
 

This thesis has been submitted in fulfilment of the requirements for a postgraduate 

degree (e. g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note 

the following terms and conditions of use:  

• This work is protected by copyright and other intellectual property rights, 

which are retained by the thesis author, unless otherwise stated.  

• A copy can be downloaded for personal non-commercial research or study, 

without prior permission or charge.  

• This thesis cannot be reproduced or quoted extensively from without first 

obtaining permission in writing from the author.  

• The content must not be changed in any way or sold commercially in any 

format or medium without the formal permission of the author.  

• When referring to this work, full bibliographic details including the author, title, 

awarding institution and date of the thesis must be given.  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A Pathway towards the Inverse Design 

of All-Composite Honeycomb Core 

Sandwich Panels 

Jasotharan Sriharan 

Institute for Infrastructure and Environment 

University of Edinburgh 

 

 

 

A Thesis Submitted in Partial Fulfilment of the 

Requirements for the 

Degree of Doctor of Philosophy 

 

May 2024 



i 
 

 

Abstract 

 All-composite honeycomb cellular core sandwich panels are gaining wide 

popularity in lightweight structure applications due to their high specific stiffness and 

strength and multi-functional benefits. The honeycomb cellular core sandwich panels 

consist of a honeycomb core sandwiched between two face sheets. The performance 

of such sandwich panel is related to multiple geometric and material parameters of the 

core and face sheets. Due to a large number of parameters and their complex 

interactions affecting the performance of the honeycomb cellular core sandwich 

panels, the optimal design of sandwich panels is difficult and demands a systematic 

approach by the designer. 

 This thesis focuses on developing the necessary design tools required for the 

accurate and efficient inverse design of all-composite honeycomb core sandwich 

panels considering the key geometric and material parameters of the core and face 

sheets. First, a strain energy-based homogenisation model is developed to calculate 

the in-plane and out-of-plane effective stiffnesses of the laminated composite 

honeycomb core. Unlike the other existing models, the proposed model is applicable 

for all types of honeycomb cellular core geometries and both single lamella or 

laminated walls of different materials. Therefore, the proposed model contributes 

towards significantly enhancing the state of knowledge on the design of honeycomb 

cellular core sandwich panels. The proposed homogenisation model was validated 

using the finite element (FE) analysis results of different honeycomb core geometry 

and material combinations. The results from the proposed model and FE analysis 

showed a good agreement for all the different honeycomb core configurations 

considered in the study. 

 Next, the sandwich panels with honeycomb cores were analysed for the 

global responses using the equivalent models based on the first-order shear 

deformation theory (FSDT). The honeycomb cores in the sandwich panels were 

represented as a homogeneous continuum with the effective stiffness matrix obtained 

from the proposed homogenisation model. The sandwich panels were analysed for 

the deflections and in-plane normal stresses of the face sheets under static bending 
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and the global critical buckling load under uniaxial compression using the equivalent 

models. The predictions were compared against results from the FE models of the 

sandwich panels with the actual core structure. A good agreement was found between 

the predictions from the proposed models and the FE results. 

 Since the proposed equivalent model for the sandwich panels cannot capture 

the possible local failures which are essential part of the sandwich panel design, new 

simplified semi-analytical models were developed to explicitly consider the local 

failures.  A semi-analytical approach was developed for predicting the critical shear 

buckling load of the laminated composite honeycomb cores of different shapes. In the 

proposed model, two different boundary conditions were considered for the edges of 

the core walls. While using simply-supported boundaries for all the edges of the core 

wall gave conservative predictions of the critical shear buckling load, boundary 

conditions of rotationally restrained longer edges of the wall gave very close 

predictions of the critical shear buckling strain to the results from the FE analysis.  The 

effect of different fibre lay-ups and shear loading conditions on the shear buckling 

strength were investigated for honeycomb cores with different shapes.  A semi-

analytical model was also proposed to predict the intracellular buckling of laminated 

composite face sheets with non-rectangular cells. The proposed approach was 

formulated to be as general as possible to take into account different geometric shapes 

of the cell, rotational restraints at the boundaries of the cell, and different loading 

conditions which had not been considered in the existing analytical solutions. Using 

the proposed approach, first, intracellular buckling of laminated composite face sheets 

with hexagonal cell was studied under various compressive loadings. While the 

proposed approach with simply-supported boundaries for the cell gave conservative 

results, predictions with rotationally restrained boundaries for cell gave very close 

predictions to the FE results considering various conditions such as different cell sizes, 

core density, face sheet’s fibre lay-up and loadings. The effect of all these different 

parameters on the intracellular cellular buckling load of the laminated composite face 

sheets were also studied. 

Keywords: Lightweight, All-composite, Laminated composite, Cellular core, 

Honeycomb core, Sandwich panel, Homogenisation model, Effective stiffness, 

Equivalent model, Shear buckling, Intracellular buckling, Semi-analytical, Inverse 

design. 
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Lay summary 

 Sandwich panels are widely used in lightweight construction in many 

industries, including aerospace, automotive, and civil engineering. A Sandwich panel 

consist of three main components: two thin and strong face sheets separated by a 

thick and light core. With the advancement of material and manufacturing 

technologies, a large number of material and geometric choices are available to select 

from when designing sandwich panels. Many geometric and material parameters and 

their complex interactions affecting the performance of sandwich panels have made 

determining the best design of sandwich panels a difficult task. Often, systematic 

approaches based on inverse design approach are used for the design of sandwich 

panels. 

            In recent years, all-composite honeycomb cellular core sandwich panels have 

gained wide recognition in lightweight sandwich structure applications due to their high 

specific stiffness and strength and multi-functional characteristics. Due to the 

complexity of material and geometric parameters and their interactions related to all-

composite honeycomb core sandwich panels, most of the existing models for inverse 

design cannot be used for all-composite sandwich panels. Those can be used are only 

applicable for a very limited range of material and geometric options. Therefore, there 

is a need to develop more generally applicable models to carry out the inverse design 

of all-composite honeycomb core sandwich panels, which will enable better design of 

the all-composite sandwich panels. 

            Therefore, this thesis focuses on developing the design tools required for the 

accurate and efficient inverse design of all-composite honeycomb core sandwich 

panels, considering important parameters related to the geometry and materials of the 

core and face sheets. Since carrying out calculations for the exact geometry of the 

honeycomb cores is difficult and computationally demanding, the complex geometry 

of the honeycomb core is approximated by an equivalent homogenised core. 

Theoretical models were developed to determine the equivalent stiffness of the 

homogenised core for various types of honeycomb cellular core geometries and 

materials. The proposed homogenisation model was validated using the finite element 

(FE) analysis of the honeycomb cores, and the results from the proposed model and 
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FE analysis showed a very good agreement. Theoretical models were also developed 

to predict the global stiffness response of all-composite honeycomb core sandwich 

panels, where core stiffness was determined from the above-described theoretical 

models. This model saves significant computational time compared to detailed FE 

models. The effectiveness of the theoretical models in predicting the responses of 

sandwich panels was evaluated against the 3D FE models for various thickness 

ranges of symmetric and asymmetric face sheets and for the honeycomb cores with 

different fibre lay-up. 

            In the design of the honeycomb core sandwich panels, it’s also important to 

consider failures such as local buckling of the face sheets and cell walls. Because the 

theoretical models represent the honeycomb cores as a homogeneous continuum, 

those models cannot capture local buckling failures. Therefore, a semi-analytical 

approach was developed to predict the critical shear buckling load of the laminated 

composite honeycomb cores with different shapes. The effect of different fibre lay-ups 

and the direction of shear loadings on the shear buckling strength were investigated 

for honeycomb cores with different shapes. The comparisons between the FE results 

and the proposed semi-analytical model for the core wall buckling showed a very good 

agreement. A semi-analytical model was also proposed to predict the intracellular 

buckling of laminated composite face sheets with non-rectangular cells. The proposed 

approach was formulated as a general approach to consider different geometric 

shapes of the cell and suitable boundary and different loading conditions, which had 

not been considered in the existing analytical solutions. Using the proposed approach, 

first, intracellular buckling of laminated composite face sheets with hexagonal cell was 

studied under various compressive loadings. The effect of different cell size, core 

density, face sheet fibre layup, and loadings were investigated using the proposed 

semi-analytical model and FE analysis. The results from the proposed semi-analytical 

model and FE showed a very good agreement for all the different cases considered in 

the study.  
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Chapter 1: 
 
Introduction 

1.1 Background 

 The quest for structural panels with high specific strength and stiffness was the 

main driver behind the concept of sandwich panel systems within the aerospace 

industry, which started in the 1930s (Zenkert 1997). Later, engineers started using 

sandwich panels for many applications in several other industries (Fig. 1.1), such as 

automotive, marine, construction, energy, etc. (Zenkert 1997). A sandwich panel 

consists of three main components: two thin, stiff and strong face sheets separated by 

a thick and light core (Fig. 1.2). Widespread material combinations are available to 

choose from for the face sheets and core of sandwich panels (Feng et al. 2020). 

Among the several types of core systems, the honeycomb cellular core is one of the 

commonly used core systems in sandwich panels, mainly due to its high specific 

strength and stiffness (Ashby & Gibson, 1997). The honeycomb cores can be 

fabricated using different materials ranging from metallic to non-metallic and can be of 

different core shapes (Fig. 1.3). With the advancement of materials and manufacturing 

technologies, the use of fibre-reinforced polymer (FRP) materials (e.g. Carbon fibre 

reinforced polymer (CFRP), Glass fibre reinforced polymer (GFRP)) for both face 

sheets and core (referred to as all-composite honeycomb core sandwich panels) has 

been made a feasible option. Such all-composite honeycomb core sandwich panels 

not only satisfy the structural requirements of high specific stiffness and strength but 

also can satisfy other multi-functional requirements such as energy absorption, 

acoustic absorption, thermal insulation and fire shielding, thermal transfer, and ballistic 

resistance (Russell et al. 2008, 2011; Feng et al. 2018; Pehlivan & Baykasoğlu 2019; 

Chen et al. 2021; Wei et al. 2019, 2020, 2022). Selection of the correct combination 

of materials and geometry of honeycomb cellular core and face sheets is important as 

the performance of the panel, especially the stiffness and strength of the sandwich 

panel are governed by the material and geometric parameters of the core and the face 

sheets (Fig 1.4). Transverse shear deformations of the core are likely to occur due to 

significantly different mechanical properties of the core and face sheets; thus, simple 
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structural theories such as Kirchhoff-Love plate theory cannot be used to analyse the 

behaviour of cellular core sandwich panels (Zenkert 1997). The complex behaviour of 

the sandwich panels presents a significant challenge to the design engineers in 

choosing the right material and geometric combinations to meet the required 

performance criteria. In most cases, designers have sought to use existing pre-

assembled systems for solutions rather than designing new systems. The choice of 

materials and geometry in such pre-assembled systems are made based on 

engineering intuition and, thus, may not provide the best solution. Better design of 

sandwich panels requires an approach which considers the influence of many 

numbers of possible geometric and material combinations in a systematic way and 

provides solutions considering the trade-off between the different aspects of target 

performance criteria. 

Fig. 1.1: Illustration of the use of sandwich panels for various applications from the 
different sectors (https://thermhex.com/de/anwendungen-fuer-wabenkerne-und-

wabenplatten/). Reproduced with permission from publisher. 

 

Fig. 1.2:  (a) A sandwich panel consisting of (b) upper and lower face sheets and 
core.   

Upper face sheet 

Lower face sheet 

Core 

(a) (b) 

https://thermhex.com/de/anwendungen-fuer-wabenkerne-und-wabenplatten/
https://thermhex.com/de/anwendungen-fuer-wabenkerne-und-wabenplatten/
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Fig. 1.3:  Honeycomb cores of different geometries and FRP materials 
configurations [(a-c): Wei et al. 2020a; (d-e): Kiyak & Kaman 2019; (f): Hou et al. 

(2014) and (g-h): https://www.euro-composites.com/en/honeycomb-core-portfolio-3/]. 
Reproduced with permission from publisher. 

Fig. 1.4:  Illustration of the parameters related to the design of honeycomb core 
sandwich panels.   

