites altered in mutIDH1R132H cells were biosynthesised with 2-OG as a substrate, or 

were up/down-stream of a reaction that required 2-OG. It was therefore speculated that 

these metabolites could be affected because of potential direct inhibition by 2-HG. The 

challenge was that wtIDH1 activity was likely impaired by the mutIDH1 inhibitors in the 

mutIDH1R132H LN18 cells and the response to 2-HG specifically could not be studied. Inhibiting 

wtIDH1 could potentially decrease 2-OG and NADPH availability, therefore mimicking the 

effect of mutIDH1 activity. Yet, a metabolite responding in treated wtIDH1 cells as well only 

strengthened the idea that the metabolite was affected by mutIDH1R132H activity because it 

was likely dependent on 2-OG and/or NADPH. In conclusion, the data from the experiments 

performed in this chapter could not be used to fully disentangle the relationship of mutIDH1 

activity for these specific metabolites. An experiment that could decrease 2-HG or 2-OG 

independently of each other, or decrease 2-HG abundance without concomitant inhibition of 

wtIDH1 activity, was needed. That will be pursued in chapter 6.  

The numerous metabolic changes that occurred in both wtIDH1 and mutIDH1R132H LN18 cells 

after treatment with mutIDH1 inhibitors highlighted the importance of including proper 
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controls. If the aim was to find biomarkers for therapeutic response, then the wtIDH1 controls 

would not have been necessary. However, the aim of this chapter was to provide nuance in 

the understanding of mutIDH1 glioma metabolism and point toward tumorigenic processes 

and potential therapeutic targets. Inclusion of wtIDH1 cells therefore provided two benefits. 

First, the comparison of wtIDH1 and mutIDH1R132H cells before treatment narrowed the scope 

of metabolites that were different between cellular environments with and without mutant 

IDH1 present. This provided a pre-defined list of metabolites that were of particular interest 

to assess the response of after treatment with mutIDH1 inhibitors. Second, the treatment of 

wtIDH1 LN18 cells revealed a number of metabolites that were not on the pre-defined list, 

but had a consistent response to three or four inhibitors in both cell lines. Without the 

comparison to wtIDH1 control cells and without the treatment of wtIDH1 cells, all of those 

metabolites could have been mistakenly considered important to the metabolic phenotype 

of mutIDH1R132H LN18 cells. Instead, those metabolites are more appropriately considered as 

biomarkers of general response to mutIDH1 inhibitors.  

5.5.  Summary and conclusions 

The metabolic response to mutIDH1 inhibitors in wtIDH1 and mutIDH1R132H LN18 cells was 

investigated with multivariate statistical analysis of semi-targeted metabolomics data. PLS-DA 

and HCA revealed that mutIDH1R132H LN18 cells were metabolically more similar to wtIDH1 

cells than control mutIDH1R132H LN18 cells after treatment. The treated wtIDH1 cells were also 

affected by the mutIDH1 inhibitors, likely due to inhibition of wtIDH1 activity. Multiple 

metabolites were similarly affected in both treated wtIDH1 and mutIDH1R132H cells. B-CG 

appeared to specifically respond in a 2-HG dependent manner in mutIDH1R132H LN18 cells 

after treatment. A concentration dependent response to treatment was apparent in the PCAs 

and HCAs of semi-targeted metabolomics data from the concentration range experiment. 

Several metabolites, including B-CG, appeared to be correlated to 2-HG abundance in cells. 

The metabolic response to inhibitors was not uniform, likely due to the difference in inhibition 

efficacy and potential off-target effects. AG-120 and GSK864 were the two inhibitors with the 

most apparent off-target effects in the concentration range experiment. Multivariate analysis 

of the TICO experiments revealed that cell growth was a major contributor to the data trends 

observed, but the metabolic response to mutIDH1 inhibitors could be observed as well.  
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The response to mutIDH1 inhibitors in wtIDH1 and mutIDH1R132H LN18 cells was investigated 

further with univariate statistical analysis in an attempt to characterize how metabolites were 

related to mutIDH1R132H activity. It proved challenging as the concomitant inhibition of 

wtIDH1 and mutIDH1R132H activity in the mutIDH1R132H LN18 cells obscured the effect of 2-HG 

alone for metabolites that could be affected by both enzymes. The metabolites will have to 

be studied further in an experiment where wtIDH1 and mutIDH1R132H activity are not 

simultaneously affected. However, despite the challenges it is clear that a number of 

metabolites are correlated to 2-HG and mutIDH1R132H activity.  

B-CG was the metabolite with the clearest correlative relationship to 2-HG that was identified 

in this chapter. Its role in normal metabolism is not well known, but it may have a tumorigenic 

effect in mutIDH1 glioma based on its suggested role as a redox protective compound. Its 

suitability as a therapeutic target will be better known once its potential role in tumorigenesis 

is better understood. 
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Chapter 6. Exploring the metabolic effects of restricting glutamine 

utilisation in wtIDH1 and mutIDH1R132H glioblastoma cells 

6.1.  Introduction 

The mutIDH1 inhibitor experiments presented in chapter 4 demonstrated that cell viability 

was not substantially decreased in the mutIDH1R132H GBM cell line. With resistance to 

mutIDH1 inhibitors emerging [264-266, 424-427] and therapeutic benefit of these inhibitors 

in clinical settings currently limited [263, 422, 423], additional strategies for treating mutIDH1 

glioma are needed. Furthermore, in chapter 5, the role of 2-HG in mutIDH1 glioma 

metabolism was investigated by decreasing 2-HG abundance with mutIDH1 inhibitors. 

However, the concomitant inhibition of wtIDH1 and mutIDH1R132H activity in the mutIDH1R132H 

LN18 cells complicated the understanding of how certain metabolites were affected by 

mutIDH1 and 2-HG. An experiment where intracellular 2-HG concentration was decreased 

without wtIDH1 activity also being affected would advance the understanding of mutIDH1 

glioma metabolism.  

Biosynthesis of 2-HG occurs primarily from glutamate-derived 2-OG (as shown with 13C tracer 

experiments in chapter 3 and also reported the literature [147, 165, 370]). Limiting the 

availability of the main carbon source of 2-HG has previously been suggested as a therapeutic 

option for mutIDH1 glioma [208, 442]. In this chapter, the aim was to explore the effects on 

cell viability, proliferation and metabolism when the main carbon source of 2-HG was 

restricted.  

In order to limit glutamine utilisation, cells were treated with the GLS inhibitor CB-839 [443]. 

GLS catalyses the de-amination of glutamine to glutamate. Ideally, a GLUD inhibitor would 

have been used to decrease the oxidation of glutamate to 2-OG. However, no specific GLUD 

inhibitors were available at the time this work was carried out. Chloroquine has been reported 

to inhibit nerve-specific GLUD [276], but is also an antimalarial agent [274] and autophagy 

inhibitor [reviewed in 275]. The potential for off-target effects confusing the metabolic 

interpretation were considered and CB-839 was used instead because it was developed for 

GLS inhibition specifically [443].  
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The aims of the research in this chapter are to: 

1. Assess the effect of limiting glutamine utilisation on: 

i. Cell viability.  

ii. The abundance of glutamine and glutamate in wtIDH1 and mutIDH1R132H cells. 

iii. The abundance 2-HG and 2-OG in wtIDH1 and mutIDH1R132H cells.  

iv. Wider metabolic changes, with a focus on metabolites that were significantly 

altered in abundance between wtIDH1 and mutIDH1R132H cells (reported in 

chapter 3 and further affected by mutIDH1 inhibition in chapter 5).  
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6.2.  Proliferation decreases in cells treated with GLS inhibitor 

GLS inhibition by CB-839 has previously been reported to have a mixed ability to decrease cell 

viability of patient-derived mutIDH1 glioma cells [208]. There were no previous reports on the 

effect of CB-839 in LN18 cells. It was therefore of interest to measure the effect of CB-839 on 

wtIDH1 and mutIDH1R132H LN18 cell viability, to determine the sensitivity of this specific cell 

line and whether IDH1 mutant and wild-type cells responded differently.  

Data processing and analysis 

Cell viability was measured with an MTS assay. WtIDH1 and mutIDH1R132H LN18 cells were 

treated for 24 hours with a range of CB-839 concentrations (0.05-5.00 µM) chosen based on 

the assay performed by Ruiz-Rodado et al. [208]. Plating and treatment were completed as 

described in section 2.5.3 and 2.5.4; number of biological replicates per experimental groups 

was N = 6. The cells were incubated with MTS assay dye for 45 minutes prior to measuring 

absorbance (A) at 490 nm, see section 2.7.5 for further details. Each plate was measured four 

times at 15-minute intervals. The absorbance ratios between treated and control samples per 

measurement timepoint was calculated. The average from each timepoint was used for 

plotting the data and statistical tests (one-way ANOVA with Dunnett’s or Šídák MCTe). 

Results 

After treatment with ≥ 0.10 µM CB-839, wtIDH1 and mutIDH1R132H LN18 cells had significantly 

lower absorbance than control cells (p-value < 0.05, Dunnett’s MCTe). The smallest ratio in 

absorbance between treated and control for mutIDH1R132H LN18 cells was 0.74 ± 0.04, i.e., a 

26% decrease in cell viability. For wtIDH1 LN18 cells, the smallest ratio between treated and 

control cells was 0.61 ± 0.06, i.e., a 39% decrease in cell viability. The significance of the 

difference in response between treated wtIDH1 and mutIDH1R132H LN18 cells was calculated, 

as wtIDH1 cells were more sensitive to treatment with CB-839. WtIDH1 cells treated with 

1.00, 3.00 or 5.00 µM CB-839 had a significantly lower treated-to-control absorbance ratio 

than mutIDH1R132H cells at the same CB-839 concentrations (p-value < 0.01, one-way ANOVA 

with Šídák MCTe). The absorbance ratios from the MTS assay are shown in Figure 6.2.1.  



Chapter 6. Exploring the metabolic effects of restricting glutamine utilisation in wtIDH1 and mutIDH1R132H 
glioblastoma cells 

243 
 

In chapter 4, a similar assay was 

performed with mutIDH1 inhibitors and 

treatment with 5.00 µM mutIDH1 

inhibitors for 24 hours did not lead to a 

significant difference in cell viability 

(Atreated/Acontrol = 0.98 ± 0.10). The 

decrease in cell viability was 

significantly larger for mutIDH1R132H 

LN18 cells treated with CB-839 than 

mutIDH1 inhibitors (p-value < 0.001, 

two-sided unpaired t-test (N = 6)). As a 

single therapy, CB-839 was therefore 

more efficient in reducing cell viability 

than mutIDH1 inhibitors. However, this comparison was only carried out for a single cell line 

and as previously noted, the efficacy of CB-839 is cell line dependent [208]. CB-839 as a 

therapeutic agent would likely benefit from patient stratification e.g., by testing the inhibitor 

on patient-derived cell lines [444, 445].  

WtIDH1 LN18 cells were significantly more sensitive to CB-839 than mutIDH1R132H LN18 cells. 

That was surprising as the mutIDH1R132H LN18 cells were thought to be under more metabolic 

stress than the wtIDH1 cells, since mutIDH1 enzyme activity was not otherwise restricted. 

Three hypotheses were considered. First, wtIDH1 cells were more reliant on GLS activity than 

mutIDH1R132H LN18 cells to metabolise glutamine to glutamate. Second, if GLS inhibition led 

to decreased 2-HG abundance, i.e., the mutant cells were using less NADPH to reduce 2-OG 

to 2-HG, perhaps the treatment provided some form of metabolic relief. Or third, the 

decrease in glutamate was not drastic enough to provide a particularly substantial decrease 

in 2-HG. It was therefore of interest to measure glutamine, glutamate, 2-HG and 2-OG 

abundance in the wtIDH1 and mutIDH1R132H LN18 cells to inform on which metabolic changes 

had occurred.  

In summary, both wtIDH1 and mutIDH1R132H cells cultured with ≥ 0.10 µM CB-839 had 

significantly lower proliferation than vehicle controls.  WtIDH1 LN18 cells were more sensitive 

to CB-839 than mutIDH1R132H LN18 cells. It was speculated that either the wtIDH1 cells were 

 
Figure 6.2.1. Cell viability assay of wtIDH1 and 
mutIDH1R132H LN18 cells treated with CB-839. The data 
points are ratio of mean absorbance of treated samples 
to mean absorbance of control samples. The dotted line 
indicates ratio of 1.0, i.e., no difference between control 
and treated. N = 6 biological replicates and error bars are 
one standard deviation.  
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more dependent on GLS activity; that the mutIDH1 cells in sum were being relieved of 

metabolic stress by producing less 2-HG; or that the inhibitor was not decreasing glutamate 

abundance enough to have an impact on 2-HG biosynthesis. To test the hypotheses, cellular 

abundance of 2-HG and related metabolites (2-OG, glutamate and glutamine) were measured 

next.  

6.3.  2-HG resilient to decreased 2-OG and glutamate in cells 

The cell viability assay of wtIDH1 and mutIDH1R132H LN18 cells treated with CB-839 revealed 

that the wtIDH1 cells were significantly more sensitive than the mutIDH1R132H LN18 cells to 

the drug. Previously it has been shown that glutamate-derived 2-OG was the main carbon 

source for 2-HG in LN18 cells (chapter 3). It was therefore hypothesised that the impact of 

CB-839 was smaller in mutIDH1R132H LN18 cells because the overall effect of limited glutamate 

was actually relief from the metabolic strain. The relief would occur if limited glutamate led 

to decreased 2-HG biosynthesis, because that would also decrease utilisation of NADPH by 

the mutIDH1 enzyme. The alternative hypothesis was that the wtIDH1 cells were more reliant 

on GLS than the mutIDH1R132H cells. The abundance of 2-HG, 2-OG, glutamate and glutamine 

were therefore analysed to test the hypotheses.    

Data processing and analysis 

WtIDH1 and mutIDH1R132H LN18 cells were cultured in 12-well plates with supplemented LG 

DMEM. The cells were treated with a range of concentrations of CB-839 (0.05-5.00 µM) and 

all cells, including control, had 0.1% (v/v) DMSO present in the media. Treatment lasted 

24 hours with a total incubation time of 48 hours. Number of biological replicates was N = 4 

for treated cells and N = 8 for control cells. Sample plating, treatment, harvest and 

preparation used the procedures as described in section 2.5.3-2.5.5 and section 2.6.1-2.6.2. 

The measured DNA concentration (ng/µL) is listed in Table A.IX.1 in appendix IX and was used 

for sample normalisation.  

The samples were analysed using both IC-MS and derivatised RPLC-MS methods, as described 

in section 2.7.1 and 2.7.2, respectively. Metabolite identification was performed as described 

in section 2.8.2; the IC-MS data yielded 145 (72 confident/73 putative) metabolite 

identifications and the RPLC-MS data yielded 40 (23 confident/17 putative) metabolite 

identifications. Identified metabolites and identification criteria are outlined in Table A.IX.2 
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and A.IX.3 in appendix IX, respectively. The data was filtered and normalised per the 

processes described in section 2.8.3; The IC-MS data was median normalised and the 

derivatised RPLC-MS data was quantile normalised. The normalisation parameters were 

chosen because they minimised small amounts of systematic bias present in the data sets, as 

well as establishing normal, or near normal, sample distribution plots (see Figure A.IX.1). The 

heatmaps and sample distribution plots for IC-MS and derivatised RPLC-MS data is provided 

in Figure A.IX.1 and A.IX.2, respectively.  

Results 

Glutamate decreased significantly and appreciably in wtIDH1 and mutIDH1R132H LN18 cells 

treated with ≥ 0.10 µM CB-839 (FCMUT > 2.21 (control/treated), p-value < 0.001 (t-test with 

FDR); FCWT > 1.72, p-value < 0.05 (t-test with FDR)). Glutamine accumulated significantly and 

appreciably in wtIDH1 LN18 cells treated with 0.10, 0.30, 1.00 and 3.00 µM CB-839 (FC > 2.39 

(treated/control), p-value < 0.05, t-test with FDR). Glutamine also accumulated appreciably 

in mutIDH1R132H LN18 cells (FC > 1.44 (treated/control)), but was not significant. The 

concurrent decrease in glutamate abundance and increase in glutamine abundance 

confirmed that the inhibitor limited glutamine utilisation, as expected. Glutamine and 

glutamate abundance in wtIDH1 and mutIDH1R132H LN18 cells are provided in 

Figure 6.3.1.(a-b).  

The abundance of 2-OG was appreciably lower in treated wtIDH1 and mutIDH1R132H cells 

compared to respective control cells (FC > 1.50 (control/treated)). The difference between 

treated and control groups was significant for all treated mutIDH1R132H cells (p-value < 0.05, 

t-test with FDR), except those treated with 0.30 µM CB-839. It was only significant for wtIDH1 

cells treated with 0.10, 1.00 or 5.00 µM CB-839 (p-value < 0.001, t-test with FDR). The 

abundance of 2-OG in treated and control cells is shown in Figure 6.3.1.(c). Surprisingly, 2-HG 

was not significantly nor appreciably altered in either mutIDH1R132H or wtIDH1 LN18 cells, see 

Figure 6.3.1.(d).  
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In mutIDH1R132H LN18 cells, glutamate abundance was twice as high in control versus treated 

samples (FC > 2.2 (control/treated)), while glutamine abundance was halved after treatment 

(FC > 1.44 (treated/control). The decrease in glutamate abundance in treated versus control 

wtIDH1 cells was smaller (FC > 1.67 (control/treated), but the accumulation of glutamine was 

greater (FC > 2.27 (treated/control). In other words, the wtIDH1 cells accumulated more 

glutamine, but had glutamate levels closer to that of their respective control samples than 

mutIDH1R132H cells. The evidence was consistent with wtIDH1 LN18 cells predominantly 

metabolising glutamine through GLS, while mutIDH1R132H LN18 cells metabolised glutamine 

 
Figure 6.3.1. Glutamine, glutamate, 2-OG and 2-HG abundance in wtIDH1 and mutIDH1R132H LN18 cells that 
were treated with GLS inhibitor CB-839. The data points are mean abundance and the error bars are one 
standard deviation. The number of biological replicates per cell line for treated groups was N = 4 and for 
control group was N = 8.  
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via alternative reactions as well. Glutamate, on the other hand, appeared to be utilised to a 

greater extent in mutIDH1R132H compared to wtIDH1 LN18 cells, likely for 2-HG biosynthesis. 

It therefore remained puzzling that the mutIDH1R132H LN18 cells were less sensitive to CB-839 

than wtIDH1 cells. Potentially the cells also increased consumption of glucose to make up for 

the loss of glutamate. The additional glucose could either be directed towards 2-HG 

biosynthesis or towards other reactions that were restricted by the lack of glutamate-derived 

2-OG. Glucose consumption was therefore investigated next.  

In summary, the accumulation of glutamine and decrease of glutamate demonstrated that 

CB-839 limited glutamine utilisation. WtIDH1 LN18 cells were more dependent on GLS for the 

utilisation of glutamine than mutIDH1R132H LN18 cells. However, mutIDH1R132H LN18 cells 

consumed more glutamate than the wtIDH1 LN18 cells, likely for 2-HG biosynthesis. There was 

a significant decrease in 2-OG abundance in treated wtIDH1 and mutIDH1R132H LN18 cells. Yet, 

2-HG abundance was not significantly altered between control and treated mutIDH1R132H LN18 

cells. That was surprising due to the significant decrease in 2-OG abundance. It was speculated 

glucose consumption was also increased to support 2-HG biosynthesis.  

6.4.  Glucose consumption was not increased in wtIDH1 and mutIDH1R132H LN18 

cells treated with CB-839 

The maintained level of 2-HG in mutIDH1R132H LN18 cells treated with CB-839, despite 

decreased glutamate abundance, raised the question of whether glucose consumption was 

increased in response. To assess whether that was the case, the glucose concentration in the 

media of wtIDH1 and mutIDH1R132H LN18 cells treated with CB-839 was measured.  

Data processing and analysis 

The wtIDH1 and mutIDH1R132H LN18 cells were plated in 96-well plates and incubated for 

24 hours with CB-839 (0.05-5.00 µM) present in the media; control cells with vehicle 

(0.1% (v/v) DMSO in media) were also included. Plating and treatment were otherwise 

performed as described in section 2.5.3 and 2.5.4. After incubation, aliquots of media were 

saved and the samples prepared for analysis as described in section 2.6.4. Measurement of 

glucose concentration was by colorimetric assay, as detailed in section 2.7.5. Quantification 
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was performed by constructing an external calibration curve (R2 > 0.99), shown in Figure 

A.IX.2. 

Results 

There was no appreciable or significant difference in glucose media concentration between 

control and CB-839 treated mutIDH1R132H samples (Figure 6.4.1). Therefore, the hypothesis 

suggested in section 6.3, where 2-HG biosynthesis was supported by additional glucose 

consumption in CB-839-treated cells, was contradicted. Instead, glutamine was likely 

metabolised to glutamate by other enzymes than GLS and (or) glutamate utilisation in other 

reactions was decreased. There was a significant decrease in glucose media concentration in 

wtIDH1 samples where the cells had been treated with 0.05, 3.00 or 5.00 µM CB-839 

(p-value < 0.01, one-way ANOVA with Dunnett’s MCTe) (Figure 6.4.1). It was puzzling that 

glucose consumption was increased only for cells treated with 0.05, 3.00 and 5.00 µM CB-839. 

All concentrations of inhibitor led to accumulation of glutamine and decreased glutamate, 

therefore a compensatory mechanism for limited glutamine utilisation would have been 

expected at all treatment concentrations. Potentially the exposure length (24 hour) was too 

short for the differences in glucose consumption to develop fully.  

 In summary, there was no consistent significant increase in glucose consumption observed for 

either wtIDH1 or mutIDH1R132H cells to compensate for decreased glutamate availability.  

 
Figure 6.4.1. Glucose concentration (mg/mL) in media of wtIDH1 and mutIDH1R132H LN18 cells treated with 
CB-839. Dotted lines indicate the mean glucose concentration (mg/mL) in the control samples.  The number 
of biological replicates were N = 6 (treated cells) and N = 18 (control cells). Data points are mean abundance 
and error bars are one standard deviation. 
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6.5.  Limiting glutamate availability highlighted dependence of other metabolite 

abundances on 2-OG and 2-HG in mutIDH1R132H  

In chapter 5, mutIDH1 inhibitors were used to investigate the metabolic differences between 

wtIDH1 and mutIDH1R132H LN18 cells. The analysis was hindered by the concomitant inhibition 

of wtIDH1 and mutIDH1R132H enzyme activity in mutIDH1R132H LN18 cells. It was not possible 

to confidently determine whether specific metabolites were affected by 2-HG/mutIDH1 

activity when the inhibition of wtIDH1 could also alter metabolite abundance. An experiment 

where either 2-HG or 2-OG were altered without concurrent inhibition of wtIDH1 and 

mutIDH1R132H activity was therefore needed. The CB-839 metabolomics experiment described 

in section 6.3 demonstrated that 2-HG abundance was maintained while 2-OG was 

significantly decreased in all experimental groups. Thus, the metabolites that were 

significantly different between control wtIDH1 and mutIDH1R132H LN18 cells (chapter 3) and 

also altered by mutIDH1 inhibitor (chapter 5) could be investigated.  

Data processing and analysis 

To quantify whether a metabolite maintained an abundance difference between wtIDH1 and 

mutIDH1R132H cells after treatment with CB-839, the abundances were ‘normalised’ by 

calculating their relative ratio to the abundance in wtIDH1 control cells:  

Equation 6.1    𝐹𝐶𝑊 =  �̅�𝑊𝑇−𝐶𝑜 �̅�𝑊𝑇−𝑇𝑟⁄  

Equation 6.2    𝐹𝐶𝑀 =  �̅�𝑊𝑇−𝐶𝑜 �̅�𝑀𝑈𝑇−𝑇𝑟⁄  

where �̅� was average metabolite abundance, WT = wtIDH1, MUT = mutIDH1R132H, Tr = treated 

and Co = control. Then the difference (FCDiff) between the two normalised abundances was 

calculated:  

Equation 6.3    𝐹𝐶𝐷𝑖𝑓𝑓 =  𝐹𝐶𝑊 − 𝐹𝐶𝑀 

The FCDiff for all treatment concentrations of CB-839 were used, as the decrease in 2-OG 

abundance was similar for all. An FCDiff near zero meant that the difference between wtIDH1 

and mutIDH1R132H LN18 cells was diminished after treatment with CB-839. Metabolites with 
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a positive FCDiff had higher abundance in mutIDH1R132H than wtIDH1 LN18 cells and 

metabolites with negative FCDiff had higher abundance in wtIDH1 than mutIDH1R132H LN18 

cells.  As an example, the difference in 2-HG abundance remained the same between wtIDH1 

and mutIDH1R132H LN18 cells at all CB-839 concentrations (Figure 6.3.1) and FCDiff was positive 

(1.06). However, FCDiff could not be used to distinguish whether the metabolite increased or 

decreased in wtIDH1 or mutIDH1R132H cells after treatment with CB-839, only its relative 

abundance. The average FC between treated and control for each cell line was therefore used 

to determine which metabolites were altered after treatment with CB-839. Significance 

between treated and control was only reported when it was present for two or more treated 

groups. FC and significance were calculated as described in section 2.8.3. The following 

metabolites were not detected in the CB-839 experiment and were therefore not included in 

the results below: cysteine, dADP, glycerate, IPP, and methionine.  

Results 

Pipecolate and putrescine were the only metabolites with an FCDiff near zero. All of the other 

metabolites maintained either a negative FCDiff (abundance higher in wtIDH1 cells) or positive 

FCDiff (abundance higher in mutIDH1R132H cells), see Figure 6.5.1. The interpretation of a near 

zero FCDiff was that decreased 2-OG minimised the metabolic difference previously observed 

between wtIDH1 and mutIDH1R132H LN18 cells. Maintained FCDiff was interpreted as 2-HG 

contributing to the difference in metabolite abundance observed between wtIDH1 and 

mutIDH1R132H LN18 cells.  
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Next, the average FC (control/treated) of the metabolites in wtIDH1 and mutIDH1R132H LN18 

cells were examined to determine which metabolites were altered in abundance after 

treatment with CB-839. O-phosphoserine, methylisocitrate and 2-aminoadipate had 

significantly higher abundances in control than treated cells for both cell lines (p-value < 0.05, 

t-test with FDR adjustment). Pipecolate and putrescine had significantly lower abundances in 

control than treated cells for both cell lines (p-value < 0.05, t-test with FDR adjustment). 

Oxoadipate had significantly higher abundance in control versus treated wtIDH1 cells only, 

while 3M2OV had significantly higher abundance in control versus treated mutIDH1R132H cells 

(p-value < 0.05, t-test with FDR adjustment). FCs are summarised in Figure 6.5.2.   

 

 
Figure 6.5.1. The FC difference (FCDiff) between FCW and FCM. FCW = control wtIDH1/treated wtIDH1 and 
FCM = control wtIDH1/treated mutIDH1; both were the average FC for all treatment concentrations. The 
error bars are one standard deviation. The number of biological replicates per cell line for treated group 
was N = 28 and for control groups was N = 8. 
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The metabolites that maintained a positive or negative FCDiff and were also not significantly 

altered after treatment with CB-839 were: B-CG, NAAG, DR5P, B-alanine, 

N-carbamoylaspartate, isoleucine and asparagine. Since the metabolites were not sensitive 

to decreased 2-OG abundance, the difference between mutIDH1R132H and wtIDH1 LN18 cells 

was due to elevated 2-HG. B-CG and NAAG were already suggested (in chapter 5) to be 

correlated to 2-HG abundance, but now DR5P, B-alanine, N-carbamoylaspartate, isoleucine 

and asparagine were postulated as well. It was surprising that DR5P was unaffected by the 

decreased 2-OG in the CB-839 experiment, when in chapter 5 it appeared to correlate with 

 

 
Figure 6.5.2. Average FC between treated/control wtIDH1 and mutIDH1R132H LN18 cells in the CB-839 
metabolomics experiment. (a) FC averages for control/treated mutIDH1R132H LN18 cells. (b) FC averages for 
control/treated mutIDH1R132H LN18 cells. Starred (*) columns had at least two treated groups that were 
significantly different from control (p-value < 0.05, FDR adjusted t-test). The error bars were one standard 
deviation. The grey area showed where 0.83 < FC < 1.20, i.e., changes in metabolite abundance that were 
considered too small to be appreciable. The number of biological replicates per cell line for treated group 
was N = 28 and for control group was N = 8. 
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both 2-HG and 2-OG abundance in the CA. Potentially it was responding to altered NADPH in 

the mutIDH1 inhibitors experiment, and it only correlated to 2-OG because it was the proxy 

for wtIDH1 activity. 2-aminoadipate, O-phosphoserine and methylisocitrate maintained a 

positive or negative FCDiff, but were also significantly altered after treatment with CB-839 in 

both cell lines. They were therefore sensitive to decreased 2-OG abundance, but as the 

difference was maintained between wtIDH1 and mutIDH1R132H LN18 cells, these metabolites 

were also affected by the presence of high levels of 2-HG.  

Oxoadipate and 3M2OV maintained a negative FCDiff
,, however the response to CB-839 was 

not the same in the wtIDH1 and mutIDH1R132H LN18 cells. Oxoadipate had a significantly 

higher abundance in control versus treated wtIDH1R132H LN18 cells, but the apparent increase 

in mutIDH1R132H LN18 cells was not significant. Collectively, 2-HG contributed to the difference 

in oxoadipate abundance observed between the two cell lines, but the sensitivity to 

decreased 2-OG concentration was higher in wtIDH1 cells. Oxoadipate is formed during an 

aminotransferase reaction between 2-aminoadipate and 2-OG. If that reaction was already 

competitively inhibited by 2-HG, the decreased 2-OG abundance would have less of an impact 

compared to wtIDH1 cells (where the reaction was not inhibited). However, the same would 

have been assumed to be the case for 3M2OV, which is the product of the transamination of 

2-OG with isoleucine. Yet 3M2OV was more sensitive to decreased 2-OG abundance in 

mutIDH1R132H than wtIDH1 LN18 cells. Potentially there was a difference in the inhibition 

kinetics of 2-HG and 2-aminoadipate transaminase and BCAT1 (the enzymes that catalyse 

biosynthesis of oxoadipate and 3M2OV, respectively). That would be best studied by in vitro 

enzyme assays, but is beyond the scope of this thesis. The difference in sensitivity to variation 

in 2-OG abundance, when in the presence of high levels of 2-HG, suggested that the impact 

of 2-HG on similar metabolic processes (i.e., transamination) was more dependent on specific 

enzymes than perhaps previously appreciated.  

The FCDiff of pipecolate and putrescine was near zero, i.e., the decreased 2-OG abundance 

diminished the differences between wtIDH1 and mutIDH1R132H LN18 cells. The metabolites 

had significantly lower abundance in control than treated cells for both cell lines, i.e., 

decreased 2-OG led to accumulation of the metabolites in the cells. Pipecolate is formed by 

oxidation of the lysine α-amine [353]. The transamination of 2-OG with 2-aminoadipate is 

downstream of pipecolate in the lysine degradation pathway. Accumulation of pipecolate in 
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CB-839 treated cells indicated that decreased 2-OG abundance was limiting further 

catabolism. The impact was greater in mutIDH1R132H than wtIDH1 cells, which was speculated 

to be due to 2-HG further inhibiting the downstream transaminase reaction. However, it was 

puzzling that 2-aminoadipate, oxoadipate and pipecolate had such different responses to 

limited 2-OG availability. That would suggest that the impact of 2-HG was not uniform across 

the lysine degradation pathway.  

Putrescine is biosynthesised in proliferating cells [reviewed in 446, 447]; the cells with limited 

glutamate and 2-OG exhibited decreased proliferation. Proliferation of glioma cells can be 

reduced by inhibition of the main enzyme that produces putrescine, ornithine decarboxylase 

(ODC) and then rescued by supplementation of putrescine [448]. However, high intracellular 

concentrations of putrescine can induce apoptosis [449]. To understand whether the 

increased putrescine abundance was due to imminent proliferation or apoptosis, a time 

course cell proliferation assay is suggested. The proliferation assay could reveal whether cells 

with limited glutamine utilisation had a lower growth rate than control cells. The 

accumulation of putrescine at 24 hours would then imply rapid cell proliferation was about 

to begin. However, if the cells grown with limited glutamine utilisation died off, then it could 

indicate that putrescine was accumulating to toxic levels.   

Putrescine abundance was higher in mutIDH1R132H than wtIDH1 LN18 cells, which could 

indicate that the presence of the mutation had an effect on polyamine metabolism. The 

polyamines cadaverine, spermine and spermidine had previously been analysed as standards 

with the derivatised RPLC-MS method, but they were not detected in the samples. How 2-HG 

levels and mutIDH1R132H activity factored into these metabolic processes remained unknown. 

But the difference in response to putrescine levels, between wtIDH1 and mutIDH1R132H cells, 

and its role in cell proliferation warrants further study.  

In summary, the CB-839 metabolomics experiment confirmed that B-CG and NAAG abundance 

was correlated to 2-HG abundance and not affected by decreased 2-OG. The experiment also 

revealed that abundances of DR5P, B-alanine, N-carbamoylaspartate, isoleucine and 

asparagine also were affected by 2-HG exclusively. Elevated 2-HG was also responsible for the 

observed abundance of 2-aminoadipate, O-phosphoserine and methylisocitrate between 

wtIDH1 and mutIDH1R132H LN18 cells for, but the three metabolites were also equally affected 
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by decreased 2-OG in both cell lines. Oxoadipate and 3M2OV were affected by 2-HG, but the 

CB-839 experiment revealed that the response to decreased 2-OG was different between 

wtIDH1 and mutIDH1R132H LN18 cells. It was suggested that this was due to differences in how 

the relevant 2-OG dependent enzymes responded to speculated competitive inhibition by 

2-HG, as well as decreased 2-OG abundance. Similarly, pipecolate was considered affected by 

2-HG, but decreased 2-OG also limited catabolism, which was most apparent in mutIDH1R132H 

cells. Finally, putrescine was elevated similarly after treatment in both cell lines and it was 

suggested that it was due to a cell proliferative response to limited glutamine utilisation.  

 

6.6.  Discussion 

Directly inhibiting mutIDH1 has received considerable attention in the development of 

therapies targeted toward mutIDH1 glioma metabolism [reviewed in 1]. Presently, mutIDH1 

inhibitors face two challenges: limited impact on disease [263, 422, 423] and the emergence 

of resistance [264-266, 424-427]. Expanding treatment options by developing alternative 

therapies would increase the likelihood of successfully treating mutIDH1 glioma. Glutaminase 

inhibition is currently being pursued as a therapy in glioma [442] and other cancers [273] in 

phase I trials. It was therefore of interest to investigate the response of the LN18 cell lines to 

CB-839 and compare this with mutIDH1 inhibitors. As a monotherapy, CB-839 had a 

significantly greater impact on cell viability than the mutIDH1 inhibitors (p-value < 0.001, 

two-sided unpaired t-test). The wtIDH1 LN18 cells were significantly more sensitive than the 

mutIDH1R132H LN18 cells (p-value < 0.01, one-way ANOVA with Šídák MCTe), which prompted 

further metabolic analysis to better understand the difference.  

GLS catalyses the deamination of glutamine to glutamate (see Figure 6.6.1). In mutIDH1 

glioma, glutamate-derived 2-OG is the main source of carbon for 2-HG (chapter 3) [147]. 

Treatment with CB-839 was expected to lead to an accumulation of glutamine and decreased 

glutamate abundance. The limited glutamate was hypothesised to consequently deplete 

2-HG, however this was not the case. Treated cells had a higher abundance of glutamine and 

lower abundance of glutamate, in agreement with previous reports of GBM cell lines treated 

with GLS inhibitors [207, 208, 450]. Furthermore, 2-OG was significantly decreased treated 

wtIDH1 and mutIDH1R132H LN18 cells, but 2-HG was not affected. Only one previous study 
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found a small, but significant decrease in 2-HG abundance in a mutIDH1R132H GBM cells (D54) 

treated with GLS inhibitor BPTES [207]. The maintained 2-HG abundance despite restricted 

glutamate prompted the question of whether the cells were metabolising additional glucose 

to compensate. MutIDH1R132H LN18 cells did not have significantly increased glucose 

consumption after treatment with CB-839. The lack of increase in glucose consumption could 

have been due to the relatively short exposure time to CB-839 (24 hours) or because the cells 

were compensating for decreased GLS activity using alternative enzymes.  

In a study where patient-derived glioma cell lines that endogenously expressed mutIDH1R132H 

were treated with CB-839, asparagine synthetase (ASNS) and glutamate oxaloacetate 

transaminase (GOT) were upregulated in treated cells [208]. ASNS transfers an amine from 

glutamine to aspartate, producing asparagine and glutamate, whereas GOT transfers the 

amine from aspartate to 2-OG, producing oxaloacetate and glutamate. Both enzymes allow 

the cells to ‘bypass’ GLS inhibition. Potentially, the mutIDH1R132H LN18 cells had increased 

expression of ASNS and GOT, allowing them to utilise glutamine and maintain 2-HG 

abundance. It would be of interest to determine whether the expression was already elevated 

in mutIDH1R132H cells prior to treatment, as a way to increase glutamate availability for 2-HG 

biosynthesis, or if the increase occurred after treatment with CB-839. Ultimately, the 

therapeutic benefit of CB-839 depends on whether the cells are able to circumvent the 

consequence of GLS inhibition or not. If mutIDH1 cells are already primed to access glutamate 

via other enzymes, CB-839 may not be an effective treatment. The drug would likely benefit 

from patient stratification, and may perhaps be best used in combination with other 

treatments and chemotherapies as an adjuvant, rather than a monotherapy.  

Treatment with CB-839 offered an opportunity to re-examine metabolic differences between 

wtIDH1 and mutIDH1R132H LN18 cells. Perhaps surprisingly, B-CG and NAAG, metabolites that 

 
Figure 6.6.1. Overview of reactions catabolised by GLS, GLUD and mutIDH1. Glutamine is hydrolysed to 
glutamate by GLS and glutamate can be further oxidised to 2-OG by GLUD. MutIDH1 catalyses the reduction 
of 2-OG to 2-HG. Abbreviations: GLS = glutaminase, GLUD = glutamate dehydrogenase, mutIDH1 = mutant 
isocitrate dehydrogenase 1, 2-OG = 2-oxoglutarate and 2-HG = 2-hydroxyglutarate.  
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require glutamate for synthesis, remained largely unchanged by limited glutamate levels. 

NAAG has previously been suggested as a reservoir of glutamate for cancer cells [400]. 

However, considering the abundance was maintained, despite the limited glutamate supply, 

the data presented here does not support this hypothesis. The exact role(s) of B-CG in human 

metabolism remain unknown, but it is also unlikely that it acts as a glutamate pool. A previous 

study found that it could act in a redox protective manner when complexed with Cu(II) [403]. 

Yet, glutathione is a redox protective molecule, and it has previously been shown to be 

decreased in mutIDH1R132H-expressing HOG and NHA cells with decreased glutamate after 

treatment with CB-839 [173]. If B-CG has a redox protective role in cells, it would be expected 

to be similarly affected by decreased glutamate as glutathione. A better understanding of the 

metabolic role of B-CG in glioma is needed before this can be answered, but it is intriguing 

that its abundance was unaffected by depleted glutamate.  

The other metabolites with unclear correlation to 2-HG and mutIDH1R132H activity in chapter 5 

were categorized. All but pipecolate and putrescine were clearly dependent on 2-HG, 

considering the maintained difference between wtIDH1 and mutIDH1R132H cells after 

treatment with CB-839. Pipecolate also is suggested to still be affected by the presence of 

high levels of 2-HG, as it accumulated in both cell lines, but to a greater extent in mutIDH1R132H 

cells. This was potentially due the downstream transamination of 2-OG with 2-aminoadipate 

as a result of decreased 2-OG availability and speculated competitive inhibition by 2-HG. The 

mechanism by which 2-HG is affecting the metabolic pathways has only been explored for 

BCAAs, where decreased expression of BCAT1 and direct inhibition of BCAT1 have been 

reported [173, 192, 204]. Potentially a similar mechanism is occurring for lysine degradation, 

although the different responses of oxoadipate and 3M2OV to treatment with CB-839, 

indicated that it is not necessarily the same. As both enzymes produce glutamate after 

transamination of 2-OG, they could potentially be used as therapeutic targets, if the 

therapeutic objective was to further limit glutamate availability.  

Lysine degradation and a number of other amino acids and intermediates have been 

highlighted throughout chapter 3-6 as significantly different between mutIDH1R132H and 

wtIDH1 LN18 cells, associated with decreased 2-HG abundance. The abundance of amino 

acids and related metabolites have also previously been reported as altered in mutIDH1 

glioma, although only BCAT1 has been thoroughly studied [reviewed in 1]. Collectively, these 
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studies suggest that the IDH1 mutation leads to altered amino acid metabolism, which could 

point toward an additional tumorigenic role of the IDH1 mutation in glioma. Amino acid 

metabolism provides cells with e.g., anaplerotic sources for the TCA cycle, methyl groups for 

one-carbon metabolism and building-blocks for glutathione biosynthesis; metabolic 

reprogramming to facilitate growth and survival has been found in a variety of cancers 

[reviewed in 381]. Establishing the specifics of mutIDH1 glioma amino acid metabolism may 

lead to better understanding of the disease and guide development of therapeutic strategies. 

To achieve deeper insight and to potentially disentangle confounding effects, combining 

multiple ‘omics’ data sets to allow for metabolic modelling should be considered. 

Transcriptomics provides information on changes in gene expression levels, which in turn 

could aid in identifying which metabolic enzymes or pathways were responding to e.g., 

mutIDH1 or GLS inhibition.  

6.7.  Summary and conclusions 

The GLS inhibitor CB-839 led to significant decrease in cell viability in both wtIDH1 and 

mutIDH1R132H LN18 cells. It was more effective at decreasing cell viability than the mutIDH1 

inhibitors examined in chapter 5 after 24 hours of treatment. The greater reliance on GLS for 

glutamine catabolism was suggested as an explanation for the higher sensitivity toward 

CB-839 exhibited by the wtIDH1 LN18 cells. In mutIDH1R132H LN18 cells, 2-HG abundance 

remained high despite significant decrease in 2-OG abundance. 2-HG abundance was not 

maintained by increased consumption of glucose. It was therefore hypothesised that the cells 

were compensating for decreased GLS activity with enzymes such as ASNS and GOT, as found 

in other mutIDH1 glioma cell lines treated with CB-839. For the inhibitor to succeed as a 

therapeutic agent, it would be beneficial to screen biopsies for increased expression of 

enzymes that could circumvent GLS inhibition. Most likely though, CB-839 will have to be used 

in combination with other treatments to address these challenges.  

Decreased abundance of 2-OG, without concurrent changes in 2-HG, allowed the study of the 

relationship between other metabolites and 2-HG to be considered. B-CG and NAAG were yet 

again confirmed to be affected by 2-HG abundance alone, although this observation was 

surprising since both require glutamate for biosynthesis. It was not clear why their abundance 

was maintained when glutamate was depleted, especially as the metabolic role of B-CG 
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remains unknown. However, the consistent correlation with 2-HG abundance should prompt 

more research into the metabolic functions of B-CG and whether it contributes to 

tumorigenesis. Lysine degradation was affected by both 2-HG and 2-OG abundance, similarly 

to the BCAT1 product 3M2OV, which showed that other transamination enzymes are likely 

competitively inhibited by 2-HG at high concentration. In general, amino acid metabolism is 

altered in the mutIDH1R132H LN18 cells and its potential role in tumorigenesis, and 

opportunities for therapeutic targets, should be further explored.  

 

  



Chapter 7. Conclusions and further work 

260 
 

Chapter 7. Conclusions and further work 

7.1.  Conclusions 

In this thesis, mutIDH1 glioma metabolism was studied by comparing it to a matched wild 

type IDH1 cell line and by treating it with inhibitors that either directly affected the 

mutIDH1R132H enzyme or indirectly limited substrate availability. The aim was to advance the 

understanding of mutIDH1 glioma metabolism and how 2-HG abundance related to other 

altered metabolites. With that knowledge, further insight into the tumorigenic capabilities of 

mutIDH1 glioma metabolism can be established and new therapeutic targets uncovered.  

The abundance of 2-HG in mutIDH1 glioma is significantly elevated and that has been linked 

to altered BCAA and lipid metabolism, as well as changes in abundance of specific metabolites 

[reviewed in 1]. The glioblastoma cell line LN18 with mutant IDH1 expressed via lentiviral 

vector was used as the mutIDH1 glioma model in this thesis and it had significantly higher 

2-HG levels than the wtIDH1 LN18 cells. Additional metabolites and pathways that were 

significantly different between the two cell lines were found with statistical analyses. The cell 

model covered aspects of metabolism previously reported on (e.g., BCAA catabolism), but 

metabolites and pathways that have otherwise received limited attention were also found 

(e.g., B-CG and lysine degradation). Several of the metabolites were either directly dependent 

on 2-OG as a substrate for biosynthesis or were part of a pathway where one or more 

reactions required 2-OG as a substrate. Decreased substrate availability or direct competitive 

inhibition by 2-HG were suggested explanations for their modulation in mutIDH1R132H LN18 

cells. Indirect effects, e.g., changes in transcription levels of enzymes, could also lead to 

altered metabolite abundances. Metabolites that were not thought to require 2-OG or 

NADP+/NADPH for biosynthesis or catabolism were considered more likely to be affected 

indirectly than directly by 2-HG. Comparing wtIDH1 and mutIDH1R132H LN18 cells therefore 

provided metabolites of interest to study further in cells treated with metabolic inhibitors. 

The need to separate direct from indirect effects of 2-HG informed the design and choice of 

subsequent experiments.   

The four mutIDH1 inhibitors AG-120, AG-881, BAY 1436032 and GSK864 were capable of 

significantly and substantially decreasing 2-HG abundance in treated mutIDH1R132H LN18 cells. 
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However, mutIDH1R1342H LN18 cell viability was not substantially decreased. AG-120, AG-881 

and GSK864 had IC50 for wtIDH1 in the low nM-µM range [246, 250, 416] and were capable of 

inhibiting wtIDH1 activity in both cell lines (≥ 5.00 µM); isocitrate accumulated significantly in 

treated cells. AG-120, BAY 1436032 and GSK864 were similar in their ability to decrease 2-HG 

abundance over a range of concentrations and exposure times. AG-881 was an inferior 

inhibitor to the other three, despite having similar cellular levels as BAY 1436032. It was 

unable to reach the same substantial decrease in 2-HG abundance, even when cells were 

exposed to inhibitor for longer. The limited effect on cell viability had previously been 

reported [reviewed in 1], but the comparison of the four inhibitors over a range of 

concentrations and treatment timepoints had not. The differences in when and to what 

extent 2-HG abundance was decreased by the inhibitors supported the interpretation of 

altered mutIDH1 metabolism. Establishing that wtIDH1 was inhibited at high enough 

concentrations of AG-120, AG-881 and GSK864 also influenced the understanding of how 

other metabolites responded to treatment.  

