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ABSTRACT
We consider contextual equivalence in an ML-like language, where

contexts have access to both general references and continuations.

We show that in a finitary setting, i.e. when the base types are finite

and there is no recursion, the problem is decidable for all programs

with first-order references and continuations, assuming they have

continuation- and reference-free interfaces. This is the best one can

hope for in this case, because the addition of references to functions,

to continuations or to references makes the problem undecidable.

The result is notable since, unlike earlier work in the area, we

need not impose any restrictions on type-theoretic order or the use

of first-order references inside terms. In particular, the programs

concerned can generate unbounded heaps.

Our decidability argument relies on recasting the corresponding

fully abstract trace semantics of terms as instances of automata

with a decidable equivalence problem. The automata used for this

purpose belong to the family of automata over infinite alphabets

(aka data automata), where the infinite alphabet (dataset) has the

shape of a forest.
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1 INTRODUCTION
Contextual equivalence is a fundamental program property, which

has motivated programming language research for decades due

to its expressivity, applicability and the challenge it poses to both

manual and automated reasoning. This paper studies equivalence

problems in an ML-like setting that combines functional program-

ming (lambda calculus), state (general references) and control-flow

manipulation (continuations). The prototypical language for study-

ing this particular set of features is known as HOSC [14], and this

is the language from which contexts will be drawn for the purpose

of equivalence testing.

For the sake of avoiding an obvious source of undecidability,

we shall assume that base types are finite, i.e. Int = {0, · · · ,max},
and there is no recursion. However, even with bounded base types,

HOSC remains very expressive and, in particular, due to the pres-

ence of general references, has an undecidable termination problem.

Consequently, in order to obtain decidability results for contextual

equivalence, we will need to make restrictions to the terms that
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are being tested (the contexts remain unrestricted, though). Specifi-

cally, we are going to disallow references to functions, references

to continuations and references to references, because in each case

we can show that this would lead to undecidable equivalence. The

resultant subset of HOSC, allowing for storage of values of ground

types such as Unit, Bool and Int, will be called FOSC. Our main

result then shows that contextual equivalence of FOSC terms (with

respect to HOSC contexts) is decidable, assuming their boundary

types do not contain reference or continuation types, although

such types can occur inside the terms. We refer to the scenario as

HOSC[FOSC].
The result should be contrasted with earlier undecidability re-

sults for the continuation-free subset of FOSC, called FOS. It is

known that contextual equivalence between FOS terms (with re-

spect to FOS contexts), i.e. FOS[FOS], is undecidable. Thus, our
results show that changing the contexts to HOSC, i.e. considering

HOSC[FOS], leads to decidability and that the result also extends

to terms with continuations, i.e. HOSC[FOSC].

Example 1.1. Here is an inequivalence that could be detected

using our methods. Suppose Γ = {𝑓 : ((Unit → Unit) → Unit) →
Unit}, 𝜎 = Unit → Unit and Ω represents divergence. Consider the

terms Γ ⊢ 𝑀1, 𝑀2 : Unit given below.

𝑀1 = let𝑏 = ref ff in call/cc(𝑦.
𝑓 (_𝑔𝜎 .𝑏 := tt;𝑔(); throw () to 𝑦);
if !𝑏 then () elseΩ)

𝑀2 = call/cc(𝑦. 𝑓 (_𝑔𝜎 .𝑔(); throw () to 𝑦); Ω)
Intuitively, the two terms are not equivalent (with respect to

HOSC contexts), because one can find a context that triggers the

evaluation of the subterm ‘if !𝑏 then () elseΩ’ of𝑀1 when 𝑏 con-

tains tt (yielding ()), whereas Ω will be reached in𝑀2. The simplest

such context can instantiate 𝑓 to a function that will apply its

argument (i.e. _𝑔.𝑏 := tt; 𝑔(); throw () to 𝑦) to a 𝑔 such that 𝑔()
triggers a return by 𝑓 (rather than 𝑔). Note that this kind of be-

haviour really requires the context to use continuations. Indeed,

the HOSC context (_𝑓 .•)(_ℎ.call/cc(𝑧. ℎ(_𝑥 .throw () to 𝑧)) does
the job.

We study HOSC[FOSC] using trace models, also known as oper-
ational game semantics [14]. The approach consists in modelling

interactions between a term and a context as traces derived from

a labelled transition system LHOSC. The traces are alternating se-

quences of actions made by two players, called O (context) and P

(term) respectively. The actions represent abstract calls and returns,

which involve function and continuation names drawn from infinite

sets of typed names. Overall, the traces make it possible to express

the patterns of calls and returns arising in contextual interactions,

so that contextual equivalence can be captured as trace equivalence.

Example 1.2. Here is a trace that distinguishes the two terms

given above, in that it can be generated by the first term but not
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the second. We write P-actions in red and O-actions in blue; 𝑓 , 𝑔, ℎ

are function names and 𝑐1, 𝑐2, 𝑐3, 𝑐 are continuation names. The

names 𝑓 , 𝑐 (corresponding to the free identifier 𝑓 and top-level

continuation) are called initial and viewed as introduced by O.

Other names introduced by O (i.e. in O-actions) are 𝑔, 𝑐2. We refer

to them as O-names. The remaining names (introduced in P-actions,

such as ℎ, 𝑐1, 𝑐3) are called P-names.

¯𝑓 (ℎ, 𝑐1) ℎ(𝑔, 𝑐2) 𝑔((), 𝑐3) 𝑐1 (()) 𝑐 (())
P O P O P

Here the first action (by P) represents a call to 𝑓 , where ℎ rep-

resents the argument ‘_𝑔.𝑏 := tt;𝑔(); throw () to 𝑦’, and 𝑐1 is the

corresponding continuation. The second action (by O) corresponds

to applying ℎ to an indeterminate function 𝑔, which is then called

on () (by P) in the third action. The following action 𝑐1 (()) then
represents a return matching the initial call to 𝑓 , because 𝑐1 was

introduced in
¯𝑓 (ℎ, 𝑐1) at the time that 𝑓 was called. Finally 𝑐 (())

means that () is returned to the top-level continuation 𝑐 .

In order to prove our decidability result, we shall relateLHOSC to

a class of automata with a decidable language equivalence problem.

As it stands in [14], LHOSC involves rather complicated configu-

rations, far removed from classic automata theory. Among others,

they may involve a term, an environment and a heap, each of

which may contain occurrences of function, continuation or loca-

tion names, drawn from infinite sets. In order to close the gap be-

tween LHOSC and automata theory, we will first make a number of

observations that will enable us to simplify LHOSC for FOSC terms.

The remaining complexity will be handled using an automata model

over nested data, namely, nested data class memory automata (ND-
CMA) [6]. In the subsection below, we give a high-level overview

of the steps that will ultimately take us to NDCMA.

Final result. Our main technical result states that the trace seman-

tics of FOSC terms, as specified by LHOSC, can be represented

faithfully using (weak deterministic) NDCMA. Since the associated

language equivalence problem is decidable [6], it follows that so

is contextual equivalence of FOSC terms with respect to HOSC

contexts (HOSC[FOSC]). Note that the result does not restrict the
type-theoretic order of terms. This is in stark contrast to classifi-

cations of decidable cases for FOS[FOS] [7], which rely on subtle

differences in type shapes and where equivalence can be undecid-

able even for second-order types [21].

Related work. The concept of nested data is used in the automata

literature to model nested parameterised systems, where a process

can have subprocesses, which have subprocesses and so on, and the

corresponding actions feature process identifiers [2, 8]. The papers

considered respectively emptiness problems for automata and shuf-

fle expressions, as well as satisfiability problems for temporal logics

that can navigate the data. The first application of nested data to

the study of higher-order computation was presented in [5], as part

of a programme to classify decidable cases for contextual equiva-

lence of finitary FOS terms in FOS contexts. The authors showed

that NDCMA were suitable for modelling the game semantics of

certain first-order FOS terms, which implied decidability of con-

textual equivalence in this case. For FOS contexts, the result could

not be extended further due to the undecidability of the general

case [20]. In view of this, our results demonstrate that NDCMAhave

much wider applicability and are capable of expressing unrestricted

higher-order scenarios with state and control, if equivalence with

respect to HOSC contexts is considered instead.

Contextual equivalence with respect to HOSC contexts has been

researched through numerous approaches, e.g. eager normal-form

bisimulations [25], Kripke Logical Relations [9], operational game

semantics [14], and Kripke normal-form bisimulations [16], albeit

with hardly any decidability results. A notable exception is a recent

result for the _`a-calculus (i.e. boolean functional programs with

name creation, control and no references) with respect to _`
ref

contexts (i.e. essentially HOSC) [11], where equivalence was char-

acterised through equality of the induced Böhm-like trees called

Lassen trees. As the trees are finite and computable, decidability

follows. However, that approach crucially relies on the absence

of state. Another related result, but for contexts without continu-

ations, was obtained in [13] for terms that can create first-order

references only at the top level, leading to bounded heaps during

interaction. In contrast, our result applies to a setting where first-

order references can be created anywhere inside the term, leading

to interactions with potentially unbounded heaps. Conceptually, it

follows the approach of operational algorithmic game semantics [4],
which advocates using trace models (labelled transition systems)

to uncover connections with automata.

Technical Overview
In this subsection, we outline the main technical innovations and

observations necessary to derive a NDCMA presentation of LHOSC.

Bounded P-views and O-names. A P-view is a technical concept from

game semantics, specifying a fragment of the trace that intuitively

captures all resources currently in scope. For example, the P-view of

the trace given above is
¯𝑓 (ℎ, 𝑐1) 𝑐1 (()) 𝑐 (()), i.e. theℎ(𝑔, 𝑐2) 𝑔((), 𝑐3)

segment is ignored. It is known that traces generated by FOSC terms

satisfy a condition called P-visibility [14]: when P calls a function

introduced by O (resp. returns to a continuation introduced by O),

the corresponding O-name must lie in the P-view at that point.

This property would be violated if references to functions or to

continuations were allowed.

Our first and most important observation is that P-views gener-
ated by FOSC terms are bounded, and the same applies to the length

of reduction paths that generate them. This is a direct consequence

of the absence of recursion. The boundedness of P-views implies

that the number of O-names in any P-view will be bounded. As

their use is restricted to the P-view (by P-visibility), we can ob-

tain a faithful representation of traces by replacing O-names with

(bounded) numerical indices that correspond to the order in which

they are introduced in P-views. Thus, in the Example above, the

O-names 𝑓 , 𝑐, 𝑔, 𝑐2 would become 1, 2, 3, 4 respectively. Further, ac-

cording to this idea, if the trace above were extended with ℎ(𝑔′, 𝑐′
2
),

the O-names 𝑔′, 𝑐′
2
would also be given indices 3, 4 (rather than 5, 6).

The replacement scheme proposed above allows us to circumvent

the use of infinitely many O-names.

Bounded terms. Next we observe that the terms occurring inside

configurations of LHOSC may contain O-names only. This, in com-

bination with the fact that the reduction paths corresponding to

P-views are bounded, implies that the number of terms that occur
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in LHOSC (for a given FOSC term) will also be bounded, once we

have replaced O-names with the corresponding indices. This brings

us closer to a finitary representation of LHOSC.

Unbounded P-names. The only infinitary ingredients that remain

unbounded are the environments and the heaps. An environment

in LHOSC consists of bindings that link P-names to terms. We have

already established that the number of terms occurring in LHOSC

(starting from a given FOSC term) can be bounded. However, we

cannot afford to bound the number of P-names. This is because trace

length is in general unbounded, so unboundedly many P-names

may be introduced and O must be allowed to refer back to any of

them. To address this aspect of LHOSC, we are going to rely on

an infinite alphabet D to model P-names and an automata model

over D, namely an extension of class memory automata (CMA) [3],

which can keep track of memories associated with each element of

D. This feature will be used to simulate environments. For the sake

of uniformity, we will also use (a finite number of) fixed elements

of D to act as indices, i.e. O-names.

CMA belong to the family of automata over infinite alphabets. As

such, they read data words, i.e. sequences from (Σ×D)∗, where Σ is

a finite alphabet of tags and D is an infinite alphabet of data values,
also called a dataset. As actions in our traces may contain several

names, we will use sequences from (Σ × D)∗ to represent actions,

using tags to distinguish between calls/returns and their arguments,

whereas elements from D will indicate the names involved.

