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Abstract  

Surgical meshes play a significant role in the treatment of various medical conditions, such as 

hernias, pelvic floor issues, guided bone regeneration, and wound healing. To date, commercial 

surgical meshes are typically made of non-absorbable synthetic polymers, notably polypropylene 

and polytetrafluoroethylene, which are associated with postoperative complications, such as 

infections. Biological meshes, based on native tissues, have been employed to overcome such 

complications, though mechanical strength has been a main disadvantage. The right balance in 

mechanical and biological performances has been achieved by the advent of bioresorbable 

meshes. Despite improvements, recurrence of clinical complications associated with surgical 

meshes raises significant concerns regarding the technical adequacy of current materials and 

designs, pointing to a crucial need for further development. To this end, current research focuses 

on the design of meshes capable of biomimicking native tissue and facilitating the healing 

process without post-operative complications. Researchers are actively investigating advanced 

bioresorbable materials, both synthetic and natural biopolymers, while also exploring the 

performance of therapeutic agents, surface modification methods and advanced manufacturing 

technologies such as 4D printing. This review seeks to evaluate emerging biomaterials and 

technologies for enhancing the performance and clinical applicability of the next-generation of 

surgical meshes.  

Statement of Significance 

In the ever-transforming landscape of regenerative medicine, the embracement of engineered 

bioabsorbable surgical meshes stands as a key borderline in addressing persistent challenges and 

complications associated with existing treatments. The urgency to move beyond conventional 

non-absorbable meshes, fraught with post-surgery complications, emphasises the necessity of 

using advanced biomaterials for engineered tissue regeneration.  
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This review critically examines the growing field of absorbable surgical meshes, considering 

their potential to transform clinical practice. By strategically marrying mechanical strength with 

bioresorbable characteristics, these innovative meshes hold the promise of mitigating 

complications and improving patient outcomes across diverse medical applications. As we 

navigate the complexities of current medicine, this exploration of engineered absorbable meshes 

emerges as a light of hope, offering an overall perspective on biomaterials, technologies, and 

strategies adopted to redefine the future of surgical meshes. 

 

Keywords: 

Surgical meshes, clinical complications, biopolymers, hydrogels, 4D printing, hernia, bone 

regeneration, wound healing,   
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1. Introduction 

Surgical meshes have been used in various applications. The first meshes were clinically used for 

the treatment of hernia conditions in the 1950s. A tension-free reconstruction of the injured 

tissue was a significant achievement in hernia surgery using surgical meshes that resulted in 

better outcomes both in terms of tissue integration and consequent repair [1]. In the 1970s, 

improvements in the treatment of hernia were reported for the management of pelvic floor 

dysfunctions (PFDs) such as pelvic organ prolapse (POP) by using surgical meshes [2]. To date, 

surgical meshes have been manufactured using nonabsorbable materials, especially for hernia 

and PFDs.  

Non-absorbable meshes were developed in the latter half of the 20
th

 century to replace 

metal meshes such as silver wire braided meshes which were abandoned for stiffness and 

unfavorable outcomes [3]. Non-absorbable meshes possess the required mechanical properties, 

are easily shaped intraoperatively, and exhibit long-term structural stability [4]. They are 

intended to remain in the body permanently but may undergo some degradation over time [5]. 

The most common applications of these types of mesh include breast reconstruction [6], hernia 

[7] and PFD [8]. Non-absorbable meshes (permanent meshes) are mainly composed of either 

expanded polytetrafluoroethylene (ePTFE) or polypropylene (PP) [9]. Those meshes show good 

mechanical properties overall, where tensile strength exceeds the physiological requirements; 

however, Food and Drug Administration (FDA) reports show that increased inflammation, pain, 

and infection rates are associated with the application of non-absorbable meshes [9, 10]. For 

instance, PP mesh has been noted to undergo some degradation in vivo, typically due to 

oxidation. This degradation results in changes in mechanical strength and appearance of surface 

cracks, which weaken the material further [11]. Additionally, the undesirable oxidation and 

degradation may cause significant inflammatory cytokines and infiltration of immune cells at the 
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implantation site [12]. On the other hand, ePTFE is considered a hydrophobic, inert and 

chemically stable mesh, which allows for resistance to enzymatic attacks during the foreign body 

response. However, chronic inflammation and remarkable shrinkage are associated with the use 

of ePTFE mesh [11, 13]. Various approaches have been employed to improve their 

biocompatibility by either changing the functional physical properties such as porosity to 

improve cell infiltration or coating with more biocompatible materials that act as barriers to the 

synthetic mesh material coming into direct contact with the local target tissue [14]. These are 

designed to reduce local inflammatory/immune responses thereby reducing the chances of 

complications. Literature information indicated that coating PP meshes with biomaterials such as 

collagen [15], fibrin [16], and extracellular matrix (ECM) [17] or mesenchymal stem cells [18] 

enhanced their biocompatibility and reduced the inflammatory response. Surface 

hydrophilization of PP meshes with titanium treatment (e.g., TiLOOP
®

 pfm medical) also 

reduced chronic pain and immune response [19, 20]. Polymers applied to PP meshes either by 

simple surface deposition [21, 22] or chemical grafting [23] reduced tissue adhesion and 

conferred various desirable effects. On the other hand, poor clinical outcomes have been 

associated with some coated PP meshes such as ETHICON PHYSIOMESH
™ 

having a laminated 

layer of poliglecaprone 25 and C-Qur (Atrium) mesh coated with omega-3 fatty acid because of 

a higher hernia recurrence and reoperation rate compared to similar products. Indeed, the mesh 

antiadhesive properties of C-Qur (Atrium) decline over time leading to dense abdominal 

adhesions necessitating mesh explantation [24-26]. 

Despite relevant biocompatibility enhancement, challenges in nano-absorbable surgical 

meshes have not been completely resolved as they are still associated with a risk of postoperative 

infection, pain, fistulation and need for explantation in contaminated settings [1, 27, 28]. This led 
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to the evolving of biological mesh products in the first decade of the century, e.g. Strattice™ 

RTM, Permacol
™

,  AlloDerm
TM

, etc., with expected reduced rates of infection and other 

shortcomings associated with permanent meshes [29].  

Biological meshes/patches were introduced to reduce the risk of infections associated with 

synthetic non-absorbable meshes [29]. These are composed of an ECM that is derived from 

collagen-rich tissues [30]. Biological implants become vascularized over time, resulting in the 

deposition of host collagen that provides integrity as the strength of the mesh dissipates over 

time [31]. However, undesirable host reaction to the biologic mesh is a significant disadvantage  

[10, 29]. A higher rate of reactions is attributed to the biologic properties of the mesh, such as the 

source animal’s DNA, stimulating an immunologic response [32]. In a study reporting adverse 

effects associated with various surgical meshes for hernia repair, biologic meshes (from human 

or animal collagen) elicited higher foreign body reactions compared to synthetic and composite 

meshes [10]. In another report, both Strattice™ (porcine, non-cross-linked tissue matrix) and 

Tutomesh
® 

(bovine, collagen I membrane were associated with an acute, short-term 

inflammatory response as a macrophage-foreign-body reaction around mesh filaments [29]. 

Another disadvantage of biological meshes is their high cost [10, 30]. The evidence base 

supporting the use of biological mesh is currently too limited to support routine clinical use, 

restricting it to mostly niche applications. Current evidence increasingly supports reconsidering 

synthetic mesh as the prosthesis of choice for elective open ventral hernia repair even in 

contaminated cases [33].  

The key takeaway from the pre-clinical and clinical studies focusing on non-absorbable 

and biological surgical meshes is that not every innovation transfers to improved patient care or 

better clinical outcomes. The limitations and failures of the developments highlighted the 
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importance of proper materials selection and the need of appropriate surgical techniques. These 

setbacks will also guide the development of future generations of prostheses with greater 

efficacy. Nevertheless, such failures may guide the development of future generations of 

prostheses with greater efficacy. Assuming appropriate surgical technique and mesh placement, 

flaws have generally involved long-term interactions of the prosthesis system (base / surface 

modification materials / fixation tool), its architecture and manufacturing method, and the host 

tissues and organs [13]. Improvements require collaborative efforts between surgeons, material 

scientists and biomedical engineers to optimize the mesh composition and structural design. 

Moreover, the evidence base needs to be improved in future studies via a standard approach for 

the description of mesh type and exact placement, and consistent monitoring of the intervention 

regarding recurrence rate, infection, and seroma to enable reliable assessment and reproducibility 

of clinical outcomes. The evidence base may be also improved by testing the efficacy of the 

mesh in randomized trials and the inclusion of more high-risk patient cases to establish the limits 

of indication [34]. From a regulatory perspective, sufficiently rigorous requirements to 

demonstrate the safety of the prosthesis must be satisfied to gain clearance.  

In the quest for more reliable implants for use inside the peritoneal cavity, bioresorbable 

meshes evolved as a slowly resorbable synthetic mesh, combining the benefits of both synthetic 

(no early degradation after implantation) and biological meshes (the “remodeling” aspects and 

better tolerance in case of contamination) [35]. Bioresorbable surgical meshes are temporary 

implants that can be slowly degraded or replaced by healing tissue and integrated within the 

body’s innate repair mechanisms. The term "bioresorbable" is reserved for those polymeric 

systems that can degrade into low molecular weight compounds that are involved normally in 

metabolic pathways, or which can be, at least, eliminated from the body through natural 
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pathways [36]. Bioresorption reflects the total elimination of the initial foreign material and of 

the degradation by-products (low molecular weight compounds) with no residual material 

remaining [37]. Consequently, this avoids the need for further surgical procedures to remove the 

implants or scaffolds [38, 39]. Bioresorbable meshes maintain mechanical strength for a pre-

determined period. These implants will gradually resorb, allowing regeneration of connective 

tissue. In this way, this new generation of materials is different from the available quickly 

absorbing polyglactin mesh (Vicryl mesh; Johnson & Johnson) [35]. 