MutIDH1 inhibitors were yet to be used to interrogate mutIDH1 glioma metabolism with the 

metabolic coverage and range of experiments described here. Treatment with mutIDH1 

inhibitors brought the mutIDH1R132H LN18 cells closer to wtIDH1 cells metabolically. The 

modulation of metabolites appeared to correlate with 2-HG abundance in the multivariate 

analyses. However, several metabolites responded similarly to mutIDH1 inhibitors in wtIDH1 

and mutIDH1R132H cells. It prompted the question of whether a response was due to inhibited 

mutIDH1R132H, wtIDH1 or both. Univariate analyses were performed in an attempt to discern 

what was the main driver behind metabolite modulation. Metabolites altered from inhibition 

of both enzymes did not necessarily exclude them from being regarded as affected by 2-HG 

abundance, but it was difficult to estimate the degree of influence. Despite the challenging 

data interpretation resulting from concurrent wtIDH1 and mutIDH1R132H inhibition, the work 

further supported the hypothesis that mutIDH1 metabolism was affected by 2-HG abundance 

through direct and indirect effects. Furthermore, the altered metabolite abundances 

correlated to 2-HG abundance and both direct and indirect effects were suggested to be 

responsible. The correlative relationship to 2-HG suggested a role in tumorigenesis that also 

may offer new therapeutic targets.  
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GLS inhibition was explored as an alternative therapeutic strategy. MutIDH1 inhibitors did not 

decrease mutIDH1R132H LN18 cells viability substantially, but treatment with GLS inhibitor 

CB-839 did. WtIDH1 and mutIDH1R132H LN18 cells were not similarly sensitive to CB-839; it was 

suggested that the wtIDH1 cells were less able to bypass GLS inhibition than the mutIDH1R132H 

LN18 cells. Furthermore, treatment with inhibitor led to decreased glutamate and 2-OG 

abundance, but it did not lead to the expected decreased abundance in 2-HG. The cells did 

not compensate by increasing glucose consumption, and the hypothesis that mutIDH1R132H 

cells were better able to compensate for decreased GLS activity was strengthened. The 

maintained 2-HG abundance coupled with decreased 2-OG abundance was suited to probe 

the effect of 2-HG and 2-OG abundance on different metabolites. It was possible to distinguish 

metabolites that were only affected by 2-HG abundance, affected by maintained 2-HG and 

decreased 2-OG, and affected by maintained 2-HG but with a dissimilar response to decreased 

2-OG abundance. Collectively, the metabolomics experiments presented in this thesis 

advanced the knowledge of which metabolites were correlated with 2-HG abundance, 

whether 2-HG was likely to have a direct, indirect or combined effect and which areas of 

metabolism to focus future work.  

The pitfalls of adaptation and resistance to metabolic inhibition are evident. Treatment based 

on metabolic targets will likely have to be based on combinations of therapies. It also remains 

to be determined what the focus should be; is it most beneficial to decrease 2-HG abundance 

or rather to challenge the cells to maintain 2-HG abundance under substrate deprivation? 

Which treatment strategy is most efficient, or perhaps when it is most suitably applied, 

depends on whether sustaining high 2-HG abundance contributes to tumorigenesis in 

mutIDH1 glioma. The correlation of 2-HG with a number of metabolites points toward a 

benefit of altering pathway activities. The potential benefits provided by the mutIDH1 specific 

alterations of amino acid metabolism for tumour development are not well understood. 

Similarly, the function of B-CG in the cellular environment remains to be determined. Only 

once the potential role and impact on tumorigenesis is appreciated can the merit of amino 

acid metabolism and B-CG as targets for therapy be evaluated.  
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7.2.  Limitations and further work 

The work presented in this thesis had certain limitations. The cell-based experiments were 

carried out with a single immortalised cell GBM cell line. Certain metabolic changes may have 

been specific to this cell line and therefore cannot be applied to glioma more broadly.  

Furthermore, the cells were cultured under conditions that did not necessarily match 

physiological levels of specific metabolites, which can affect cellular metabolism significantly 

[451]. However, the consistency of certain metabolic changes and the biological reasoning 

behind those changes have identified areas to focus future work. The inability to measure and 

quantify NAD+/NADH and NADP+/NADPH in cell samples limited the interpretation of 

modulated metabolism to a degree, because changes in redox homeostasis could not be 

quantified. Finally, the IC-MS and derivatised RPLC-MS methods did not provide full coverage 

of the metabolome and metabolic changes linked to 2-HG abundance may have been missed. 

For example, phospholipid metabolism has previously been reported as consistently altered 

in mutIDH1 glioma [reviewed in 1], but was not covered by the methods used here. The 

effects of 2-HG abundance and mutIDH1R132H activity on phospholipid metabolism merits 

further work, as it may inform on whether the modulations are pro-tumorigenic.  

The findings in this thesis showed that metabolism was altered upon introduction of mutant 

IDH1 in a GBM cell line, and that those metabolic alterations correlated with 2-HG abundance. 

The modulation of metabolism after treatment with mutIDH1 and GLS inhibitors should be 

studied in additional glioma cell lines to corroborate these findings. Preferably the cell lines 

would have an endogenous IDH1 mutation and be cultured in media customised for glial cells 

to more closely match in vivo conditions. Furthermore, NADP+ and NADPH needs to be 

measured in cells treated with mutIDH1 inhibitors to support the analysis of mutIDH1 glioma 

metabolism. Preferably, a LC-MS method capable of repeatably analysing and quantifying 

NAD+, NADH, NADP+ and NADPH would be developed. There are cellular assays available, but 

they do not provide the same flexibility as LC-MS does or the option of expanding the analysis 

to include other redox related metabolites (e.g., glutathione, flavine adenine dinucleotide). 

Method development should focus on improving sample stability and chromatographic 

performance, which will both contribute to improving repeatability and sensitivity.  
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Chapter 9. Appendices 

9.1.  Appendix I 

The database for the IC-MS method described in section 2.7.1 is provided in Table A.I.1 

and for the derivatised RPLC-MS method described in section 2.7.2 is provided in Table 

A.I.2. The database contained the following information: compound ID, description, neutral 

mass (NM), adduct, retention time (RT (min)) and formula). They were used within the 

program Progenesis QI to aid metabolite identification. The databases were established by 

members of the McCullagh group.  

Table A.I.1. Data base of metabolites measured by IC-MS. Abbreviations: RT = retention time. 

Compound ID Description Neutral mass RT (min) Formula 

HMDB0013674 1,2,3-Trihydroxybenzene/Pyrogallol 126.0322 23.21 C6H6O3 

HMDB0000957 1,2-Dihydroxybenzene 110.0368 25.92 C6H6O2 

HMDB0013593 1,4 dihydrotheritol 154.0122 14.86 C4H10O2S2 

HMDB0001213 1-Deoxy-D-xylulose 5-phosphate 214.0242 10.32 C5H11O7P 

NA 1-Hydroxy-2-methyl-2-butenyl 4-pyrophosphate 262.0007 16.68 C5H12O8P2  

NA 1-Methyl indole 131.0740 28.33 C9H9N 

HMDB0000001 1-Methylhistidine 169.0851 12.89 C7H11N3O2 

HMDB0001369 1-Pyrroline hydroxycarboxylic acid 129.0426 4.48 C5H7NO3 

HMDB0001301 1-Pyrroline-5-carboxylic acid 113.0477 9.37 C5H7NO2 

HMDB0002006 2,3-Diaminopropionic acid 104.0591 11.75 C3H8N2O2 

HMDB0001294 2,3-Diphosphoglyceric acid 265.9593 22.21 C3H8O10P2 

HMDB0000152 2,5-Dihydroxybenzoic acid 154.0266 32.16 C7H6O4 

HMDB0000370 2-Amino-3-phosphonopropionic acid 169.0146 14.56 C3H8NO5P 

NA 2-amino-5-hydroxybenzoic acid 153.0431 33.19 C7H7NO3 

HMDB0001123 2-Aminobenzoic acid/Anthranilic acid 137.0477 25.09 C7H7NO2 

HMDB0001906 2-Aminoisobutyric acid 103.0633 9.92 C4H9NO2 

HMDB0032059 2-Bromophenol 171.9529 9.03 C6H5BrO 

NA 2-butyl-3-ureido-succinate 232.1059 11.98 C9H16N2O5 

NA 2-C-Methyl-D-erythritol-2,4-cyclopyrophosphate 277.9962 15.28 C5H12O9P2 

NA 2-C-Methylerythritol 4-phosphate  214.0242 9.88 C5H13O7P 

NA 2-Hydroxy-4-phenylbutanoic acid 180.0792 14.39 C10H12O3 

HMDB0000008 2-Hydroxybutyric acid 104.0473 5.41 C4H8O3 

HMDB0059655 2-Hydroxyglutarate 148.0372 10.90 C5H8O5 

HMDB0001624 2-Hydroxyhexanoic acid 132.0792 7.98 C6H12O3 

HMDB0000402 2-Isopropylmalic acid 176.0685 12.32 C7H12O5 

HMDB0000005 2-Ketobutyric acid 102.0317 7.86 C4H6O3 

HMDB0000379 2-Methylcitric acid 206.0432 16.09 C7H10O7 

HMDB0000208 2-Oxoglutaric acid 146.0215 12.85 C5H6O5     

HMDB0000362 2-Phosphoglyceric acid 185.9929 16.34 C3H7O7P 

HMDB0000397 2-Pyrocatechuic acid  154.0266 33.01 C7H6O4 

HMDB0002039 2-Pyrrolidinone 85.0533 13.37 C4H7NO 

HMDB0002441 3,3 Dimethyl glutarate 160.0736 11.41 C7H12O4 

HMDB0012153 3,4,Dihydroxybenzylamine 139.0639 13.52 C7H9NO2 

HMDB0001336 3,4-dihydroxyphenyl acetic acid 168.0423 22.60 C8H8O4 

HMDB0003911 3-Aminoisobutanoic acid 103.0633 10.32 C4H9NO2 

HMDB0003540 3'-AMP 347.0625 13.43 C10H14N5O7P 

HMDB0012710 3-Dehydroquinate 190.0477 5.51 C7H10O6 

HMDB0001376 3-deoxy-2-keto-6-phosphogluconic acid 258.0141 15.93 C6H11O9P 
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HMDB0001476 3-Hydroxyanthranilic acid 153.0431 26.46 C7H7NO3 

HMDB0002466 3-Hydroxybenzoic acid 138.0322 22.66 C7H6O3 

HMDB0000357 3-Hydroxybutyric acid 104.0473 5.36 C4H8O3 

HMDB0000023 3-Hydroxyisobutyric acid 104.0473 5.04 C4H8O3 

HMDB0000754 3-Hydroxyisovaleric acid 118.0635 5.34 C5H10O3 

HMDB0000355 3-Hydroxymethylglutarate 162.0528 10.76 C6H10O5 

HMDB0013188 3-Hydroxypicolinic acid 139.0269 18.07 C6H5NO3 

HMDB0005784 3-Hydroxytyrosol 154.0630 15.76 C8H10O3 

HMDB0059969 3-methoxyphenylacetic acid 166.0630 10.04 C9H10O3 

HMDB0000491 3-Methyl-2-oxovaleric acid 130.0630 10.67 C6H10O3 

HMDB0001904 3-Nitrotyrosine 226.0590 8.77 C9H10N2O5 

HMDB0000807 3-Phosphoglyceric acid 185.9929 15.84 C3H7O7P 

HMDB0061881 4-Acetylbutyrate 130.0635 5.09 C6H10O3 

HMDB0000291 4-Hydroxy-3-methoxymandelic acid 198.0528 15.77 C9H10O5 

HMDB0000500 4-Hydroxybenzoic acid 138.0317 18.86 C7H6O3 

HMDB0000710 4-Hydroxybutyric acid 104.0473 10.65 C4H8O3 

NA 4-hydroxyphenyl glycine 167.0582 18.59 C8H9NO3 

NA 4-Hydroxyphenylbutyric acid 179.0714 17.51 C10H12O3 

HMDB0000707 4-Hydroxyphenylpyruvic acid 180.0423 27.88 C9H8O4 

HMDB0000725 4-Hydroxyproline 131.0582 9.68 C5H9NO3 

NA 4-Hydroxypyrrolidinone 101.0477 2.94 C4H7NO2 

NA 4-Methyl-2-ureido-pentanoic acid 174.1010 6.36 C7H14N2O3 

HMDB0000873 4-Methylcatechol 124.0530 29.91 C7H8O2 

HMDB0036619 5,7-Dihydroxyflavone (Chrysin) 254.0585 4.33 C15H10O4 

HMDB0001149 5-Aminolevulinic acid 131.0588 3.89 C5H9NO3 

NA 5-Formyl-dCTP 494.9851 20.45 C10H16N3O14P3  

HMDB0000525 5-Hydroxyhexanoic acid 132.0792 6.83 C6H12O3 

HMDB0000763 5-Hydroxyindoleacetic acid 191.0582 26.83 C10H9NO3 

NA 5-Hydroxymethyl-2'-deoxyuridine 258.0850 6.48 C10H14N2O6 

NA 5-Hydroxy-methyl-dCTP 497.0002 19.40 C10H18N3O14P3 

HMDB0004096 5-Methoxyindoleacetate 205.0739 29.66 C11H11NO3 

NA 5-Methyl-dCTP 481.0052 18.96 C10H18N3O13P3 

HMDB0038804 6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid 250.1205 29.39 C14H18O4 

HMDB0001316 6-Phosphogluconic acid 276.0246 15.18 C6H13O10P 

HMDB0001127 6-phosphonoglucono-lactone  258.0146 11.52 C6H11O9P 

HMDB0003333 8-Hydroxy-deoxyguanosine 283.0917 19.83 C10H13N5O5 

HMDB0011615 8-Oxo-dGTP 522.9901 19.78 C10H16N5O14P3 

HMDB0036093 Abscisic acid 264.1362 13.64 C15H20O4 

HMDB0000042 Acetic acid 60.0211 3.85 C2H4O2 

HMDB0000060 Acetoacetate 102.0317 5.14 C4H6O3 

HMDB0001484 Acetoacetyl-CoA 851.1363 33.10 C25H40N7O18P3S 

HMDB0001206 Acetyl-CoA 809.1258 7.59 C23H38N7O17P3S 

HMDB0001890 Acetylcysteine 163.0303 11.56 C5H9NO3S 

HMDB0000532 Acetylglycine 117.0426 4.07 C4H7NO3 

HMDB0001494 Acetylphosphate 139.9880 12.66 C2H5O5P 

HMDB0000034 Adenine 135.0545 15.32 C5H5N5 

HMDB0011616 Adenosine 2',3'-cyclic phosphate 329.0520 9.41 C10H12N5O6P 

HMDB0001341 Adenosine diphosphate 427.0294 19.79 C10H15N5O10P2 

HMDB0000045 Adenosine monophosphate 347.0631 13.84 C10H14N5O7P 

HMDB0000538 Adenosine triphosphate 506.9957 24.53 C10H16N5O13P3 

HMDB0001332 Adenylsuccinate 463.0740 23.15 C14H18N5O11P 

HMDB0012882 Adipate semialdehyde 130.0630 11.34 C6H10O3 

HMDB0000508 Adonitol (ribitol) 152.0685 2.86 C5H12O5 

HMDB0006557 ADP Glucose 589.0822 14.30 C16H25N5O15P2 

HMDB0000462 Allantoin 158.0445 5.95 C4H6N4O3 

HMDB0001151 Allose 180.0634 3.04 C6H12O6 

HMDB0000650 Alpha-aminobutyrate 103.0633 10.32 C4H9NO2 

HMDB0002166 Alpha-aminoisobutyrate 103.0633 10.06 C4H9NO2 

HMDB0000539 Arabinonic acid 166.0477 4.9 C5H10O6 
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HMDB0000646 Arabinose 150.0528 3.06 C5H10O5 

HMDB0029942 Arabinose 150.0528 3.06 C5H10O5 

HMDB0000568 Arabitol 152.0685 2.71 C5H12O5 

HMDB0000044 Ascorbate 176.0321 12.36 C6H8O6 

HMDB0000191 Aspartate 133.0375 11.78 C4H7NO4 

NA Benzoyl-L-citrulline methyl ester 293.1381 11.17 C14H19N3O4 

HMDB0000056 Beta-Alanine 89.0477 4.73 C3H7NO2 

HMDB0013220 Beta-Citryl-L-glutamic acid 321.0696 20.62 C11H15NO10 

NA Butyl ureidosuccinic acid 232.1065 10.61 C9H16N2O5  

HMDB0000039 Butyric acid 88.0524 6.32 C4H8O2 

HMDB0000535 Caproic acid 116.0843 8.58 C6H12O2 

HMDB0001096 Carbamoyl phosphate 140.9827 15.06 CH4NO5P 

HMDB0000033 Carnosine 225.0993 3.93 C9H14N4O3 

HMDB0011621 Cinnamoylglycine 205.0733 20.81 C11H11NO3 

HMDB0000072 cis-Aconitic acid 174.0164 18.12 C6H6O6 

HMDB0000634 Citraconic acid 130.0266 11.96 C5H6O4 

HMDB0000426 Citramalic acid 148.0372 10.75 C5H8O5 

HMDB0000094 Citric acid 192.0270 16.91 C6H8O7 

HMDB0000904 Citrulline 175.0957 4.12 C6H13N3O3 

HMDB0015020 Clomifene 405.1859 16.22 C26H28ClNO 

HMDB0001423 Coenzyme A 767.1152 25.32 C21H36N7O16P3S 

HMDB0000058 Cyclic AMP 329.0525 15.10 C10H12N5O6P 

HMDB0001314 Cyclic GMP 345.0474 24.09 C10H12N5O7P 

HMDB0060150 Cysteamine 77.0299 9.87 C2H7NS 

HMDB0002757 Cysteic acid 169.0045 12.19 C3H7NO5S 

HMDB0000574 Cysteine 121.0197 15.66 C3H7NO2S 

HMDB0000089 Cytidine 243.0861 8.48 C9H13N3O5 

HMDB0001546 Cytidine diphosphate 403.0176 16.34 C9H15N3O11P2 

HMDB0000095 Cytidine monophosphate 323.0519 11.78 C9H14N3O8P 

HMDB0001176 Cytidine monophosphate N-acetylneuraminic acid 614.1473 9.79 C20H31N4O16P 

HMDB0000082 Cytidine triphosphate 482.9845 21.06 C9H16N3O14P3 

HMDB0000630 Cytosine 111.0433 5.52 C4H5N3O 

HMDB0001508 dADP 411.0345 18.27 C10H15N5O9P2 

HMDB0000905 dAMP 331.0682 12.88 C10H14N5O6P 

HMDB0001245 dCDP 387.0233 30.12 C9H15N3O10P2 

HMDB0001202 dCMP 307.0569 10.06 C9H14N3O7P 

HMDB0000998 dCTP 466.9896 19.55 C9H16N3O13P3 

HMDB0000101 Deoxyadenosine 251.1018 12.14 C10H13N5O3 

HMDB0001532 Deoxyadenosine triphosphate 491.0008 24.33 C10H16N5O12P3 

HMDB0000014 Deoxycytidine 227.0912 4.69 C9H13N3O4 

HMDB0000085 deoxyguanosine 283.0922 4.08 C10H13N5O4 

HMDB0001031 Deoxyribose 5-phosphate 214.0242 11.06 C5H11O7P  

NA Deoxythymidine 225.0881 7.67 C10H14N2O4 

HMDB0000012 Deoxyuridine 228.0746 7.62 C9H12N2O5 

HMDB0000960 dGDP 427.0294 24.67 C10H15N5O10P2 

HMDB0001044 dGMP 347.0631 20.57 C10H14N5O7P 

HMDB0001440 dGTP 506.9952 29.43 C10H16N5O13P3 

NA Diaminocyclohexane-N,N,N′,N′-tetraacetic acid  345.1303 8.92 C14H22N2O8 

HMDB0014724 Diclofenac 295.0161 1.22 C14H11Cl2NO2 

HMDB0003349 Dihydroorotic acid 158.0328 11.63 C5H6N2O4 

HMDB0000076 Dihydrouracil 114.0424 13.43 C4H6N2O2 

HMDB0001882 Dihydroxyacetone 90.0317 4.74 C3H6O3 

HMDB0001473 Dihydroxyacetone phosphate 169.9980 11.19 C3H7O6P 

HMDB0000181 Dihydroxyphenylalanine  197.0688 32.44 C9H11NO4 

HMDB0031257 Dimethyl fumarate 144.0423 13.16 C6H8O4 

HMDB0001120 Dimethylallyl pyrophosphate 246.0058 18.73 C5H12O7P2 

HMDB0000092 Dimethylglycine 103.0633 10.15 C4H9NO2 

HMDB0006555 dIMP 332.0522 18.99 C10H13N4O7P 

NA DL-Threo-beta-Hydroxyaspartic acid 148.0251 10.43 C4H7NO5 
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HMDB0000073 Dopamine 153.0790 19.68 C8H11NO2 

HMDB0001328 dTDP-D-glucose 564.0758 17.06 C16H26N2O16P2 

HMDB0001000 dUDP 388.0073 19.60 C9H14N2O11P2 

HMDB0001409 dUMP 308.0410 17.10 C9H13N2O8P 

HMDB0001191 dUTP 467.9736 25.45 C9H15N2O14P3 

HMDB0015109 EDTA 292.0907 10.83 C10H16N2O8 

HMDB0000900 Ergocalciferol 396.3387 4.21 C28H44O 

HMDB0000878 Ergosterol 396.3387 1.13 C28H44O 

HMDB0001321 Erythrose 4-phosphate 200.0086 12.91 C4H9O7P 

Ethionine Ethionine 163.0672 33.54 C6H13NO2S 

HMDB0000622 Ethylmalonic acid 132.0423 11.62 C5H8O4 

HMDB0001248 FAD 785.1571 28.12 C27H33N9O15P2 

HMDB0000954 Ferulic acid 194.0579 27.02 C10H10O4 

HMDB0014684 Fluorouracil 130.0179 13.57 C4H3FN2O2 

HMDB0014615 Fluoxetine 309.1346 21.52 C17H18F3NO 

HMDB0000660 Fructose 180.0634 3.06 C6H12O6 

HMDB0001058 Fructose 1,6-bisphosphate 339.9960 20.44 C6H14O12P2  

HMDB0001047 Fructose 2,6 diphosphate 339.9960 17.52 C6H14O12P2 

HMDB0000124 Fructose 6-phosphate 260.0297 11.88 C6H13O9P 

HMDB0000134 Fumarate 116.0110 13.63 C4H4O4 

HMDB0000639 Galactaric acid  210.0376 10.94 C6H10O8 

HMDB0000143 Galactose 180.0634 3.02 C6H12O6 

HMDB0000645 Galactose 1-phosphate 260.0297 9.39 C6H13O9P 

NA Galactose-6-phosphate 260.0292 11.77 C6H13O9P 

HMDB0002545 Galacturonic acid 194.0427 7.52 C6H10O7 

HMDB0013233 Gamma-delta-Dioxovaleric acid 130.0266 10.65 C5H6O4 

HMDB0003559 Gibberellin A3 346.1416 12.68 C19H22O6 

HMDB0000625 Gluconate 196.0583 4.67 C6H12O7  

HMDB0000150 Gluconolactone 178.0477 4.71 C6H10O6 

HMDB0001514 Glucosamine 179.0794 11.58 C6H13NO5 

HMDB0001254 Glucosamine 6-phosphate 259.0457 13.18 C6H14NO8P 

HMDB0000122 Glucose 180.0634 3.43 C6H12O6 

HMDB0001586 Glucose 1-phosphate 260.0297 9.66 C6H13O9P 

HMDB0001401 Glucose 6-phosphate 260.0297 12.38 C6H13O9P  

HMDB0000127 Glucuronic acid 194.0427 8.27 C6H10O7 

HMDB0000620 Glutaconic acid 130.0266 12.69 C5H6O4 

HMDB0000148 Glutamic acid 147.0532 14.79 C5H9NO4 

HMDB0000641 Glutamine 146.0691 11.67 C5H10N2O3 

HMDB0001049 Glutamylcysteine 250.0629 16.61 C8H14N2O5S 

HMDB0000661 Glutaric acid 132.0423 10.87 C5H8O4 

HMDB0001339 Glutaryl CoA 881.1469 19.81 C26H42N7O19P3S 

HMDB0000125 Glutathione (GSH) 307.0838 15.16 C10H17N3O6S 

HMDB0001112 Glyceraldehyde 3-phosphate 169.9980 11.73 C3H7O6P 

HMDB0000139 Glyceric acid 106.0266 5.23 C3H6O4  

HMDB0000131 Glycerol 92.0473 2.86 C3H8O3 

HMDB0000126 Glycerol 3-phosphate 172.0137 9.79 C3H9O6P  

HMDB0003344 Glycoaldehyde 60.0211 7.52 C2H4O2 

HMDB0000115 Glycolic acid 76.0160 5.24 C2H4O3 

HMDB0000119 Glyoxylic acid 74.0004 8.05 C2H2O3 

HMDB0000133 Guanosine 283.0917 22.22 C10H13N5O5 

HMDB0001201 Guanosine diphosphate  443.0238 27.56 C10H15N5O11P2 

HMDB0001397 Guanosine monophosphate 363.0580 22.22 C10H14N5O8P 

HMDB0001273 Guanosine triphosphate 522.9907 30.62 C10H16N5O14P3  

HMDB0012326 Gulose 180.0634 3.05 C6H12O6 

HMDB0005782 Hesperitin 302.0785 28.50 C16H14O6 

HMDB0000714 Hippuric acid 179.0582 11.63 C9H9NO3 

HMDB0000870 Histamine 111.0802 7.08 C5H9N3 

NA Homarine 137.0477 11.66 C7H7NO2 

HMDB0000130 Homogentisic acid 168.0423 17.49 C8H8O4 
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HMDB0000118 Homovanillic acid 182.0579 17.21 C9H10O4 

HMDB0001212 Hydantoin-5-propionic acid 172.0479 11.40 C6H8N2O4 

HMDB0000764 Hydrocinnamic acid 150.0686 15.63 C9H10O2 

HMDB0000528 Hydroorotic acid 158.0328 10.36 C5H6N2O4 

HMDB0001855 Hydroxy-indole acetic acid 177.0790 26.62 C10H11NO2 

HMDB0062640 Hydroxy-isobutyric acid 103.0401 4.46 C4H7O3 

HMDB0126088 Hydroxy-isobutyric acid 104.0473 4.46 C4H8O3 

HMDB0002207 Hydroxyisoheptanoic acid  146.0948 9.74 C7H14O3 

HMDB0000732 Hydroxykynurenine 224.0803 13.91 C10H12N2O4 

NA Hydroxy-methyl-dUTP 497.9842 20.48 C10H17N2O15P3  

HMDB0000711 Hydroxyoctanoic acid 160.1105 7.52 C8H16O3 

HMDB0000700 Hydroxypropionic acid 90.0322 4.88 C3H6O3 

HMDB0001352 Hydroxypyruvic acid 104.0110 11.64 C3H4O4 

HMDB0000965 Hypotaurine 109.0197 14.89 C2H7NO2S 

HMDB0000157 Hypoxanthine 136.0385 21.34 C5H4N4O 

HMDB0011140 Hypusine 233.1745 9.42 C10H23N3O3 

HMDB0003335 IDP 428.0134 26.55 C10H14N4O11P2 

HMDB0001190 Indole-3-acetaldehyde 159.0684 27.44 C10H9NO 

HMDB0000671 Indole-3-lactic acid 205.0739 27.23 C11H11NO3 

HMDB0000197 Indoleacetic acid 175.0633 28.43 C10H9NO2 

HMDB0000195 Inosine 268.0808 5.60 C10H12N4O5 

HMDB0000175 Inosine monophosphate 348.0471 21.97 C10H13N4O8P 

HMDB0000189 Inosine triphosphate 507.9798 30.13 C10H15N4O14P3 

HMDB0001143 Inositol 1,3,4-trisphosphate 419.9624 25.85 C6H15O15P3 

HMDB0000193 Isocitrate 192.0270 17.55 C6H8O7 

HMDB0001347 Isopentenyl pyrophosphate 246.0058 18.45 C5H12O7P2 

HMDB0000718 Isovaleric Acid 102.0686 9.43 C5H10O2 

HMDB0000678 Isovalerylglycine 159.0895 6.07 C7H13NO3 

HMDB0002092 Itaconic acid 130.0266 12.13 C5H6O4 

HMDB0032797 Jasmonic acid 210.1256 12.22 C12H18O3 

HMDB0032923 Kojic acid 142.0266 8.81 C6H6O4 

HMDB0000715 Kynurenic acid 189.0426 27.57 C10H7NO3 

HMDB0000684 Kynurenine 208.0848 8.81 C10H12N2O3 

HMDB0000190 Lactic acid 90.0317 5.05 C3H6O3 

HMDB0000186 Lactose 342.1168 3.04 C12H22O11 

HMDB0062180 Lactoyl-isoleucine  203.1163 7.02 C9H17NO4 

Lanthionine   Lanthionine   208.0523 33.00 C6H12N2O4S 

HMDB0004823 Lanthionine ketimine 189.0101 30.82 C6H7NO4S 

HMDB0000624 Leucic acid 132.0792 7.51 C6H12O3 

HMDB0000176 Maleic acid 116.0110 12.43 C4H4O4 

HMDB0000744 Malic acid 134.0215 11.14 C4H6O5 

HMDB0002928 Malitol 344.1319 3.08 C12H24O11 

HMDB0006112 Malondialdehyde 72.0211 8.86 C3H4O2 

HMDB0000691 Malonic acid 104.0110 12.01 C3H4O4 

HMDB0060486 Manelonitrile 133.0528 29.49 C8H7NO 

HMDB0000765 Mannitol 182.0790 2.76 C6H14O6 

HMDB0000169 Mannose 180.0634 3.14 C6H12O6 

HMDB0001078 Mannose 6-phosphate 260.0297 12.73 C6H13O9P 

HMDB0001892 Menadione 172.0530 11.43 C11H8O2 

HMDB0000749 Mesaconic acid 130.0266 12.51 C5H6O4 

HMDB0029965 Methyl beta-D-glucopyranoside 194.0790 2.74 C7H14O6 

HMDB0001167 Methyl glyoxal 72.0217 4.89 C3H4O2 

HMDB0032617 Methyl phenylacetate 150.0686 14.11 C9H10O2 

NA Methyl-3-hydroxybenzoic acid 152.0479 28.57 C8H8O3 

HMDB0004815 Methyl-4-hydroxybenzoic acid 152.0479 32.63 C8H8O3 

HMDB0000752 Methylglutaric acid 146.0579 10.73 C6H10O4 

HMDB0006471 Methylisocitric acid 206.0427 15.82 C7H10O7 

HMDB0032572 Methylparaben 152.0473 17.77 C8H8O3 

HMDB0000227 Mevalonic acid 148.0736 15.14 C6H12O4 
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HMDB0001343 Mevalonic acid-5P 228.0399 14.84 C6H13O7P 

Mildronate Mildronate 146.1050 1.20 C6H4N2O2 

HMDB0000211 Myoinositol 180.0634 2.81 C6H12O6 

HMDB0003502 Myo-inositol hexakisphosphate 659.8619 24.31 C6H18O24P6 

HMDB0039002 Mytilin A 332.1225 3.67 C13H20N2O8 

HMDB0033442 Mytilin B 346.1382 3.50 C14H22N2O8 

HMDB0033816 Mytilitol 194.0796 2.58 C7H14O6 

NA N-Acetyl cytosine 153.0544 8.13 C6H7N3O2 

HMDB0003357 N-Acetyl ornithine 174.1004 8.73 C7H14N2O3 

HMDB0094701 N-Acetyl proline 157.0744 4.42 C7H11NO3 

HMDB0000812 N-Acetyl-aspartate 175.0481 10.03 C6H9NO5 

HMDB0001067 N-Acetylaspartylglutamic acid 304.0907 14.40 C11H16N2O8 

HMDB0000215 N-Acetyl-D-glucosamine 221.0899 3.02 C8H15NO6 

HMDB0001062 N-Acetyl-D-Glucosamine 6-Phosphate 301.0563 12.41 C8H16NO9P 

HMDB0001121 N-Acetyl-D-mannosamine 6-phosphate  301.0563 12.11 C8H16NO9P 

HMDB0001367 N-acetyl-glucosamine-1-phosphate 301.0563 11.66 C8H16NO9P 

HMDB0001138 N-Acetylglutamate 189.0643 9.84 C7H11NO5 

HMDB0000766 N-Acetyl-L-alanine 131.0582 4.23 C5H9NO3 

HMDB0006488 N-Acetyl-L-glutamate 5-semialdehyde 173.0688 13.97 C7H11NO4 

HMDB0011745 N-Acetyl-L-methionine 191.0616 5.91 C7H13NO3S 

HMDB0000512 N-Acetyl-L-phenylalanine 207.0895 8.89 C11H13NO3 

HMDB0001129 N-Acetylmannosamine  221.0899 5.39 C8H15NO6 

HMDB0006268 N-Acetylneuraminate 9-phosphate 389.0723 13.98 C11H20NO12P 

HMDB0000230 N-Acetylneuraminic acid  309.1060 4.83 C11H19NO9 

HMDB0013713 N-Acetyltryptophan 246.1004 18.41 C13H14N2O3 

HMDB0011757 N-Acetylvaline 159.0895 4.83 C7H13NO3 

HMDB0000902 NAD+ 664.1169 9.94 C21H28N7O14P2 

HMDB0001487 NADH 665.1248 17.00 C21H29N7O14P2 

HMDB0000217 NADP+ 744.0833 16.43 C21H29N7O17P3 

HMDB0000221 NADPH 745.0911 21.37 C21H30N7O17P3 

HMDB0000828 N-carbamoyl-L-aspartic acid 176.0433 10.86 C5H8N2O5 

HMDB0013287 Ne,Ne dimethyllysine 174.1368 3.79 C8H18N2O2 

NA N-Formyl-DL-ethionine 191.0622 7.53 C7H13NO3S 

HMDB0001200 N-Formylkynurenine 236.0803 22.44 C11H12N2O4 

HMDB0001015 N-Formyl-methionine 177.0460 6.73 C6H11NO3S 

HMDB0001406 Nicotinamide 122.0480 24.05 C6H6N2O 

NA Nicotinic Acid N-Oxide 139.0269 5.94 C6H5NO3 

HMDB0002393 N-Methyl-D-aspartic acid 147.0532 10.06 C5H9NO4 

HMDB0011717 Nonate  188.1054 13.85 C9H16O4 

HMDB0013716 Norvaline 117.0795 33.46 C5H11NO2 

NA N-Oxalylglycine 147.0168 12.59 C4H5NO5 

HMDB0003011 O-Acetylserine 147.0532 4.36 C5H9NO4 

HMDB0000482 Octanoic acid 144.1150 19.95 C8H16O2 

HMDB0001721 O-Phosphoserine 185.0089 14.86 C3H8NO6P 

HMDB0005765 Ophthalmic Acid 289.1279 8.51 C11H19N3O6 

HMDB0000226 Orotic acid 156.0171 16.58 C5H4N2O4 

HMDB0000788 Orotidine 288.0588 16.11 C10H12N2O8 

HMDB0000218 Orotidylic acid 368.0262 9.67 C10H13N2O11P 

HMDB0000223 Oxalacetic acid 132.0059 10.30 C4H4O5 

HMDB0002329 Oxalic acid 89.9953 13.40 C2H2O4 

HMDB0062802 Oxalylyurea 114.0060 8.17 C3H2N2O3 

HMDB0000225 Oxoadipic acid 160.0372 13.08 C6H8O5 

HMDB0001865 Oxovaleric Acid 116.0479 7.56 C5H8O3 

HMDB0014733 Oxytetracylcine 460.1482 29.58 C22H24N2O9 

HMDB0000210 Pantothenic acid 219.1107 5.00 C9H17NO5 

HMDB0002035 p-Coumaric acid 164.0473 29.16 C9H8O3 

HMDB0015050 Phenformin 241.1100 14.07 C10H16ClN5 

HMDB0040733 Phenylacetic Acid 136.0530 13.28 C8H8O2 

HMDB0000821 Phenylacetylglycine 193.0744 9.23 C10H11NO3 
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HMDB0000205 Phenylpyruvic acid 164.0473 30.55 C9H8O3 

HMDB0001511 Phosphocreatine 211.0364 8.56 C4H10N3O5P 

HMDB0000263 Phosphoenolpyruvic acid 167.9824 17.96 C3H5O6P 

HMDB0000816 Phosphoglycolic acid 155.9824 16.32 C2H5O6P 

HMDB0000280 Phosphoribosyl pyrophosphate  389.9518 22.27 C5H13O14P3 

HMDB0000020 p-Hydroxyphenylacetic acid 152.0479 16.97 C8H8O3 

HMDB0000774 Pregnenolone sulfate 396.1976 21.87 C21H32O5S 

HMDB0012283 Prephenic Acid 226.0477 11.47 C10H10O6 

HMDB0015169 Procainamide 235.1685 21.97 C13H21N3O 

HMDB0000237 Propionic acid 74.0373 5.69 C3H6O2 

HMDB0001275 Propionyl-CoA 823.1420 10.52 C24H40N7O17P3S 

HMDB0000783 Propionyl-glycine 131.0582 4.27 C5H9NO3 

HMDB0001856 Protocatechuic acid 154.0266 25.29 C7H6O4 

HMDB0001491 Pyridoxal 5'-phosphate 247.0246 21.74 C8H10NO6P 

HMDB0001431 Pyridoxamine 168.0899 6.71 C8H12N2O2 

HMDB0000267 Pyroglutamic acid 129.0431 4.49 C5H7NO3 

HMDB0000243 Pyruvic acid 88.0160 6.80 C3H4O3 

HMDB0005794 Quercetin 302.0421 28.65 C15H10O7 

HMDB0003072 Quinic acid 192.0634 4.74 C7H12O6 

HMDB0000232 Quinolinic acid 167.0219 13.74 C7H5NO4 

NA Quisqualic acid 189.0391 14.33 C5H7N3O5 

HMDB0003213 Raffinose 504.1690 2.80 C18H32O16 

HMDB0001852 Retinoic acid 300.2095 8.39 C20H28O2 

HMDB0000244 Riboflavin 376.1383 24.51 C17H20N4O6 

HMDB0000283 Ribose 150.0528 3.17 C5H10O5 

HMDB0001548 Ribose 5-phosphate 230.0192 13.19 C5H11O8P 

HMDB0000621 Ribulose 150.0528 3.51 C5H10O5 

NA Ribulose 1,5,diphosphate 309.9860 19.79 C5H12O11P2 

HMDB0000618 Ribulose 5-phosphate 230.0192 9.67 C5H11O8P 

HMDB0000663 Saccharic acid 210.0376 12.05 C6H10O8 

HMDB0000279 Saccharopine 276.1321 13.56 C11H20N2O6 

HMDB0001185 S-adenosyl methionine 399.1451 8.71 C15H23N6O5S 

HMDB0001895 Salicylic acid 138.0322 32.17 C7H6O3 

HMDB0006088 Scyllitol 180.0634 2.67 C6H12O6 

HMDB0000792 Sebacic acid 202.1205 18.30 C10H18O4 

HMDB0060274 Sedoheptulose 1,7-bisphosphate 370.0066 19.08 C7H16O13P2 

HMDB0060509 Sedoheptulose 1-phosphate 290.0403 10.74 C7H15O10P 

HMDB0001068 Sedoheptulose 7-phosphate 290.0403 13.21 C7H15O10P  

HMDB0000187 Serine 105.0426 14.89 C3H7NO3 

HMDB0003070 Shikimic acid 174.0528 5.13 C7H10O5 

HMDB0032616 Sinapic acid 224.0685 25.12 C11H12O5 

HMDB0000247 Sorbitol 182.0790 2.77 C6H14O6 

HMDB0005831 Sorbitol-6-phosphate 262.0454 9.23 C6H15O9P 

HMDB0001266 Sorbose 180.0634 3.06 C6H12O6 

HMDB0006797 Sorbose 1-phosphate 260.0292 11.96 C6H13O9P 

HMDB0000254 Succinic acid 118.0266 11.11 C4H6O4 

HMDB0001259 Succinic acid semialdehyde 102.0317 12.69 C4H6O3 

NA Succinyl-Homoserine 219.0740 9.41 C8H13NO6 

HMDB0002085 Syringic acid 198.0528 17.50 C9H10O5 

Compound ID Description NM RT (min) Formula 

HMDB0029416 Targinine 188.1279 33.55 C7H16N4O2 

HMDB0000251 Taurine 125.0147 5.14 C2H7NO3S 

HMDB0000234 Testosterone 288.2095 27.34 C19H28O2 

HMDB0003193 Testosterone glucuronide 464.2405 8.06 C25H36O8 

HMDB0002833 Testosterone sulfate 368.1663 18.09 C19H28O5S 

HMDB0014897 Tetracycline 444.1527 20.98 C22H24N2O8 

HMDB0002825 Theobromine 180.0642 17.74 C7H8N4O2 

HMDB0029178 Thialysine 164.0625 33.42 C5H12N2O2S 

HMDB0001372 Thiamine pyrophosphate 425.0450 25.64 C12H19N4O7P2S 
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HMDB0004136 Threitol 122.0579 2.78 C4H10O4 

HMDB0001227 Thymidine 5'-phosphate 322.0566 16.77 C10H15N2O8P 

HMDB0001274 Thymidine diphosphate 402.0229 21.72 C10H16N2O11P2 

HMDB0001342 Thymidine triphosphate 481.9893 25.42 C10H17N2O14P3 

HMDB0000262 Thymine 126.0429 9.90 C5H6N2O2 

HMDB0015256 Tolbutamide 270.1044 15.08 C12H18N2O3S 

HMDB0062562 Trans-urocanate 137.0357 18.19 C6H5N2O2 

HMDB0004284 Tyrosol 138.0681 17.77 C8H10O2 

HMDB0000302 UDP-galactose 566.0550 18.00 C15H24N2O17P2 

HMDB0000935 UDP-glucoronate 580.0343 24.31 C15H22N2O18P2 

HMDB0000286 UDP-glucose 566.0550 18.40 C15H24N2O17P2 

HMDB0000300 Uracil 112.0273 8.92 C4H4N2O2 

HMDB0000026 Ureidopropionic acid 132.0540 4.46 C4H8N2O3 

HMDB0000289 Uric acid 168.0283 19.45 C5H4N4O3 

HMDB0000296 Uridine 244.0695 9.04 C9H12N2O6 

HMDB0000295 Uridine 5'-diphosphate 404.0022 23.85 C9H14N2O12P2 

HMDB0000288 Uridine 5'-monophosphate 324.0359 18.60 C9H13N2O9P 

HMDB0000290 Uridine diphosphate-N-acetylglucosamine 607.0816 17.77 C17H27N3O17P2 

HMDB0000285 Uridine triphosphate 483.9685 27.32 C9H15N2O15P3 

HMDB0000892 Valeric Acid 102.0686 9.65 C5H10O2 

HMDB0001554 Xanthylic acid 364.0426 20.70 C10H13N4O9P 

HMDB0002917 Xylitol 152.0685 2.79 C5H12O5 

HMDB0001644 Xylulose 150.0528 3.64 C5H10O5 

HMDB0000868 Xylulose 5-phosphate 230.0192 13.16 C5H11O8P 

HMDB0015464 Yohimbine 354.1949 26.07 C21H26N2O3 
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Table A.I.2. Data base of metabolites measured by derivatised RPLC-MS. Abbreviations: NM = neutral mass, RT = retention time 
and UD = underivatised. 