Nested data. In addition to using data values to represent names,

we will use elements of D to keep track of the current P-view. To

this end, it is convenient to assume that D has forest structure

so that we can use branches of D to represent P-views. The data

values used for this purpose will be called ghost values and in

examples we will refer to them as 𝑜 and variants. Ghost values will

also help us deal with the heap. Note that the heap can in general

become unbounded, e.g. if a term contains a subterm of the form

‘_𝑓 .let𝑥 = refInt (0) in · · · ’ and the subterm is called repeatedly

by O. In order to tackle this source of unboundedness, we will

represent the heap in a distributed fashion as memories associated

with ghost values.

Nested data class memory automata (NDCMA) [6] take advantage

of the forest structure ofD and, when reading a letter (𝑎, 𝑑) ∈ Σ×D,

allow the automaton to access not only the memory associated with

𝑑 but also that of its ancestors. Consequently, if we use memories of

ghost values to store parts of the heap as they are being created in

the P-view, the automaton will always be able to modify locations

from the current P-view. This suffices to simulate heap changes in

FOSC, but would be unsound for termswith references to references,

as then chunks of heap could move freely between branches.

The use of ghost values will follow a certain discipline: initially

and after each O-action, we create and open a new ghost value to

reflect the change in the P-view and, once a P-action takes place,

the name will be closed. Overall, the trace given above will be

represented by the data word

(Gopen, 𝑜1) (Pcall(□), 1̃) (Parg, 𝑑1) (Pcont, 𝑑2) (Gclose, 𝑜1)
(Ocall(□), 𝑑1) (Oarg, 3̃) (Ocont, 4̃) (Gopen, 𝑜2)
(Pcall(()), 3̃) (Pcont, 𝑑3) (Gclose, 𝑜2)
(Oret(()), 𝑑2) (Gopen, 𝑜3) (Pret(()), 2̃) (Gclose, 𝑜3)

where we used fixed data values 1̃, 2̃, 3̃, 4̃ to represent indices, and

the data values involved are related in D as pictured below.

1̃ 2̃ 3̃ 4̃ 𝑜1

𝑑1 𝑑2 𝑜2 𝑜3

𝑑3

2 HOSC AND FOSC

HOSC is a call-by-value programming language equipped with

general store and control flow operations [14]. We consider its

finitary version with bounded base type Int and without recursion.

The syntax is presented in Figure 1. HOSC typing judgments are of

the form Σ; Γ ⊢ 𝑀 : 𝜏 , where Σ and Γ are finite partial functions that

assign types to locations and variables respectively. The operational

semantics are defined over configurations of the form (𝑀,ℎ), where
ℎ is a heap mapping (at least) the locations in𝑀 to values. We write

the reduction relation (𝑀,ℎ) → (𝑀′, ℎ′), andwrite (𝑀,ℎ) ⇓ if there
exist 𝑉 ,ℎ′ such that (𝑀,ℎ) →∗ (𝑉 ,ℎ′) and 𝑉 is a value. The full

details of the typing rules and operational semantics can be found

in [15]. We will be interested in deciding contextual equivalences

with respect to HOSC contexts, denoted by𝐶 (𝐾 denotes evaluation

contexts). Let us write 𝐶 [𝜏] for contexts with a hole of type 𝜏 .

Definition 2.1 (Contextual Approximation and Equivalence). Given
HOSC terms Γ ⊢ 𝑀1, 𝑀2 : 𝜏 , we define Γ ⊢ 𝑀1 ≲ 𝑀2 to hold, when

for all HOSC contexts𝐶 [𝜏] such that ⊢ 𝐶 [𝑀1],𝐶 [𝑀2] : 𝜏 ′ for some

𝜏 ′, if (𝐶 [𝑀1], ∅) ⇓ then (𝐶 [𝑀2], ∅) ⇓. The terms Γ ⊢ 𝑀1, 𝑀2 : 𝜏

are called contextually equivalent, written Γ ⊢ 𝑀1 ≃ 𝑀2, when

Γ ⊢ 𝑀1 ≲ 𝑀2 and Γ ⊢ 𝑀2 ≲ 𝑀1.

Although we consider finite base types and no recursion, the

termination problem for HOSC is still undecidable. This is because

higher-order references can be used to encode fixed-point combina-

tors (Landin’s knot) and the combination of higher-order recursion

and finite state is expressive enough to encode Turingmachines [17].

As a similar construction can be carried out using references to

continuations, we shall consider a restriction of HOSC in which ref-

erences to functions and continuations are disallowed, i.e. reference

types are restricted to Ref𝜏 with 𝜏 generated by the grammar

𝜏 ≜ 𝛽 | Ref𝜏

where 𝛽 ranges over {Unit, Int,Bool}. The resultant language will
be called GOSC. As ≃ will also turn out undecidable for GOSC

terms (for subtler reasons than undecidability of termination), we

need to impose a further restriction on reference types and allow

only Ref𝛽 , i.e. references to values of base types. This language will
be referred to as FOSC.

Example 2.2. Consider the FOSC terms ⊢ 𝑀1, 𝑀2 : Int → (Int →
Int) → ((Unit → Unit) × (Unit → Int)) given by

𝑀1 = _𝑥 ._𝑓 .let 𝑟 = ref 0̂ in
let inc = _𝑢.𝑟 :=!𝑟 + 1 in
let get = _𝑢.if !𝑟 < 𝑥 then 𝑓 (!𝑟 ) elseΩ in (inc, get),

𝑀2 = _𝑥 ._𝑓 .let 𝑟 = ref 𝑥 in
let dec = _𝑢.𝑟 :=!𝑟 − 1 in
let get = _𝑢.if !𝑟 > 0̂ then 𝑓 (𝑥−!𝑟 ) elseΩ in (dec, get),
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𝜎, 𝜏 ≜ Unit | Int | Bool | Ref𝜏 | 𝜏 × 𝜎 | 𝜏 → 𝜎 | Cont 𝜏
𝑈 ,𝑉 ≜ () | tt | ff | 𝑛 | 𝑥 | ℓ | ⟨𝑈 ,𝑉 ⟩ | _𝑥𝜏 .𝑀 | cont𝜏 𝐾
𝑀, 𝑁 ≜ 𝑉 | Ω | ⟨𝑀, 𝑁 ⟩ | 𝜋𝑖𝑀 | 𝑀𝑁 | ref𝜏 𝑀 | !𝑀 | 𝑀 := 𝑁 | if𝑀1 then𝑀2 else𝑀3 | 𝑀 ⊕ 𝑁 | 𝑀 � 𝑁 | 𝑀 = 𝑁 | call/cc𝜏 (𝑥 .𝑀)

| throw𝜏 M to 𝑁
𝐾 ≜ • | ⟨𝑉 , 𝐾⟩ | ⟨𝐾,𝑀⟩ | 𝜋𝑖𝐾 | 𝑉𝐾 | 𝐾𝑀 | ref𝜏 𝐾 | !𝐾 | 𝑉 := 𝐾 | 𝐾 := 𝑀 | if 𝐾 then𝑀 else𝑁 | 𝐾 ⊕ 𝑀 | 𝑉 ⊕ 𝐾 | 𝐾 �𝑀 | 𝑉 � 𝐾

| 𝐾 = 𝑀 | 𝑉 = 𝐾 | throw𝜏 V to 𝐾 | throw𝜏 K to𝑀
𝐶 ≜ • | ⟨𝑀,𝐶⟩ | ⟨𝐶,𝑀⟩ | 𝜋𝑖𝐶 | _𝑥𝜏 .𝐶 | 𝑀𝐶 | 𝐶𝑀 | ref𝜏 𝐶 | !𝐶 | 𝐶 := 𝑀 | 𝑀 := 𝐶 | if𝐶 then𝑀 else𝑁 | if𝑀 then𝐶 else𝑁

| if𝑀 then𝑁 else𝐶 | 𝐶 ⊕ 𝑀 | 𝑀 ⊕ 𝐶 | 𝐶 �𝑀 | 𝑀 �𝐶 | 𝐶 = 𝑀 | 𝑀 = 𝐶 | call/cc𝜏 (𝑥 .𝐶) | throw𝜏 C to𝑀 | throw𝜏 M to 𝐶

Notational conventions: 𝑥,𝑦 ∈ Var, ℓ ∈ Loc, 𝑛 ∈ {0, · · · ,max}, 𝑖 ∈ {1, 2}, ⊕ ∈ {+,−, ∗}, � ∈ {=,≠, <}, Ω is the canonical divergent

term without a reduction rule. Syntactic sugar: let𝑥 = 𝑀 in𝑁 stands for (_𝑥.𝑁 )𝑀 (if 𝑥 does not occur in 𝑁 we also write𝑀 ;𝑁 ).

Figure 1: HOSC syntax

and assume m̂ax + 1̂ = m̂ax (so addition does not overflow) and

0̂ − 1̂ = 0̂. Then ⊢ 𝑀1 ≃ 𝑀2, which is something that could be

automatically proven using the technique presented in this paper.

Counter programs like this have long been considered as challeng-

ing examples of contextual equivalence to establish [23], due to the

fact they involve a pair of functions which encapsulated shared

state. Notably, this example falls into a type fragment where con-

textual equivalence is undecidable when tested with contexts with

first-order state only and without control, i.e. when the contexts

come from the continuation-free fragment FOS of FOSC [5]. In

contrast, ≃ is defined using HOSC contexts.

We are going to study contextual equivalence through trace

models proposed in [14]. They are applicable to cr-free terms.

Definition 2.3. A HOSC term Γ ⊢ 𝑀 : 𝜏 is cr-free if it does not
contain occurrences of cont𝜎 𝐾 and locations, and its boundary

types (i.e. the types occurring in Γ and 𝜏) are cont- and ref-free.

Note that the restriction on cont𝜎 𝐾 and locations is insignif-

icant, as both are run-time constructs, not to be used directly by

programmers. Observe also that both Example 1.1 and 2.2 are cr-

free. In fact, most examples studied in the literature are of this

kind [1, 9, 23]. Our main result will show that ≃ is decidable for all
cr-free FOSC terms. In particular, the type-theoretic order of terms

will remain unrestricted.

3 OPERATIONAL GAME SEMANTICS
We now review the trace models from [14]. They are based on

traces, which can be thought of as exchanges of actions between

two players, representing the context (O) and the term (P). Hence,

the term operational game semantics.

Names and Abstract Values. In actions of the game, players pass

(fresh) names to represent functions passed across the boundary.

Continuation names are used to identify the question action being

answered in an answer action.

Definition 3.1. Let FNames =
⊎
𝜎,𝜎 ′ FNames𝜎→𝜎 ′ be the set of

function names, partitioned into mutually disjoint countably infi-

nite sets FNames𝜎→𝜎 ′ . We will use 𝑓 , 𝑔 to range over FNames, and

write 𝑓 : 𝜎 → 𝜎′ for 𝑓 ∈ FNames𝜎→𝜎 ′ .

Analogously, let CNames =
⊎
𝜎 CNames𝜎 be the set of contin-

uation names. We will use 𝑐, 𝑑 to range over CNames, and write

AVal𝜎 (𝑉 ) ≜ {(𝑉 , ∅)} for 𝜎 ∈ {Unit,Bool, Int}
AVal𝜎→𝜎 ′ (𝑉 ) ≜ {(𝑓 , [𝑓 ↦→ 𝑉 ]) | 𝑓 ∈ FNames𝜎→𝜎 ′ }
AVal𝜎×𝜎 ′ (⟨𝑈 ,𝑉 ⟩) ≜ {(⟨𝐴1, 𝐴2⟩, 𝛾1 · 𝛾2) | (𝐴,𝛾1) ∈ AVal𝜎 (𝑈 ),

(𝐴2, 𝛾2) ∈ AVal𝜎 ′ (𝑉 )}

Figure 2: Value decomposition into abstract values and sub-
stitutions, and generation of abstract value sequences

𝑐 : 𝜎 for 𝑐 ∈ CNames𝜎 . We assume that CNames, FNames are dis-

joint and let Names = FNames ⊎ CNames. Elements of Names will

appear in structures throughout this work, and so a (𝑋 ) refers to
the set of names used in some entity 𝑋 .

Players take actions which consist of a name applied to some

value. To handle functional arguments, abstract values are used.
These are values with occurrences of functions replaced by names,

generated by the grammar

𝐴, 𝐵 ≜ 𝑓 | () | 𝑛 | tt | ff | ⟨𝐴, 𝐵⟩,

where 𝑛 ∈ {0, · · · ,max}.
As names are intrinsically typed, abstract values can be typed

in the obvious way, denoted 𝐴 : 𝜎 . Given a value 𝑉 : 𝜎 , we let

AVal𝜎 (𝑉 ) be the set of pairs (𝐴,𝛾), where𝐴 : 𝜎 is an abstract value

and 𝛾 : a (𝐴) → Vals is a substitution (defined in Figure 2) such

that 𝐴{𝛾} = 𝑉 , i.e. 𝐴 is an abstract value that matches 𝑉 and 𝛾 is

the corresponding matching.

