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Abstract

We continue studying extremal values of the degree-entropy, which is an information-

theoretic measure defined as the Shannon entropy based on the information functional

involving vertex degrees. For a graph with a given number of vertices and edges

achieving the minimum entropy value, we show its unique structure. Also, a tight

lower bound for the entropy in bipartite graphs with a given number of vertices and

edges is proved. Our result directly derive the result of Cao et al. (2014) that for a

tree with a given number of vertices, the minimum value of the entropy is attained if

and only if the tree is the star.

Keywords: Complexity measure; Graph entropy; Extremal value

1 Introduction

All graphs considered in this paper are finite, simple and undirected. The logarithms here

are base 2. We use the convention that 0 log 0 = 0.
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A system consisting of many interacting microscopic components seems to be complex

always [33]. In order to describe the structural complexity or the information content of

a system, various graph entropies were introduced (refer to [4, 16] for reviewing). Re-

shevsky is the pioneer to quantify the complexity of a system by the so-called topological

information content, which is the earliest graph entropy measurement [32]. Since then,

various graph invariants, for instance, degrees, distances and the number of subgraphs

[8, 9, 11, 36], have been manipulated to construct entropy based measurements. Com-

pared with other entropies, Cao et al. [9] proposed an easily computable graph entropy

called degree-entropy, which is of significance to apply in mathematical chemistry, infor-

mation theory and complexity networks [2, 3].

The study of graph entropy, especially degree-entropy, is of great significance at na-

tional level as it affects multiple domains and enhances understanding of complex systems.

Investigating graph entropy is relevant for assessing vulnerabilities in military and defense

networks. It helps identify potential weak points, understand the impact from targeted at-

tacks, and improve overall security for national defense infrastructure. Structural entropy

extends degree-based entropy by helping identify vulnerable nodes and assesses overall

network resilience [24, 38]. Degree-related entropy offers a quantitative measure for deter-

mining the structural intricacy and connectivity within software systems. This information

proves valuable when making informed decisions regarding software architecture, main-

tenance, security, and optimization efforts that ultimately contribute to developing more

robust and efficient software solutions. For example, the degree distribution entropy is

employed as a method for measuring software quality [34]. Graph entropy also helps to

model the spread of infectious diseases across borders, facilitating a coordinated inter-

national response and mitigating the impact on global health. The potential severity of

COVID-19 was found using the entropy measurement of the pandemic tree compared to

the 1918 Spanish flu [30]. The efficient functioning of global economic, social, and polit-

ical activities heavily relies on interconnected communication and information networks.

Graph entropy techniques facilitate the analysis of network efficiency, resilience, and sus-

ceptibilities, ensuring reliable communication pathways even during emergencies or critical

situations. Quantifying data transmission through transfer entropy allows us to charac-

terize emergent computations within this system while highlighting their association with

source vertex degrees, importantly, hubs emerge as crucial sources [27].

Let G = (V,E) be a graph. The degree of a vertex v in G is the number of edges

incident with this vertex, denoted by dG(v). The degree-entropy is one kind of degree-
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based entropy defined as follows [9].

Definition 1 ([9]). Let k be a real number, and let G be a graph with vertex set V =

{v1, v2, . . . , vn}. The degree-based (graph) entropy of G is defined as

Ikd (G) = −
n∑

i=1

dkG(vi)∑n
j=1 d

k
G(vj)

log
dkG(vi)∑n
j=1 dG(vj)

.

In [9], they defined a special degree-based entropy, called first-order degree-based en-

tropy. In this paper, the first order degree-based entropy is called degree-entropy as a

shorthand, defined as follows.

Definition 2 ([9]). Let G be a graph with vertex set V = {v1, v2, . . . , vn}. The degree-

entropy of G is defined as

Id(G) = −
n∑

i=1

dG(vi)∑n
j=1 dG(vj)

log
dG(vi)∑n
j=1 dG(vj)

. (1)

It is not hard to find that Id(G) = I1d(G).

This paper focuses on studying the extremal problem of degree-entropy, which can be

formulated as an optimization problem to determine the maximum and minimum values

of degree entropy for a graph under certain constraints. This problem belongs to the field

of extremal graph theory, which lies at the intersection of extremal value combinatorics

and graph theory. Investigating the extreme value problem of degree entropy is valuable

for uncovering underlying principles in graph structures and advancing the theory devel-

opment of extreme value combination and related aspects in graph theory. The theoretical

significance of studying extremal problems on degree-entropy is profound. We focus on

general graphs and bipartite graphs, which has been arisen researchers’ interesting. Here

we provide references to papers addressing extremal problems on different parameters on

general graphs [1, 5, 10, 14, 15, 17, 31] and bipartite graphs [1, 12, 39] for interested

readers.

The following is a study of the existing extremal results of degree-entropy. Cao et al.

[9] proved the minimum and maximum degree-based entropies of some graph families, such

as trees, unicyclic, bicyclic and chemical graphs, and proposed conjectures to determine

extremal values. Shortly afterwards Ilić [22] proved one part of the conjectures. Ghala-

vand et al. [19] applied majorization to prove the graphs which minimize or maximize

the degree-entropy for some families of graphs. By characterizing corresponding degree

sequences, Dong et al. [18] characterized the extremal bipartite graphs with n vertices

and m edges attaining the maximum value of the degree-entropy.
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Our study enriches the existing results of the extremal problems of degree-entropy, and

extend the study to general graphs and bipartite graphs. Among trees with a given number

of vertices, Cao et al. [9] proved that the degree-entropy of the path attains the maximum

value and the degree-entropy of the star attains the minimum value. Since there is no odd

cycles in a tree, a tree is also a bipartite graph. If a complete bipartite graph is a tree,

then it must be a star. This implies that it easy to derive their extremal result from our

result (the star attains the minimum value) of bipartite graphs (complete bipartite graphs

attain the minimum value). In terms of research methods, they use the graph operation

method of moving edges for proving the extremal value [9] or some partial order relations

[19]. Our proofs are mainly a synthesis of different methods including graph operations,

inequalities and convex optimization methods.