Compound ID Description NM RT (min) Formula UD formula UD mass  

HMDB0002166 (S)-b-aminoisobutyric acid 273.1108 5.46 C14H15N3O3 C4H9NO2 103.0628 

HMDB0002166 (S)-b-aminoisobutyric acid 273.1108 5.53 C14H15N3O3 C4H9NO2 103.0628 

HMDB0000002 1,3-Diaminopropane 244.1319 1.61 C13H16N4O C3H10N2 74.0838 

HMDB0000002 1,3-Diaminopropane 414.1793 6.31 C23H22N6O2 C3H10N2 74.0838 

HMDB0029737 1H-Indole-3-carboxaldehyde 315.1002 6.79 C19H13N3O2 C9H7NO 145.0522 

HMDB0000001 1-Methylhistidine 339.1326 2.80 C17H17N5O3 C7H11N3O2 169.0846 

HMDB0000699 1-Methylnicotinamide 307.1190 8.41 C17H15N4O2 C7H9N2O 137.0709 

HMDB0002362 2,4-Diaminobutyric acid (2xD) 458.1692 5.78 C24H22N6O4 C4H10N2O2 118.0737 

HMDB0000510 2-Aminoadipic acid 331.1163 5.24 C16H17N3O5 C6H11NO4 161.0683 

HMDB0061680 2-Aminonicotinic acid 308.0904 5.37 C16H12N4O3 C6H6N2O2 138.0424 

NA 2-Methyl-1-pyrroline 253.1210 8.17 C15H15N3O C5H9N 83.0730 

HMDB0002039 2-Pyrrolidinone 255.1002 5.40 C14H13N3O2 C4H7NO 85.0522 

NA 
2-Pyrrolidinone, 1-
(hydroxymethyl)- 285.1108 8.52 C15H15N3O3 C5H9NO2 115.0628 

NA 3,4-Dehydro-L-proline 283.0951 5.35 C15H13N3O3 C5H7NO2 113.0471 

HMDB0031654 3-Aminobutanoic acid 273.1108 6.22 C14H15N3O3 C4H9NO2 103.0628 

HMDB0001476 3-Hydroxyanthranilic acid 323.0901 7.05 C17H13N3O4 C7H7NO3 153.0420 

HMDB0006524 3-Indoleacetonitrile 326.1162 8.41 C20H14N4O C10H8N2 156.0682 

HMDB0002096 3-Indolebutyric acid 373.1421 6.88 C22H19N3O3 C12H13NO2 203.0941 

HMDB0060374 3-Methoxyanthranilate 337.1057 6.75 C18H15N3O4 C8H9NO3 167.0577 

HMDB0001904 3-Nitrotyrosine 396.1064 7.67 C19H16N4O6 C9H10N2O5 226.0584 

HMDB0061877 4-Amino-3-hydroxybutyrate 289.1057 3.83 C14H15N3O4 C4H9NO3 119.0577 

HMDB0001392 4-Aminobenzoic acid 307.0951 7.07 C17H13N3O3 C7H7NO2 137.0471 

NA 4-amino-crotonic acid 271.0951 4.69 C14H13N3O3 C4H7NO2 101.0471 

NA 4-Guanidinobutyric acid 315.1326 6.46 C15H17N5O3 C5H11N3O2 145.0846 

HMDB0000725 4-Hydroxyproline 301.1057  C15H15N3O4 C5H9NO3 131.0577 

NA 4-Methylthioamphetamine 351.1400 8.27 C20H21N3OS C10H15NS 181.0920 

NA 
5-Aminopyridine-2-carboxylic 
acid 308.0904 5.12 C16H12N4O3 C6H6N2O2 138.0424 

NA 
5'-Deoxy-5'-
methylthioadenosine 467.1370 7.58 C21H21N7O4S C11H15N5O3S 297.0890 

HMDB0000763 5-Hydroxyindoleacetic acid 361.1057 7.43 C20H15N3O4 C10H9NO3 191.0577 

HMDB0000450 5-Hydroxylysine 332.1479 5.78 C16H20N4O4 C6H14N2O3 162.0999 

HMDB0004096 5-Methoxyindoleacetate 375.1214 8.59 C21H17N3O4 C11H11NO3 205.0733 

HMDB0001890 Acetylcysteine 333.0778 8.57 C15H15N3O4S C5H9NO3S 163.0298 

HMDB0000050 Adenosine 437.1442 6.37 C20H19N7O5 C10H13N5O4 267.0962 

HMDB0000045 Adenosine monophosphate 517.1105 0.44 C20H20N7O8P C10H14N5O7P 347.0625 

HMDB0000538 Adenosine triphosphate 677.0432 0.43 
C20H22N7O14P
3 

C10H16N5O13
P3 506.9952 

HMDB0000058 
Adenosine3,5-cyclic 
monophosphate 499.1000 5.10 C20H18N7O7P C10H12N5O6P 329.0520 

HMDB0000068 Adrenaline 353.1370 5.88 C19H19N3O4 C9H13NO3 183.0890 

HMDB0001432 Agmatine 300.1693 4.32 C15H20N6O C5H14N4 130.1213 

HMDB0000161 Alanine 259.0951 4.86 C13H13N3O3 C3H7NO2 89.0471 

HMDB0000462 Allantoin 328.0915 2.90 C14H12N6O4 C4H6N4O3 158.0434 

NA Amino methoxybenzoic acid 337.1057 6.79 C18H15N3O4 C8H9NO3 167.0577 

HMDB0000112 Aminobutyric acid-GABA 273.1108 5.97 C14H15N3O3 C4H9NO2 103.0628 

HMDB0000517 Arginine 344.1591 3.10 C16H20N6O3 C6H14N4O2 174.1111 

HMDB0000052 Argininosuccinic acid 460.1701 3.50 C20H24N6O7 C10H18N4O6 290.1221 

HMDB0000168 Asparagine 302.1010 2.32 C14H14N4O4 C4H8N2O3 132.0529 

HMDB0000191 Aspartic acid 303.0850 7.19 C14H13N3O5 C4H7NO4 133.0370 

HMDB0000056 beta-Alanine 259.0951 4.26 C13H13N3O3 C3H7NO2 89.0471 

HMDB0000043 Betaine 288.1343 1.26 C15H18N3O3 C5H12NO2 118.0863 

HMDB0002322 Cadaverine 272.1632 7.70 C15H20N4O C5H14N2 102.1152 

HMDB0002706 Canavanine 346.1384 6.23 C15H18N6O4 C5H12N4O3 176.0904 

HMDB0002706 Canavanine (2xD) 516.1859 6.23 C25H24N8O5 C5H12N4O3 176.0904 

HMDB0000062 Carnitine 331.1527 1.98 C17H21N3O4 C7H15NO3 161.1046 
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HMDB0000033 Carnosine 396.1541 3.10 C19H20N6O4 C9H14N4O3 226.1060 

HMDB0000904 Citrulline 345.1432 4.08 C16H19N5O4 C6H13N3O3 175.0951 

HMDB0000064 Creatine 301.1169 4.60 C14H15N5O3 C4H9N3O2 131.0689 

HMDB0000562 Creatinine 283.1064 5.40 C14H13N5O2 C4H7N3O 113.0584 

HMDB0014405 Cycloserine 272.0904 4.01 C13H12N4O3 C3H6N2O2 102.0424 

HMDB0002991 Cysteamine 247.0774 7.56 C12H13N3OS C2H7NS 77.0294 

HMDB0000574 Cysteine 291.0672 6.46 C13H13N3O3S C3H7NO2S 121.0192 

HMDB0000192 Cystine 410.0713 6.07 C16H18N4O5S2 C6H12N2O4S2 240.0233 

HMDB0000089 Cytidine 413.1330 5.95 C19H19N5O6 C9H13N3O5 243.0850 

HMDB0000095 Cytidine monophosphate 493.0993 5.45 C19H20N5O9P C9H14N3O8P 323.0513 

HMDB0000630 Cytosine 281.0907 6.05 C14H11N5O2 C4H5N3O 111.0427 

HMDB0001370 Diaminopimelic acid 360.1428 8.58 C17H20N4O5 C7H14N2O4 190.0948 

HMDB0000181 Dihydroxyphenylalanine 367.1163 6.13 C19H17N3O5 C9H11NO4 197.0683 

NA Dimethyl L-glutamate 345.1319 7.02 C17H19N3O5 C7H13NO4 175.0839 

HMDB0000991 DL-2-Aminooctanoic acid 329.1734 8.37 C18H23N3O3 C8H17NO2 159.1254 

HMDB0000149 Ethanolamine 231.1002 3.37 C12H13N3O2 C2H7NO 61.0522 

HMDB0001514 Glucosamine 349.1268 8.14 C16H19N3O6 C6H13NO5 179.0788 

HMDB0000148 Glutamic acid 317.1006 4.05 C15H15N3O5 C5H9NO4 147.0526 

HMDB0000641 Glutamine 316.1166 3.10 C15H16N4O4 C5H10N2O3 146.0686 

HMDB0000125 Glutathione 477.1313 6.06 C20H23N5O7S C10H17N3O6S 307.0833 

HMDB0000123 Glycine 245.0795 3.19 C12H11N3O3 C2H5NO2 75.0315 

HMDB0001842 Guanidine 229.0958 3.05 C11H11N5O CH5N3 59.0478 

HMDB0000128 Guanidineacetic acid 287.1013 2.79 C13H13N5O3 C3H7N3O2 117.0533 

HMDB0000132 Guanine 321.0969 5.90 C15H11N7O2 C5H5N5O 151.0489 

HMDB0000133 Guanosine 453.1391 6.21 C20H19N7O6 C10H13N5O5 283.0911 

HMDB0000714 Hippuric acid 349.1057 7.35 C19H15N3O4 C9H9NO3 179.0577 

HMDB0000870 Histamine 281.1271 3.08 C15H15N5O C5H9N3 111.0791 

HMDB0000177 Histidine 495.1644 1.93 C16H15N5O3 C6H9N3O2 155.0689 

HMDB0000670 Homo-L-arginine (2xD) 358.1748 6.44 C27H28N8O4 C7H16N4O2 188.1268 

HMDB0000719 Homoserine 289.1057 3.31 C14H15N3O4 C4H9NO3 119.0577 

HMDB0000732 Hydroxykynurenine 394.1272 6.91 C20H18N4O5 C10H12N2O4 224.0792 

HMDB0000965 Hypotaurine 279.0672 2.89 C12H13N3O3S C2H7NO2S 109.0192 

HMDB0000157 Hypoxanthine 306.0860 5.85 C15H10N6O2 C5H4N4O 136.0380 

HMDB0005785 Indole-3-carbinol 317.1159 6.41 C19H15N3O2 C9H9NO 147.0679 

HMDB0002302 Indole-3-propionic acid 359.1264 7.25 C21H17N3O3 C11H11NO2 189.0784 

HMDB0001190 Indoleacetaldehyde 329.1159 4.77 C20H15N3O2 C10H9NO 159.0679 

HMDB0000671 Indolelactate 375.1214 6.86 C21H17N3O4 C11H11NO3 205.0733 

HMDB0034198 Isobutylamine 243.1366 7.48 C14H17N3O C4H11N 73.0886 

Isobutylamine Isobutylamine 243.1366 7.53 C14H17N3O C4H11N 73.0886 

HMDB0000172 Isoleucine 301.1421 7.68 C16H19N3O3 C6H13NO2 131.0941 

HMDB0000715 Kynurenic acid 359.0901 8.41 C20H13N3O4 C10H7NO3 189.0420 

HMDB0000684 Kynurenine 378.1323 7.65 C20H18N4O4 C10H12N2O3 208.0842 

HMDB0000557 L-Alloisoleucine 301.1421 7.78 C16H19N3O3 C6H13NO2 131.0941 

HMDB0000099 L-Cystathionine 392.1149 6.13 C17H20N4O5S C7H14N2O4S 222.0669 

HMDB0000687 Leucine 301.1421 7.78 C16H19N3O3 C6H13NO2 131.0941 

HMDB0034365 L-Theanine 344.1479 5.21 C17H20N4O4 C7H14N2O3 174.0999 

HMDB0000182 Lysine 316.1530 6.55 C16H20N4O3 C6H14N2O2 146.1050 

HMDB0060486 Mandelonitrile 303.1002 7.82 C18H13N3O2 C8H7NO 133.0522 

HMDB0000696 Methionine 319.0985 4.05 C15H17N3O3S C5H11NO2S 149.0505 

HMDB0002005 Methionine sulfoxide 335.0934 3.65 C15H17N3O4S C5H11NO3S 165.0454 

NA Methyl picolinate 307.0951 8.29 C17H13N3O3 C7H7NO2 137.0471 

NA Methyl serine 289.1057 1.98 C14H15N3O4 C4H9NO3  119.0577 

HMDB0032609 Methyl-Anthranilic Acid 321.1108 6.92 C18H15N3O3 C8H9NO2 151.0628 

HMDB0002038 Methyl-L-Lysine 330.1686 6.87 C17H22N4O3 C7H16N2O2 160.1206 

NA N-(Phosphonomethyl)glycine 339.0615 5.68 C13H14N3O6P C3H8NO5P 169.0135 

NA N-Acetyl cytosine 323.1013 8.47 C16H13N5O3  C6H7N3O2 153.0533 

NA N-Acetyl-2-pyrrolidone 297.1108 8.52 C16H15N3O3 C6H9NO2 127.0628 

HMDB0000812 N-Acetylaspartate 345.0955 8.31 C16H15N3O6 C6H9NO5 175.0475 

HMDB0001138 N-Acetylglutamic acid 359.1112 8.39 C17H17N3O6 C7H11NO5 189.0632 
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HMDB0000766 N-Acetyl-L-alanine 301.1057 6.24 C15H15N3O4 C5H9NO3 131.0577 

HMDB0011745 N-Acetyl-L-methionine 361.1091 8.39 C17H19N3O4S C7H13NO3S 191.0611 

HMDB0000512 N-Acetyl-L-phenylalanine 377.1370 6.34 C21H19N3O4 C11H13NO3 207.0890 

NA N-Acetylornithine 344.1479 5.03 C17H20N4O4 C7H14N2O3 174.0999 

HMDB0003357 N-Acetyl-ornithine 344.1479 4.96 C17H20N4O4 C7H14N2O3 174.0999 

HMDB0094701 N-Acetylproline 327.1214 6.40 C17H17N3O4 C7H11NO3 157.0733 

HMDB0013713 N-acetyltryptophan 416.1479 8.72 C23H20N4O4 C13H14N2O3 246.0999 

HMDB0011757 N-Acetylvaline 329.1370 4.76 C17H19N3O4 C7H13NO3 159.0890 

HMDB0001488 Nicotinic acid 293.0795 0.59 C16H11N3O3 C6H5NO2 123.0315 

NA Nicotinic acid N-oxide 309.0744 8.59 C16H11N3O4 C6H5NO3 139.0264 

NA N-methyl ornithine 316.1530 8.47 C16H20N4O3 C6H14N2O2 146.1050 

NA N-Methyl-L-glutamic acid 331.1163 6.10 C16H17N3O5 C6H11NO4 161.0683 

NA nordihydroguaiaretic acid 472.1993 6.18 C28H28N2O5 C18H22O4 302.1513 

NA N-Oxalylglycine 317.0642 0.33 C14H11N3O6 C4H5NO5 147.0162 

NA N-Phenylanthranilic acid 383.1264 4.74 C23H17N3O3 C13H11NO2 213.0784 

HMDB0003011 O-Acetylserine 317.1006 4.60 C15H15N3O5 C5H9NO4 147.0526 

HMDB0000224 O-Phosphoethanolamine 311.0666 2.14 C12H14N3O5P C2H8NO4P 141.0185 

HMDB0005765 Ophthalmic acid 459.1748 5.16 C21H25N5O7 C11H19N3O6 289.1268 

HMDB0000214 Ornithine 302.1373 6.06 C15H18N4O3 C5H12N2O2 132.0893 

HMDB0000226 Orotic Acid 326.0646 8.58 C15H10N4O5 C5H4N2O4 156.0166 

HMDB0003337 Oxidised Glutathione (2xD) 952.2469 6.09 
C40H44N10O14
S2 

C20H32N6O12
S2 612.1514 

HMDB0000210 Pantothenic acid 389.1581 7.04 C19H23N3O6 C9H17NO5 219.1101 

HMDB0000159 Phenylalanine 335.1264 7.88 C19H17N3O3 C9H11NO2 165.0784 

HMDB0001511 Phosphocreatine 381.0833 0.42 C14H16N5O6P C4H10N3O5P 211.0353 

HMDB0000272 Phosphoserine 355.0564 1.19 C13H14N3O7P C3H8NO6P 185.0084 

HMDB0000070 Pipecolic acid 299.1264 6.85 C16H17N3O3 C6H11NO2 129.0784 

HMDB0000162 Proline 285.1108 5.47 C15H15N3O3 C5H9NO2 115.0628 

HMDB0006078 Putreanine 331.1765 6.86 C17H23N4O3 C7H17N2O2 161.1285 

HMDB0001414 Putrescine 258.1475 1.74 C14H18N4O C4H12N2 88.0995 

HMDB0001414 Putrescine 258.1475 2.83 C14H18N4O C4H12N2 88.0995 

HMDB0001414 Putrescine (2xD) 428.1950 6.68 C24H24N6O2 C4H12N2 88.0995 

HMDB0001491 Pyridoxal 5-phosphate 417.0720 8.26 C18H16N3O7P C8H10NO6P 247.0240 

HMDB0001431 Pyridoxamine   338.1373 5.50 C18H18N4O3 C8H12N2O2 168.0893 

NA Pyroglutamic Acid 299.0901 5.71 C15H13N3O4 C5H7NO3 129.0420 

HMDB0000805 Pyrrolidonecarboxylic acid 299.0901 5.61 C15H13N3O4 C5H7NO3 129.0420 

HMDB0000232 Quinolinic acid 337.0693 0.33 C17H11N3O5 C7H5NO4 167.0213 

HMDB0000939 
S-(5-Adenosyl)-L-
homocysteine  554.1691 5.79 C24H26N8O6S C14H20N6O5S 384.1210 

HMDB0000279 Saccharopine 446.1796 6.91 C21H26N4O7 C11H20N2O6 276.1316 

HMDB0001185 S-Adenosylmethionine 569.1925 6.07 C25H29N8O6S C15H23N6O5S 399.1445 

HMDB0000271 Sarcosine 259.0951 7.80 C13H13N3O3 C3H7NO2 89.0471 

HMDB0003966 Selenomethionine 361.0489 7.15 C15H17N3O3Se C5H11NO2Se 191.0009 

HMDB0000187 Serine 275.0901 2.86 C13H13N3O4 C3H7NO3 105.0420 

HMDB0000259 Serotonin 346.1424 7.01 C20H18N4O2 C10H12N2O 176.0944 

HMDB0001256 Spermine 372.2632 6.47 C20H32N6O C10H26N4 202.2152 

HMDB0001256 Spermine 372.2632 7.56 C20H32N6O C10H26N4 202.2152 

HMDB0003334 Symmetric dimethylarginine 372.1904 4.52 C18H24N6O3 C8H18N4O2 202.1424 

HMDB0001372 Thiamine pyrophosphate 595.0924 6.06 
C22H25N6O8P2
S 

C12H19N4O7P
2S 425.0444 

HMDB0062164 Thioproline  303.0672 5.85 C14H13N3O3S C4H7NO2S 133.0192 

HMDB0000167 Threonine  289.1057 4.46 C14H15N3O4 C4H9NO3 119.0577 

HMDB0000262 Thymine 296.0904 6.07 C15H12N4O3 C5H6N2O2 126.0424 

HMDB0062562 Trans-urocanate 308.0904 0.43 C16H12N4O3 C6H6N2O2 138.0424 

HMDB0000303 Tryptamine 330.1475 8.31 C20H18N4O C10H12N2 160.0995 

HMDB0000929 Tryptophan 374.1373 8.00 C21H18N4O3 C11H12N2O2 204.0893 

HMDB0000306 Tyramine 307.1315 7.21 C18H17N3O2 C8H11NO 137.0835 

HMDB0000158 Tyrosine 351.1214 6.65 C19H17N3O4 C9H11NO3 181.0733 

HMDB0000300 Uracil 282.0747 8.58 C14H10N4O3 C4H4N2O2 112.0267 
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HMDB0000289 Uric acid 338.0758 4.89 C15H10N6O4 C5H4N4O3 168.0278 

HMDB0000301 Urocanic acid 308.0904 0.43 C16H12N4O3 C6H6N2O2 138.0424 

HMDB0000883 Valine 287.1264 6.93 C15H17N3O3 C5H11NO2 117.0784 

HMDB0000292 Xanthine 322.0809 4.81 C15H10N6O3 C5H4N4O2 152.0329 

HMDB0001554 Xanthylic acid 534.0895 6.52 C20H19N6O10P C10H13N4O9P 364.0415 

 

9.2.  Appendix II 

The experiment that the data in this appendix is based on was a metabolomics experiment 

of wtIDH1 and mutIDH1R132H LN18 cells treated with four mutIDH1 inhibitors (AG-120, AG-

881, BAY 1436032 and GSK864). The control samples from this experiment were presented 

in chapter 3 (sections 3.2-3.5). The 2-HG, 2-OG and isocitrate measurements were used in 

chapter 4 (section 4.5) and the full metabolomics data was used in chapter 5. This appendix 

includes a DNA concentration table (Table A.II.1), IC-MS identifications (Table A.II.2), 

derivatised RPLC-MS identifications (Table A.II.3), and data processing information 

(Figure A.II.1 and A.II.2). The full output from the untargeted pathway analysis (section 

3.5) is provided in Table A.II.4.  
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Table A.II.1. DNA concentration of wtIDH1 and mutIDH1R132H LN18 mutIDH1 inhibitor treated and 
control cells.  

Sample name DNA 1 
(ng/µL) 

DNA 2 
(ng/µL) 

DNA 3 
(ng/µL) 

Average 
(ng/µL) 

Relative DNA 
concentration 

µL solvent µL sample 

WT-AG120-01 73.4 67.17   70.285 1.078 5.8 74.2 

WT-AG120-02 128.63 127.47   128.050 1.965 39.3 40.7 

WT-AG120-03 121.72 114.28   118.000 1.810 35.8 44.2 

WT-AG120-04 86.94 87.22   87.080 1.336 20.1 59.9 

WT-AG120-05 89.9 95.06   92.480 1.419 23.6 56.4 

WT-AG120-06 107.03 110.26   108.645 1.667 32.0 48.0 

WT-AG120-07 72.6 78.01   75.305 1.155 10.8 69.2 

WT-AG120-08 138.22 115.07 101.34 118.210 1.814 35.9 44.1 

WT-AG120-09 100.36 112.89   106.625 1.636 31.1 48.9 

WT-AG120-10 110.3 110.18   110.240 1.691 32.7 47.3 

WT-AG881-01 95.1 114.42   104.760 1.607 30.2 49.8 

WT-AG881-02 72.38 76.86   74.620 1.145 10.1 69.9 

WT-AG881-03 105.82 103.6   104.710 1.606 30.2 49.8 

WT-AG881-04 88.78 100.5 80.31 89.863 1.379 22.0 58.0 

WT-AG881-05 113.92 129.52 116.2 119.880 1.839 36.5 43.5 

WT-AG881-06 75 69.38   72.190 1.108 7.8 72.2 

WT-AG881-07 62.24 76.14 57.16 65.180 1.000 0.0 80.0 

WT-AG881-08 86.68 95.34   91.010 1.396 22.7 57.3 

WT-AG881-09 88.56 83.78   86.170 1.322 19.5 60.5 

WT-AG881-10 102.34 99.73   101.035 1.550 28.4 51.6 

WT-BAY-01 96.38 93.82   95.100 1.459 25.2 54.8 

WT-BAY-02 126.15 132.76   129.455 1.986 39.7 40.3 

WT-BAY-03 123.92 126.2   125.060 1.919 38.3 41.7 

WT-BAY-04 143.92 155.34   149.630 2.296 45.2 34.8 

WT-BAY-05 200.59 205.95   203.270 3.119 54.3 25.7 

WT-BAY-06 98.86 107.5   103.180 1.583 29.5 50.5 

WT-BAY-07 175.8 164   169.900 2.607 49.3 30.7 

WT-BAY-08 159.66 168.88   164.270 2.520 48.3 31.7 

WT-BAY-09 128.82 121.17   124.995 1.918 38.3 41.7 

WT-BAY-10 71.86 74.11   72.985 1.120 8.6 71.4 

WT-Co1-01 180.83 180.48   180.655 2.772 51.1 28.9 

WT-Co1-02 139.2 128.22   133.710 2.051 41.0 39.0 

WT-Co1-03 118.66 111.83   115.245 1.768 34.8 45.2 

WT-Co1-04 125.46 126.56   126.010 1.933 38.6 41.4 

WT-Co1-05 131.62 143.92   137.770 2.114 42.2 37.8 

WT-Co1-06 135.79 139.43   137.610 2.111 42.1 37.9 

WT-Co1-07 84.95 86.08   85.515 1.312 19.0 61.0 

WT-Co1-08 153.84 169.24 124.74 149.273 2.290 45.1 34.9 

WT-Co1-09 161.4 169.8   165.600 2.541 48.5 31.5 

WT-Co1-10 151.34 153.18   152.260 2.336 45.8 34.2 

WT-Co2-01 137.23 132.08   134.655 2.066 41.3 38.7 

WT-Co2-02 120.5 116.2   118.350 1.816 35.9 44.1 

WT-Co2-03 95.96 100.12   98.040 1.504 26.8 53.2 

WT-Co2-04 121.3 125.8   123.550 1.896 37.8 42.2 

WT-Co2-05 91.93 140.77 118.36 117.020 1.795 35.4 44.6 

WT-Co2-06 134.44 123.96   129.200 1.982 39.6 40.4 

WT-Co2-07 136.9 124.31   130.605 2.004 40.1 39.9 

WT-Co2-08 126.61 120.52   123.565 1.896 37.8 42.2 

WT-Co2-09 110.06 109.82   109.940 1.687 32.6 47.4 



Chapter 9. Appendices 

296 
 

Sample name DNA 1 
(ng/µL) 

DNA 2 
(ng/µL) 

DNA 3 
(ng/µL) 

Average 
(ng/µL) 

Relative DNA 
concentration 

µL solvent µL sample 

WT-Co2-10 90.45 76.43   83.440 1.280 17.5 62.5 

WT-GSK-01 114.72 139.13 126.04 126.630 1.943 38.8 41.2 

WT-GSK-02 105.68 105.46   105.570 1.620 30.6 49.4 

WT-GSK-03 82.92 82.66   82.790 1.270 17.0 63.0 

WT-GSK-04 82.94 73.43   78.185 1.200 13.3 66.7 

WT-GSK-05 106.81 107.44   107.125 1.644 31.3 48.7 

WT-GSK-06 112.09 108.53   110.310 1.692 32.7 47.3 

WT-GSK-07 119.38 117.99   118.685 1.821 36.1 43.9 

WT-GSK-08 133.22 125.59   129.405 1.985 39.7 40.3 

WT-GSK-09 88.98 91.02   90.000 1.381 22.1 57.9 

WT-GSK-10 150.6 171.5 161.56 161.220 2.473 47.7 32.3 

MUT-AG120-01 152.27 139.26 145.05 145.527 2.233 44.2 35.8 

MUT-AG120-02 153.37 156.34   154.855 2.376 46.3 33.7 

MUT-AG120-03 110.16 123.03 105.93 113.040 1.734 33.9 46.1 

MUT-AG120-04 111.57 122.9   117.235 1.799 35.5 44.5 

MUT-AG120-05 126.65 127.16   126.905 1.947 38.9 41.1 

MUT-AG120-06 100.38 113.78   107.080 1.643 31.3 48.7 

MUT-AG120-07 180.28 193.55   186.915 2.868 52.1 27.9 

MUT-AG120-08 131.96 132.77 123.15 129.293 1.984 39.7 40.3 

MUT-AG120-09 152.82 162.45   157.635 2.418 46.9 33.1 

MUT-AG120-10 91.42 100.88   96.150 1.475 25.8 54.2 

MUT-AG881-01 148.8 142.88   145.840 2.237 44.2 35.8 

MUT-AG881-02 129.09 111.94 122.93 121.320 1.861 37.0 43.0 

MUT-AG881-03 85.11 96.72   90.915 1.395 22.6 57.4 

MUT-AG881-04 121.91 123.34   122.625 1.881 37.5 42.5 

MUT-AG881-05 124.4 112.14   118.270 1.815 35.9 44.1 

MUT-AG881-06 97.88 108.12   103.000 1.580 29.4 50.6 

MUT-AG881-07 90.47 90.86   90.665 1.391 22.5 57.5 

MUT-AG881-08 111.57 90.52   101.045 1.550 28.4 51.6 

MUT-AG881-09 138.17 145.91   142.040 2.179 43.3 36.7 

MUT-AG881-10 93.8 103.5   98.650 1.514 27.1 52.9 

MUT-BAY-01 114.1 124.78   119.440 1.832 36.3 43.7 

MUT-BAY-02 121.42 120.07   120.745 1.852 36.8 43.2 

MUT-BAY-03 116.2 114.66   115.430 1.771 34.8 45.2 

MUT-BAY-04 108.66 114.22   111.440 1.710 33.2 46.8 

MUT-BAY-05 101.86 105.51   103.685 1.591 29.7 50.3 

MUT-BAY-06 113.82 105.8   109.810 1.685 32.5 47.5 

MUT-BAY-07 158.27 151.59   154.930 2.377 46.3 33.7 

MUT-BAY-08 123.76 117.96   120.860 1.854 36.9 43.1 

MUT-BAY-09 94.54 107.72 89.02 97.093 1.490 26.3 53.7 

MUT-BAY-10 121.24 121.16   121.200 1.859 37.0 43.0 

MUT-Co1-01 148.36 132.64   140.500 2.156 42.9 37.1 

MUT-Co1-02 120.72 107.86 115.28 114.620 1.759 34.5 45.5 

MUT-Co1-03 98.01 115.71   106.860 1.639 31.2 48.8 

MUT-Co1-04 107.37 104.06   105.715 1.622 30.7 49.3 

MUT-Co1-05 85.12 82.1   83.610 1.283 17.6 62.4 

MUT-Co1-06 143.26 135.8   139.530 2.141 42.6 37.4 

MUT-Co1-07 139.8 147.04   143.420 2.200 43.6 36.4 

MUT-Co1-08 155.18 161.46   158.320 2.429 47.1 32.9 

MUT-Co1-09 197.57 201.68   199.625 3.063 53.9 26.1 
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Sample name DNA 1 
(ng/µL) 

DNA 2 
(ng/µL) 

DNA 3 
(ng/µL) 

Average 
(ng/µL) 

Relative DNA 
concentration 

µL solvent µL sample 

MUT-Co1-10 148.84 139.16   144.000 2.209 43.8 36.2 

MUT-Co2-01 110.94 109.24   110.090 1.689 32.6 47.4 

MUT-Co2-02 80.18 80.17   80.175 1.230 15.0 65.0 

MUT-Co2-03 101.25 111.8   106.525 1.634 31.0 49.0 

MUT-Co2-04 72.06 88.9 96.48 85.813 1.317 19.2 60.8 

MUT-Co2-05 84.58 89.74   87.160 1.337 20.2 59.8 

MUT-Co2-06 93.95 107.44   100.695 1.545 28.2 51.8 

MUT-Co2-07 95.1 93.56   94.330 1.447 24.7 55.3 

MUT-Co2-08 114.74 116.6   115.670 1.775 34.9 45.1 

MUT-Co2-09 110.3 95.54 126.12 110.653 1.698 32.9 47.1 

MUT-Co2-10 117.76 118.34   118.050 1.811 35.8 44.2 

MUT-GSK-01 94.47 108   101.235 1.553 28.5 51.5 

MUT-GSK-02 82.68 90.69   86.685 1.330 19.8 60.2 

MUT-GSK-03 92.3 106.64 97.73 98.890 1.517 27.3 52.7 

MUT-GSK-04 102.99 103.98   103.485 1.588 29.6 50.4 

MUT-GSK-05 119.3 112.65   115.975 1.779 35.0 45.0 

MUT-GSK-06 113.8 98.55   106.175 1.629 30.9 49.1 

MUT-GSK-07 88.78 78.53   83.655 1.283 17.7 62.3 

MUT-GSK-08 81.5 78.12   79.810 1.224 14.7 65.3 

MUT-GSK-09 115.2 122.87   119.035 1.826 36.2 43.8 

MUT-GSK-10 61.56 70.96   66.260 1.017 1.3 78.7 
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Table A.II.2. Annotated metabolites from the IC-MS data of mutIDH1 inhibitor treated and control 
wtIDH1 and mutIDH1R132H LN18 cells. Includes the parameters used for determining whether it was a 
putative or confident identification. FS = fragmentation score, ME = mass error, ISS = isotope similarity 
score, RTE = retention time error, max. abun. = max abundance and min. CV% = minimum coefficient of 
variance, C = Confident and P = putative. When provided as a comment, the abbreviation indicates what 
brought the identification from confident to putative (RTE > 1.5 min, ME > 3 ppm, ISS < 90%).  

Accepted 
identification 

FS 
ME 
(ppm) 

ISS 
RTE 
(min) 

Max. Min. C/
P 

Comment 
Abun. CV% 

1-Pyrroline 
hydroxycarboxylic 
acid 

0 -0.59 94.0 -0.46 801533 13.5 P 
Isomer of 
pyroglutamic 
acid 

2-Hydroxybutyric 
acid 

41.8 -0.37 97.7 -0.74 7260 10.2 C   

2-Hydroxyglutarate 71.8 -0.72 99.7 -1.00 2589196 6.6 C   

2-Isopropylmalic 
acid 

0 -1.78 93.5 -1.88 116 30.9 P RTE 

2-Oxoglutaric acid 46.4 -1.54 - -1.30 80366 15.1 C   

2-Phosphoglyceric 
acid 

74.3 0.10 97.8 -1.90 28501 45.6 P RTE 

3,3 Dimethyl 
glutarate 

70.6 -1.31 95.2 -1.09 2147 7.6 C   

3,4-dihydroxy-
phenyl acetic acid 

0 -0.44 90.9 0.57 372 18.3 C   

3-Dehydroquinate 31.9 -1.35 97.2 -0.16 3720 14.2 C   

3-Hydroxymethyl-
glutarate 

74 -0.96 98.5 -1.04 21343 11.8 C   

3-Hydroxytyrosol 0 -0.13 93.4 -0.98 3932 3.5 C   

3-methoxyphenyl-
acetic acid 

0 -1.15 99.4 -1.03 178 34.5 C   

3-Methyl-2-
oxovaleric acid 

0 -0.73 99.8 -0.83 139291 21.4 C   

3-Phosphoglyceric 
acid 

0 -0.85 97.1 0.54 3027 84.6 P 
Isomer of 2-
phosphglyceric 
acid 

4-Hydroxy-3-
methoxymandelic 
acid 

0 0.02 94.9 -0.93 3486 8.5 C   

4-Hydroxybenzoic 
acid 

0 -0.65 96.1 1.32 38777 6.1 C   

4-Hydroxyproline 89.7 -0.69 99.0 -0.44 14407 9.7 C   

5-Hydroxyhexanoic 
acid 

0 -4.68 99.7 -0.04 6876 9.1 P ME 

5-Hydroxymethyl-2'-
deoxyuridine 

0 0.24 87.7 -0.32 228 40.7 P ISS 

6-Phosphogluconic 
acid 

0 0.26 97.5 -1.67 70673 21.2 P RTE 

8-Hydroxy-
deoxyguanosine 

0 0.03 93.1 0.35 4658 59.7 C   

Acetylglycine 37.6 -0.38 98.4 -0.26 2738 10 C   

Adenine 0 -0.19 93.1 1.39 9408 16.2 C   

Adenosine 
diphosphate 

16.4 0.27 97.9 -1.51 1905916 8.6 C   

Adenosine 
triphosphate  

5.56 0.39 92.2 0.51 5126 17 C   
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Accepted 
identification 

FS 
ME 
(ppm) 

ISS 
RTE 
(min) 

Max. Min. 
C/
P 

Comment 

Arabinonic acid 56.5 -1.66 94.6 -0.82 9921 12.4 C   

Arabinose 30 -1.75 95.1 -0.30 1844 17.3 P 
Isomer of 
ribose/xylulose 

Arabitol 63.4 -1.12 96.2 -0.01 10513 11.4 P 
Isomer of 
adonotil/xylitol 

Ascorbate 8.26 -1.56 99.2 -1.33 40293 10.4 C   

Beta-Alanine 52.9 -0.44 88.1 -0.92 1960 4.2 C   

Beta-Citryl-L-
glutamic acid 

0 -0.35 98.4 -0.68 654760 15.9 C   

Butyric acid 85.1 -1.00 97.7 -0.46 10122 3.7 C   

Caffeic acid 0 -3.15 90.5   2504 12.5 P ME, no RT 

Citric acid 0 -1.80 96.9 -1.57 8076 10.4 P RT 

Cytidine 
diphosphate 

0 0.78 85.5 -1.11 1434 63.7 P ISS 

Cytidine 
monophosphate 

0 0.23 92.0 -0.09 25836 17.3 C   

Cytidine 
monophosphate N-
acetylneuraminic 
acid 

0 0.09 96.7 -0.88 152883 12.3 C   

Cytidine 
triphosphate 

6.63 -0.10 98.0 -1.74 433497 15.9 P RTE 

dADP 0 -0.05 92.0 -0.74 4193 16.9 C   

dCTP 78 -0.32 92.9 -1.04 6125 28.6 C   

Deoxyribose 5-
phosphate 

3.59 1.41 96.8 -0.13 4093 13.1 C   

Deoxyuridine 11.6 -1.95 88.9 -0.76 1475 22.5 P ISS 

dGTP 0 1.35 90.0 0.58 418 86.3 C   

Dihydroxyacetone 0 -2.18 98.6 -1.98 199696 5.3 P RTE 

Dimethyl fumarate 0 -0.50 96.4 -1.03 3108 7.6 C   

dTDP-D-glucose 0 0.03 96.6 -1.42 123018 17.4 C   

dUDP 0 0.25 93.0 0.81 5262 43.9 C   

dUMP 0 0.03 97.9 -1.62 129278 35.1 P RTE 

dUTP 0 -0.30 93.7 -1.61 11615 38.7 P RTE 

EDTA 0 -0.85 98.1 -1.99 2076624 23.7 P RTE 

Ferulic acid 0 -0.37 84.9 -0.45 296 25.1 P ISS 

Flavin 
Mononucleotide 

0 -0.26 89.6   13495 12.1 P No RT 

Fructose 2,6 
diphosphate 

0 -0.37 99.2 -0.16 161016 34.4 C   

Fructose 6-
phosphate 

82.6 -0.85 95.8 -0.28 34805 21.8 P 
Isomer of 
mannose 6-
phosphate 

Fumarate 0 -4.62 94.9 1.09 273 13.1 P ME 

Galacturonic acid 67.6 -1.39 97.6 -0.09 8170 14.9 P 
Isomer of 
glucuronic acid  

Gluconate 66 -1.22   -0.65 95978 12.5 C   

Gluconolactone 0 -0.81 92.4 0.13 333 18 C   

Glucosamine 6-
phosphate 

0 -1.21 90.1 1.40 242 30.7 C   

Glucose 0 -0.99 80.4 1.33 2158 12.9 P Isomers 
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Accepted 
identification 

FS 
ME 
(ppm) 

ISS 
RTE 
(min) 

Max. Min. 
C/
P 

Comment 

Glucose 1-phosphate 51.6 -0.90 99.2 -0.89 383812 37.4 P 
Isomer of 
galactose 1-
phosphate 

Glutaconic acid 0 -0.19 96.3 0.29 6350 8.1 P Isomers 

Glutamine 0 -0.58 94.6 0.96 3732 17.3 C   

Glutaric acid 0 -0.18 96.5 0.16 3432 7 P 
Isomer of 
ethylmalonic acid 

Glyceric acid 1.08 -1.00   0.69 143328 9.8 C   

Glycerol 54.9 -0.78 100.0 -0.10 1949346 4.5 C   

Glycerol 3-
phosphate 

71.2 -0.48   -0.88 20805 16.7 C   

Guanosine 
diphosphate 

96.9 1.15 97.8 0.10 1747597 17.2 C   

Hippuric acid 67.3 -1.28 90.2 -1.31 15607 25.6 C   

Hydroxy-isobutyric 
acid 

42 -0.20 99.2 -1.25 3540 11.8 C   

Hydroxy-
isoheptanoic acid  

0 -3.72 98.3 0.36 72 49.9 P ME 

Inosine 1.77 -4.75 93.3 -1.73 3934 40.5 P RTE 

Inositol 1,3,4-
trisphosphate 

0 0.73 98.0 -1.94 10713 94.2 P RTE 

Isocitrate 0 -1.75 96.6 -1.12 4994 14.9 P 
Isomer of citric 
acid 

Isopentenyl 
pyrophosphate 

0 -1.44 93.1 -1.30 1882 20.7 P 
Isomer of 
dimethylallyl 
pyrophosphate 

Isovalerylglycine 49.1 -0.68 92.0 -0.38 256 37.5 C   

Kojic acid 92.2 -0.25 97.1 -0.63 6907 7.5 C   

Kynurenic acid 0 0.24 88.8 0.73 299 85.1 P ISS 

Lactic acid 28.2 -0.95 99.7 -0.78 3248049 13 P 
Isomer of 
dihydroacetone 

Lactose 84.7 -1.77 89.5 -0.23 499657 16.8 C   

Lactoyl-isoleucine  0 -3.63 96.5 -0.12 5240 15.7 C   

Maleic acid 65.1 -0.58 97.9 -0.30 45233 6.4 C   

Malic acid 82.8 -0.62 99.3 -1.00 376096 7.4 C   

Manelonitrile 0 -0.52 91.1 -0.35 2082 29.7 C   

Mannitol 0 -0.08 96.6 0.78 1325 34.8 P 
Isomer of 
sorbitol 

Mannose 6-
phosphate 

93.6 -0.92 91.6 -1.52 50415 20.3 P 
Isomer of 
fructose 6-
phosphate 

Methionine 
sulfoxide 

0 -0.57 88.9   968 46.1 P ISS 

Methyl beta-D-
glucopyranoside 

0 -1.16 97.5 -0.43 1557 81 C   

Methyl 
phenylacetate 

0 -4.05 90.3 -1.84 285 18.5 P RTE and ME 

Methylisocitric acid 0 -0.23 96.9 -1.10 7956 6.4 P 
Isomer of 2-
methylcitric acid 

Myoinositol 94.1 -1.02 97.6 -0.20 2042414 7.8 P   

N-Acetyl ornithine 0 -1.97 91.3 0.11 11238 58.8 C   

N-Acetyl-aspartate 97 -1.51 92.5 -0.79 265901 9.6 C   
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Accepted 
identification 

FS 
ME 
(ppm) 

ISS 
RTE 
(min) 

Max. Min. 
C/
P 

Comment 

N-Acetylaspartyl-
glutamic acid 

0 -0.09 96.9 -1.23 91866 11.2 C   

N-acetyl-
glucosamine-1-
phosphate 

0 0.02 95.7 -0.52 13651 24.2 C   

N-Acetylglutamate 0 -4.18 75.1 0.87 2907 18.4 P ME 

N-Acetyl-L-alanine 96.9 -0.91 97.6 -0.42 10596 10.7 C   

N-Acetyl-L-
methionine 

75.8 -0.30 94.2 -0.56 15290 15.9 C   

N-Acetyl-L-
phenylalanine 

37.7 -0.27 98.1 -0.71 172 20.9 C   

N-Acetylneuraminic 
acid 

88.7 -0.33 94.7 -0.62 61869 9 C   

NADH 95.1 0.21 94.9 -0.91 166918 44.4 C   

NADPH 0 -0.51 91.0 0.76 1414 40.3 C   

N-carbamoyl-L-
aspartic acid 

0 -0.83 96.0 -1.09 4150 22.3 C   

N-Formyl-
methionine 

0 -1.38 94.7 -0.73 1608 15.9 C   

Nicotinic Acid N-
Oxide 

69.4 -0.53 93.0 -1.86 3393 10.4 P RTE 

Nonate  0 -3.63 95.0 -0.48 7757 12.5 P   

O-Acetylserine 0 -0.73 93.5 -0.55 90438 5.1 C   

O-Phosphoserine 72.7 -0.38 99.3 -1.18 73236 17.9 C   

Oxoadipic acid 51.5 -1.02 95.8 -1.65 3313 11.3 P RTE 

Pantothenic acid 62.6 -1.29 98.0 -0.73 589423 10.6 C   

Phenylacetylglycine 0 -3.72 96.7 0.54 1018 23.7 P ME 

Phosphocreatine 5.43 -2.72 97.2 -0.38 57977 59.8 C   

Phosphoribosyl 
pyrophosphate  

0 0.30 96.6 -1.51 5868 76.2 C   

p-Hydroxyphenyl-
acetic acid 

0 -4.52 95.8 -1.74 8488 7.6 P RTE 

Prephenic Acid 0 0.51 88.4 0.66 2575 13 P ISS 

Pyridoxal 5'-
phosphate 

0 -1.42 90.0 -0.65 3856 16.4 C   

Quinolinic acid 0 -1.57 91.5 -1.61 560 20.7 P RTE 

Raffinose 0 -0.04 93.1 -0.14 3568 106.2 C   

Ribose 5-phosphate 62.6 1.57 96.7 -1.25 16692 14.9 P 
Isomer of 
xylulose 5-
phosphate 

Ribulose 
1,5,diphosphate 

0 -1.46 98.7 -1.51 96318 9.4 C   

Ribulose 5-
phosphate 

31.3 1.08 96.4 -0.67 30274 16.2 C   

Scyllitol 0 -0.85 98.6 -0.01 146546 6.7 P 
Isomer of e.g. 
myo-inositol 

Sebacic acid 0 0.09 88.8 -1.87 315 23.5 P RTE and ISS 

Sedoheptulose 1,7-
bisphosphate 

0 -0.10 89.7 -1.25 1115 112.3 C   

Sedoheptulose 1-
phosphate 

0 0.77 95.5 -0.72 11748 18.1 C   
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Accepted 
identification 

FS 
ME 
(ppm) 

ISS 
RTE 
(min) 

Max. Min. 
C/
P 

Comment 

Sedoheptulose 7-
phosphate 

66.3 0.81   -1.08 24674 32.3 C   

Sorbitol 70.7 -1.24 99.2 -0.11 228325 15.4 C   

Sorbitol-6-
phosphate 

0 -0.18 97.9 0.23 43652 32.4 C   

Succinic acid 91.2 -0.38 98.7 -1.01 103980 7.3 C   

Syringic acid 0 -0.47 97.6 0.93 2738 10.3 C   

Taurine 92.5 -0.89 93.2 -0.66 1534026 6.1 C   

TDP 92.4 -0.12 90.8 -1.31 11426 13.5 C   

Threitol 71 -0.55 98.0 -0.08 18187 9 C   

Thymidine 5'-
phosphate 

91.3 -0.23 97.3 -1.24 25036 29.9 C   

Thymidine 
triphosphate 

6.1 -0.06 94.1 -1.51 20856 17.3 C   

UDP-galactose 0 -0.17 96.5 -1.13 72092 16.5 P 
Isomer of UDP-
glucose 

Uracil 77.4 -0.81 94.8 -1.35 2063 10.5 C   

Ureidopropionic acid 0 -4.22 94.3 1.10 3570 12.1 P   

Uridine 5'-
diphosphate 

13.1 -0.31 98.7 0.91 4596118 18.7 C   

Uridine 5'-
monophosphate 

50.7 -0.13 98.6 -1.79 573322 30.8 P   

Xylitol 0 -0.37 99.7 -0.03 2471 10.2 P 
 Isomer of 
arabitol and 
adonitol 
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Figure A.II.1. PCA scores plots (PC1 × PC2) and heatmap used for identifications of outliers in IC-MS and 
derivatised RPLC-MS data from the experiment treating both wtIDH1 and mutIDH1R132H LN18 cells with 
mutIDH1 inhibitors. Both datasets were IQR filtered, but not normalised, scaled or transformed, prior 
to plotting. (a) PCA scores plot (PC1 × PC2) of IC-MS data, black arrow indicating outlier that was 
removed (BAY 1436032 treated wtIDH1 LN18 cell sample). (b) PCA scores plot (PC1 × PC2) of derivatised 
RPLC-MS data, with black arrow indicating the first outlier that was removed (AG-120 treated 
mutIDH1R132H LN18 cell sample). (c) PCA scores plot (PC1 × PC2) of derivatised RPLC-MS data, with black 
arrow indicating two additional outliers that were removed (BAY 1436032 treated wtIDH1 LN18 cell 
samples). (d) Heatmap of the same data in (c), with black arrow indicating the same two samples as 
indicated in (c). N = biological replicates and N = 10 for treated samples, unless an outlier was removed, 
N = 19 for wtIDH1 LN18 cell samples in (a), = 20 for wtIDH1 LN18 cell samples in (b-d) and N = 20 for 
mutIDH1R132H LN18 cell samples in (a-d).  
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Figure A.II.2. Heatmaps, feature and sample distribution plots before and after normalisation of IC-MS 
data from the wtIDH1 and mutIDH1R132H LN18 metabolomics experiment. (a) Heatmap, (b) feature 
distribution and (c) sample distribution plots of IC-MS data before normalisation and scaling. (d) 
Heatmap, (e) feature distribution and (f) sample distribution plots of IC-MS data after median 
normalisation and pareto-scaling. Derivatised RPLC-MS data distribution (g) before and (h) after 
normalisation.  
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Table A.II.3. Annotated metabolites from the derivatised RPLC-MS data of mutIDH1 inhibitor treated 
and control wtIDH1 and mutIDH1R132H LN18 cells. with parameters used for determining whether it was 
a putative or confident identification. ME = mass error, ISS = isotope similarity score, RTE = retention 
time error, max. abun. = max abundance and min. CV% = minimum coefficient of variance, C = Confident 
and P = putative. When provided as a comment, the abbreviation indicates what brought the 
identification from confident to putative (RTE > 0.5 min, ME > 3 ppm, ISS < 90%). 

Accepted 
Description 

ME 
(ppm) 

ISS 
RTE 
(min) 

Max. 
abun. 