Remark 3.2. Note that · implicitly requires that function domains
be disjoint, and ⊎ means the argument sets are disjoint.

3.1 Play
Traces consist of actions that have a polarity, either P (Player) or

O (Opponent), depending on whether they are made by the term

being tested (P) or the context (O). Names are introduced either

in an initial set 𝑁𝑂 of names, or in values appearing in actions.

Names are owned by the player whose action introduced the name

(with names in 𝑁𝑂 owned by O), and are referred to as O-names

or P-names. The players take alternating actions, applying a name

introduced by the other player to an abstract value. The types of

actions are:
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• Player Answer (PA) 𝑐 (𝐴), where 𝑐 : 𝜎 and 𝐴 : 𝜎 . This corre-

sponds to the term returning a value 𝐴 using continuation

name 𝑐 .

• Player Question (PQ)
¯𝑓 (𝐴, 𝑐), where 𝑓 : 𝜎 → 𝜎′, 𝐴 : 𝜎 and

𝑐 : 𝜎′. This corresponds to the term calling the function

named by 𝑓 , passing𝐴 as argument, and expecting the result

with continuation name 𝑐 .

• Opponent Answer (OA) 𝑐 (𝐴), where 𝑐 : 𝜎 and 𝐴 : 𝜎 . In this

case, the context is producing a value 𝐴 to the term, which

is acting as a continuation with name 𝑐 .

• Opponent Question (OQ) 𝑓 (𝐴, 𝑐), where 𝑓 : 𝜎 → 𝜎′, 𝐴 : 𝜎

and 𝑐 : 𝜎′. This action corresponds to the context calling the

function named by 𝑓 from the term, passing 𝐴 as argument,

and expecting the result with continuation name 𝑐 .

In what follows, a is used to range over actions. We refer to 𝑓 in
¯𝑓 (𝐴, 𝑐) and 𝑓 (𝐴, 𝑐), and 𝑐 in 𝑐 (𝐴) and 𝑐 (𝐴) as the head names of a.

Definition 3.3. Let 𝑁𝑂 ⊆ Names. An 𝑁𝑂 -trace is a sequence 𝑡
of actions such that: actions alternate between P and O actions; no

name is introduced twice; names from 𝑁𝑂 need no introduction;

any action a must have the form
¯𝑓 (𝐴, 𝑐), 𝑓 (𝐴, 𝑐), 𝑐 (𝐴) or 𝑐 (𝐴),

where the head name of a was introduced by an earlier action a′ of
opposite polarity or 𝑓 ∈ 𝑁𝑂 in the first case, or 𝑐 ∈ 𝑁𝑂 in the third.

Example 3.4. We revisit the sequence from Example 1.2. Let𝑁𝑂 =

{𝑓 , 𝑐}, where 𝑓 : ((Unit → Unit) → Unit) → Unit, 𝑐 : Unit. Then
the sequence 𝑡 = ¯𝑓 (ℎ, 𝑐1) ℎ(𝑔, 𝑐2) 𝑔((), 𝑐3) 𝑐1 (()) 𝑐 (()), where ℎ :

(Unit → Unit) → Unit, 𝑔 : Unit → Unit and 𝑐1, 𝑐2, 𝑐3 : Unit, is an
𝑁𝑂 -trace.

3.2 Transition System
To generate traces corresponding to a term, one defines a special

LTS, called LHOSC. Its transition rules are presented in Figure 3.

LHOSC contains terms built fromHOSC syntax, extendedwith func-

tion names as values (with the obvious typing rule) and cont𝜏 (𝐾, 𝑐),
which stands for cont𝜏 𝐾 which, when thrown to, passes its result

to 𝑐 . The reduction (𝑀,ℎ) → (𝑀′, ℎ′) is extended to work on triples,
taking the form (𝑀,𝑐, ℎ) → (𝑀′, 𝑐′, ℎ′), where 𝑐, 𝑐′ are continua-
tion names. This is done to ensure call/cc and throw keep track

of the appropriate continuation name.

There are two types of configurations in LHOSC: ⟨𝛾, b, 𝜙, ℎ⟩ (pas-
sive, O to play) and ⟨𝑀,𝑐,𝛾, b, 𝜙, ℎ⟩ (active, internal or P to play). In

both, 𝜙 contains all names introduced so far by both players and ℎ

is the current heap. 𝛾 is an environment mapping function names

introduced by P to functions, and continuation names to evaluation

contexts (which represent the continuation at that point). b maps

continuation names introduced by P to continuation names intro-

duced by O, indicating continuation awaiting the result of 𝛾 (𝑐). In
an active configuration, 𝑀 is the term component, which captures

the current behaviour of P, and 𝑐 is the continuation name to re-

turn the result to. Transitions from active configurations are driven

by the term components, while passive configurations ‘choose’ an

action to take. Note that ⊎ stands for set-theoretic union on the

understanding that the sets involved are disjoint. This guarantees

freshness of names introduced by both players.

(𝑃𝜏) ⟨𝑀,𝑐,𝛾, b, 𝜙, ℎ⟩ 𝜏−−→ ⟨𝑁, 𝑐′, 𝛾, b, 𝜙, ℎ′⟩
when (𝑀,𝑐, ℎ) → (𝑁, 𝑐′, ℎ′)

(𝑃𝐴) ⟨𝑉 , 𝑐,𝛾, b, 𝜙, ℎ⟩
𝑐 (𝐴)
−−−−→ ⟨𝛾 · 𝛾 ′, b, 𝜙 ⊎ a (𝐴), ℎ⟩

when 𝑐 : 𝜎, (𝐴,𝛾 ′) ∈ AVal𝜎 (𝑉 )

(𝑃𝑄) ⟨𝐾 [𝑓 𝑉 ], 𝑐, 𝛾, b, 𝜙, ℎ⟩
¯𝑓 (𝐴,𝑐′ )
−−−−−−→⟨𝛾 · 𝛾 ′ · [𝑐′ ↦→ 𝐾], b · [𝑐′ ↦→ 𝑐],

𝜙 ⊎ a (𝐴) ⊎ {𝑐′}, ℎ⟩
when 𝑓 : 𝜎 → 𝜎′, (𝐴,𝛾 ′) ∈ AVal𝜎 (𝑉 ), 𝑐′ : 𝜎′

(𝑂𝐴) ⟨𝛾, b, 𝜙, ℎ⟩
𝑐 (𝐴)
−−−−→ ⟨𝐾 [𝐴], 𝑐′, 𝛾, b, 𝜙 ⊎ a (𝐴), ℎ⟩

when 𝑐 : 𝜎, 𝐴 : 𝜎, 𝛾 (𝑐) = 𝐾, b (𝑐) = 𝑐′

(𝑂𝑄) ⟨𝛾, b, 𝜙, ℎ⟩
𝑓 (𝐴,𝑐 )
−−−−−−→ ⟨𝑉𝐴, 𝑐,𝛾, b, 𝜙 ⊎ a (𝐴) ⊎ {𝑐}, ℎ⟩

when 𝑓 : 𝜎 → 𝜎′, 𝐴 : 𝜎, 𝑐 : 𝜎′, 𝛾 (𝑓 ) = 𝑉

Figure 3: LHOSC LTS

3.3 Trace semantics
Let Γ ⊢ 𝑀 : 𝜎 be a cr-free HOSC term such that Γ = {𝑥1 :

𝜎1, · · · , 𝑥𝑘 : 𝜎𝑘 }. A Γ-assignment 𝜌 is a map from {𝑥1, · · · , 𝑥𝑘 } to
the set of abstract values such that, for all 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑘 , we have
𝜌 (𝑥𝑖 ) : 𝜎𝑖 and a (𝜌 (𝑥𝑖 )) ∩ a (𝜌 (𝑥 𝑗 )) = ∅. 𝜌 simply creates a supply

of names corresponding to the context. Let 𝜌 be a Γ-assignment,

𝑐 : 𝜎 and 𝑁𝑂 = a (𝜌) ∪ {𝑐}. Then the active initial configuration
C𝜌,𝑐
𝑀

is defined to be ⟨𝑀{𝜌}, 𝑐, ∅, 𝑁𝑂 , ∅⟩.

Definition 3.5. Given configurations C,C′
and t = a1 . . . a𝑛 , we

writeC
t−→ C′

if there existC1,C′
1
, · · · ,C𝑛,C′

𝑛 such thatC
𝜏−→∗C1

a1−−→
C′

1

𝜏−→∗ · · · 𝜏−→∗C𝑛
a𝑛−−→ C′

𝑛

𝜏−→∗C′
. Define

TrHOSC (C) ≜ {t | there exists C′
such that C

t−→ C′}.

Remark 3.6. Due to the freedom of name choice, TrHOSC (C) is
closed under type-preserving renamings that preserve names from C.

Definition 3.7. The trace semantics of a cr-free HOSC term

Γ ⊢ 𝑀 : 𝜎 is defined to be

TrHOSC (Γ ⊢ 𝑀 : 𝜎) ≜ {((𝜌, 𝑐), 𝑡) | 𝜌 is a Γ-assignment,

𝑐 : 𝜎, 𝑡 ∈ TrHOSC (C
𝜌,𝑐

𝑀
)}.

Example 3.8. Consider the term Γ ⊢ 𝑀1 from Example 1.1 and

the trace 𝑡 from Example 3.4. Letting 𝜌 = {𝑓 ↦→ 𝑓 }, 𝑐 : Unit, we
have ((𝜌, 𝑐), 𝑡) ∈ TrHOSC (Γ ⊢ 𝑀1).

The full abstraction result from [14] then states that trace in-

clusion coincides exactly with contextual approximation and, thus,

contextual equivalence is captured by trace equivalence.

Theorem 3.9 (Full Abstraction). For any cr-free HOSC terms
Γ ⊢ 𝑀1, 𝑀2 : 𝜎 , we have Γ ⊢ 𝑀1 ≲ 𝑀2 iff TrHOSC (Γ ⊢ 𝑀1) ⊆
TrHOSC (Γ ⊢ 𝑀2).

Remark 3.10. The full abstraction result [14, 15] was shown for the
infinitary version of HOSC (with infinite Int). However, the unbound-
edness of Int was not relevant to the argument. In particular, in the
definability argument (proof of Lemma 5), which shows that for every
finite trace one can find a corresponding configuration, only integer
values from the finite trace were actually used, i.e. the construction
carries over to the finitary setting.



LICS ’24, July 8–11, 2024, Tallinn, Estonia Benedict Bunting and Andrzej S. Murawski

Theorem 3.9 provides a powerful handle on reasoning about

equivalence, which we will exploit in the remainder of the paper to

conclude that ≃ is decidable for cr-free FOSC terms.

Meanwhile, let us argue that ≃ is not decidable for GOSC terms.

To this end, we appeal to the undecidability result for GOS (GOSC

without continuations) with respect to GOS contexts [22]. Note that

it is not immediately clear that this implies undecidability for ≃,
which is defined using HOSC contexts. Indeed, in general, ≃ is more

discriminating, because there aremore contexts available for testing.

In [14], this is captured by imposing extra restrictions on O if GOS

contexts are used (O-visibility, O-bracketing, trace completeness).

However, the undecidability result in [22] uses closed GOS terms

of type Unit → Unit → Unit and, for such terms, one can show

that the restrictions on O hold vacuously. Consequently, we can

conclude that such terms are contextually equivalent with respect

to GOS contexts if and only if they are equivalent with respect

to HOSC contexts (i.e. ≃-equivalent). This implies the following

result.

Theorem 3.11. ≃ is undecidable for GOS (and thus GOSC) terms.

In the remainder of the paper we focus on developing the decid-

ability result for FOSC. Recall that FOSC allows references of type

Ref𝛽 (𝛽 ∈ {Unit,Bool, Int}) only, whereas in GOSC they could have

type Ref (· · · (Ref𝛽)), i.e. references to references were allowed.

4 BOUNDS IN LHOSC

To allow us to construct an automaton from the LTS, we establish

a series of (effectively computable) bounds on the behaviour of

LHOSC for GOSC terms. They are slightly technical in that they rely

on the concept of a P-view from game semantics [12]. Intuitively,

the P-view of a trace determines a segment of the trace that contains

O-names which are available to the term. Although the results we

discuss here and in the next section apply to GOSC, our ultimate

decidability result will be for FOSC, because we will be unable to

accommodate the storage of names in the heap while translating

terms to automata.