Mathematical research employs various methods and techniques depending on context-

specific problems addressed in papers. Although some applications may not appear imme-

diately clear or obvious, mathematics has consistently played a crucial role in advancing

scientific disciplines across diverse fields. Furthermore, mathematics provides a theoretical

foundation for data mining and data management. Statistical learning refers to a set of

tools for modeling and understanding complex data sets. They provide a large number of

mathematical methods and language to solve and translate statistical learning problems

in [23]. For example, they use the likelihood function to estimate regression coefficients

based on available training data. However, it should be noted that only data cannot fully

solve all mathematical problems due to inherent limitations imposed by available datasets

when dealing with the large number. Mathematical research and data processing should

be a complementary relationship. For example, we can use partial data results to verify

that our results are correct on a small number of vertices.

An (n,m)-graph (resp. (n,m)-bipartite graph) is a graph (resp. bipartite graph) with

n vertices and m edges. Any two vertices of a graph are joint by an edge is said to

be the complete graph and denoted by Kn if it has n vertices. A bipartite graph with

bipartition (X,Y ) satisfying xy ∈ E for any pair in {(x, y) : x ∈ X, y ∈ Y } is a complete

bipartite graph and is denoted by Ks,t if |X| = s and |Y | = t. The complement Ḡ of

G = (V,E) is the graph with E(Ḡ) = E(K|V (G)|) \ E(G) and V (Ḡ) = V (G). The union

of graphs G and G′, denoted by G∪G′, is the graph with E(G∪G′) = E(G)∪E(G′) and

V (G∪G′) = V (G)∪ V (G′). Let m and k be two integers, and let k∗ = max{k :
(
k
2

)
≤ m}

and t∗ = m−
(
k∗

2

)
. By ω(G) denote the clique number of G. It is trivial that ω(G) ≤ k∗

if G is a graph with m edges. The graph K(k, t) is obtained by adding a vertex adjacent
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to t vertices of Kk. Let

σ(x) =

 0, if x = 0;

1, otherwise.

Among (n,m)-graphs, the graph minimizes the degree-entropy is characterized.

Theorem 1. Let n ≥ 2, 1 ≤ m ≤
(
n
2

)
be integers. If G is an (n,m)-graph, then

Id(G) ≥ log(2m)− t∗k∗ log k∗ + (k∗ − t∗)(k∗ − 1) log(k∗ − 1) + t∗ log t∗

2m
,

with equality if and only if G ∼= K(k∗, t∗) ∪ K̄n−k∗−σ(t∗).

The following theorem that characterizes all the extremal graphs achieving a lower

bound among (n.m)-bipartite graphs.

Theorem 2. Let n ≥ 2 and 1 ≤ m ≤ ⌈n2 ⌉⌊
n
2 ⌋ be integers. If G is an (n,m)-bipartite

graph, then Id(G) ≥ 1 + log
√
m, with equality if and only if G ∼= Kq,b ∪ K̄n−q−b, where q

and b satisfy qb = m and q + b ≤ n.

The next result can be immediately deduced by Theorem 2.

Corollary 1 ([9]). If T is a tree on n vertices, then Id(T ) ≥ 1+ log
√
n− 1, with equality

if and only if T ∼= K1,n−1.

The remaining part of this paper is organized as follows. In Section 2, we give pre-

liminary results and notations that are going to be used. Main results will be proved in

Section 3. Conclude with a problem and some remarks in Section 4.

2 Preliminaries

Let G = (V,E) be a graph, and let S be a subset of V (G). If the number of vertices

with degree di is ai for i = 0, 1, . . . , k, then we denote by D(S) = [dakk , d
ak−1

k−1 , . . . , d
a1
1 ] the

degree sequence of S in which 0 = d0 < d1 < · · · < dk and a0 + a1 + · · · + ak = |S|. We

use D(G) to represent the degree sequence D(V (G)). A graphical sequence is the degree

sequence of a simple graph. A graph with degree sequence D is called a realization of

D. If all realizations of a degree sequence are isomorphic, then this degree sequence is

unigraphic. Let 0 < d1 < · · · < ds be all positive distinct degrees of G, and let d0 = 0.

Let Di = {v ∈ V : dG(v) = di} for i = 0, 1, . . . , s. The sequence D0, D1, . . . , Ds is called

the degree partition of G. By ∆(S) and δ(S) denote the maximum degree and minimum

degree of vertices in S, respectively. We use ∆(G) and δ(G) to denote the maximum
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degree and the minimum degree of G, respectively. Denote by N(v) the set of neighbors

of vertex v in G. Let N [v] = N(v) ∪ {v} for vertex v in G.

Let G be a graph with m edges and vertex set V = {v1, v2, . . . , vn}. By the hand

shaking lemma,
n∑

j=1

dG(vj) = 2m.

From Equality (1), we infer

Id(G) = log
n∑

j=1

dG(vj)−
1∑n

j=1 dG(vj)

n∑
i=1

dG(vi) log dG(vi)

= log(2m)− 1

2m

n∑
i=1

dG(vi) log dG(vi).

We define a function

hd(G) =
n∑

i=1

dG(vi) log dG(vi).

Equation (1) implies that min
G∈G

Id(G) = log(2m) − 1
2m max

G∈G
hd(G) for a certain family of

graphs G.