Inverse design approach (Fig 1.5) is often used to select the best choices for 

design parameters in engineering designs (Loonen et al. 2022). Concepts of inverse 

(a) (b) (c) 

(d) (e) 

(f) (g) (h)

https://www.euro-composites.com/en/honeycomb-core-portfolio-3/
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design can also be applied to the design of sandwich panels. Based on the number of 

variables considered in the design related to the geometry and materials of the core 

and face sheets, loading and boundary conditions of the sandwich panel and other 

design constraints, the inverse design approach for the problem can be a backward 

or forward approach (Loonen et al. 2022). In the backward approach, a direct inverse 

of the objective function is achieved analytically for the problem, whereas the forward 

approach is the systematic and intelligent use of direct functions to search for the 

domain of possible alternatives under defined constraints to determine the best 

options satisfying the target performance requirements. Although the backward 

approach is possible for a simple sandwich panel design with the minimal number of 

variables (Vinson 1986; Triantafillou & Gibson 1987; Murthy et al. 2006; Meidell 2009), 

forward approach(Fig 1.6) is often preferred when many variables are involved 

(Gantovnik et al. 2002; Tan & Soh 2007; Catapano & Montemurro 2014; Abouhamzeh 

& Sadighi 2016; Coburn & Weaver 2016; Xu et al. 2017; Fan et al. 2018; Irisarri et al. 

2021; Santos et al. 2022; Seyyedrahmani et al. 2022; Wei et al. 2020b, 2022). The 

forward design approach can be carried out using different techniques, such as failure 

maps (Russel et al. 2011; Wei et al. 2020, 2022) or search algorithms. Latter is often 

preferred for the optimal design of the sandwich panel with a large number of variables 

(Gantovnik et al. 2002; Tan & Soh 2007; Hudson et al. 2010; Catapano & Montemurro 

2014; Abouhamzeh & Sadighi 2016; Coburn & Weaver 2016; Xu et al. 2017; Fan et 

al. 2018). Regardless of the algorithms used, inverse design involves several iterative 

calculations. Thus, the sandwich panels are often modelled as equivalent models 

where the cellular core is represented as a homogenous continuum with effective 

stiffness properties for computational efficiency. Several beam and shell theories 

(Caliri Jr et al. 2016; Irfan & Siddiqui 2019) exist to model sandwich panels as 

equivalent models, but their complexity and accuracy vary depending on underlying 

assumptions and the number of variables used in the formulation of the theory. 

However, regardless of the theory used for the equivalent model of sandwich panels, 

the honeycomb cores are always represented as a homogenous continuum with 

effective stiffness properties. Different approaches exist to get the effective stiffness 

of the honeycomb cellular cores (Somnic & Jo 2022). However, most of the existing 

analytical models are for the hexagonal honeycomb core (i.e. honeycomb cellular core 

consisting of hexagonal cells) and consider only the isotropic materials for the core. 

Studies on the effective properties of laminated composite honeycomb cores are very 
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limited (Wang & Wang 2018), and there is no generalised simplified model for 

composite honeycomb cores of different shapes. The numerical homogenisation 

approaches typically rely on finite element (FE) analysis of representative volume 

elements (RVEs) of the cellular cores and allows the users to study more complex 

geometries (Penado 2013; Montemurro et al. 2016) and different materials. However, 

due to the significant efforts required in detailed numerical modelling, this approach is 

not practical when a large number of choices are available for different variables. 

In addition to the stiffness, the strength of the sandwich panel is also an 

important performance to consider in the design of the sandwich panel. Although 

equivalent models are capable of predicting global responses such as rupture of face 

sheets and global buckling, the equivalent models cannot be directly used to predict 

most of the local failures, such as local buckling of core walls and face sheets 

commonly observed in honeycomb core sandwich panels. In analytical approaches 

towards the optimal designs of sandwich panels, these failures are often taken into 

account using simplified analytical or semi-analytical equations. In the past, many 

studies have been carried out on the local failure due to wrinkling of face sheets and 

analytical and semi-analytical solutions were proposed for wrinkling of isotropic (Hoff 

& Maunters 1945; Plantema 1966; Allen 1969; Niu & Talreja 1999; Birman 2004) and 

orthotropic (Vonach & Rammerstorfer 2000; Pozorski et al. 2021) cores. However, the 

studies on the other failure modes, such as buckling of the core walls and intracellular 

buckling, are very limited and existing solutions were found to be significantly under 

or overpredicting the failure loads due to underlying assumptions regarding the 

material, geometry, and loading and boundary conditions (Thomsen & Banks 2004). 

As these predictions based on the existing solutions for the local failures affect the 

accuracy of the inverse design, even with the most advanced search algorithms, 

accurate solutions may not be achieved. The accuracy and efficiency of the inverse 

design process for the sandwich panel depend significantly on the accuracy of the 

simplified approaches used to predict the stiffness and strength. Therefore, to 

determine the best material and geometry combinations of all-composite honeycomb 

core sandwich panels for the target structural performance, it is necessary to develop 

a methodology to accurately predict the stiffness and strength of sandwich panels with 
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the ability to consider a wide range of parameters affecting the performance while 

keeping the computational demand low. 

Fig. 1.5:  Illustration of (a) backward and (b) forward method of inverse design 
techniques (Loonen et al. 2022).  

 

Fig. 1.6:  Schematic of the typical inverse design procedure for the honeycomb core 
sandwich panels. 

 

1.2 Motivation and aim 

Motivated by the need for a systematic methodology to design the all- 

composite honeycomb core sandwich panels, this PhD thesis is aimed at developing 

necessary analytical and semi-analytical models to accurately determine the stiffness 

and strength of all-composite honeycomb cellular core sandwich panels, which could 

facilitate the accurate inverse design of the all-composite honeycomb core sandwich 

panels considering the wide range of geometric and material parameters of the face 

sheets and the core. The key objectives of the thesis are: 

(a) 

(b) 
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• To propose an analytical or semi-analytical approach to predict the 

effective stiffnesses of the laminated composite honeycomb cores with 

different shapes and material configurations, 

• To propose an analytical or semi-analytical approach to predict the local 

buckling of the laminated composite honeycomb cores with different 

shapes and material configurations under different shear loadings 

conditions, 

• To propose an analytical or semi-analytical approach to predict the local 

buckling of the laminated composite face sheets with different cell 

shapes and material configurations under axial compression and 

bending, 

• To investigate the effectiveness of the equivalent models of the 

sandwich panels in predicting the responses compare to 3D models with 

the actual discrete honeycomb cores, and 

• To validate the proposed analytical or semi-analytical models using the 

FE analysis. 

This study only considers periodic composite honeycomb cellular cores as 

shown in Fig. 1.3. Hereafter, the honeycomb cores of different cell shapes will be 

referred to simply by their cell shape (e.g. hexagonal core, triangular core, rectangular 

core etc). In all the analytical and semi-analytical derivations in the following chapters, 

the material is assumed to be linear elastic and the reach of yield or maximum material 

strength is considered as a failure. As this present study, mainly focuses on developing 

the generalised theoretical models to facilitate the inverse design, the proposed 

models are mainly validated against corresponding FE predictions and other existing 

theoretical models. Since the analytical and semi-analytical models are developed 

under idealised conditions taking into account of various critical parameters related to 

geometry, materials and loadings, FE analysis is used for direct comparisons and 

validations of several different cases considered.  Investigating the corresponding 

nonlinear effects such influence of imperfections, material nonlinearities, post buckling 

behaviour etc. falls beyond the scope of present study; therefore, detailed numerical 

models or/and experiments incorporating those effects are not used for the validations.  
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1.3 Significant contributions of the thesis 

This thesis presents innovative methodologies aimed at facilitating the accurate 

and efficient inverse design of all-composite honeycomb core sandwich panels with 

different material and geometry configurations for both the core and face sheets. 

Initially, a strain energy-based homogenisation model is developed, incorporating 

laminate theory to derive an explicit strain energy density function for honeycomb 

RVEs with varying shapes. Moreover, effective stiffness matrices are derived for 

laminated honeycomb cores considering different shapes and material configurations. 

Additionally, generalised semi-analytical models are developed to address local 

buckling phenomena in the laminated composite honeycomb cores and intracellular 

buckling in the composite face sheets comprising different materials and geometric 

configurations under various loading conditions. This research bridges existing 

knowledge gaps in the inverse design of all-composite honeycomb core sandwich 

panels by offering versatile, efficient, and robust analytical and semi-analytical models 

for predicting effective stiffness and local buckling failures across various material, 

geometric, and loading configurations of the sandwich panels. The thesis provides 

readers with a fundamental understanding of how different core and face sheet 

geometries and materials influence the stiffness and strength behaviour of sandwich 

panels. It also enables efficient predictions, broadening the applicability of the inverse 

design process to tailor the all-composite sandwich panel designs to meet specific 

performance requirements. Consequently, this work advances the state-of-the-art in 

lightweight advanced sandwich panel design.  

1.4 Outline of the thesis 

The content of the thesis is presented in 7 chapters. Chapter 1 presents an 

introduction and the motivation and aim of the thesis.  

Chapter 2 presents a detailed review of the existing literature related to the topic 

of this PhD thesis. It consists of past studies regarding different types of face sheet 

and core material, shell theories and shell elements proposed for sandwich panel 

analysis, different types of homogenisation approaches for the honeycomb cellular 

cores, analytical models for the local failures, and the inverse design methodologies 

for sandwich panels. 
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Chapter 3 presents the formulation of a strain energy-based homogenisation 

approach for the laminated composite honeycomb cores with different shapes and 

material configurations. The predictions of the in-plane and out-of-plane effective 

stiffnesses for the honeycomb cores with different materials and geometric 

configurations from the proposed approach are validated using the results from FE 

models. The predictions from other existing analytical models for the laminated 

composite cellular core were also evaluated against the proposed approach. 

In Chapter 4, the global responses of sandwich panels using the equivalent 

single-layer FE models of the sandwich panels are compared with the detailed 3D FE 

models with the actual discrete honeycomb cores. The honeycomb cores of equivalent 

models were represented as a homogenous continuum with effective stiffnesses 

calculated using the proposed approach in Chapter 3. The global responses under 

static bending and uniaxial compression were evaluated for the sandwich panels with 

different honeycomb core configurations.  

Chapter 5 presents a simplified semi-analytical approach to predict the shear 

buckling of loads of the laminated composite honeycomb cores. The predictions for 

shear buckling load for honeycomb cores from the proposed approach were validated 

from the results from FE for the honeycomb core with different shapes and material 

configurations. The effect of the different material and geometric configurations of the 

honeycomb cores on the shear buckling loads were investigated. 

In Chapter 6, a semi-analytical approach is presented for the intracellular 

buckling of laminated composite face sheets sandwich panels. The proposed semi-

analytical approach was formulated such that it can be used for predictions of the 

intracellular buckling load of the face sheets with different cell shapes, considering 

important parameters related to boundary and loading conditions of the cell. The 

predictions for intracellular buckling load of sandwich panels with honeycomb cores 

using the proposed approach are validated from the results from FE. The comparisons 

were also made with the results from existing analytical models for the intracellular 

buckling loads. The effect of different materials and geometric parameters on the 

intracellular buckling load are also investigated. 
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Chapter 7 presents key findings and impacts from this research and also 

recommends ideas for future works which could be extended from the current 

research.  
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Chapter 2: 
 
Literature Review 

2.1 General 

Sandwich panels consist of two thin and strong face sheets connected to either 

side of a core.  The concept of the sandwich panel was first discussed by Duleau and 

Fairbarain in the 1820s. However, sandwich panels were successfully deployed much 

later for the construction of ‘Mosquito’ aircraft during World War II (Zenkert 1997). 

Since then, extensive research on the analysis and design of the sandwich panels, 

materials development for cores and face sheets, and manufacturing technologies had 

been carried out. Studies on sandwich panels have been continued due to 

advancements in material and manufacturing technologies. Especially the recent 

advancements in composite materials and manufacturing technologies have provided 

widespread possibilities for material and geometry selections for sandwich panels, 

often making the existing research inadequate to deal with the new materials and 

geometric options. Therefore, the demand for research on different aspects of 

sandwich panels is still extensive. 