Definition 4.1. The P-view of a trace is defined by

ViewP (𝜖) ≜ 𝜖

ViewP (𝑡 ¯𝑓 (𝐴, 𝑐) 𝑡 ′ 𝑐 (𝐴′)) ≜ ViewP (𝑡) ¯𝑓 (𝐴, 𝑐) 𝑐 (𝐴′)
ViewP (𝑡 ¯𝑓 (𝐴, 𝑐) 𝑡 ′ 𝑔(𝐴′, 𝑐′)) ≜ ViewP (𝑡) ¯𝑓 (𝐴, 𝑐) 𝑔(𝐴′, 𝑐′)

where 𝑔 ∈ a (𝐴)
ViewP (𝑡 𝑐 (𝐴) 𝑡 ′ 𝑔(𝐴′, 𝑐′)) ≜ ViewP (𝑡) 𝑐 (𝐴) 𝑔(𝐴′, 𝑐′)

where 𝑔 ∈ a (𝐴)
ViewP (𝑡 a) ≜ ViewP (𝑡) a

where a is a P-action

Note that ViewP (𝑡) is defined by tracing the head name of an

O-move to its point of introduction.

Example 4.2. Consider 𝑡 = ¯𝑓 (ℎ, 𝑐1) ℎ(𝑔, 𝑐2) 𝑔((), 𝑐3) 𝑐1 (()) 𝑐 (())
from Example 3.4. Let us write 𝑡≤𝑚 for the initial segment of 𝑡

consisting of𝑚 actions. Here are the P-views arising in 𝑡 :

ViewP (𝑡≤0) = 𝜖,

ViewP (𝑡≤1) = ¯𝑓 (ℎ, 𝑐1),
ViewP (𝑡≤2) = ¯𝑓 (ℎ, 𝑐1) ℎ(𝑔, 𝑐2),
ViewP (𝑡≤3) = ¯𝑓 (ℎ, 𝑐1) ℎ(𝑔, 𝑐2) 𝑔((), 𝑐3),
ViewP (𝑡≤4) = ¯𝑓 (ℎ, 𝑐1) 𝑐1 (()),
ViewP (𝑡≤5) = ¯𝑓 (ℎ, 𝑐1) 𝑐1 (()) 𝑐 (()) .

Next we single out the sequences of transitions that are respon-

sible for generating P-views.

Definition 4.3. Let Γ ⊢ 𝑀 : 𝜎 be a cr-free GOSC term, 𝜌 a Γ-
assignment, and 𝑐 : 𝜎 a continuation name. A sequence 𝑠 is a view
path if there exists a trace 𝑡 such that C𝜌,𝑐

𝑀

𝑡−→ C, and 𝑠 is the

subsequence of transitions witnessing C𝜌,𝑐
𝑀

𝑡−→ C consisting of

(1) all transitions that contribute actions to ViewP (𝑡), and
(2) all consecutive 𝜏-transitions starting at C𝜌,𝑐

𝑀
or following

O-actions selected in (1).

Our main bound, from which the other will be derived, is stated

below.

Theorem 4.4. Let Γ ⊢ 𝑀 : 𝜎 be a cr-free GOSC term, 𝜌 a Γ-
assignment, and 𝑐 : 𝜎 a continuation name. Then there exists a bound
PathBound(𝑀) on the length of view paths from C𝜌,𝑐

𝑀
.

The proof of this theorem is achieved using techniques espoused

by Loader [18, 19] in the context of the lambda calculus, which he

used to measure lengths of reduction paths in the simply-typed

lambda calculus. We adapt them to establish a bound on the length

of reduction sequences for a modified reduction relation, designed

to capture the behaviour of LHOSC. An immediate consequence of

Theorem 4.4 is a bound on P-views.

Corollary 4.5. For any cr-free GOSC term Γ ⊢ 𝑀 : 𝜎 , there exists
a bound ViewLen(𝑀) such that, for any 𝑡 in TrHOSC (Γ ⊢ 𝑀 : 𝜎), the
length of ViewP (𝑡) is bounded by ViewLen(𝑀).

The theorem also gives rise to a bound on the size of terms

generated by LHOSC, due to the fact that such terms occur in some

view path. Only transitions in the view path can contribute to the

growth of such terms, and can at most square the size of the term (in

the case of 𝜏-reductions) or increase it by a fixed size (in O-actions).

Thus Corollary 4.5 implies a bound.

Definition 4.6. Let Γ ⊢ 𝑀 : 𝜎 be a cr-free GOSC term. Let

Reach(𝑀) ≜ {𝑁 | 𝜌 is a Γ-assignment, C𝜌,𝑐
𝑀

𝑡−→ C, C is active

and 𝑁 is its term component}.

Corollary 4.7. Let Γ ⊢ 𝑀 : 𝜎 be a cr-free GOSC term. There
there exists a bound TermSize(M) such that 𝑁 ∈ Reach(𝑀) implies
|𝑁 | ≤ TermSize(M), where |𝑁 | denotes the size of the derivation of
𝑁 in the grammar.

A final bound concerns the number of locations that can be

generated during the contiguous reductions in LHOSC.

Lemma 4.8. For any cr-free GOSC term Γ ⊢ 𝑀 : 𝜎 , there exists a
bound HeapBound(𝑀) such for any sequence of transitions 𝑠 from
C𝜌,𝑐
𝑀

, the number of locations generated in consecutive 𝜏-transitions
in 𝑠 is bounded by HeapBound(𝑀).
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Note that the bound identified above only concerns location

generation during consecutive 𝜏-transitions. In general, the heaps

in LHOSC are unbounded.

5 CANONICAL REPRESENTATION
Traces generated by GOSC terms are known to satisfy a technical

condition, called P-visibility, which states that P-actions may only

involve O-names from the current P-view [14]. This, in conjunction

with the bound on the length of P-views established in the previous

section, gives us a way to eliminate O-names and replace them with

bounded numerical indices.

To this end, we first define the notion of P-visible names by

ordering the O-names in the corresponding P-view in the obvious

way and adding names from 𝑁𝑂 at the front.

Definition 5.1. Given an even-length 𝑁𝑂 -trace 𝑡 , the sequence

Vis𝑃 (𝑡) of P-visible names is defined as follows:

Vis𝑃 (𝜖) ≜ 𝑁𝑂
Vis𝑃 (𝑡 ¯𝑓 (𝐴, 𝑐) 𝑡 ′ 𝑐 (𝐴′)) ≜ Vis𝑃 (𝑡) a (𝐴′)

Vis𝑃 (𝑡 ¯𝑓 (𝐴, 𝑐′) 𝑡 ′ 𝑔(𝐴′, 𝑐′)) ≜ Vis𝑃 (𝑡) a (𝐴′) 𝑐′ 𝑔 ∈ a (𝐴)
Vis𝑃 (𝑡 𝑐 (𝐴) 𝑡 ′ 𝑔(𝐴′, 𝑐′)) ≜ Vis𝑃 (𝑡) a (𝐴′) 𝑐′ 𝑔 ∈ a (𝐴)

where 𝑁𝑂 stands for some fixed sequence of all names from 𝑁𝑂
and a (𝐴′) is the sequence of elements of a (𝐴′) listed in order of

appearance in 𝐴′
.

We then let FromInd(𝑡, 𝑖) be the 𝑖th element of Vis𝑃 (𝑡) and

ToInd(𝑡, 𝑓 ) be the index of the name 𝑓 in Vis𝑃 (𝑡). By convention,

the first element will be assigned index 1. We write |Vis𝑃 (𝑡) | to
refer to the length of Vis𝑃 (𝑡).

Example 5.2. Consider the {𝑓 , 𝑐}-trace 𝑡 = ¯𝑓 (ℎ, 𝑐1) ℎ(𝑔, 𝑐2) 𝑔((), 𝑐3)
𝑐1 (()) 𝑐 (()) from Example 3.4. The corresponding P-views were

shown in Example 4.2. Here are the corresponding sequences of P-

visible names: Vis𝑃 (𝑡≤0) = 𝑓 𝑐 , Vis𝑃 (𝑡≤2) = 𝑓 𝑐𝑔𝑐2, Vis𝑃 (𝑡≤4) = 𝑓 𝑐 .
We have FromInd(𝑡≤2, 1) = 𝑓 and ToInd(𝑡≤2, 𝑐2) = 4.

Definition 5.3. An 𝑁𝑂 -trace 𝑡 is P-visible if both
• for any prefix 𝑡 ′ ¯𝑓 ′ (𝐴′, 𝑐′) of 𝑡 , the name 𝑓 ′ occurs in Vis𝑃 (𝑡 ′),
• for any prefix 𝑡 ′ ¯𝑐′ (𝐴′) of 𝑡 , the name 𝑐′ occurs in Vis𝑃 (𝑡 ′).

Example 5.4. The {𝑓 , 𝑐}-trace 𝑡 from Example 5.2 is P-visible: 𝑓

occurs inVis𝑃 (𝑡≤0),𝑔 occurs inVis𝑃 (𝑡≤2), and 𝑐 occurs inVis𝑃 (𝑡≤4).

Next we will incorporate indices into traces. For a start, we need

a notion of abstract value with indices.

Definition 5.5. An indexed abstract value is an abstract value

in which indices were substituted for names, we denote them 𝐴𝐼 .

AVal𝜎 (𝐴, 𝑖), defined below, specifies a decomposition (𝐴𝐼 , 𝛾, 𝑗) of
𝐴 : 𝜎 into an indexed value 𝐴𝐼 , a corresponding substitution (for

indices) 𝛾 , and 𝑗 ≥ 𝑖 such that all indices in 𝐴𝐼 are from [𝑖 .. 𝑗)
(counting left to right) and 𝑗 is the smallest index unused in 𝐴𝐼 .

AVal𝜎 (𝐴, 𝑖) ≜ (𝐴, ∅, 𝑖) for 𝜎 ∈ {Unit,Bool, Int}
AVal𝜎→𝜎 ′ (𝐴, 𝑖) ≜ (𝑖, [𝑖 ↦→ 𝐴], 𝑖 + 1)
AVal𝜎×𝜎 ′ (⟨𝐴1, 𝐴2⟩, 𝑖) ≜ (⟨𝐴𝐼

1
, 𝐴𝐼

2
⟩, 𝛾1 · 𝛾2, 𝑖

′′)
where (𝐴𝐼

1
, 𝛾1, 𝑖

′) = AVal𝜎 (𝐴1, 𝑖)
and (𝐴𝐼

2
, 𝛾2, 𝑖

′′) = AVal𝜎 ′ (𝐴2, 𝑖
′)

We can now define the translation of P-visible traces into their

canonical forms. They will be traces in which all occurrences of

O-names are replaced with indices in a way guided by the number

of O-names in the current P-view.

Definition 5.6. The canonical form Can(𝑡) of a P-visible 𝑁𝑂 -
trace 𝑡 is defined by:

Can(𝜖) ≜ 𝜖
Can(𝑡 ′ a 𝑡 ′′ 𝑐 (𝐴)) ≜ Can(𝑡 ′ a 𝑡 ′′) 𝑐 (𝐴𝐼 ) 𝑐 introduced in a,

𝑖 = |Vis𝑃 (𝑡 ′) |+1, (𝐴𝐼 , 𝛾, 𝑖′) = AVal (𝐴, 𝑖)
Can(𝑡 ′ a 𝑡 ′′ 𝑓 (𝐴, 𝑐)) ≜ Can(𝑡 ′ a 𝑡 ′′) 𝑓 (𝐴𝐼 , 𝑖′) 𝑓 introduced in a,

𝑖 = |Vis𝑃 (𝑡 ′) |+1, (𝐴𝐼 , 𝛾, 𝑖′) = AVal (𝐴, 𝑖)
Can(𝑡 ′ 𝑐 (𝐴)) ≜ Can(𝑡 ′) 𝑖 (𝐴) 𝑖 = ToInd(𝑡 ′, 𝑐)
Can(𝑡 ′ ¯𝑓 (𝐴, 𝑐)) ≜ Can(𝑡 ′) 𝑖 (𝐴, 𝑐) 𝑖 = ToInd(𝑡 ′, 𝑓 )

We extend Can(𝑡) to sets of 𝑁𝑂 -traces in the obvious way.