For solving some inequality problems, the concept majorization is a technique to use

[29]. Let A = [a1, a2, . . . , an] and B = [b1, b2, . . . , bn] be non-increasing integer sequences

of length n. Then A majorizes B if
s∑

i=1

ai ≥
s∑

i=1

bi, s = 1, 2, . . . , n− 1

and
n∑

i=1

ai =

n∑
i=1

bi.

We use A ⪰ B to denote that A majorizes B. If there is a strict inequality, then it is the

strict majorization, and is denoted by A ≻ B.

Some results on the minimum and maximum values of the degree-entropy were proved

by the next theorem [19].

Theorem 3 ([19]). Let G and H be (n,m)-graphs. If D(G) ⪰ D(H) , then Id(G) ≤ Id(H),

with equality if and only if D(G) = D(H).

Chvátal and Hammer [13] proposed the family of threshold graphs. A graph G is called

a threshold graph if each vertex vi of G can be assigned a non-negative real number wi,

and G can be assigned a non-negative real number r such that vi ∈ V (G) and vj ∈ V (G)

are adjacent if and only if wi + wj > r. By definition, Chvátal and Hammer [13] proved

the following result.
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Fact 1 ([13]). If G is a threshold graph, then every induced subgraph of G is a threshold

graph.

A degree sequence is the threshold sequence if it is the degree sequence of a threshold

graph.

Theorem 4 ([28]). A graphical sequence is a threshold sequence if and only if it has a

unique labeled realization.

Let G be a graph with degree partition D0, D1, . . . , Ds. Some basic characterizations

of threshold graphs are listed.

Theorem 5 ([13, 28]). There are three equivalent conditions:

(a) the graph G is a threshold graph;

(b) the graph G does not have an alternating 4-cycle (i.e., there are no four vertices

u, v, w, x ∈ V (G) such that uw, vx /∈ E(G) and uv,wx ∈ E(G));

(c) for each v ∈ Dk,

N(v) = ∪k
j=1Ds+1−j for k = 1, 2, . . . , ⌊s

2
⌋;

N [v] = ∪k
j=1Ds+1−j for k = ⌊s

2
⌋+ 1, ⌊s

2
⌋+ 2, . . . , s,

in other words, for u ∈ Di and v ∈ Dj, u is adjacent to v if and only if i + j > s;

Figure 1 illustrates this with s = 6 and s = 7.

Figure 1 illustrates the degree partitions of two threshold graphs with s = 6 and s = 7,

respectively. A line between Di and Dj indicates that every vertex of Di is adjacent to

every vertex of Dj . An oval indicates that the included vertices form a clique.

Theorem 5 (c) indicates the following theorem which shows the relation between de-

grees and degree partitions [28].

Theorem 6 ([28]). For any threshold graph, we have

dk+1 = dk + |Ds−k| for k = 0, 1, . . . , s, k ̸= ⌊s/2⌋;

dk+1 = dk + |Ds−k| − 1 for k = ⌊s/2⌋.
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D4

D5

D6

D3

D2

D1

D0

(a) s = 6

D4

D5

D6

D7

D3

D2

D1

D0

(b) s = 7

Figure 1: An illustration of the degree partitions of two threshold graphs with s = 6 and

s = 7

By Theorem 4, we verify that a threshold graph is uniquely determined by its degree

sequence. Using Theorem 6, a threshold graph is also uniquely determined by its degree

partition.

Hammer et al. [21] proposed the family of difference graphs. A graph G is called a

difference graph if each vertex vi of G can be assigned wi ∈ R and G can be assigned

r ∈ R+ such that

(i) |wi| < r for any i;

(ii) vi ∈ V (G) and vj ∈ V (G) are adjacent if and only if |wi − wj | ≥ r.

There are some basic characterizations of difference graphs [28].

Theorem 7 ([28]). Let G be a bipartite graph with bipartition (X,Y ). There are three

equivalent conditions as follows:

(a) the graph G is a difference graph;

(b) there are no x1, x2 ∈ X and y1, y2 ∈ Y such that x1y1, x2y2 ∈ E(G) and x1y2, x2y1 /∈

E(G);

(c) without isolated vertices, every induced subgraph has a domination vertex on each side

of the bipartition.
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Let c1, c2, . . . , cn be integers satisfying c1 ≥ c2 ≥ · · · ≥ cn ≥ 0. The conjugate sequence

of a sequence C = [c1, c2, . . . , cn] is C
∗ = [c∗1, c

∗
2, . . . , c

∗
n] in which c∗i = |{j : cj ≥ i}|. The

following result is one characterization of difference graphs by the degree sequences.

Theorem 8 ([28]). A pair of non-negative and non-increasing integer sequences D(X) =

[dG(x1), dG(x2), . . . , dG(x|X|)] and D(Y ) = [dG(y1), dG(y2), . . . , dG(y|Y |)] with dG(y1) ≤

|X| is a pair of degree sequences of a difference graph G with bipartition (X,Y ) if and

only if D(X) = D∗(Y ) in which D∗(Y ) is the conjugate of D(Y ).

For proving Theorem 1, we give the following four lemmas.

Lemma 1. If G is a threshold graph with the degree partition D0, D1, . . . , Ds, then |D⌈ s
2
⌉| ≥

2.

Proof. We prove it by contradiction. Suppose that |D⌈ s
2
⌉| = 1. It follows that ⌈ s+1

2 ⌉ =

⌊ s2⌋+1 > ⌊ s2⌋. Let di be the degree of the vertices in Di for i = 0, 1, . . . , s. By Theorem 5

(c), we have d⌈ s+1
2

⌉ =
∑s

i=⌈ s
2
⌉ |Di| − 1 =

∑s
i=⌈ s

2
⌉+1 |Di| = d⌊ s

2
⌋, which contradicts di > dj

for i > j.