Over the last decade, many different bioresorbable meshes have been designed and 

developed using natural, synthetic and composite biomaterials. There is an increasing trend in 

tissue engineering to use naturally occurring macromolecules as a starting material to prepare 

scaffolds for tissue remodeling such as hydrogels and meshes, since such materials are well 

tolerated and have an inherent bioactivity including promotion of cell proliferation and adhesion 

[40]. This is the result of the intrinsic properties of biodegradable hydrogels, the most significant 

being degradation, bioadhesion, bioactivity, transport, controlled release of drug and bioactive 

molecules, and mechanical properties [41]. In particular, the biodegradation of hydrogels is 

based on a number of mechanisms, such as hydrolysis, proteolysis, or environmental triggers. 

The desired hydrogel bioresorbability can be achieved by designing the material with a 

controlled number of degradable crosslinks in the polymer network. This feature of hydrogels 

allows researchers to design anti-adhesive or drug-eluting mesh-hydrogel composites to prevent 

some serious complications in clinical studies, especially for hernia repair. Furthermore, 

hydrogel-mesh composites have been recently advanced by adopting 4D biofabrication methods, 

which employ programmable shape-transformations of preliminary 3D constructs, using smart 
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hydrogels that respond to external stimuli such as pH, temperature, and magnetic fields to 

achieve desired morphology [42]. 
 

Current research efforts focus on providing potential solutions that range from the 

formulation of multi-functional biomaterials to new biofabrication techniques that could 

ameliorate existent shortcomings in clinical use of surgical meshes. The aim of this review is to 

provide an overview of emerging biomaterials and technologies for enhancing the preclinical and 

clinical performance of advanced surgical meshes.  

2. Ideal surgical mesh and regulations 

Although the “ideal” mesh has not been developed yet, the continuous developments in the field 

and the appearance of advanced materials have created the basis for designing the optimal mesh. 

An early study highlighted that surgical meshes must be inert, resistant to infections and other 

side-effects, adequate mechanical stability and non-carcinogenic [43]. In the past two decades, 

other aspects have occurred, like the need for cost-effectiveness, shape memory effect, flexibility 

and easy handling [44]. In addition, the use of lightweight materials is encouraged [44, 45]. 

Table 1 describes the properties of an ideal surgical mesh according to its application. 

Table 1. Properties of an ideal surgical mesh. 

Properties Description 

Biocompatibility [43, 46] 

The mesh material should be biologically compatible to 

minimize the risk of adverse reactions or inflammation. In 

addition, the mesh should be easily sterilized to prevent 

postoperative infections 

Tensile properties and  

stiffening  behavior [47] 

Sufficient tensile strength is crucial to withstand the forces 

exerted on the mesh and provide structural support. Furthermore, 

the mesh should have some degree of compliance to adapt to the 

surrounding tissue and prevent stiffness or discomfort. 
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Pore size and structure 

[48] 

Optimal pore size and geometry promote tissue ingrowth and 

vascularization while preventing complications such as 

adhesions. 

Surface bioactivity and 

anti-adhesion 

 (if applicable) [46] 

Coatings with bioactive substances can enhance tissue 

integration, reduce inflammation, and prevent infection. 

Coatings that resist tissue adhesion can reduce the risk of 

postoperative complications, such as adhesions between organs. 

Biodegradability [48] 

 

In some applications, a biodegradable mesh that degrades over 

time may be preferred, especially if long-term structural support 

is not necessary. 

Postoperative visualization 

[46] 

The mesh should be visible on imaging studies (such as X-rays, 

magnetic resonance imaging (MRI) or computer tomography 

(CT) scans) to enable postoperative assessment. 

Ease of handling and 

placement [44, 46] 

The mesh should be easy to handle and manipulate during 

surgery, conforming to the anatomical site. 

 

 As the field of implantable meshes is rapidly developing, which is fundamental for 

contemporary personalized and advanced medical solutions, there is an international regulation 

for these solutions based on the United States (US) FDA and European Union (EU) Medical 

Device Regulation (MDR), which strictly regulate and control the new device applications taking 

safety as primarily aim during implementation. In 2017, the FDA Center for Devices and 

Radiological Health (CDRH) published its top ten regulatory science priorities for medical 

devices, including using “big data” for regulatory decision-making, modernized biocompatibility 

evaluation, computational modelling technologies, precision medicine and biomarkers [49, 50].  

As per the code of the US Food and Drug Administration (FDA), surgical mesh is identified as 

“a metallic or polymeric screen intended to be implanted to reinforce soft tissue or bone where 
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weakness exists. Examples of surgical mesh are metallic and polymeric mesh for hernia repair 

and acetabular and cement restrictor mesh used during orthopedic surgery” [51]. 

The EU MDR came into force in May 2017, which applies to implantable and long-term 

surgically invasive devices (> 30 days). These are primarily implants in the orthopedic, dental, 

ophthalmic, and cardiovascular fields and soft tissue implants such as those used in plastic 

surgery. Breast implants and surgical meshes are classified as class III devices under Rule 8. The 

US FDA approved the first urogynecological mesh only 20 years ago [8]. Due to safety 

concerns, the FDA withdrew some vaginal mesh products for stress urinary incontinence (SUI) 

and POP from 2011 to 2019 [8]. In addition, some countries such as New Zealand, the United 

Kingdom and Australia discontinued the application of pelvic floor dysfunction PFD meshes. 

These withdrawals were in response to various complications following mesh implantation 

including infection, pain, discomfort and erosion into the vagina and in some cases, some 

patients had to undergo follow-up surgery [52]. 3D-printed and 3D bioprinted meshes have 

gained attention in the last decade due to their better surgical results with the latter approach able 

to design and print different types of matrices based on biocompatible polymers and biomaterials 

as well as the ability to embed bioactives such as cells and proteins [1, 53]. For example, Dewey 

and co-workers reported that incorporating 3D-printed bone mesh improved the behavior of 

mineralized collagen scaffolds in terms of their mechanical and osteogenic performance [54]. 

The scaffolds were designed for the reconstruction of craniofacial bone defects caused by 

different factors including cancer treatments, congenital abnormalities and trauma. Ren et al. 

[55] fabricated a resorbable mesh with antibacterial properties and controlled degradation rates 

via 3D printing of polycaprolactone/polyethylene glycol-based matrices, to overcome problems 

associated with the traditional polypropylene-based meshes. In 2017, the US FDA issued 
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guidelines that included information on materials, design, printing methods, post-processing, and 

validation [1]. 

3. Biomaterials for bioresorbable meshes 

Bioresorbable polymers can be classified into naturally occurring and synthetic materials. 

Natural materials derive from animals or plants, including the decellularized extracellular matrix 

(dECM) obtained from allografts and xenografts, and cover a wide range of organic materials 

such as polysaccharides [hyaluronic acid (HA), chondroitin sulphate, heparin, dextran, alginate, 

cellulose, chitin, and chitosan-(CS)], and polypeptides (collagen, gelatin, silk fibroin, albumin, 

elastin, and keratin) [56, 57]. Natural biomaterials are highly biocompatible and have a favorable 

pro-remodeling host immune response [58]. However, they exhibit great variability owing to 

their biological source, and are often not suitable for load-bearing applications due to limited 

physical and mechanical stability [59]. These drawbacks can be compensated by synthetic 

polymers, which are materials of great interest in the medical field [14]. Synthetic biomaterials 

offer several advantages over traditional natural materials, including the possibility of being 

precisely and consistently manufactured with minimal variability. Due to the controlled physical 

and mechanical properties that can be easily tuned, however, biocompatibility is a major concern 

since cells may have difficulty attaching and growing, and consequently might elicit a pro-

inflammatory response in the host [60]. An increasing number of studies have therefore been 

carried out to exploit the advantages of both classes of biomaterials, either by improving the 

mechanical properties and shape stability of natural biomaterials or by developing processes to 

modify the surface and bulk properties of synthetic biomaterials to enhance their 

biocompatibility [61, 62]. 
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In 1959, Francis Usher introduced the initial synthetic mesh composed of PP for hernia 

repair applications. Subsequently, there was a burgeoning progress of mesh technology, which 

led to extensive biophysical and clinical investigations aiming at discovering the perfect mesh. 

Through the utilization of synthetic, natural, and composite biomaterials, many different 

resorbable meshes have been developed [63, 64]. The majority of bioresorbable meshes consist 

of biodegradable synthetic polymers, such as polyglycolic acid (PGA), polylactic acid (PLA), 

and poly(lactic-co-glycolic) (PLGA; a copolymer of PLA and PGA). It is important to emphasize 

that these absorbable materials undergo degradation, and their degradation rate must align with 

the duration required for tissue regeneration, since after degradation, the tissue support is 

diminished, therefore the application must be carefully considered to avoid complications or 

lesion recurrence [65-67]. Despite their initial popularity, PGA meshes are no longer employed 

due to their rapid degradation. As a result, there has been a notable emergence of biosynthetic 

polymers that show complete biodegradation over a mid- to long-term period for surgical 

applications. 

The main aim of developing biomaterials is to diminish the foreign body reaction within 

the host and facilitate tissue regeneration [68]. PLGA was employed in the production of several 

commercial meshes, such as POLYGLACTIN 910 (Vicryl™, Ethicon) [13]. Despite the better 

degradation rate, PLA-based meshes still present complications such as foreign body granuloma 

and giant cell formation [69]. Biodegradable Gore
®

 BIO-A mesh was developed by 

copolymerization of 67% of PGA and 33% of trimethylene carbonate (TMC), and in preclinical 

and clinical studies showed promising results in mechanical endurance and tissue integration. 

Another fully absorbable material in the field is TGR™ (Matrix Surgical Mesh; Novus Scientific 

Ltd., Singapore), which comprises two types of synthetic fibers (co-polymer glycolide-lactide 
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TMC/lactide and TMC) with a multifilament structure, with satisfactory preclinical and limited 

clinical results [68, 70, 71]. 

Various natural bioresorbable materials are used in surgical mesh development. 