Example 5.7. Suppose𝑁𝑂 = 𝑓 𝑐 and 𝑡 = ¯𝑓 (ℎ, 𝑐1) ℎ(𝑔, 𝑐2) 𝑔((), 𝑐3)
𝑐1 (()) 𝑐 (()) ℎ(𝑔′, 𝑐′). ThenCan(𝑡) = 1̄(ℎ, 𝑐1) ℎ(3, 4) 3̄((), 𝑐3) 𝑐1 (())
2̄(()) ℎ(3, 4).

Lemma 5.8. Let 𝑡, 𝑡 ′ be P-visible𝑁𝑂 -traces. ThenCan(𝑡) = Can(𝑡 ′)
if and only if 𝑡 and 𝑡 ′ are equal up to a permutation of O-names which
preserves 𝑁𝑂 .

Corollary 5.9. Let 𝑇,𝑇 ′ be sets of P-visible 𝑁𝑂 -traces closed
under permutation of names not in 𝑁𝑂 . Then Can(𝑇 ) = Can(𝑇 ′) if
and only if 𝑇 = 𝑇 ′.

A simple consequence of the bound on P-views from Corol-

lary 4.5 is that finitely many indices suffice.

Lemma 5.10. For any cr-free GOSC term Γ ⊢ 𝑀 : 𝜎 , there exists a
bound MaxInd(𝑀) such that, for any Γ-assignment 𝜌 and continua-
tion name 𝑐 : 𝜎 , the largest index used in Can(Tr(C𝜌,𝑐

𝑀
)) is at most

MaxInd(𝑀).
We now define a modified LTS, called Lcan

HOSC
, which will gen-

erate the canonical representations of traces. Firstly, we will need

to extend the syntax and extended reduction to allow indices an-

notated with a type (𝑖 : 𝜎) to be used in place of names. The

configurations are extended so that they contain a mapping [ from

P-names to the number of O-names that were P-visible when the

P-name was introduced plus 1. Similarly, in active configurations,

𝑘 holds the number of currently P-visible names incremented by 1,

i.e. the next available index. This allows the LTS to keep track of

|Vis𝑃 (𝑡) | + 1 as it progresses and ensure that the generated traces

are in canonical form. The transitions are presented in Figure 4.

We take Trcan (C) to be the set of traces generated by Lcan
HOSC

from

configuration C.

Definition 5.11. Given a cr-freeGOSC-term Γ ⊢ 𝑀 : 𝜎 , Γ-assignment

𝜌 and continuation name 𝑐 : 𝜎 , let a (𝜌) be a (canonical) sequence
of names from a (𝜌), and 𝜌 be 𝜌 but with names replaced by (in-

dex:type) pairs according to the order in a (𝜌). Let 𝑖 = |a (𝜌) |. The
initial configurationC𝜌,𝜎

𝑀,can is then ⟨𝑀{𝜌}, (𝑖+1 : 𝜎), ∅, ∅, ∅, 𝑖+2, ∅⟩.
The key result is that the new LTS produces exactly the canonical

forms of traces from the original LTS.

Theorem 5.12. Let Γ ⊢ 𝑀 : 𝜎 be a cr-free GOSC-term, 𝜌 a Γ-
assignment and 𝑐 : 𝜎 a continuation name. Then Trcan (C

𝜌,𝜎

𝑀,can) =
Can(Tr(C𝜌,𝑐

𝑀
)).

Thus,Lcan
HOSC

provides a faithful representation ofTrHOSC (Γ ⊢ 𝑀 : 𝜎)
for cr-free GOSC-terms Γ ⊢ 𝑀 : 𝜎 .
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(𝑃𝜏) ⟨𝑀, (𝑖 : 𝜎), 𝛾, b, 𝜙, ℎ, 𝑘, [⟩ 𝜏−−→ ⟨𝑁, (𝑖′ : 𝜎′), 𝛾, b, 𝜙, ℎ′, 𝑘, [⟩
when (𝑀, (𝑖 : 𝜎), ℎ) → (𝑁, (𝑖′ : 𝜎′), ℎ′)

(𝑃𝐴) ⟨𝑉 , (𝑖 : 𝜎), 𝛾, b, 𝜙, ℎ, 𝑘, [⟩
𝑖 (𝐴)
−−−−→ ⟨𝛾 · 𝛾 ′, b, 𝜙 ⊎ a (𝐴), ℎ, [ · [a (𝐴) ↦→ 𝑘]⟩

when (𝐴,𝛾 ′) ∈ AVal𝜎 (𝑉 )

(𝑃𝑄) ⟨𝐾 [(𝑖 : 𝜏)𝑉 ], ( 𝑗 : 𝜏 ′), 𝛾, b, 𝜙, ℎ, 𝑘, [⟩
𝑖 (𝐴,𝑐′ )
−−−−−−→ ⟨𝛾 · 𝛾 ′ · [𝑐′ ↦→ 𝐾], b ′, 𝜙 ⊎ a (𝐴) ⊎ {𝑐′}, ℎ, [′⟩

when 𝜏 = 𝜎 → 𝜎′, (𝐴,𝛾 ′) ∈ AVal𝜎 (𝑉 ), 𝑐′ : 𝜎′, b ′ = b · [𝑐′ ↦→ ( 𝑗 : 𝜏 ′)], [′ = [ · [a (𝐴), 𝑐′ ↦→ 𝑘]

(𝑂𝐴) ⟨𝛾, b, 𝜙, ℎ, [⟩
𝑐 (𝐴𝐼 )
−−−−−→ ⟨𝐾 [𝑈 ], ( 𝑗 : 𝜏 ′), 𝛾, b, 𝜙, ℎ, 𝑖, [⟩

when 𝑐 : 𝜎, 𝐴 : 𝜎, (𝐴𝐼 , 𝛾 ′, 𝑖) = AVal (𝐴,[ (𝑐)), 𝑈 = Typed(𝐴𝐼 , 𝛾 ′), 𝛾 (𝑐) = 𝐾, b (𝑐) = ( 𝑗 : 𝜏 ′)

(𝑂𝑄) ⟨𝛾, b, 𝜙, ℎ, [⟩
𝑓 (𝐴𝐼 ,𝑖 )
−−−−−−→ ⟨𝑉𝑈 , (𝑖 : 𝜎′), 𝛾, b, 𝜙, ℎ, 𝑖 + 1, [⟩

when 𝑓 : 𝜎 → 𝜎′, 𝐴 : 𝜎, (𝐴𝐼 , 𝛾 ′, 𝑖) = AVal (𝐴,[ (𝑓 )), 𝑈 = Typed(𝐴𝐼 , 𝛾 ′), 𝛾 (𝑓 ) = 𝑉

Typed(𝐴𝐼 , 𝛾) stands for 𝐴𝐼 in which indices are annotated with types implied by 𝛾 .

Figure 4: Lcan
HOSC

LTS

6 AUTOMATA OVER NESTED DATA
Our aim is to represent Lcan

HOSC
using automata. As the action la-

bels involve an infinite set of names, we will need an automata

model that can process them. We shall rely on automata that can

read words from (Σ × D)∗, where Σ is finite and D is infinite. In

the automata literature, such words are called data words and the

elements of Σ andD are referred to as tags and data values respec-
tively. Data values will be used to encode both names and indices

in traces of Lcan
HOSC

. We will also use data values in auxiliary roles,

not corresponding to names in traces, to keep track of P-views and

the heap. To this end, it turns out to be convenient to assume that

D has the structure of a forest.

Definition 6.1 (Dataset). D is a countable infinite set equipped

with a partial function pred : D ⇀ D (the parent function) satisfy-

ing the following conditions.

• Infinite branching and depth: pred
−1 ({𝑑}) is infinite for any

𝑑 ∈ D.

• Well-foundedness: for any 𝑑 ∈ D, there exists 𝑖 ≥ 1, called

the level of 𝑑 , such that pred
𝑖−1 (𝑑) is defined and pred

𝑖 (𝑑)
is undefined. We assume pred

0 (𝑑) = 𝑑 , i.e. the roots in D
are defined to have level 1.

The forest structure of D makes it possible to view level-𝑖 data

values as being nested inside the branch corresponding to its 𝑖 −
1 ancestors. Hence, the term nested data. To produce automata

suitable for capturing Lcan
HOSC

, we use a variant of nested data class
memory automata [6]. Analogously to environments in Lcan

HOSC
, the

automata make it possible to associate memories, drawn from a

finite set M, with data values.

Let M⊥ = M ⊎ {⊥}. A class memory function is a function

` : D → M⊥ such that ` (𝑑) ≠ ⊥ for finitely many 𝑑 ∈ D and,

for all 𝑑, 𝑑′ ∈ D, if ` (𝑑) = ⊥ and 𝑑 = pred(𝑑′) then ` (𝑑′) = ⊥.
Consequently, if we ignore data values𝑑 such that ` (𝑑) = ⊥, we can
view ` as a finite subforest of D with nodes labelled by memories.

Note that ` (𝑑) = ⊥ will represent the fact that the automaton has

not encountered 𝑑 yet, i.e. that 𝑑 is fresh.

Definition 6.2. A nested data class memory automaton (ND-

CMA) is a tuple A = ⟨𝑄, Σ,M, `0, 𝑞0, 𝐹 , 𝑏, 𝛿⟩, where

• 𝑄 is a finite set of states;

• Σ is a finite alphabet of tags;
• M is a finite set of memories;
• `0 is an initial class memory function;

• 𝑞0 ∈ 𝑄 is the initial state;

• 𝐹 ⊆ 𝑄 is the set of accepting states;

• 𝑏 ∈ N is the depth of the automaton; and

• 𝛿 ⊆ ⋃
1≤𝑖≤𝑏 (𝑄 × Σ × (M⊥)𝑖 × 𝑄 × M𝑖 ) ∪ (𝑄 × 𝑄) is the

transition relation.

We write 𝑞
𝑎,(𝑚1,· · · ,𝑚𝑖 )−−−−−−−−−−−→
(𝑚′

1
,· · · ,𝑚′

𝑖
)
𝑞′ or 𝑞

𝑎,−→𝑚−−−→−→
𝑚′

𝑞′ for

(𝑞, 𝑎, (𝑚1, · · · ,𝑚𝑖 ), 𝑞′, (𝑚′
1
, · · · ,𝑚′

𝑖 )) ∈ 𝛿,

and 𝑞
𝜖−→ 𝑞′ for (𝑞, 𝑞′) ∈ 𝛿 . Intuitively, when reading (𝑎, 𝑑) ∈ Σ×D

with 𝑑 of level 𝑖 (1 ≤ 𝑖 ≤ 𝑏), the automaton will have access to 𝑖

memories
−→𝑚 corresponding to the branch of D ending in 𝑑 , which

are then updated to

−→
𝑚′

according to 𝛿 .

A will be called deterministic if 𝑞
𝜖−→ 𝑞′ implies there are

no other transitions from 𝑞, or there are no 𝜖-transitions from 𝑞

and 𝑞, 𝑎,−→𝑚 uniquely determine 𝑞′,
−→
𝑚′

such that (𝑞, 𝑎,−→𝑚,𝑞′,
−→
𝑚′) ∈ 𝛿 .

A configuration is a tuple (𝑞, `), where 𝑞 ∈ 𝑄 and ` is a class

memory function. The initial configuration is (𝑞0, `0). A run of A
on (𝑎1, 𝑑1) · · · (𝑎𝑝 , 𝑑𝑝 ) ∈ (Σ × D)∗ is a sequence

(𝑞0, `0) (𝑞1, `1) · · · (𝑞𝑝 , `𝑝 )

such that, for all 1 ≤ 𝑗 ≤ 𝑝 , there exist𝑞′
𝑗−1

,𝑞′′
𝑗
,
−→𝑚 𝑗 = (𝑚 𝑗1, · · · ,𝑚 𝑗𝑖 𝑗 ),

−→
𝑚′
𝑗
= (𝑚′

𝑗1
, · · · ,𝑚′

𝑗𝑖 𝑗
) such that 𝑞 𝑗−1

𝜖−→∗𝑞′
𝑗−1

, 𝑞′
𝑗−1

𝑎 𝑗 ,
−→
𝑚 𝑗−−−−−→−→
𝑚′

𝑗

𝑞′′
𝑗
,

𝑞′′
𝑗

𝜖−→∗𝑞 𝑗 , where 𝑖 𝑗 is the level of 𝑑 𝑗 , and

• memories are accessed: ` 𝑗−1 (pred
𝑖 𝑗−𝑘 (𝑑 𝑗 )) = 𝑚 𝑗𝑘 for all

1 ≤ 𝑘 ≤ 𝑖 𝑗 ;
• and updated: ` 𝑗 = ` 𝑗−1 [pred

𝑖 𝑗−1 (𝑑 𝑗 ) ↦→𝑚′
𝑗1
, · · · , pred(𝑑 𝑗 ) ↦→

𝑚′
𝑗 (𝑖 𝑗−1) , 𝑑 𝑗 ↦→𝑚′

𝑗𝑖 𝑗
].