We use Lagrange mean value theorem to prove the following result which will be used

to prove Theorem 1.

Lemma 2. Let a be a positive integer, and let A = [a1, a2, . . . , an] be a positive integer

sequence of length n. If f is strictly concave and
∑n

i=1 ai = a, then
∑n

i=1 f(ai) attains the

maximum value if and only if ai = ⌈ a
n⌉ or ai = ⌊ a

n⌋ for i = 1, 2, . . . , n.

Proof. We prove it by contradiction. Suppose that
∑n

i=1 ai attains the maximum value

and ai − aj ≥ 2. Let A′ = [a′1, a
′
2, . . . , a

′
n] be a sequence such that a′i = ai − 1, a′j = ai + 1

and a′k = ak for k ̸= i, j. Because f is strictly concave (i.e., the first derivative f ′ is strictly

decreasing), we obtain

n∑
i=1

f(ai)−
n∑

i=1

f(a′i)

= (f(ai)− f(ai − 1))− (f(aj + 1)− f(aj))

=f ′(ξ1)− f ′(ξ2)

<0,

where ξ1 ∈ (ai − 1, ai) and ξ2 ∈ (aj , aj + 1).

By Jensen’s inequality, we have the following result.
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Lemma 3. Let a be a positive integer, and let A = [a1, a2, . . . , an] be a positive integer

sequence of length n. If f is strictly concave and
∑n

i=1 ai = a, then
∑n

i=1 f(ai) ≤ nf( an)

with equality if and only if ai =
a
n for i = 1, 2, . . . , n.

We prove the following result using the alternating 4-cycles used to describe threshold

graphs.

Lemma 4. Let n ≥ 2 and 1 ≤ m ≤
(
n
2

)
be integers, and let G be an (n,m)-graph. If

Id(G) achieves the minimum value among (n,m)-graphs, then G is a threshold graph.

Proof. We assume that G is not a threshold graph. By Theorem 5 (b), there are four

vertices u, v, w, x ∈ V (G) such that uv,wx ∈ E(G) and ux, vw /∈ E(G). We assume

w.l.o.g. that dG(v) ≥ dG(x). Set G
′ = G− wx+ wv. Hence D(G′) ≻ D(G). By Theorem

3, we have Id(G
′) < Id(G), a contradiction.

To prove Theorems 2, the following lemma can be used.

Lemma 5. Let n ≥ 2 and 1 ≤ m ≤ ⌈n2 ⌉⌊
n
2 ⌋ be integers, and let G be an (n,m)-bipartite

graph. If Id(G) achieves the minimum value among (n,m)-bipartite graphs, then G is a

difference graph.

Proof. Suppose that G is not a difference graph. Let X and Y be parts of G. By Theorem

7 (b), there are four vertices x1, x2 ∈ X and y1, y2 ∈ Y such that x1y1, x2y2 ∈ E(G) and

x1y2, x2y1 /∈ E(G). We assume w.l.o.g. that dG(x1) ≥ dG(x2). Set G
′ = G− x2y2 + x1y2.

Hence D(G′) ≻ D(G). By Theorem 3, we have Id(G
′) < Id(G), a contradiction.

3 Proofs

Proof of Theorem 1. We assume that G∗ is an (n,m)-graph with Id(G
∗) = min{Id(G) : G

is an (n,m)-graph}. Let D0, D1, . . . , Ds be the degree partition of G∗. By Lemma 4, G∗

is a threshold graph. Therefore, K(k∗, t∗) ∪ K̄n−k∗−σ(t∗), a threshold graph, is uniquely

determined by its degree partition (or degree sequence):

(Ai) for t∗ = 0 (i.e., m =
(
k∗

2

)
), |D0| = n − k∗ and |D1| = k∗ (or D(Kk∗ ∪ K̄n−k∗) =

[(k∗ − 1)k
∗
]);

(Aii) for 1 ≤ t∗ < k∗ − 1 (i.e., 1 ≤ m −
(
k∗

2

)
< k∗ − 1), |D0| = n − k∗ − 1, |D1| = 1,

|D2| = k∗− t∗ and |D3| = t∗ (or D(K(k∗, t∗)∪ K̄n−k∗−1) = [(k∗)t
∗
, (k∗−1)k

∗−t∗ , t∗]);

(Aiii) for t∗ = k∗−1 (i.e., m−
(
k∗

2

)
= k∗−1), |D0| = n−k∗−1, |D1| = 2 and |D2| = k∗−1

(or D(K(k∗, k∗ − 1) ∪ K̄n−k∗−1) = [(k∗)k
∗−1, (k∗ − 1)2]).
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Because |D0| can be obtained by |Di| (i.e., |D0| = n −
∑s

i=1 |Di|), it is sufficient to

show |Di| for i = 1, 2, . . . , s. So we omit |D0| in the following. Let K = ∪s
i=⌈ s+1

2
⌉Di, and

let k = ω(G∗). By Theorem 5 (c), we have k =
∑s

i= s+2
2

|Di|+ 1 (resp., k =
∑s

i= s+1
2

|Di|)

for s even (resp., odd). So we have |K| = k − 1 (resp., |K| = k) for s even (resp. odd).

We state a claim.

Claim 1. If ∆(K)− δ(K) ≤ 1, then s ≤ 4.

Proof. We prove it by contradiction. Suppose that s ≥ 5. There are at least three distinct

degrees of vertices in K of G∗. This implies ∆(K)− δ(K) ≥ 2, a contradiction.

There exists a non-negative integer c such that (c − 1)(k − 1) < m −
(
k
2

)
≤ c(k − 1)

(i.e., c = ⌈m−(k2)
k−1 ⌉). We state a claim.