Biosynthetic resorbable meshes encompass materials based on silk fibroin (SF), gelatin, 

collagen, polyhydroxyalkanoates, and plant fiber-based materials. Notably, insect-based protein 

products such as SF extracted from silkworms, specifically Bombyx mori, have garnered 

attention due to their exceptional mechanical properties and resorption time of up to 2 years, 

positioning them as potential competitors to biological matrices [72, 73]. Combination 

approaches involving electrospun SF and other materials with high biocompatibility, such as 

poly(3-hydroxybutyrate-co-3-hydroxyvalerate), have been explored to produce hybrid scaffolds 

that demonstrate high efficiency and biocompatibility according to the in vitro and in vivo studies 

[74, 75]. The increased resistance to surgical site infections associated with bacterial poly(4-

hydroxybutyrate) (P4HB) surgical meshes has made this material of extreme interest in hernia 

repair procedures. Bioresorbable meshes based on P4HB (Phasix™, BD Bard, Rhode Island, 

USA) were engineered to maintain structural integrity long enough to allow for tissue ingrowth 

but also completely degrading to avoid the complications associated with permanent mesh 

materials. 

Unique material properties tailored for specific biomedical applications can be obtained by 

modulating biomaterial chemistry and synthesizing composites made of a combination of natural 

and synthetic materials [76-78]. The benefits of this approach include shorter operative time, 

decreased technical difficulty in tissue repair, and the ability to mimic the in vivo 

microenvironment better to stimulate normal tissue or organ development [79].
 
Gao and co-

workers have provided an interesting example of how the combination of natural and synthetic 
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polymers with a specific design can improve the properties of a biomaterial [80]. The authors 

proposed a design called hydrogel–mesh composites (HMCs) which broadens the function of 

surgical meshes by adding one important property: strong tissue adhesion (Figure 1). They 

demonstrated that HMCs form strong and swell-resistant adhesion with various tissues under 

physiological environments, as well as on tissues under high pressure or great tension. Finding a 

balance between the fabrication method and biomaterial selection, to match the properties 

between the scaffold and the target tissue, will be key to the field of tissue engineering in the 

future.  

 

 

Figure 1. Design and potential advantage of a HMC. (A) Schematic of the HMC. In the HMC, 

the hydrogel and the surgical mesh (polyethylene terephthalate) form topological entanglement. 

The hydrogel has long polymer chains of two types: Type I polymers (poly(N-

isopropylacrylamide)) form a covalent network, and type II polymers (CS) carry functional 

groups (amino groups) for adhesion to a tissue. When an HMC contacts a tissue, the hydrogel 

and tissue adhere through complementary functional groups. Wound closure using three 

materials: (B) HMC, (C) suture, and (D) tissue-adhesive hydrogel. Reproduced with permission 

from Ref [80]. Copyright 2021 National Academy of Sciences. 
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Resorbable polymer meshes are widely available on the market, but several preclinical in 

vitro and in vivo experiments had to precede commercialization. The experimental studies 

aiming to analyze degradation profiles of polymeric meshes in preclinical settings guarantee the 

safety and improve the understanding of the degradation phenomenon of meshes under in vivo 

conditions leading to better clinical application [81-83]. Several preclinical studies on different 

animal models (rabbit, sheep, rats, minipigs, pigs, vervets) were performed on commercially 

available synthetic resorbable meshes like GORE BIO-A
®

 and Phasix™ and showed promising 

results as sites for cell proliferation [35, 84].  

4. Surface modification in anti-adhesive meshes 

Tissue adhesion and fibrosis can be a major complication during wound healing via surgical 

meshes; hence, the anti-adhesion functionality is a primary challenge in mesh preparation, 

particularly for PP meshes, which are widely used by clinicians. For abdominal wall 

reconstruction, anti-adhesive properties prevent the formation of adhesions between the mesh 

and abdominal organs, decreasing the risk of bowel obstructions, chronic pain, and other 

complications. Efforts to address this issue and develop antiadhesive properties in mesh 

materials continue to be a central focus in research and development. The main concept behind 

antiadhesion mesh development is to effectively restrict fibrosis, recognizing its close association 

with adhesion formation in hernia regions [85]. 

Research studies have demonstrated that materials such as CS, HA, and absorbable 

oxidized regenerated cellulose (ORC) possess antiadhesion properties. As a result, many 

antiadhesion treatments are applied to meshes by using those antiadhesion agents [86-88]. 

Among the antiadhesion products certified by the FDA, Interceed
®

 produced by J&J, is prepared 

from ORC [89]. In 2018, Lai et al. [87] modified bacterial cellulose using TEMPO (2,2,6,6-
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tetramethylpyperidine-1-oxyl) to enhance its properties while retaining its favorable tensile 

properties and elastic modulus. Their findings demonstrated that modified cellulose exhibited 

preferential adsorption of bovine serum albumin, resulting in improved secretion of type I 

collagen, inhibition of fibroblast proliferation, and subsequent reduction of adhesion [87]. 

Alongside the application of antiadhesion agents, the antiadhesion membrane serves as a 

physical barrier, effectively isolating the surgical site from adjacent organs or tissues. In-vivo 

biocompatibility evaluation of polyethylene glycol (PEG) hydrogels hybridized with HA was 

performed after intramuscular and subcutaneous administration to a mice model. Histologic and 

hematological parameters analyzed at varying time intervals (7, 14, and 21 days) including the 

hematopoietic system showed promising outcomes on HA release during hydrogel degradation 

[90]. The study used the pig model, and conventional laparotomy pelvic surgery was performed 

after histopathological evaluation and concluded that resorbable HA reduces laparotomy pelvic 

surgery-induced adhesion [91]. 

Most of the commercial surgical meshes are inert without groups to react with the grafted 

compounds, particularly for hernia repair applications. Hence, plasma treatment, using oxygen or 

argon gas, is employed to activate the inert surface of the mesh for functionalization [92, 93]. For 

instance, oxygen plasma activation was employed to treat a PP mesh, followed by the grafting of 

polyvinyl alcohol (PVA) onto the mesh with the assistance of hydrogen peroxide [94]. 

Subsequently, the PP-g-PVA mesh was implanted into mice [94]. Remarkably, adhesion was 

only observed in small corners, constituting less than 2% of the total area, while the remaining 

region exhibited a remarkably smooth surface [94]. Most recently, an antiadhesive PP mesh was 

developed with PVA hydrogel and liposomes (LPS)  drug delivery system (Figure 2A) [95]. 

First, the PVA hydrogel coating was prepared by a freezing-thawing process; then, rapamycin 
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(RPM)-loaded LPS were immobilized in the PVA hydrogel. Findings showed that the hydrogel 

coating was stable on PP mesh at 37 ⁰C for 30 days. The optimal antiadhesive composite mesh 

showed a slighter inflammation response and remarkably looser fibrous tissue surrounding the 

PP filaments as compared to the native PP through in vivo experiments [95]. 

Electrospun nanofibrous membranes possess the ability to mimic the ECM structure and 

effectively modulate cellular behavior. Unlike knitted structures, these membranes offer distinct 

structural characteristics that can cater to specific performance needs on each side [96]. By 

incorporating a nanofiber-based layer, physical isolation can be achieved between organs or 

tissues and the mesh. This isolation prevents fibroblast adhesion and proliferation between these 

entities, consequently mitigating the risks of bridging and organ adhesion [85]. PLGA/CS 

(PLGA and CS) nanofibers were electrospun on PP mesh and then the antiadhesion effects of 

PLGA/CS nanofibers were evaluated in pre-clinical studies [88]. The peritoneal adhesion score 

of the PP/PLGA-CS30 mesh (containing 30% chitosan) was 59% lower than that of the pure PP 

mesh [88]. Aydemir Sezer et al. [97] developed an antiadhesion PP hernia mesh by incorporating 

micrometer-sized particles of absorbable ORC and PCL using the electrospinning technique. 

PP/PCL-ORC20 mesh (PCL/ORC coated PP mesh with 20% ORC) showed best tensile 

properties (ultimate strength: ~30 MPa, modulus: ~42 MPa, elongation at break: ~112%) among 

the samples, while the inclusion of PCL facilitated controlled degradation, reducing acidity, and 

improving biocompatibility. Animal experiments demonstrated that the antiadhesion 

performance depended on the concentration of ORC, suggesting that a combination of ORC with 

a more efficient antiadhesion polymer could enhance the effectiveness of the composite mesh 

[97]. Recently, nanofiber membranes (NFM) composed of PLGA and PCL showed a good 

physical barrier in vitro [98, 99]. An adhesive composite hernia mesh was prepared by 
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integration of PP substrate with an alginate hydrogel (AH) layer containing a NFM barrier 

(Figure 2B) [98]. In vivo experiments on rabbits indicated that incorporating AH-assistant NFM 

into the PP prostheses significantly reduced visceral adhesion and enhanced mesh integration 

into nearby tissues from the abdominal wall [98].  

 

Figure 2. Antiadhesion surgical meshes. (A) The schematic illustration of the drug-loaded 

hydrophilic hydrogel coating RPM@LPS/PVA. Reproduced with permission from Ref [95]. 

Copyright 2023, with permission from Elsevier. (B) Schematic illustration showing the strategy 

to endow PP mesh with a barrier composed of a NFM and AH layers for preventing adhesion 

formation in abdominal wall hernia repairs in rabbit model. Reproduced with permission from 

Ref [98]. Copyright 2022, with permission from Elsevier. 

In clinical practice, it is more often a combination of the physical antiadhesive layer and 

the regulation of biochemical agents that can ultimately boost the antiadhesion effect. The 
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strategy of combining hydrogel and dopamine to functionalize the mesh has been considered by 

researchers in order to remodel the ECM via the hydrogel and overcome the problem of poor 

adhesion of hydrogel to tissue by dopamine or L-3,4-dihydroxyphenylalanine (L-DOPA; a 

chemical precursor to dopamine) [100, 101]. For instance, dual-functional layer 

membranes/meshes have been developed to optimize the performance of each function, such as a 

bifunctional two-sided PP mesh, in which one side was coated with PCL nanofibers with 

antiadhesion and antibacterial function; and on the other side, the PCL nanofibers were treated 

with a mussel-derived L-DOPA binder [100]. 