Sandwich structures are currently popular not only in aerospace applications 

but also in several other applications such as wind and tidal turbines (Thomsen 2009), 

automobiles (Ning et al. 2007; Hara & Özgen 2016; Hou et al. 2022), infrastructure 

(Manalo et al. 2017), marine applications (Palomba et al. 2022) etc. The construction 

of sandwich structures typically involves the utilization of various types of sandwich 

panels, each offering unique benefits and tailored to specific requirements. These 

panels can be broadly categorized into: a) truss core sandwich panels b) honeycomb 

core sandwich panels c) foam core sandwich panels and d) corrugated core sandwich 

panels (Fig. 2.1). The adoption of sandwich structures in the applications is primarily 

motivated by their multitude of advantages over traditional structural elements. 

Especially, sandwich panels exhibit a superior flexural stiffness-to-weight ratio and 

strength-to-weight ratio compared to monocoque and other architectural 

configurations as shown by the comparison in Table 2.1(HexWeb™ 1999). This 

heightened efficiency in material utilization translates into enhanced performance and 
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reduced overall weight, aligning with the contemporary emphasis on lightweight and 

sustainable design practices across industries. In addition, sandwich panels also 

provide several other functional benefits based on the material selection for the face 

sheets and core, such as energy absorption, acoustic absorption, thermal insulation 

and fire shielding, thermal transfer, and ballistic resistance (Ashby 2005; Feng et al. 

2020). 

Table 2.1: Comparison of structural efficiency of sandwich panels in terms of 
weight (HexWeb™ 1999). 

 

Fig. 2.1: Different types of sandwich panels used in sandwich structures:  (a) truss 
core sandwich panel (b) honeycomb core sandwich panel (c) foam core sandwich 
panel and (d) corrugated core sandwich panel (Feng et al. 2020). Reproduced with 

permission from the publisher. 

 

(a) (b) 

(c) (d) 
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2.2 Materials and manufacturing techniques for sandwich 

structures 

In general, any structural material which can be obtained in the form of thin 

sheets, can be used as face sheets of sandwich panels (Allen 1969). When selecting 

the material for the face sheet, properties such as high flexural stiffness, high 

compressive and tensile strength, impact resistance, surface finish, and environmental 

and wear resistance are generally considered to be primary interests by designers. 

Commonly used face materials can be classified into two main categories as metallic 

and non-metallic face materials. Materials like steel, stainless steel and aluminium are 

some examples of metallic face sheets, and plywood, cement composites, wood 

veneer, and fibre composites are some examples of non-metallic face sheets. Since 

the core of the sandwich panel is primarily subjected to transverse shear, material 

selection for the core is mainly driven by the transverse shear strength and stiffness 

properties. In addition, low density and other functional properties such as thermal 

insulation and acoustic insulation are also properties of concern (Zenkert 1997). The 

cores in the sandwich panels can be broadly categorised as solid cores, foam cores 

and periodic cellular cores (Laszczyk 2011). Balsa wood is an example of the solid 

core, which is a low-density wood with a density range from 100kg/m3 - 300kg/m3. 

Balsa wood is one of the first materials used for the core in load-carrying sandwich 

structures (Zenkert 1997). Balsa wood has also been used as the core in many 

different sandwich structure applications, such as bridge decks, wind turbine blades 

and boats (Borrega & Gibson 2015; Shir Mohammadi & Nairn 2017). Foam cores can 

be of metallic (E.g., Aluminium foam) or polymeric (E.g., expanded polystyrene (EPS), 

Polyetherimide (PMI) foam, polyvinyl chloride (PVC) and Polyurethane (PU)) (Zenkert 

1997). Foam cores could be manufactured to get different density (10kg/m3 - 

800kg/m3) based on the design requirements by changing the volume fractions, size 

and morphology of the pores (close-cells), connectivity of the struts (open-cells), etc 

(Laszczyk, 2011; Khan et al. 2020). Foam cores are generally less expensive in 

comparison to periodic cellular cores. Because the surface preparation and shaping 

of the foam cores are relatively simple, they can be easily connected to face sheets 

by adhesive bonding. Also foam cores have very good thermal insulation and acoustic 

absorption characteristics (Zenkert 1997). Periodic cellular cores are systematically 

organised cellular materials which can have different configurations in terms of 
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geometry and materials (Laszczyk, 2011). Periodic cellular cores can be classified 

mainly into 3D lattices and 2D prismatic cellular cores (Fig. 2.2) (Wadley 2006). 3D 

lattice cores can be of truss type or textile type, and 2D prismatic cores can be of 

corrugated type or honeycomb type (Wadley 2006).  Periodic cellular cores offer a 

high stiffness-to-weight ratio and strength-to-weight ratio in comparison to solid and 

foam cores (Zenkert 1997). With the advancement of material and manufacturing 

technologies, the periodic cellular cores could be architected to give several functional 

properties by combining different materials and geometric configurations (Feng et al. 

2018). Among the different types of cellular cores, the honeycomb core is one of the 

most used cellular cores in sandwich panels (Feng et al. 2018). This literature review 

mainly focuses on the studies of the honeycomb cellular core (Fig.2.2(d)) sandwich 

panels, while research on other types of core systems is discussed where necessary. 

The honeycomb cores with different cell shapes are specifically referred by its shape 

(e.g., hexagonal core, rectangular core, triangular core etc) and commonly referred as 

‘honeycomb’ in this thesis. 

Fig. 2.2: Periodic cellular cores: 3D lattices of (a) truss type and (b) textile type and 
2D prismatic cores of (c) corrugated type and (d) honeycomb type (Wadley 2006). 

Early research studies related to honeycomb cores mainly focused on studying 

the behaviour of metal sandwich panels having metal (E.g., Steel/Aluminium) 

honeycomb cores (Kee et al. 1999; Cote et al. 2004, 2006; Crupi et al. 2012).  With 

the advancement of composite material technologies, materials such as carbon fibre 

reinforced polymer (CFRP) and glass fibre reinforced polymer (GFRP) were 

(a) (b) (c) (d) 
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introduced for face sheets to reduce the overall weight of the sandwich panels (Shi et 

al. 2014). With the advancement in manufacturing technologies, researchers have 

recently investigated the options of using fibre reinforced polymer (FRP) composites 

or hybrid materials for both the honeycomb cores and face sheets. The all-composite 

honeycomb core sandwich panels have opened up the possibility to further improve 

the design of sandwich panels for lightweight and other multi-functional applications. 

Number of researchers have investigated applications of GFRP (Cote et al. 2009), 

Kevlar based FRP (Hou et al. 2014; Kumar et al. 2019), CFRP (Russell et al. 

2008,2011; Feng et al. 2018; Pehlivan & Baykasoğlu 2019; Chen et al. 2021;  Wei et 

al. 2019, 2020, 2022), natural fibres (Stocchi et al. 2014; Vitale et al. 2017), and 

hybrids such as wood-GFRP laminates (Ou et al. 2019) for the fabrication of cellular 

cores. Depending on the composite materials used and honeycomb core shapes, 

different techniques (Fig. 2.3) such as interlocking (Russell et al. 2008, 2011) (Fig 

2.3(a)), tailor folding (Wei et al. 2019, 2020, 2022) (Fig. 2.3(b)), compression moulding 

(Stocchi et al. 2014) (Fig 2.3(c)), vacuum-assisted resin transfer moulding (Vitale et 

al. 2017) (Fig 2.2(d)), 3D printing(Sugiyama et al. 2018)(Fig 2.3(e))  and  kirigami 

(Saito et al. 2011; Hou et al. 2014)(Fig 2.3(f)) have been used to manufacture the 

composite honeycomb cores.  

 

(a) Fabrication of CFRP square core using interlock technique (Russell et al. 2008). 
Reproduced with permission from the publisher. 
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(b) Fabrication of CFRP hexagonal core using tailor folding technique (Wei et al. 
2020). Reproduced with permission from the publisher. 

 

 

(c) Fabrication of natural fibre hexagonal core using compression moulding 
technique (Stocchi et al. 2014). Reproduced with permission from the publisher. 

(d) Fabrication of natural fibre hexagonal core using Vacuum-assisted resin transfer 
moulding technique (Vitale et al. 2017). Reproduced with permission from the 

publisher. 
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(e) Fabrication of CFRP hexagonal core using 3D printing technique (Sugiyama et 
al. 2018). Reproduced with permission from the publisher. 
 

(f) Fabrication of Kevlar hexagonal core using kirigami folding technique (Saito et al. 
2011). Reproduced with permission from the publisher. 

 
Fig. 2.3: Different manufacturing techniques for honeycomb cores. 

Existing studies on the mechanical performance of the honeycomb cores are 

largely limited to the square shape cores (Russell et al. 2008 & 2011; Ou et al. 2019) 

and the honeycomb cores (Stocchi et al. 2014; Vitale et al. 2017; Wei et al. 2019, 

2020, 2022). Existing experimental studies have revealed that the fibre orientation of 

the composite core walls significantly affects the mechanical performance of the cores, 

but length to width ratio of core walls has little effect on the mechanical performance 

of the honeycomb cores (Russel et al. 2008). Experimental investigations available on 

the honeycomb cores are often limited to specific fibre directions; Russel et al. (2011) 
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used (0/900) plies for the face sheets and (+/-450) woven CFRP for the square core 

and studied 3-point bending characteristics of sandwich panels; Wei et al. (2020, 

2022) experimentally investigated bending and uniaxial compression characteristic of  

all-composite honeycomb core sandwich panels consisting of CFRP core with (0/90) 

and (45/-45) laminated composite walls . Only few researchers have investigated the 

mechanical performance of hybrid core systems (Feng et al. 2018; Ou et al. 2019). Ou 

et al. (2019) used timber-GFRP hybrid wall cores and found that such hybrid cores 

provide good performance in concrete-timber sandwich panels. Feng et al. (2018) 

found that using foam-CFRP sandwiches as core walls in sandwich panels (Fig. 2.4) 

significantly improved the out-of-plane compressive and shear response in 

comparison with the regular CFRP walls square core sandwich panels.  

Fig. 2.4: Process of hierarchical wall square core fabrication using CFRP and foam 
(Feng et al. 2018). Reproduced with permission from the publisher. 
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2.3 Theory and analysis approach for the sandwich panels 

2.3.1  Theories for analysing the sandwich panels 

In the past, many shell and plate theories have been proposed for the analysis 

of composite and sandwich structures. Based on the assumption of the displacement 

field used, these theories can be mainly classified into mainly three categories: 

equivalent single-layer (ESL) theories, discrete layer-wise (LW) theories, and Zigzag 

theories (ZZ).  

In the ESL approach, the laminated composite and sandwich panels are 

represented by a statically equivalent single layer. The displacement field of an 

equivalent single layer is assumed to be continuous through the thickness and 

generally approximated using a polynomial series. One of the oldest and most well-

known theories of this approach is the classical laminate theory (CLT) (Kollár 2003) 

which is based on the kinematics assumptions of Kirchhoff thin plate theory (Kirchhoff 

1850). This theory assumes that: 

1. Cross sections remain plane before and after the deformation and  

2. Cross sections remain perpendicular to the reference surface before and after 

the deformation.  

As the second assumption of the CLT assumes there are no transverse shear 

deformations, the application of the CLT is limited to thin laminates.  

Another well-known ESL theory is the first-order shear deformation (FSDT) 

theory, which is based on Reissner-Mindlin’s hypotheses (Reissner 1945; Mindlin 

1951). FSDT relaxes the second assumption of the CLT and predicts a constant shear 

variation across the thickness. Because of the constant shear variation, FSDT requires 

a shear correction factor. A number of different methods have been proposed to 

estimate the shear correction factor for the sandwich and laminated structures 

(Vlachoutsis 1992; Birman & Bert 2002; Huang & Kardomateas 2002; Vrabie, Chiriac 

& Băetu 2017).  

In order to improve the kinematic assumptions of FSDT, higher-order shear 

deformation theories (HSDT) have been developed (Ferreira et al. 2005; Aydogdu 

2009; Tounsi et al. 2013; Hamidi et al. 2015; Mahi and Tounsi 2015). Different versions 
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of HSDT have been proposed using polynomial, trigonometric and hyperbolic 

functions for the displacement assumptions (Mantari & Soares, 2012). HSDT satisfies 

shear stress-free boundary conditions at the top and bottom surface of sandwich 

panels and does not require the shear correction factor. However, HSDT does not 

satisfy the requirement of interface shear stress continuity at the interfaces between 

the cores and face sheets.  