Min. 
CV% 

C/P Comment 

1,3-Diaminopropane 1.88 96.3 0.07 6.426 23.3 C   

2-Aminoadipic acid 0.87 94.0 0.09 507 14.3 C   

4-Hydroxyproline 2.17 94.8   37 22.1 P No RT 

5-Hydroxylysine 0.91 96.1 0.13 0.67 34.2 C   

Alanine 0.75 96.0 0.13 14931 7.8 C   

GABA 0.20 96.4 0.02 39 10.9 C   
Arginine -0.08 96.5 0.12 424 17.9 C   

Argininosuccinic acid -0.80 92.9 0.11 1.73 17.8 C   

Asparagine -0.73 95.7 0.01 165 11 C   

Aspartic acid 3.15 96.8 -0.90 2.52 29.8 P RTE 

beta-Alanine 2.22 97.1 0.13 1089 10.5 C   

Carnosine -2.23 91.5 0.11 2.69 38.2 C   

Citrulline -1.27 93.1 0.10 40 16.3 C   

Cysteine -0.90 94.9 -0.94 336 19.3 P RTE 

Ethanolamine -1.46 96.9 0.12 13 5.9 C   

Glutamic acid 0.82 95.9 0.13 10010 8.9 C   

Glutamine 0.35 96.1 0.07 3563 30 C   

Glycine 0.03 93.8 0.15 2597 10 C   

Histidine -0.70 96.8 0.08 417 12.9 C   

Homocysteine -1.38 91.7 -0.11 7.76 23.1 P 
Not compared to 
standard yet 

Homoserine -0.38 95.6 0.18 10 24.2 C   

Hydroxy-L-
tryptophan  

0.54 92.7   7.32 20.1 P 
Not compared to 
standard yet 

Hypotaurine 1.47 93.4 0.23 181 10.6 C   

Hypoxanthine -4.70 93.9 -0.27 7.84 13.5 P ME 

Isobutylamine 0.82 95.4 0.15 1.68 21.6 C   

Isoleucine 0.87 94.9 0.20 6638 12.5 P Isomer of leucine 

Kynurenine -0.21 94.4 0.08 17 18.8 C   

L-Cystathionine -0.93 85.6 0.08 8 11.6 P IS 

L-Cystine 1.31 91.8   3 39.6 P No RT 

Leucine 1.13 94.5 0.00 6037 13.6 P Isomer of isoleucine 

L-Theanine 1.11 94.6 0.33 0.27 43.4 P 
Isomer of N-acetyl-
ornithine 

Lysine 0.25 93.7 0.09 3991 16.4 C   

Methionine -4.84 88.3 -1.01 40 11.8 P RTE and ME 

Methyl-L-Lysine -1.19 96.4 0.09 0.45 52.4 C   

N-Acetyl-ornithine -0.70 96.0 0.12 22 9.3 P Isomer of L-Theanine 

N-Methyl-L-glutamic 
acid 

-0.76 88.5 -0.29 0.48 73.9 P IS 

Octapine 2.15 95.9   6.46 25.3 P No RT 

Ornithine -1.64 95.1 0.19 9.38 14.7 C   

Oxidised Glutathione 0.41 92.5 0.06 2760 14.7 C   

Phenylalanine 0.83 92.1 0.11 4565 12.7 C   

Pipecolic acid -2.58 95.2 0.48 70 13 C   
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Accepted 
Description 

ME 
(ppm) 

ISS 
RTE 
(min) 

Max. 
abun. 

Min. 
CV% 

C/P Comment 

Proline -0.36 98.0 0.12 759 10.2 C   

Putrescine  1.44 96.3 0.03 151 21.2 C   

Pyroglutamic Acid 0.39 93.8 -0.97 18 29.7 P RTE 

S-(5-Adenosyl)-L-
homocysteine  

-1.38 91.7 0.10 4.37 34.2 C   

Serine -0.36 96.3 0.16 1167 9.1 C   

Serotonin -1.25 87.1 0.02 7.04 8.1 P IS 

Taurine -0.55 95.1   1580 9.6 P No RT 

Threonine  0.88 97.4 0.11 5808 10.8 C   

Tryptophan -0.25 95.1 0.09 640 12.8 C   

Tyrosine 0.43 95.1 0.10 2773 12.1 C   

Urea -3.57 93.6 0.17 0.49 31.4 P ME 

Valine 0.98 95.9 0.10 5434 13.3 C   
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Table A.II.4. All pathways found by the untargeted pathway analysis (functional analysis from the R package MetaboAnalystR). FET = Fisher ’s Exact Test, EASE = 
Expression Analysis Systematic Explorer. PW = pathway, tot = total, sig = significant, Exp = expected, EC = empirical compound, p-val = p-value, adj = adjusted, emp = 
empirical.   P a t h w a y N a m e

 

P a t w a y t o t a l H i t s t o t a l H i t s s i g n i f i c a n t E x p e c t e d
 

# E C
 

F E T p - v a l u e
 

E A S E s c o r e
 

p - v a l u e
 

γ - a d j u s t e d
 

p - v a l u e
 

E m p i r i c a l h i t s E m p i r i c a l p - v a l u e
 

E C
 

h i t s 

Pathway Name 
PW 
tot 

Hits 
Hits 
sig. 

Exp. 
#EC 

FET  
p-val 

EASE  
p-val 

γ-adj  
p-val 

Emp. 
hits 

Emp. 
p-val 

EC hits 

Valine, leucine and isoleucine 
degradation 

25 25 12 4.3 0.0002 0.0007 0.0051 0 0 
EC00014, EC00091, EC00092, EC00093, EC000116, 
EC000117, EC00029, EC00030, EC000355, EC000170, 
EC000356, EC000591 

Arginine and Proline 
Metabolism 

33 33 14 5.6 0.0002 0.0008 0.0051 0 0 
EC000129, EC00014, EC00011, EC00012, EC000448, 
EC000430, EC00059, EC000282, EC000414, EC000252, 
EC00029, EC00030, EC00036, EC000242 

Butanoate metabolism 26 26 12 4.4 0.0002 0.0011 0.0051 0 0 
EC00014, EC00011, EC00012, EC00091, EC00092, EC00093, 
EC000355, EC000356, EC000531, EC00029, EC00030, 
EC000336 

Ascorbate (Vitamin C) and 
Aldarate Metabolism 

47 47 17 8.0 0.0004 0.0013 0.0051 0 0 

EC000177, EC000161, EC000163, EC000307, EC000311, 
EC000157, EC000488, EC00054, EC00058, EC000137, 
EC000138, EC000325, EC000243, EC000246, EC000247, 
EC000416, EC000418 

Lysine metabolism 25 25 11 4.3 0.0008 0.003 0.0051 2 0.02 
EC00014, EC000208, EC000211, EC000212, EC000213, 
EC000259, EC000260, EC000430, EC000242, EC00029, 
EC00030 

Vitamin B1 (thiamine) 
metabolism 

12 12 7 2.1 0.001 0.0062 0.0051 0 0 
EC000208, EC000211, EC000212, EC000213, EC00011, 
EC00012, EC00014 

Aspartate and asparagine 
metabolism 

55 55 17 9.4 0.0035 0.0081 0.0051 2 0.02 

EC00014, EC000129, EC000252, EC00091, EC00092, 
EC00093, EC000578, EC000450, EC000282, EC00036, 
EC000242, EC000472, EC000355, EC000356, EC000414, 
EC000365, EC000430 

Glutamate metabolism 22 22 9 3.8 0.0045 0.0156 0.0051 1 0.01 
EC00014, EC00011, EC00012, EC00029, EC00030, 
EC000448, EC00091, EC00092, EC00093 

Urea cycle/amino group 
metabolism 

37 37 12 6.3 0.0095 0.0239 0.0052 1 0.01 
EC000129, EC000448, EC000430, EC000289, EC00059, 
EC000282, EC00014, EC000252, EC000395, EC00036, 
EC000242, EC000604 

Propanoate metabolism 25 25 9 4.3 0.0119 0.0346 0.0053 4 0.04 
EC00091, EC00092, EC00093, EC000307, EC000311, 
EC000355, EC000356, EC00011, EC00012 
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Pathway Name 
PW 
tot 

Hits 
Hits 
sig. 

Exp. 
#EC 

FET  
p-val 

EASE  
p-val 

γ-adj  
p-val 

Emp. 
hits 

Emp. 
p-val 

EC hits 

Methionine and cysteine 
metabolism 

30 30 9 5.1 0.0406 0.0929 0.0058 8 0.08 
EC00014, EC00011, EC00012, EC00091, EC00092, EC00093, 
EC00059, EC00052, EC000429 

Squalene and cholesterol 
biosynthesis 

16 16 6 2.7 0.0323 0.0989 0.0056 3 0.03 
EC000113, EC000249, EC000370, EC00091, EC00092, 
EC00093 

D4&E4-neuroprostanes 
formation 

12 12 5 2.1 0.0319 0.1121 0.0056 2 0.02 EC00054, EC00058, EC000243, EC000246, EC000247 

Beta-Alanine metabolism 12 12 5 2.1 0.0319 0.1121 0.0056 4 0.04 EC00014, EC000282, EC00036, EC00011, EC00012 

Fatty acid oxidation, 
peroxisome 

4 4 3 0.7 0.0149 0.1241 0.0053 3 0.03 EC00014, EC00029, EC00030 

TCA cycle 27 27 8 4.6 0.0565 0.1277 0.0061 3 0.03 
EC00014, EC000137, EC000138, EC00029, EC00030, 
EC000243, EC000246, EC000247 

Glycine, serine, alanine and 
threonine metabolism 

49 49 12 8.4 0.0827 0.1471 0.0066 11 0.11 
EC00014, EC00011, EC00012, EC000182, EC000358, 
EC00059, EC000252, EC00052, EC00091, EC00092, 
EC00093, EC000148 

Phytanic acid peroxisomal 
oxidation 

6 6 3 1.0 0.0579 0.2502 0.0061 8 0.08 EC00014, EC00029, EC00030 

Pentose phosphate pathway 57 57 12 9.7 0.1998 0.3023 0.0097 27 0.27 
EC000108, EC000412, EC000413, EC000177, EC000161, 
EC000163, EC00066, EC000544, EC000258, EC00016, 
EC000388, EC000302 

Histidine metabolism 12 12 4 2.1 0.1155 0.3032 0.0074 11 0.11 EC00014, EC000256, EC00011, EC00012 

Prostaglandin formation from 
arachidonate 

18 18 5 3.1 0.1542 0.328 0.0084 10 0.1 EC000243, EC000246, EC000247, EC00054, EC00058 

Selenoamino acid metabolism 13 13 4 2.2 0.1467 0.3514 0.0082 13 0.13 EC00052, EC00091, EC00092, EC00093 

Porphyrin metabolism 36 36 8 6.2 0.2182 0.3581 0.0103 21 0.21 
EC000252, EC000157, EC00054, EC00058, EC000338, 
EC000243, EC000246, EC000247 

Tryptophan metabolism 33 33 7 5.6 0.2822 0.4467 0.0128 39 0.39 
EC00014, EC000208, EC000211, EC000212, EC000213, 
EC00016, EC000457 

Pyrimidine metabolism 94 94 17 16.1 0.3533 0.4507 0.0163 54 0.54 

EC000412, EC000413, EC00011, EC00012, EC000234, 
EC000164, EC000165, EC000255, EC00091, EC00092, 
EC00093, EC00086, EC00087, EC000115, EC000302, 
EC00066, EC00036 
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Pathway Name 
PW 
tot 

Hits 
Hits 
sig. 

Exp. 
#EC 

FET  
p-val 

EASE  
p-val 

γ-adj  
p-val 

Emp. 
hits 

Emp. 
p-val 

EC hits 

Pentose and Glucuronate 
Interconversions 

29 29 6 5.0 0.3296 0.5155 0.0151 32 0.32 
EC00086, EC00087, EC000108, EC000157, EC000177, 
EC000388 

Hexose phosphorylation 25 25 5 4.3 0.3866 0.595 0.0184 47 0.47 EC00016, EC00066, EC000115, EC000164, EC000165 

Chondroitin sulfate 
degradation 

12 12 3 2.1 0.3092 0.602 0.014 32 0.32 EC00016, EC000157, EC000108 

C5-Branched dibasic acid 
metabolism 

13 13 3 2.2 0.3579 0.6476 0.0166 37 0.37 EC00011, EC00012, EC000264 

Heparan sulfate degradation 13 13 3 2.2 0.3579 0.6476 0.0166 34 0.34 EC00016, EC000157, EC000108 

Alanine and Aspartate 
Metabolism 

20 20 4 3.4 0.4163 0.6523 0.0204 43 0.43 EC00014, EC00011, EC00012, EC00036 

Carbon fixation 21 21 4 3.6 0.4561 0.6864 0.0235 34 0.34 EC00066, EC00011, EC00012, EC00036 

Lipoate metabolism 8 8 2 1.4 0.3844 0.7576 0.0182 37 0.37 EC000307, EC000311 

Purine metabolism 74 74 11 12.7 0.6931 0.7925 0.059 75 0.75 
EC000108, EC000115, EC000302, EC000293, EC00011, 
EC00012, EC00036, EC000164, EC000165, EC00054, 
EC00058 

N-Glycan biosynthesis 42 42 6 7.2 0.7103 0.8394 0.0634 72 0.72 
EC00086, EC00087, EC000113, EC000214, EC00016, 
EC00066 

Tyrosine metabolism 100 100 14 17.1 0.7953 0.8619 0.0935 72 0.72 
EC00014, EC00011, EC00012, EC000243, EC000246, 
EC000247, EC00054, EC00058, EC000498, EC000603, 
EC000226, EC00091, EC00092, EC00093 

Fructose and mannose 
metabolism 

36 36 5 6.2 0.7283 0.8625 0.0686 83 0.83 EC000214, EC00066, EC00016, EC000433, EC000585 

Starch and Sucrose Metabolism 29 29 4 5.0 0.7252 0.875 0.0677 74 0.74 EC00086, EC00087, EC00066, EC00016 

Sialic acid metabolism 37 37 5 6.3 0.7516 0.877 0.0762 79 0.79 EC00016, EC00066, EC00052, EC000161, EC000163 

Pyruvate Metabolism 12 12 2 2.1 0.6081 0.8816 0.0417 50 0.5 EC00011, EC00012 

Glyoxylate and Dicarboxylate 
Metabolism 

13 13 2 2.2 0.6536 0.9011 0.05 47 0.47 EC000182, EC000108 

Glycerophospholipid 
metabolism 

62 62 8 10.6 0.8276 0.9041 0.1099 82 0.82 
EC00011, EC00012, EC000413, EC000182, EC00072, 
EC00052, EC00016, EC00066 

Glycolysis and Gluconeogenesis 42 42 5 7.2 0.8464 0.9315 0.1214 85 0.85 EC000336, EC00066, EC00011, EC00012, EC00016 

Glutathione Metabolism 20 20 2 3.4 0.8652 0.9722 0.1347 84 0.84 EC000414, EC000450 
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Pathway Name 
PW 
tot 

Hits 
Hits 
sig. 

Exp. 
#EC 

FET  
p-val 

EASE  
p-val 

γ-adj  
p-val 

Emp. 
hits 

Emp. 
p-val 

EC hits 

Glycosphingolipid biosynthesis 
- globoseries 

22 22 2 3.8 0.8991 0.9807 0.1654 84 0.84 EC000214, EC00016 

Galactose metabolism 43 43 4 7.4 0.9427 0.9812 0.2272 97 0.97 EC00016, EC00066, EC000161, EC000163 

Glycosphingolipid biosynthesis 
- ganglioseries 

23 23 2 3.9 0.9129 0.984 0.1813 85 0.85 EC00016, EC000214 

Linoleate metabolism 23 23 2 3.9 0.9129 0.984 0.1813 87 0.87 EC00054, EC00058 

Glycosphingolipid metabolism 37 37 3 6.3 0.9585 0.9897 0.2625 94 0.94 EC00016, EC000214, EC00052 

Aminosugars metabolism 40 40 3 6.8 0.9728 0.9937 0.3078 98 0.98 EC00011, EC00012, EC00066 

Phosphatidylinositol 
phosphate metabolism 

46 46 3 7.9 0.9888 0.9977 0.3963 99 0.99 EC00016, EC00066, EC000157 

Drug metabolism - cytochrome 
P450 

4 4 1 0.7 0.5103 1 0.0287 38 0.38 EC000565 

Nitrogen metabolism 6 6 1 1.0 0.658 1 0.0509 74 0.74 EC00036 

CoA Catabolism 7 7 1 1.2 0.7143 1 0.0646 62 0.62 EC000331 

Vitamin B9 (folate) metabolism 9 9 1 1.5 0.8009 1 0.0961 83 0.83 EC00052 

Glycosylphosphatidyl-inositol 
(GPI)-anchor biosynthesis 

10 10 1 1.7 0.8338 1 0.1135 87 0.87 EC00066 

N-Glycan Degradation 10 10 1 1.7 0.8338 1 0.1135 87 0.87 EC00016 

Keratan sulfate degradation 12 12 1 2.1 0.8844 1 0.1509 97 0.97 EC00016 

Hyaluronan Metabolism 13 13 1 2.2 0.9037 1 0.1704 84 0.84 EC000157 

Vitamin B5 - CoA biosynthesis 
from pantothenate 

13 13 1 2.2 0.9037 1 0.1704 81 0.81 EC000331 

Nucleotide Sugar Metabolism 14 14 1 2.4 0.9197 1 0.1902 91 0.91 EC00066 

Glycosphingolipid biosynthesis 
- lactoseries 

16 16 1 2.7 0.9443 1 0.2304 88 0.88 EC000214 

Blood Group Biosynthesis 16 16 1 2.7 0.9443 1 0.2304 88 0.88 EC000214 

Glycosphingolipid biosynthesis 
- neolactoseries 

16 16 1 2.7 0.9443 1 0.2304 88 0.88 EC000214 

C21-steroid hormone 
biosynthesis and metabolism 

19 19 1 3.2 0.9679 1 0.2901 89 0.89 EC000314 

Vitamin B3 (nicotinate and 
nicotinamide) metabolism 

27 27 1 4.6 0.9927 1 0.4363 97 0.97 EC00036 
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9.3.  Appendix III 

The DNA concentration for the 13C tracer experiment (section 3.6) and the measurement 

of redox metabolites (section 3.7) are provided in Table A.III.1 and Table A.III.2, 

respectively. The samples for the 13C tracer experiments were originally part of a larger 

experiment, but that data was not included in this thesis. The lowest DNA concentration 

that the relative DNA concentration was calculated for was 79.1 ng/µL.   

 

  

Table A.III.1. DNA concentration of wtIDH1 and mutIDH1R132H LN18 cells in the 13C tracer experiments.  

Sample name DNA 1 
(ng/µL) 

DNA 2 
(ng/µL) 

DNA 3 
(ng/µL) 

Average 
(ng/µL) 

Relative DNA 
concentration 

µL 
solvent 

µL 
sample 

MUT-No-13C-24h-01 123.0 126.5   124.75 1.58 29.3 50.7 

MUT-No-13C-24h-02 125.4 125.7   125.55 1.59 29.6 50.4 

MUT-No-13C-24h-03 134.5 134.9   134.70 1.70 33.0 47.0 

MUT-13C-Gln-24h-01 159.7 163.3 163.0 162.00 2.05 40.9 39.1 

MUT-13C-Gln-24h-02 158.7 157.0   157.85 2.00 39.9 40.1 

MUT-13C-Gln-24h-03 132.4     132.40 1.67 32.2 47.8 

MUT-13C-Gln-24h-04 161.5 157.2   159.35 2.01 40.3 39.7 

MUT-13C-Gln-24h-05 124.3 123.5   123.90 1.57 28.9 51.1 

MUT-13C-Gluc-24h-01 149.8 152.0   150.90 1.91 38.1 41.9 

MUT-13C-Gluc-24h-02 146.4 147.0   146.70 1.85 36.9 43.1 

MUT-13C-Gluc-24h-03 121.7 123.2   122.45 1.55 28.3 51.7 

MUT-13C-Gluc-24h-04 150.1 143.5 147.8 147.13 1.86 37.0 43.0 

MUT-13C-Gluc-24h-05 169.0 171.9   170.45 2.15 42.9 37.1 

WT-13C-Gln-24h-01 158.5 154.9   156.70 1.98 39.6 40.4 

WT-13C-Gln-24h-02 153.3 154.5   153.90 1.95 38.9 41.1 

WT-13C-Gln-24h-03 137.4 138.4   137.90 1.74 34.1 45.9 

WT-13C-Gln-24h-04 188.5 180.1 185.4 184.67 2.33 45.7 34.3 

WT-13C-Gln-24h-05 157.7 159.1   158.40 2.00 40.1 39.9 

WT-13C-Gluc-24h-01 127.4 134.0 131.9 131.10 1.66 31.7 48.3 

WT-13C-Gluc-24h-02 161.4 159.9   160.65 2.03 40.6 39.4 

WT-13C-Gluc-24h-03 141.0 143.5   142.25 1.80 35.5 44.5 

WT-13C-Gluc-24h-04 139.7 139.0   139.35 1.76 34.6 45.4 

WT-13C-Gluc-24h-05 177.0 175.8   176.40 2.23 44.1 35.9 

WT-No-13C-24h-01 108.0 105.4   106.70 1.35 20.7 59.3 

WT-No-13C-24h-02 167.3 166.9   167.10 2.11 42.1 37.9 

WT-No-13C-24h-03 174.3 175.2   174.75 2.21 43.8 36.2 
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Table A.III.2. DNA concentration of wtIDH1 and mutIDH1R132H LN18 cells harvested with the redox 
method and analysed with HILIC LC-MS.  

Sample name 
DNA 1 
(ng/μL) 

DNA 2 
(ng/μL) 

Average 
(ng/μL) 

Relative DNA 
concentration 

μL 
solvent 

μL 
sample 

MUT_01 136.50 132.60 134.55 1.097 6.2 63.8 

MUT_02 138.20 139.70 138.95 1.133 8.2 61.8 

MUT_03 122.80 122.50 122.65 1.000 0.0 70.0 

MUT_04 92.60 93.60 93.10 0.759  0.0  70.0 

MUT_05 128.50 127.90 128.20 1.046 3.1 66.9 

MUT_06 134.60 131.60 133.10 1.086 5.5 64.5 

MUT_07 149.40 148.70 149.05 1.216 12.4 57.6 

MUT_08 122.90 124.10 123.50 1.007 0.5 69.5 

MUT_09 105.50 104.60 105.05 0.857  0.0  70.0 

MUT_10 127.70 127.40 127.55 1.040 2.7 67.3 

WT_01 159.40 159.70 159.55 1.301 16.2 53.8 

WT_02 142.00 138.40 140.20 1.144 8.8 61.2 

WT_03 167.70 167.90 167.80 1.369 18.9 51.1 

WT_04 153.90 151.40 152.65 1.245 13.8 56.2 

WT_05 141.10 141.50 141.30 1.153 9.3 60.7 

WT_06 150.70 150.40 150.55 1.228 13.0 57.0 

WT_07 123.70 123.40 123.55 1.008 0.5 69.5 

WT_08 143.70 147.05 145.38 1.186 11.0 59.0 

WT_09 145.50 146.20 145.85 1.190 11.2 58.8 

WT_10 139.30 143.70 141.50 1.154 9.3 60.7 
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9.4.  Appendix IV 

Data for the 12-well pilot described in section 4.2. The DNA concentrations for 

normalisation are listed in Table A.IV.1, IC-MS metabolite identifications in Table A.IV.2, 

derivatised RPLC-MS metabolite identifications in Table A.IV.3, and data processing in 

Figure A.IV.1 and Figure A.IV.2. 

 

Table A.IV.1. DNA concentration of wtIDH1 mutIDH1R132H LN18 cells from the 12-well pilot experiment. 
Total sample volume was 50 µL. Rel. DNA conc. = relative DNA concentration. 

Sample Name DNA 1 
(ng/µL) 

DNA 2 
(ng/µL) 

DNA 3 
(ng/µL) 

Average 
(ng/µL) 

Rel. 
DNA 
conc. 

µL 
Sample 

µL 
Solvent 

MUT_04 49.01 43.32   46.165 1.042 2 48 

MUT_05 45.36 50.58 48.31 48.083 1.086 4 46 

MUT_06 38.27 53.12 41.48 44.290 1.000 0 50 

MUT_07 33.55 28.37  30.960 0.699 0 50 

MUT_08 43.39 40.12 54.92 46.143 1.042 2 48 

MUT_09 55.04 53.03   54.035 1.220 9 41 

MUT_10 51 61.99 58.35 57.113 1.290 11 39 

MUT_11 67.15 41.08   54.115 1.222 9 41 

MUT_12 64.86 61.76 61.2 62.607 1.414 15 35 

WT_04 56.77 50.82 50.79 52.793 1.192 8 42 

WT_05 57.21 64.23   60.720 1.371 14 36 

WT_06 51.01 59.86 70.13 60.333 1.362 13 37 

WT_07 54.5 44.23   49.365 1.115 5 45 

WT_08 55.44 53.16 42.77 50.457 1.139 6 44 

WT_09 55.04 53.03   54.035 1.220 9 41 

WT_10 85.52 73.3  79.410 1.793 22 28 

WT_11 50.88 57.69 57.68 55.417 1.251 10 40 

WT_12 49.91 49.88 42.82 47.537 1.073 3 47 
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Table A.IV.2. Annotated metabolites from the IC-MS data of the 12-well pilot experiment. Parameters 
used for determining whether it was a putative or confident identification. FS = fragmentation score, 
ME = mass error, ISS = isotope similarity score, RTE = retention time error, max. abun. = max abundance 
and min. CV% = minimum coefficient of variance, C = Confident and P = putative. When provided as a 
comment, the abbreviation indicates what brought the identification from confident to putative 
(isomers, RTE > 1.5 min, ME > 3 ppm, IS < 90%). 

Accepted identification FS 
ME 
(ppm) 

ISS 
RTE 
(min) 

Max. 
Abun. 

Min. 
CV% 

C/P 
Comment  

1-Pyrroline 
hydroxycarboxylic acid 

0 -2.56 96.9 -0.62 45054 14.5 C   

2-butyl-3-ureido-succinate 0 -2.81 98.8 1.09 214 17.6 C   

2-Hydroxyglutarate 81 -2.54 99.8 -0.88 1960444 10.3 C   

2-Ketobutyric acid 76.8 -2.35 98.1 -0.73 3422 10.2 C   

2-Oxoglutaric acid 71.5 -2.57   -1.11 452544 8.8 C   

2-Phosphoglyceric acid 77.7 -2.59 98.6 -1.59 14453 23.1 C   

3,3 Dimethyl glutarate 95.3 -2.49 99.5 -1.49 9685 6.5 C   

3-Dehydroquinate 33.7 -2.88 97.9 -0.74 53766 8.9 C   

3-deoxy-2-keto-6-
phosphate 

0 -2.83 94.9 -0.02 1663 19.1 C   

3-Hydroxymethylglutarate 88.3 -3.01 99.7 -0.92 36806 8.8 C   

3-Hydroxytyrosol 0 -1.82 97.4 -0.63 2534 9.3 C   

3-methoxyphenylacetic 
acid 

0 -1.95 97.1 1.27 11350 11.7 C   

3-Methyl-2-oxovaleric acid 0 -2.14 99.8 -0.58 3544304 13.9 C   

4-Hydroxy-3-
methoxymandelic acid 

45 -2.83 98.9 -1.36 797 29.7 C   

4-Hydroxybenzoic acid 0 -2.55 98.2 -0.10 2789 15.1 C   

4-Hydroxybutyric acid 0 -2.07 99.2 0.66 2079 9.4 C   

4-Hydroxyproline 81.3 -1.54 98.4 -0.37 4177 8.4 C   

Acetic acid 0 -2.45 97.4 0.18 36448 5.4 C   

Acetoacetate 0 -2.18 97.9 -0.86 406 13.9 C   

Acetylcysteine 67.6 -2.77 92.0 -0.97 12003 12.2 C   

Acetylglycine 92.5 -1.76 97.8 -0.12 941 13.7 C   

Adenine 0 -2.36 93.0 1.66 764 25.8 P RTE 

Adenosine diphosphate 0 3.85 92.7 -1.24 10137 35.5 P ME 

Adenosine monophosphate 0 1.57 86.6 0.15 629 136.3 P RTE and IS 

Adenosine triphosphate 5.86 -3.08 98.0 -1.81 3206978 30.2 P RTE and ME 

Adonitol 0 -1.85 98.5 0.66 1274 26 P 
Isomer with 
xylitol and 
arabitol 

ADP Glucose 17.5 -2.11 96.9 -1.32 2067 60.5 C   

Arabinonic acid 59.7 -2.82 93.6 -0.87 96342 11.6 C   

Ascorbate 30.8 -3.32 99.5 -1.15 1175956 5.7 P ME 

Aspartate 86.7 -2.45 94.6 -0.48 208122 13.5 C   

Beta-Citryl-L-glutamic acid 0 -2.97 98.2 -0.35 244580 12.7 C   

Butyric acid 64.1 -3.03 95.9 -0.86 12319 11.2 C   

cis-Aconitic acid 0 -2.19 97.5 -1.39 576 20.5 C   

Citraconic acid 0 -1.60 93.8 -0.66 2075 8.5 P 
Isomer of e.g. 
itaconic acid 

Citric acid 0 -3.24 99.3 0.22 36452 6.2 P 
ME and isomer 
of isocitric acid 

Coenzyme A 54.1 -2.01 92.3 -1.87 110738 14 P RTE 

Cysteic acid 94.6 -3.21 91.1 -1.17 3200 9.3 C   
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Accepted identification FS 
ME 
(ppm) 

ISS 
RTE 
(min) 

Max. 
Abun. 

Min. 
CV% 

C/P Comment 

Cytidine diphosphate 0 -0.63 94.9 -0.90 13061 15.1 C   

Cytidine monophosphate 
N-acetylneuraminic acid 

0 -0.79 95.4 -0.73 15548 20.8 C   

CTP 7.05 -3.21 98.3 -1.37 214109 22.7 P ME 

dCTP 0 -2.56 86.9 -0.69 2846 16.9 P IS 

Deoxyribose 5-phosphate 21.8 -2.00   0.03 1713 29.1 C   

dGDP 0 -2.12 97.9 -1.95 4863829 37.2 P RTE 

Dihydrouracil 0 3.05 94.6 0.46 81 27.4 P ME 

dTDP-D-glucose 0 -1.06 90.5 -1.15 6234 39.5 C   

dUMP 0 -1.77 95.7 -1.40 3437 38.9 C   

Flavin Mononucleotide 0 -1.74 97.0   3011 25.6 P No RTE 

Fructose 1,6-bisphosphate 52.1 -2.52   -1.34 2156 24.4 C   

Fructose 2,6 diphosphate 0 -2.57 94.2 -0.29 15332 12 C   

Fructose 6-phosphate 91.9 -2.86 99.2 -0.19 1345 44.6 P 
Isomer of 
mannose 6P 

Fumarate 44.3 -2.00 96.3 1.60 573 9.5 P RTE 

Galactaric acid 59.9 -2.71 99.5 -0.92 29615 8.5 C   

Galacturonic acid 86.3 -3.09 99.3 0.04 20516 5.5 P 
Isomer of 
glucuronic acid 

Gluconate 78.7 -3.11   -0.72 729946 5.7 C   

Glucose 1-phosphate 86.1 -3.50 98.9 -0.60 18780 6.6 P 
Isomer of 
galactose 1P 

Glutaconic acid 0 -1.57 93.8 0.80 207 18.5 P 
Isomer of e.g. 
mesaconic and 
isaconic acid 

Glutamine 0 -2.27 96.7 -0.73 17864 4.9 C   

Glutamylcysteine 0 -4.80 94.3 -0.61 266 74.8 P ME 

Glutaric acid 0 -1.65 99.0 0.34 23651 9.7 P 
Isomer of 
ethylmalonic 
acid 

Glutathion 0 -2.70 94.2 -0.10 143308 8.4 C   

Glyceric acid 37.8 -2.30   0.70 1342820 5.2 C   

Glycerol 63.5 -2.92 98.9 -0.09 17535 11.5 C   

Glycerol 3-phosphate 42.2 -2.92   -0.82 17399 7.2 C   

Glycolic acid 41.5 -3.20 99.2 -0.96 7386 4.4 C   

Guanosine diphosphate 97.5 -2.17 97.5 0.59 496626 26.6 C   

Guanosine monophosphate 25.8 -2.18 92.8 -1.72 5525 34.1 P RTE 

Hippuric acid 67.1 -3.13 90.6 -1.11 181977 8.2 C   

Homogentisic acid 13.9 -2.90 90.9 1.37 296 47.4 C   

Hydroxy-isobutyric acid 0 -2.41 95.0 0.22 233 17.8 P 

Isomer of 2- 
and 3-
hydroxybutyric 
acid 

IDP 25.2 -2.20 97.5 1.22 174 120.2 C   

Indole-3-lactic acid 28.5 -2.49 97.9 -0.73 306 44.7 C   

Inositol 1,3,4-trisphosphate 0 -1.35 97.1 -1.56 1377 45.6 P RTE 

Isopentenyl pyrophosphate 17.5 -2.12 98.1 -1.32 143 51.7 P 
Isomer of 
dimethylallyl 
pyrophosphate 

Itaconic acid 59.2 -2.02 99.7 -0.83 7976 8.8 P 
Isomer of e.g. 
mesaconic and 
glutaconic acid 
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Accepted identification FS 
ME 
(ppm) 

ISS 
RTE 
(min) 

Max. 
Abun. 

Min. 
CV% 

C/P Comment 

Kojic acid 0 -1.59 92.8 -0.62 909 7.2 C   

Lactose 0 0.75 89.0 -0.27 43261 18 C   

Maleic acid 82.5 -2.20 99.9 -0.42 21435 11.5 C   

Malic acid 89.2 -1.85 99.7 -0.87 562296 5.8 C   

Malitol 53.2 -1.41 94.6 -0.31 1758 77.7 C   

Malondialdehyde 0 -4.41 98.5 1.16 1760 6.4 P ME 

Malonic acid 60.9 -2.09 99.9 -0.99 903 9.5 C   

Mannose 6-phosphate 88.6 -3.43 87.8 -1.79 1297 57.9 P 
Isomer of 
fructuse 6P 
and IS 

Methylglutaric acid 85.8 -2.22 88.4 -0.81 19430 15.8 C   

Methylisocitric acid 0 -2.55 99.4 -0.30 14989 9 C   

Myoinositol 89.2 -3.18 95.6 -0.12 303277 5.3 P 
Isomer of 
scyllitol and 
other hexoses 

N-Acetyl-aspartate 94.7 -2.02 94.3 -0.72 75248 7.8 C   

N-Acetylaspartylglutamic 
acid 

0 -1.75 99.1 -1.00 19647 15.8 C   

N-Acetyl-D-glucosamine 25.7 -2.65 93.8 0.00 262 61.1 C   

N-Acetyl-L-alanine 67.2 -2.63 94.2 -0.28 6651 13.8 C   

N-Acetyl-L-methionine 95.9 -2.82 96.3 -0.64 8658 5.9 C   

N-Acetyl-L-phenylalanine 39.5 -2.40 98.4 -0.53 653 23.9 C   

N-Acetylneuraminic acid 92.6 -1.85 96.8 -0.80 1897237 11.3 C   

N-Acetyltryptophan 95.5 -3.06 97.3 -1.36 1351 13.3 C   

NADPH 75 1.29 96.1 -0.30 722 109 C   

N-Formyl-methionine 0 -3.15 96.6 -0.71 4478 10.6 P ME 

Nicotinic Acid N-Oxide 87.1 -2.32 93.1 -1.27 604 40.2 C   

O-Acetylserine 0 -1.84 93.7 -0.41 5449586 3.2 C   

Octanoic acid 15 -2.57 99.5 -1.73 27775 5.4 P RTE 

O-Phosphoserine 87.3 -2.31 98.7 -0.97 8491 35.4 C   

Orotic acid 35.2 -2.24 93.6 -1.75 2563 10.9 P RTE 

Orotidine 0 -0.14 93.4 -1.89 1070 16 P RTE 

Oxalic acid 70.6 -2.44 99.5 -1.16 27148 6 C   

Oxoadipic acid 86.6 -2.83 99.8 -1.34 2103 26.9 C   

Pantothenic acid 63.9 -2.86 97.9 -0.72 3619929 4.2 C   

Phosphoenolpyruvic acid 47.3 -2.82 99.0 -0.83 3083 14.7 C   

Phosphoribosyl 
pyrophosphate (PRPP) 

0 -2.84 97.6 -1.20 26239 34.4 C   

Pyridoxal 5'-phosphate 46.5 -3.44 95.3 -1.54 2004 9.7 P RTE and ME 

Quinic acid 46.6 -2.57 91.3 -0.79 210 52.3 C   

Ribose 5-phosphate 70.5 -2.65 93.7 -1.09 778 31.6 P 
Isomer of 
xylulose 5P 

Scyllitol 0 -2.63 96.5 0.02 7231 10.6 P 
Isomer of 
hexoses 

Sedoheptulose 7-
phosphate 

67.7 -2.00   -0.88 1016 54.1 C   

Sorbitol 85.3 -2.19 97.9 -0.08 28986 11.2 C   

Succinic acid 87.9 -1.83 99.8 -0.84 612106 4.6 C   

Taurine 94.4 -2.54 92.6 -0.61 235194 7.4 C   

TDP 0 -2.72 86.7 -0.98 1092 35.9 P IS 

Threitol 71.1 -2.12 97.5 -0.09 2017 24.2 C   
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Accepted identification FS 
ME 
(ppm) 

ISS 
RTE 
(min) 

Max. 
Abun. 

Min. 
CV% 

C/P Comment 

Thymidine 5'-
monophosphate 

95.8 -1.46 98.7 -0.93 6050 33.9 C   

Thymidine triphosphate 6.28 -2.70 95.2 -1.04 15118 21.7 C   

UDP-galactose 0 -2.67 86.3 -0.77 6133 36.5 P 
Isomer of 
UDP/glucose 

Uric acid 82.1 -3.84 95.7 -1.90 220256 8.6 P RTE 

Uridine 27.8 -2.75 96.7 0.12 22018 14.5 C   

Uridine 5'-diphosphate 14.2 -2.22 98.6 1.36 1175238 24.4 C   

Uridine 5'-monophosphate 53.7 -1.80 97.4 -1.47 43377 30.7 C   

Uridine diphosphate-N-
acetylglucosamine 

4.59 -1.99 98.2 -1.86 362028 25.4 P RTE 

Xylitol 47.1 -2.64 99.2 -0.02 852 18.6 P 
Isomer of 
arabitol and 
adonitol 

Xylulose 33.9 -3.05 93.6 0.22 18588 11.5 P 
Isomer of 
other pentoses 

Xylulose 5-phosphate 61.9 -2.14 94.3 0.83 1998 18.6 P 
Isomer of 
ribose 5P 
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Table A.IV.3. Annotated metabolites from the derivatised RPLC-MS data of the 12-well pilot experiment. 
Parameters used for determining whether it was a putative or confident identification. ME = mass error, 
ISS = isotope similarity score, RTE = retention time error, max. abun. = max abundance and min. CV% = 
minimum coefficient of variance, C = Confident and P = putative. When provided as a comment, the 
abbreviation indicates what brought the identification from confident to putative (isomer, RTE > 0.5 
min, ME > 3 ppm, IS < 90%). 

Accepted 
Description 

ME 
(ppm) 

ISS 
RTE 
(min) 

Max. 
abun. 

Min. 
CV% 

C/P Comment 

2-Aminoadipic 
acid 

-0.09 95.3 0.12 104 18.4 C   

4-Hydroxyproline 0.73 96.8   7.95 14 P No RT 

Alanine -1.12 97.4 0.16 3679 13.7 C   

GABA -0.95 96.2 -0.36 0.75 25.3 P   

Arginine -1.54 96.7 0.15 36 19.4 C   

Asparagine -2.00 95.6 0.05 31 16.7 C   

β-Alanine 0.19 97.7 -0.18 2.81 11.5 C   

Citrulline -1.93 95.6 0.13 4.23 20.7 C   

Cysteine -2.78 93.9 -0.93 47 17.9 P RTE 

Ethanolamine -3.86 95.0 0.15 1.01 44.4 P ME 

Glucosamine -1.99 95.1 -1.97 1.12 33.5 P RTE 

Glutamic acid -1.20 95.6 0.16 2178 9.6 C   

Glutamine -1.44 95.9 0.11 763 9.6 C   

Glutathione -1.42 89.0 0.09 524 10.4 P IS 

Glycine -1.47 97.7 0.2 766 11.1 C   

Histidine -1.42 96.3 0.13 61 16.2 C   

Homoserine -2.92 95.0 0.44 0.22 61.7 C   

Hypotaurine 2.19 88.3 0.25 29 10 P IS 

Isobutylamine 0.06 97.9 -0.41 35 15.7 C   

Isoleucine -0.24 96.5 0.67 20 17.9 P 
Isomer of 
leucine 

Kynurenine -0.95 95.6 0.11 0.57 56.2 C   

Leucine -0.22 96.5 0.03 1022 13.9 P 
Isomer of 
isoleucine 

Lysine 0.06 97.3 0.09 483 17.4 C   

Mandelonitrile -4.17 92.5 -0.41 40 11.5 C   

N-Acetyl-
ornithine 

-1.87 94.7 0.02 2.65 19.5 P 
Isomer of L-
Theanine 

N-Acetylproline 2.73 88.6 0.65 2.31 18.9 P RTE and IS 

Nicotinic acid -4.45 87.6 0.07 0.75 27.1 P ME 

Octapine -2.66 90.8   255 8.1 P No RT 

Oxidised 
Glutathione 

-1.37 85.7 0.06 51 12.8 P IS 

Phenylalanine -0.06 96.0 0.12 821 12.8 C   

Pipecolic acid -2.99 95.3 0.48 7.2 28.6 C   

Proline -1.71 95.7 0.15 207 17.4 C   

Pyroglutamic 
Acid 

-1.24 92.5 0 0.38 43.7 C   

Serine -1.81 97.4 0.21 188 9.7 C   

Taurine -2.57 93.5   286 9.6 P No RT 

Threonine -0.80 97.2 0.16 1294 12.2 C   

Tryptophan -0.99 94.9 0.1 130 12.1 C   

Tyrosine -0.60 95.9 0.11 480 12.9 C   

Valine -0.58 96.4 0.12 836 11.7 C   
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Figure A.IV.1. PCA scores plot (PC1 × PC2) used in the assessment of derivatised RPLC-MS data from 
analysis of wtIDH1 and mutIDH1R132H LN18 cells grown in and harvested from 12-well plates. PCA 
scores plot of derivatised RPLC-MS data without normalisation, transformation or scaling applied. Black 
arrow indicates the outlier sample. N = 9 biological replicates for wtIDH1 and mutIDH1R132H Ln18 cells, 
except in (c) where N = 8 for wtIDH1 LN18 cells. 
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Figure A.IV.2. Heatmaps and feature and sample distribution plots used in the assessment of IC-MS and 
derivatised RPLC-MS data from analysis of wtIDH1 and mutIDH1R132H LN18 cells grown in and 
harvested from 12-well plates. Heatmap, feature and sample distribution plots of IC-MS data (a-c) before 
and (d-f) after quantile normalisation and auto-scaling. Sample distribution plot of derivatised RPLC-MS 
data (g) before and (h) after median normalisation. N = 9 biological replicates for wtIDH1 and 
mutIDH1R132H Ln18 cells, except in (c) where N = 8 for wtIDH1 LN18 cells. 
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9.5.  Appendix V 

The experiment that the data in this appendix is based on was a metabolomics experiment 

of mutIDH1R132H LN18 cells treated with a range of concentrations (0.05, 0.50, 5.00 and 

10.0 µM) of four mutIDH1 inhibitors (AG-120, AG-881, BAY 1436032 and GSK864). The 

2-HG, 2-OG and isocitrate measurements were used in chapter 4 (section 4.6) and the full 

metabolomics data was used in chapter 5. This appendix includes a DNA concentration 

table (Table A.V.1), IC-MS identifications (Table A.V.2), derivatised RPLC-MS identifications 

(Table A.V.3), and data processing information (Figure A.V.1).  
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Table A.V.1. DNA concentration of mutIDH1R132H LN18 cells in the mutIDH1 inhibitor concentration range 
experiment. The maximum possible volume was made up for each sample, usually 50 µL and sometimes 
less. Rel. DNA conc. = relative DNA concentration. Abbreviations: Co = control, BAY = BAY 1436032 and GSK 
= GSK864.  

Sample Name DNA 1 
(ng/µL) 

DNA 2 
(ng/µL) 

Average 
(ng/µL) 

Rel. DNA 
conc. 

µL 
Sample 

µL 
Solvent 

Total 
(µL) 

0.05-AG881_01 65.2 65.3 65.3 1.431 29.0 12.5 41.5 

0.05-AG881_02 72.5 72.7 72.6 1.592 31.4 18.6 50.0 

0.05-AG881_03 68.6 70.9 69.8 1.530 32.7 17.3 50.0 

0.05-AG881_04 59.7 60.1 59.9 1.314 38.1 11.9 50.0 

0.5-AG881_01 71.0 71.5 71.3 1.563 28.8 16.2 45.0 

0.5-AG881_02 69.6 70.1 69.9 1.532 32.6 17.4 50.0 

0.5-AG881_03 77.1 79.8 78.5 1.720 29.1 20.9 50.0 

0.5-AG881_04 79.9 80.1 80.0 1.754 28.5 21.5 50.0 

5.0-AG881_01 56.9 57.5 57.2 1.254 39.9 10.1 50.0 

5.0-AG881_02 60.0 59.0 59.5 1.305 38.3 11.7 50.0 

5.0-AG881_03 56.8 57.5 57.2 1.253 39.9 10.1 50.0 

5.0-AG881_04 61.5 61.8 61.7 1.352 37.0 13.0 50.0 

10.0-AG881_01 55.6 56.2 55.9 1.226 36.7 8.3 45.0 

10.0-AG881_02 55.0 54.7 54.9 1.203 41.6 8.4 50.0 

10.0-AG881_03 67.4 66.8 67.1 1.471 34.0 16.0 50.0 

10.0-AG881_04 69.2 69.0 69.1 1.515 33.0 17.0 50.0 

Co_01 57.9 54.5 56.2 1.232 31.5 7.3 38.8 

Co_02 64.9 64.0 64.5 1.413 35.4 14.6 50.0 

Co_03 64.7 63.9 64.3 1.410 35.5 14.5 50.0 

Co_04 78.2 80.6 79.4 1.741 25.8 19.2 45.0 

Co_05 46.2 46.3 46.3 1.014 39.4 0.6 40.0 

Co_06 46.9 45.5 46.2 1.013 43.4 0.6 44.0 

Co_07 55.3 55.4 55.4 1.214 41.2 8.8 50.0 

Co_08 63.8 63.9 63.9 1.400 35.7 14.3 50.0 

0.05-AG120_01 62.4 62.2 62.3 1.366 32.9 12.1 45.0 

0.05-AG120_02 66.3 66.8 66.6 1.459 34.3 15.7 50.0 

0.05-AG120_03 64.7 66.7 65.7 1.441 34.7 15.3 50.0 

0.05-AG120_04 67.9 68.4 68.2 1.495 33.5 16.5 50.0 

0.5-AG120_01 63.1 64.1 63.6 1.395 32.3 12.7 45.0 

0.5-AG120_02 64.9 65.6 65.3 1.431 34.9 15.1 50.0 

0.5-AG120_03 71.2 70.8 71.0 1.557 32.1 17.9 50.0 

0.5-AG120_04 71.8 73.1 72.5 1.589 31.5 18.5 50.0 

5.0-AG120_01 64.5 63.7 64.1 1.406 35.6 14.4 50.0 

5.0-AG120_02 68.8 69.0 68.9 1.511 33.1 16.9 50.0 

5.0-AG120_03 69.9 70.2 70.1 1.536 32.5 17.5 50.0 

5.0-AG120_04 75.5 76.2 75.9 1.663 30.1 19.9 50.0 

10.0-AG120_01 65.1 66.5 65.8 1.443 34.7 15.3 50.0 

10.0-AG120_02 70.6 70.1 70.4 1.543 32.4 17.6 50.0 

10.0-AG120_03 72.2 72.9 72.6 1.591 31.4 18.6 50.0 

10.0-AG120_04 79.2 79.0 79.1 1.735 28.8 21.2 50.0 

Co_09 46.1 45.9 46.0 1.009 35.0 0.0 35.0 

Co_10 60.5 59.7 60.1 1.318 30.3 9.7 40.0 

Co_11 63.4 60.3 61.9 1.356 36.9 13.1 50.0 

Co_12 64.5 65.6 65.1 1.427 35.0 15.0 50.0 

Co_13 53.7 52.7 53.2 1.167 37.6 6.3 43.9 

Co_14 61.7 63.3 62.5 1.371 36.5 13.5 50.0 

Co_15 62.2 62.4 62.3 1.366 36.6 13.4 50.0 
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Sample Name DNA 1 
(ng/µL) 

DNA 2 
(ng/µL) 

Average 
(ng/µL) 

Rel. DNA 
conc. 