In addition to problems with adhesion when implanted in vivo, synthetic meshes will 

typically result in a foreign body response by the body’s defence system, with various 

consequences including scar tissue formation, degradation of local tissue with resultant 

inflammation, chronic pain and discomfort at the site of application [102]. This is particularly 

common with hernia meshes, the majority of which are made from PP. Therefore several efforts 

have been made to functionalize the surface of synthetic meshes (surface coating) using various 

approaches including nanoparticle-based matrices [103]; biocompatible polymers such as 

polyester, collagen, PLGA, polyvinyl pyrrolidone, PVA, CS and cellulose-based polymers [104-

106],  as well as using bioinspired materials naturally present in the body such as platelet-rich 

plasma (PRP) [107]. Furthermore, these surface coatings also serve as vehicles for local delivery 

of therapeutic agents such as growth factors, [1] antibiotics [108] and antimicrobial agents [109]. 

In a recent study, Yu et al. [110] employed a warp-knitting approach to fabricate hernia 

meshes made from PP and coated them with CS and alginate solutions to impart hydrophilic 

properties to the meshes. The resulting surface-coated meshes were characterized for surface 
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morphology (SEM and AFM) and wettability (contact angle goigniometry), cell attachment 

(ectomesenchymal stem cells derived from male Sprague-Dawley rats), cell viability and 

proliferation of the ectomesenchymal stem cells. Their results showed that the PP mesh coated 

with CS and alginate showed improved cytocompatibility and reduced side effects which 

facilitated cell attachment and proliferation for rapid healing compared to the plain meshes. 

In a similar study, Seraphim et al. [111] designed bioinspired coatings to bioactivate PP 

meshes. The coatings were based on methacryloyl gelatin and methacryloyl mucin hydrogels 

with or without PRP supplementation. The successful coating was confirmed by FTIR 

spectroscopy, homogeneity of the coating and stability in a simulated biological matrix by SEM 

and micro-computed tomography CT and biological cell assays showed that the hydrogel 

coatings could stimulate and modulate fibroblast activity on the meshes.  

5. Drug-eluting bioresorbable meshes 

Resorbable hydrogels are engineered to deliver the drug locally for extended periods and are 

capable of being HMCs resulting in significantly better and more effective meshes [80]. 

Advanced surgical meshes with drugs loaded into the mesh structure have attracted much 

attention in the field of regenerative medicine. The incorporation of antibacterial drug/coating is 

underway to address the current clinical issue of inflammation and infection [9]. Antibiotics have 

been highly employed for bacteria-specific treatment, including rifampicin, fluoroquinolones 

(e.g. ofloxacin, ciprofloxacin, levofloxacin), metronidazole, gentamicin, etc [112]. The 

application of carboxymethylcellulose (CMC) gel loaded with chlorhexidine was developed to 

study the antibacterial effect at the defect area in vivo. This showed that antibacterial gel-coated 

PP meshes can inhibit bacterial adhesion to the mesh surface and have no impact on wound 
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repair [113]. Reinbold et al. [114] utilized rifampicin in hernia management by fabricating 

rifampicin-loaded PLGA microspheres used for coating the surgical mesh. The microspheres-

coated meshes showed a controlled release profile of rifampicin over 60 days and an antibacterial 

activity over 30 days. The antibacterial effect of an ofloxacin/PCL-coated PP mesh was studied 

for hernia repair applications [115]. The mesh successfully achieved a controlled antibiotic 

release profile with no mechanical failure (i.e. burst) over 4 days. From the antibacterial analysis 

of E. coli, the inhibition zone diameter of 39 mm indicates a potent antibacterial activity [115]. 

In another work, minocycline-loaded CS nanoparticles were incorporated into a collagen/CS 

membrane. In vitro drug release tests showed that the antibiotic release was sustained for up to 7 

days, with an initial burst release [116]. The woven cotton fabric was modified with gentamicin 

(Gem) via the enamine bonds and combined with a commercial PP mesh to serve as a two-layer 

composite mesh for abdominal wall defect repair (Figure 3A) [117]. The obtained mesh showed 

antibacterial properties against E. coli and S. aureus with a bactericidal rate of over 99.99%. The 

two-layer composite mesh indicated great biocompatibility and satisfactory anti-infective 

properties in abdominal wall defect repair in a rat model [117]. Loading growth factors and other 

biological molecules can improve the hosting and colonization of stem cells on hernia meshes 

and inhibit inflammatory reactions to enhance wound healing [1, 9, 118]. 
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Figure 3. (A) Schematic illustration of the preparation of antibacterial cotton fabric (Cotton-

Acac-Gem) (i) and combination with PP tissue mesh for abdominal wall defect repair (ii). t-

BAA: tert-Butyl acetoacetate; Cotton-Acac: cotton transestericifacted with acetoacetyl groups; 

Gem: gentamicin; CAG: Cotton-Acac-Gem. Reproduced with permission from Ref [117]. 

Copyright 2020 American Chemical Society. (B) Zn-loaded PCL coaxial fibers and their 

antibacterial mechanisms, which are releasing Zn
2+

 ions and photocatalytic reactive oxygen 

species (ROS) generation. Reproduced with permission from Ref [119]. Copyright 2018, with 

permission from Elsevier. 
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Natural-based antimicrobial molecules have also been used in advanced hernia mesh to 

achieve a better integration of the mesh with the surrounding tissue and with less cytotoxic side 

effects [1]. For example, Mancuso et al. prepared an antibacterial PCL fibrous mesh for soft 

tissue regeneration by layer-by-layer deposition of Manuka honey, which did not change the 

physicochemical feature of the implant, while the layer-by-layer functionalization showed a 

concentration-dependent antimicrobial activity against S. aureus, E. coli and P. aeruginosa with 

good in vitro cytocompatibility for fibroblast and endothelial cells [120].  

Metal and metal oxide nanoparticles (MNPs) can also be used as therapeutic agents and 

loaded into surgical meshes with/without hydrogel incorporation. Muwaffak et al. showed the 

antibacterial properties of MNPs-loaded PCL mesh by studying the efficacy of silver-loaded 

(Ag-loaded), zinc-loaded (Zn-loaded) and copper-loaded (Cu-loaded) meshes. They reported 

higher activity of Ag and Cu against S. aureus [121]. Recently, a non-electrospun bioactive 3D 

nanofibrous hybrid micromesh consisting of PLA nanofibrous microspheres loaded with 

didecyldimethylammonium bromide-modified zinc oxide nanoparticles (D-nZnO) demonstrated 

significant antibacterial, regenerative, and hemostatic functionalities through in vitro wound 

healing assays [122].  

In another work, an antibacterial wound mat was fabricated by coaxial electrospinning to prepare 

PCL (core) loaded with Zn nanoparticles (shell) (Figure 3B) [119]. Antibacterial tests were 

carried out against S. aureus and E. coli, indicating that mats possess two main antibacterial 

mechanisms; release of Zn
2+

 ions and generation of photocatalytic ROS which together allowed 

inhibition of planktonic and bacterial biofilm growth and improvement of the mats' antibacterial 

properties [119]. Besides Zn nanoparticles, the positive antimicrobial effects of silver 

nanoparticles (Ag-NP) have long been known and used in clinical chemistry. Sobczak–Kupiec et 
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al. attached Ag-NP by microwave irradiation to polymeric matrix poly(acrylic acid) and gelatin-

based polymer/hydroxyapatite (HAP) composite to assess the possible decomposition changes of 

the material due to silver supplementation, and found greater degradation behavior for samples 

containing 4% to 5% HAP in artificial saliva and simulating body fluid, influencing the 

antimicrobial functionality and release profile of the nanoparticles [123]. Figure 4 illustrates the 

roles of different biomaterials, nanoparticles, and therapeutic agents in the structure of a 

bioresorbable mesh used for wound healing on a pre-clinical mouse model.  

 

Figure 4. Schematic representation depicting the roles of different biomaterials, nanoparticles, 

and therapeutic agents in the structure of a bioresorbable mesh used for wound healing on a pre-

clinical mouse model. 

6.  Advanced technologies in bioresorbable meshes  

Surgical meshes, like PP mesh, are traditionally produced by fiber extrusion, melt-spinning, and 

wet-spinning; however, several different technologies have been investigated to fabricate 

bioresorbable hernia meshes in the last decade. Electrospinning is one of the emerging 

fabrication technologies for bioresorbable surgical meshes [124]. Electrospinning involves 

applying an electric field to create material fibers in nanoscale diameter. This method allows for 
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the production of meshes with a high surface-to-volume ratio with the ability to incorporate 

drugs or bioactive agents into the fibers [125, 126]. Recently, an electrospun composite 

ibuprofen-loaded (PEG/PCL) NFM has been fabricated aiming to be used in hernia repair and to 

prevent abdominal adhesions. In the in vivo animal study, the optimal membrane (PCL/25PEG-

6%) created a barrier between the abdominal wall and surrounding tissues, exhibited normal 

wound healing without interrupting mass transfer and showed a sustainable drug profile release 

(≈80%) within 14 days [127].  

3D printing, also known as additive manufacturing, is another emerging technique that 

offers unique advantages in terms of mesh properties and customization. This technology allows 

the creation of complex mesh structures with precise control over the composition, pore size and 

geometric shapes of meshes. In addition, biological compounds such as ECM proteins, cells and 

drugs can be used in 3D printing to create innovative devices and living biologically active tissue 

constructs [128]. For instance, drug distribution in the mesh can be achieved by incorporating 

drug-loaded filaments or microspheres into the mesh structure in predetermined locations. This 

concept, known as bioprinting, has great potential for regenerative hernia repairs [129]. For 

instance, PCL meshes were 3D-printed with two different pore sizes containing sodium alginate-

encapsulated Gem [130]. The antibacterial activity of these devices was assessed in vitro. The 

drug-loaded meshes showed good antibacterial activity in vitro against E. coli, as well as mild 

inflammation and early tissue repair of the abdominal wall in a rat model. However, adhesions to 

the mesh limited its intraperitoneal applicability [130]. Bioabsorbable PLA containing Gem was 

3D-printed to assess antibacterial characteristics against S. aureus and E. coli. The results 

showed the feasibility of incorporating drugs into the 3D printed meshes, without losing the 

antibacterial effectiveness [131]. 3D printing via single or multi-head extrusion was employed to 
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fabricate layer-by-layer (LbL) meshes based on (TEMPO)-oxidized cellulose nanofibrils 

(TOCNF) and CS (Figure 5) [53]. 3D-printed nanocellulose mesh was immersed in the CS 

polymer solution to obtain CS-sorbed nanocellulose mesh. The non-cytotoxicity toward human 

monocyte/macrophages and controllable shrinkage upon solvent exchange make the cellular 

meshes appropriate for use as biomedical implants [53]. Recently, an innovative bioinspired 

micromesh-integrated 3D-printed hydrogel construct was developed as an 

antibacterial/regenerative bilayer scaffold for treating diabetic wounds [132]. A HA/CS ink was 

used to fabricate a bilayer construct composed of an upper dense hydrogel layer on top of a 

lower regenerative/antibacterial layer with hierarchical porosity achieved by incorporating PLA 

nanofibrous micromeshes embedded with nano D-nZnO, developed earlier[122]. The scaffold 

afforded 95% wound-closure, infection control, regulation of three healing-associated 

biomarkers and skin regeneration in 14 days in vitro. 