LW theories divide the plate into a number of different layers in the thickness 

direction (not needed to be equal to the number of plies in the laminate). Among 

several existing LW theories, some of them were formulated considering the behaviour 

of core and face sheets separately (Frostig et al. 1992; Siddiqui 2015). These theories 

assume that face sheets satisfy Euler-Bernoulli’s assumptions and differ in their 

approximation of the displacement field for the core. Such theories proposed by 

Frostig et al. (1992) and Siddiqui (2015) are also referred to as higher order sandwich 

panel theory (HSAPT) and extended higher order sandwich panel theory (EHSAPT), 

respectively, in the literature. Several other LW theories were also proposed based on 

different functions for the approximation of displacement field in each layer 

(Plagianakos & Saravanos 2009; Mantari et al. 2012; Goswami & Becker 2016). Those 

theories accurately satisfy interface shear stress continuity between the layers. 

However, due to the number of additional variables used, the computational cost is 

much higher than ESL theories.  

To take advantage of computational efficiency of ESL theories and to improve 

the interface shear stress continuity like in LW theories, a special type of theory known 

as ‘Zigzag’ theories have been proposed (Cho & Averill 2000; Icardi 2001; Pandit et 

al. 2008; Tessler et al. 2010; Bhar & Satsangi 2011). In such theories, the in-plane 

displacements have piece-wise variation across the plate thickness and the number 

of unknowns is made independent of the number of layers by equating the transverse 

shear stresses at the layer interfaces of the laminate. Analytical solutions (Frostig & 

Baruch 1993; Phan et al. 2012) based on the above-mentioned theories were used to 

analyse sandwich panels with simple geometry, loading and boundary conditions. 

However, solving the governing equations for more complex cases is not always 

possible (Irfan & Siddiqui 2019). Therefore, the analytical approach limits the design 

of sandwich panels for different applications.  
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In recent years, many studies have been carried out to formulate beam 

elements and shell elements for the analysis of sandwich panels based on HSDT 

theories (Bhar & Satsangi 2011;Thai & Choi 2013; Marjanović et al. 2016), ZZ theories 

(Xiaohui et al. 2012; Barut et al. 2013; Eijo et al. 2013; Versino et al. 2013), and LW 

theories (Hu et al. 2009; Mantari et al. 2012; Pandey & Pradyumna 2015; Yuan et al. 

2015; Irfan & Siddiqui, 2021). Most of these elements have been formulated focusing 

on the linear static analysis of the sandwich panels. Only a few researchers (Yu et al. 

2015; Yuan et al. 2016; Yuan & Kardomateas 2018) have focused on the finite element 

(FE) formulation for the geometric nonlinear analysis of sandwich panels based on 

HSAPT and EHASPT. Some of them studied the nonlinear linear buckling behaviour 

of sandwich panels under uniaxial compressive loads (Yu et al. 2015; Yuan & 

Kardomateas 2018), while others studied nonlinear responses of sandwich panels 

under 3-point bending (Yuan et al. 2016). Although FE elements based on modern 

theories perform better in terms of accuracy in comparison with the elements based 

on FSDT (Panda & Natarajan, 1981), they are computationally expensive due to an 

additional number of freedoms, and implementation of those elements is a challenging 

task. On the other hand, models based on FSDT are very often used due to their 

simplicity in analysis and programming. It requires, however, an accurate estimation 

of the shear correction factor.  

2.3.2   Effective elastic properties of honeycomb core 

For the purpose of computational efficiency, the analysis of sandwich panels is 

generally performed using effective properties instead of analysing the actual 3D 

geometry of the core structure (Catapano & Montemurro 2014b; Namvar & Vosoughi 

2020; Santos et al. 2022). The actual heterogeneous body of the honeycomb structure 

is represented by an equivalent homogeneous medium. Once effective mechanical 

properties are known, the relevant sandwich shell/plate theories can be used to 

analyse the sandwich structure. This provides reasonably accurate results when the 

overall dimension of the sandwich panel is considerably larger than the characteristic 

dimensions of the representative volume element (RVE) of the core. The concept of 

the homogenisation approach to get effective properties is illustrated in Fig.2.5.  
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Fig. 2.5: Illustration of concept of homogenisation of periodic honeycomb core 
(Somnic & Jo 2022). 

Consider a periodic honeycomb structure (Ω) subjected to some external loads 

and boundary conditions, and an effective homogeneous medium (Ω𝐻) having the 

same boundaries and external loads (Fig. 2.5). The mechanical behaviour of RVE of 

the actual structure (Ω ) has to be equivalent to the mechanical behaviour of RVE of 

the homogenised element of the effective medium. The constitutive equations for the 

effective properties of the homogenised medium have to be determined in such a way 

that the mechanical behaviour of Ω and Ω𝐻 is equivalent on the macroscopic level 

(Somnic & Jo 2022). 

Researchers have followed different methodologies to get the effective 

properties of honeycomb cores. These methodologies can be broadly categorised into 

different approaches such as the force-equilibrium approach (Master & Evans 

1996;Gibson & Asby 1997; Balawi & Abot 2008; Malek & Gibson  2015; Mukherjee & 

Adhikari 2021), strain energy approach (Becker 1998; Hohe & Backer 2001; Xu and 

Qiao 2002; Li et al. 2016), asymptotic expansion approach (Shi & Tong 1995; Xu et 

al. 2001), and FE-based approach (Catapano & Montemurro 2014a; Sorohan et al. 

2018). In the force-equilibrium-based approach, each cell wall of the RVE is assumed 

to be an equivalent beam and the deformation of the RVE under applied external force 

is calculated considering the deformation of each wall and effective properties are 

calculated based on the average stress of the RVE (Fig. 2.6). The strain energy-based 

approach assumes that the effective properties of the RVE of the actual honeycomb 

core and homogenised core are equivalent if the strain energy between both RVEs is 

equal under the condition of equal average strain. The asymptotic expansion approach 

considers the length scale of RVE and periodic structure in the system and uses power 
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series expansion to represent the displacement fields and stress fields in the system. 

Then the effective properties are obtained by considering the volume average of 

stress. 

Fig. 2.6: Force-equilibrium approach to calculate the effective in-plane elastic 
modulus (a) RVE under in-plane force (b) total deflection of the inclined member due 

to (c) axial (d) shear and (e) bending deformations (Malek & Gibson 2015). 

Early studies on homogenisation mainly focused only on the out-of-plane 

properties of the hexagonal honeycomb core (Kelsey et al. 1958). Such approaches 

presented lower-bound solutions based on the statically admissible stress field and 

upper-bound solutions based on kinematically admissible displacement and strain 

fields. Gibson et al. (1982) used the force equilibrium approach and presented closed-

form solutions for in-plane effective properties of the hexagonal core considering only 

the bending deformation of the wall. Since then, further improved models were 

proposed, also considering additional deformation modes of honeycomb walls, e.g. 

bending, stretching, and hinging mechanism of the walls (Master & Evans 1996) and 

bending, stretching, and shear deformation of the cell walls (Gibson & Asby 1997).  

Models proposed also varied in terms of the details of the cell wall geometry 

considered in the analysis, especially the effect from the wall joints (Balawi & Abot 

2008, Malek & Gibson 2015).  In proposed models for in-plane and out-of-plane 

properties of hexagonal core developed by Malek & Gibson (2015), the effective length 

of the walls was reduced to consider the wall joint node effects (Fig. 2.7). However, 

this effect could be neglected for thin walls or low relative density honeycomb, where 

equations for in-plane properties reduce to Gibson & Asby (1997) model. Mukherjee 
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& Adhikari (2021) considered walls as Euler-Bernoulli beam elements to derive 

equations for in-plane effective properties of the hexagonal honeycomb core. While 

above presented models vary in terms of different assumptions made and the type of 

properties they considered, all those models only considered the effective properties 

of the hexagonal cores. In addition to the hexagonal cores, it is also common to have 

honeycomb cores with other geometric shapes such as triangular, rectangular etc. 

(Fig.2.1(d)) in the sandwich panels (Shah & Kapania 2020).  

Some efforts have also been made in developing theoretical models for 

predicting the effective properties of the honeycomb cores of different shapes (Hohe 

& Backer 2001a; Wang & McDowell 2004). Such models were derived either based 

on strain energy-based (Hohe & Backer 2001a), force-equilibrium based (Wang & 

McDowell 2004), or two-scale asymptotic expansion technique based (Xu et al. 2001) 

approaches. Often solutions were also limited to either in-plane (Wang & McDowell 

2004) or out-of-plane (Xu et al. 2001) properties. In addition, most of the studies also 

ignored the possible skin effects on the core in predicting the effective properties. 

Several advanced models (Becker 1998; Hohe & Becker 2001b; Xu & Qiao 2002; Li 

et al. 2016) considered the skin effect where displacement of the core adjacent to the 

face sheets was considered to be influenced by displacements of face sheets but the 

core displacements away from the face sheets were unconstrained.  It was found that 

skin effects are significant for honeycomb cores with lower depth but can be ignored 

for cores with higher wall length to core depth ratio.  

 

Fig. 2.7: Node region of hexagonal core considered by Malek & Gibson (2015). 𝑙1
𝑒 

and 𝑙2
𝑒 are effective bending lengths of walls of the core with uniform thickness (𝑡). 
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Apart from analytical approaches, several researchers used FE-based 

homogenisation to validate their analytical models or to get effective properties of the 

honeycomb cores. Grediac (1993) used FE to study the out-of-plane shear properties 

of the hexagonal core and proposed an empirical solution to take into account the skin 

effect in calculating the out-of-plane shear properties. Shell and solid elements were 

mainly used to model the RVE of the honeycomb cores. In some instances where 

through-thickness normal stress is significant, solid elements were used instead of 

shell elements (Catapano & Montemurro 2014; Malek & Gibson 2015). Nonetheless, 

most studies used shell elements (Grediac 1993; Burton & Noor 1997; Hohe & Becker 

2001; Penado 2013; Li et al. 2015) due to computational efficiency. The FE studies 

presented above focused mainly on honeycomb cores with isotropic materials cell 

walls.  

Only limited studies are available on the effective properties of multi-layered or 

laminated composite wall honeycomb cores. Wang & Wang (2019) have presented an 

analytical model for a hexagonal honeycomb core combining the CLT and Gibson et 

al. (1982) modelling approach. They have only considered the effect of walls with two 

plies having orthotropic material properties in the principal direction of the walls. 

However, they have not studied the effect of different fibre orientations and fibre layer 

sequences in their analysis.  Krishnamurthy & Saether (2019) studied the effective 

properties of multifunctional hexagonal cores having multi-layer isotropic materials for 

the wall. They calculated the effective membrane modulus of the multi-layered walls 

using CLT and then modified Gibson et al. (1982)   using effective membrane modulus 

of the wall to calculate the effective stiffness properties of the honeycomb cores. 

However, calculating the bending deformation of the multi-layered wall using 

membrane modulus may not give accurate results due to potential transverse shear 

deformations (Min et al. 2019). Because Wang & Wang (2019) and Krishnamurthy & 

Saether (2019) do not account for the stretching effect of the wall, the resulting formula 

for in-plane Poison’s ratios gave the value of 1 for the regular honeycomb core making 

the equivalent in-plane stiffness calculation for the plate or shell analysis impossible.  
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2.4  Failure predictions in sandwich panels 

Failures in sandwich panels can be global or local (Fig 2.8) (CMH-17 2013). 

Global failures are fracture (composite) or yielding (metal) of face sheets and global 

buckling. Local failure can occur due to either material failure or instability. Common 

local failures in the sandwich panel are shear buckling and compression buckling of 

the core, shear fracture and crushing of core walls, local indentation, faces sheets-

core debonding, wrinkling, and intra-cellular buckling (CMH-17 2013, Wei et al. 2020, 

2022). Sandwich panels are generally analysed using the equivalent shell or plate 

theory, which is not capable of predicting most of the local failures. Some research on 

the local stability failure of sandwich structures are discussed in this section. 

 

Fig. 2.8: Typical failure modes of sandwich panels (CMH-17 2013). Reproduced with 
permission from publisher. 