µL 
Sample 

µL 
Solvent 

Total 
(µL) 

Co_16 64.6 65.7 65.2 1.429 35.0 15.0 50.0 

0.05-BAY_01 56.9 57.7 57.3 1.256 33.8 8.7 42.5 

0.05-BAY_02 54.3 53.8 54.1 1.185 42.2 7.8 50.0 

0.05-BAY_03 56.8 56.3 56.6 1.240 40.3 9.7 50.0 

0.05-BAY_04 62.2 63.7 63.0 1.380 36.2 13.8 50.0 

0.5-BAY_01 51.4 51.9 51.7 1.133 34.3 4.6 38.9 

0.5-BAY_02 53.3 54.4 53.9 1.181 38.1 6.9 45.0 

0.5-BAY_03 65.2 65.5 65.4 1.433 34.9 15.1 50.0 

0.5-BAY_04 69.2 69.0 69.1 1.515 33.0 17.0 50.0 

5.0-BAY_01 60.9 62.3 61.6 1.351 37.0 13.0 50.0 

5.0-BAY_02 71.4 70.9 71.2 1.560 32.0 18.0 50.0 

5.0-BAY_03 75.8 75.5 75.7 1.659 30.1 19.9 50.0 

5.0-BAY_04 71.8 71.3 71.6 1.569 31.9 18.1 50.0 

10.0-BAY_01 77.3 77.3 77.3 1.695 29.5 20.5 50.0 

10.0-BAY_02 76.3 76.4 76.4 1.674 29.9 20.1 50.0 

10.0-BAY_03 77.3 78.9 78.1 1.713 29.2 20.8 50.0 

10.0-BAY_04 71.9 73.0 72.5 1.589 31.5 18.5 50.0 

Co_17 55.8 55.6 55.7 1.221 36.8 8.2 45.0 

Co_18 50.5 50.9 50.7 1.112 40.5 4.5 45.0 

Co_19 56.6 56.6 56.6 1.241 40.3 9.7 50.0 

Co_20 54.5 53.3 53.9 1.182 32.8 6.0 38.8 

Co_21 57.4 57.1 57.3 1.255 30.2 7.7 37.9 

Co_22 56.9 55.9 56.4 1.237 40.4 9.6 50.0 

Co_23 77.6 78.6 78.1 1.713 29.2 20.8 50.0 

Co_24 68.2 66.9 67.6 1.481 33.8 16.2 50.0 

0.05-GSK_01 58.1 58.2 58.2 1.275 35.3 9.7 45.0 

0.05-GSK_02 60.6 61.2 60.9 1.336 37.4 12.6 50.0 

0.05-GSK_03 57.6 59.3 58.5 1.282 39.0 11.0 50.0 

0.05-GSK_04 62.1 62.3 62.2 1.364 36.7 13.3 50.0 

0.5-GSK_01 59.3 59.4 59.4 1.302 29.5 8.9 38.4 

0.5-GSK_02 65.7 65.1 65.4 1.434 34.9 15.1 50.0 

0.5-GSK_03 59.4 59.8 59.6 1.307 38.3 11.7 50.0 

0.5-GSK_04 69.1 69.4 69.3 1.519 32.9 17.1 50.0 

5.0-GSK_01 65.9 65.1 65.5 1.436 34.8 15.2 50.0 

5.0-GSK_02 64.9 65.3 65.1 1.428 35.0 15.0 50.0 

5.0-GSK_03 74.6 75.7 75.2 1.648 30.3 19.7 50.0 

5.0-GSK_04 72.9 71.6 72.3 1.584 31.6 18.4 50.0 

10.0-GSK_01 80.7 79.8 80.3 1.760 28.4 21.6 50.0 

10.0-GSK_02 82.3 82.6 82.5 1.808 27.7 22.3 50.0 

10.0-GSK_03 63.9 63.5 63.7 1.397 35.8 14.2 50.0 

10.0-GSK_04 85.4 85.5 85.5 1.874 26.7 23.3 50.0 

Co_25 47.0 47.8 47.4 1.039 32.5 0.0 32.5 

Co_26 54.6 55.5 55.1 1.207 37.3 7.7 45.0 

Co_27 59.1 59.4 59.3 1.299 38.5 11.5 50.0 

Co_28 61.6 63.6 62.6 1.373 36.4 13.6 50.0 

Co_29 45.2 46.0 45.6 1.000 50.0 0.0 50.0 

Co_30 55.4 56.2 55.8 1.224 40.9 9.1 50.0 

Co_31 58.0 57.0 57.5 1.261 39.7 10.3 50.0 

Co_32 60.3 61.3 60.8 1.333 37.5 12.5 50.0 
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Table A.V.2. Annotated metabolites from the IC-MS data of the concentration range experiment. 
Parameters used for determining whether it was a putative or confident identification. FS = 
fragmentation score, ME = mass error, ISS = isotope similarity score, RTE = retention time error, max. 
abun. = max abundance and min. CV% = minimum coefficient of variance, C = Confident and P = putative. 
When provided as a comment, the abbreviation indicates what brought the identification from 
confident to putative (RTE > 1.5 min, ME > 3 ppm, IS < 90%). 

Accepted 
identification 

FS 
ME 
(ppm) 

ISS 
RTE 
(min) 

Max. 
Abun. 

Min. 
CV% 

C/
P 

Comment 

1-Pyrroline-5-
carboxylic acid 

0.0 0.37 99.1 0.00 317 2.6 P 
Isomer of 4-
hydroxyproline 

2,3-Diphosphoglyceric 
acid 

0.0 -0.04 97.6 -1.81 2777 22 P RTE 

2-butyl-3-ureido-
succinate 

0.0 0.56 97.7 0.99 106 8.9 C   

2-Hydroxybutyric acid 0.0 -0.04 97.8 1.35 346 10.2 P 
Isomer of 3-
hydroxybutyric 
acid 

2-Hydroxyglutarate 83.0 0.22 99.8 -0.85 
381503
8 

2.2 C   

2-Isopropylmalic acid 0.0 -0.29 92.2 -1.81 151 3.1 P RTE 

2-Ketobutyric acid 0.0 -0.14 98.1 0.11 339 3.3 C   

2-Oxoglutaric acid 39.9 0.33   -1.35 43690 4.9 C   

2-Phosphoglyceric acid 72.2 0.20 99.2 -1.88 47230 1.1 P 
RTE and isomer 
of 3-phospho-
glyceric acid 

3,3 Dimethyl glutarate 58.3 -0.08 95.2 -0.99 692 11.8 C   

3,4-dihydroxyphenyl 
acetic acid 

0.0 -0.07 90.9 -1.22 143 7.6 C   

3'-AMP 0.0 2.49 96.1 -0.36 351 5.2 P Isomer of AMP 

3-Dehydroquinate 0.0 -0.49 91.3 -0.03 173 4.3 C   

3-Hydroxyisovaleric 
acid 

0.0 -4.34 97.7 -0.80 1810 5 P ME 

3-Hydroxymethyl-
glutarate 

78.6 -0.31 99.5 -0.99 9671 3.1 C   

3-Hydroxytyrosol 0.0 0.46 91.0 -1.21 276 6.1 C   

3-methoxyphenyl-
acetic acid 

0.0 -0.21 94.8 0.93 464 9.2 C   

3-Methyl-2-oxovaleric 
acid 

0.0 0.59 98.1 -1.30 15156 4 P 
Isomer of adipate 
semialdehyde 

3-Phosphoglyceric acid 0.0 -0.12 98.5 0.46 5466 6.3 C   

4-Acetylbutyrate 0.0 4.74 94.8 -1.77 3248 7.5 P RTE and ME 

4-Hydroxybutyric acid 0.0 0.00 99.0 -0.70 57512 2.3 C   

4-hydroxyphenyl 
glycine 

0.0 0.07 90.7 0.85 161 3.3 C   

4-Hydroxy-
pyrrolidinone 

0.0 -0.06 97.0 0.68 250 5.9 C   

6-Phosphogluconic 
acid 

0.0 -0.41 96.6 -1.63 10041 3.3 P RTE 

Acetic acid 0.0 0.03 99.5 0.33 794 6.1 C   

Acetoacetate 0.0 -0.29 99.1 -0.04 665 2.1 C   

Acetylcysteine 34.8 0.13 94.4 -0.87 2391 4.5 C   

Acetylglycine 84.8 0.21 97.5 -0.07 1749 2.4 C   

Adenosine 
diphosphate 

14.5 0.56 97.4 -1.60 258685 5.7 P RTE 
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Accepted 
identification 

FS 
ME 
(ppm) 

ISS 
RTE 
(min) 

Max. 
Abun. 

Min. 
CV% 

C/
P 

Comment 

Adenosine 
monophosphate  

54.1 0.93 96.0 -1.24 31926 4.5 P Isomer of 3'-AMP 

Adonitol 72.1 0.06 96.7 0.08 1064 2.5 P 
Isomer of 
arabitol and 
xylitol 

Allantoin 0.0 -3.76 95.8 -0.66 838 2.3 P ME 

Arabinonic acid 65.9 -0.27 97.2 -0.62 3508 2.1 C   

Ascorbate 3.6 -0.61 92.4 -1.30 369 1.6 C   

Aspartate 85.4 0.41 94.8 -0.81 469751 1.3 C   

Beta-Alanine 78.1 -0.02 96.8 -0.73 527 2.2 C   

Beta-Citryl-L-glutamic 
acid 

0.0 1.00 98.6 -0.79 268643 4.7 C   

Caproic acid 0.0 -4.53 94.4 0.50 627 7.5 P ME 

Citric acid 87.8 -0.05 99.6 -1.63 
119431
7 

3.7 P RTE 

Cysteic acid 79.3 -0.24 94.5 -1.30 3805 10.3 C   

Cytidine 0.0 4.53 92.3 -0.71 1505 2.1 C   

Cytidine 
monophosphate 

39.8 0.74 92.5 -1.55 3550 5.1 P RTE 

Cytidine 
monophosphate N-
acetylneuraminic acid 

0.0 3.41 98.1 -0.71 29513 1.8 C   

Cytidine triphosphate 5.9 0.29 98.3 -1.80 350048 6.9 P RTE 

dADP 0.0 0.79 94.2 -0.77 616 9.5 C   

Deoxyribose 5-
phosphate 

9.7 0.93 96.2 0.01 3149 3.1 C   

Dihydrouracil 0.0 4.88 98.4 0.20 236 6.1 P ME 

Dihydroxyacetone 73.5 -0.06 99.4 -0.38 182028 5.8 P 
Isomer of lactic 
acid 

Dimethyl fumarate 0.0 0.52 95.4 -1.39 84 9.7 C   

dUDP 0.0 0.71 87.6 0.70 695 32.5 C   

dUMP 0.0 0.66 97.4 -1.66 84699 3.2 P RTE 

dUTP 0.0 0.37 91.6 -1.76 1743 15 P RTE 

EDTA 0.0 0.58 94.6 -1.46 369 10.6 C   

Ethylmalonic acid 73.6 0.31 96.1 -1.67 3691 5.3 P 
Isomer of glutaric 
acid 

Fructose 1,6-
bisphosphate 

0.0 0.82   -1.78 555 15.3 P 
Isomer of 
fructose 2,6-
bisphosphate 

Fructose 2,6 
diphosphate 

0.0 0.89 98.8 -0.21 15786 4.5 C   

Fructose 6-phosphate 64.4 -0.45 95.9 -0.63 5982 5.2 P 
Isomer of 
mannose 6-
phosphate 

Galactaric acid  43.8 0.28 91.2 -1.09 5233 3.8 C   

Galactose 1-phosphate 0.0 -0.03 95.7 -1.62 26507 1.9 P 
RTE and isomer 
of glucose 1-
phosphate 

Galacturonic acid 64.8 -0.14 97.8 -0.05 5070 3.2 P 
Isomer of 
glucuronic acid 

Gluconate 56.1 -0.23   -0.49 43192 4.5 C   

Glucose 0.0 -0.16 47.3 1.57 323 6.9 P Isomers 
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Accepted 
identification 

FS 
ME 
(ppm) 

ISS 
RTE 
(min) 

Max. 
Abun. 

Min. 
CV% 

C/
P 

Comment 

Glucose 1-phosphate 44.1 -0.40 98.9 -0.79 24946 3.7 P 
Isomer of 
galactose 1-
phosphate 

Glucuronic acid 0.0 -0.04 96.3 1.58 391 4.3 P 
Isomer of 
galacturonic acid 

Glutamic acid 84.1 0.33 94.3 1.31 
100875
1 

3.6 C   

Glutamylcysteine 0.0 -2.38 95.0 -1.74 183915 5.7 P RTE 

Glutathione (GSH) 43.8 0.62 94.4 -0.52 
101945
10 

2.2 C   

Glyceric acid 2.8 -0.20   -0.95 1509 6 C   

Glycerol 0.0 -0.41 98.4 0.18 4147 3.2 C   

Glycerol 3-phosphate 26.6 0.06   -0.81 9661 1.5 C   

Glycolic acid 53.2 -0.66 98.6 -0.70 8858 2 C   

Guanosine 
diphosphate (GDP) 

97.5 1.97 97.8 -0.24 694088 10.4 C   

Hippuric acid 0.0 -0.27 95.1 -1.30 554 3.9 C   

Homogentisic acid 0.0 -0.04 94.0 1.27 612 10.6 C   

Hydroxy-isobutyric 
acid 

0.0 0.22 98.6 -0.93 467 6.7 P 
Isomer of 2- and 
3-hydroxybutyric 
acid 

Hydroxyoctanoic acid 0.0 -3.28 96.3 -0.15 141 8.9 C   

Hydroxypyruvic acid 0.0 -0.06 95.9 -1.97 162 4.6 P 
Isomer of 
malonic acid 

Isocitrate 0.0 -0.63 97.4 -1.25 7747 5.6 P 
Isomer of citric 
acid 

Kojic acid 0.0 0.55 91.1 -0.85 730 2.5 C   

Kynurenic acid 0.0 0.42 88.8 1.09 349 4.8 P ISS 

Lactic acid 0.0 -1.40 97.8 0.14 2579 6.9 P 
Isomer of 
dihydroxyaceton
e 

Lactose 64.0 -0.48 94.4 -0.11 4007 26 C   

Lactoyl-isoleucine  0.0 -2.63 96.7 -0.06 1223 4.2 C   

Maleic acid 67.5 0.23 99.3 -0.30 10628 1.4 P 
Isomer of 
fumarate 

Malic acid 36.9 0.36 99.8 -0.91 198555 1.1 C   

Malondialdehyde 0.0 -1.86 99.3 1.37 1227 1.2 C   

Malonic acid 79.2 0.16 98.3 -1.42 2431 2.3 P 
Isomer of 
hydroxypyruvic 
acid 

Mannitol 0.0 0.07 96.6 0.95 537 11.7 P 
Isomer of 
sorbitol 

Methylglutaric acid 39.8 1.22 96.2 -0.68 3553 10.1 C   

Methylisocitric acid 0.0 -0.09 95.8 -1.18 2016 2.2 P 
Isomer of 2-
methylcitric acid 

Myoinositol 87.6 -0.18 98.2 0.13 128447 2.6 P Isomers 

N-Acetyl-aspartate 91.5 -0.43 93.0 -0.66 135415 4.2 C   

N-Acetylaspartyl-
glutamic acid 

0.0 0.59 97.1 -1.15 19062 4.8 C   
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Accepted 
identification 

FS 
ME 
(ppm) 

ISS 
RTE 
(min) 

Max. 
Abun. 

Min. 
CV% 

C/
P 

Comment 

N-acetyl-glucosamine-
1-phosphate 

0.0 0.45 92.6 -0.16 1881 6.5 P 

Isomer of N-
acetylmannosami
ne 6-phosphate 
and N-acetyl-
glucosamine 6-
phosphate 

N-Acetylglutamate 74.1 -2.96 98.1 -0.66 10239 4.2 C   

N-Acetyl-L-alanine 92.4 -0.14 98.3 -0.23 5888 3.4 C   

N-Acetyl-L-methionine 86.4 0.02 97.3 -0.43 6599 3.2 C   

N-Acetyl-L-
phenylalanine 

0.0 0.66 95.9 -0.54 105 6.5 C   

N-Acetylneuraminic 
acid (Sialic acid) 

89.1 0.51 94.8 -0.47 5185 3.3 C   

N-Acetylvaline 80.8 0.14 97.8 -0.29 197 8.9 C   

NADH 86.7 1.19 93.7 -0.90 23985 11.9 C   

NADPH 0.0 0.87 95.7 0.70 32123 34.2 C   

N-Formyl-methionine 0.0 -0.49 94.2 -0.67 871 1.9 C   

Nonate  0.0 -2.98 97.9 -0.60 12681 20.6 C   

N-Oxalylglycine 0.0 0.32 94.3 -1.25 32 36.9 C   

O-Acetylserine 0.0 0.19 98.2 -0.36 36592 1.1 C   

O-Phosphoserine 84.2 0.15 98.9 -1.13 22654 7.8 C   

Ophthalmic Acid 0.0 -1.45 92.7 0.15 1958 2.3 C   

Oxalic acid 44.6 0.11 98.0 -1.44 12438 2.1 C   

Oxoadipic acid 64.4 -0.09 95.9 -1.66 829 2.6 P RTE 

Oxovaleric Acid 0.0 -4.54 96.4 0.11 2485 2.8 P MTE 

Pantothenic acid 59.7 -0.19 99.1 -0.55 165518 3.2 C   

Phosphocreatine 17.8 -2.55 98.2 -0.41 218068 3.1 C   

Phosphoribosyl 
pyrophosphate  

0.0 0.79 98.5 -1.58 12476 1.6 P RTE 

Pyroglutamic acid 19.2 -3.91 94.0 -0.31 166415 5.9 P RTE 

Pyruvic acid 60.0 -0.27 98.5 -0.84 12896 5 C   

Quinolinic acid 0.0 0.16 91.5 -1.61 39 7.3 P RTE 

Ribose 5-phosphate 66.6 0.62 88.6 -1.50 1251 3.8 P 
Isomer of 
xylulose 5-
phosphate 

Ribulose 
1,5,diphosphate 

0.0 -1.12 98.7 0.90 9809 3.9 P RTE 

Salicylic acid 0.0 -3.54 94.2 0.21 4381 5 P ME 

Sedoheptulose 1-
phosphate 

0.0 0.15 95.2 -0.32 2846 4.7 C   

Sedoheptulose 7-
phosphate 

57.6 0.22   -1.08 2052 6.6 P 
Isoemr of 
seduheptulose 1-
phosphate 

Serine 77.4 0.29 96.0 -1.16 440 3.9 C   

Sorbitol 54.9 -0.29 98.1 0.17 6475 5.8 P 
Isomer of 
mannitol 

Sorbitol-6-phosphate 0.0 -0.41 97.3 0.33 1933 6.1 C   

Succinic acid 88.5 0.42 98.6 -0.96 14477 3.5 C   

Taurine 92.1 0.03 93.3 -0.51 255875 2 C   

TDP 96.7 0.88 97.9 1.97 27457 3.2 C   

Threitol 87.6 0.24 97.2 0.26 896 4.4 C   
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Accepted 
identification 

FS 
ME 
(ppm) 

ISS 
RTE 
(min) 

Max. 
Abun. 

Min. 
CV% 

C/
P 

Comment 

Thymidine 5'-
phosphate (TMP) 

86.3 1.47 94.0 -1.27 4318 2.5 C   

Thymidine 
triphosphate 

5.7 0.20 97.6 -1.73 18812 3.2 P RTE 

UDP-galactose 0.0 1.50 95.0 -1.25 40817 11.2 P 
Isomer of UDP-
glucose 

Ureidopropionic acid 0.0 -3.73 94.3 0.73 161 19.8 P ME 

Uridine 5'-
monophosphate 

46.5 1.10 97.7 -1.85 150381 2.6 P RTE 

Xylulose 19.9 -0.15 95.7 0.45 631 6.7 P Isomers 
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Figure A.V.1. Heatmaps and feature and sample distribution plots used in the assessment of IC-MS and 
derivatised RPLC-MS data the concetration range experiment. Heatmap, feature and sample distribution 
plots of IC-MS data (a-c) before and (d-f) after median normalisation and auto-scaling. Sample 
distribution plot of derivatised RPLC-MS data (g) before and (h) after median normalisation. Number of 
biological replicates is N = 4 treated group (N = 3 for AG-881 (5.00 µM)) and N = 32 for control.  
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Table A.V.3. Annotated metabolites from the derivatised RPLC-MS data of the concentration range 
experiment. Parameters used for determining whether it was a putative or confident identification. 
ME = mass error, ISS = isotope similarity score, RTE = retention time error, max. abun. = max 
abundance and min. CV% = minimum coefficient of variance, C = Confident and P = putative. When 
provided as a comment, the abbreviation indicates what brought the identification from confident 
to putative (isomer, RTE > 0.5 min, ME > 3 ppm, IS < 90%). 

Accepted Description ME 
(ppm) 

ISS RTE 
(min) 

Max. 
abun. 

Min. 
CV% 

C/
P 

Comment 

 
1,3-Diaminopropane -4.78 93.2 0.12 5.3 15.5 P ME  

2-Aminoadipic acid -1.27 97.1 0.13 728.6 5.9 C    

4-Hydroxyproline -2.26 93.5   94.5 3.8 P No RT  

Adrenaline 3.76 92 0.95 31.1 4.2 P RTE and ME  

Alanine -1.55 94.9 0.18 17420.2 1.9 C    

GABA -3.45 96.7 0.1 133.6 4.1 P ME  

Arginine -3.19 94 0.17 235.9 2.1 P ME  

Asparagine -3.37 93.7 0.05 243.3 4.7 P ME  

beta-Alanine -0.44 96.7 0.2 2487.5 4.4 C    

Citrulline -4.54 89.2 0.14 30.4 8.3 P ME  

Cysteine -2.93 93.5 -0.92 201.4 6.2 P ME  

Glutamic acid -1.04 94.1 0.17 11722.9 5.5 C    

Glutamine -2.06 94.7 0.12 5869.5 1.7 C    

Glycine -2.43 95.6 0.22 5173.9 4.2 C    

Histidine -3.24 97.5 0.13 607.6 3.9 P ME  

Homoserine -3.45 96 0.17 106.5 10 P ME  

Hydroxyarginine 4.81 92.8   8.9 7.9 P No confirmed RT  

Hypotaurine -1.21 95.2 0.22 478.3 4.8 C    

Isobutylamine -2.95 96.5 -0.35 1758 27.3 C    

Isoleucine -1.48 93.2 0.23 6431.2 1.4 P Isomer of leucine  

Leucine -1.59 94.6 0.04 6049.4 3.5 P 
Isomer of 
isoleucine 

 

Lysine -2.26 94.8 0.12 3860.5 4.4 C    

N-Acetyl-ornithine -2.83 93.5 0.04 35.1 7.5 P 
Isomer of L-
Theanine 

 

Octapine -3.71 92.8   1168.5 5.8 P No RT  

Oxidised Glutathione -1.67 89 0.05 5382.6 9.9 P ISS  

Phenylalanine -2.08 96.1 0.13 4418.3 2.2 C    

Proline -2.81 97.4 0.18 999 1.4 C    

Putrescine -1.84 96.8 0.06 862.4 6.7 C    

Pyroglutamic Acid -1.57 95.6 -0.91 75 10.6 P 
Isomer of [M+H-
H2O] adduct of 
glutamate 

 

Serine -3.02 94.7 0.23 1499.2 1.5 C    

Serotonin -3.15 88.2 0.05 13.4 7.1 P 
ISS and isomer of 
N-acetylproline 

 

Taurine -2.51 93.3   3075.6 4.6 P No RT  

Thioproline -1.52 92.1 -0.13 208.3 4.3 C    

Threonine -1.43 96.4 0.17 7965.3 2 C    

Tryptophan -3.01 94.5 0.1 832.1 4 C    

Tyrosine -2.19 93.5 0.12 3287.5 2.3 C    

Valine -1.65 96.2 0.14 5333.1 2.3 C    
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9.6.  Appendix VI 

The experiment that the data in this appendix is based on was the S-TICO and L-TICO 

experiments described in chapter 4 (section 4.7) and chapter 5. The cell viability assay is 

provided in Figure A.VI.1. This appendix includes a DNA concentration table for the S-TICO 

experiment (Table A.VI.1) and the L-TICO experiment (Table A.VI.2), IC-MS identifications 

(Table A.VI.3 and A.VI.4), derivatised RPLC-MS identifications (Table A.VI.5 and Table 

A.VI.6), and data processing information (Figure A.VI.2-4).  

 

 
Figure A.VI.1. Ratio of absorbance between treated and control samples in an MTS assay of mutIDH1R132H 
LN18 cells cultured for 24-96 hours with mutIDH1 inhibitors (a) AG-120, (b) AG-881, (c) BAY 1436032 or 
(d) GSK864. Cells were treated with 0.50, 5.00 or 10.0 µM inhibitor, which was added after an initial 24 
hours of incubation. Each point is the mean ratio of absorbance at 490 nm of treated versus control 
samples, N = 4 treated samples and N = 12 control samples (biological replicates). Error bars are standard 
deviation.  
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Table A.VI.1. DNA concentration of mutIDH1R132H LN18 cells from the short time course (S-TICO) 
experiment. Harvested with 12-well harvesting method and subsequently analysed with IC-MS, 
derivatised RPLC-MS and underivatized RPLC-MS. The maximum possible volume was made up for each 
sample, usually 50 µL and sometimes less. Rel. DNA conc. = relative DNA concentration.  

Sample 
Name 

DNA 1 
(ng/µL) 

DNA 2 
(ng/µL) 

DNA 3 
(ng/µL) 

Average 
(ng/µL) 

Rel. DNA 
conc. 

µL 
Sample 

µL 
Solvent 

Total 
(µL) 

1h-
AG120_01 

26.90 27.20   27.05 1.202 28.0 5.7 33.7 

1h-
AG120_02 

32.40 29.50   30.95 1.376 32.7 12.3 45.0 

1h-
AG120_03 

31.00 29.50   30.25 1.344 29.8 10.2 40.0 

1h-
AG120_04 

33.10 31.90   32.50 1.444 34.6 15.4 50.0 

1h-
AG881_01 

31.50 28.20   29.85 1.327 37.7 12.3 50.0 

1h-
AG881_02 

27.70 26.90   27.30 1.213 41.2 8.8 50.0 

1h-
AG881_03 

25.30 25.40   25.35 1.127 39.9 5.1 45.0 

1h-
AG881_04 

23.10 25.20   24.15 1.073 46.6 3.4 50.0 

1h-BAY_01 32.60 30.80   31.70 1.409 31.9 13.1 45.0 

1h-BAY_02 29.30 28.10   28.70 1.276 31.4 8.6 40.0 

1h-BAY_03 30.90 27.90   29.40 1.307 36.0 11.0 47.0 

1h-BAY_04 43.10 46.70   44.90 1.996 25.1 24.9 50.0 

1h-Co_01 29.80 30.50   30.15 1.340 37.3 12.7 50.0 

1h-Co_02 31.10 27.60   29.35 1.304 38.3 11.7 50.0 

1h-Co_03 23.00 22.30   22.65 1.007 44.7 0.5 45.2 

1h-Co_04 25.20 25.40   25.30 1.124 44.5 5.5 50.0 

1h-Co_05 32.70 34.90   33.80 1.502 33.3 16.7 50.0 

1h-Co_06 32.40 34.10   33.25 1.478 29.0 13.9 42.9 

1h-Co_07 33.00 31.10   32.05 1.424 35.1 14.9 50.0 

1h-Co_08 29.30 29.20   29.25 1.300 25.0 7.5 32.5 

1h-GSK_01 27.70 27.70   27.70 1.231 32.5 7.5 40.0 

1h-GSK_02 32.00 28.00 25.80 28.60 1.271 38.0 10.3 48.3 

1h-GSK_03 25.50 27.00   26.25 1.167 38.6 6.4 45.0 

1h-GSK_04 25.40 26.50   25.95 1.153 43.4 6.6 50.0 

2h-
AG120_01 

43.50 41.20 43.90 42.87 1.905 26.2 23.8 50.0 

2h-
AG120_02 

31.00 28.10   29.55 1.313 34.3 10.7 45.0 

2h-
AG120_03 

26.00 26.30   26.15 1.162 34.4 5.6 40.0 

2h-
AG120_04 

24.90 23.90   24.40 1.084 46.1 3.9 50.0 

2h-
AG881_01 

36.10     36.10 1.604 28.0 17.0 45.0 

2h-
AG881_02 

35.40 36.90   36.15 1.607 31.1 18.9 50.0 

2h-
AG881_03 

25.30 25.60   25.45 1.131 35.4 4.6 40.0 

2h-
AG881_04 

36.20 37.50   36.85 1.638 30.5 19.5 50.0 

2h-BAY_01 25.50 24.20   24.85 1.104 38.0 4.0 42.0 
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2h-BAY_02 25.10     25.10 1.116 39.7 4.6 44.3 

2h-BAY_03 25.90 25.10   25.50 1.133 39.2 5.2 44.4 

2h-BAY_04 25.90 25.00   25.45 1.131 35.4 4.6 40.0 

2h-Co_01 32.70 35.00   33.85 1.504 33.2 16.8 50.0 

2h-Co_02 36.80 32.70 34.10 34.53 1.535 24.0 12.8 36.8 

2h-Co_03 33.00 31.30   32.15 1.429 31.5 13.5 45.0 

2h-Co_04 23.10 23.30   23.20 1.031 36.0 1.2 37.2 

2h-Co_05 24.30 24.20   24.25 1.078 39.5 3.1 42.6 

2h-Co_06 25.30 21.10 21.10 22.50 1.000 38.0 0.0 38.0 

2h-Co_07 33.90 29.00   31.45 1.398 34.8 13.9 48.7 

2h-Co_08 37.00 35.20   36.10 1.604 31.2 18.8 50.0 

2h-GSK_01 26.50 27.60   27.05 1.202 32.0 6.5 38.5 

2h-GSK_02 26.30 26.70   26.50 1.178 34.0 6.0 40.0 

2h-GSK_03 26.60 25.70   26.15 1.162 34.4 5.6 40.0 

2h-GSK_04 28.50 32.70   30.60 1.360 33.1 11.9 45.0 

4h-
AG120_01 

35.40 35.70   35.55 1.580 28.5 16.5 45.0 

4h-
AG120_02 

43.20 44.30   43.75 1.944 25.7 24.3 50.0 

4h-
AG120_03 

41.10 37.10   39.10 1.738 28.8 21.2 50.0 

4h-
AG120_04 

39.80 41.20   40.50 1.800 27.8 22.2 50.0 

4h-
AG881_01 

40.20 38.60   39.40 1.751 28.6 21.4 50.0 

4h-
AG881_02 

39.30 40.40   39.85 1.771 28.2 21.8 50.0 

4h-
AG881_03 

38.70 39.80   39.25 1.744 28.7 21.3 50.0 

4h-
AG881_04 

39.50 40.60   40.05 1.780 28.1 21.9 50.0 

4h-BAY_01 25.20 24.20   24.70 1.098 36.4 3.6 40.0 

4h-BAY_02 28.30 26.00   27.15 1.207 33.1 6.9 40.0 

4h-BAY_03 29.20 30.10   29.65 1.318 37.9 12.1 50.0 

4h-BAY_04 32.10 33.80   32.95 1.464 34.1 15.9 50.0 

4h-Co_01 31.50 28.90   30.20 1.342 33.5 11.5 45.0 

4h-Co_02 43.00 45.10   44.05 1.958 25.5 24.5 50.0 

4h-Co_03 30.70 32.40   31.55 1.402 35.7 14.3 50.0 

4h-Co_04 40.50 41.20   40.85 1.816 27.5 22.5 50.0 

4h-Co_05 28.70 31.70   30.20 1.342 33.5 11.5 45.0 

4h-Co_06 34.50 35.30   34.90 1.551 32.2 17.8 50.0 

4h-Co_07 39.30 39.80   39.55 1.758 28.4 21.6 50.0 

4h-Co_08 60.50 58.60   59.55 2.647 18.9 31.1 50.0 

4h-GSK_01 40.90 41.10   41.00 1.822 27.4 22.6 50.0 

4h-GSK_02 33.00 33.40   33.20 1.476 33.9 16.1 50.0 

4h-GSK_03 36.20 39.40   37.80 1.680 29.8 20.2 50.0 

4h-GSK_04 37.40 38.30   37.85 1.682 29.7 20.3 50.0 

8h-
AG120_01 

28.50 27.60   28.05 1.247 40.1 9.9 50.0 

8h-
AG120_02 

36.20 31.20 33.80 33.73 1.499 33.3 16.7 50.0 

8h-
AG120_03 

32.90 32.20   32.55 1.447 34.6 15.4 50.0 
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8h-
AG120_04 

29.40 29.50   29.45 1.309 32.0 9.9 41.9 

8h-
AG881_01 

37.00 36.20   36.60 1.627 30.7 19.3 50.0 

8h-
AG881_02 

38.20 37.90   38.05 1.691 29.6 20.4 50.0 

8h-
AG881_03 

32.60 34.10   33.35 1.482 33.7 16.3 50.0 

8h-
AG881_04 

31.50 29.80   30.65 1.362 36.7 13.3 50.0 

8h-BAY_01 25.60 23.70   24.65 1.096 28.0 2.7 30.7 

8h-BAY_02 31.10 30.60   30.85 1.371 36.5 13.5 50.0 

8h-BAY_03 27.30 27.40   27.35 1.216 41.1 8.9 50.0 

8h-BAY_04 29.60 32.50   31.05 1.380 36.2 13.8 50.0 

8h-Co_01 31.60 31.40   31.50 1.400 35.7 14.3 50.0 

8h-Co_02 48.20 42.30   45.25 2.011 24.9 25.1 50.0 

8h-Co_03 33.30 31.60   32.45 1.442 34.7 15.3 50.0 

8h-Co_04 25.90 28.70 27.90 27.50 1.222 40.9 9.1 50.0 

8h-Co_05 29.90 28.10   29.00 1.289 34.9 10.1 45.0 

8h-Co_06 30.60 29.50   30.05 1.336 30.0 10.0 40.0 

8h-Co_07 23.20 23.60   23.40 1.040 36.0 1.4 37.4 

8h-Co_08 34.10 31.80   32.95 1.464 34.1 15.9 50.0 

8h-GSK_01 26.30 25.90   26.10 1.160 43.1 6.9 50.0 

8h-GSK_02 37.90 36.60   37.25 1.656 30.2 19.8 50.0 

8h-GSK_03 29.30 29.80   29.55 1.313 38.1 11.9 50.0 

8h-GSK_04 29.70 30.50   30.10 1.338 37.4 12.6 50.0 

12h-
AG120_01 

37.30 34.30   35.80 1.591 31.4 18.6 50.0 

12h-
AG120_02 

40.00 40.80   40.40 1.796 27.8 22.2 50.0 

12h-
AG120_03 

40.70 39.50   40.10 1.782 28.1 21.9 50.0 

12h-
AG120_04 

40.20 40.50   40.35 1.793 27.9 22.1 50.0 

12h-
AG881_01 

27.60 27.80   27.70 1.231 29.0 6.7 35.7 

12h-
AG881_02 

35.80 37.10   36.45 1.620 30.9 19.1 50.0 

12h-
AG881_03 

29.60 30.90   30.25 1.344 37.2 12.8 50.0 

12h-
AG881_04 

37.30 36.70   37.00 1.644 30.4 19.6 50.0 

12h-
BAY_01 

22.50 24.60   23.55 1.047 38.2 1.8 40.0 

12h-
BAY_02 

33.80 32.20   33.00 1.467 30.7 14.3 45.0 

12h-
BAY_03 

32.50 30.40   31.45 1.398 35.0 13.9 48.9 

12h-
BAY_04 

30.80 31.10   30.95 1.376 36.3 13.7 50.0 

12h-Co_01 30.90 32.40   31.65 1.407 27.9 11.4 39.3 

12h-Co_02 33.00 34.70   33.85 1.504 33.2 16.8 50.0 

12h-Co_03 32.10 34.10   33.10 1.471 34.0 16.0 50.0 

12h-Co_04 36.60 36.30   36.45 1.620 30.9 19.1 50.0 
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12h-Co_05 40.60 39.90   40.25 1.789 28.0 22.0 50.0 

12h-Co_06 39.50 36.10   37.80 1.680 29.8 20.2 50.0 

12h-Co_07 35.40 35.50   35.45 1.576 31.7 18.3 50.0 

12h-Co_08 43.80 42.80   43.30 1.924 26.0 24.0 50.0 

12h-
GSK_01 

34.90 36.80   35.85 1.593 31.4 18.6 50.0 

12h-
GSK_02 

35.20 32.00   33.60 1.493 33.5 16.5 50.0 

12h-
GSK_03 

26.30 25.50   25.90 1.151 43.4 6.6 50.0 

12h-
GSK_04 

31.70 31.70   31.70 1.409 35.5 14.5 50.0 

24h-
AG120_01 

40.80 42.40   41.60 1.849 27.0 23.0 50.0 

24h-
AG120_02 

41.00 39.10   40.05 1.780 28.1 21.9 50.0 

24h-
AG120_03 

43.80 42.80   43.30 1.924 26.0 24.0 50.0 

24h-
AG120_04 

44.70 47.50   46.10 2.049 24.4 25.6 50.0 

24h-
AG881_01 

54.10 54.20   54.15 2.407 20.8 29.2 50.0 

24h-
AG881_02 

46.40 44.00   45.20 2.009 24.9 25.1 50.0 

24h-
AG881_03 

47.10 47.70   47.40 2.107 23.7 26.3 50.0 

24h-
AG881_04 

47.20 49.70   48.45 2.153 23.2 26.8 50.0 

24h-
BAY_01 

30.60 30.60   30.60 1.360 36.8 13.2 50.0 

24h-
BAY_02 

48.10 44.50   46.30 2.058 24.3 25.7 50.0 

24h-
BAY_03 

40.00 41.10   40.55 1.802 27.7 22.3 50.0 

24h-
BAY_04 

41.70 35.90 38.00 38.53 1.713 29.2 20.8 50.0 

24h-Co_01 34.60 35.90   35.25 1.567 31.9 18.1 50.0 

24h-Co_02 42.70 43.80   43.25 1.922 26.0 24.0 50.0 

24h-Co_03 45.60 47.80 47.80 47.07 2.092 23.9 26.1 50.0 

24h-Co_04 48.50 51.30   49.90 2.218 22.5 27.5 50.0 

24h-Co_05 44.30 43.10   43.70 1.942 25.7 24.3 50.0 

24h-Co_06 64.10 60.40   62.25 2.767 18.1 31.9 50.0 

24h-Co_07 48.20 49.30   48.75 2.167 23.1 26.9 50.0 

24h-Co_08 47.30 47.00   47.15 2.096 23.9 26.1 50.0 

24h-
GSK_01 

41.90 42.10   42.00 1.867 26.8 23.2 50.0 

24h-
GSK_02 

41.70 42.80   42.25 1.878 26.6 23.4 50.0 

24h-
GSK_03 

43.90 42.00   42.95 1.909 26.2 23.8 50.0 

24h-
GSK_04 

50.90 46.30   48.60 2.160 23.1 26.9 50.0 
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Table A.VI.2. DNA concentration of mutIDH1R132H LN18 cells from the long time course (L-TICO) 
experiment. Harvested with 12-well harvesting method and subsequently analysed with IC-MS, 
derivatised RPLC-MS and underivatized RPLC-MS. The maximum possible volume was made up for each 
sample, usually 50 µL and sometimes less. Rel. DNA conc. = relative DNA concentration. Treatment 
length: A = 24 hours, B = 48 hours, C = 72 hours and D = 96 hours. Group 1 and group 2 indicated with 
number after treatment length.  

Sample Name DNA 1 
(ng/µL) 

DNA 2 
(ng/µL) 

Average 
(ng/µL) 

Rel. DNA 
conc. 