Melt electrowriting (MEW) and 4D printing are two advanced biofabrication technologies 

that have the potential to revolutionize surgical mesh production by introducing innovative 

designs, adaptability and controlled properties. MEW has been recently used to gain a precise 

and continuous deposition of microfibrous structures. MEW is typically based on applying a 

voltage to generate a stable molten fluid jet and drawing out a single fiber onto a pre-determined 

path [96]. In surgical mesh production, MEW offers two main advantages, extrusion of ultrafine 

fibers and fabrication of complex mesh designs with specific pore sizes, orientations, and 

patterns, which can optimize mechanical performance and match patient-specific anatomical 

requirements [133]. Examples of MEW mesh with different architectures are presented in Figure 

5 [134, 135]. Recently, Ren et al. [136] fabricated degradable PCL/PEG composite meshes using 

MEW. Two PCL/PEG mesh groups: 90:10 and 75:25 (PCL: PEG, wt%) were fabricated and 
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characterized for their degradation rate and mechanical properties, with PCL meshes used as a 

control. The antibacterial properties of the meshes were elicited by coating them with 

azithromycin. In vitro studies indicated that the PCL/PEG meshes with antibiotic coating will be 

effective after about 2 weeks of drug release and the mesh can support human mesenchymal stem 

cell attachment and proliferation [136]. 
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Figure 5. Examples of advanced technologies in bioresorbable meshes. 3D 

printing/Bioprinting: Schematics of the three approaches used to develop 3D printed mesh 

structures from nanocellulose (TOCNF) and chitosan, including mixing the components before 

printing; the mixture was evaluated by in situ imaging of TOCNF and TOCNF-chitosan mixture 

under rheology tests at low (0.15 s
–1

) and high (700 s
–1

) shear rates; Double printheads (PH1 

containing TOCNF and PH2 containing chitosan) were used to deposit multilayers; 3D printed 

nanocellulose mesh was immersed in the chitosan polymer solution to obtain chitosan-sorbed 

nanocellulose mesh. Reproduced with permission from Ref [53]. Copyright 2021 The Authors. 

MEW (melt electrowritten): A schematic of a stable molten fluid jet that is direct-written onto 

a substrate onto a pre-determined path; SEM images of the 3 MEW meshes with different 

patterns and printing path amplitudes. Scale bars are 1 mm. Reproduced with permission from 

Ref [134, 135]. Copyright 2019 The Authors. Copyright 2020 The Authors. 4D printing: 

illustration of 4D printing for fabrication of patterned alginate/methylcellulose (Alg/MC) 

hydrogels and their 3D deformations on immersion in 0.1 M CaCl2 solution. Reproduced with 

permission from Ref [137]. Copyright 2021 The Author(s). 

 

The next generation of additive manufacturing is so-called 4D-printing, which adds an 

extra dimension of time-dependent shape transformation to 3D-printed geometries. This 

emerging technology seeks to resolve the limitations of 3D-printed structures to mimic the 

dynamics of living tissues by introducing “time” as a new parameter [138]. In 4D-printing, the 

smart biomaterials respond to physicochemical or biochemical stimuli (e.g., temperature, 

pressure, presence of molecules, pH), resulting in shape changes or functional transformations 

over time [139]. Hence, 4D-printing offers the potential to create meshes with adaptive 

properties and enhanced functionality in surgical mesh applications. Stimuli-responsive 

biomaterials could be used to prepare pioneer meshes with the ability to progressively adapt and 

respond to changes in the host-tissue environment, enhancing tissue generation and implant 

compliance [129]. Printable Alg/MC hydrogels were 4D-printed into the 2D meshes, which were 

encoded with anisotropic stiffness and swelling properties by tailoring the network density 

gradients vertically to the orientation of the patterned strips (Figure 5) [137]. The dynamic 

deformations of the printed Alg/MC hydrogels into helix structures or rolling structures, 

depending on the orientation of the patterned strips, occurred after immersion in a calcium 
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chloride solution (0.1 M) [137]. Lanzalaco et al. [140] investigated the 4D behavior of a 

substrate of knitted fibers of isotactic PP (iPP) mesh with a coating of thermosensitive poly(N-

isopropylacrylamide-coN,N’-methylene bis(acrylamide) (PNIPAAm-co-MBA) hydrogel when 

subjected to cycles of increase/decrease temperature and by considering different mesh 

configurations and humidity conditions. The presence of the iPP mesh and the distribution of the 

gel surrounding the PP threads affected both the PNIPAAM gel expansion/contraction as well as 

the time of folding/unfolding response. In addition, PP-g-PNIPAAm meshes indicated an 

improvement in the bursting strength of 16% with respect to the uncoated mesh, suggesting a 

very strong and adaptable system after implantation [140]. 

7. Clinical applications of bioresorbable meshes  

Surgical meshes were first and widely introduced for hernia repair applications in clinical 

practice however, as technology improved, other clinical fields got involved including 

cardiovascular interventions, gynecology, dentistry, dermatology and orthopedics. Resorbable 

polymer mesh applications have the great benefit of tissue support for the critical time period 

when it is needed or even stimulate tissue regeneration and proliferation. In the end, they get 

completely broken down and dissolved, avoiding long-term complications, such as foreign body 

reactions, scarring or occlusion. The resorption time of bioresorbable meshes varies based on the 

type of polymer used and the construct design and porosity. With known degradation 

mechanisms, the chemistry, molar mass, and crystallinity of degradable polymers can be tuned to 

realize the combination of mechanical properties and degradation rates required for diverse 

clinical needs. Clinically, the most frequently used bioresorbable polymer materials are: PLLA 

bioresorbable by hydrolysis and complete metabolism of lactic acid at physiologic temperature 

with an average 60% reduction by 18 months; polydioxanone (PDO) bioresorption varies from a 
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few weeks to 12 months; PCL undergoes degradation over 24 months; porcine collagen 

enzymatic degradation ranges between 2 weeks to 3-4 months; PGA can be resorbed within a 

month and P4HB over 12 months [141, 142].  

The time typically required for supported healing depends on the clinical scenario and the 

physicochemical and structural characteristics of the prosthesis including porosity and 

topographical cues. For instance, a hernia mesh needs to remain in place until tissue integration 

is complete which usually takes around 2-3 weeks after surgery, but the mesh can take longer to 

completely dissolve [143]. In wound healing applications, an electrospun hybrid-scale fiber 

matrix (Restrata
®

) composed of two synthetic biocompatible and biodegradable polymers 

polyglactin 910 and PDO and possessing a structure of varying fiber diameters with high 

porosity was approved for the healing of different types of wounds. The FDA-approved fibrous 

matrix undergoes resorption at a rate ideally matching the process of new tissue formation and 

acute wound healing over the course of 2-3 weeks, on average [144, 145]. For the treatment of 

chronic wounds of varying etiologies in patients with different demographics, the matrix-

supported treatment was required for 12-21 weeks for chronic wounds including diabetic foot 

ulcers (DFUs) and venous leg ulcers (VLUs) [146-148], eight weeks for post-Mohs wounds 

[149], eleven weeks for hematomas and complex pressure ulcers [150, 151] and 23 weeks for 

augmented flap reconstruction of complex pressure ulcers [152]. Table 2 shows the properties of 

the clinically used bioresorbable surgical meshes, patches and plates along with their clinical 

outcomes. 

Table 2. The characteristics of the clinically used bioresorbable surgical meshes, patches and 

plates along with their clinical outcomes. 

Name of the base 

biomaterial 
Brand name Pore size

** 
Resorption 

time 

Clinical applications, in 

vivo studies  
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PGA  Neoveil™ Sheet  NA 

(nonwoven) 

3 weeks  Reducing pancreas-related 

complications after 

minimally invasive surgery 

for gastric cancer [153]  

PLA 3D-printed mesh 

 

3 mm 1-2 years  

 

Biocompatible mesh with 

efficient elasticity and tensile 

strength for hernia repair 

[154]  

 

Guidor
®
 combination 

of layers with 

different pore 

sizes 

1 year GBR in dentistry improves 

soft tissue mass in ridge 

preservation [155] 

PDO DuraSorb™  >1mm 6-8 months Successful soft tissue 

reinforcement e.g. in 

revisional breast surgery 

[156] 

PCL TnR Nasal Mesh; 

T&R Biofab Co., 

Ltd, Siheung, 

Korea) 

500 µm 20 months Corrective rhinoplasty, with 

good effectivity and no side 

effects [157] 

 

PLGA POLYGLACTIN 

910 (Vicryl™) 

2 mm 3 months Biological mesh is superior 

in the surgical treatment of 

infected incisional hernia 

with a similar recurrence rate 

[158]  

67% PGA + 33% 

TMC 

Gore
®
 BIO-A

® 
(W. 