2.4.1 Global buckling and shear crimping 

Global buckling of the sandwich beam can be written as in Eq. (2.1) taking into 

account transverse shear in the core (Allen 1969): 

1

𝐹𝑐𝑟𝑔
 =

1

𝐹𝑐𝑟𝐸
 +

1

𝐹𝑠
 .                  (2.1) 
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where 𝐹𝑐𝑟𝑔
 , 𝐹𝑐𝑟𝐸

  and 𝐹𝑠
  are the global buckling load, Euler’s buckling load and the shear 

crimping load of the sandwich beam. The equation (2.2) holds only when the face 

sheets of the sandwich panel are thin, and the in-plane stiffness of the core is 

negligible. Shear crimping typically occurs in the sandwich panels where out-of-plane 

shear stiffness is very low, which leads to wavelength approaching zero. The shear 

crimping load for the unit width of a sandwich panel consisting of symmetric face 

sheets can be expressed as in Eq. (2.2) (Léotoing et al.  2002a): 

𝐹𝑠
 = 𝐺 

𝑐
(ℎ+𝑡𝑓

 )
2

ℎ
.                 (2.2) 

where 𝑡𝑓
  and ℎ  are the thickness of the face sheet and depth of the core respectively 

and 𝐺 
𝑐 is the transverse shear modulus of core respectively.  

2.4.2 Cell wall buckling 

Cell wall buckling occurs mainly due to shear or compression in the core walls. 

Shear buckling of the core wall could occur when the sandwich panel is subjected to 

bending (Wei et al. 2020). Compression buckling of the cell wall could occur due to 

flat-wise compression or excessive bending of the face sheets of the sandwich panels 

(Wei et al. 2020, 2022). Several analytical models have been developed to predict the 

out-of-plane compression and shear buckling strength of hexagonal honeycomb cores 

(Zhang & Ashby 1992, Shi & Tong 1994, Pan et al. 2008, Banerjee et al. 2010). In 

calculating the elastic compression buckling strength of the hexagonal honeycomb 

cores, it is assumed that all walls of a cell will undergo the same deformation, thus 

strength is taken as the sum of the buckling load carried by the individual walls (Zhang 

& Ashby 1992). However, for shear buckling, strength is taken as the strength of the 

first wall failing due to buckling (Zhang & Ashby 1992). This is reasonable as the first 

wall buckling results in loss of rotational stiffness provided to the adjacent faces, thus 

those walls are also likely to buckle without any further increase in load. In terms of 

considering the effects of adjacent faces on buckling of the cell walls, many existing 

studies assumed common edges are either clamped (Zhang & Ashby 1992) or pinned 

(Pan et al. 2008; Banerjee et al. 2010). Only a few models considered the rotational 

restrain provided by adjacent walls at the onset of buckling (Shi & Tong 1994). In terms 

of the loading conditions, some studies considered shear loads in two major directions 

as uncoupled (Zhang & Ashby 1992), while some considered coupled action of the 
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shear loads in two major directions (Shi & Tong 1994). Latter obviously is a more 

accurate assumption as shear buckling depends on the effective loading direction. All 

the existing studies discussed above in this section were limited to hexagonal 

honeycomb shapes with identical thickness walls or double-thickness vertical wall.  

López Jiménez &Triantafyllidis (2013) and Qiu et al. (2020) proposed analytical 

models to predict the out-of-plane compression and shear buckling of the honeycomb 

cores of different shapes. The method combines Bloch wave (Martín-Palma et al. 

2006) representation theorem for the eigenmode with the analytical solution of the 

linearised von Kármán plate equations to analyse the representative volume element 

(RVE). Different honeycomb core shapes, including the hexagonal and square cores, 

were analysed. However, neither model considered composite wall honeycomb cores. 

Recently, Pathirana (2020) presented an analytical approach to calculate the out-of-

plane compression buckling of composite honeycomb cores considering boundary 

conditions as rotationally restrained along the unloaded edges. Pathirana (2020) used 

the Ritz method and carried out linear buckling analysis considering the energy due to 

rotational springs at the edges.  

2.4.3 Wrinkling of the face sheets 

Compressive forces on the face sheets may generate short-wave buckling that 

occurs across multiple honeycomb core cells (Ley et al. 1999). This failure mode is 

called wrinkling of face sheets. Three types of wrinkling failure modes could be 

observed in sandwich panels: antisymmetric wrinkling, symmetric wrinkling, and one-

sided wrinkling (Fig. 2.9) (Ginot. et.al. 2021). Symmetric (Fig. 2.9(a)) and one-sided 

wrinkling (Fig. 2.9(b)) are predominant wrinkling modes in honeycomb sandwich 

structures because of the high out-of-plane to in-plane elastic modulus ratio of the 

core. However, the wrinkling load approach to the same value regardless of mode 

when the depth of the core is sufficiently high (Vonarch & Rammerstorfer 2000a; Ginot 

et al. 2021).  

Fig. 2.9: Different wrinkling modes of sandwich panel: (a) antisymmetric (b) 
symmetric and (c) one-sided. 

(a) (b) (c) 
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The simplest analytical model to predict the wrinkling load is Winkler’s elastic 

foundation model (Hemp 1948) where the core is considered as an array of 

continuously distributed linear springs. Only the out-of-plane elastic modulus is 

considered and out-of-plane shear stiffness for the core is assumed as zero. The 

Wrinkler foundation model (Hemp 1948) can be written as in Eq. 2.3: 

𝐹𝑐𝑟𝑤
𝑊𝑖𝑛𝑘𝑙𝑒𝑟 = √

2𝑡𝑓
3

3ℎ
 √𝐸 𝑓𝐸 𝑐
 

,                 (2.3) 

where 𝑡𝑓
  and ℎ  are the thickness of the face sheet and depth of the core respectively 

and 𝐸 
𝑓 and 𝐸 

𝑐 are the elastic modulus of the face sheet and core respectively.  

Noticing the wrinkling wave decay out over the length of the face core, Hoff & 

Maunters (1945) used a linear decay function to describe the damping out of the wave 

in the core together with the sinusoidal function to describe the displacement of the 

face sheet. They derived equations for wrinkling of the foundation of a thick core 

considering the strain energy due to out-of-plane normal and shear deformation of the 

core and the bending energy of the face sheets. This was further modified later by 

using an exponential decay function to describe the damping out of the wave in the 

core (Plantema 1966). Using Airy’s stress function (Sadd 2009) to characterise the 

stresses in the core, Allen (1969) and Niu & Talreja (1999) solved the governing 

differential equations of face sheets supported on thick core and thin core. The 

formulas (Hoff & Maunters 1945; Plantema 1966; Allen 1969) for the critical wrinkling 

load of a thick isotropic core can be generally expressed as in Eq. (2.4):  

𝐹𝑐𝑟𝑤
𝐼𝑠𝑜 = 𝐶𝑤𝑡𝑓 √𝐸 𝑓𝐸 𝑐𝐺 𝑐

3
,                 (2.4) 

where 𝐶𝑤 is constant and 𝐸 
𝑓 , 𝐸 

𝑐 and 𝐺 
𝑐 are the elastic modulus of the face sheet, 

elastic modulus and shear modulus of the core respectively. The value of constant 𝐶𝑤 

varies from 0.78 to 0.91 depending on the method of analytical derivation of the 

equations. The equations (2.3) and (2.4) were derived assuming an isotropic 

continuum core and uniaxial loading condition. Comparing different analytical 

solutions based on isotropic core assumption to the numerical solutions, Ginot et al. 

(2021) revealed that predictions for the critical wrinkling stress for honeycomb core by 

the analytical models developed based on isotropic continuum core are unreliable, 

having larger deviations compared to numerical results. However, Ginot et al. (2021) 
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did not study and evaluate the analytical models which are based on transversely 

isotropic or orthotropic core assumptions.  

Some researchers (Birman 2004) also considered the wrinkling of a sandwich 

having a composite face sheet and isotropic core. Vonach & Rammerstorfer (2000a, 

2000b) studied the wrinkling of sandwich panels of the general configuration under 

biaxial loading. In their study, they used the Airy stress function to characterise the 

stress of the transversely isotropic core. They found that it is important to consider the 

in-plane elastic modulus of the core in addition to the out-of-plane elastic and shear 

modulus in the transversely isotropic or orthotropic core. Vonach & Rammerstorfer 

(2000b) have demonstrated that the in-plane to out-of-plane elastic modulus ratio 

influences the wrinkling load of orthotropic core sandwich panels. The analytical 

solutions were expressed in implicit form because of the complexity of the problem 

they have considered. Recently, Pozorski et al. (2021) used a similar approach to 

Vonach & Rammerstorfer (2000a) and derived an analytical formula for the wrinkling 

stress of sandwich beams having a transversely isotropic core that can be expressed 

in a similar form to the Eq. (2.5): 

𝐹𝑐𝑟𝑤
𝑂𝑟𝑡ℎ𝑜 = 0.826𝑡𝑓 √𝐸1

𝑓
𝑎𝑐2

3

,                (2.5) 

where 𝐸1
𝑓
 effective elastic modulus of the face sheet in direction-1 and 𝑎𝑐

  is constant 

depends on the effective mechanical properties of the transversely isotropic core. In 

addition to analytical and semi-analytical models specific for the wrinkling, some 

researchers also proposed unified approaches for the global buckling and wrinkling of 

the sandwich panels in order to understand the possible interactions between the 

buckling modes. The unified approaches for the global buckling and wrinkling were 

developed based on HSAPT (Frostig & Baruch 1993) and EHSAPT (Hu et al. 2009; 

Yu et al. 2015; Yuan & Kardomateas 2018) and focused on the linear (Frostig & Baruch 

1993; Léotoing et al. 2002a) and nonlinear buckling (Léotoing et al. 2002b; Hu et al. 

2009; Yu et al. 2015; Yuan & Kardomateas 2018) analysis of sandwich panels under 

uniaxial compression. While most of the studies for the unified approaches used FE 

formulations to solve the buckling problems considering isotropic core and orthotropic 

core (Hu et al. 2009; Yu et al. 2015; Yuan & Kardomateas 2018), some used analytical 

and semi-analytical (Frostig & Baruch 1993; Léotoing et al. 2002a) approach 



33 
 

considering the isotropic core. It has been identified in the past that the wrinkling load 

of sandwich panels with the orthotropic core is influenced by the in-plane to out-of-

plane elastic modulus ratio of the core; therefore, the fibre orientations and layer 

sequence of core walls of the composite cellular core could affect wrinkling load of 

sandwich panels which may need to be investigated further to understand the 

influence on the wrinkling load. 