A run is accepting if it ends in a configuration with an accepting

state. We define L(A) to be the set of all data words𝑤 on which

A has an accepting run.
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Example 6.3. Consider theNDCMA ⟨{𝑞0, 𝑞1, 𝑞2}, {𝑎1, 𝑎2, 𝑎3, 𝑎4}, ∅,
𝑞0, {𝑞2}, 2, 𝛿⟩ with 𝛿 defined by the following transitions.

𝑞0

𝑎1,⊥−−−−→
𝑚1

𝑞0 𝑞0

𝑎2,(𝑚1,⊥)
−−−−−−−−→
(𝑚2,𝑚3 )

𝑞1 𝑞1

𝑎3,(𝑚2,⊥)
−−−−−−−−→
(𝑚2,𝑚4 )

𝑞1 𝑞1

𝑎4,(𝑚2,𝑚3 )−−−−−−−−−→
(𝑚5,𝑚6 )

𝑞2

Belowwe present an accepting run on (𝑎1, 𝑑1) (𝑎1, 𝑑2) (𝑎2, 𝑑3) (𝑎3, 𝑑4)
(𝑎4, 𝑑3), where 𝑑1, 𝑑2 are roots and pred(𝑑3) = pred(𝑑4) = 𝑑1. The

class memory functions ` inside configurations are shown as finite

forests, where 𝑑𝑚 stands for ` (𝑑) =𝑚.

(𝑞0, ∅) (𝑞0, 𝑑
𝑚1

1
) (𝑞0, 𝑑

𝑚1

1
𝑑
𝑚1

2
) (𝑞1, 𝑑

𝑚2

1
𝑑
𝑚1

2

𝑑
𝑚3

3

)

(𝑞1, 𝑑
𝑚2

1
𝑑
𝑚1

2

𝑑
𝑚3

3
𝑑
𝑚4

4

) (𝑞2, 𝑑
𝑚5

1
𝑑
𝑚1

2

𝑑
𝑚6

3
𝑑
𝑚4

4

)

The automata are a variation on the weak NDCMA defined in [6].

For convenience, our definition features an initial class memory

function `0, whereas, for the original NDCMA, `0 was empty, i.e.

`0 (𝑑) = ⊥ for all 𝑑 ∈ D. As one can use initial steps of an NDCMA

to initialise the class memory to the same shape as `0, we inherit

the decidability results for language containment from [6], provided

the initial class memories are defined on the same data values.

Theorem 6.4. Given two deterministic NDCMA A1,A2, whose
initial class memory functions are defined on the same data values,
the associated containment problem (L(A1) ⊆ L(A2)) is decidable.

In [6], the above result was obtained via a reduction to well-

structured transitions systems [10]. In particular, the problem is at

least as hard as that of deciding coverability in Petri nets with reset

arcs, i.e. it is Ackermann-hard [24].

7 FROM FOSC TO NDCMA (ENCODING)
In this section we explain how to simulate Lcan

HOSC
as an NDCMA,

provided that the term Γ ⊢ 𝑀 in question comes from FOSC. Recall

that NDCMA read data words from (Σ × D)∗, where Σ is a finite

tag alphabet and D is an infinite forest-shaped data alphabet, as

in Definition 6.1. Let us discuss how to represent traces of Lcan
HOSC

as data words. We will represent both indices and P-names using

elements of D. As the indices are bounded (Lemma 5.10), we fix a

set N of data values at level 1 and refer to the corresponding data

values as 𝑖:

N = { 𝑖 | 1 ≤ 𝑖 ≤ MaxInd(𝑀)}.
These fixed data values will be provided through the initial

class memory function. In contrast, data values corresponding to

P-names will be generated by the automaton at run time and their

level will vary. Next, we describe the set of finite tags Σ that will

be used in the encoding.

7.1 Tag alphabet
Since actions of the LTS may involve multiple names and NDCMA

can process only a single name in each step, it is necessary to

represent each action as a sequence from (Σ × D)∗.
• The first tag in such a sequence will indicate the kind of action

as well as the corresponding pattern of arguments. The tags will

have one of the following shapes:

Pcall(𝐴□), Pret(𝐴□),Ocall(𝐴□),Oret(𝐴□),
where 𝐴□ stands for value patterns generated by the grammar

𝐴□ ≜ □ | () | 𝑛 | tt | ff | ⟨𝐴□, 𝐴□⟩.
Note that they do not contain any names, which have been re-

placed with a placeholder □. In our encoding of actions, the tags

will be paired with a data value that corresponds to the head

name of the action.

• Whenever 𝐴□ contains any occurrences of □, the encoding of

the action will further contain a sequence from (Σ × D)∗ (of the
same length as the number of □s in 𝐴□) representing function

arguments. Each element of that argument sequence will be

tagged with Parg (resp. Oarg), and these tags will be paired up

with data values representing P-names (resp. indices).

• Finally, if an action introduces a continuation name then this will

be represented using the tag Pcont (resp. Ocont), which will be

paired up with the corresponding data value.

Additionally, the encoding of each P-action will be preceded by

(Gopen, 𝑜) and succeeded by (Gopen, 𝑜) for the same data value 𝑜 ,

with different data values𝑜 used for different P-actions. In particular,

the encoding of the whole trace will begin with (Gopen, 𝑜) for
some 𝑜 . The values 𝑜 will be disjoint from those used to simulate

indices or names, and we shall refer to them as ghost data values
(or simply ghost values). The extra ghost tags and values will help

us simulate administrative operations of Lcan
HOSC

and maintain a

helpful relationship between the data values, used to handle storing

the heap. To sum up, we will take Σ to be a finite subset of

ΣFOSC = {Gopen,Gclose, Parg, Pcont,Oarg,Ocont}

∪
⋃

𝐴□∈Vals□

{Pcall(𝐴□), Pret(𝐴□),Ocall(𝐴□),Oret(𝐴□)}.

where Vals□ is the set of all value patterns. Although ΣFOSC is

infinite (because Vals□ is infinite), we will only need a finite number

of value patterns, because the types used in actions are syntactic

subtypes of those occurring in the boundary types of terms.

7.2 Data alphabet
Wehave alreadymentioned that wewill use fixed level-1 data values

to correspond to indices. We will now explain the relationships

between various other names used in the encoding.

• Recall that the encoding of each P-action will be preceded by

(Gopen, 𝑜). If that P-action introduces any (function or continu-

ation) names then to model such names we will use fresh data

values 𝑑 such that pred(𝑑) = 𝑜 .
• For (Gopen, 𝑜) occurring at the very beginning of a trace encod-

ing, we require that 𝑜 be fresh and a root (level 1). For further

occurrences of (Gopen, 𝑜), i.e. those following encodings of O-

actions, we require that 𝑜 be fresh and pred(𝑜) = pred(𝑑), where
𝑑 represents the head name of the O-action.

Note that, because pred(𝑑) is a ghost value, the second condition

will generate tree structure among ghost values, and data values

used to model P-names will always be leaves. Moreover, as we

require pred(𝑜) = pred(𝑑), the induced tree on ghost values will

have the same shape as the tree of P-views that are generated
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by LHOSC. In particular, because of Corollary 4.5, its depth will

be bounded, as required in NDCMA. For a ghost value, the class

memory can be used to store locations generated in the sequence of

𝜏-transitions in the corresponding portion of the view path induced

by the P-view.

The following definition summarises our conventions on the

use of tags and data values in trace encodings. Recall that N is the

bounded set of data values used to represent indices, and 𝑖 is the

data value corresponding to index 𝑖 . We write #𝐴□ to refer to the

number of placeholder □s in 𝐴□.

Definition 7.1. A data word𝑤 ∈ (ΣFOSC × D)∗ is valid if it has

one of the shapes specified below.

(1) (Gopen, 𝑜), where 𝑜 ∉ N is a level-1 data value.

(2) 𝑢 (Pcall(𝐴□), 𝑖) (Parg, 𝑑1) · · · (Parg, 𝑑#𝐴□ ) (Pcont, 𝑑#𝐴□+1) (Gclose, 𝑜),
where 𝑢 is a valid data word ending in (Gopen, 𝑜), the data

values 𝑑 𝑗 are pairwise distinct, do not occur in N or 𝑢, and

pred(𝑑 𝑗 ) = 𝑜 .
(3) 𝑢 (Pret(𝐴□), 𝑖) (Parg, 𝑑1) · · · (Parg, 𝑑#𝐴□ ) (Gclose, 𝑜), where𝑢,𝑑 𝑗 ,

𝑜 satisfy analogous conditions to (2).

(4) 𝑢 (Ocall(𝐴□), 𝑑) (Oarg, ˜𝑖1) · · · (Oarg, ˜𝑖#𝐴□ ) (Ocont, ˜𝑖#𝐴□+1) (Gopen, 𝑜),
where 𝑢 is a valid data word ending in (Gclose, 𝑜′), the data
value 𝑑 occurs in 𝑢 but not inN or as a ghost value, the indices

𝑖1 · · · 𝑖#𝐴□+1 form a contiguous range, the data value 𝑜 does not

occur in 𝑢 or N, and pred(𝑜) = pred(𝑑).
(5) 𝑢 (Oret(𝐴□), 𝑑) (Oarg, ˜𝑖1) · · · (Oarg, ˜𝑖#𝐴□ ) (Gopen, 𝑜), where𝑢,𝑑,

𝑖 𝑗 , 𝑜 satisfy analogous conditions to (4).

Example 7.2. Consider the {𝑓 }-trace t = ¯𝑓 (⟨𝑔, ℎ⟩, 𝑐1) ℎ(𝑘, 𝑐2)
¯𝑘 (tt, 𝑐3) 𝑐1 (⟨𝑙,𝑚⟩) �̄�((), 𝑐4) ℎ( 𝑗, 𝑐5) 𝑗 (tt, 𝑐6) 𝑐3 (̂3) 𝑐2 (̂3). Observe
that its canonical formCan(t) is 1̄(⟨𝑔, ℎ⟩, 𝑐1) ℎ(2, 3) 2̄(tt, 𝑐3) 𝑐1 (⟨2, 3⟩)
3̄((), 𝑐4) ℎ(2, 3) 2̄(tt, 𝑐6) 𝑐3 (̂3) 3̄(̂3), which will be encoded by the

valid data word given below

(Gopen, 𝑜1) (Pcall(⟨□, □⟩), 1̃) (Parg, 𝑑1) (Parg, 𝑑2) (Pcont, 𝑑3) (Gclose, 𝑜1)
(Ocall(□), 𝑑2) (Oarg, 2̃) (Ocont, 3̃) (Gopen, 𝑜2)
(Pcall(tt), 2̃) (Pcont, 𝑑4) (Gclose, 𝑜2)
(Oret(⟨□, □⟩), 𝑑3) (Oarg, 2̃) (Oarg, 3̃) (Gopen, 𝑜3)
(Pcall(()), 3̃) (Pcont, 𝑑5) (Gclose, 𝑜3)
(Ocall(□), 𝑑2) (Oarg, 2̃) (Ocont, 3̃) (Gopen, 𝑜4)
(Pcall(tt), 2̃) (Pcont, 𝑑6) (Gclose, 𝑜4)
(Oret (̂3), 𝑑4) (Gopen, 𝑜5) (Pret (̂3), 3̃) (Gclose, 𝑜5)

where we have the following relations between data values:

1̃ 2̃ 3̃ 𝑜1

𝑑1 𝑑2 𝑑3 𝑜2 𝑜3 𝑜4

𝑑4 𝑜5 𝑑5 𝑑6

8 FROM FOSC TO NDCMA (AUTOMATON)
In this section, we show how to define NDCMA for a given cr-free

FOSC term Γ ⊢ 𝑀 : 𝜎 . Let 𝜌 be a Γ-assignment. Our aim will be

to specify an NDCMA A𝜌,𝜎

𝑀
that will accept all data words repre-

senting traces from Trcan (C
𝜌,𝜎

𝑀,can) according to the representation

scheme specified in Section 7.

Recall that we use level-1 data values from a finite subsetN ofD
to represent the bounded indices generated by Lcan

HOSC
. Accordingly,

we shall initialise the memory function `0 by `0 (𝑖) = 𝑖 for 𝑖 ∈ N,

and `0 (𝑑) = ⊥ otherwise.