L. Gore & 

Associates Inc., 

USA) 

1-3 mm 6 months Low recurrence and no 

complications in the 

treatment of large hiatal 

hernia, large paraesophageal 

hiatal hernia, and 

contaminated ventral hernia 

[28, 159, 160] 

glycolide + lactide + 

TMC 

TIGR™* 

(Novus Scientific 

Ltd., Singapore) 

1-1.5 mm 26 months Safe and effective in inguinal 

hernia repair [70] 

P4HB Phasix™ 0.5 – 1 mm 12-18 months Efficient and safe in case of 

complicated hiatal hernia and 

ventral hernia repair in high-

risk patients [161, 162] 

bovine collagen + 

PLGA 

OviTex
® 

(TELA 

Bio Inc., Malvern, 

USA) 

50-300 µm 10-12 months Safe and effective in primary 

or recurrent hiatal hernia 

treatment [163] 
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polyester + collagen 

+ PEG + glycerol 

Parietex™* 1.5-1.8 mm >18 months Promising results were 

shown in different types of 

hernia, but safety concerns 

were raised [164, 165] 

PTFE + PGA/TMC Gore
® 

Synecor
® 

(W. 

L. Gore & 

Associates Inc., 

USA) 

1-3 mm 6-7 months Successful in ventral and 

inguinal hernia repair (based 

on recurrence rate, 

complications and patients 

feedback) [166, 167] 

Synthetic PEG CoSeal
®*

 

(Angiotech 

Pharmaceuticals, 

Inc., Canada) 

NA 5-7 days Early studies on 

myomectomy patients 

showed good results, but 

safety concerns were raised 

[168] 

PLGA + fibroblasts Dermagraft
® 

(Organogenesis, 

Canton, USA)  

0.5-1 mm 20-30 days In combination with standard 

treatment proved to be 

significantly better in chronic 

foot ulcer treatment [169, 

170] 

Collagen 

 

CelGro™ 

(Orthocell Ltd., 

Murdoch, 

Australia) 

0.5-1 mm 4 months  Successful GBR in dentistry 

[171] 

PLLA + HA Osteotrans MX
® 

(TEIJIN Medical 

Corp., Osaka, 

Japan) 

100 - 500 µm 3-5.5 years Maxillofacial bone 

replacement [172] 

PLLA/PGA 

bioresorbable 

osteosynthetic plate 

RapidSorb
®
 

85:15 

(DePuy Synthes 

CMF, West 

Chester, USA)  50-300 µm 

12-18 months Plate systems were used in 

maxillofacial surgery. Both 

of the systems are effective 

and have low complication 

rate, however, Lactosorb
®
 

was linked to a higher 

incidence of complications 

vs. RapidSorb
®
 [173] 

Lactosorb
®  

82:18  

(Lorenz Surgical, 

Jacksonville, USA)  

* FDA recall 

** The pore sizes are based on the factory and publication data, however, might vary 

depending on the application of the mesh.  
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7.1. Hernia repair applications 

Hernia occurs when a part of an organ moves through a weakened muscle into a different body 

segment, which could be an inherited or acquired condition, and the classification is based on the 

localization of the disorder. In hiatus hernia (HH), a part of the stomach is moved to the 

mediastinum via the weakened diaphragm. Protrusion of intestinal or fat tissue due to abdominal 

wall weakness results in different types of abdominal hernia including inguinal hernia when 

intestinal tissue is squeezed through the lower abdominal wall [174]. The standard treatment of 

hernia is surgical, with mesh reinforcement to release the pressure on the tissues and decrease the 

complication rate [175]. 

OviTex
®

, an FDA-approved ovine polymer-reinforced bioscaffold with PP or PGA, was used in 

an open complex abdominal wall reconstruction (CAWR) for fifty-five patients in the 

Netherlands [176]. None of the patients with a surgical site infection that made direct contact 

with the mesh needed mesh explantation for persistent infection involving the mesh. Hence, the 

reinforced mesh can withstand infectious complications and provide acceptable mid-term 

recurrence rates. However, longer follow-up data from prospective studies are required to 

determine further risk of hernia recurrence in that study [176]. In another study, a PP-reinforced 

tissue matrix (OviTex
®

) was successfully tested on 25 primary or recurrent HH repair patients. 

The results indicated successful relief of symptoms, no perioperative complications or recurrence 

of HH during the relatively short follow-up period [163]. The operation technique of HH highly 

depends on the size of the lesion. For instance, treatment of a large HH (>5 cm) with a 

bioresorbable mesh (Gore Bio A
®

) made of PGA/TMC with an estimated resorption time of 6 

months was found superior regarding recurrence (in the first 2 years) vs. non-mesh treatment 

[177]. Although a similar recurrence rate was noted in five years, an earlier failure rate was 
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observed in the non-mesh group at 12 months. Low recurrence rate and complication-free 

recovery were demonstrated in a small study treating paraesophageal HH with Gore Bio-A
®

 

[159]. Furthermore, Bio-A
® 

proved to be effective in long-term recurrence in the treatment of 

contaminated ventral hernia, where an increased risk for post-operative infection is present [160]. 

TIGR™ is a synthetic surgical mesh, made of two different synthetic resorbable fibers 

containing a distinct proportion of glycolide, lactide and TMC, resulting in a longer absorption 

time [70]. Although the initial results for uncomplicated inguinal repair were encouraging, in the 

case of complicated hernias, the recurrence and complication rates were high, leading to FDA 

recall. In 2018, Renard et al. compared the use of resorbable synthetic (Vicryl
®

) and biological 

(Strattice
®

) meshes to treat infected incisional hernia and found Strattice
® 

superior to Vicryl in 

terms of early and late postoperative infections [158]. 

Recently, a slowly resorbable biosynthetic Phasix™ mesh (Figure 6A and B) made of 

P4HB scaffold with PGA and hydrogel barrier was tested in the repair of large and complicated 

HH with either laparoscopic or robotic surgery technique resulted in promising clinical outcomes 

including absence of migration, stenosis, recurrence or dysphagia in 30 patients [178-180]. In 

2018, Renard et al. compared the use of resorbable synthetic (Vicryl
®

) and biological meshes to 

treat infected incisional hernia and found Strattice
TM 

superior to Vicryl in terms of early and late 

postoperative infections [158]. Later, slowly resorbable biosynthetic meshes made of P4HB 

(Phasix™) with a slower breakdown profile and capable of inducing cell proliferation proved to 

be effective tools to treat infected incisional hernias avoiding chronic infection or mesh removal 

within one-year follow-up in 29 patients [181]. Furthermore, this mesh was shown to be safe and 

effective in high-risk incisional hernia patients during a five-year follow-up [162]. 
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As a next generation of the meshes, a hybrid PTFE and PGA/TMC scaffold (Synecor
TM

), 

selected to enhance mechanical strength and stimulate tissue proliferation and vascularization, 

respectively, was tested on 35 ventral hernia patients [166].  During the two-year follow-up, no 

recurrency occurred and the infection rate was in line with previous data. In addition, patients 

reported satisfaction with significant improvement, especially regarding self–esteem, and relief 

of pain and discomfort with only one patient needing reoperation. Based on a recent trial, 

involving 157 patients, Synecor
™

 is safe and effective in inguinal hernia repair considering the 

recurrence and complication rates together with patient-reported pain [167]. Parietex™ 

composite ventral patch is made of polyester with absorbable collagen, PEG, and glycerol. The 

patch has a fixation system composed of four monofilament polyester flaps and two removable 

handles complete the device. This fixation system and the three-dimensional reinforcement 

material are assembled with absorbable PGLA expanders as shown in Figure 6C-E [182]. The 

Parietex™ composite ventral patch has been successfully used with a low recurrence rate in 

different types of hernia in 48 patients and effectivity could be further induced by implementing 

Parietex™ composite mesh overlaid by an aponeurotic graft in large incisional hernia repairs 

[164, 165]. A recent meta-analysis involving the comparison of synthetic, biologic, or 

bioabsorbable use of meshes for complicated ventral hernia cases reported similar results. 

Recurrence rate and infection were lowest in the case of the bioresorbable meshes, with similar 

seroma rates compared to the other two meshes implying the effectiveness of bioresorbable 

meshes [28]. Furthermore, Phasix™ has demonstrated to be able to maintain 80% and 18% 

greater strength than the native abdominal wall at 8 and 72 weeks post-implantation, 

respectively, despite significant biopolymer degradation [183]. However, the ability of P4HB to 

promote the expression of the antimicrobial peptide (AMP) cathelicidin LL-37 in macrophages 
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[184] makes this type of surgical mesh capable of decreasing the incidence of post-operative 

surgical site infection when compared with other surgical meshes [185, 186]. Although clinical 

trials are limited, the application of this material in ventral hernia repair has shown good 

outcomes with an effective reduction of hernia recurrence rate [187-189]. Quality of life 

improvements were noted with no recurrences after two years [190] despite a recurrence rate of 

9% for inguinal hernia repair observed at 18 months post-implantation [161]. A more recent five-

year hernia repair follow-up of Phasix™ mesh in high-risk patients demonstrated a recurrence 

rate of 15.9 %, low pain scores, and no mesh-related complications or reoperations for chronic 

pain, confirming the potential of this biomaterial to prepare meshes for hernia repair [189].  

Despite the promising results, Parietex™ was withdrawn in 2018 from FDA approval due to 

safety concerns in the case of parastomal hernia repair. 
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Figure 6. (A) PHASIX Mesh comprised of a fully resorbable, P4HB monofilament knitted into a 

flat sheet configuration. Reproduced with permission from Ref [179]. Copyright 2013 Corey R. 

Deeken and Brent D. Matthews. (B) SEM of Phasix™ ST Mesh (40× magnification; scale bar = 

200 µm). Phasix™ ST Mesh is comprised of fully resorbable P4HB fibers co-knitted with 

polyglycolic acid (PGA) and coated with a resorbable hydrogel layer on the visceral side of the 

mesh. The hydrogel layer is comprised of sodium HA, CMC, and PEG. Reproduced with 

permission from Ref [180]. Copyright 2022 Becton Dickinson (BD). (C) Peritoneal surface of 

Parietex™ showing two positioning loops attached to four flaps composed of polyester 

monofilament. (D) Parietex™, subcutaneous side. (E) Parietex™, peritoneal side. Reproduced 

with permission from Ref [182]. Copyright 20115, with permission from Elsevier. (F) 

Polyglactin mesh, (G) Dermagraft as received from a pack, (H) dermal fibroblasts cultured on 

polyglactin mesh. Reproduced with permission from Ref [191]. Copyright 2010 John Wiley & 

Sons, Inc. 
 