Claim 2. We have ∆(K)− δ(K) ≤ 1 if and only if

(i) |D1| = k for m−
(
k
2

)
= c(k − 1) and c = 0 ;

(ii) |D1| = c+ 1 and |D2| = k − 1 for m−
(
k
2

)
= c(k − 1) and c ≥ 1 ;

(iii) |D1| = 1, |D2| =
(
k+1
2

)
−m and |D3| = m−

(
k
2

)
for (c−1)(k−1) < m−

(
k
2

)
< c(k−1)

and c = 1;

(iv) |D1| = 1, |D2| = c, |D3| = c(k− 1)+
(
k
2

)
−m and |D4| = m−

(
k
2

)
− (c− 1)(k− 1) for

(c− 1)(k − 1) < m−
(
k
2

)
< c(k − 1) and c ≥ 2.

Proof. ⇐=) By Theorem 6, we have

(i) ∆(K) = δ(K) = d1 = k − 1 for m−
(
k
2

)
= c(k − 1) and c = 0 ;

(ii) ∆(K) = δ(K) = d2 = c+ k − 1 for m−
(
k
2

)
= c(k − 1) and c ≥ 1 ;

(iii) ∆(K) = d3 = k and δ(K) = d2 = k − 1 for (c− 1)(k − 1) < m−
(
k
2

)
< c(k − 1) and

c = 1;

(iv) ∆(K) = d4 = c+k−1 and δ(K) = d3 = c+k−2 for (c−1)(k−1) < m−
(
k
2

)
< c(k−1)

and c ≥ 2.

Thus ∆(K)− δ(K) ≤ 1.

=⇒) By Claim 1, we distinguish four cases.

Case 1. s = 1.
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We have K = D1 and |D1| = k. By Theorem 6, we have ∆(K) = δ(K) = d1 = k − 1.

By Theorem 5 (c), every vertex in D1 is adjacent to other vertices in D1, which implies

m =
(
k
2

)
, that is, m−

(
k
2

)
= c(k − 1) and c = 0.

Case 2. s = 2.

We have K = D2 and |D2| = k − 1. By Theorem 6, we have ∆(K) = δ(K) =

d2 = d1 + |D1| − 1 and d1 = d0 + |D2| = k − 1. Since d1|D1| + d2|D2| = 2m, we have

|D1| =
m−(k−1

2 )
k−1 =

m−(k2)
k−1 + 1. This implies c =

m−(k2)
k−1 . We have m −

(
k
2

)
= c(k − 1). By

Lemma 1, we have |D1| ≥ 2, which implies c ≥ 1.

Case 3. s = 3.

We have K = D2 ∪ D3 and |K| = k. This implies ∆(K) = d3, δ(K) = d2 and

|D2| + |D3| = k. By Theorem 6, we have d1 = d0 + |D3| = |D3|, d2 = d1 + |D2| − 1 and

d3 = d2 + |D1|. If |D1| ≥ 2, then d3 − d2 = |D1| ≥ 2, which contradicts ∆(K)− δ(K) ≤ 1.

So we have |D1| = 1. Because |D2| + |D3| = k, d2 = d1 + |D2| − 1 and d1 = |D3|, we

have d2 = k − 1. Since d3 = d2 + 1, d3 = k. We deduce 2m = d1|D1|+ d2|D2|+ d3|D3| =

kd1 + (k − 1)(k − d1) + d1. By calculating, we have d1 = m −
(
k
2

)
. It follows from

|D3| = d1 = m −
(
k
2

)
and |D2| + |D3| = k that |D2| = k − (m −

(
k
2

)
) =

(
k+1
2

)
− m. By

Lemma 1, we have |D2| ≥ 2. Because |D2| + |D3| = k, we have 1 ≤ d1 ≤ k − 2. This

implies 0 < m−
(
k
2

)
< k − 1 (i.e., (c− 1)(k − 1) < m−

(
k
2

)
< c(k − 1) and c = 1).

Case 4. s = 4.

We have K = D3 ∪ D4 and |K| = k − 1. This implies ∆(K) = d4, δ(K) = d3 and

|D3| + |D4| = k − 1. By Theorem 6, we have d1 = d0 + |D4| = |D4|, d2 = d1 + |D3|,

d3 = d2 + |D2| − 1 and d4 = d3 + |D1|. Since |D3| + |D4| = k − 1, d1 = |D4| and

d2 = d1 + |D3|, we have d2 = k − 1. If |D1| ≥ 2, then d4 − d3 = |D1| ≥ 2, which

contradicts ∆(K) − δ(K) ≤ 1. So we have |D1| = 1. Because d2 = d1 + |D3|, d1 = |D4|

and |D3| + |D4| = k − 1, we have d2 = k − 1. It follows from d3 = d2 + |D2| − 1

and d2 = k − 1 that d3 = |D2| + k − 2. Since 2m = d1|D1| + d2|D2| + d3|D3| + d4|D4| =

2d1+2(k−1)|D2|+(k−1)(k−2), |D2| =
m−(k−1

2 )−d1
k−1 . Because 0 < d1 < d2 = k−1, we have

|D2| = ⌊m−(k−1
2 )

k−1 ⌋ = ⌊m−(k2)
k−1 + 1⌋ = ⌈m−(k2)

k−1 ⌉. Thus c = ⌈m−(k2)
k−1 ⌉ = |D2| =

m−(k−1
2 )−d1

k−1 .

So we have d1 = m −
(
k−1
2

)
− c(k − 1) = m − (

(
k−1
2

)
+ k − 1) + k − 1 − c(k − 1) =

m−
(
k
2

)
− (c− 1)(k− 1) = |D4|. This implies |D3| = k− 1− |D4| = c(k− 1)+

(
k
2

)
−m. By

Lemma 1, we have |D2| ≥ 2, which implies c ≥ 2. Thus (c−1)(k−1) < m−
(
k
2

)
< c(k−1)

and c ≥ 2.
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Let u be a vertex in D⌈ s
2
⌉. By Theorem 6, we have dG∗(u) = k − 1. Set G′ = G∗ − u.