µL 
Sample 

µL 
Solvent 

Total 
(µL) 

A-AG120_01 58.4 59.5 58.95 2.661 18.8 31.2 50.0 

A-AG120_02 58.1 56.6 57.35 2.589 19.3 30.7 50.0 

A-AG120_03 58.1 57.4 57.75 2.607 19.2 30.8 50.0 

A-AG120_04 51.1 53.4 52.25 2.359 21.2 28.8 50.0 

A-AG881_01 47.1 46.8 46.95 2.120 23.6 26.4 50.0 

A-AG881_02 58.4 56.4 57.40 2.591 19.3 30.7 50.0 

A-AG881_03 55.2 56.1 55.65 2.512 19.9 30.1 50.0 

A-AG881_04 53.2 53.6 53.40 2.411 20.7 29.3 50.0 

A-BAY_01 43.1 46.5 44.80 2.023 24.7 25.3 50.0 

A-BAY_02 54.7 54.8 54.75 2.472 20.2 29.8 50.0 

A-BAY_03 62.3 59.8 61.05 2.756 18.1 31.9 50.0 

A-BAY_04 35.9 34.0 34.95 1.578 31.7 18.3 50.0 

A-Co_01 56.3 56.9 56.60 2.555 19.6 30.4 50.0 

A-Co_02 52.2 52.8 52.50 2.370 21.1 28.9 50.0 

A-Co_03 56.7 55.0 55.85 2.521 19.8 30.2 50.0 

A-Co_04 56.7 55.6 56.15 2.535 19.7 30.3 50.0 

A-Co_05 48.5 49.2 48.85 2.205 22.7 27.3 50.0 

A-Co_06 52.1 51.1 51.60 2.330 21.5 28.5 50.0 

A-Co_07 52.6 50.3 51.45 2.323 21.5 28.5 50.0 

A-Co_08 57.7 57.8 57.75 2.607 19.2 30.8 50.0 

A-GSK_01 59.0 59.5 59.25 2.675 18.7 31.3 50.0 

A-GSK_02 52.8 53.2 53.00 2.393 20.9 29.1 50.0 

A-GSK_03 60.7 59.2 59.95 2.707 18.5 31.5 50.0 

A-GSK_04 54.3 53.4 53.85 2.431 20.6 29.4 50.0 

B1-AG120_01 69.8   69.80 3.151 15.9 34.1 50.0 

B1-AG120_02 80.9 82.6 81.75 3.691 13.5 36.5 50.0 

B1-AG120_03 77.3 78.2 77.75 3.510 14.2 35.8 50.0 

B1-AG120_04 85.9 86.0 85.95 3.880 12.9 37.1 50.0 

B1-AG881_01 46.3 46.5 46.40 2.095 23.9 26.1 50.0 

B1-AG881_02 52.8 50.2 51.50 2.325 21.5 28.5 50.0 

B1-AG881_03 81.2 79.2 80.20 3.621 13.8 36.2 50.0 

B1-AG881_04 95.4 97.1 96.25 4.345 11.5 38.5 50.0 

B1-BAY_01 60.8 61.6 61.20 2.763 18.1 31.9 50.0 

B1-BAY_02 66.5 67.1 66.80 3.016 16.6 33.4 50.0 

B1-BAY_03 70.3 68.7 69.50 3.138 15.9 34.1 50.0 

B1-BAY_04 61.1 61.2 61.15 2.761 18.1 31.9 50.0 

B1-Co_01 39.2 39.7 39.45 1.781 28.1 21.9 50.0 

B1-Co_02 51.6 51.2 51.40 2.321 21.5 28.5 50.0 

B1-Co_03 49.1 49.3 49.20 2.221 22.5 27.5 50.0 

B1-Co_04 50.3 50.0 50.15 2.264 22.1 27.9 50.0 

B1-Co_05 46.4 45.8 46.10 2.081 24.0 26.0 50.0 

B1-Co_06 60.6 59.5 60.05 2.711 18.4 31.6 50.0 

B1-Co_07 62.3 59.4 60.85 2.747 18.2 31.8 50.0 

B1-Co_08 67.2 69.2 68.20 3.079 16.2 33.8 50.0 

B1-GSK_01 46.4 49.9 48.15 2.174 23.0 27.0 50.0 
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B1-GSK_02 57.1 57.1 57.10 2.578 19.4 30.6 50.0 

B1-GSK_03 65.8 64.9 65.35 2.950 16.9 33.1 50.0 

B1-GSK_04 61.2 59.6 60.40 2.727 18.3 31.7 50.0 

B2-AG120_01 35.0 33.4 34.20 1.544 32.4 17.6 50.0 

B2-AG120_02 36.7 35.4 36.05 1.628 30.7 19.3 50.0 

B2-AG120_03 39.9 41.0 40.45 1.826 27.4 22.6 50.0 

B2-AG120_04 45.1 46.1 45.60 2.059 24.3 25.7 50.0 

B2-AG881_01 37.3 36.8 37.05 1.673 29.9 20.1 50.0 

B2-AG881_02 42.6 41.9 42.25 1.907 26.2 23.8 50.0 

B2-AG881_03 43.6 43.2 43.40 1.959 25.5 24.5 50.0 

B2-AG881_04 51.0 51.4 51.20 2.312 21.6 28.4 50.0 

B2-BAY_01 34.3 34.1 34.20 1.544 32.4 17.6 50.0 

B2-BAY_02 42.5 41.8 42.15 1.903 26.3 23.7 50.0 

B2-BAY_03 44.1 45.8 44.95 2.029 24.6 25.4 50.0 

B2-BAY_04 52.9 50.3 51.60 2.330 21.5 28.5 50.0 

B2-Co_01 43.1 43.4 43.25 1.953 25.6 24.4 50.0 

B2-Co_02 37.4 36.7 37.05 1.673 29.9 20.1 50.0 

B2-Co_03 48.8 49.9 49.35 2.228 22.4 27.6 50.0 

B2-Co_04 51.6 52.7 52.15 2.354 21.2 28.8 50.0 

B2-Co_05 41.8 43.4 42.60 1.923 26.0 24.0 50.0 

B2-Co_06 49.0 49.5 49.25 2.223 22.5 27.5 50.0 

B2-Co_07 38.2 38.4 38.30 1.729 28.9 21.1 50.0 

B2-Co_08 47.4 48.1 47.75 2.156 23.2 26.8 50.0 

B2-GSK_01 36.3 36.0 36.15 1.632 30.6 19.4 50.0 

B2-GSK_02 41.9 42.3 42.10 1.901 26.3 23.7 50.0 

B2-GSK_03 48.2 48.3 48.25 2.178 23.0 27.0 50.0 

B2-GSK_04 43.6 42.8 43.20 1.950 25.6 24.4 50.0 

C1-AG120_01 34.5 34.2 34.35 1.551 32.2 17.8 50.0 

C1-AG120_02 39.7 40.2 39.95 1.804 27.7 22.3 50.0 

C1-AG120_03 44.9 43.8 44.35 2.002 25.0 25.0 50.0 

C1-AG120_04 47.4 48.4 47.90 2.163 23.1 26.9 50.0 

C1-AG881_01 46.1 45.5 45.80 2.068 24.2 25.8 50.0 

C1-AG881_02 46.3 46.1 46.20 2.086 24.0 26.0 50.0 

C1-AG881_03 55.3 55.9 55.60 2.510 19.9 30.1 50.0 

C1-AG881_04 31.1 30.4 30.75 1.388 36.0 14.0 50.0 

C1-BAY_01 43.4 43.7 43.55 1.966 25.4 24.6 50.0 

C1-BAY_02 40.1 40.6 40.35 1.822 27.4 22.6 50.0 

C1-BAY_03 51.4 51.3 51.35 2.318 21.6 28.4 50.0 

C1-BAY_04 43.2 41.7 42.45 1.916 26.1 23.9 50.0 

C1-Co_01 40.5 40.3 40.40 1.824 27.4 22.6 50.0 

C1-Co_02 28.9 28.6 28.75 1.298 38.5 11.5 50.0 

C1-Co_03 50.1 51.1 50.60 2.284 21.9 28.1 50.0 

C1-Co_04 48.1 48.4 48.25 2.178 23.0 27.0 50.0 

C1-Co_05 43.7 44.2 43.95 1.984 25.2 24.8 50.0 

C1-Co_06 48.4 48.5 48.45 2.187 22.9 27.1 50.0 

C1-Co_07 50.3 50.0 50.15 2.264 22.1 27.9 50.0 

C1-Co_08 48.6 47.7 48.15 2.174 23.0 27.0 50.0 

C1-GSK_01 41.6 40.1 40.85 1.844 27.1 22.9 50.0 

C1-GSK_02 47.3 46.7 47.00 2.122 23.6 26.4 50.0 

C1-GSK_03 49.6 50.8 50.20 2.266 22.1 27.9 50.0 

C1-GSK_04 44.5 45.7 45.10 2.036 24.6 25.4 50.0 

C2-AG120_01 33.8 35.3 34.55 1.560 32.1 17.9 50.0 
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C2-AG120_02 40.2 40.9 40.55 1.831 27.3 22.7 50.0 

C2-AG120_03 33.8 35.2 34.50 1.558 32.1 17.9 50.0 

C2-AG120_04 36.3 39.1 37.70 1.702 29.4 20.6 50.0 

C2-AG881_01 39.8 38.6 39.20 1.770 28.3 21.7 50.0 

C2-AG881_02 47.2 45.8 46.50 2.099 23.8 26.2 50.0 

C2-AG881_03 44.3 44.4 44.35 2.002 25.0 25.0 50.0 

C2-AG881_04 41.9 45.5 43.70 1.973 25.3 24.7 50.0 

C2-BAY_01 37.0 40.2 38.60 1.743 28.7 21.3 50.0 

C2-BAY_02 41.0 40.5 40.75 1.840 27.2 22.8 50.0 

C2-BAY_03 39.1 40.6 39.85 1.799 27.8 22.2 50.0 

C2-BAY_04 33.3 34.2 33.75 1.524 32.8 17.2 50.0 

C2-Co_01 41.1 38.6 39.85 1.799 27.8 22.2 50.0 

C2-Co_02 45.5 44.5 45.00 2.032 24.6 25.4 50.0 

C2-Co_03 45.1 45.3 45.20 2.041 24.5 25.5 50.0 

C2-Co_04 41.1 40.4 40.75 1.840 27.2 22.8 50.0 

C2-Co_05 43.3 43.0 43.15 1.948 25.7 24.3 50.0 

C2-Co_06 48.1 48.4 48.25 2.178 23.0 27.0 50.0 

C2-Co_07 41.4 40.9 41.15 1.858 26.9 23.1 50.0 

C2-Co_08 40.7 40.4 40.55 1.831 27.3 22.7 50.0 

C2-GSK_01 34.5 33.6 34.05 1.537 32.5 17.5 50.0 

C2-GSK_02 39.4 40.4 39.90 1.801 27.8 22.2 50.0 

C2-GSK_03 36.9 37.4 37.15 1.677 29.8 20.2 50.0 

C2-GSK_04 34.7 34.9 34.80 1.571 31.8 18.2 50.0 

D1-AG120_01 32.5 32.0 32.25 1.456 34.3 15.7 50.0 

D1-AG120_02 31.8 31.7 31.75 1.433 34.9 15.1 50.0 

D1-AG120_03 32.0 35.0 33.50 1.512 33.1 16.9 50.0 

D1-AG120_04 38.1 39.2 38.65 1.745 28.7 21.3 50.0 

D1-AG881_01 33.3 32.9 33.10 1.494 33.5 16.5 50.0 

D1-AG881_02 40.8 40.8 40.80 1.842 27.1 22.9 50.0 

D1-AG881_03 41.6 41.1 41.35 1.867 26.8 23.2 50.0 

D1-AG881_04 41.9 42.5 42.20 1.905 26.2 23.8 50.0 

D1-BAY_01 41.7 41.6 41.65 1.880 26.6 23.4 50.0 

D1-BAY_02 37.8 36.3 37.05 1.673 29.9 20.1 50.0 

D1-BAY_03 34.7 34.0 34.35 1.551 32.2 17.8 50.0 

D1-BAY_04 36.1 36.2 36.15 1.632 30.6 19.4 50.0 

D1-Co_01 36.1 35.9 36.00 1.625 30.8 19.2 50.0 

D1-Co_02 41.2 42.1 41.65 1.880 26.6 23.4 50.0 

D1-Co_03 39.8 40.3 40.05 1.808 27.7 22.3 50.0 

D1-Co_04 37.8 40.6 39.20 1.770 28.3 21.7 50.0 

D1-Co_05 35.3 35.2 35.25 1.591 31.4 18.6 50.0 

D1-Co_06 41.1 41.4 41.25 1.862 26.8 23.2 50.0 

D1-Co_07 38.7 39.3 39.00 1.761 28.4 21.6 50.0 

D1-Co_08 36.6 37.7 37.15 1.677 29.8 20.2 50.0 

D1-GSK_01 32.9 33.6 33.25 1.501 33.3 16.7 50.0 

D1-GSK_02 38.7 39.0 38.85 1.754 28.5 21.5 50.0 

D1-GSK_03 35.2 34.1 34.65 1.564 32.0 18.0 50.0 

D1-GSK_04 30.5 30.8 30.65 1.384 36.1 13.9 50.0 

D2-AG120_01 28.6 30.5 29.55 1.334 29.0 9.0 38.0 

D2-AG120_02 34.1 34.8 34.45 1.555 32.1 17.9 50.0 

D2-AG120_03 32.2 32.4 32.30 1.458 34.3 15.7 50.0 

D2-AG120_04 26.4 26.4 26.40 1.192 42.0 8.0 50.0 

D2-AG881_01 31.6 31.5 31.55 1.424 28.1 11.9 40.0 
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D2-AG881_02 32.9 33.3 33.10 1.494 33.5 16.5 50.0 

D2-AG881_03 33.2 33.3 33.25 1.501 30.0 15.0 45.0 

D2-AG881_04 25.8 27.7 26.75 1.208 33.1 6.9 40.0 

D2-BAY_01 22.3 22.3 22.30 1.007 35.0 0.0 35.0 

D2-BAY_02 35.8 33.0 34.40 1.553 32.2 17.8 50.0 

D2-BAY_03 30.5 29.6 30.05 1.357 29.5 10.5 40.0 

D2-BAY_04 23.2 23.4 23.30 1.052 38.0 2.0 40.0 

D2-Co_01 27.8 31.1 29.45 1.330 30.1 9.9 40.0 

D2-Co_02 42.0 43.8 42.90 1.937 25.8 24.2 50.0 

D2-Co_03 33.6 34.0 33.80 1.526 32.8 17.2 50.0 

D2-Co_04 34.5 34.6 34.55 1.560 32.1 17.9 50.0 

D2-Co_05 27.7 30.1 28.90 1.305 34.5 10.5 45.0 

D2-Co_06 33.0 32.5 32.75 1.479 33.8 16.2 50.0 

D2-Co_07 33.2 33.2 33.20 1.499 33.4 16.6 50.0 

D2-Co_08 34.0 33.7 33.85 1.528 32.7 17.3 50.0 

D2-GSK_01 25.6 25.0 25.30 1.142 30.6 4.4 35.0 

D2-GSK_02 31.3 31.3 31.30 1.413 35.4 14.6 50.0 

D2-GSK_03 28.2 28.0 28.10 1.269 31.5 8.5 40.0 

D2-GSK_04 21.7 22.6 22.15 1.000 35.0 0.0 35.0 
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Table A.VI.3. Annotated metabolites from the IC-MS data of S-TICO experiment. Parameters used for 
determining whether it was a putative or confident identification. FS = fragmentation score, ME = mass 
error, ISS = isotope similarity score, RTE = retention time error, max. abun. = max abundance and min. 
CV% = minimum coefficient of variance, C = Confident and P = putative. When provided as a comment, 
the abbreviation indicates what brought the identification from confident to putative (RTE > 1.5 min, 
ME > 3 ppm, IS < 90%). 

Accepted identification FS 
ME 
(ppm) 

ISS 
RTE 
(min) 

Max. 
Abun. 

Min. 
CV% 

C/P Comment 

1,2,3-
Trihydroxybenzene 

0 -3.53 96.8 -0.56 64 3.3 P ME 

2,3-Diphosphoglyceric 
acid 

0 1.02 99.3 -1.77 25508 6.2 P RTE 

2-C-Methylerythritol 4-
phosphate 

0 3.09 85.7 -0.64 328 4.1 P ME and ISS 

2-Hydroxybutyric acid 0 1.08 98.0 1.39 470 6.4 P 
Isomer of 3-
hydroxybutyri
c acid 

2-Hydroxyglutarate 82.3 1.60 99.8 -0.87 
116980
2 

3 C   

2-Ketobutyric acid 0 1.31 97.9 0.24 306 2.6 C   

2-Oxoglutaric acid 38.7 1.76   -1.29 15454 3 C   

2-Phosphoglyceric acid 70.3 1.86 99.1 -1.88 40697 6.4 P 

RTE and 
isomer of 3-
phosphoglyce
ric acid 

3,3 Dimethyl glutarate 77.8 1.24 95.4 -0.91 594 2.8 C   

3'-AMP 0 3.78 86.6 -0.37 146 7 P 
ME, ISS and 
isomer of 
AMP 

3-Dehydroquinate 0 1.38 91.3 -0.21 586 10.6 C   

3-Hydroxyisovaleric acid 0 -2.98 96.6 -0.79 902 6.4 C   

3-Hydroxymethyl-
glutarate 

67.6 1.16 97.6 -0.90 2715 1.8 C   

3-methoxyphenyl-acetic 
acid 

0 0.78 94.4 0.96 470 5.7 C   

3-Methyl-2-oxovaleric 
acid 

0 1.91 98.6 -0.81 6737 1.6 P 
Isomer of 
adipate 
semialdehyde 

3-Nitrotyrosine 0 3.48 88.9 -0.67 744 74 P ISS 

4-Hydroxy-3-
methoxymandelic acid 

0 1.12 89.6 -0.65 188 6.8 C   

4-Hydroxybutyric acid 0 1.46 98.6 -0.62 18323 0.9 C   

4-Hydroxyproline 80.2 1.55 98.1 -0.33 2528 4.7 C   

4-Hydroxypyrrolidinone 0 1.09 90.8 0.66 94 3.3 C   

5-Aminolevulinic acid 0 -3.68 93.7 -0.86 635 69.6 P 

ME and 
isomer of N-
acetyl-L-
alanine 

6-Phosphogluconic acid 0 1.02 99.2 -1.62 106206 3.5 P RTE 

Acetoacetate 0 1.12 98.7 -0.03 447 2.8 C   

Acetylcysteine 40.2 1.24 95.8 -0.86 4184 6.2 C   

Acetylglycine 40.6 1.65 96.2 -0.08 840 3.5 C   

Adenine 0 1.77 93.1 1.29 544 2.8 C   
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Accepted identification FS 
ME 
(ppm) 

ISS 
RTE 
(min) 

Max. 
Abun. 

Min. 
CV% 

C/P Comment 

Adenosine 
monophosphate 

52.6 2.12 95.0 -1.18 15352 4.7 P 
Isomer of 3'-
AMP 

Adenylsuccinate 0 1.55 93.3 -1.98 1056 5.4 P RTE 

Adonitol (ribitol) 73.5 1.48 96.6 0.08 1025 1.7 P 
Isomer of 
arabitol and 
xylitol 

Allantoin 0 -2.37 96.0 -0.65 1343 1.2 C   

Arabinonic acid 56.7 1.01 96.1 -0.62 2036 5.2 C   

Ascorbate 3.41 0.80 95.3 -1.26 674 4.1 C   

Aspartate 82.5 1.76 94.7 -0.88 148474 2.4 C   

Beta-Alanine 72.1 1.78 86.1 -0.27 500 1.9 C   

Beta-Citryl-L-glutamic 
acid 

0 2.28 98.2 -0.81 97405 4.8 C   

Caproic acid 0 -3.23 96.7 0.56 1186 6.1 P ME 

Citric acid 87.4 1.17 99.6 -1.60 372107 6.1 P RTE 

Cytidine 
monophosphate 

0 2.08 92.0 -1.47 1421 2.4 C   

Cytidine 
monophosphate N-
acetylneuraminic acid 

0 4.77 97.2 -0.75 10312 3.3 P ME 

Cytidine triphosphate 5.99 1.49 98.2 -1.76 124904 5.2 P RTE 

dCTP 86.8 1.77 94.9 -1.08 1815 3.8 C   

Deoxyribose 5-
phosphate 

6.42 2.71 95.0 -0.01 1041 3.5 C   

Dihydroxyacetone 76.3 1.25 99.7 -0.38 212454 3.4 P 
Isomer of 
lactic acid 

Dimethyl fumarate 0 0.54 97.7 -1.40 253 5.4 C   

dTDP-D-glucose 0 3.13 92.6 -1.47 5455 4.7 P ME 

EDTA 0 1.70 94.6 -1.38 1919 3.4 C   

Ethylmalonic acid 74.9 1.46 96.4 -1.68 1535 3 P 
RTE and 
isomer of 
glutaric acid 

Ethylmalonic acid 58.8 1.71 93.8 1.75 2002 4.6 P RTE 

Ferulic acid 0 1.26 93.1 1.16 381 4.7 C   

Flavin Mononucleotide 0 2.01 90.2   676 3.3 P No RT 

Fructose 1,6-
bisphosphate 

45.5 2.26   -1.75 30330 9.9 P 

RTE and 
isomer of 
fructose 2,6-
bisphosphate 

Fructose 2,6 
diphosphate 

0 2.30 98.5 -0.19 22340 2.9 C   

Galactose 1-phosphate 0 1.08 96.9 -1.67 53784 1.3 P 

RTE and 
isomer of 
glucose 1-
phosphate 

Galacturonic acid 37.7 1.33 96.5 -0.11 1490 2.8 P 
Isomer of 
glucuronic 
acid 

Gluconate 66.4 1.16   -0.48 27075 6.2 C   

Glucose 1-phosphate 53.8 0.81 98.5 -0.73 25445 3.8 P 
Isomer of 
galactose 1-
phosphate 
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Accepted identification FS 
ME 
(ppm) 

ISS 
RTE 
(min) 

Max. 
Abun. 

Min. 
CV% 

C/P Comment 

Glucuronic acid 0 1.09 95.9 0.14 307 5.1 P 
Isomer of 
galacturonic 
acid 

Glutamic acid 86.4 1.69 94.0 -0.05 333755 6.4 C   

Glutamylcysteine 0 -0.93 92.2 -1.49 7413 2.2 C   

Glutathione (GSH) 44 1.89 95.5 -0.70 
239812
1 

4.3 C   

Glyceric acid 2.54 1.15   -0.95 3215 1.6 C   

Glycerol 56.2 1.07 99.7 0.17 126710 3.7 C   

Glycerol 3-phosphate 0 1.44   -0.14 449 2.6 C   

Glycolic acid 55.1 0.70 98.6 -0.69 8129 1.5 C   

Guanosine diphosphate 96.9 3.28 97.8 -0.20 296111 6.1 C   

Hippuric acid 31.4 1.20 95.7 -1.32 951 9.5 C   

Homogentisic acid 0 -0.10 94.9 1.51 1576 7.7 C   

Hydroorotic acid 0 0.94 98.1 0.04 87 9.1 P 
Isomer of 
ureidosuccinic 
acid 

Hydroxy-isobutyric acid 0 1.53 98.2 -0.95 472 14.8 P 

Isomer of 2- 
and 3-
hydroxyisobu
tyric acid 

Hydroxyisoheptanoic 
acid 

0 -2.47 92.0 -0.29 57 13.4 C   

Hypotaurine 0 1.83 92.1 -1.53 307 4.1 C   

Inosine 0 -4.02 93.1 -0.69 381 4.4 P ISS 

Inositol 1,3,4-
trisphosphate 

0 2.81 90.3 -1.27 507 41.4 C   

Isocitrate 0 0.88 97.2 -1.26 2421 3.7 P 
Isomer of 
citric acid 

Isopentenyl 
pyrophosphate 

0 1.13 98.3 -1.54 435 4.4 P 

RTE and 
isomer of 
dimethylallyl 
pyrophosphat
e 

Lactic acid 0 -0.24 98.6 -1.92 4228 1.7 P 

RTE and 
isomer of 
dihydroxyacet
one 

Lactose 64.9 0.98 97.0 -0.10 10080 17.5 C   

Lactoyl-isoleucine 0 -1.44 95.6 -0.02 617 4.6 C   

Maleic acid 72 1.47 99.4 -0.28 7265 4.2 P 
Isomer of 
fumarate 

Malic acid 51.5 1.63 99.8 -0.93 128079 2.9 C   

Malondialdehyde 0 -0.46 98.0 1.35 496 2.3 C   

Malonic acid 74.6 1.41 97.6 -1.41 916 4.3 C   

Mannitol 0 1.37 96.2 1.04 827 9.1 P 
Isomer of 
sorbitol 

Mannose 6-phosphate 84.1 0.81 97.2 -1.94 13813 2.7 P 
Isomer of 
fructoe 6-
phosphate 

Methyl beta-D-
glucopyranoside 

0 1.28 95.2 0.20 296 32.8 P 
Isomer of 
mytilitol 
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Accepted identification FS 
ME 
(ppm) 

ISS 
RTE 
(min) 

Max. 
Abun. 

Min. 
CV% 

C/P Comment 

Methylglutaric acid 40 2.64 96.0 -0.70 4540 7.7 C   

Methylisocitric acid 0 1.17 95.1 -0.69 390 3.3 P 
Isomer of 2-
methylcitric 
acid 

Myoinositol 70.7 1.15 98.4 0.13 79313 5.1 P Isomers 

Myo-inositol 
hexakisphosphate 

0 1.20 96.4 -1.76 584 24.5 P RTE 

Mytilitol 0 -2.60 91.3 1.22 156 13.3 P 

Isomer of 
methyl beta-
D-
glucopyranosi
de 

N-Acetyl-aspartate 90 0.85 96.5 -0.68 58200 2.2 C   

N-Acetylaspartyl-
glutamic acid 

0 1.91 96.5 -1.14 7344 4 C   

N-acetyl-glucosamine-1-
phosphate 

0 1.79 87.9 -0.19 1794 7.2 P 

Isomer of N-
acetyl-D-
glucosamine 
6-phosphate 
and N-acetyl-
D-
mannosamine 
6-phosphate 

N-Acetylglutamate 70.9 -1.73 98.4 -0.60 4643 1.8 C   

N-Acetyl-L-alanine 89.5 1.30 97.6 -0.24 2712 0.9 C   

N-Acetyl-L-methionine 77.5 1.43 94.5 -0.50 4096 3 C   

N-Acetyl-L-
phenylalanine 

25.1 0.94 96.6 -0.59 226 14.7 C   

N-Acetylneuraminate 9-
phosphate 

0 1.63 90.9 -0.82 83 10.4 C   

N-Acetylneuraminic acid 93.3 2.14 95.0 -0.47 4549 1.4 C   

N-Acetylvaline 71 0.30 95.5 -0.28 116 12 C   

NADH 93.9 3.63 95.5 -0.91 21156 10.2 C   

NADPH 0 2.23 88.9 -1.35 364 41.5 P ISS 

N-Formyl-methionine 0 1.28 91.7 -0.64 264 4.9 C   

Nonate 0 -1.68 97.1 -0.59 3098 7.7 C   

O-Phosphoserine 89 1.53 95.9 -1.11 11570 4.6 C   

Oxalic acid 71.3 1.42 97.7 -1.44 9985 3 C   

Oxoadipic acid 57.8 1.16 96.0 -1.61 829 2.5 P RTE 

Oxovaleric Acid 0 -3.15 97.8 0.16 1364 0.6 P ME 

Pantothenic acid 59.6 1.11 98.8 -0.54 80573 3.5 C   

Phenylacetylglycine 0 -2.30 98.0 -1.40 971 5.1 C   

Phosphocreatine 10.5 -1.27 99.1 -0.36 118507 3.7 C   

Phosphoenolpyruvic 
acid 

0.054 1.39 97.7 -1.67 2052 8.7 P 

RTE and 
isomer of 2- 
and 3-
phosphoglyce
ric acid 

Phosphoribosyl 
pyrophosphate 

0 2.18 98.5 -1.51 9484 3.4 C   
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Accepted identification FS 
ME 
(ppm) 

ISS 
RTE 
(min) 

Max. 
Abun. 

Min. 
CV% 

C/P Comment 

Pyroglutamic acid 16.2 -2.42 93.9 -0.30 31434 3.9 P 
Isomer of [M-
H2O-H] of 
glutamate 

Pyruvic acid 71.9 0.99 98.7 -0.81 15467 6.7 C   

Quinic acid 15.2 1.28 95.1 -0.75 310 11.6 C   

Quinolinic acid 0 1.07 91.5 -1.59 89 20.3 P RTE 

Ribose 5-phosphate 70.4 1.82 97.9 -1.14 2687 8.2 P 
Isomer of 
xylulose 5-
phosphate 

Ribulose 
1,5,diphosphate 

0 -0.17 96.9 -1.63 3313 2.5 P RTE 

Salicylic acid 0 -2.25 94.4 0.26 6309 1.1 C   

Sedoheptulose 1,7-
bisphosphate 

0 2.26 94.9 -1.33 1598 4.8 C   

Sedoheptulose 1-
phosphate 

0 1.26 95.3 -0.63 1622 4.6 C   

Sedoheptulose 7-
phosphate 

62.9 1.44   -1.06 1972 4 C   

Serine 75 1.69 96.3 -1.14 311 1.5 C   

Sorbitol 72.3 1.16 98.9 0.17 17673 1.9 P 
Isomer of 
mannitol 

Sorbitol-6-phosphate 0 0.77 97.4 0.31 2195 6.2 C   

Succinic acid 
semialdehyde 

0 1.05 98.8 -1.14 2349 4.3 C   

Taurine 92.6 1.43 93.2 -0.49 135108 2.5 C   

TDP 88.2 2.31 97.8 1.97 11577 2.9 P RTE 

Threitol 90.5 1.76 97.4 0.16 1250 6.6 C   

Thymidine 5'-phosphate 0 2.13 96.5 -1.27 822 5.2 C   

Thymidine triphosphate 5.78 1.65 97.0 -1.73 7136 1.3 P RTE 

UDP-galactose 0 3.28 97.7 -1.19 45634 8.1 P 
Isomer of 
UDP-glucose 

UDP-N-acetyl-D-
mannosamine 

0 2.23 98.9   477818 3.5 P 

Isomer of 
UDP-
N_acetyl-
glucosamine 

Uracil 0 1.36 94.6 -1.20 99 6.2 C   

Uridine 5'-diphosphate 11.7 1.90 95.5 -1.76 6393 4.2 P RTE 

Uridine 5'-
monophosphate 

45.5 2.19 99.2 -1.90 129502 1.4 P RTE 

Valeric Acid 0 -4.28 94.7 0.38 326 9.3 C   

Xylulose 17.4 0.95 95.8 0.45 467 3.6 P 

Isomer of 
ribulose, 
ribose and 
arabinose 

Xylulose 5-phosphate 19.6 2.01 94.5 0.40 733 5.6 P 
Isomer of 
ribose 5-
phosphate 
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Table A.VI.4. Annotated metabolites from the IC-MS data of L-TICO experiment. Parameters used for 
determining whether it was a putative or confident identification. FS = fragmentation score, ME = mass 
error, ISS = isotope similarity score, RTE = retention time error, max. abun. = max abundance and min. 
CV% = minimum coefficient of variance, C = Confident and P = putative. When provided as a comment, 
the abbreviation indicates what brought the identification from confident to putative (RTE > 1.5 min, 
ME > 3 ppm, IS < 90%). 

Accepted identification FS 
ME 
(ppm) 

ISS 
RTE 
(min) 

Max. 
Abun. 

Min. 
CV% 

C/P Comment 

1-Pyrroline 
hydroxycarboxylic acid 

0 -0.96 96.6 -0.16 940 11.7 C   

2,3-Diphosphoglyceric 
acid 

0 -1.15 99.2 -1.63 7747 34 P RTE 

2,5-Dihydroxybenzoic 
acid 

87.1 -0.99 97.8 0.94 696 8.6 C   

2-butyl-3-ureido-
succinate 

0 -1.68 97.4 0.57 721 1.9 C   

2-Hydroxyglutarate 77 -1.40 99.8 -0.84 
173342
7 

3.9 C   

2-Ketobutyric acid 0 0.15 96.6 1.95 163 37.8 P RTE 

2-Oxoglutaric acid 32.8 -1.19   -1.24 23281 5.7 C   

2-Phosphoglyceric acid 87.1 -0.69 98.8 -1.80 25460 2.9 P RTE 

3-(2,5-
Dioxoimidazolidin-4-
yl)propanoic acid 

0 3.23 98.6   1620 5.9 P No RT 

3,3 Dimethyl glutarate 98.6 -1.22 99.6 -1.42 846 8.4 C   

3-Dehydroquinate 27 -0.06 98.8 -0.61 208 6.3 C   

3-deoxy-2-keto-6-
phosphogluconic acid 

89.8 -0.07 99.4 -1.31 348 21.3 C   

3-
Hydroxymethylglutarate 

76.9 -1.76 99.4 -0.86 7749 5.7 C   

3-methoxyphenylacetic 
acid 

0 -1.34 97.6 -0.60 1313 6.7 C   

3-Methyl-2-oxovaleric 
acid 

0 -1.02 98.6 -1.06 16216 2.4 C   

4-Acetylbutyrate 0 -4.85 93.0 -0.60 112 16.3 P ME 

4-Hydroxybenzoic acid 0 -1.21 97.7 -1.67 3846 10.1 P RTE 

4-Hydroxyproline 78.9 -1.53 98.2 -0.32 5812 2.4 C   

4-Hydroxypyrrolidinone 0 -0.67 98.0 0.81 244 8.7 C   

4-Methyl-2-ureido-
pentanoic acid 

0 -4.81 95.2 -0.73 706 43.5 P ME 

6-Phosphogluconic acid 0 -1.44 97.9 -1.59 23727 10.9 P RTE 

6-phosphonoglucono-
lactone 

0 -0.73 97.2 -0.59 76 6.1 C   

Abscisic acid 16.8 4.22 96.6 -1.25 436 6.7 P ME 

Acetic acid 0 -1.45 99.5 0.31 1454 7 C   

Acetoacetate 0 -1.41 96.8 -1.98 1036 2 P RTE 

Acetylcysteine 56.8 -1.09 91.2 -0.88 4103 5 C   

Acetylglycine 77.5 -1.00 97.5 0.09 1201 4.5 C   

Adenosine diphosphate 0 -1.53 92.8 -1.44 3014 1.8 C   

Adenosine 
monophosphate (AMP) 

36.7 -1.37 96.6 -1.11 45631 7.9 C   

Adenosine triphosphate 4.64 -2.24 98.0 0.45 385 18.8 C   

Adenylsuccinate 0 -1.60 93.1 -1.84 3834 2 P RTE 
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Adonitol 78.7 -1.42 98.4 0.07 2185 2.6 P 
Isomer of 
aravitol and 
xylitol 

ADP Glucose 14.9 -0.04 98.7 -1.24 1090 50.3 C   

Arabinonic acid 53.1 -1.97 95.2 -0.66 2531 3.4 C   

Arabinose 0 -0.78 98.4 -0.31 391 4.6 P 
Isomer of 
other 
pentoses 

Arabitol 0 -1.15 99.4 -0.53 99 20 P 
Isomer of 
adonitol and 
xylitol 

Ascorbate 4.76 -1.22 95.1 -1.17 495 10.3 C   

Aspartate 85.5 -1.38 94.7 -0.85 281840 1.4 C   

Beta-Alanine 77.7 -0.78 98.2 -0.57 724 4.7 C   

β-Citryl-L-glutamic acid 0 -1.40 98.5 -0.66 243308 2.3 C   

Citric acid 83.8 -1.57 99.6 -1.51 673923 3.4 C   

Cyclic AMP 77.9 -0.37 95.8 -1.61 273 12.5 P RTE 

Cysteic acid 90.5 -1.99 93.3 -1.16 1828 6.6 C   

Cytidine 
monophosphate 

45.7 -1.40 93.7 -1.46 4966 1.3 C   

Cytidine 
monophosphate N-
acetylneuraminic acid 

0 -1.89 97.4 -0.70 33316 3.8 C   

Cytidine triphosphate 5.99 -1.38 98.1 -1.63 227845 2.9 P RTE 

dCTP 85 -1.86 93.3 -0.94 2409 6.5 C   

Deoxyribose 5-
phosphate 

6.58 0.32   0.00 2329 2.8 C   

Dihydroorotic acid 86.1 -1.76 91.9 -0.27 619 8 P 
Isomer of 
hydroorotic 
acid 

Dihydroxyacetone 0 -2.44 98.0 -1.81 6109 2.5 P RTE 

Dihydroxyphenylalanine 0 -0.28 89.5 -0.80 452 37.2 P IS 

Dimethyl fumarate 0 -0.88 99.1 1.62 197 23.7 P RTE 

dTDP-D-glucose 0 -1.62 90.2 -1.30 7540 8.6 C   

dUMP 0 -1.14 96.7 -1.57 29391 7.2 P RTE 

EDTA 0 -1.00 95.0 -1.22 4010 22.4 C   

Ethylmalonic acid 72.9 -1.01 98.7 -1.38 2630 2.9 P 
Isomer of 
glutaric acid 

Flavin Mononucleotide 0 -1.20 91.6   1339 4.9 P No RT 

Fructose 1,6-
bisphosphate 

44.9 -1.25   -1.65 5665 10.9 C   

Fructose 2,6 
diphosphate 

0 -1.72 97.9 -0.09 24234 3.2 C   

Fructose 6-phosphate 81.5 -1.52 99.3 -0.95 11120 6.5 P 
Isomer of 
mannose 6P 

Fumarate 62 -1.36 99.1 -1.43 8850 7.6 P 
Isomer of 
maleic acid 

Galactose 0 -1.41 96.9 -0.09 7071 1.9 P 
Isomer of 
other hexoses 

Galacturonic acid 79.7 -1.55 98.9 0.06 2873 3.1 P 
Isomer of 
glucuronic 
acid 

Gluconate 78.9 -1.62   -1.92 2461 11.8 P RTE 

Gluconolactone 0 -0.85 99.4 -1.63 540 12.9 P RTE 
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Glucose 1-phosphate 65.4 -1.95 99.1 -0.77 25707 2.9 P 
Isomer of 
galactose 1P 

Glucuronic acid 83 -1.86 99.0 -1.91 2215 5.5 P 

RTE and 
isomer of 
galacturonic 
acid 

Glutamic acid 93.2 -1.36 93.5 -0.01 187951 2.6 C   

Glutathione (GSH) 43.8 -1.17 95.9 -0.69 
682202
9 

1 C   

Glyceric acid 0 -1.34   0.04 24557 2.1 C   

Glycerol 48.5 -1.57 99.3 0.16 123198 1 C   

Glycerol 3-phosphate 39.5 -1.09   -0.70 5104 1 C   

Guanosine diphosphate 98.3 -0.07 97.6 -0.02 377178 5.4 C   

Hippuric acid 64 -1.51 89.9 -1.14 666 6.4 C   

Hydroorotic acid 0 -1.61 97.7 0.05 291 13.5 P 
Isomer of 
dihydroorotic 
acid 

Hydroxy-isobutyric acid 41.3 -0.76 99.3 -1.53 1396 2.6 P RTE 

Hydroxyoctanoic acid 0 -4.71 95.4 0.06 239 9.4 C   

IDP 20.2 -2.15 97.7 -1.03 1540 23.3 C   

Indole-3-lactic acid 19.8 3.07 98.4 -0.14 183 42.4 P ME 

Inositol 1,3,4-
trisphosphate 

0 -0.41 99.8 -1.94 691 4.5 P RTE 

Isocitrate 0 -1.81 99.0 -1.17 8259 3.5 P 
Isomer of 
citric acid 

Isopentenyl 
pyrophosphate 

0 -1.04 95.8 -1.18 414 9 P 

Isomer of 
dimethylallyl 
pyrophosphat
e 

Kojic acid 72.2 -0.36 97.4 -0.01 247 10.5 C   

Kynurenic acid 0 -0.88 99.2 -1.12 1082 5.4 C   

Lactic acid 32.7 -1.26 99.4 -0.64 378450 7.8 P 
Isomer of 
dihydroxyacet
one 

Lactose 70.2 -2.13 83.9 -1.42 594 31.5 P IS 

Lactoyl-isoleucine 0 -4.27 95.4 0.08 1493 3.8 C   

Maleic acid 52.5 -1.38 99.5 -1.50 2698 3.6 C   

Malic acid 66.1 -1.20 99.8 -0.90 171652 3.5 C   

Malitol 49.3 -1.47 92.5 -1.75 612 59 P RTE 

Malondialdehyde 0 -1.31 95.8 0.40 408 4.5 C   

Malonic acid 73 -0.63 99.9 -0.05 2749 4 C   

Mannose 6-phosphate 74.8 -0.96 91.6 1.02 63 72.2 P 
Isomer of 
fructose 6-
phosphate 

Methyl-3-
hydroxybenzoic acid 

0 -4.72 98.3 -1.11 2127 5.1 C   

Methylglutaric acid 83.3 -0.98 98.8 -0.67 13940 17 C   

Methylisocitric acid 0 -1.30 99.4 -0.65 1880 9.2 P 
Isomer of 2-
methylcitric 
acid 

Myoinositol 89.6 -1.73 99.0 0.12 120348 2.6 P 
Isomer of 
scyllitol 

N-Acetyl-aspartate 93.6 -2.08 92.8 -0.59 144405 4.6 C   
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N-
Acetylaspartylglutamic 
acid 

0 -0.60 96.0 -0.99 3556 6.2 C   

N-Acetyl-D-glucosamine 60.5 -0.92 94.1 0.22 191 42.9 C   

N-acetyl-glucosamine-1-
phosphate 

0 -1.56 95.1 -0.12 3071 6.5 P 

Isomer of N-
acetyl-
glucosamine 
6P 

N-Acetylglutamate 72.4 -4.18 98.9 -0.48 13717 3.3 C   

N-Acetyl-L-alanine 96 -1.21 94.1 -0.07 5164 8.3 C   

N-Acetyl-L-methionine 96.7 -0.92 96.6 -0.19 6462 6.4 C   

N-Acetyl-L-
phenylalanine 

36.1 -1.05 97.6 -0.48 118 9.7 C   

N-Acetylneuraminic acid 91.5 -0.59 97.9 -0.34 10143 3.6 C   

N-Acetyltryptophan 96.4 -1.61 96.8 -1.86 458 32.8 P RTE 

N-Acetylvaline 98.5 -1.21 92.9 -0.18 92 6.1 C   

NADH 88.8 -0.97 92.8 -0.71 20411 8.4 C   

NADPH 90 -1.08 97.9 -1.41 1009 33.1 C   

N-Formyl-methionine 0 -1.58 96.9 -0.46 443 4.9 C   

Nonate 0 -4.65 96.6 -0.44 9519 10.4 C   

O-Acetylserine 0 -0.87 93.7 -0.20 115666 7.2 C   

Octanoic acid 5.4 -1.58 97.5 -1.16 5807 2.3 C   

O-Phosphoserine 88.1 -0.78 97.6 -1.11 14428 6.1 C   

Ophthalmic Acid 0 -3.08 93.4 0.11 6415 4.8 C   

Oxalic acid 65.2 -1.02 99.0 -1.37 11631 3.4 C   

Oxoadipic acid 0 -0.32 97.7 -1.20 177 4.4 C   

Pantothenic acid 58.8 -1.88 98.6 -0.51 150827 3.7 C   

Parabanic Acid 0 4.01 97.0 -0.14 951 7.9 C   

Phosphocreatine 18.8 -4.29 98.3 -0.34 71575 3.4 C   

Phosphoenolpyruvic 
acid 

40.1 -1.41 98.8 -1.58 3182 5.3 P RTE 

Phosphoribosyl 
pyrophosphate 

0 -1.13 97.7 -1.42 22111 3.5 C   

Protocatechuic acid 24.7 -0.65 96.2 1.70 882 7.2 P RTE 

Ribulose 
1,5,diphosphate 

0 -2.76 97.9 1.06 14700 7.5 C   

Saccharic acid 87.2 -1.42 99.5 -1.99 5476 3.7 P RTE 

Sebacic acid 36.5 -1.12 94.8 -1.92 842 8.3 P RTE 

Sedoheptulose 1,7-
bisphosphate 

0 -1.73 93.6 -1.26 1939 6.4 C   

Sedoheptulose 1-
phosphate 

0 -0.83 98.8 0.19 3500 7.5 C   

Sedoheptulose 7-
phosphate 

0 -0.03   -0.39 232 5 C   

Sorbitol 0 -1.10 96.1 0.98 1292 42.4 P 
Isomer of 
mannitol 

Sorbitol-6-phosphate 0 -2.01 97.5 0.38 4289 15.5 C   

Succinic acid 90.2 -0.94 99.1 -0.87 32901 0.9 C   

Syringic acid 0 -0.73 99.2 0.49 73 12 C   

Taurine 92.4 -1.76 93.2 -0.49 218232 3.7 C   

Threitol 85.9 -1.40 97.3 0.30 2653 2.8 C   

Thymidine 5'-phosphate 93.7 -0.89 98.6 -1.17 2964 13.8 C   

Thymidine triphosphate 5.61 -1.42 95.6 -1.51 11302 4.3 P RTE 
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UDP-galactose 0 -1.55 97.1 -1.07 55355 6.3 C   

Uridine 5'-diphosphate 10.9 -1.35 98.6 0.87 
106786
5 

3.4 C   

Uridine 5'-
monophosphate 

45.4 -1.25 99.0 -1.78 185915 6.3 P RTE 

Vanillin 0 -4.41 98.4   1054 3.3 P No RT 

Xanthylic acid 0 -2.42 94.2 -1.64 211 16.3 P RTE 

 

 

 
Figure A.VI.2. Heatmaps and PCA scores plots (PC1 × PC2) used to identify outliers in S-TICO IC-MS data 
and L-TICO derivatised RPLC-MS data. Heatmap of IQR filtered but not normalised, scaled or 
transformed (a) S-TICO IC-MS data and (b) derivatised RPLC-MS L-TICO data. The black arrow indicates 
the outlier samples that were removed. PCA scores plot (PC1 × PC2) of derivatised RPLC-MS L-TICO data 
(a) before normalisation, scaling or transformation and (d) after median normalisation and pareto 
scaling. The black arrow indicates the outlier sample that was removed.  
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Figure A.VI.3. Heatmaps and feature and sample distribution plots used in the assessment of IC-MS and 
derivatised RPLC-MS data the S-TICO experiment. Heatmap, feature and sample distribution plots of 
IC-MS data (a-c) before and (d-f) after median normalisation and pareto-scaling. Sample distribution plot 
of derivatised RPLC-MS data (g) before and (h) after median normalisation. Number of biological 
replicates is N = 4 treated group and N = 8 for control per timepoint. 
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Figure A.VI.4. Heatmaps and feature and sample distribution plots used in the assessment of IC-MS and 
derivatised RPLC-MS data the L-TICO experiment. Heatmap, feature and sample distribution plots of 
IC-MS data (a-c) before and (d-f) after sum normalisation and pareto-scaling. Sample distribution plot of 
derivatised RPLC-MS data (g) before and (h) after median normalisation. Number of biological replicates 
is N = 4 treated group and N = 8 for control per timepoint. 
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Table A.VI.5. Annotated metabolites from the derivatised RPLC-MS data of the S-TICO experiment.  

Parameters used for determining whether it was a putative or confident identification. ME = mass error, 
ISS = isotope similarity score, RTE = retention time error, max. abun. = max abundance and min. CV% = 
minimum coefficient of variance, C = Confident and P = putative. When provided as a comment, the 
abbreviation indicates what brought the identification from confident to putative (isomer, RTE > 0.5 
min, ME > 3 ppm, IS < 90%). 

Accepted Description ME 
(ppm) 

ISS RTE 
(min) 

Max. 
abun. 

Min. 
CV% 

C/
P 

Comment 

2-Aminoadipic acid 1.29 94.2 0.14 229 4.2 C   

4-Hydroxyproline -1.21 89.5   40 10.6 P No RT 

Alanine -0.74 96.0 0.2 
1164
1 

3.5 C   

Arginine -0.55 93.4 0.21 172 7.5 C   

Asparagine -3.26 89.5 0.07 74 5.8 C   

β-Alanine 0.37 96.3 0.22 1066 4.5 C   

Citrulline -2.89 88.4 0.18 20 10.4 P IS 

Cysteine -1.21 90.3 -0.91 107 9.1 P RTE 

Ethanolamine -3.06 93.6 0.21 50 13.6 P ME 

GABA -1.68 95.5 0.1 154 12.3 C   

Glutamic acid -0.38 94.7 0.21 6937 2.5 C   

Glutamine -1.03 95.0 0.16 3203 4.4 C   

Glycine -1.61 95.9 0.25 3355 5.3 C   

Histidine -1.04 93.5 0.17 401 4.9 C   

Homoserine -2.92 88.9 0.21 25 20.3 P IS 

Hypotaurine 1.92 89.6 0.28 201 1.3 C   

Isobutylamine -1.85 96.5 -0.36 1103 4.1 C   

Isoleucine -0.60 94.8 0.22 4036 4.2 P Isomer of leucine 

Leucine -0.74 93.7 0.04 3718 4.6 P 
Isomer of 
isoleucine 

Lysine 0.81 93.8 0.11 2622 6.2 C   

N-Acetyl-ornithine -2.90 86.8 0.06 14 8.8 P 
IS and isomer of 
L/theanine 

Octapine -2.20 88.2   128 6.3 P IS and no RT 

Oxidised Glutathione -1.46 92.2 0.06 3985 9.6 C   

Phenylalanine -0.68 94.6 0.13 2751 4.4 C   

Pipecolic acid -3.67 92.8 0.52 62 5.9 P RTE and ME 

Proline -1.32 97.1 0.19 300 3.7 C   

Putrescine 1.17 95.8 0.06 1664 8.6 C   

Serine -1.60 95.6 0.26 1658 4.3 C   

Serotonin -3.32 87.0 0.05 11 5.9 P IS and ME 

Taurine -1.50 95.2   1318 2.2 P No RT 

Thioproline 0.42 92.4 -0.11 146 9.2 C   

Threonine -0.74 97.2 0.21 5116 2.6 C   

Tryptophan -0.33 97.2 0.1 500 1.3 C   

Tyrosine -0.68 93.7 0.12 2178 5.2 C   

Valine -0.97 98.7 0.15 3342 4.7 C   
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Table A.VI.6. Annotated metabolites from the derivatised RPLC-MS data of the L-TICO experiment.  
Parameters used for determining whether it was a putative or confident identification. ME = mass error, 
ISS = isotope similarity score, RTE = retention time error, max. abun. = max abundance and min. CV% = 
minimum coefficient of variance, C = Confident and P = putative. When provided as a comment, the 
abbreviation indicates what brought the identification from confident to putative (isomer, RTE > 0.5 
min, ME > 3 ppm, IS < 90%). 

Accepted Description ME 
(ppm) 

ISS RTE 
(min) 

Max. 
abun. 

Min. 
CV% 

C/
P 

Comment 

2-Aminoadipic acid 0.87 96.4 0.14 618 3.2 C   

4-Hydroxyproline -0.97 89.7   71 5 P No RT 

Alanine -0.16 95.5 0.2 20996 2 C   

GABA -3.30 91.3 0.26 48 5.4 C   

Arginine -0.67 90.7 0.21 319 4 C   

Asparagine -2.26 92.1 0.09 194 4.1 C   

β-Alanine 0.69 97.0 0.21 1642 3 C   

Citrulline -1.78 87.8 0.17 37 8.4 P IS 

Ethanolamine -4.66 95.9 0.2 61 13.9 P ME 

Glutamic acid -0.06 95.5 0.19 11994 3.2 C   

Glutamine -0.75 95.6 0.15 4439 3.9 C   

Glycine -1.18 95.9 0.23 5815 2 C   

Histidine -1.02 95.2 0.18 605 3.1 C   

Homoserine -1.99 92.1 0.16 107 5.6 C   

Hypotaurine 2.10 90.4 0.27 302 5.8 C   

Isobutylamine -1.25 99.2 -0.36 3446 10.1 C   

Isoleucine -0.66 95.8 0.22 6412 4 P Isomer of leucine 

Leucine -0.72 98.7 0.04 5950 5.1 P 
Isomer of 
isoleucine 

Lysine 0.85 96.1 0.11 3882 2.2 C   

N-Acetyl-ornithine -2.23 88.7 0.06 17 10.9 P 
IS and isomer of 
L-Theanine 

Octapine -1.62 89.4   149 5.3 P No RTE 

Oxidised Glutathione -1.30 95.4 0.06 8035 1.6 C   

Phenylalanine -0.48 94.1 0.14 4477 3 C   

Pipecolic acid -4.08 94.7 0.52 119 2.5 P ME and RTE 

Proline -1.27 96.9 0.18 967 3.3 C   

Putrescine 1.05 91.8 0.06 319 8.2 C   

Pyroglutamic Acid -1.85 89.6 0.03 31 19.8 P IS 

Serine -1.60 96.2 0.26 1699 2.7 C   

Serotonin -0.85 87.8 0.05 5 19.7 P IS 

Taurine -1.50 94.8   2061 2.5 P No RT 

Thioproline -0.30 87.9 -0.11 144 6.9 P IS 

Threonine -0.56 96.8 0.19 7416 1.1 C   

Tryptophan -0.33 96.8 0.11 800 6.3 C   

Tyrosine -0.31 93.4 0.12 3336 4.3 C   

Valine -0.92 97.0 0.13 5195 3 C   
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9.7.  Appendix VII 

DNA concentration (ng/µL) of control and treated (AG-120 or FT2102) wtIDH1, 

mutIDH1R132H and mutIDH1R132H+S280F cells is provided in Table A.VII.1. The samples were 

part of a larger experiment where the lowest DNA concentration was 20.65 ng/µL.  

Table A.VII.1. DNA concentration of wtIDH1 mutIDH1R132H LN18 cells from the mutIDH1 resistance 
experiment. Total sample volume was 50 µL. Rel. DNA conc. = relative DNA concentration. 

Sample Name DNA 1 
(ng/µL) 

DNA 2 
(ng/µL) 

DNA 3 
(ng/µL) 

Average 
(ng/µL) 

Rel. DNA 
conc. 