 

                  



40 

 

7.2. Gynecological applications 

Following abdominal or pelvic surgery the appearance of pelvic adhesion is a very frequent 

complication occurring in around 95% of patients following pelvic surgery and resulting in 

chronic pain, altered organ motility or even bowel obstruction [168]. The application of surgical 

mesh in gynecological applications, especially transvaginal mesh for POP and SUI, has been 

associated with safety concerns for women [192]. The transvaginal meshes were reclassified 

from moderate-risk class II devices to high-risk class III devices in 2016, meaning the 510(k) 

process can no longer be used for mesh products to gain market access. That reclassification 

resulted in a sharp decrease in using transvaginal mesh for POP repair surgery [193]. The 

observation and assessment of the surgeries confirmed the high level of risks with respect to the 

benefits; therefore, the FDA ordered mesh manufacturers to stop selling and distributing surgical 

meshes intended for transvaginal repair of anterior prolapse (cystocele) on April 16, 2019 [194]. 

In addition, the Therapeutic Goods Administration (TGA) cancelled the approval of 

urogynecological meshes for POP repair surgery (through the vagina) and SUI repair surgery 

(single incision mini-slings) in November 2017 [195].  

Several attempts were made to develop anti-adhesive membranes, such as CoSeal
®

 which is a 

resorbable hydrogel made of two different synthetic PEGs. Crosslinking of the two polymers 

upon ejection from a syringe results in the formation of a barrier capable of inhibiting adhesion 

in the acute and subacute periods, getting completely resorbed within a month [168]. 

CoSeal
®

 was successfully tested in preclinical models and a randomized controlled clinical trial 

on myomectomy patients and proved to be safe and effective by significantly decreasing 

adhesion both in high and lower-risk patients without any notable complication or adverse event 

[168]. Regardless of the positive early clinical data, FDA approval was withdrawn due to the 
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potentially incomplete dissolution of PEG and its inappropriate effect on tissue integration led to 

safety concerns [196]. 

Different types of implants and meshes have been also tested during sarcocolpopexy surgery, the 

treatment of for example vaginal prolapse, to decrease the operation-caused complications such 

as recurrence or infection [197]. A partially resorbable graft composed of PP and polyglecaprone 

showed mechanically good results without significant complications. However, the composite PP 

graft was withdrawn shortly after its introduction to clinical practice, leading to the use of non-

resorbable polyvinylidene fluoride in sarcocolpopexy. The polymer showed similar results as far 

as anatomical success, patient satisfaction or complication rate are concerned [197].  

7.3. Wound healing  

Acute skin lesions such as burns or chronic lesions such as ulcers are common disorders, 

severely affecting the quality of life. Even with modern absorbent wound dressing materials (e.g. 

alginate), the definite treatment and success rate is still limited, especially in the case of infected 

ulcers (e.g. in diabetic patients). This may lead to systemic complications and even life-

threatening septic states. Several preclinical trials aimed to develop partly or completely 

resorbable wound healing polymer-based hydrogels with promising results and the development 

of next-generation drugs or stimulating factor eluting meshes [198, 199]. The most frequently 

used polymers are HA, collagen, and PLGA exhibiting a controlled degradation profile 

synergizing with epithelialization (skin healing) and PEG which induces proliferation and 

collagen precipitation. Other polymers include PCL with high structural properties but limited 

capacity against microorganisms. Polymers lacking antimicrobial activity are therefore 

frequently combined with Ag-NP to induce matrix proliferation in an antimicrobial environment 

or even sericin derived from a moth or spider combined with collagen to achieve improved 
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resorption and antimicrobial effects in preclinical trials for burn injuries [199, 200]. Several 

commercially available and approved polymer appliances have proved to be effective in wound 

healing, such as resorbable HA matrix (Hyalomatrix
®

) successfully used in burn injuries. 

Furthermore, a knitted PLGA mesh, as typically shown in Figure 6F, was cultured with human 

neonatal fibroblasts leading to the development of one commercial product of cryopreserved 

Dermagraft
®

 (Advanced Tissue Sciences) (Figure 6G) [191].  The knitted PLGA meshes 

support homogenous cell distribution and withstand the cell contractile force (Figure 6H) [191]. 

Dermagraft
®

 was successfully applied extensively on chronic ulcers with good clinical healing 

results without complications [1, 169, 199, 201]. 

Generally, acute wounds tend to heal within 3 weeks while chronic wounds tend to persist for a 

minimum of 3 months from the time of injury. A matrix with optimal handling properties and a 

rate of resorption ideally matched to the process of new tissue formation and wound healing 

[201]. Once applied to a wound, the matrix supports cellular infiltration, new tissue formation, 

and wound healing while progressively resorbing into the tissue over the course of 2 weeks, on 

average. [202]. 

7.4. Dentistry applications 

In dental care, there are several conditions where GBR is indicated, in order to provide the 

necessary amount and quality of bone tissue for implantology [203, 204]. Membranes in the 

GBR procedure serve as a cell-occlusive barrier, which prevents the regeneration of epithelial 

and connective tissues in the wound, maintaining a space for the migration of pluripotent and 

osteogenic cells [203, 205, 206]. Two main types of resorbable polymer meshes and membranes 

are employed in dentistry: the group of collagens as natural polymers, and the group of synthetic 

polyesters. Figure 7A shows the application of GBR in surgical procedures. Following a 
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treatment plan for extraction, the defect site is debrided, and the bone is perforated (Figure 

7A(i)) by the surgeon prior to implantation of the bone graft and membrane. Dental bone graft is 

placed in the void socket to promote bone growth (Figure 7A(ii)) while the barrier membrane is 

implanted sub gingivally over the alveolar ridge to protect the bone growth within the socket and 

prevent gingival ingrowth (Figure 7A(iii)). Finally, the tissue closure is performed when 

applicable (Figure 7A(iv)) [207].  

In the 2010s, Jung et. al examined the clinical outcome of 265 dental implants, involving 

72 patients. In the study, the researchers aimed to compare the practical efficacy of resorbable 

and non-resorbable membranes. All the patients received deproteinized bovine bone mineral 

(DBBM) in combination either with a collagen or an expanded PTFE (e-PTFE) membrane and 

confirmed that both resorbable and non-resorbable membrane systems are safe, reliable, 

predictable and have a long survival rate (91.9% and 92.5%, respectively) during the median 

follow up-time of 12.5 years [208]. 

The effectiveness of collagen membranes was enhanced when used in combination with a 

bone graft [209]. A promising clinical outcome (9 months postoperative) was observed for using 

bone grafting material (BioOss) and a membrane (AlloDerm
®

 GBR) to treat a class I ridge 

defect. The patient experienced significant hard and soft tissue growth [209]. In another study, 

CelGro™ (Orthocell Ltd.), a type I collagen bilayer membrane, was employed in a clinical study 

for a total of 16 dental implants, which were placed in 10 participants receiving GBR. The results 

showed that Celgro™ restores bone defects with no complications or adverse events [171]. A 

recent study compared collagen-based membranes with synthetic PLA resorbable membranes 

during the dental implantation process and showed no clinically significant change in facial bone 

thickness reduction implying that synthetic and resorbable polymer membranes can be equally 
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used to support aesthetic implantology [210]. Furthermore, in a small study, PLA-based 

membrane proved to be effective in ridge preservation for soft tissue regeneration [155]. 

Interestingly, ridge augmentation treatment extended with platelet-rich factor or dehydrated 

human amnion-chorion membranes did not have a significantly different clinically visible effect 

on vital bone formation or augmentation compared to traditional collagen membranes. However, 

it caused a slight pain reduction in patients who had undergone lateral ridge augmentation, 

followed by mandibular ramus block harvesting [211-213]. 

7.5. Maxillofacial surgery  

Facial bones could be damaged by injuries, trauma, tumor, and infection and can also be affected 

by congenital anomalies [214]. Results regarding the reconstruction methods of facial bones 

have a widely and well described in the literature, and it must be noted, that surgical techniques 

and materials strongly depend on the actual deformity, origin of bone defect and characteristics 

of patients [214].  

In 2005, an early study investigated the use of resorbable membranes in the treatment of 

unilateral cleft palate in 15 participants divided into three different treatment groups: autogenous 

iliac bone graft (ABG) alone; ePTFE; (Gore-Tex™) membrane implanted alone; while the third 

group was treated with a resorbable PLA/PGA membrane, combined with ABG [215]. GBR has 

been found successful both with membranes and with standalone ABG, however, the authors 

reported significantly better results with combined techniques following radiological evaluation 

[215]. Subsequently, 3D-printed PCL meshes were successfully implemented for rhinoplasty 

patients supporting cartilage repair and airway opening during healing time, without considerable 

side effects [157]. 
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Biodegradable polymers can also be mixed with HAP. The use of a composite product 

(Osteotrans MX
®

) composed of un-sintered PLLA/HAP can support fracture stabilization and re-

ossification with minimal complications (Figure  7B-D) [172]. Because they are osteoconductive 

and biodegradable, the u-HA/PLLA nanocomposites can be used for complete replacement by 

bony tissue in addition to the advantages of early functional improvements [216]. The same 

research group investigated the complications related to PLLA/PGA copolymer plate and mesh 

systems used in maxillofacial surgery. In total, 87 patients were involved in the retrospective 

study which concluded that PLLA/PGA is a useful material for maxillofacial osteosynthesis, 

with a good healing process and rapid resorption however, it must be noted that plate thickness 

was associated with the risk of exposed plates as a complication, therefore right diameter 

selection is essential [173]. Among 147 patients with midfacial trauma or dentofacial deformity 

as complication plate exposure was 7.4%, infection was 2.4% and plate breakage was 0.7%, 

respectively, when PLLA/PGA meshes and plates were used for reconstruction. Furthermore, 

also interestingly, the authors concluded that female sex and the greater number of plates are risk 

factors for perioperative complications [217]. 