Since G′ is an induced subgraph of G∗, by Fact 1, we have G′ is a threshold graph. Let

ω(G′) = k′. If s is even, then there exists a maximum clique without vertex u since we

may use other vertex in D s
2
to replace u. So we have k′ = k if s is even. If s is odd, then

k′ = k − 1 since u must be in the maximum clique. We state a claim.

Claim 3. The graph G∗ satisfies

(i) |D1| = k for m−
(
k
2

)
= c(k − 1) and c = 0;

(ii) |D1| = c+ 1, |D2| = k − 1 for m−
(
k
2

)
= c(k − 1) and c ≥ 1;

(iii) |D1| = 1, |D2| =
(
k+1
2

)
−m and |D3| = m−

(
k
2

)
for (c−1)(k−1) < m−

(
k
2

)
< c(k−1)

and c = 1;

(iv) |D1| = 1, |D2| = c, |D3| = c(k− 1)+
(
k
2

)
−m and |D4| = m−

(
k
2

)
− (c− 1)(k− 1) for

(c− 1)(k − 1) < m−
(
k
2

)
< c(k − 1) and c ≥ 2.

Proof. By induction on m. It is trivial for m = 1. For m = 2, G∗ ∼= K1,2 ∪ K̄n−3, that is,

|D1| = 2 and |D2| = 1 (i.e., m−
(
k
2

)
= k − 1 and k = 2).

It follows that G′ is a threshold graph with n′ = n− 1 vertices, m′ = m+ 1− k edges

and ω(G′) = k′. Let D′
0, D

′
1, . . . , D

′
s′ be the degree partition of G′. Let c′ = ⌈m

′−(k
′
2 )

k′−1 ⌉. We

assume that G′ satisfies

(i) |D′
1| = k′ for m′ −

(
k′

2

)
= c′(k′ − 1) and c′ = 0;

(ii) |D′
1| = c′ + 1, |D′

2| = k′ − 1 for m′ −
(
k′

2

)
= c′(k′ − 1) and c′ ≥ 1;

(iii) |D′
1| = 1, |D′

2| =
(
k′+1
2

)
−m′ and |D′

3| = m′ −
(
k′

2

)
for (c′ − 1)(k′ − 1) < m′ −

(
k′

2

)
<

c′(k′ − 1) and c′ = 1;

(iv) |D′
1| = 1, |D′

2| = c′, |D′
3| = c′(k′−1)+

(
k′

2

)
−m′ and |D′

4| = m′−
(
k′

2

)
− (c′−1)(k′−1)

for (c′ − 1)(k′ − 1) < m−
(
k′

2

)
< c′(k′ − 1) and c′ ≥ 2.

We have a recurrence relation

hd(G
∗) =hd(G

′) + (k − 1) log(k − 1)

+
∑

v∈K\{u}

(dG∗(v) log dG∗(v)− (dG∗(v)− 1) log(dG∗(v)− 1)).

Let f(x) = x log x − (x − 1) log(x − 1) for x ≥ 2. It follows that f(x) is strictly

concave. Since
∑

v∈K\{u} dG∗(v) = m +
(
k−1
2

)
and |K \ {u}| = k − 1, by Lemma 2,
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∑
v∈K\{u}(dG∗(v) log dG∗(v) − (dG∗(v) − 1) log(dG∗(v) − 1)) attains the maximum value

if and only if the maximum degree exceeds the minimum degree by at most 1, that is,

∆(K)− δ(K) ≤ 1. By Claim 1 and the induction hypothesis, the claim does hold.

We now prove that k = k∗. By Claim 3, for s = 1, we have |D1| = k∗ in which(
k∗

2

)
= m; for s = 3, we have |D0| = n − k∗ − 1, |D1| = 1, |D2| = k∗ − t∗ and |D3| = t∗

in which 1 ≤ m −
(
k∗

2

)
< k∗ − 1. By Claim 3, if m −

(
k
2

)
= c(k − 1), then the degree

sequence of G∗ is [(c + k − 1)k−1, (k − 1)c+1] (i.e., ∆(K) − δ(K) = 0). Let Gn,m,k be

the (n,m)-graph satisfying D(Gn,m,k) = [(c + k − 1)k−1, (k − 1)c+1] in which c =
m−(k2)
k−1 .

Notice that there are n− c− k isolated vertices of Gn,m,k. By Theorem 4, this threshold

sequence has a unique labeled realization. Therefore Gn,m,k
∼= G∗ if m −

(
k
2

)
= c(k − 1).

Let g(m, k) = (k−1)(c+k−1) log(c+k−1)+(c+1)(k−1) log(k−1) in which c =
m−(k2)
k−1 .

It follows that hd(Gn,m,k) = g(m, k). We state a claim.

Claim 4. We have hd(G
∗) ≤ g(m, k), with equality if and only if G∗ ∼= Gn,m,k.

Proof. Because
∑

v∈K\{u} dG∗(v) = m +
(
k−1
2

)
, |K \ {u}| = k − 1 and f(x + 1) = (x +

1) log(x+ 1)− x log x is strictly concave, by Lemma 3, we have

∑
v∈K\{u}

(dG∗(v) log dG∗(v)− (dG∗(v)− 1) log(dG∗(v)− 1))

≤(k − 1)

((
m+

(
k
2

)
k − 1

)
log

(
m+

(
k
2

)
k − 1

)
+

(
m+

(
k
2

)
k − 1

− 1

)
log

(
m+

(
k
2

)
k − 1

− 1

))
,

with equality if and only if dG∗(v) =
m+(k−1

2 )
k−1 . For m = 2, G∗ ∼= K1,2 ∪ K̄n−3 and

hd(G
∗) = 2 = g(2, 2). By the similar induction of Claim 3, we assume hd(G

′) ≤ g(m′, k′).