2.5 Intracellular buckling  

Intracellular buckling is also short-wave buckling, but unlike wrinkling, it occurs 

within an individual cell of the honeycomb core. Only very limited studies are available 

on the intracellular buckling of sandwich panels. The classical formula (Norris 1964) 

for intracellular buckling was first proposed based on an empirical approach and can 

be written as in Eq. (2.6): 

𝐹𝑐𝑟𝑑
𝐶𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 = 𝐶𝑑

𝐸 
𝑓𝑡𝑓

(1−(𝑣 𝑓)
2
) 
(
𝑡𝑓

𝐷
)
2

,                (2.6) 

where 𝐸 
𝑓 and 𝑣 

𝑓   are elastic modulus and Poisson’s ratio of the face sheet material 

respectively. 𝑡𝑓 is the thickness of the face sheet and 𝐶𝑑 is the empirical coefficient 

derived based on experimental data. 𝐶𝑑 has been estimated to be equal to 2 for the 

regular hexagonal cell. 𝐷  is equal to the diameter of the largest circle that can be 

inscribed within the honeycomb cell (Fig.2.10(a)). Equation (2.6) is commonly used in 

sandwich panel design for conservative prediction of the intracellular buckling load 

because of its simple form.  Eq. (2.6) was defined for the isotropic face sheet, and it 

was found that Eq. (2.6) is not sufficient for reasonable prediction for a strongly 

orthotropic face sheet (Blass 1984). Later, an improved analytical formula was 

proposed by Fokker Aircraft (Blass 1984) considering the orthotropic face sheet 

(Fig.2.9(a)) and it is given by Eq. (2.7): 

𝐹𝑐𝑟𝑑
𝐹𝑜𝑘𝑘𝑒𝑟 = (

𝜋

𝐷
)
2

[𝐷̅11
𝑓
+ 2(𝐷̅12

𝑓
+ 2𝐷̅66

𝑓
) + 𝐷̅22

𝑓
],                      (2.7) 

where 𝐷̅𝑖𝑗
𝑓
 is the component of the bending stiffness matrix of the composite face sheet 

and 𝐷  is equal to the diameter of the largest circle that can be inscribed within the 

honeycomb cell (Fig.2.9(a)). The Eq. (2.7) is simply an equation for predicting the 

critical buckling load of a simply supported (SS) orthotropic square plate with side 

length of D. Thomsen & Banks (2004) investigated intracellular buckling of the regular 
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hexagonal cell using experimental and analytical approaches. In their analytical model, 

they assumed the boundary conditions as clamped for horizontal (or vertical) sides 

and simply supported (SS) for inclined sides (Fig.2.10(b)). The analytical equation can 

be expressed as: 

𝐹𝑐𝑟𝑑
𝑇ℎ = (

𝜋

𝑞2
)
2

[𝐷̅11
𝑓
(
𝑞

𝑝 
)
2

+
8

3
(𝐷̅12

𝑓
+ 2𝐷̅66

𝑓
) +

16

3
𝐷̅22
𝑓
(
𝑝

𝑞 
)
2

.             (2.8) 

where 𝐷̅𝑖𝑗
𝑓
 is component of bending stiffness matrix of the composite faces sheet and 

𝑝 and q are the dimensions of the approximate rectangle geometry (Fig.2.8(b)) 

considered by Thomsen & Banks (2004). Comparison between the experimental and 

analytical results from Thomsen & Banks (2004) showed a good agreement; however, 

only limited experimental data were compared. 

Fig. 2.10: Boundary conditions and geometry considered in (a) Fokker (b) Thomsen 
& Banks (2003) intracellular buckling models.  
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Analytical models for intracellular buckling were developed based on the 

assumed boundary conditions and approximated geometry to provide a simplified 

solution. There are multiple factors, which could influence intracellular buckling such 

as loading condition and direction, the geometry of the core, core material parameters 

etc.  

2.6 Design methodology for sandwich panels 

The design of sandwich panels involves consideration of various geometric and 

material parameters of face sheets and core. While trial and error methods can be 

used to select the material and geometry and to provide the target performance of the 

sandwich panel, such methodologies cannot consider a wide range of geometric and 

material options available to the designers. Most often the inverse design approach 

(Loonen et al. 2022) is used for systematic and intelligent selections of the design 

parameters. 

 Amongst the simplest techniques used for the inverse design of sandwich 

structures are the direct inverse of analytical solutions (Gibson 1984; Murthy et al. 

2006) referred to as the backward method (Loonen et al. 2022) of inverse design. 

However, the applicability of this method is limited to simple problems with a minimal 

number of variables and often with a single objective function.  

Sandwich panels with multiple design variables are designed using failure maps 

or systematic search algorithms such as evolutionary algorithms. This is referred to as 

the forward method (Loonen et al. 2022) of inverse design in the literature. Failure 

maps (Petras & Sutcliffe 2000; Russel et al. 2011; Wei et al. 2020, 2022) are used for 

identifying the failure modes of the design and optimising the design parameters for 

optimal load-weight ratio considering the simultaneous failures of components. The 

optimal load weight ratio is obtained in the vicinity of the simultaneous failure regions 

of the map. Using the failure map for the inverse design provides a certain level of 

flexibility in terms of the number of variables, which can be rationally optimised for the 

design. However, a more general way to consider a larger number of variables with 

multiple objectives is to use efficient search algorithms. A number of different 

algorithms have been used for the inverse design including genetic algorithm 

(Gantovnik et al. 2002; Tan & Soh 2007; Catapano & Montemurro 2014b; 

Abouhamzeh & Sadighi 2016; Coburn & Weaver 2016; Xu et al. 2017), particle swarm 
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algorithm (Hudson et al. 2009), ant colony algorithm (Aymerich & Serra 2008; Hudson 

et al. 2010), simulated annealing algorithm (Di Sciuva et al. 2002; Hudson et al. 2010) 

etc. These algorithms are typically used together with FE (Catapano & Montemurro 

2014b; Abouhamzeh & Sadighi 2016) or analytical equations (Gantovnik et al. 2002; 

Tan & Soh 2007; Hudson et al. 2010; Coburn & Weaver 2016) for structural analysis 

using the equivalent model. Genetic algorithms have been used extensively for the 

optimisation of sandwich structures among several other algorithms (Wang & Sobey 

2020). However, the reasons for the selection of the particular algorithm are not very 

clear in the existing literature. Only a few studies have investigated and compared the 

performance of different algorithms for the optimisation of sandwich structures and are 

typically limited to simple problems with a limited number of variables and one or two 

objective functions (Di Sciuva et al. 2002; Aymerich & Serra 2008; Hudson et al. 2011). 

According to their studies, the genetic algorithm is identified as less efficient compared 

to other algorithms such as particle swarm, simulated annealing and ant colony 

algorithms. Nonetheless, the genetic algorithm remains one of the most commonly 

used optimisation algorithms for sandwich structures to date. 

It is clear that regardless of search algorithms, for efficient and systematic 

inverse design, it is important to have a simplified equivalent model, which takes into 

account the geometric and material configuration of the core and face sheets on the 

overall stiffness of the sandwich panels and accurate analytical equations for local 

failure predictions. 

2.7 Summary and research gaps 

With the advancement in manufacturing and material technologies, many 

options are available for materials and geometry of the cores and factsheets of 

sandwich panels. Since a large number of variables are involved in the design of 

honeycomb core sandwich panels, the selection of the optimal or near-optimal 

parameters for the geometry and material for the face sheets and core to provide the 

target performance needs a robust, systematic and efficient inverse design approach. 

The inverse design approach for the sandwich panels uses techniques such as failure 

mode maps and search algorithms together with analytical and semi-analytical models 

for the stiffness and strength predictions for the analysis. Regardless of the selection 

techniques used for the inverse design, the basis for the inverse design approach 
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relies on the homogenisation models used to predict the effective stiffness matrix of 

the honeycomb core and the models used to predict the failures in the sandwich 

panels. Considering the trade-off between the computational efficiency and accuracy 

of inverse design solutions, the honeycomb core sandwich panels are analysed as 

equivalent continuum shell/beam models based on the homogenised core properties. 

However, the equivalent shell/beam models based homogenised core for the 

sandwich panels cannot capture the local buckling failures in the honeycomb core and 

face sheets; therefore, analytical and semi-analytical models are used to predict the 

local buckling failures in the inverse design of sandwich panels. 

In past studies, the primary focus has been on proposing suitable algorithms 

for the inverse design. Efficiency and the applicability of the inverse design approach 

depend not only on the search algorithms used for material and geometry selections 

but also on the analytical or semi-analytical methods used for predicting stiffness and 

failure modes. While having an efficient algorithm is crucial for handling the numerous 

geometric and material variables associated with sandwich panel design efficiently, 

achieving wider applicability of the inverse design approach for all-composite 

honeycomb core sandwich panels necessitates efficient and robust analytical or semi-

analytical models to estimate stiffness considering parameters such as stacking 

sequences and fibre orientations, as well as failure models to predict local buckling 

failures considering various geometric, materials, and loading conditions. 

While predictions of the effective stiffness matrix of the honeycomb core using 

existing approaches provide reasonably good results, those are either limited to the 

certain shapes of the core or limited to isotropic cell walls. A general solution for 

equivalent stiffness prediction applicable for many different core shapes considering 

the different fibre orientations and stacking sequence is necessary to facilitate the 

inverse designs for the all-composite honeycomb core sandwich panels. Similarly, 

models for predicting local buckling failures in honeycomb cores and face sheets are 

limited by certain honeycomb core shapes, specific loading conditions, material 

configurations etc. Therefore, for broader and more efficient applicability of inverse 

design for all-composite sandwich panels under various conditions, it is essential to 

develop robust analytical or semi-analytical models that can accommodate 

considerations of different materials, geometries, and loadings when calculating 

stiffness and local buckling failures. 
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Chapter 3: 
 
Effective stiffness matrix of laminated 
composite wall honeycomb core 

3.1 General 

Equivalent models where honeycomb cellular cores are considered as an 

effective homogeneous continuum are often used in the design and analysis of the 

honeycomb core sandwich panels. Most of the existing studies on the homogenisation 

of honeycomb cores focused on isotropic walls of the honeycomb core, which cannot 

be directly used to analyse honeycomb cores made using composite laminates. 

Recently, researchers (Russell et al. 2008,2011; Feng et al. 2018; Pehlivan & 

Baykasoğlu 2019; Chen et al. 2021; Wei et al. 2019, 2020, 2022) have considered the 

potential of laminated composite honeycomb cores for different lightweight sandwich 

structure applications. Composite honeycomb cellular core sandwich panels introduce 

several additional parameters, such as fibre orientations and layer sequence, 

compared to isotropic honeycomb cores, which need to be considered in calculating 

the effective stiffness properties of the core. While some models exist to calculate the 

equivalent properties of homogenised composite cores, they are limited to hexagonal 

honeycomb cores and cannot be applied in general to honeycomb cores with other 

shapes. This chapter aims to develop a generalised homogenisation model to 

determine the effective mechanical properties of the laminated composite wall 

honeycomb core with different shapes and to investigate the influence of fibre 

orientations, layer sequence, and geometry on the effective properties of the 

honeycomb core. 

3.2 Strain-energy based homogenisation. 

Amongst the most used approaches for obtaining the equivalent properties of 

the homogenized cores, strain energy-based approach was found to be the most 

applicable when more generally applicable models to be developed, thus selected in 

this study to develop the proposed solution for the laminated composite honeycomb 

core. This section describes the basic theory of strain energy-based homogenisation. 
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A periodic honeycomb core structure (Fig. 3.1) with a domain Ω and an external 

boundary 𝛤 is replaced with a homogenous effective continuum body ΩH with the same 

shape and an external boundary 𝛤𝐻.  

 

Fig. 3.1: A periodic honeycomb structure: (a) actual configuration (b) homogenous 
effective continuum body and RVE of (c) actual configuration and (d) effective 

continuum body. 

In the strain energy-based homogenisation adopted in this study, both bodies are 

considered equivalent in terms of mechanical behaviour at the macroscopic level if the 

strain energy of the representative volume elements (RVEs) of both the bodies are 

equal under the same external loading and boundary conditions. The strain energy of 

both RVEs has to be equal if the volume average strains of both RVEs are equal 

(Bishop, & Hill 1951): 

𝜀𝑖𝑗
 =

1

𝑉𝑅𝑉𝐸
∫ 𝜀𝑖𝑗

∗  𝑑𝑉
 

𝑉
= 

1

𝑉𝑅𝑉𝐸
∫ 𝜀𝑖𝑗

𝐻∗ 𝑑𝑉𝐻
 

𝑉
= 𝜀𝑖𝑗

𝐻.               (3.1) 

If the condition in Eq. (3.1) holds then equivalent strain energy between the RVEs of 

the honeycomb structure and the homogenised continuum can be written as in Eq. 

(3.2) with a linear constitutive relation for the material:  

𝑤(𝜀𝑖𝑗
 ) =

1

𝑉𝑅𝑉𝐸
∫ 𝑤(𝜀𝑖𝑗

∗ )𝑑𝑉
 

𝑉
= 

1

𝑉𝑅𝑉𝐸
∫ 𝑤𝐻(𝜀𝑖𝑗

𝐻∗) 𝑑𝑉𝐻
 

𝑉
= 𝑤𝐻(𝜀𝑖𝑗

𝐻),            (3.2) 
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Ω𝐻 
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where   𝑤(𝜀𝑖𝑗) and 𝑤𝐻(𝜀𝑖𝑗
𝐻) are strain energy density of the RVEs of Ω and Ω𝐻 

respectively, 𝑉𝑅𝑉𝐸 is the volume of the RVEs, 𝜀𝑖𝑗  and 𝜀𝑖𝑗
𝐻 are strain tensor components 

of RVEs of the honeycomb core structure and the effective homogenous continuum 

medium respectively. Here, Latin indices, {i, j, k, …}, refer to the 1, 2 or 3 directions. 