8.1 State vs class memory
Next we take a closer look at configurations of Lcan

HOSC
and ex-

plain which parts will be represented using state and which will be

delegated to class memory. The configurations have two kinds of

shapes: ⟨𝑁, (𝑖 : 𝜏), 𝛾, b, 𝜙, ℎ, 𝑘, [⟩ or ⟨𝛾, b, 𝜙, ℎ, [⟩. By Corollary 4.7,

we know that the size of 𝑁 will be bounded. Together with the

fact that O-names in 𝑁 are replaced with pairs (𝑖 : 𝜏) and that

locations will be modelled by bounded natural numbers (see next

subsection), this implies that the number of possible 𝑁 s will be

bounded too and, consequently, we can store 𝑁 in the state of the

automaton. Similarly, we use state to store (𝑖 : 𝜏) and 𝑘 . Note that
1 ≤ 𝑖, 𝑘 ≤ MaxInd(𝑀) and 𝜏 must be a syntactic subtype of a type

from Γ or 𝜎 .

In contrast, to represent 𝛾, b, [, we will take advantage of the

class memory function. Recall that each of the maps is defined on

P-names and the set of P-names can grow unboundedly in Lcan
HOSC

,

i.e. could not be stored in finite state space. We still need to argue

that the number of memories can be bounded. For 𝛾 , this is the case

because the terms and contexts stored in 𝛾 are subterms of terms

𝑁 discussed in the previous paragraph. For b and [, we observe

that their images contain indices bounded by MaxInd(𝑀). In b they
are paired up with types, but these are always syntactic subtypes

of those occurring in the typing judgment of the original term.

Consequently, the number of memories can also be bounded.

Finally, we discuss the heap, which presents a particular chal-

lenge. To handle it, we will take advantage of a special property of

FOSC. Recall that traces of GOSC terms satisfy P-visibility. In [14],

this is established by showing that terms in active configurations

may only contain O-names introduced in the P-view. A similar ar-

gument can be used for FOSC terms to show an analogous property

for heap locations.

Lemma 8.1. Let Γ ⊢ 𝑀 : 𝜎 be a cr-free FOSC and 𝑁 ∈ Reach(𝑀),
i.e. there exists a Γ-assignment 𝜌 , even-length trace 𝑡 and 𝑐 such that

C𝜌,𝑐
𝑀

𝑡−→ C and 𝑁 is the term component of C. Then all locations in 𝑁
have been introduced inside the corresponding view path.

Example 8.2. We show that Lemma 8.1 fails in GOSC, i.e. when

reference names can be stored. Let 𝜎 = (Unit → Unit) × (Unit →
Int) and consider the GOSC term ⊢ 𝑀 : 𝜎 defined below.

𝑀 ≜ let 𝑟 = refRefInt (refInt 0̂) in ⟨_𝑥.𝑟 := refInt 1̂, _𝑦.!(!𝑟 )⟩.

Assuming 𝑐 : 𝜎 , the {𝑐}-trace

𝑐 (⟨𝑓1, 𝑓2⟩) 𝑓1 ((), 𝑐1) 𝑐1 (()) 𝑓2 ((), 𝑐2) 𝑐2 (̂1)

is in TrHOSC (C∅,𝑐
𝑀

). Note that the final P-action contains 1̂, because

• between 𝑓1 ((), 𝑐1) and 𝑐1 (()), LHOSC generates a location,

say ℓ , initialised to 1, which is then stored inside the top-level

reference 𝑟 of type Ref (Ref (Int));
• after 𝑓2 ((), 𝑐2), LHOSC will reach a configuration with the

term component equal to !ℓ , which will evaluate to 1̂.

Let 𝑡 = 𝑐 (⟨𝑓1, 𝑓2⟩) 𝑓1 ((), 𝑐1) 𝑐1 (()) 𝑓2 ((), 𝑐2) and observe that

ViewP (𝑡) = 𝑐 (⟨𝑓1, 𝑓2⟩) 𝑓2 ((), 𝑐2) .
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Thus, Lemma 8.1 fails in this case, because ℓ is introduced after

𝑓1 ((), 𝑐1) and before 𝑐1 (()), and the transitions between 𝑓1 ((), 𝑐1)
and 𝑐1 (()) do not belong to the view path when 𝑐2 (̂1) is about to
be emitted. Intuitively, this is because ℓ escapes its P-view through

the heap, due to 𝑟 , which is a reference to another reference. This

could not happen in FOSC.

8.2 Distributed storage
Thanks to Lemma 8.1, in order to simulate Lcan

HOSC
, it suffices to

be able to access and update locations introduced in the current

view path. By Lemma 4.8, there is a bound HeapBound(𝑀) on
the number of locations that can be introduced between O- and

P-actions and, thanks to Corollary 4.5, the length of P-views is

bounded by ViewLen(𝑀), meaning that at any given time it will

suffice to keep track of a bounded fragment of the heap with up to

HeapSize(𝑀) = HeapBound(𝑀) × ViewLen(𝑀) locations. As the
fragment is bounded, it will be possible to store it in the state. Thus,

instead of the whole heap, we will only be storing the subheap

that was created in the view path corresponding to the current

configuration. To this end, we will rely on a concrete representa-

tion of locations, namely the natural numbers. Heaps will be finite

mappings from N to base values. Furthermore, we will only care

about heaps with the property that they are contiguous (i.e. if ℎ is

defined on 𝑖 and 𝑖 + 2, it is defined on 𝑖 + 1). Given this, we let maxℎ

be the largest location ℎ is defined on (and −1 for empty ℎ). We

then also need a subtle modification of the operational semantics:

(𝐾 [ref𝑉 ], ℎ) → (𝐾 [𝑙], ℎ[𝑙 ↦→ 𝑉 ]) where 𝑙 = maxℎ + 1.

Even though at any given moment we need to refer to a bounded

fragment of the heap, the whole heap can grow unboundedly and

we cannot hope to use the state to store it in its entirety. Instead, we

will store it in a distributed fashion as a tree using the class memory

function for ghost values. Recall that the representation scheme

is designed in such a way that a fresh ghost value follows each

O-action (tag Gopen) as well as each P-action (tag Gclose). This

gives us a chance to store new parts of the heap created between the

two actions as the memory for the new ghost value. Additionally,

recall that ghost values are linked in such a way that they generate

branches corresponding to P-views. Since NDCMA have access to

memories stored along the whole branch, the automaton will be

able to read andmodify parts of the heap associated with the current

P-view, which is exactly what we need: the parts relevant to the

current P-view can be extracted from class memory, moved into the

state during an O-action, modified in state as necessary to simulate

𝜏 transitions, and eventually moved back into class memory when

the corresponding ghost name is being closed (Gclose). Note that

the same natural numbers may be used to correspond to different

locations, but only if they arise in different branches.

Notation. In order to manage heap extraction from the class mem-

ory function, we define two operations that respectively combine

parts of the heap stored on the same branch into a single heap and

use a single heap to update a branch. Let ℎ = (ℎ1, · · · , ℎ𝑘 ) be a

sequence of heaps with pairwise disjoint domains. Then the union

of the heaps will be written Union(ℎ) ≜ ℎ1 ·ℎ2 · . . . ·ℎ𝑘 . In our case,

the union will always be defined for a contiguous range starting

from 0. On the other hand, Update(ℎ,ℎ′), where ℎ′ is defined on at

least the domain of Union(ℎ), produces a sequence that updates ℎ
with values from ℎ′. We write ℎ′>𝑚 (resp. ℎ′≤𝑚) for the restriction

of ℎ′ to locations greater than (resp. at most)𝑚.

Update((ℎ1), ℎ′) ≜ (ℎ′)
Update((ℎ,ℎ𝑘 ), ℎ′) ≜ (Update(ℎ,ℎ′≤𝑚), ℎ′>𝑚)

where𝑚 = max Union(ℎ)

Before we can present the transition function of A𝜌,𝜎

𝑀
, we need

to introduce another two operations for handling value patterns,

which will respectively decompose values into a pattern along with

a (possibly empty) sequence of function values, and reconstruct an
abstract value with typed indices given a pattern and a sequence of

typed indices.

Decom(𝑉 ) ≜ (𝑉 , 𝜖) 𝑉 : 𝛽, 𝛽 ∈ {Unit, Int,Bool}
Decom(𝑉 ) ≜ (□,𝑉 ) 𝑉 : 𝜏 ′ → 𝜏 ′′

Decom(⟨𝑉1,𝑉2⟩) ≜ (⟨𝑃1, 𝑃2⟩,𝑈1 𝑈2) (𝑃𝑖 ,𝑈𝑖 ) = Decom(𝑉𝑖 )

Recon(𝑉 , 𝜖) ≜ 𝑉 𝑉 : 𝛽, 𝛽 ∈ {Unit, Int,Bool}
Recon(□, (𝑖 : 𝜏)) ≜ (𝑖 : 𝜏) 𝜏 = 𝜏 ′ → 𝜏 ′′

Recon((⟨𝑃1, 𝑃2⟩, 𝐼1𝐼2) ≜ ⟨𝑈1,𝑈2⟩ 𝑈𝑖 = Recon(𝑃𝑖 , 𝐼𝑖 ), |𝐼𝑖 | = #𝑃𝑖

Finally, we write 𝜎1 · · ·𝜎#𝐴□ ⊢ 𝐴□ : 𝜎′, or simply 𝜎 ⊢ 𝐴□ : 𝜎′, when
𝐴□ : 𝜎′ provided the 𝑖th occurrence of □ is typed as 𝜎𝑖 .

8.3 Transition function
The transition rules are listed in Figure 5.

Recall that `0 (𝑖) = 𝑖 for all 𝑖 ∈ N. As the automaton runs and

classmemory evolves, thememory associatedwith 𝑖 will not change.

This will let us force a transition on 𝑖 whenever needed by referring

to class memory. Below we walk the reader through various groups

of transitions in Figure 5 and explain their role.

Initialisation. The first step of the automaton is specified by (Init).
It will generate the first ghost name (the only one at level 1) and

initialise the corresponding memory to ∅† while reading the Gopen

tag. Here ∅ refers to the empty heap and † is a marker indicating

that this ghost name is currently active. At most one ghost name

will be active at any given time.

P-actions. (Init) leads to (𝑀{𝜌}, ( |a (𝜌) |+1 : 𝜎), ∅, |a (𝜌) |+2), which
corresponds to the initial configuration of Lcan

HOSC
. In particular

|a (𝜌) | + 1 is the index of the initial continuation name, ∅ denotes

the empty heap, and |a (𝜌) | + 2 is the next index to be used. These

components will then evolve through (𝜖) steps until the reduction
gets stuck. If the reason is not Ω then the rules (Pcall) or (Pret) take
over and the corresponding head name 𝑖 is read without changing

the memory. Note the rules use tags containing a value pattern

(Pcall(𝐴□) and Pret(𝐴□) respectively) and the associated sequence

of values 𝑉 is placed towards the end of the target state, where

(𝐴□,𝑉 ) = Decom(𝑉 ). Additionally, in (Pcall), the context 𝐾 is

stored at the beginning of the target state. In both cases, the target

state includes a Parg flag, indicating the start of a phase in which

data values corresponding to arguments will be created.

The rules (PargC) and (PargR) generate new data values cor-

responding to each function in the argument, immediately under

the currently active ghost value, which can be detected using †.
The memories for the data values are set to (𝑉 , 𝑘), storing the

corresponding function and next index, provided the memories
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on the branch of the currently active ghost value have the form

(ℎ1, · · · , ℎ†𝑗 ). Note that at the very beginning we will have 𝑗 = 1

(and ℎ 𝑗 = ∅), but 𝑗 will grow in subsequent steps as new ghost

values are being created at levels deeper than 1. Note also that the

transition does not change any memories other than that of the

new data value, which becomes associated with (𝑉 , 𝑘) (analogously
to how 𝛾, [ are updated in Lcan

HOSC
). For (Pcall), once all arguments

have been processed and the argument component becomes empty,

the (PargC𝜖) rule transitions to a state tagged Pcont. In the (Pcont)

rule, a new data value is similarly created for the continuation name

associated with 𝐾 , and its memory is initialised to (𝐾, (𝑖 : 𝜏), 𝑘)
(analogously to how 𝛾, b, [ are updated in Lcan

HOSC
). Once the ar-

guments and the context ((Pcall) only) have been dealt with, the

automaton proceeds to (ℎ,Gclose) with current heap ℎ.