By the induction hypothesis, we have hd(G
∗) ≤ g(m, k), with equality if and only if

G∗ ∼= Gn,m,k.

Next we prove g(m, k) is strictly increasing in k.

Claim 5. We have hd(Gn,m,k) ≤ hd(Gn,m,k∗), with equality if and only if k = k∗.

Proof. By calculating, we have

hd(Gn,m,k) = g(m, k)

=

(
m+

(
k − 1

2

))
log

(
m+

(
k−1
2

)
k − 1

)
+

(
m−

(
k − 1

2

))
log(k − 1).

For k ≥ 2 and m ≥
(
k
2

)
, by calculating, we obtain ∂g(m,k)

∂k =
(
2k−3
2

)
log (k−1)(k−2)+2m

2(k−1)2
+

log e
2 > 0 in which e is the natural constant. So we have hd(Gn,m,k) is strictly increasing
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in k. Since k ≤ k∗, we have hd(Gn,m,k) = g(m, k) ≤ hd(Gn,m,k∗), with equality if and only

if k = k∗.

We now finish the proof by going through the cases of Claim 3. Since ω(G∗) ≤ k∗,

0 ≤ t∗ = m −
(
k∗

2

)
≤ k∗ − 1. In particular, this shows that Case (iv) cannot occur.

By observation, Cases (i) and (iii) are the same as items (Ai) and (Aii), respectively.

We are done for t∗ = 0 (i.e., item (Ai)) and 0 < t∗ < k∗ − 1 (i.e., item (Aii)). So

we consider t∗ = m −
(
k∗

2

)
= k∗ − 1 (i.e.,

m−(k
∗
2 )

k∗−1 = 1) in the following. By Claims 4

and 5, we have hd(G
∗) ≤ g(m, k∗), with equality if and only if G∗ ∼= Gn,m,k∗ . We have

D(Gn,m,k) = [(c + k − 1)k−1, (k − 1)c+1] in which c =
m−(k2)
k−1 . Clearly, D(Gn,m,k∗) =

[(c∗ + k∗ − 1)k
∗−1, (k∗ − 1)c

∗+1] in which c∗ =
m−(k

∗
2 )

k∗−1 = 1. By calculating, we have

D(Gn,m,k∗) = [(k∗)k
∗−1, (k∗ − 1)2]. Thus |D1| = 2 and |D2| = k∗ − 1 for t∗ = k∗ − 1 (i.e.,

item (Aiii)).

Proof of Theorem 2. Suppose thatG∗ is an (n,m)-bipartite graph with Id(G
∗) = min{Id(G) :

G is an (n,m)-bipartite graph}. Let X and Y be parts of G∗. We denote the vertices of

X (resp. Y ) by x1, x2, . . . , x|X| (resp. y1, y2, . . . , yn−|X|). We first consider n ≥ m + 1.

From Lemma 5, G∗ is a difference graph. By Theorem 7 (c), without isolated vertices, G∗

has a domination vertex on each side of the bipartition. Assume w.l.o.g. that x1 is the

domination vertex in X and x1yj ∈ E(G∗) for j = 1, 2, . . . , b. So we have dG∗(x1) = b. If

m = b, then G∗ ∼= K1,b ∪ K̄n−b−1.

We consider m > b. By induction on m. For m = 1, G∗ ∼= K1,1 ∪ K̄n−2. For m ≥ 2,

set G′ = G∗ − x1y1 − x1y2 − · · · − x1yb and assume that G′ ∼= Kq−1,b ∪ K̄n−q−b.

We have a recurrence relation

hd(G
∗) =

|X|∑
i=1

dG∗(xi) log dG∗(xi) +

n−|X|∑
j=1

dG∗(yj) log dG∗(yj)

=

|X|∑
i=1

dG∗(xi) log dG∗(xi) +

b∑
j=1

dG∗(yj) log dG∗(yj)

=

|X|∑
i=2

dG∗(xi) log dG∗(xi) +

b∑
j=1

(dG∗(yj)− 1) log(dG∗(yj)− 1) +

b∑
j=1

dG∗(yj) log dG∗(yj)

−
b∑

j=1

(dG∗(yj)− 1) log(dG∗(yj)− 1) + b log b

=hd(G
′) +

b∑
j=1

dG∗(yj) log dG∗(yj)−
b∑

j=1

(dG∗(yj)− 1) log(dG∗(yj)− 1) + b log b.

For
∑b

j=1 zj =
∑b

j=1 dG∗(yj) = m > b, we analyze conditional extremums of the
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following function

f(z1, z2, . . . , zb) =

b∑
j=1

zj log zj −
b∑

j=1

(zj − 1) log(zj − 1)

and corresponding Lagrangian function

L(z1, z2, . . . , zb, λ) = f(z1, z2, . . . , zb) + λ

 b∑
j=1

zj −m


with the additional boundary condition zj > 1. For each of its arguments on the closed

region, this function is differentiable and well-defined. This means that extremal values

are either on the boundary or critical points. It follows that

∂

∂λ
L =

b∑
j=1

zj −m = 0

and

∂

∂zj
L = log zj − log(zj − 1) + λ = 0

for j = 1, 2, . . . , b. By the set of equations, the unique critical point satisfies z1 = z2 =

· · · = zb =
m
b > 1. It is a local maximum since

∂2

∂z2j
L = − 1

ln 2zj(zj − 1)
< 0.