 If the effective continuum body is assumed to be linear elastic, then the relationship 

between the stress and strain components can be expressed as: 

𝜎𝑖𝑗
𝐻 = 𝐶𝑖𝑗𝑘𝑙

𝐻 𝜀𝑘𝑙
𝐻 .                   (3.3) 

The stiffness components 𝐶𝑖𝑗𝑘𝑙
𝐻  of effective elasticity tensor for three-dimensional (3D) 

analysis can be expressed as in Eq. (3.4):  

𝐶𝑖𝑗𝑘𝑙
𝐻 =

𝜕2𝑤𝐻

𝜕𝜀𝑖𝑗
𝐻𝜀𝑘𝑙

𝐻 .                   (3.4) 

Equation. (3.4) yields 21 independent components (𝐶𝑖𝑗𝑘𝑙
𝐻 ) of effective elasticity tensor.  

Assuming the equivalent cellular core at the continuum level behaves as an orthotropic 

core, nine non-zero components are required to define the effective elastic stiffness 

tensor. Considering Eq. (3.2) - (3.4), the 9 non-zero components of 𝐶𝑖𝑗𝑘𝑙
𝐻  can be 

expressed using Eqs. (3.5) - (3.7): 

𝐶𝑖𝑗𝑘𝑙
𝐻 = 2𝑤(𝜀(𝑖𝑗))

1

𝜀(𝑖𝑗)
2   𝑖𝑓: 𝑖 = 𝑗, 𝑘 = 𝑙 𝑎𝑛𝑑 𝑖 = 𝑘,                (3.5) 

𝐶𝑖𝑗𝑘𝑙
𝐻 =

1

2
𝑤(𝜀(𝑖𝑗))

1

𝜀(𝑖𝑗)
2  𝑖𝑓: 𝑖 ≠ 𝑗, 𝑘 ≠ 𝑙, 𝑖 = 𝑘 𝑎𝑛𝑑 𝑗 = 𝑙,             (3.6) 

𝐶𝑖𝑗𝑘𝑙
𝐻 = (𝑤(𝜀(𝑖𝑗),𝜀(𝑘𝑙)) − 𝑤(𝜀(𝑖𝑗)) − 𝑤(𝜀(𝑘𝑙)))

1

𝜀(𝑖𝑗)𝜀(𝑘𝑙)
  𝑖𝑓: 𝑖 = 𝑗, 𝑘 = 𝑙 𝑎𝑛𝑑 𝑖 ≠ 𝑘.          (3.7) 

In Voigt’s matrix notation, the effective elastic stiffness for an equivalent orthotropic 

continuum core can be written as:   

𝑪𝐻 =

[
 
 
 
 
 
 
𝐶1111
𝐻 𝐶1122

𝐻 𝐶1133
𝐻 0 0 0

𝐶1122
𝐻 𝐶2222

𝐻 𝐶2233
𝐻 0 0 0

𝐶1133
𝐻 𝐶2233

𝐻 𝐶3333
𝐻 0 0 0

0 0 0 𝐶1212
𝐻 0 0

0 0 0 0 𝐶1313
𝐻 0

0 0 0 𝑜 0 𝐶2323
𝐻 ]

 
 
 
 
 
 

.             (3.8) 

By assuming the equivalent continuum core as a shell, effective stiffness components 

for the equivalent shell of the cellular core can be derived by reducing the effective 
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elasticity matrix in Eq. (3.8) assuming a plane-stress condition, i.e., normal stresses in 

direction-3 (i.e. through core thickness/outer plane direction, Fig. 3.1) are zero. Plane 

stress effective stiffness matrix 𝑸𝑝
𝐻 and transverse shear effective stiffness matrix 

𝑸𝑠
𝐻  can then be written as:  

𝑸𝑝
𝐻 = [

𝑄11
𝐻 𝑄12

𝐻 0

𝑄12
𝐻 𝑄22

𝐻 0

0 0 𝑄66
𝐻

] =

[
 
 
 
 𝐶1111

𝐻 −
𝐶1133
𝐻 ∗𝐶1133

𝐻

𝐶3333
𝐻 𝐶1122

𝐻 −
𝐶1133
𝐻 ∗𝐶2233

𝐻

𝐶3333
𝐻 0

𝐶1122
𝐻 −

𝐶1133
𝐻 ∗𝐶2233

𝐻

𝐶3333
𝐻 𝐶2222

𝐻 −
𝐶2233
𝐻 ∗𝐶2233

𝐻

𝐶3333
𝐻 0

0 0 𝐶1212
𝐻 ]

 
 
 
 

          (3.9) 

𝑸𝑠
𝐻 = [

𝑄44
𝐻 0

0 𝑄55
𝐻 ] = [

𝐶1313
𝐻 0

0 𝐶2323
𝐻 ].             (3.10) 

Effective engineering constants of the core can be calculated from the compliance 

matrix, which can be found from the inverse of the effective elasticity matrix:  

(𝑪𝐻)−1 =

[
 
 
 
 
 
 
 
 
 
 

1

𝐸1
𝐻 −

𝑣21
𝐻

𝐸2
𝐻 −

𝑣31
𝐻

𝐸2
𝐻 0 0 0

−
𝑣12
𝐻

𝐸1
𝐻

1

𝐸2
𝐻 −

𝑣32
𝐻

𝐸3
𝐻 0 0 0

−
𝑣13
𝐻

𝐸1
𝐻 −

𝑣23
𝐻

𝐸2
𝐻

1

𝐸3
𝐻 0 0 0

0 0 0
1

𝐺12
𝐻 0 0

0 0 0 0
1

𝐺13
𝐻 0

0 0 0 0 0
1

𝐺23
𝐻 ]
 
 
 
 
 
 
 
 
 
 

,            (3.11) 

where 𝐸1
𝐻 , 𝐸2

𝐻   and 𝐸3
𝐻 are elastic moduli in 1, 2 and 3 directions, respectively. 𝐺12

𝐻  is 

the in-plane shear modulus, and 𝐺13
𝐻  and 𝐺23

𝐻  are out-of-plane shear moduli. 𝑣12
𝐻  and 

𝑣21
𝐻  are in-plane Poisson’s ratios, and 𝑣13

𝐻 , 𝑣31
𝐻 , 𝑣23

𝐻  and 𝑣32
𝐻  are out-of-plane Poisson’s 

ratios.  

3.2.1 Strain energy density of the honeycomb core RVE 

  Section 3.2 described the concept of strain energy-based approach for the 

homogenisation. In the past, researchers used strain energy-based approach to derive 

analytical homogenisation models specifically for the hexagonal core (Becker 1998; 

Xu and Qiao 2002; Li et al. 2016) and for honeycomb core with different shapes with 

isotropic walls (Hohe & Backer 2001). However, the strain energy-based 

homogenisation model has not been extended for the laminated composite 

honeycomb core with different shapes. Therefore, in this chapter, the objective is to 
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develop a homogenisation model for the laminated composite honeycomb core with 

different shapes which considers the additional laminate parameters such as lay-up 

sequence, fibre orientations etc. In order to do that we incorporate the laminate theory 

to consider the thick and thin laminate walls of the honeycomb core and the strain 

energy density function is derived for the RVEs considering the plane stress condition 

for the laminated composite walls of the honeycomb core.  A simplified methodology 

is also proposed to take into account of the unsymmetric laminate in the strain energy 

density function by defining approximate neutral axis for the laminate. This section 

presents the derivation of strain energy density for a RVE of the honeycomb core. In 

determining the strain energy for the RVE, it is necessary to use the stress-strain 

relationship of the composite honeycomb cell walls. Therefore, the stress-strain 

relationship based on classical laminate theory (CLT) is first presented briefly for 

completeness. 

  

Fig. 3.2: (a) RVE of periodic honeycomb core fabricated out of (b) laminated 
composite walls consisting of (c) fibre layers at different orientations. The positive 
angle 𝜙 of the fibre orientation is measured counterclockwise with respect to the 

positive direction-1̄  . 
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  The combined stiffness matrix (𝑨𝑩𝑫̅̅ ̅̅ ̅̅ ̅) and compliance matrix (𝑨𝑩𝑫̅̅ ̅̅ ̅̅ ̅−1) of the 

laminated composite plate with respect to the arbitrarily chosen reference plane (in the 

current study, the reference plane is taken as the mid-plane of the section Fig. 3.2(b)) 

are respectively given by the following expressions: 

 𝑨𝑩𝑫̅̅ ̅̅ ̅̅ ̅ =

[
 
 
 
 
 
 
𝐴̅11 𝐴̅13 𝐴̅16 𝐵̅11 𝐵̅13 𝐵̅16 

𝐴̅13 𝐴̅33 𝐴̅36 𝐵̅13 𝐵̅33 𝐵̅36
𝐴̅16  𝐴̅36 𝐴̅66  𝐵̅16  𝐵̅36  𝐵̅66 

𝐵̅11 𝐵̅13 𝐵̅16 𝐷̅11 𝐷̅13 𝐷̅16
𝐵̅13 𝐵̅33 𝐵̅36 𝐷̅13 𝐷̅33 𝐷̅36
𝐵̅16 𝐵̅36 𝐵̅66 𝐷̅16 𝐷̅36 𝐷̅66 ]

 
 
 
 
 
 
 

            (3.12)

   

   

𝑨𝑩𝑫̅̅ ̅̅ ̅̅ ̅−1 =

[
 
 
 
 
 
 
𝑎̅11 𝑎̅13 𝑎̅16 𝑏̅11 𝑏̅13 𝑏̅16 

𝑎̅13 𝑎̅33 𝑎̅36 𝑏̅31 𝑏̅33 𝑏̅36
𝑎̅16  𝑎̅36 𝑎̅66  𝑏̅61  𝑏̅63  𝑏̅66 

𝑏̅11 𝑏̅31 𝑏̅61 𝑑̅11 𝑑̅13 𝑑̅16
𝑏̅13 𝑏̅33 𝑏̅63 𝑑̅13 𝑑̅33 𝑑̅36
𝑏̅16 𝑏̅36 𝑏̅66 𝑑̅16 𝑑̅36 𝑑̅66 ]

 
 
 
 
 
 
 

.            (3.13) 

 

If only a normal force 𝐹̅11 and a moment 𝑀̅11 (per unit length) are acting on the plate, 

axial strain (𝜀1̅1) and curvature (𝑘̅11) of the plate with respect to the plane 1̅ − 3̅  can 

be written as: 

 

𝜀1̅1 = 𝑎̅11
′ 𝐹̅11 + 𝑏̅11

′ 𝑀̅11,               (3.14) 

𝑘̅11 = 𝑏̅11
′ 𝐹̅11 + 𝑑̅11

′ 𝑀̅11.                         (3.15) 

 

The components 𝑎̅11
′ , 𝑏̅11

′  and  𝑑̅11
′  are the elements of compliance matrix calculated 

with respect to the plane 1̅ − 3̅.  To find a simple solution, in the current study, the 

plane 1̅ − 3̅ is assumed to be the neutral plane for bending of the plate. In doing so, 

the plate is assumed to be only subjected to bending about a single axis only (under 

cylindrical bending), and bend-twist coupling is ignored. This assumption of the neutral 

plane also means the coupling terms between axial, and bending can be made equal 

to zero, i.e.  𝑏11
′  should be equal to zero. Using the above condition, the following 

equation can be written for  𝑏11
′ :  
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𝑏̅11
′ = 𝑏̅11 + 𝑑𝑑̅11 = 0,               (3.16) 

 

where d is the distance between the plane 1̅ − 3̅  and the reference plane (Fig. 3b). 