Not only synthetic but natural polymer-based membranes can be used in the treatment of 

intra-bony defects in the maxillofacial region [218]. With the participation of 18 patients, 

resorbable collagen membranes have been used to treat mandibular defects, based on HAP 

grafting, supported with the addition of PRP and significant bone density growth was observed 

on the radiography images in the 1
st
 and 6

th
 month after treatment [218]. Interestingly, a previous 

research work concluded that using collagen membrane is disadvantageous, compared to the 

addition of β-tricalcium phosphate because of the decreased bone regeneration, which is in 

agreement with the findings related to GBR in dental applications, in comparison with titanium 
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implants [219, 220]. To overcome these challenges, a new technique and material was introduced 

in 2017. The method used a resorbable polymeric thermo-reversible gel, as a space-maintain 

approach, with a similar indication and goal as described for GBR with resorbable membranes 

[221]. The resorbable polymeric thermo-reversible gel was manufactured from a specific mixture 

of poloxamers dissolved in water (predominantly poloxamer 407) [221]. After examining the 

results of the 11 patients participating in the study, new bone formation was reported between 

54% to 60%, without the appearance of fibrous tissue. Radiographic evaluation showed more 

than 10 mm height of new bone in all cases, after a six-month follow-up. Based on the clinical 

outcomes, cost-effectiveness and simplicity of the technique, it is considered one of the best 

techniques for the maxillary sinus elevation procedure [221]. 
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Figure 7. (A) General step-by-step procedural diagram for a GBR/GTR procedure. Treatment 

begins with a tooth extraction or tooth loss (i), bone graft placement (ii), barrier membrane 

placement for compartmentalization of tissues (iii), and closure (when applicable/possible) (iv). 

Reproduced with permission from Ref [207]. Copyright 2018 Rodriguez IA. (B) Maxillofacial 

osteosynthesis system using third-generation bioactive/bioresorbable materials (Osteotrans 

MX
®

); (C) Bioresorbable sheet and tack fixation for right orbital reconstruction in a case with 

naso-orbito-ethmoidal (midfacial) fractures using the SuperFIXORB-MX
®

 (OsteotransMS
®

) 

system (D) Bioresorbable plate osteosynthesis of advancement mandibular BSSRO using the 

SuperFIXORB-MX
®

 (OsteotransMS
®

) system in orthognathic surgery. Reproduced with 

permission from Ref [172]. Copyright 2018, with permission from Elsevier. Application of 

commercial mesh and patch in tendon-to-bone interface repair: (E) Pitch-Patch graft is designed 

for reinforcement of the rotator cuff as a non-absorbable graft, sutured via multiple sutures 

directly to rotator cuff tissue. The designed suture holes in Pitch-Patch resist suture cut-through. 

(F) CelGro™ for augment repair of rotator cuff tears. Torn tendon must be trimmed and 

anchored with sutures back into healthy bone before placing the CelGro™. Then, CelGro™ can 
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be trimmed to size and placed over the repair site to promote tendon healing. Reproduced with 

permission from Ref [72]. Copyright 2022 The Authors. 

 

7.6. Other clinical applications of resorbable meshes 

Besides the well-documented clinical trials related to dental and maxillofacial applications, 

meshes consisting of natural or synthetic polymers have other clinical tissue regeneration 

applications, such as breast surgery, and nerve, and tendon repair. Tissue stretches and 

concomitant unpleasant appearance and dissatisfaction is a common complication of breast 

implant surgery. This led to the use of resorbable meshes in soft tissue augmentation such as 

gradually resorbing P4HB-based GalaFlex
®

 or the slower resorption PDX, both proved to be safe 

and efficiently maintained the mechanical strength and increased patient satisfaction without 

notable complications, malposition or ptosis [156, 222].  

Peripheral nerve injuries are common on the upper extremities resulting in motor or 

sensory loss and consequently, limited daily activities. Nerve repair is performed with 

microsutures or if the nerve defect is extensive, nerve grafts could be used with limited 

effectiveness and persistent loss of function. To overcome this problem, resorbable materials 

were used in these injuries, ensuring the induction of the regeneration process, but absent by the 

time it could interrupt normal healing [223]. Based on preclinical results, poly[(R)-3-

hydroxybutyrate (PHB) was used in ulnar and/or median nerve injury patients and found to be 

safe with very few complications and at least as effective as the conventional treatment since 

considerable improvement was seen in some sensory, motor and overall functional assessments 

in the PHB patients compared to epineural suture treatment recipients [223]. Furthermore, 

several bioresorbable nerve conduits (such as polyglycolic mesh – Neurotube, porcine collagen – 

Rovolnerve etc.) have received FDA or CE approval and showed impressive sensory outcomes 
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(75% of the cases were rated as good to excellent) following reconstruction of the resorbable 

polymers [224].   

Tendons play a significant role in transmitting loads between musculoskeletal tissues. The 

repair of injured tendons typically involves biocompatible materials and surgical reparative 

techniques using a commercially available artificial tendon, being the most common clinical 

treatment. Tendon scaffolds can be based on absorbable and non-absorbable materials [96]. Poly-

Tape mesh (Neoligaments Ltd., UK) is manufactured by weaving the non-absorbable 

polyethylene terephthalate (PET) fibers and is particularly used for rotator cuff tears (RCTs) 

repair (Figure 7E). While the open woven structure of Poly-Tape supports space for tissue 

ingrowth, the parallel fibers provide high strength (average tensile strength for the medium and 

larger patches are over 400 N and 550 N, respectively) [72]. On the other hand, natural 

resorbable biomaterials have resulted in better biological outcomes. Recently, CelGro™ 

(Orthocell Ltd.), a type I collagen bilayer membrane, was used in a clinical study to regenerate 

RCTs, indicating that the membrane is promising for induction of tendogenesis into the healing 

areas of tendon and tendon-bone interfaces (Figure 7F) [72, 225]. However, this scaffold is not 

recommended as a structural graft because of the low tensile strength (average ultimate tensile 

strength of 0.35 ± 0.06 MPa; failure force of 5.4 ± 0.38 N) in some specific tendon repair 

applications [72]. 

 

8. Conclusion and future perspectives 

With the rapid development of polymer material science, resorbable meshes have gained 

attention in clinical studies. Before clinical adaptation, preclinical safety and feasibility studies 

are essential and inevitable. The main benefits of resorbable materials are the avoidable second 

surgery for the removal of the implant and the long-term inflammatory reactions initiated by the 
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permanent inserts along with the lack of systemic effects. Avoiding the second surgery also 

causes less discomfort to the patient, and it can potentially decrease the economic burden; 

however, it must be noted that resorbable polymer meshes and plates are more expensive 

compared to non-resorbable devices. Nevertheless, the cost of resorbable meshes usually 

outvalues the burden of mesh failure associated with the high rate of non-resorbable mesh 

removal and morbidity, mainly due to prosthesis infection. Indeed, material biocompatibility is a 

key factor guiding successful mesh implantation. Using resorbable polymer meshes and plates is 

favorable in pediatric cases, especially in cranio-maxillofacial reconstruction procedures. In 

clinical applications, resorbable polymer devices are well-visible on radiographic images, and 

they do not produce artefacts.  

In the last few years, the use of resorbable polymers has progressively increased in soft and 

hard tissue applications with impressive results. However, most of the studies were performed on 

a small sample size, with relatively short follow-up periods. Consequently, large, multicenter 

studies are needed to assess the real benefits and long-term effects of implantable resorbable 

devices, with a special focus on materials enhanced with bioactive supplements. Such studies 

would expectedly provide enough data essential for well-consolidated decision making in the 

clinical setting. Surgeons can make more informed decisions for mesh selection based on the 

obtained knowledge of mesh material, construct weight as well as the patient's medical history, 

the overall status of the immune system, the origin of the disease and the nature of tissue defect. 

The progressive demand for bioresorbable meshes with optimal functionality and behavior 

in interfacial tissues has led to the constant development and improvement of biomaterials. 

Hydrogel barriers, drug-loaded surface coatings, nanofibrous mats and modifications with 

nanoparticles have produced very promising outcomes in vivo animal models of the mesh. 

                  



51 

 

Despite many efforts in this field, there is no ideal bioresorbable hernia mesh with a minimal 

recurrence rate, post-infection, and tissue adhesion. Thus, current studies focus on developing 

multi-functional bioresorbable meshes to address the main complications in clinical studies, 

mostly biocompatibility, enhanced mechanical performance, anti-adhesion, and infection 

prevention. The next generation of the mesh will be based on advanced prosthetic biomaterials 

that are fully resorbable in the long term facilitating tissue regeneration and combating infection 

in the surgical site through controlling the release of drugs after implantation. Surface 

modification of the resorbable meshes to achieve anti-adhesion features should be investigated 

using more efficient nanoparticles, hydrogels, or therapeutically active agents. Smart or stimuli-

responsive biomaterials should receive more attention for tissue regeneration. By incorporating 

stimuli-responsive biomaterials, 4D-printed surgical meshes can be designed to change geometry 

over time. Such advancements will enable the mesh to dynamically adapt to the surrounding 

tissues post-implantation, improving tissue integration, reducing the risk of mesh displacement, 

and reinforcing abdominal walls. Furthermore, the incorporation of the “time” factor to MEW 

scaffolds by using shape memory biopolymers can unlock new capabilities and features in hernia 

mesh applications. MEW enables the fabrication of microfibrous meshes with precise control 

over structure and drug delivery, while 4D printing offers shape-changing adaptability to the 

mesh. These technologies have the potential to improve tissue regeneration procedures 

fundamentally by offering functionalized, personalized, and biocompatible bioresorbable 

meshes, which enhance patient outcomes and long-term success rates. In addition, the 

combination of appropriate surgical procedures and optimal meshes based on the specific 

requirements of the patients can overcome the current treatment complications. Furthermore, the 

outcomes on large animal models are essential to evaluate the complete biofunctionality of the 
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advanced bioresorbable mesh before clinical phase studies. Finally, the complexity of advanced 

bio-fabrication techniques and biomaterials with the integration of therapeutic agents will not 

only be technically challenging but also need specific consideration of regulatory approval 

pathways. 
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