For variables dG∗(y1), dG∗(y2), . . . , dG∗(yb), the function f(dG∗(y1), dG∗(y2), . . . , dG∗(yb))

attains the maximum value if and only if dG∗(yj) = m
b for j = 1, 2, . . . , b. So we have

D(Y ) = [qb] in which q = m
b . By Theorem 8, we obtain D(X) = D∗(Y ) in which D∗(Y )

is the conjugate of D(Y ). This implies that the degree sequence of X is D(X) = [bq].

Obviously, this pair of degree sequences is unigraphic, that is, Kq,b ∪ K̄n−q−b is the only

realization of this pair of degree sequences up to isomorphism. There exist two inte-

gers b and q such that m = qb and n ≥ q + b if n ≥ m + 1. By induction hypothesis,

G∗ ∼= Kq,b ∪ K̄n−q−b for n ≥ m+ 1. By calculating, we have

Id(Kq,b ∪ K̄n−q−b) = log(2m)− 1

2m
(bq log q + qb log b)

= log(2m)− 1

2m
(m logm)

=1 + log
√
m.

Therefore we have Id(G) ≤ 1 + log
√
m, with equality if and only if G ∼= Kq,b ∪ K̄n−q−b,

where q and b satisfy qb = m and q + b ≤ n.
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Now we consider n ≤ m in the following. It is sufficient to prove Id(G
∗) > 1 + log

√
m

if G∗ ∼= Kq,b ∪ K̄n−q−b does not hold for any integers b and q. Contrarily, we assume that

Id(G
∗) ≤ 1+log

√
m. It follows that Id(G

∗) = Id(G
∗∪K̄m+1−n) ≥ Id(K1,m) = 1+log

√
m.

So we have Id(G
∗) = 1+ log

√
m and G∗ ∪ K̄m+1−n is not isomorphic to Kq,b ∪ K̄n−q−b for

any integers q and b, which contradicts that G∗ ∼= Id(Kq,b ∪ K̄n−q−b) for n ≥ m+ 1.

4 Concluding remarks

We modified the proof of Theorem 1 in this new version due to Cambie and Mazzamurro

providing a counter-example for the proof idea of Theorem 1 in the previous version. Last

time, we used the Lagrange multiplier method treating degrees as real numbers, which

produces a “graph” with non-integer vertex degrees whose entropy is lower than the mini-

mum entropy, while such a graph does not exist. In order to avoid the conversion between

discrete and continuous, we stop using the Lagrange multiplier method to prove Theorem

1 this time. Cambie and Mazzamurro [6] proved the same result by using Karamata’s

inequality, and they pointed out extremal graphs called colex graphs.

The Lagrange multiplier method can be used to prove Theorem 2 for presenting a lower

bound. Among (n,m)-bipartite graphs, we prove Id(Kq,b ∪ K̄n−q−b) attaining the lower

bound 1+log
√
m, where qb = m and q+b ≤ n. We consider extremal results for bipartite

graphs with no more than 6 vertices. Before we list the results, we define a special bipartite

graph. Let n, m and b be three integers with n ≥ 2 and ⌈n2 ⌉⌊
n
2 ⌋ ≥ m ≥ b ≥ 1. Set q = ⌊mb ⌋,

r = m − b⌊mb ⌋. Let B(n,m, b) be the (n,m)-bipartite graph with parts X = {x1, x2, . . . ,

x|X|}, Y = {y1, y2, . . . , y|Y |}, where |X| ≥ q + σ(r), |Y | ≥ b, xiyj ∈ E(B(n,m, b)) for

i = 1, 2, . . . , q, j = 1, 2, . . . , b and xq+1ys ∈ E(B(n,m, b)) for s = 1, 2, . . . , r. We list the

extremal graphs with at most 6 vertices in the following.

By observation, we find Id(B(6, 7, 3)) < Id(B(6, 7, 4)). Does Id(B(n,m, b)) decrease as

the variable b increases for any given n and m? The answer is no since Id(B(7, 7, 4)) <

Id(B(7, 7, 3)) < Id(B(7, 7, 5)). Let B(n,m, b) be the set of (n,m)-bipartite graphs satisfy-

ing that the maximum degree of one part is b. Does the graph G with the minimum degree-

entropy in B(n,m, b) satisfy G ∼= B(n,m, b)? The answer is no since Id(B(7, 10, 4)) >

Id(B(7, 10, 3)) and B(7, 10, 3) ⊆ B(7, 10, 4) up to isomorphism. So we pose a general

problem as follows.

Table 1: The bipartite graphs with the minimum value of degree-entropy.
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m

n
2 3 4 5 6

1 K1,1 K1,1 ∪ K̄1 K1,1 ∪ K̄2 K1,1 ∪ K̄3 K1,1 ∪ K̄4

2 K1,2 K1,2 ∪ K̄1 K1,2 ∪ K̄2 K1,2 ∪ K̄3

3 K1,3 K1,3 ∪ K̄1 K1,3 ∪ K̄2

4 K2,2 K2,2 ∪ K̄1 and K1,4 K2,2 ∪ K̄2 and K1,4 ∪ K̄1

5 B(5, 5, 3) K1,5

6 K2,3 K2,3 ∪ K̄1

7 B(6, 7, 4)

8 K2,4

9 K3,3

Problem 1. If there does not exist a complete bipartite graph Kq,b satisfying qb = m

and q + b ≤ n, then how to find the ones attaining the minimum degree-entropy among

(n,m)-bipartite graphs?

The latest results on this problem can be found in [7]. They proved that extremal

graphs are complete bipartite graphs or nearly complete bipartite. Because this problem

is related to the number theory, the authors concluded that the general characterization

of the extremal graphs is a difficult problem.
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