µL 
Sample 

µL 
Solvent 

R132H+S280F-AG_01 31.10 31.20   31.15 1.508 33.1 16.9 

R132H+S280F-AG_02 35.90 35.60   35.75 1.731 28.9 21.1 

R132H+S280F-AG_03 34.20 33.10   33.65 1.630 30.7 19.3 

R132H+S280F-AG_04 37.80 38.20   38.00 1.840 27.2 22.8 

R132H+S280F-Co_01 28.60 28.90   28.75 1.392 35.9 14.1 

R132H+S280F-Co_02 33.50 33.90   33.70 1.632 30.6 19.4 

R132H+S280F-Co_03 29.00 29.50   29.25 1.416 35.3 14.7 

R132H+S280F-Co_04 34.80 35.20   35.00 1.695 29.5 20.5 

R132H+S280F-FT_01 29.80 30.10   29.95 1.450 34.5 15.5 

R132H+S280F-FT_02 43.60 43.90   43.75 2.119 23.6 26.4 

R132H+S280F-FT_03 39.20 39.60   39.40 1.908 26.2 23.8 

R132H+S280F-FT_04 44.30 44.10   44.20 2.140 23.4 26.6 

R132H-AG_01 26.30 26.20   26.25 1.271 39.3 10.7 

R132H-AG_02 33.30 32.70   33.00 1.598 31.3 18.7 

R132H-AG_03 38.00 38.10   38.05 1.843 27.1 22.9 

R132H-AG_04 32.90 33.20   33.05 1.600 31.2 18.8 

R132H-Co_01 12.30 12.50   12.40 0.600 83.3 -33.3 

R132H-Co_02 28.10 29.10   28.60 1.385 36.1 13.9 

R132H-Co_03 28.50 27.90   28.20 1.366 36.6 13.4 

R132H-Co_04 20.80 20.50   20.65 1.000 50.0 0.0 

R132H-FT_01 26.30 26.70   26.50 1.283 39.0 11.0 

R132H-FT_02 38.70 38.80   38.75 1.877 26.6 23.4 

R132H-FT_03 41.30 42.20   41.75 2.022 24.7 25.3 

R132H-FT_04 29.70 30.10   29.90 1.448 34.5 15.5 

WT-AG_01 35.10 35.10   35.10 1.700 29.4 20.6 

WT-AG_02 37.20 37.20   37.20 1.801 27.8 22.2 

WT-AG_03 44.10 44.30   44.20 2.140 23.4 26.6 

WT-AG_04 40.70 40.80   40.75 1.973 25.3 24.7 

WT-Co_01 39.80 40.10   39.95 1.935 25.8 24.2 

WT-Co_02 48.80 50.10 49.50 49.47 2.395 20.9 29.1 

WT-Co_03 53.20 54.20   53.70 2.600 19.2 30.8 

WT-Co_04 49.70 50.00   49.85 2.414 20.7 29.3 

WT-FT_01 36.80 37.30   37.05 1.794 27.9 22.1 

WT-FT_02 45.40 45.50   45.45 2.201 22.7 27.3 

WT-FT_03 46.60 46.30   46.45 2.249 22.2 27.8 

WT-FT_04 50.90 50.00   50.45 2.443 20.5 29.5 
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9.8.  Appendix VIII 

The CAs described in section 5.3 are listed below with exact correlation score, p-value and 

FDR adjusted p-value between specific metabolites and 2-HG, 2-OG and isocitrate. Table 

A.VIII.1 and A.VIII.2 list metabolites whose abundances were significantly altered after 

treatment with mutIDH1 inhibitors, but where there was or was not a significant difference 

between control wtIDH1 and mutIDH1R132H LN18 cells, respectively. Table A.VIII.3 lists 

metabolites that were not significantly different between control wtIDH1 and mutIDH1R132H 

LN18 cells and whose abundance was significantly altered in mutant cells only after 

treatment.  
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Table A.VIII.1. Template match correlation analysis to 2-HG and 2-OG of metabolites that were significantly different between wtIDH1 and mutIDH1R132H LN18 control 
cells and responded to treatment with mutIDH1 inhibitors (AG-120, AG-881, BAY 1436032 and GSK864). The CSs were separately calculated for each inhibitor and 
control samples were included. The template match analysis was carried out using Spearman rank correlation as the distance measure. FDR = FDR adjusted p-value. 

 2-hydroxyglutarate 2-oxoglutarate 

Inhibitor Metabolite Correlation p-value FDR Correlation p-value FDR 

AG-120 2-Aminoadipate  -0.38732 0.0068688 0.23793 -0.086735 0.55663 0.99464 

AG-881 -0.21797 0.14079 0.98724 0.15368 0.30135 0.9959 

BAY 1436032 -0.088797 0.54725 0.77947 0.27323 0.06053 0.54835 

GSK864 -0.047981 0.7454 0.98933 0.17792 0.22559 0.94929 

AG-120 3-Methyl-2-oxovalerate  0.2411 0.098798 0.2464 0.33771 0.019347 0.099074 

AG-881 0.090079 0.54592 0.78826 0.23693 0.10877 0.35918 

BAY 1436032 -0.079462 0.5903 0.74957 0.15697 0.28569 0.53519 

GSK864 0.039839 0.78753 0.91329 0.027898 0.85041 0.93109 

AG-120 Asparagine  -0.025836 0.86138 1 0.1256 0.39381 0.99464 

AG-881 -0.020698 0.89003 0.98724 0.17276 0.24471 0.9959 

BAY 1436032 0.050261 0.73373 0.87371 0.057968 0.69472 0.96227 

GSK864 -0.2069 0.15786 0.9308 0.0034737 0.98152 0.99704 

AG-120 B-Alanine  0.40621 0.0044497 0.16815 0.45278 0.0013757 0.11039 

AG-881 0.3173 0.030218 0.76903 0.392 0.0067711 0.26451 

BAY 1436032 0.37864 0.0083226 0.20551 0.50239 0.00032883 0.044783 

GSK864 0.51889 0.00019503 0.037417 0.53832 0.00010206 0.02314 

AG-120 B-Citryl-L-glutamate  -0.65936 7.79E-07 1.93E-05 -0.21342 0.14497 0.36119 

AG-881 -0.62685 4.18E-06 7.25E-05 -0.093432 0.53102 0.7861 

BAY 1436032 -0.67195 4.42E-07 2.76E-05 -0.089991 0.54186 0.75522 

GSK864 -0.65968 7.67E-07 3.62E-05 -0.15208 0.3011 0.56447 

AG-120 Cysteine  0.66337 6.50E-07 0.00054053 0.64405 1.54E-06 0.0012823 

AG-881 0.68918 2.73E-07 0.00022687 0.51145 0.00028958 0.10317 

BAY 1436032 0.50239 0.00032883 0.064799 0.61224 6.11E-06 0.0076189 

GSK864 0.13754 0.3501 0.96378 0.12603 0.39216 0.98824 

AG-120 dADP  0.14221 0.33386 0.54318 0.13428 0.36171 0.60126 

AG-881 0.21924 0.13844 0.38715 0.054579 0.71482 0.87437 

BAY 1436032 0.20929 0.15304 0.3062 0.19855 0.17563 0.41523 

GSK864 0.26205 0.072187 0.27332 0.30004 0.038681 0.17639 
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 2-Hydroxyglutarate 2-Oxoglutarate 

Inhibitor Metabolite Correlation p-value FDR Correlation p-value FDR 

AG-120 Deoxyribose 5-
phosphate  

0.80601 0 0 0.63667 2.14E-06 0.00016689 

AG-881 0.83407 0 0 0.57447 3.39E-05 0.002645 

BAY 1436032 0.72699 3.31E-08 5.81E-06 0.63102 2.74E-06 0.00022055 

GSK864 0.74381 9.38E-09 1.38E-06 0.66522 5.99E-07 7.48E-05 

AG-120 Glycerate  0.65252 1.06E-06 2.42E-05 0.25065 0.085847 0.26355 

AG-881 0.52162 0.00021011 0.0021969 0.26168 0.075797 0.28874 

BAY 1436032 0.57903 2.32E-05 0.00062469 0.27833 0.055741 0.2163 

GSK864 0.47286 0.00078945 0.0096236 0.37082 0.009853 0.074841 

AG-120 Isoleucine  0.5064 0.00029022 0.042577 0.38808 0.0067529 0.28036 

AG-881 0.47583 0.00082967 0.089965 0.47329 0.0008909 0.13574 

BAY 1436032 0.47036 0.00084734 0.10094 0.44941 0.0015053 0.085325 

GSK864 0.26596 0.067924 0.83699 0.20354 0.16485 0.90195 

AG-120 Methylisocitrate  -0.42032 0.0031681 0.0182 0.11518 0.43446 0.65867 

AG-881 -0.49352 0.0004984 0.0046648 -0.040241 0.78775 0.91504 

BAY 1436032 -0.41858 0.0033058 0.022695 0.23795 0.10338 0.31392 

GSK864 0.11952 0.41724 0.69374 0.59933 1.04E-05 0.0006703 

AG-120 N-Acetyl-aspartyl-
glutamate  

-0.56828 3.49E-05 0.00041774 -0.22384 0.12599 0.33496 

AG-881 -0.52024 0.00021962 0.0022868 -0.079672 0.59342 0.81976 

BAY 1436032 -0.50402 0.00031264 0.0041044 -0.0698 0.63638 0.8133 

GSK864 -0.36854 0.010343 0.068743 -0.069257 0.63901 0.83345 

AG-120 N-Acetyl-L-methionine  0.74783 5.59E-09 3.32E-07 0.66153 7.06E-07 8.02E-05 

AG-881 0.71219 9.96E-08 3.70E-06 0.64443 1.96E-06 0.00054313 

BAY 1436032 0.54418 8.33E-05 0.00164 0.7221 4.34E-08 1.55E-05 

GSK864 0.46353 0.001026 0.011925 0.55851 5.01E-05 0.0019858 

AG-120 O-Phosphoserine  0.69746 1.41E-07 4.96E-06 0.51107 0.00025055 0.0042452 

AG-881 0.6657 7.66E-07 1.88E-05 0.51087 0.00029483 0.009096 

BAY 1436032 0.60258 9.12E-06 0.00028486 0.5508 6.60E-05 0.0017368 

GSK864 0.22905 0.11724 0.36762 0.078919 0.59285 0.80517 

AG-120 Oxoadipate  -0.65176 1.09E-06 2.42E-05 -0.21418 0.14352 0.35972 

AG-881 -0.16478 0.26744 0.56996 0.090888 0.54231 0.79299 

BAY 1436032 -0.50923 0.0002656 0.0035878 0.033652 0.81997 0.91315 

GSK864 -0.3401 0.018467 0.10441 -0.2196 0.13346 0.35405 
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 2-Hydroxyglutarate 2-Oxoglutarate 

Inhibitor Metabolite Correlation p-value FDR Correlation p-value FDR 

AG-120 Putrescine  -0.32121 0.026456 0.56849 0.15458 0.29316 0.99464 

AG-881 -0.62037 5.49E-06 0.0022815 -0.1213 0.41546 0.9959 

BAY 1436032 -0.57154 3.09E-05 0.019279 -0.043856 0.76666 0.96537 

GSK864 -0.63417 2.38E-06 0.0029734 -0.11832 0.42194 0.99373 



Chapter 9. Appendices 

359 
 

Table A.VIII.2. Template match correlation analysis to 2-HG and 2-OG of metabolites that were not significantly different between wtIDH1 and mutIDH1R132H LN18 
control cells, but responded to treatment with mutIDH1 inhibitors (AG-120, AG-881, BAY 1436032 and GSK864). The CSs were separately calculated for each inhibitor 
and control samples were included. The template match analysis was carried out using Spearman rank correlation as the distance measure. FDR = FDR adjusted p-value.  

 2-Hydroxyglutarate 2-Oxoglutarate Isocitrate 

Inhibitor Metabolite Correlation p-value FDR Correlation p-value FDR Correlation p-value FDR 

AG-120 CMP-N-neuraminate -0.01845 0.90083 0.94468 0.017369 0.90665 0.95987 -0.0774 0.60001 0.87322 

AG-881 -0.16397 0.26983 0.57046 -0.04949 0.74045 0.89117 0.038737 0.79552 0.92621 

BAY 1436032 0.11018 0.45475 0.64423 -0.05493 0.71002 0.85386 -0.03463 0.81483 0.93153 

GSK864 0.42271 0.002987 0.027145 0.44073 0.001892 0.022838 -0.44985 0.001488 0.021073 

AG-120 dUMP -0.71852 5.22E-08 2.29E-06 -0.33337 0.021039 0.1037 0.21667 0.13882 0.51701 

AG-881 -0.6886 2.80E-07 7.86E-06 -0.22549 0.12735 0.38762 0.28272 0.054497 0.22851 

BAY 1436032 -0.56568 3.85E-05 0.000952 -0.29548 0.041849 0.18188 0.21798 0.13642 0.44447 

GSK864 -0.58218 2.06E-05 0.000499 -0.2487 0.088381 0.28462 0.26672 0.067119 0.28238 

AG-120 Galacturonate -0.24522 0.093031 0.23785 -0.19985 0.17277 0.3994 0.66077 7.31E-07 0.000225 

AG-881 -0.37165 0.010509 0.060095 0.12465 0.4026 0.6924 0.71404 9.17E-08 3.02E-05 

BAY 1436032 -0.13374 0.36367 0.55789 -0.0761 0.60618 0.79228 0.68139 2.90E-07 3.15E-05 

GSK864 0.18009 0.21991 0.51408 0.33315 0.021126 0.11972 0.41544 0.003569 0.040356 

AG-120 Gluconate 0.64525 1.46E-06 3.05E-05 0.70202 1.15E-07 4.09E-05 0.18508 0.20722 0.61212 

AG-881 0.58441 2.33E-05 0.000311 0.608 9.16E-06 0.001346 0.34968 0.016431 0.10686 

BAY 1436032 0.43281 0.002319 0.017448 0.70517 9.91E-08 3.10E-05 0.28105 0.053322 0.25095 

GSK864 0.49034 0.000474 0.006407 0.54125 9.23E-05 0.003141 0.26813 0.065645 0.27757 

AG-120 Isocitrate -0.08294 0.5741 0.73536 0.099001 0.50201 0.70877 1 0 0 

AG-881 -0.16975 0.25312 0.55389 0.31973 0.028925 0.16171 1 0 0 

BAY 1436032 -0.13059 0.37515 0.56681 0.22286 0.12769 0.3495 1 0 0 

GSK864 -0.24631 0.091558 0.31911 -0.00836 0.95515 0.97785 1 0 0 

AG-120 Citrate -0.1726 0.23994 0.45084 0.001303 0.99325 0.99722 0.59585 1.20E-05 0.001259 

AG-881 -0.23057 0.11881 0.35516 0.22086 0.1355 0.39978 0.69241 2.37E-07 4.34E-05 

BAY 1436032 -0.21809 0.13622 0.27812 0.13645 0.35394 0.59967 0.65328 1.02E-06 9.46E-05 

GSK864 -0.24381 0.094974 0.32247 0.053951 0.71496 0.87884 0.69106 1.88E-07 2.24E-05 

AG-120 Myo-inositol 0.51238 0.00024 0.002093 0.42727 0.002667 0.022439 -0.20376 0.16439 0.55069 

AG-881 0.035731 0.81111 0.92539 0.18259 0.21858 0.51531 0.10476 0.4822 0.74047 

BAY 1436032 0.55688 5.31E-05 0.001252 0.27964 0.054569 0.21341 -0.15914 0.27902 0.64028 

GSK864 -0.09368 0.52535 0.76711 -0.28561 0.049451 0.20094 0.26086 0.073531 0.29686 
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 2-Hydroxyglutarate 2-Oxoglutarate Isocitrate 

Inhibitor Metabolite Correlation p-value FDR Correlation p-value FDR Correlation p-value FDR 

AG-120 Sedoheptulose 1P 0.50901 0.000267 0.002265 0.29418 0.042793 0.16894 0.1104 0.45386 0.81652 

AG-881 0.35812 0.013884 0.074615 0.14049 0.34509 0.6407 0.233 0.1149 0.36577 

BAY 1436032 0.29885 0.039491 0.11847 0.26064 0.073777 0.25607 0.20593 0.15987 0.47571 

GSK864 0.30417 0.035988 0.1713 -0.0406 0.78357 0.91611 0.20582 0.16009 0.44207 

AG-120 Sorbitol 6P -0.39991 0.005156 0.027414 -0.51498 0.000221 0.003921 -0.49924 0.000362 0.012751 

AG-881 -0.33279 0.022737 0.10906 -0.64038 2.33E-06 0.000583 -0.50243 0.000382 0.007574 

BAY 1436032 -0.23024 0.11531 0.24671 -0.51845 0.000198 0.00366 -0.58619 1.76E-05 0.000758 

GSK864 -0.07479 0.61237 0.82011 -0.28517 0.04981 0.20174 -0.64231 1.67E-06 0.000107 

AG-120 Glutamate -0.03789 0.79774 1 0.22699 0.12065 0.99464 0.45973 0.001139 0.21736 

AG-881 -0.07956 0.59395 0.98724 0.2315 0.11731 0.9959 0.56244 5.26E-05 0.015066 

BAY 1436032 0.088906 0.54676 0.77947 0.41869 0.003297 0.12459 0.44507 0.001689 0.19206 

GSK864 0.20158 0.16901 0.9308 0.40056 0.005079 0.30156 0.28984 0.046066 0.32738 

AG-120 Glycine 0.56274 4.29E-05 0.013371 0.50879 0.000269 0.051657 0.12104 0.41131 0.71166 

AG-881 0.47826 0.000775 0.089965 0.38714 0.007537 0.28057 0.19681 0.18432 0.57774 

BAY 1436032 0.54038 9.51E-05 0.040568 0.5203 0.000186 0.034866 0.15632 0.28772 0.91056 

GSK864 0.41413 0.003683 0.19544 0.36257 0.011728 0.40992 0.16403 0.26438 0.52475 

AG-120 Proline -0.29244 0.044078 0.76875 -0.06198 0.6747 0.99464 0.39731 0.005476 0.45749 

AG-881 -0.17727 0.23247 0.98724 0.16859 0.2564 0.9959 0.43975 0.002176 0.12623 

BAY 1436032 -0.00195 0.98974 0.99613 0.020083 0.8921 0.98665 0.32707 0.023713 0.57676 

GSK864 -0.22178 0.12959 0.92625 0.055905 0.70509 0.99373 0.44084 0.001886 0.12721 

AG-120 1-pyrroline  
hydroxycarboxylate 

0.15827 0.28167 0.49293 0.40187 0.004927 0.03538 0.38211 0.007712 0.09539 

AG-881 0.32678 0.025429 0.11746 0.47895 0.00076 0.015664 0.30296 0.038877 0.184 

BAY 1436032 -0.09043 0.5399 0.71271 0.080439 0.58572 0.77786 0.59086 1.46E-05 0.000717 

GSK864 0.087603 0.55267 0.78607 0.067521 0.64746 0.83965 0.50782 0.000278 0.005831 

AG-120 3-hydroxy- 
Methyl-glutarate 

0.4238 0.002908 0.0169 0.24414 0.094523 0.27987 0.44627 0.001636 0.035871 

AG-881 0.62199 5.13E-06 8.66E-05 0.57366 3.49E-05 0.002645 0.30631 0.036687 0.17802 

BAY 1436032 0.051889 0.72543 0.84618 0.12429 0.39876 0.64002 0.70908 8.26E-08 1.72E-05 

GSK864 0.59477 1.25E-05 0.000329 0.51096 0.000251 0.005984 0.1485 0.31273 0.60302 

AG-120 Acetylglycine 0.43736 0.002064 0.012641 0.6827 2.73E-07 5.69E-05 0.387 0.006919 0.089996 

AG-881 0.3639 0.012342 0.067638 0.60187 1.17E-05 0.001396 0.45294 0.001547 0.020735 

BAY 1436032 0.13797 0.34857 0.54138 0.46874 0.000887 0.011085 0.6498 1.19E-06 0.000103 

GSK864 0.31405 0.030166 0.15047 0.44865 0.001536 0.019889 0.41424 0.003673 0.04135 
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 2-Hydroxyglutarate 2-Oxoglutarate Isocitrate 

Inhibitor Metabolite Correlation p-value FDR Correlation p-value FDR Correlation p-value FDR 

AG-120 GABA -0.44637 0.001632 0.10174 -0.51042 0.000256 0.051657 -0.25608 0.079108 0.59717 

AG-881 -0.19484 0.18881 0.98724 -0.3617 0.01291 0.39265 -0.52995 0.00016 0.024183 

BAY 1436032 -0.24577 0.092292 0.40235 -0.3794 0.008186 0.21046 -0.41088 0.003983 0.28391 

GSK864 -0.12245 0.40584 0.96424 -0.3008 0.038173 0.68002 -0.47916 0.000659 0.082205 

AG-120 Glutathione -0.02551 0.86311 1 -0.12386 0.40042 0.99464 0.22981 0.11601 0.60008 

AG-881 0.001041 0.99475 0.99798 0.056545 0.705 0.9959 0.29672 0.043242 0.40639 

BAY 1436032 -0.0076 0.95925 0.98775 -0.03322 0.82226 0.98051 0.3097 0.03262 0.65762 

GSK864 -0.28441 0.050442 0.79121 -0.23241 0.11185 0.87283 0.4746 0.000751 0.083089 

AG-120 O-acetylserine 0.39188 0.006198 0.031484 0.67434 3.97E-07 6.79E-05 0.40686 0.004382 0.065569 

AG-881 0.39674 0.00609 0.038723 0.58372 2.39E-05 0.00221 0.3861 0.007711 0.064232 

BAY 1436032 0.13591 0.35588 0.54991 0.45028 0.001471 0.01641 0.60617 7.87E-06 0.000468 

GSK864 0.31177 0.031435 0.15555 0.39069 0.006368 0.053764 0.40187 0.004927 0.050254 

AG-120 2-C-methylerythritol 
4P 

0.76053 0 0 0.40328 0.004767 0.03463 -0.16175 0.27114 0.6893 

AG-881 0.74919 1.18E-08 6.02E-07 0.36644 0.011712 0.093509 -0.25856 0.079455 0.28818 

BAY 1436032 0.57371 2.85E-05 0.000726 0.47547 0.000733 0.009489 -0.10508 0.47601 0.77593 

GSK864 0.38797 0.006769 0.050197 0.19507 0.18343 0.42897 0.044941 0.76105 0.90675 
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Table A.VIII.3. Template match correlation analysis to 2-HG and 2-OG of metabolites that were not significantly different between wtIDH1 and mutIDH1R132H LN18 
control cells, and where only mutIDH1R132H LN18 cells responded to treatment with mutIDH1 inhibitors (AG-120, AG-881, BAY 1436032 and GSK864). The CSs were 
separately calculated for each inhibitor and control samples were included. The template match analysis was carried out using Spearman rank correlation as the 
distance measure. FDR = FDR adjusted p-value.  

2-Hydroxyglutarate 2-Oxoglutarate 

Inhibitor Metabolite correlation p-value FDR correlation p-value FDR 

AG-120 ADP -0.26943 0.064307 0.18578 -0.10204 0.48892 0.70098 

AG-881 -0.18548 0.21128 0.49716 -0.17438 0.24027 0.5385 

BAY 1436032 -0.02399 0.87121 0.93905 0.004234 0.97742 0.98877 

GSK864 -0.05743 0.69744 0.87059 0.10074 0.49451 0.73602 

AG-120 Glucose 0.33869 0.018983 0.076513 0.30656 0.034501 0.1505 

AG-881 0.12939 0.38483 0.67017 0.12234 0.41144 0.69614 

BAY 1436032 -0.03181 0.82971 0.91269 0.19127 0.19224 0.43435 

GSK864 -0.31991 0.027101 0.13848 -0.23155 0.11322 0.32862 

AG-120 N-acetyl-alanine 0.43758 0.002052 0.012633 0.68606 2.35E-07 5.47E-05 

AG-881 0.35835 0.013819 0.074428 0.60442 1.06E-05 0.001393 

BAY 1436032 0.093465 0.52632 0.70297 0.40556 0.004519 0.037766 

GSK864 0.23328 0.11049 0.35398 0.32251 0.025824 0.13558 

AG-120 Nonate -0.17282 0.23934 0.45062 -0.24056 0.099578 0.29071 

AG-881 -0.1028 0.49049 0.74786 -0.25173 0.087936 0.31357 

BAY 1436032 -0.31828 0.027925 0.092306 -0.16229 0.26952 0.5197 

GSK864 -0.02855 0.84695 0.9328 0.12972 0.37836 0.64103 

AG-120 TDP 0.47264 0.000794 0.005754 0.60671 7.69E-06 0.000401 

AG-881 0.69496 2.12E-07 6.31E-06 0.47722 0.000798 0.016211 

BAY 1436032 0.55384 5.92E-05 0.00131 0.54983 6.84E-05 0.001779 

GSK864 0.49598 0.0004 0.005586 0.62766 3.17E-06 0.000293 
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9.9.  Appendix IX  

The experiment that the data in this appendix is based on was a metabolomics experiment 

of mutIDH1R132H LN18 cells treated with a range of concentrations (0.05, 0.50, 5.00 and 

10.0 µM) of CB-839 in chapter 6. This appendix includes a DNA concentration table (Table 

A.IX.1), IC-MS identifications (Table A.IX.2), derivatised RPLC-MS identifications (Table 

A.IX.3), and data processing information (Figure A.IX.1). The calibration curve used for 

quantifying glucose in media samples is shown in Figure A.IX.2, with the absorbance and 

calculated concentrations for the samples in Table A.IX.4 (wtIDH1 samples) and A.IX.5 

(mutIDH1R132H samples).  
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Table A.IX.1. DNA concentration of wtIDH1 (WT) and mutIDH1R132H (MUT) LN18 cells from the CB-839 
concentration range experiment. Harvested with 12-well harvesting method and subsequently analysed 
with IC-MS, derivatised RPLC-MS and underivatized RPLC-MS. The maximum possible volume was made 
up for each sample, usually 50 µL and sometimes less. Rel. DNA conc. = relative DNA concentration. 

Sample 
Name 

DNA 1 
(ng/µL) 

DNA 2 
(ng/µL) 

DNA 3 
(ng/µL) 

Average 
(ng/µL) 

Rel. DNA 
conc. 

µL Sample µL Solvent 

MUT-0.05_01 31.90 31.80  31.85 1.093 4.2 45.8 

MUT-0.05_02 35.10 35.10  35.10 1.204 8.5 41.5 

MUT-0.05_03 39.20 38.50  38.85 1.333 12.5 37.5 

MUT-0.05_04 50.80 51.60  51.20 1.756 21.5 28.5 

MUT-0.10_01 39.30 40.70  40.00 1.372 13.6 36.4 

MUT-0.10_02 37.00 37.10  37.05 1.271 10.7 39.3 

MUT-0.10_03 41.10 42.10  41.60 1.427 15.0 35.0 

MUT-0.10_04 33.40 33.50  33.45 1.148 6.4 43.6 

MUT-0.30_01 36.00 35.20  35.60 1.221 9.1 40.9 

MUT-0.30_02 42.50 42.60  42.55 1.460 15.7 34.3 

MUT-0.30_03 38.70 39.00  38.85 1.333 12.5 37.5 

MUT-0.30_04 44.80 45.70  45.25 1.552 17.8 32.2 

MUT-0.70_01 33.70 32.70  33.20 1.139 6.1 43.9 

MUT-0.70_02 36.70 37.00  36.85 1.264 10.4 39.6 

MUT-0.70_03 39.30 39.10  39.20 1.345 12.8 37.2 

MUT-0.70_04 38.80 39.10  38.95 1.336 12.6 37.4 

MUT-1.0_01 18.90 19.30  19.10 - 0.00 50.00 

MUT-1.0_02 35.30 34.90  35.10 1.204 8.5 41.5 

MUT-1.0_03 35.90 36.10  36.00 1.235 9.5 40.5 

MUT-1.0_04 32.40 33.30  32.85 1.127 5.6 44.4 

MUT-3.0_01 38.30 39.60  38.95 1.336 12.6 37.4 

MUT-3.0_02 35.90 34.80  35.35 1.213 8.8 41.2 

MUT-3.0_03 37.20 37.70  37.45 1.285 11.1 38.9 

MUT-3.0_04 35.80 35.80  35.80 1.228 9.3 40.7 

MUT-5.0_01 32.20 32.70  32.45 1.113 5.1 44.9 

MUT-5.0_02 37.00 38.20  37.60 1.290 11.2 38.8 

MUT-5.0_03 34.20 34.20  34.20 1.173 7.4 42.6 

MUT-5.0_04 34.50 35.20  34.85 1.196 8.2 41.8 

MUT-Co_01 37.80 37.80  37.80 1.297 11.4 38.6 

MUT-Co_02 41.30 46.70  44.00 1.509 16.9 33.1 

MUT-Co_03 70.50 70.40  70.45 2.417 29.3 20.7 

MUT-Co_04 53.20 54.70  53.95 1.851 23.0 27.0 

MUT-Co_05 39.20 39.80  39.50 1.355 13.1 36.9 

MUT-Co_06 41.30 43.00  42.15 1.446 15.4 34.6 

MUT-Co_07 52.90 52.90  52.90 1.815 22.4 27.6 

MUT-Co_08 52.60 54.00  53.30 1.828 22.7 27.3 

WT-0.05_01 37.50 37.00  37.25 1.278 10.9 39.1 

WT-0.05_02 36.10 35.20  35.65 1.223 9.1 40.9 

WT-0.05_03 52.30 53.20  52.75 1.810 22.4 27.6 

WT-0.05_04 64.00 60.50 63.10 62.53 2.145 26.7 23.3 

WT-0.10_01 39.70 44.20 43.90 42.60 1.461 15.8 34.2 

WT-0.10_02 40.40 40.40  40.40 1.386 13.9 36.1 

WT-0.10_03 46.80 45.20  46.00 1.578 18.3 31.7 

WT-0.10_04 63.10 60.30  61.70 2.117 26.4 23.6 

WT-0.30_01 41.10 41.60  41.35 1.419 14.8 35.2 

WT-0.30_02 48.30 47.10  47.70 1.636 19.4 30.6 

WT-0.30_03 43.30 43.30  43.30 1.485 16.3 33.7 

WT-0.30_04 39.80 40.60  40.20 1.379 13.7 36.3 

WT-0.70_01 39.00 39.00  39.00 1.338 12.6 37.4 
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Sample 
Name 

DNA 1 
(ng/µL) 

DNA 2 
(ng/µL) 

DNA 3 
(ng/µL) 

Average 
(ng/µL) 

Rel. DNA 
conc. 

µL Sample µL Solvent 

WT-0.70_02 42.30 43.70  43.00 1.475 16.1 33.9 

WT-0.70_03 42.70 44.40  43.55 1.494 16.5 33.5 

WT-0.70_04 45.50 45.80  45.65 1.566 18.1 31.9 

WT-1.0_01 38.20 38.30  38.25 1.312 11.9 38.1 

WT-1.0_02 30.20 32.90 31.70 31.60 1.084 3.9 46.1 

WT-1.0_03 30.40 30.20  30.30 1.039 1.9 48.1 

WT-1.0_04 40.40 41.10  40.75 1.398 14.2 35.8 

WT-3.0_01 39.00 39.50  39.25 1.346 12.9 37.1 

WT-3.0_02 42.20 43.00  42.60 1.461 15.8 34.2 

WT-3.0_03 44.20 43.60  43.90 1.506 16.8 33.2 

WT-3.0_04 50.70 49.50  50.10 1.719 20.9 29.1 

WT-5.0_01 29.00 29.30  29.15 1.000 0.0 50.0 

WT-5.0_02 40.50 40.70  40.60 1.393 14.1 35.9 

WT-5.0_03 40.00 40.50  40.25 1.381 13.8 36.2 

WT-5.0_04 43.20 44.30  43.75 1.501 16.7 33.3 

WT-Co_01 47.90 49.10  48.50 1.664 19.9 30.1 

WT-Co_02 53.20 54.00  53.60 1.839 22.8 27.2 

WT-Co_03 57.50 59.30  58.40 2.003 25.0 25.0 

WT-Co_04 65.10 67.00  66.05 2.266 27.9 22.1 

WT-Co_05 45.90 45.60  45.75 1.569 18.1 31.9 

WT-Co_06 52.40 52.30  52.35 1.796 22.2 27.8 

WT-Co_07 52.20 53.10  52.65 1.806 22.3 27.7 

WT-Co_08 58.70 59.10  58.90 2.021 25.3 24.7 
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Table A.IX.2.  Annotated metabolites from the IC-MS data of CB-839 concentration range experiment. 
Parameters used for determining whether it was a putative or confident identification. FS = 
fragmentation score, ME = mass error, ISS = isotope similarity score, RTE = retention time error, max. 
abun. = max abundance and min. CV% = minimum coefficient of variance, C = Confident and P = putative.  
When provided as a comment, the abbreviation indicates what brought the identification from 
confident to putative (RTE > 1.5 min, ME > 3 ppm, IS < 90%). 

Accepted 
identification 

FS 
ME 
(ppm) 

ISS 
RTE 
(min) 

Max. 
Abun. 

Min. 
CV% 

C/
P 

Comment 

1,2,3-
Trihydroxybenzene 

0 -4.71 93.0 -1.18 117 17.8 P ME 

1-Pyrroline 
hydroxycarboxylic 
acid 

0 -1.22 96.0 -0.57 489 15.2 C   

2-butyl-3-ureido-
succinate 

0 -2.95 97.3 -1.65 127 35.6 P RTE 

2-Hydroxybutyric 
acid 

47.9 0.05 96.6 -0.88 5506 4.1 P 
Isomer of 3-
hydroxybutyric 
acid 

2-Hydroxyglutarate 77.1 -1.39 99.8 -1.14 1667393 3.6 C   

2-Isopropylmalic 
acid 

5.77 -2.72 94.1 -1.17 815 12.9 C   

2-Ketobutyric acid 42.3 -0.03 96.7 -0.96 4953 2.5 C   

2-Oxoglutaric acid 48.3 -1.81   -1.45 47878 5.2 C   

3-(2,5-
Dioxoimidazolidin-4-
yl) propanoic acid 

0 2.55 98.5   4221 8.7 P No RT 

3,3 Dimethyl 
glutarate 

93.8 -1.92 99.0 -1.71 5105 4.1 P RTE 

3,4-dihydroxyphenyl 
acetic acid 

0 -1.38 94.4 -1.7 657 8.8 P RTE 

3-Dehydroquinate 58.8 -1.68 97.9 -0.31 3220 2.5 C   

3-deoxy-2-keto-6-
phosphogluconic 
acid 

74.8 3.08 97.7 -1.61 698 7.6 P RTE 

3-Hydroxyisovaleric 
acid 

0 -4.94 97.8 0.11 521 3.7 P ME 

3-Hydroxymethyl-
glutarate 

80.2 -1.91 98.5 -1.16 17414 9 C   

3-methoxyphenyl-
acetic acid 

0 -2.42 97.0 0.96 4121 2.6 C   

3-Methyl-2-
oxovaleric acid 

0 -0.68 99.8 -0.91 33011 5.5 C   

3-Phosphoglyceric 
acid 

25.9 -1.58 98.5 -1.59 30275 14.6 P RTE 

4-Hydroxy-3-
methoxymandelic 
acid 

0 -0.7 90.8 -1.11 7971 4.3 C   

4-Hydroxybenzoic 
acid 

0 -1.43 94.4 -1.72 10158 3.3 P RTE 

4-Hydroxyproline 91 -1.24 98.4 -0.6 13261 8.6 C   

4-Hydroxy-
pyrrolidinone 

0 -1.26 99.2 0.43 425 25.5 C   

5-Hydroxyhexanoic 
acid 

0 -4.79 93.0 -0.88 346 6.3 P ME 
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Accepted 
identification 

FS 
ME 
(ppm) 

ISS 
RTE 
(min) 

Max. 
Abun. 

Min. 
CV% 

C/
P 

Comment 

6-Phosphogluconic 
acid 

0 -0.49 96.9 -1.97 2451 4.8 P RTE 

Abscisic acid 18.5 -1.23 96.7 -1.75 314 22 P RTE 

Acetic acid 0 -0.91 99.5 -1.06 1235 10.8 C   

Acetoacetate 0 -1.04 92.8 -1.17 1957 4.7 C   

Acetylcysteine 42.6 -1.72 94.5 -1.13 6596 2.9 C   

Acetylglycine 78.3 -0.95 95.9 -0.31 2341 4.8 C   

Adenosine 
diphosphate 

17.7 -1.42 96.9 -1.71 997880 3 P RTE 

Adenosine 
monophosphate  

43.5 -1.89 95.0 -0.7 155825 6.3 C   

Adenosine 
triphosphate  

0 -1.88 85.3 1.36 1292 18.1 P IS 

Adonitol  80.1 -1.53 99.5 -0.24 6799 1.9 P 
Isomer of 
arabitol and 
xylitol 

ADP Glucose 16.7 -0.3 99.3 -1.65 1422 20 P RTE 

Arabinonic acid 64.9 -2.53 94.9 -1.45 3609 2.6 C   

Arabinose 28.4 -1.86 96.7 -0.19 823 6.8 P 
Isomer of 
pentoses 

Arabitol 0 -1.29 99.2 -0.48 5794 6.4 P 
Isomer of 
adonitol and 
xylitol 

Ascorbate 6.59 -2.33 99.2 -1.48 3878 4.7 C   

Beta-Alanine 59.5 -0.97 74.7 -0.97 1469 5.5 C   

Beta-Citryl-L-
glutamic acid 

0 -1.43 98.4 -0.84 549545 10.4 C   

Butyric acid 85.5 -1.43 91.9 -1.67 3097 2.3 P RTE 

Caffeic acid 0 -3.99 96.7   4688 3.4 P No RT and ME 

Citraconic acid 0 -0.17 98.9 -1.02 3171 3 P 
Isomer of e.g. 
itaconic and 
mesaconic acid 

Citric acid 0 -2.77 98.7 -0.71 6781 3.6 P 
Isomer of 
isocitric acid 

Cytidine 
monophosphate 

0 -1.66 87.9 -1.25 9937 6.7 P IS 

Cytidine 
monophosphate N-
acetylneuraminic 
acid 

0 -1.78 97.1 -0.99 99993 2.5 C   

Cytidine 
triphosphate 

7.2 -1.79 97.9 -1.85 297888 4.5 P RTE 

dCTP 0 -2.48 95.3 -1.15 2658 4.9 C   

Deoxyribose 5-
phosphate 

13.1 -1.08   -0.22 3431 4.2 C   

Dihydroxyacetone 75.7 -0.92 99.9 -0.65 1291053 4.1 P 
Isomer of lactic 
acid 

Dihydroxyacetone 
phosphate 

0 -1.77 99.1 -1.55 445 7.6 P RTE 

Dimethyl fumarate 0 -0.87 96.8 -0.77 12480 2.7 C   

dTDP-D-glucose 0 -1.89 95.8 -1.61 81734 2.5 P RTE 

dUMP 0 -1.74 94.8 -1.81 17534 8.9 P RTE 
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Accepted 
identification 

FS 
ME 
(ppm) 

ISS 
RTE 
(min) 

Max. 
Abun. 

Min. 
CV% 

C/
P 

Comment 

Ferulic acid 0 -1.75 89.6 -0.38 2772 4.8 P IS 

Flavin 
Mononucleotide 

0 -1.98 91.5   15806 4.7 P No RT 

Fructose 1,6-
bisphosphate 

50.1 -1.38   -1.88 649 30 C   

Fructose 2,6 
diphosphate 

0 -2.02 98.4 -0.31 65185 2.4 C   

Fructose 6-
phosphate 

67.1 -2.3 99.2 -1.21 5291 1.7 P 
Isomer of 
mannose 6P 

Fumarate 0 -0.68 94.9 -0.64 320 7 C   

Galactaric acid 35.4 -1.46 97.0 -1.18 5569 7.9 C   

Galacturonic acid 78.1 -2.25 99.6 -0.18 2538 6 P 
Isomer of 
glucuronic acid 

Gluconate 72.8 -2.19   -0.76 54864 6.7 C   

Gluconolactone 0 -2.1 92.4 1.51 902 8.2 P RTE 

Glucose 0 -1.63 89.2 1.1 1560 2.7 P 
Isomer of 
hexoses 

Glucose 1-phosphate 87.1 -2.4 98.7 -1 74703 11.9 P 
Isomer of 
galactose 1P 

Glucuronic acid 0 -1.81 95.1 1.33 307 16.9 C   

Glutaconic acid 0 -0.4 99.0 0.3 3651 4.6 P 
Isomer of e.g. 
mesaconic and 
itaconic acid 

Glutamylcysteine 0 -4.22 93.1 -0.27 32759 4.3 P ME 

Glutaric acid 73.7 -1.41 96.5 -1.17 11823 1 P 
Isomer of 
ethylmalonic acid 

Glutathione (GSH) 0 -1.59 88.5 1.18 1112 12.3 P IS 

Glycerol 58.6 -1.02 100.0 -0.19 3386295 2.9 C   

Glycerol 3-
phosphate 

0 1.59   -0.29 415 9.2 C   

Guanosine 
diphosphate 

97.4 -0.51 97.7 -0.14 2171922 7.2 C   

Hippuric acid 67.7 -1.88 90.3 -1.37 2943 10.6 C   

Homogentisic acid 0 -1.6 90.9 0.04 609 7.5 C   

Hydroxy-isobutyric 
acid 

0 -2.01 98.7 -1.25 1294 43.3 P 
Isomer of 3-
hydroxybutyric 
acid 

Hydroxyiso-
heptanoic acid  

0 -4.62 98.5 1.01 99 17.8 P ME 

Isocitrate 0 -3.11 97.9 -0.09 3892 3.8 P 
IS and isomer of 
citric acid 

Kojic acid 93.7 -1.24 97.5 -0.15 4019 2.3 C   

Kynurenic acid 0 -1.64 88.8 -1.75 707 50.3 P RTE 

Lactic acid 0 -1.52 96.1 0.23 814 10.5 P 
Isoemr of 
dihydroxyaceton
e 

Lactose 80.4 -3.35 89.6 -0.37 770275 13.6 P ME and IS 

Lactoyl-isoleucine  0 -4.67 96.7 -0.21 3338 5.2 C   

Maleic acid 0 -4.98 94.9 1.82 630 3.6 C   

Malic acid 72.7 -0.92 99.1 -1.13 189122 4.6 C   

Malitol 0 -2.69 93.9 -0.55 8291 4.6 C   
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Accepted 
identification 

FS 
ME 
(ppm) 

ISS 
RTE 
(min) 

Max. 
Abun. 

Min. 
CV% 

C/
P 

Comment 

Methionine 
sulfoxide 

0 -0.7 88.9   223 30.1 P No RT and IS 

Methylglutaric acid 23.1 -0.92 95.4 -0.89 8075 7.8 C   

Methylisocitric acid 0 -1.16 98.9 -0.91 5693 3.7 P 
Isomer of 2-
methylcitric acid 

Myoinositol 94.5 -2.06 97.3 -0.23 3530570 5 P 
Isomer of e.g. 
scyllitol 

N-Acetyl-aspartate 0 -1.93 98.7 -0.95 314574 6.5 C   

N-Acetylaspartyl-
glutamic acid 

0 -0.83 99.4 -1.41 72005 3.4 C   

N-Acetyl-D-
glucosamine 

52.2 -1.11 95.2 -0.15 404 69.3 C   

N-acetyl-
glucosamine-1-
phosphate 

0 -1.96 97.4 -0.66 3289 7 C   

N-Acetylglutamate 70.4 -4.85 91.4 -0.84 26639 6.5 P ME 

N-Acetyl-L-alanine 83.8 -1.52 94.9 -0.47 8087 3.5 C   

N-Acetyl-L-
methionine 

97.3 -1.55 95.3 -0.46 8599 9.4 C   

N-Acetyl-L-
phenylalanine 

38.6 -1.96 98.5 -0.84 287 14.1 C   

N-Acetylneuraminic 
acid  

90.1 -1.31 94.9 -0.78 269933 15.4 C   

N-Acetylvaline 68.8 -2.24 92.0 -0.56 715 14.7 C   

NADH 0 -1.51 94.1 -1.63 776 11.1 P RTE 

NADPH 0 -1.96 91.7 0.66 11128 23 C   

N-carbamoyl-L-
aspartic acid 

0 -1.71 97.2 -1.22 3622 4.8 C   

N-Formyl-
methionine 

0 -2.42 95.3 -0.86 1154 7.8 C   

Nonate  0 -4.79 95.4 -0.64 9444 8.5 C   

O-Acetylserine 0 -0.63 93.7 -0.6 311820 3.9 C   

O-Phosphoserine 77.4 -1.4 97.2 -1.38 43696 6.7 C   

Oxoadipic acid 50.2 -2.67 96.2 -1.82 3941 5 P ME 

Pantothenic acid 61.8 -2.06 97.8 -0.8 418670 7.5 C   

Phenylacetic Acid 0 -4.62 91.3 1.31 4975 2.3 P ME 

Phenylacetylglycine 0 -4.17 97.1 0.47 178 32.1 P ME 

Phosphocreatine 47.1 -4.13 98.4 -0.63 99087 9.7 P ME 

Phosphoenolpyruvic 
acid 

26.9 -2.09 99.5 -1.76 6347 10.3 P RTE 

Phosphoglycolic acid 78 -1.22 99.7 -1.59 148 34.5 P RTE 

Phosphoribosyl 
pyrophosphate 

0 -1.74 95.4 -1.66 9282 7.9 P RTE 

Protocatechuic acid 0 -2.96 90.0 -1.23 684 10.9 C   

Pyridoxal 5'-
phosphate 

0 -2.82 90.0 -1.71 1564 5.1 P RTE 

Pyruvic acid 73.4 -1.01 99.8 -1.01 61794 2.5 C   

Quercetin 0 4.92 83.6 -0.63 755 9.4 P ME 

Quinic acid 34.5 -1.98 94.6 -1.04 1093 16.4 C   

Quinolinic acid 0 3.93 91.5 -0.03 1375 8.3 C   

Raffinose 0 -0.98 89.2 -0.01 1646 68.5 P IS 
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Accepted 
identification 

FS 
ME 
(ppm) 

ISS 
RTE 
(min) 

Max. 
Abun. 