The (Gclose) rule deactivates the currently active ghost value

by removing † from its memory and updating the memory function

on the whole branch to Update((ℎ1, · · · , ℎ 𝑗 ), ℎ), where (ℎ1, · · · , ℎ 𝑗 )
was the old content. The automaton then moves to Ostate and is

ready to process O-actions.

O-actions. Recall that O-actions contain P-names as head names

and that the memories of the data values corresponding to them

have been set via (PargC), (PargR) to (𝑉 , 𝑘) or (Pcont) to (𝐾, (𝑖 :

𝜏), 𝑘). Accordingly, when (Ocall) or (Oret) read the data values,

the memories can be used to continue the simulation of Lcan
HOSC

by recovering the relevant term/context. The abstract value (with

typed indices)𝑈 = Recon(𝐴□, (𝑖 : 𝜎𝑖 )) is then synthesised from the

associated value pattern 𝐴□ by filling □s with typed indices from

the range 𝑖 = 𝑘..𝑘′ − 1, where 𝑘′ = 𝑘 + #𝐴□. In (Ocall), 𝑘′ then
becomes the new continuation index, and 𝑘′ + 1 is the next index

to be used in the future. In (Oret), the next index is 𝑘′, because
there is no need to create a new continuation name. Following

(Ocall), the arguments and continuation names (if applicable) are

then announced with the rules (OargC), (OargC𝜖) and (Ocont)
by using the corresponding data values 𝑖 . Similarly, after (Oret),
rules (OargR), (OargR𝜖) are used. Ultimately, this will take the

automaton to a state whose last component is Gopen.

Recall that, when a data value corresponding to a P-name is

created in (Pcall) or (Pret) it will have the then active ghost value

as a parent. Consequently, when the data value for the P-name is

read later, the automaton will also have access to the memory of

the ghost name. The rules (Ocall) and (Oret) take this opportunity
to activate the ghost value temporarily, by adding † to its memory.

Once the automaton reaches the state marked with Gopen, it will

create a new ghost name under the ghost name that was temporarily

marked, in accordance with our convention for representing traces

with data words. The old ghost value will be deactivated and the

new one will become active. Indeed, note that in (Gopen) the mem-

ory on the corresponding branch will change from (ℎ1, · · · , ℎ†𝑗 ,⊥)
to (ℎ1, · · · , ℎ 𝑗 , ∅†), i.e. † is passed to the new data value and the

corresponding heap is initialised to ∅, as in (Init).

Acceptance. Finally, it suffices if the automaton accepts each time

Gopen or Gclose is processed, as these mark the stages when action

encodings have been completed. Overall, the construction yields a

faithful simulator of Lcan
HOSC

.

Lemma 8.3. Let Γ ⊢ 𝑀 : 𝜎 be a cr-free FOSC-term and 𝜌 a Γ-
assignment. Then L(A𝜌,𝜎

𝑀
) consists of all data-word representations

of elements of Trcan (C
𝜌,𝜎

𝑀,can) according to the representation scheme
from Section 7.

Since there are only finitely many Γ-assignments up to name-

equality, Lemma 8.3 (combined with Theorems 3.9, 5.12, 6.4) implies

the following result.

Theorem 8.4. ≲ and (thus) ≃ are decidable for cr-free FOSC terms.

9 CONCLUSION
Theorem 8.4 (HOSC[FOSC]) should be contrasted with the unde-

cidability result from Theorem 3.11 (HOSC[GOS]). This highlights

how the availability of reference name storage can have a dramatic

effect on contextual equivalence, even though the properties of

traces remain the same (P-visibility). An interesting question to

explore is whether Theorem 8.4 could be extended to programs

with loops. Here our approach runs into problems: P-views are no

longer unbounded and our trace encodings are no longer finitary.

In particular, there is no bound on the number of indices or the level

of data values. One could try to optimise the representation scheme

somehow, e.g. by resetting the level after each iteration. However,

this carries the risk of revealing the location of loops within the

program, which cannot be reconciled with full abstraction - some

programs with loops (e.g. bounded loops) may be equivalent to

loop-free programs.

Another avenue for future research concerns equivalence with

respect to contexts drawn from a subset of HOSC. Here the main

question would be whether Theorem 8.4 still holds when only

references to base types are allowed, i.e. FOSC[FOSC], or when
continuations are omitted, let us call it the HOS[FOSC] case. We do

not know the answers to these questions, though in the latter case

we suspect that exploring the pushdown extension of class memory

automata from [7] might be fruitful, given that traces corresponding

to contexts without continuations obey a bracketing condition [14].

Still, even if this were the case, the status of the corresponding

automata-theoretic problem is currently unknown and related to

a long-standing open problem about branching vector addition

systems.

However, we do know that when both continuations and higher-

order references are forbidden in contexts, we obtain undecidability

regardless of whetherwe allow references to names (GOS[GOS] [22])

or not (FOS[FOS] [21]). This illustrates the phenomenon that equiv-

alence with respect to “simpler” contexts may be “harder”. Seman-

tically, this is confirmed by the extra conditions of traces that need

to be imposed to model restrictions of the HOSC case [14]. So, The-

orem 8.4 could actually turn out to be a singular decidability result

in this setting.
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(Init) Initial

Gopen,⊥
−−−−−−−→

∅†
(𝑀{𝜌}, ( |a (𝜌) | + 1 : 𝜎), ∅, |a (𝜌) | + 2)

(𝜖) (𝑁, (𝑖 : 𝜏), ℎ, 𝑘) 𝜖−−−→ (𝑁 ′, (𝑖′ : 𝜏 ′), ℎ′, 𝑘) when (𝑁, (𝑖 : 𝜏), ℎ) → (𝑁 ′, (𝑖′ : 𝜏 ′), ℎ′)

(Pcall) (𝐾 [(𝑖 : 𝜏)𝑉 ], ( 𝑗 : 𝜏 ′), ℎ, 𝑘)
Pcall(𝐴□ ),𝑖−−−−−−−−−→

𝑖
(𝐾, ( 𝑗 : 𝜏 ′), ℎ, 𝑘,𝑉 , Parg) when (𝐴□,𝑉 ) = Decom(𝑉 )

(PargC) (𝐾, (𝑖 : 𝜏), ℎ, 𝑘,𝑉 𝑉 , Parg)
Parg,(ℎ1,· · · ,ℎ†𝑗 ,⊥)
−−−−−−−−−−−−−−−→
(ℎ1,· · · ,ℎ†𝑗 ,(𝑉 ,𝑘 ) )

(𝐾, (𝑖 : 𝜏), ℎ, 𝑘,𝑉 , Parg) for 1 ≤ 𝑗 ≤ 𝐵

(PargC𝜖) (𝐾, (𝑖 : 𝜏), ℎ, 𝑘, 𝜖, Parg) 𝜖−−−→ (𝐾, (𝑖 : 𝜏), ℎ, 𝑘, Pcont) for 1 ≤ 𝑗 ≤ 𝐵

(Pcont) (𝐾, (𝑖 : 𝜏), ℎ, 𝑘, Pcont)
Pcont,(ℎ1,· · · ,ℎ†𝑗 ,⊥)

−−−−−−−−−−−−−−−−−−→
(ℎ1,· · · ,ℎ†𝑗 ,(𝐾,(𝑖:𝜏 ),𝑘 ) )

(ℎ,Gclose) for 1 ≤ 𝑗 ≤ 𝐵

(Pret) (𝑉 , (𝑖 : 𝜏), ℎ, 𝑘)
Pret(𝐴□ ),𝑖−−−−−−−−→

𝑖
(𝑉 ,ℎ, 𝑘, Parg) when (𝐴□,𝑉 ) = Decom(𝑉 )

(PargR) (𝑉 𝑉 ,ℎ, 𝑘, Parg)
Parg,(ℎ1,· · · ,ℎ†𝑗 ,⊥)
−−−−−−−−−−−−−−−→
(ℎ1,· · · ,ℎ†𝑗 ,(𝑉 ,𝑘 ) )

(𝑉 ,ℎ, 𝑘, Parg) for 1 ≤ 𝑗 ≤ 𝐵

(PargR𝜖) (𝜖, ℎ, 𝑘, Parg) 𝜖−−−→ (ℎ,Gclose) for 1 ≤ 𝑗 ≤ 𝐵

(Gclose) (ℎ,Gclose)
Gclose,(ℎ1,· · · ,ℎ†𝑗 )−−−−−−−−−−−−−−→

(ℎ′
1
,· · · ,ℎ′

𝑗
)

Ostate for 1 ≤ 𝑗 ≤ 𝐵

when (ℎ′
1
, · · · , ℎ′

𝑗
) = Update((ℎ1, · · · , ℎ 𝑗 ), ℎ)

(Ocall) Ostate

Ocall(𝐴□ ),(ℎ1,· · · ,ℎ 𝑗 ,(𝑉 ,𝑘 ) )−−−−−−−−−−−−−−−−−−−−−−−→
(ℎ1,· · · ,ℎ†𝑗 ,(𝑉 ,𝑘 ) )

(𝑉 𝑈 , (𝑘′ : 𝜎′′), ℎ, 𝑖, 𝑘′, 𝑘′ + 1,Oarg) for 1 ≤ 𝑗 ≤ 𝐵

when 𝑉 : 𝜎′ → 𝜎′′, 𝜎 ⊢ 𝐴□ : 𝜎′, 𝑖 = 𝑘 . . . 𝑘′ − 1, 𝑘′ = 𝑘 + #𝐴□, 𝑈 = Recon(𝐴□, (𝑖 : 𝜎𝑖 )), ℎ = Union((ℎ1, · · · , ℎ 𝑗 ))

(OargC) (𝑁, (𝑘 : 𝜏), ℎ, 𝑖 𝑖, 𝑘, 𝑘 + 1,Oarg)
Oarg,𝑖
−−−−−→

𝑖
(𝑁, (𝑘 : 𝜏), ℎ, 𝑖, 𝑘, 𝑘 + 1,Oarg)

(OargC𝜖) (𝑁, (𝑘 : 𝜏), ℎ, 𝜖, 𝑘, 𝑘 + 1,Oarg) 𝜖−−−→ (𝑁, (𝑘 : 𝜏), ℎ, 𝑘, 𝑘 + 1,Ocont)

(Ocont) (𝑁, (𝑘 : 𝜏), ℎ, 𝑘, 𝑘 + 1,Ocont) Ocont,𝑘−−−−−−→
𝑘

(𝑁, (𝑘 : 𝜏), ℎ, 𝑘 + 1,Gopen)

(Oret) Ostate

Oret(𝐴□ ),(ℎ1,· · · ,ℎ 𝑗 ,(𝐾,(𝑖:𝜏 ),𝑘 ) )−−−−−−−−−−−−−−−−−−−−−−−−−−−→
(ℎ1,· · · ,ℎ†𝑗 ,(𝐾,(𝑖:𝜏 ),𝑘 ) )

(𝐾 [𝑈 ], (𝑖 : 𝜏), ℎ, 𝑖, 𝑘′,Oarg) for 1 ≤ 𝑗 ≤ 𝐵

𝐾 [𝜎′], 𝜎 ⊢ 𝐴□ : 𝜎′, 𝑖 = 𝑘 . . . 𝑘′ − 1, 𝑘′ = 𝑘 + #𝐴□, 𝑈 = Recon(𝐴□, (𝑖 : 𝜎𝑖 )), ℎ = Union((ℎ1, · · · , ℎ 𝑗 ))

(OargR) (𝑁, (𝑘 : 𝜏), ℎ, 𝑖 𝑖, 𝑘′,Oarg)
Oarg, 𝑖
−−−−−→

𝑖
(𝑁, (𝑘 : 𝜏), ℎ, 𝑖, 𝑘′,Oarg)

(OargR𝜖) (𝑁, (𝑘 : 𝜏), ℎ, 𝜖, 𝑘′,Oarg) 𝜖−→ (𝑁, (𝑘 : 𝜏), ℎ, 𝑘′,Gopen)

(Gopen) (𝑁, (𝑘 : 𝜏), ℎ, 𝑘′,Gopen)
Gopen,(ℎ1,· · · ,ℎ†𝑗 ,⊥)
−−−−−−−−−−−−−−−−→

(ℎ1,· · · ,ℎ 𝑗 ,∅† )
(𝑁, (𝑘 : 𝜏), ℎ, 𝑘′) for 1 ≤ 𝑗 ≤ 𝐵

𝐵 = ⌈ViewLen(𝑀)/2⌉ + 1 bounds the number of heaps appearing on a branch.

Figure 5: NDCMA transition rules for term𝑀
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