Min. 
CV% 

C/
P 

Comment 

Ribose 5-phosphate 66.8 1.53 97.0 -1.37 85858 1 P 
Isomer of 
xylulose 5P 

Ribulose 5-
phosphate 

16.8 1.18 94.4 -0.75 8117 5.3 C   

Scyllitol 0 -1.57 98.6 -0.09 126789 3.7 P 
Isomer of myo-
inositol 

Sebacic acid 0 -0.18 88.8 -1.81 440 2.8 P RTE and IS 

Sedoheptulose 1-
phosphate 

0 -0.17 92.1 -0.56 3057 5.9 C   

Sedoheptulose 7-
phosphate 

67.8 -0.73   -1.24 2834 3.1 C   

Sorbitol 76.9 -2.31 99.4 -0.19 118229 8.2 P 
Isomer of 
mannitol 

Sorbitol-6-
phosphate 

0 -1.03 97.8 0.1 22226 10.2 C   

Succinic acid 0 0.1 97.1 -1.2 14989 1.7 C   

Succinic acid 
semialdehyde 

0 -0.56 98.8 -1.3 11125 4.5 C   

Taurine 92.9 -1.29 93.2 -0.81 1033558 4.5 C   

TDP 0 -2.19 86.7 -1.51 3317 5.9 P RTE and IS 

Threitol 87.7 -0.74 98.3 -0.16 22079 7 C   

Thymidine 
triphosphate 

6.71 -1.93 92.3 -1.69 12287 4.5 P RTE 

Tyrosol 0 -0.6 85.4 1.24 237 4.8 P IS 

UDP-galactose 0 -1.73 96.5 -1.34 22771 8.6 P 
Isomer of 
UDP/glucose 

Uracil 76.7 0.08 94.9 -1.49 362 10.6 C   

Ureidopropionic acid 0 -4.1 94.4 1.76 249 8.8 P RTE 

Uridine 5'-
diphosphate 

13.7 -1.9 98.7 0.71 3173857 4.6 C   

Uridine 5'-
monophosphate 

53.3 -1.98 97.8 -1.99 149042 2.7 P RTE 

Xanthylic acid 0 -3.24 95.8 0.2 186 50.2 P ME 

Xylitol 0 -0.6 99.6 0.72 161 21.3 P 
Isomer of 
arabitol and 
adonitol 
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Table A.IX.3. Annotated metabolites from the derivatised RPLC-MS data of the CB-839 concentration 
range experiment. Parameters used for determining whether it was a putative or confident 
identification. ME = mass error, ISS = isotope similarity score, RTE = retention time error, max. abun. = 
max abundance and min. CV% = minimum coefficient of variance, C = Confident and P = putative. When 
provided as a comment, the abbreviation indicates what brought the identification from confident to 
putative (isomer, RTE > 0.5 min, ME > 3 ppm, IS < 90%). 

Accepted Description ME 
(ppm) 

ISS RTE 
(min) 

Max. 
abun. 

Min. 
CV% 

C/
P 

Comment 

2-Aminoadipic acid -0.04 97.7 0.21 301 7.7 C   

4-Hydroxyproline -0.53 96.3   30 6.7 P No RT 

Alanine -0.68 97.3 0.24 9343 3 C   

Amino methoxybenzoic acid -3.47 92.9 -0.29 6 14.2 P ME 

GABA -2.91 81 0.33 35 1.7 P 

Isomer of 3-
amino-2-
methylpropanoic 
acid 

Arginine -0.89 97.4 0.28 102 4.5 C   

Asparagine -2.09 95 0.18 91 4.6 C   

B-alanine -0.11 91.9 0.25 581 2.5 C   

Citrulline -1.87 96.6 0.21 26 7.7 C   

Cysteine -3.36 88.7 -0.85 34 5.7 P IS 

Glutamic acid -0.43 95.8 0.23 5110 3.5 C   

Glutamine -0.61 96.1 0.21 3200 9.7 C   

Glycine -1.18 97.4 0.31 2251 1.9 C   

Gly-Gly -0.32 88   8 7.3 P No RT and IS 

Histidine -1.31 96 0.29 236 11.4 C   

Homocysteine -2.03 93.7 0 5 8.6 C   

Homoserine -3.05 96 0.2 7 8.9 C   

Hypotaurine 0.46 93.5 0.3 109 2.1 C   

Hypoxanthine -4.93 95.2 -0.13 4 16.1 P ME 

Isoleucine -0.59 97.2 0.27 3741 2 P Isomer of leucine 

Kynurenine -2.91 88.3 0.17 2 34.4 P IS 

L-Cystathionine -1.40 84.7 0.15 2 18.2 P IS 

L-Cystine -0.42 93   3 20.1 P No RT 

Leucine -0.56 95 0.09 2890 4.8 P 
Isomer of 
isoleucine 

Lysine 0.12 96.7 0.14 2023 4.1 C   

N-Acetyl-ornithine -1.88 97.6 0.11 16 3.1 P 
Isomer of L-
theanine 

Ornithine -3.77 94.8 0.29 23 5.4 P ME 

Oxidised Glutathione -0.15 92 0.1 1688 6.5 C   

Phenylalanine -0.68 95.9 0.18 2484 4.4 C   

Pipecolic acid -4.38 95.7 0.54 33 7.9 P ME 

Proline -1.53 98.5 0.25 470 3.7 C   

Putrescine -0.73 95.8 0.09 199 5.1 C   

Pyroglutamic Acid -0.88 90.5 -0.89 12 3.7 P RTE 

Serine -1.62 97.7 0.33 736 2.3 C   

Serotonin 1.02 85 0.05 19 4.7 P IS 

Taurine -2.09 95.6   881 4.2 P No RT 

Threonine -0.62 96.2 0.26 3521 1 C   

Tryptophan -1.19 93.2 0.16 438 2.4 C   

Tyrosine -0.57 95.8 0.17 1761 3.1 C   

Valine -0.69 97.2 0.19 2735 1.1 C   
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Figure A.IX.1. Sample distribution plots of IC-MS and derivatised RPLC-MS data from the CB-839 
concentration range experiment before and after normalisation.  

 

 

 

 
Figure A.IX.2. Calibration curves for quantifying glucose in media (mg/mL). The samples were measured on 
two plates and calibration curves were prepared for each plate.  
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Table A.IX.4. Absorbance and calculated concentration of glucose concentration (mg/mL) in the wtIDH1 
media samples of the CB-839 concentration range experiment. The concentration was calculated with 
the formula given for WT in Figure A.IX.2.  

Concentration  
CB-839 (μM) 

Absorbance Glucose concentration (mg/mL) 

Average Standard deviation  Average  Standard deviation  

0 0.82 0.09 1.1 0.2 

0.05 0.62 0.12 0.8 0.2 

0.10 0.91 0.04 1.3 0.2 

0.30 0.94 0.02 1.29 0.06 

0.70 0.77 0.02 1.06 0.03 

1.00 0.74 0.07 1.0 0.2 

3.00 0.60 0.12 0.83 0.05 

5.00 0.66 0.04 0.91 0.03 

Table A.IX.5. Absorbance and calculated concentration of glucose concentration (mg/mL) in the 
mutIDH1R132H media samples of the CB-839 concentration range experiment. The concentration was 
calculated with the formula given for MUTT in Figure A.IX.2. 

Concentration 
CB-839 (μM) 

Absorbance Glucose concentration (mg/mL) 

Average Standard deviation Average Standard deviation 

0 0.87 0.34 1.2 0.2 

0.05 1.01 0.21 1.3 0.2 

0.10 1.01 0.13 1.3 0.3 

0.30 0.92 0.15 1.2 0.2 

0.70 0.97 0.12 1.3 0.2 

1.00 0.84 0.13 1.1 0.1 

3.00 0.77 0.07 1.0 0.1 

5.00 0.82 0.09 1.08 0.09 
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9.10. Appendix X 

R code used for data analysis is presented below.  

CHECKING DATA NORMALISATION, SCALING AND TRANSFORMATION 
##### SECTION 1: SET VARIABLES ##### 
# Fill in the path to the correct folder and NB! You need FORWARD slashes, not backward slashes 
wd = "…/Folder" 
 
# File name, needs to include .csv at the end! And be in the folder set in wd.  
filnm = " example.csv " 
 
# Filtration parameters 
# filt options: rsd, nrsd, mean, sd, mad, iqr or none  
filt = "iqr" 
 
################################################################### 
##### SECTION 2 ##### 
 
### SET WORKING DIRECTORY ### 
# Working directory is also where generated files will be saved 
setwd(wd) 
 
### INSTALL AND LOAD PACKAGES #### 
pacman::p_load(pacman, rio, tidyverse, tibble) 
library(png);library(grid);library(gridExtra); library(ggplot2); library(MetaboAnalystR) 
 
# Missing library needed to do CVs: library(mvrVal) 
 
### READING THE DATAFILE ### 
# Make the object the data goes into 
mSet<-InitDataObjects("pktable", "stat", FALSE) 
 
# Upload file 
# Add the correct file name in here -- make sure it is in the correct folder! 
# Check the Read.TextData() on how to correctly specify data format and label types.  
mSet<-Read.TextData(mSet, filnm, "colu", "disc") 
 
### DATA INTEGRITY CHECK AND REPLACE MISSING VALUES ### 
# Check the data 
mSet$msgSet$read.msg 
mSet<-SanityCheckData(mSet) 
mSet<-ContainMissing(mSet) 
 
# Replace missing data with a minimum value 
mSet<-ReplaceMin(mSet) 
mSet<-SanityCheckData(mSet) 
mSet<-ContainMissing(mSet) 
 
### FILTRATION ### 
mSet<-FilterVariable(mSet, filt, "F", 25) 
 
### NORMALISATION, SCALING AND TRANSFORMATION ### 
#  Prepare for normalization 
mSet<-PreparePrenormData(mSet) 
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# Vectors with the different normalization, transformation and scaling parameters 
Norm<-c("NULL", "SumNorm", "MedianNorm", "QuantileNorm") 
Trans<-c("NULL", "LogNorm") 
Scal<-c("NULL", "AutoNorm", "ParetoNorm") 
 
# Looping through different normaliZation, transformation and scaling methods 
# mSet2 is the mSet object used within the loop, while the original non-normalised mSet is retained outside 
of the loop.  
for (i in Norm){ 
  for (j in Trans){ 
    for(k in Scal){ 
      # Do normalization/transformation/scaling 
      mSet2<-Normalization(mSet, rowNorm = i, transNorm = j, scaleNorm = k, ratio=FALSE, ratioNum=20) 
       
      # Make a title indicating what normalization etc has been done 
      title = paste(i, j, k) 
       
      # Make the Sample and feature normalization plots 
      mSet2<-PlotNormSummary(mSet2, paste("FEATURES", title, sep = " "), "png", 300, width=NA) 
      mSet2<-PlotSampleNormSummary(mSet2, paste("SAMPLES", title, sep = " "), "png", 300, width=NA) 
       
      # Do PCA and make scatter plots of PC1 versus PC2 
      mSet2<-PCA.Anal(mSet2) 
      mSet2<-PlotPCA2DScore(mSet2, paste("PCA", title, sep = " "), "png", 300, width=NA, 1, 2) 
       
      # Plot HEATMAP 
      mSet2<-PlotHeatMap(mSet2, paste("HEATMAP", title, sep = " "), "png", 300, width=NA, "norm", "row",  
                         "euclidean", "ward.D","bwm", "overview", F, F, NULL, T, F) 
       
      # Save each .png with title etc 
      title1<-paste("FEATURES ", title, "dpi300", ".png", sep="") 
      plot1<-readPNG(title1, native = FALSE, info = FALSE) 
       
      title2<-paste("SAMPLES ", title, "dpi300", ".png", sep="") 
      plot2<-readPNG(title2, native = FALSE, info = FALSE) 
       
      title3<-paste("PCA ", title, "dpi300", ".png", sep="") 
      plot3<-readPNG(title3, native = FALSE, info = FALSE) 
       
      title4<-paste("HEATMAP ", title, "dpi300", ".png", sep="") 
      plot4<-readPNG(title4, native = FALSE, info = FALSE) 
       
      # Combine the .pngs into a group image 
      ggsave(paste("GROUP", title, ".png"), arrangeGrob(rasterGrob(plot1), rasterGrob(plot2), 
rasterGrob(plot3), rasterGrob(plot4), nrow=1, top=title), height=12.0, units="cm", dpi=300) 
       
    }}} 
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OUTPUT NORMALISED DATA FILE AND CALCULATE MEAN AND STANDARD DEVIATION  
##### SECTION 1: SET VARIABLES ##### 
#Fill in the path to the correct folder and NB! You need FORWARD slashes, not backward slashes 
wd = "…/folder" 
 
# Filename, needs to include .csv at the end! And be in the folder set in wd.  
filnm = "example.csv " 
 
# File name for mean and SD calculations 
filn_ms = "example_tidy.csv " 
 
# Filtration parameters 
# filt options: rsd, nrsd, mean, sd, mad, iqr or none  
filt = "iqr" 
 
# Set normalisation, transformation and scaling parameters 
# norm options: NULL, SumNorm, MedianNorm, QuantileNorm 
# tran options: NULL, LogNorm, CrNorm 
# scal options: NULL, MeanCenter, AutoNorm, ParetoNorm, RangeNorm 
norm = "MedianNorm" 
tran = "LogNorm" 
scal = "NULL" 
 
# SET WORKING DIRECTORY # 
#Working directory is also where generated files will be saved 
setwd(wd) 
 
# INSTALL AND LOAD PACKAGES # 
# Pacman for various plotting stuff -- tidyverse for piping (%>%) 
pacman::p_load(pacman, rio, tidyverse, tibble) 
 
# Load various libraries that will/might be useful 
library(MetaboAnalystR);library(png);library(grid);library(gridExtra); library(ggplot2);  
library(plyr); library(dplyr); library(memoise); library(readr) 
 
# READING THE DATAFILE # 
#Make the object the data goes into 
mSet<-InitDataObjects("pktable", "stat", FALSE) 
 
# Upload file 
# Check the Read.TextData() on how to correctly specify data format and label types.  
mSet<-Read.TextData(mSet, filnm, "colu", "disc") 
 
# DATA INTEGRITY CHECK AND REPLACE MISSING VALUES # 
# Check the data 
mSet$msgSet$read.msg 
mSet<-SanityCheckData(mSet) 
mSet<-ContainMissing(mSet) 
 
# Replace missing data with a minimum value 
mSet<-ReplaceMin(mSet) 
mSet<-SanityCheckData(mSet) 
mSet<-ContainMissing(mSet) 
 
# FILTRATION # 
# No data filtration, check FilterVariable() if you want to filter data 
mSet<-FilterVariable(mSet, filt, "F", 25) 
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# NORMALISATION, SCALING AND TRANSFORMATION # 
# Prepare for normalization 
mSet<-PreparePrenormData(mSet) 
 
# Normalise, scale and transform det data 
mSet<-Normalization(mSet, rowNorm=norm, transNorm=tran, scaleNorm=scal, ratio=FALSE, 
ratioNum=20) 
 
# Save the processed data as a .csv file, returns 'data_original', 'data_processed', 'data_normalized' 
mSet<-SaveTransformedData(mSet) 
 
# READ THE NORMALISED DATA FILE AND TRANSPOSE IF NECESSARY # 
# Read the new .csv file -- it should just be in the working directory, so no need to specify location 
# dp = processed data 
dp<-as.data.frame(read.csv(filsb)) 
# Change the name of the first column to 'Sample' 
colnames(dp)[colnames(dp) == "X"] <- "Sample" 
 
# Now we must check if this file requires transposing or not. File must have data in columns and samples 
in rows for later sub-setting to work 
nm = as.data.frame(names(dp)) 
 
if (nm[2,] != "Label"){ 
  # First, save the compound ion/metabolite names and check that it's correct 
  metabo_names<-dp[,1] 
  metabo_names<-metabo_names[-c(1)] 
  # Second save the sample names 
  Sample<-as.data.frame(colnames(dp)) 
  Sample<-Sample[-c(1),] 
   
  # To avoid row-name issues after transposing, we will add a row of numbers to the top 
  # First, make the numbers. Go from 1 to n, n = ncol(dp) 
  nrcol <- ncol(dp) 
  rf <- as.data.frame(matrix(ncol=nrcol, nrow=1)) 
  for(i in 1:nrcol) {rf[1,i] = as.character(i)} 
  # Rename the columns after the rows, i.e. numbers as characters 
  names(rf)<-rf 
  # Then we change the column names of dp to match rf, so that they can merge without R throwing a fit 
  names(dp) <- names(rf) 
  # Finally, save the first row as a data frame, so this can be added back as a column later 
  Label<-as.data.frame(t(dp[1,])) 
  Label<-Label[-c(1),] 
   
  # Then transpose the data frame, except for the first column 
  dp_transpose<- as.data.frame(t((dp[,-1]))) 
  # Then transform the data to numeric values 
  dp_transpose<-data.frame(lapply(dp_transpose[,-1], as.numeric)) 
  # Add back the correct compound ion/metabolite names and then check to see that the file looks correct 
  colnames(dp_transpose)<-metabo_names 
  # Add back the column containing "sample" information 
  dp_transpose<-cbind(Sample, Label, dp_transpose) 
   
} else { 
  # Re-load dp, but such that it doesn't mess up the column names 
  dp_transpose<-as.data.frame(read.csv("data_normalized.csv", check.names=FALSE)) 
  # Change the name of the first column to 'Sample' 
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  names(dp_transpose)[1]<-"Sample" 
} 
 
# First save how many unique groups there are in the data set 
dp_uniq <- unique(dp_transpose$Label) 
cnt <- length(dp_uniq) 
print(paste("Number of experimental groups is", cnt)) 
 
### Output mean and standard deviation for all compounds ### 
# Tidy column names of dp_transpose 
names(dp_transpose)<- gsub("/", "_", names(dp_transpose)) 
names(dp_transpose)<- gsub(" ", "_", names(dp_transpose)) 
names(dp_transpose)<- gsub("-", "_", names(dp_transpose)) 
 
# Open a list called Compound 
Compound <- c() 
#Open a data frame to store all the mean calculations in 
dp_ALL_mn <- as.data.frame(t(sort(dp_uniq))) 
 
# Calculate means and then append those as rows to dp_ALL_mn and save compound names in Compound 
list 
for (i in colnames(dp_transpose[- c(1,2)])){ 
  # First calculate the mean of each compound for each experimental group 
  dp_subset <- subset(dp_transpose, select = c(Sample, Label, get(i))) 
  colnames(dp_subset)[3] <- "Compound" 
  dp_mn <- ddply(dp_subset, "Label", summarise, mean = mean(Compound),  sd = sd(Compound)) 
  # Also save the compound name in a separate list 
  Compound <- append(Compound, paste0(i, "__mean")) 
  Compound <- append(Compound, paste0(i, "__SD")) 
  # Transposing dp_mn so that it can be used properly later 
  dp_mnt <- as.data.frame(t(dp_mn[,-1])) 
  # Then transform the data to numeric values 
  dp_mnt<-data.frame(lapply(dp_mnt, as.numeric)) 
   
  dp_ALL_mn <- rbind.data.frame(dp_ALL_mn, dp_mnt) 
} 
 
# Get labels from top row of dp_ALL_mn, which is the different experimental groups 
Label_names <- dp_ALL_mn[1,] 
# Rename the summary table with those experimental group names 
colnames(dp_ALL_mn)<-Label_names 
# Remove the top row, which is now no longer necessary 
dp_ALL_mn <- dp_ALL_mn[-1,] 
#Append the list Compound as a column, it will now say what compound is in which row 
dp_ALL_mn <- cbind(Compound, dp_ALL_mn) 
 
# Write new file 
write_csv(dp_ALL_mn, file = filn_ms, append = FALSE, col_names = TRUE) 
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FOLD CHANGE ANS STATISTICAL TESTS 
Uses dp_transpose from normalised data output 
 
##### SECTION 1: SET VARIABLES ##### 
# Choose whether you want to calculate fold-change as a ratio (A/B) or as fraction ((A-B)/B) 
#"rat" for ratio and "frac" for fraction 
clc <- "rat" 
 
# Significance test parameters 
# Ls1 is the group you want to compare the groups in Ls2 to -- this can also be a (short) list, then write 
c("Name of Group 1", ..., "Name of Group2") 
# NB! I recommend keeping ls1 to a single group and the running the code again with a different ls1. Too 
many groups in ls1 will severely slow down the code 
ls1 = c("") 
# Ls2 are the groups that you want to test relative to ls1, this can be longer (e.g. all the treatment groups) 
ls2 <- c("" ) 
 
# Identifier to add to the file name for the FDR test output  
idF = "" 
# Identifier to add to the file name for the Tukey's test output  
idT = "" 
 
## FOLD CHANGE CALCULATIONS ##   
# Open a list called Compound 
Compound <- c() 
# Open a data frame to store all the mean calculations in 
dp_ALL_mn <- as.data.frame(t(sort(dp_uniq))) 
 
# Calculate means and then append those as rows to dp_ALL_mn and save compound names in Compound 
list 
for (i in colnames(dp_transpose[- c(1,2)])){ 
  # First calculate the mean of each compound for each experimental group 
  dp_subset <- subset(dp_transpose, select = c(Sample, Label, get(i))) 
  colnames(dp_subset)[3] <- "Compound" 
  dp_mn <- ddply(dp_subset, "Label", summarise, mean = mean(Compound)) 
  #  Also save the compound name in a separate list 
  Compound <- append(Compound, i) 
   
  # Transposing dp_mn so that it can be used properly later 
  dp_mnt <- as.data.frame(t(dp_mn[,-1])) 
  #Then transform the data to numeric values 
  dp_mnt<-data.frame(lapply(dp_mnt, as.numeric)) 
 
  dp_ALL_mn <- rbind.data.frame(dp_ALL_mn, dp_mnt) 
} 
 
# Get labels from top row of dp_ALL_mn, which is the different experimental groups 
Label_names <- dp_ALL_mn[1,] 
# Rename the summary table with those experimental group names 
colnames(dp_ALL_mn)<-Label_names 
# Remove the top row, which is now no longer necessary 
dp_ALL_mn <- dp_ALL_mn[-1,] 
# Append the list Compound as a column, it will now say what compound is in which row 
dp_ALL_mn <- cbind(Compound, dp_ALL_mn) 
 
#Compare each experimental group with another, writing out a .csv file for each group of comparisons 
# The for-loop includes an if/else statement calculating either ratios or fractions  
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for (m in colnames(dp_ALL_mn[,-1])){ 
  # Define the group you are comparing to 
  Ctr = m 
   
  # Open a new data frame for storing the ratios by pasting in the Compound names; rename the column 
Compound  
  dp_ALL_clc <- as.data.frame(dp_ALL_mn$Compound) 
  colnames(dp_ALL_clc)[1] <- "Compound" 
   
  # Calculate ratios or fractions 
  if (clc == "rat"){ 
    #  Loop through dp_ALL_mn and use that to calculate ratios (stored in dp_ALL_clc) of Ctr vs the other 
experimental groups 
    for (n in colnames(dp_ALL_mn[,-1])){ 
      dp_ALL_clc$ratio <- as.numeric(dp_ALL_mn[[Ctr]])/as.numeric(dp_ALL_mn[[n]]) 
      comb <- paste("Ratio", paste(Ctr, "/", n, sep = ""), sep = " ") 
      names(dp_ALL_clc)[names(dp_ALL_clc) == "ratio"] <- comb 
    }  
  } else if (clc == "frac"){ 
    #Loop through dp_ALL_mn and use that to calculate fractions (stored in dp_ALL_clc) of Ctr vs the other 
experimental groups 
    for (n in colnames(dp_ALL_mn[,-1])){ 
      dp_ALL_clc$ratio <- (as.numeric(dp_ALL_mn[[n]])-
as.numeric(dp_ALL_mn[[Ctr]])/as.numeric(dp_ALL_mn[[Ctr]])) 
      comb <- paste("Fraction", paste(Ctr, "/", n, sep = ""), sep = " ") 
      names(dp_ALL_clc)[names(dp_ALL_clc) == "ratio"] <- comb 
    } 
  } else { 
    print("Define what kind of calculation you want to do (see section 1)") 
  } 
   
  # Delete the column containing Ctr/Ctr 
  dp_ALL_clc <- dplyr:::select(dp_ALL_clc, -ends_with(Ctr)) 
 
  # Save file as .csv 
  wd_temp <- wd 
  # Save file with Ratio or Fraction in file name, depending on what has been specified 
  if (clc == "rat"){ 
    filnm_temp <- paste("/", "Ratio of ", Ctr, " to other groups", ".csv", sep = "") 
  } else if (clc == "frac"){ 
    filnm_temp <- paste("/", "Fraction of ", Ctr, " to other groups", ".csv", sep = "") 
  } else {print("Check that clc has been defined in section 1")} 
  wd_temp <- paste(wd_temp, filnm_temp, sep = "") 
  write_excel_csv(dp_ALL_clc, wd_temp, delim = ";", append = FALSE, col_names = TRUE) 
} 
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## TUKEY'S TEST ## 
#Open a new data frame to store all of the results 
dp_tukey <- setNames(data.frame(matrix(ncol = 10, nrow = 0)), c("Metabolites", "term", "group1",
 "group2", "null.value", "estimate", "conf.low", "conf.high", "p.adj",
 "p.adj.signif")) 
 
# For loop in which Tukey's test is done to binary comparisons, not across the whole data set, to avoid for 
"over correction" of p-values 
for (g in ls1){ 
  for (r in ls2){ 
    if (g == r) next 
    # Make a temporary data frame with only two groups  
    dp_tmp_filt <- filter(dp_transpose, Label == g | Label == r) 
     
    # Pivot to make a long table with only 3 columns 
    dp_long <- dp_tmp_filt %>%  
      select(-Sample) %>%  
      pivot_longer(-Label, names_to = "Metabolites", values_to = "Value") 
     
    # Tidy up dp_long names 
    dp_long <- dp_long %>% 
      mutate(across(.cols = Label,  
                    .fns = ~ str_replace_all(., 
                                             pattern = "-",  
                                             replacement= "."))) %>%  
      mutate(across(.cols = Metabolites,  
                    .fns = ~ str_replace_all(., 
                                             pattern = "-",  
                                             replacement= "_"))) 
     
    # Calculate p-values, using Tukey as a multiple comparison correction 
    dp_tukey_tmp <- dp_long %>%  
      group_by(Metabolites) %>% 
      rstatix:::tukey_hsd(Value ~ Label) 
     
    # Remove all of the ns from dp_tukey 
    dp_tukey_SDonly <- dp_tukey_tmp %>%  
      filter(!str_detect(p.adj.signif, "ns")) 
     
    #Append to dp_tukey, which will hold all of the results in the end 
    dp_tukey <- rbind(dp_tukey, dp_tukey_SDonly) 
  } 
} 
 
# Save the Tukey output as a .csv file 
write_csv(dp_tukey, file = idT, append = FALSE, col_names = TRUE) 
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# fdr CORRECTED T-TEST 
#Open a new data frame to store all of the results 
dp_FDR <- setNames(data.frame(matrix(ncol = 11, nrow = 0)), 
c("Metabolites",".y.","group1","group2","n1","n2","statistic","df","p","p.adj","p.adj.signif")) 
 
# For-loop 
for (g in ls1){ 
  for (r in ls2){ 
    if (g == r) next 
    # Make a temporary data frame with only two groups  
    dp_tmp_filt <- filter(dp_transpose, Label == g | Label == r) 
     
    # Pivot to make a long table with only 3 columns 
    dp_long <- dp_tmp_filt %>%  
      select(-Sample) %>%  
      pivot_longer(-Label, names_to = "Metabolites", values_to = "Value") 
     
    # Tidy up dp_long names 
    dp_long <- dp_long %>% 
      mutate(across(.cols = Label,  
                    .fns = ~ str_replace_all(., 
                                             pattern = "-",  
                                             replacement= "."))) %>%  
      mutate(across(.cols = Metabolites,  
                    .fns = ~ str_replace_all(., 
                                             pattern = "-",  
                                             replacement= "_"))) 
     
    # Calculate p-values, using Tukey as a multiple comparison correction 
    dp_FDR_tmp <- dp_long %>%  
      group_by(Metabolites) %>%  
      t_test(Value ~ Label) %>%  
      adjust_pvalue(method = "fdr") %>%  
      add_significance() 
     
    # Remove all of the ns from dp_tukey 
    dp_FDR_SDonly <- dp_FDR_tmp %>%  
      filter(!str_detect(p.adj.signif, "ns")) 
     
    #Append to dp_tukey, which will hold all of the results in the end 
    dp_FDR <- rbind(dp_FDR, dp_FDR_SDonly) 
  } 
} 
 
# Save the FDR output as a .csv file 
write_csv(dp_FDR, file = idF, append = FALSE, col_names = TRUE) 
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LINE PLOTS 
Uses dp_transpose from normalised data output 
 
## DEFINING COLORS ### 
# Before plotting: colour palette must be defined. Everything is in HEX code.  
# A list of hex codes and their colour description is given at the very end.  
# Palette1: Line colour between points 
palette1 <- c("") 
# Palette2: Line colour of error bars 
palette2 <- c("black") 
# Palette3: Point colour, add enough for the number of experimental groups 
palette3 <- c("black") 
# Palette4: color of grid and frame around plot  
palette4 <- c("grey") 
 
### DEFINING PLOT SHAPES ### 
# Depending on what you are plotting it can be helpful to define different shapes 
# See ggplot2_shapes.png for the numbers and corresponding shapes 
# NB! You must provide the same number of defined shapes as you have experimental groups 
# Swap out the numbers between the brackets of c() 
shp = c() 
# Data point size 
psz=1 
# Line width between points 
lsz=0.75 
# Line width of error bars 
eblsz=0.5 
 
### DEFINING FONT, FONT SIZE AND OTHER PLOT PARAMETERS ### 
# Defaults/recommendations are given in the supporting document 
# Plot title size, font face type (plain, italic, bold, bold.italic) and font type (sans, mono or serif) 
tisz=20; tifc="plain"; fnt="sans" 
# Title for the y-axis 
yti = "Normalised Ion Abundance" 
# Title for the x-axis -- here with a unicode for the Greek letter mu 
xti = paste0("Time (hours)") 
# Plot font size 
plsz=16 
# DPI/Image resolution 
dpisz=300 
# xang is angle of data labels on x-axis. Number = degress rotation. Default 0 degree.  
# hjx = adjustment of placement of x label, for xang = 0 or 90, hjx = 0.5. For xang = 45, hjx = 1.   
xang=45; hjx = 1 
# Y-axis minimum (ymi) and maximum (yma). This ensures that all plots are easy to compare. Can use NA 
for open ended min/max 
ymi=0; yma=NA 
# Numeric x-axis? "Y" or "N" 
xx = "Y" 
# X-axis minimum and maximum 
xmi = 20; xma = 100 
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# MAKING THE PLOTS # 
# The for-loop first makes a sub-setted data frame of a single metabolite/compound ion,  
# Then the mean and standard deviation of that is calculated and used to make the plot.  
if (xx == "N"){ 
  for (i in colnames(dp_transpose[- c(1,2)])){ 
    # Make a sub-setted table of one data column and then calculate mean and standard deviation 
    dp_subset <- subset(dp_transpose, select = c(Sample, Label, get(i))) 
    colnames(dp_subset)[3] <- 'Compound' 
    dp_mn <- ddply(dp_subset, "Label", summarise, mean = mean(Compound), sd = sd(Compound)) 
     
    # Plot line and point plot with standard deviation 
    p<-ggplot(dp_mn, mapping = aes(x=Label, y=mean, group=1)) + 
      geom_line(size=lsz, color=palette1) +  
      geom_errorbar(aes(ymin=mean-sd, ymax=mean+sd), width=.2, position=position_dodge(0.05),  
size=eblsz, color=palette2) + 
      geom_point(aes(shape=Label), size=psz, color=palette3) + 
      scale_shape_manual(values=shp)+ 
      ylim(ymi, yma) + 
      theme( 
        # Background left blank with grey grid lines and border 
        panel.grid.major = element_line(colour = palette4),  
        panel.background = element_blank(), 
        panel.border = element_rect(colour = palette4, fill = NA, size = 1), 
         
        # x-axis label adjustments 
        axis.title.x = element_blank(), 
        axis.text.x = element_text(angle=xang, hjust=hjx), 
         
        # Plot title adjustments 
        plot.title = element_text(size = tisz, hjust=0.5, face=tifc), 
         
        # Overall text adjustments 
        text = element_text(family=fnt, size = plsz),  
         
        # Remove the annoying key box 
        legend.position = "none") + 
       
      ggtitle(label=i) + 
      ylab(paste(yti, "\n")) + 
      xlab(xti) 
     
    # Save the plot as compound_name.png, with dpi specified 
    ggsave(paste0(i, ".png"), p, dpi=dpisz) 
    } 
} else if (xx == "Y"){ 
  for (i in colnames(dp_transpose[- c(1,2)])){ 
    # Make a sub-setted table of one data column and then calculate mean and standard deviation 
    dp_subset <- subset(dp_transpose, select = c(Sample, Label, get(i))) 
    colnames(dp_subset)[3] <- 'Compound' 
    dp_mn <- ddply(dp_subset, "Label", summarise, mean = mean(Compound), sd = sd(Compound)) 
    # Split "Label" into "Label" and "X-axis"/xis 
    dp_mn <- dp_mn %>%  
      separate(col = Label, into = c("Label", "Time"), sep="_") 
     
    # Plot line and point plot with standard deviation 
    p<-ggplot(dp_mn, mapping = aes(x=as.numeric(Time), y=mean, group=Label)) + 
      geom_line(size=lsz, color=palette1) +  
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      geom_errorbar(aes(ymin=mean-sd, ymax=mean+sd), width=.2, position=position_dodge(0.05), 
size=eblsz, color=palette2) + 
      geom_point(aes(shape=Label), size=psz, color=palette3) + 
      scale_shape_manual(values=shp)+ 
      ylim(ymi, yma) + 
      xlim(xmi, xma) + 
      theme( 
        # Background left blank with grey grid lines and border 
        panel.grid.major = element_line(colour = palette4),  
        panel.background = element_blank(), 
        panel.border = element_rect(colour = palette4, fill = NA, size = 1), 
         
        # x-axis label adjustments 
        axis.title.x = element_blank(), 
        axis.text.x = element_text(angle=xang, hjust=hjx), 
         
        # Plot title adjustments 
        plot.title = element_text(size = tisz, hjust=0.5, face=tifc), 
         
        # Overall text adjustments 
        text = element_text(family=fnt, size = plsz), 
         
        # Remove the annoying key box 
        legend.position = "none") + 
       
      ggtitle(label=i) + 
      ylab(paste(yti, "\n")) + 
      xlab(xti) 
     
    # Save the plot as compound_name.png, with dpi specified 
    ggsave(paste0(i, ".png"), p, dpi=dpisz) 
    } 
} 
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UNTARGETED PATHWAYS ANALTSIS: PREPARATION AND GENERATION OF DATA 
##### SECTION 1: SET VARIABLES ##### 
# Fill in the path to the correct folder and NB! You need FORWARD slashes, not backward slashes 
wd = "" 
# Separator used in .csv files (usually a comma) 
sp = "," 
# File to be uploaded (must have one column with m/z values (titled m.z) and one with retention time 
(titled RT)) 
filnm = " example.csv " 
# File name of tidied file (can be same as previous, but that will overwrite the uploaded file and I don't 
recommend that)  
newfilnm = "example_tidy.csv" 
 
## Functional analysis parameters ## 
# File name of file used for functional analysis -- e.g. the tidied file newfilnm 
filnm2 = "EXAMPLE.csv" 
 
# Mass error of MS instrument used (usually set to 5.0, but lower or higher is fine) 
ppm = 5.0 
# MS mode: "positive" or "negative" 
md = "negative" 
# Is the retention time in "seconds" or "minutes" (the assumption is that retention time is included -- the 
pre-processing of the file ensures that this is easy to include) 
RT = "minutes" 
 
# Multiple comparison correct applied: "Y" or "N" 
mcc = "N" 
# Type of multiple comparison correction applied: "holm","hochberg", "hommel", "bonferroni", "BH", 
"BY", "fdr" 
crr = "fdr" 
 
# Choice of algorithm, mummichog ("mum") or GSEA ("gsea") 
alg = "mum" 
# P-value cut off (default 0.25 or top 10% of peaks) 
pval = 0.05 
 
# Parameters for Peak Set Enrichment Analysis (PSEA) 
# Organism library: "hsa_mfn" (default), "hsa_biocyc" and "hsa_kegg" (hsa = human) -- see 
metaboanalyst.ca for further options. 
orgLb = "hsa_mfn" 
# Number of metabolites needed to consider a pathway a metabolite set (usual minimum is 3) 
minLb = 3  
# Number of permutations, standard is 100 (more = slower) 
prmNum = 100 
 
# Main group to compare to (e.g. the treatment control) 
mngrp = "MUT-Co" 
# List of groups you want to compare to the main group (e.g. treated). Can be the remaining ones in allgrp, 
but needs to be written a second time here please 
subgrp <- "WT-Co" 
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#################################################################### 
# SET WORKING DIRECTORY # 
# Working directory is also where generated files will be saved 
setwd(wd) 
 
# INSTALL AND LOAD PACKAGES # 
#Pacman for various plotting stuff -- tidyverse for piping (%>%) 
pacman::p_load(pacman, rio, tidyverse, tibble) 
 
# Load various libraries that will/might be useful 
library(MetaboAnalystR); library(qpcR); library(tidyr); library(dplyr);  
library(stringr); library(fs); library(janitor); library(purrr); library(rstatix) 
 
## PREPARING THE DATAFILE ## 
# Read the new .csv file -- it should just be in the working directory, so no need to specify location 
# dp = processed data 
dp <- as.data.frame(read.csv(filnm, sep = sp)) 
 
# Save the m.z and RT columns as a separate data frame to manipulate 
smpl <- dp %>% dplyr:::select(m.z, RT) 
# Remove any empty rows 
smpl <- smpl[complete.cases(smpl), ] 
# Swap order of m.z and RT 
smpl <- smpl %>% relocate(RT) 
 
# Combine into one column with the correct separation 
smpl_tidy <- smpl %>% unite(., col = "Sample", sep = "__") 
# Add "Label" in as top row  
smpl_tidy <- rbind(data.frame(Sample = "Label"), smpl_tidy) 
 
# Make a new data frame without the singular m.z and RT columns 
dp_func <- dp %>%  
  dplyr:::select(-(c(m.z, RT)))  
# Add in the new column instead 
dp_func <- cbind(smpl_tidy, dp_func) 
# Print out as a new file  
wd_temp <- paste0(wd, "/", newfilnm) 
write_csv(dp_func, wd_temp, append = FALSE, col_names = TRUE) 
 
### FUNCTIONAL ANALYSIS ### 
# Transpose dp_func so that we can calculate the p-values and test statistics necessary  
# Read the new file with normalised data 
dp2 <- as.data.frame(read.csv(filnm2, sep = sp)) 
 
nm = as.data.frame(names(dp2)) 
if (nm[2,] != "Label"){ 
  print("Transposing the data, one sec...") 
  #First, save the compound ion/metabolite names and check that it's correct 
  metabo_names<-dp2[,1] 
  metabo_names<-metabo_names[-c(1)] 
  #Second save the sample names 
  Sample<-as.data.frame(colnames(dp2)) 
  Sample<-Sample[-c(1),] 
   
  #To avoid row-name issues after transposing, we will add a row of numbers to the top 
  #First, make the numbers. Go from 1 to n, n = ncol(dp) 
  nrcol <- ncol(dp2) 
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  rf <- as.data.frame(matrix(ncol=nrcol, nrow=1)) 
  for(i in 1:nrcol) {rf[1,i] = as.character(i)} 
  #Rename the columns after the rows, i.e. numbers as characters 
  names(rf)<-rf 
  #Then we change the column names of dp to match rf, so that they can merge without R throwing a fit 
  names(dp2) <- names(rf) 
  #Finally, save the first row as a data frame, so this can be added back as a column later 
  Label<-as.data.frame(t(dp2[1,])) 
  Label<-Label[-c(1),] 
   
  #Then transpose the data frame, except for the first column 
  dp_transpose<- as.data.frame(t((dp2[,-1]))) 
  #Then transform the data to numeric values 
  dp_transpose<-data.frame(lapply(dp_transpose[,-1], as.numeric)) 
  #Add back the correct compound ion/metabolite names and then check to see that the file looks correct 
  colnames(dp_transpose)<-metabo_names 
  #Add back the column containing "sample" information 
  dp_transpose<-cbind(Label, Sample, dp_transpose) 
   
} else { 
  #Re-load dp, but such that it doesn't mess up the column names 
  dp_transpose<-as.data.frame(read.csv(filnm2, check.names=FALSE, sep = sp)) 
  Label<-dp[,2] 
} 
 
 
# Make a list of files to be moved 
FA.filnms <- c("peaks_to_paths_0_dpi300.png", "mummichog_pathway_enrichment.csv", 
"mummichog_matched_compound_all.csv", "Ttest-for-FA.txt") 
 
# Another unholy for-loop in which a binary comparison is done one by one and the results are stored in 
separate folders 
for (g in mngrp){ 
  for (r in subgrp){ 
    if (g == r) next 
    # Make a temporary data frame with only two groups  
    dp_tmp_filt <- filter(dp_transpose,  Label == g | Label == r) 
     
    # Pivot that data frame (dp_filter) to a long format 
    dp_long <- dp_tmp_filt %>%  
      dplyr:::select(-Sample) %>%  
      pivot_longer(-Label, names_to = "Metabolites", values_to = "Value") 
     
    # Run a t-test 
    if(mcc == "N"){ 
      dp_ttest <- dp_long %>%  
        group_by(Metabolites) %>%  
        t_test(Value ~ Label) 
    } else if(mcc == "Y"){ 
      dp_ttest <- dp_long %>%  
        group_by(Metabolites) %>%  
        t_test(Value ~ Label) %>%  
        adjust_pvalue(p.col = NULL, output.col = NULL, method = crr)  
      dp_ttest <- dp_ttest %>%  
        select(-p) %>%  
        rename(p = p.adj)} 
     



Chapter 9. Appendices 

389 
 

    # Tidy up dp_ttest so that it only includes m/z, p-value, t-score (statistic) and retention time.  
    # Ranked by p-value 
    dp_tidy <- dp_ttest %>%  
      select(c(Metabolites, statistic, p)) %>%  
      dplyr::rename(p.value = p, t.score = statistic) %>%  
      separate(., col = "Metabolites", into = c("m.z", "rt"), sep = "__") %>% 
      relocate("rt", .after = last_col()) %>%  
      relocate("p.value", .before = t.score) %>%  
      arrange(p.value) 
     
    # Write a file that saves this  
    filnm.txt = paste0("Ttest-for-FA.txt") 
    wd_temp2 <- paste0(wd, "/", filnm.txt) 
    write_delim(dp_tidy, wd_temp2, append = FALSE, col_names = TRUE) 
     
    # Now, feed this .txt file back into MetaboANalystR code 
    # Initialize the data object 
    mSet<-InitDataObjects("mass_all", "mummichog", FALSE) 
    mSet<-SetPeakFormat(mSet) 
    # Set the "instrument" parameters 
    mSet<-UpdateInstrumentParameters(mSet, ppm, md, "yes", 0.02); 
    # Load peak list that was just created and sanity check it 
    mSet<-Read.PeakListData(mSet, filnm.txt); 
    mSet<-SanityCheckMummichogData(mSet) 
    # Set the method for peak enrichment, keep v2 because retention time is always included 
    mSet<-SetPeakEnrichMethod(mSet, algOpt = alg, "v2") 
    # Set p-value cutoff 
    mSet<-SetMummichogPval(mSet, pval) 
    # Perform Peak Set Enrichment Analysis 
    mSet<-PerformPSEA(mSet, orgLb, "current", minLb , prmNum) 
    mSet<-PlotPeaks2Paths(mSet, "peaks_to_paths_0_", "png", 300, width=NA) 
     
    # Open new folder to store results in 
    wd_tmp3 <- paste0(wd, "/", g, " and ", r, " Functional Analysis") 
    dir_create(wd_tmp3) 
     
    # Move the files to the new directory 
    for (f in FA.filnms){file_move(path = paste0(wd, "/", f), new_path = paste0(wd_tmp3, "/", f))} 
  } 
} 
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MATCH EC TO KEGG CODES 
##### SECTION 1: SET VARIABLES ##### 
# Fill in the path to the correct folder and NB! You need FORWARD slashes, not backward slashes 
wd = "C:/Users/ingvi/OneDrive - Nexus365/RStudio Scripts" 
 
# Pathway enrichment data file name 
# NB! Remove any "/" from any of the pathway names (usually "urea cycle/amino group metabolism" that 
causes an issue) 
pth = "mummichog_pathway_enrichment.csv" 
# Matched compound data file name 
mc = "mummichog_matched_compound_all.csv" 
# KEGG compounds list and pathways list 
kggcmp = "KEGG codes and names.csv" 
kggpth = "KEGG pathways .csv" 
# Separator used in the .csv file (, or ;) 
sp = "," 
 
#The p-value cut off for which pathways are chosen to match compound names to enriched pathways 
(using the FET score) 
pval = 0.05 
 
#################################################################### 
##### SECTION 2 ##### 
 
# SET WORKING DIRECTORY # 
# Working directory is also where generated files will be saved 
setwd(wd) 
 
# INSTALL AND LOAD PACKAGES # 
#Pacman for various plotting stuff -- tidyverse for piping (%>%) 
pacman::p_load(pacman, rio, tidyverse, tibble) 
 
# Load various libraries that will/might be useful 
library(MetaboAnalystR); library(qpcR); library(tidyr); library(dplyr); library(stringr) 
library(fs); library(janitor); library(purrr); library(rstatix); library(rlist) 
 
## PREPARING THE DATAFILE ## 
# Read the new .csv file -- it should just be in the working directory, so no need to specify location 
# dp = processed data 
dp_pth_tmp <- as.data.frame(read.csv(pth, sep = sp)) 
dp_mc <- as.data.frame(read.csv(mc, sep = sp)) 
kg_pth <- as.data.frame(read.csv(kggpth, sep = ",")) 
kg_cmp <- as.data.frame(read.csv(kggcmp, sep = ",")) 
 
# Rename FET to p.val for ease-of-use 
dp_pth <- dp_pth_tmp %>%  
  dplyr:::rename(p.val = FET, path.name = X) 
# Tidy the path.name content to better match the data base later on 
dp_pth <- dp_pth %>% 
  mutate(across(.cols = path.name,  
                .fns = ~ str_replace_all(., 
                                         pattern = " ",  
                                         replacement= "."))) %>%  
  mutate(across(.cols = path.name,  
                .fns = ~ str_replace_all(., 
                                         pattern = ",",  
                                         replacement= "."))) 



Chapter 9. Appendices 

391 
 

 
# Make a subset data frame with one pathway from dp_pth 
# Find the pathways below the p-value cut off 
dp_pcut <- dp_pth %>%  
  dplyr:::select(p.val, path.name) %>%  
  filter(p.val < pval) %>%  
  mutate(., path.name = str_replace_all(path.name, 
                                 pattern = "/", 
                                 replacement= " ")) 
 
# Match ECs codes in each pathway with compounds in the mummichog matched compound list 
for (m in dp_pcut[["path.name"]]){ 
  dp_tmp <- dp_pth %>%  
    dplyr:::select(path.name, EC.Hits) %>%  
    pivot_wider(names_from = path.name, values_from = EC.Hits) %>%  
    dplyr:::select(m) %>%  
    separate_rows(m, sep = ";") 
   
  # Open a generic data frame with the correct number of columns and column names 
  p <- data.frame(matrix(nrow = 1, ncol = ncol(dp_mc))) 
  names(p) <- colnames(dp_mc) 
   
  # Now fill that data frame with specific information  
  for (v in dp_tmp[[1]]){ 
    # Use filter() on Empirical.Compound in dp_mc with the information from vec_tmp (i.e. the ECs tied to a 
specific pathway) 
    dp_sub <- filter(dp_mc, Empirical.Compound == v) 
    # Take the rows in dp_sub and bind it to a data frame specifically named after a pathway 
    p <- rbind(p, dp_sub) 
  } 
   
  # Remove any empty rows 
  p <- p[complete.cases(p), ] 
   
  # Save p as a .txt file with the name of the pathway name 
  wd_temp <- paste0(wd, "/", "pathway ", m, ".txt") 
  write_delim(p, wd_temp, append = FALSE, col_names = TRUE) 
} 

 

 