As 𝑏11
′ = 0, 𝑑 can be obtained from Eq. (3.16) as: 

 

𝑑 = −
𝑏̅11

𝑑̅11
.                   (3.17) 

 

At the neutral plane, Eq. (3.14) and Eq. (3.15) can be written as: 

 

𝜀1̅1 = 𝑎̅11
′ 𝐹̅11                 (3.18) 

𝑘̅11 = 𝑑̅11
′ 𝑀̅11.                (3.19) 

 

Now the stiffness matrix components of the plate with respect to plane 1̅ − 3̅ can be 

written as (Kollár & Springer, 2003): 

 

𝐴̅𝑖𝑗
′ = 𝐴̅𝑖𝑗                 (3.20) 

𝐵̅𝑖𝑗
′ = 𝐵̅𝑖𝑗 − 𝑑𝐴̅𝑖𝑗 = 0                 (3.21) 

𝐷̅𝑖𝑗
′ = 𝐷̅𝑖𝑗 − 2𝑑𝐵̅𝑖𝑗 + 𝑑

2𝐴̅𝑖𝑗.               (3.22) 

 

  The strain energy of the RVE is calculated as the sum of the strain energy of 

each cell wall of the RVE under applied loading and boundary conditions. A periodic 

hexagonal honeycomb core shown in Fig. 3.3 is used to demonstrate this process. 

Use of the proposed approach to other honeycomb cores with different shapes is given 

at the end of this section. 

 

Fig. 3.3: The decomposition of the RVE into cell wall elements.  
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Fig. 3.4: Nodal displacements of the cell wall in (a) global (b) local coordinates. 

 

  The strain energy of each cell wall (Fig. 3.3) is calculated under plane stress 

conditions by solving for the nodal displacements and nodal forces based on a 

displacement field for the deformation of the walls. Each node of the composite cell 

wall element consists of four degrees of freedom, i.e. translational degrees of freedom 

in 1, 2, and 3 directions (or 1̄, 2̄ and 3̄ directions) and rotation about axis 3 (or 3̄ ) (Fig. 

3.4). In Fig. 3.4,  𝑢̅(𝑖)1, 𝑢̅(𝑖)2 and 𝑢̅(𝑖)3  refer to the nodal displacements of the composite 

cell wall in the local 1̅, 2̅ and 3̅ directions respectively and 𝜑̅(𝑖) refers to rotation at ith 

node about  3̅ direction.  Global displacements and local displacements are related 

using the transformation matrix 𝑻 as: 

 

𝒖̄ = 𝑻𝒖,                  (3.23) 

 

where; 

 

𝒖 = {𝑢(𝑖 )1, 𝑢(𝑖 )2, 𝑢(𝑖 )3, 𝜑(𝑖), 𝑢(𝑗 )1, 𝑢(𝑗)2, 𝑢(𝑗 )3, 𝜑(𝑗)}
𝑇
,             (3.24) 

𝒖̄ = {𝑢̅(𝑖)1, 𝑢̅(𝑖)2, 𝑢̅(𝑖)3, 𝜑̅(𝑖), 𝑢̅(𝑗)1, 𝑢̅(𝑗)2, 𝑢̅(𝑗)3, 𝜑̅(𝑗)}
𝑇
,                      (3.25) 

 

and 

 

(a) (b) 

 

 

j 

i 

2̅ 

𝑡𝑖 

𝜑0 

𝜑(𝑖) 

𝑢(𝑖)1 

𝑢(𝑖)2 

𝑢(𝑗 )1 

𝑢(𝑗 )2 

𝜑(𝑗) 

𝜑̅(𝑖) 

𝜑̅(𝑗) 

𝑢̅(𝑖)1̅ 
𝑢̅(𝑖)2̅ 

𝑢̅(𝑗)1̅ 𝑢̅(𝑗)2̅ 

3 
1 

2 

𝑙𝑖 

𝑢(𝑖)3 
𝑢̅(𝑖)3̅ 

1̅ 

𝑢̅(𝑗)3̅ 𝑢(𝑗)3 
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𝑻 =

[
 
 
 
 
 
 
 
cos (𝜑0) −sin (𝜑0) 0 0 0 0 0 0 

sin (𝜑0) cos(𝜑0) 0 0 0 0 0 0
0 0 1 0 0 0 0 0 
 0 0 0 1 0 0  0 0
0 0 0 0 cos (𝜑0) − sin(𝜑0) 0  0
0 0 0 0 sin (𝜑0) cos (𝜑0) 0 0
0 0 0 0 0 0 1  0
 0 0  0 0  0 0 0 1]

 
 
 
 
 
 
 

 .        (3.26) 

 

  The displacement field of each wall is assumed to consist of three components: 

(a) normal deformation due to axial force in the 1̄ − 3̄ plane (Eqs. (3.27) to (3.29)), (b) 

normal deformation due to bending and transverse shear in the 1̄ − 2̄ plane (Eqs. 

(3.30) to (3.32)), and (c) normal deformation due to shear in the 1̄ − 3̄  plane (Eqns. 

(3.38) to (3.40)). 

  In the case (a), homogeneously distributed normal deformations  𝑢̄1
𝑎, 𝑢̄2

𝑎 and 𝑢̄3
𝑎 

are due to the axial force in the 1̄ − 3̄ plane. For a wall component given in Fig. 3.4, 

homogeneously distributed normal deformations in 1̄, 2̄,  and 3̄ directions due to an 

axial force in the 1̄ − 3̄ plane can be written as:  

 

𝑢̄1
𝑎 = 𝑢̄(𝑖)1 +

𝑢̄(𝑗)1−𝑢̄(𝑖)1

𝑙𝑖
𝑥̄1               (3.27) 

𝑢̄2
𝑎 = 0                  (3.28) 

𝑢̅3
𝑎 = 𝜀3̅3𝑥̄3.                 (3.29) 

 

Normal deformation in the direction-2̄ (Eq. (3.28)) is assumed to be negligible. 

However, this assumption does not have any effect on the strain energy of the RVE, 

as the plane stress assumption is used in calculating the strain energy of each wall. 

 

  In case (b), normal deformations  𝑢̄1
𝑏, 𝑢̄2

𝑏 and 𝑢̄3
𝑏  are considered due to bending 

about direction-3̄ and transverse shear in 1̄ − 2̄ plane. For a wall component given in 

Fig. 3.4, homogeneously distributed normal deformations in 1̄, 2̄,  and 3̄ directions due 

to bending and transverse shear in  1̄ − 2̄ plane can be written as:  

𝑢̄1
𝑏 = −

𝑑11
′ 

ℎ
((

1

2
𝐶1𝑥̄1

2 + 𝐶2𝑥̄1 + 𝐶3) +
𝛽𝑠𝑙𝑖

2

12
𝐶1) 𝑥̄2            (3.30) 

𝑢̄2
𝑏 =

𝑑11
′ 

ℎ
(
1

6
𝐶1𝑥̄1

3 +
1

2
𝐶2𝑥̄1

2 + 𝐶3𝑥̄1 + 𝐶4)             (3.31) 
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𝑢̄3
𝑏 = 0,                 (3.32) 

 

where 𝐶1, 𝐶2, 𝐶3 and 𝐶4 are obtained by applying nodal displacement values at node i 

and j: 

 

𝐶1 =
6ℎ

𝑑11
′ 𝑙𝑖

2(1+𝛽𝑠 
 )
(−2

𝑢̄(𝑗)2−𝑢̄(𝑖)2

𝑙
+ 𝛥𝜑̄(𝑖) + 𝛥𝜑̄(𝑗))            (3.33) 

𝐶2 =
ℎ

𝑑11
′ 𝑙𝑖(1+𝛽𝑠 

 )
(6

𝑢̄(𝑗)2−𝑢̄(𝑖)2

𝑙
− (4 + 𝛽𝑠 

 )𝛥𝜑̄(𝑖) − (2 − 𝛽𝑠)𝛥𝜑̄(𝑗))          (3.34) 

𝐶3 =
ℎ

𝑑11
′ (1+𝛽𝑠 

 )
(𝛽𝑠 

 𝑢̄(𝑗)2−𝑢̄(𝑖)2

𝑙
+
(2+𝛽𝑠 

 )

2
𝛥𝜑̄(𝑖) −

𝛽𝑠

2
𝛥𝜑̄(𝑗))            (3.35) 

𝐶4 =
ℎ

𝑑11
′ 𝑢̄(𝑖)2 .                (3.36) 

𝛽𝑠 =
12

𝑑11
′ 𝑆̅𝑒𝑞𝑙𝑖

2                  (3.37) 

 

The displacement functions in Eqs. (3.30) - (3.31) are derived assuming the composite 

honeycomb wall behaves as a Timoshenko beam. 𝑆𝑒̅𝑞 is the equivalent transverse 

shear stiffness (Vlachoutsis, 1992) of laminated composite walls (See Appendix A.1 

for the calculation of 𝑆𝑒̅𝑞 of composite plate).  

 

  In case (c), normal deformations 𝑢̄1
𝑠, 𝑢̄2

𝑠 and 𝑢̄3
𝑠 are due to shear deformation in 

the 1̄ − 3̄  plane. For a wall component given in Fig. 3.4, homogeneously distributed 

normal deformations in 1̄, 2̄,  and 3̄ directions due to shear deformations in  1̄ − 3̄ plane 

can be written as:  

 

𝑢̄1
𝑠 = 0                  (3.38) 

𝑢̄2
𝑠 = 0                  (3.39) 

𝑢̄3
𝑠 = 𝑢̅(𝑖)3 +

𝑢(𝑗)3−𝑢(𝑖)3

𝑙𝑖
𝑥̄1.               (3.40) 

 

The coordinates 𝑥̄1, 𝑥̄2 and 𝑥̄3 (Eqs. (3.27) to (3.40)) are considered in 1̄, 2̄  and 3̄ 

directions, respectively. The addition of the displacement components in each 

direction will give the effective displacements of the cell wall in each direction. 
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  Assuming plane stress condition for the homogenised shell, 𝜎̄22 = 0, stress-

strain relationship of any ply in the laminated composite wall can be written as: 

 

{
𝜎̄11
𝜎̄33
𝜏̄13

} = [

𝑄̄11 𝑄̄13 𝑄̄16
𝑄̄13 𝑄̄33 𝑄̄36
𝑄̄16 𝑄̄36 𝑄̄66

] {
𝜀1̄1
𝜀3̄3
𝛾̄13

} ,              (3.41) 

{
𝜏̄12
𝜏̄32
} = [

𝑄̄44 0

0 𝑄̄55
] {
𝛾̄12
𝛾̄32
},                (3.42) 

 

where 𝑄̄𝑖𝑗 are the components of the stiffness matrix of the ply of the laminated 

composite wall in 1̄ − 3̄ coordinate system.  𝜀1̄1 and 𝜀3̄3 are in-plane normal strains in 

direction-1̄ and direction-3̄ respectively, 𝛾̄13 is in-plane shear strain and 𝛾̄13 and 𝛾̄32 are 

transverse shear strains. 

 

Strain components in Eq. (3.41) can be written as considering strain of reference plane 

and curvature:  

 

𝜀1̄1 = 𝜀0̄,11 + 𝑥̄2𝑘̅11,                (3.42) 

𝜀3̄3 = 𝜀0̄,33 + 𝑥̄2𝑘̅33,                 (3.43) 

𝛾̄13 = 𝛾̄0,13 + 𝑥̄2𝑘̅13,                (3.44) 

 

 where 𝜀0̄,11, 𝜀0̄,33  and 𝛾̄0,13 are the strains of the reference plane, 𝑘̅11, 𝑘̅33  and 𝑘̅13  are 

the curvatures of the cell wall, and 𝑥̄2 is the distance between the plane considered 

and the reference plane (i.e. the distance to the neutral plane).  Strain 𝜀1̄1 can also be 

obtained by differentiating the effective displacements in direction-1̄ (i.e. Eqs. (3.27), 

(3.30), and (3.38)) with respect to  𝑥̄1.  By comparing the components of the differential 

of effective displacement in direction-1̄ and Eq. (3.42), the following relationships can 

be obtained: 

 

𝜀0̄,11 =
𝑢̄(𝑗)1−𝑢̄(𝑖)1

𝑙𝑖
,                (3.45) 

𝑘̅11 = −
𝑑11
′ 

ℎ
(𝐶1𝑥̄1 + 𝐶2).                (3.46) 
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Differentiating the effective displacement in direction-3̄ (i.e. Eqs. (3.29), (3.32), and 

(3.40)) with respect to 𝑥̄3, and comparing with Eq. (3.43) the following relationship can 

be obtained: 

 

𝜀0̄,33 = 𝜀3̄3,                 (3.47) 

𝑘̅33 = 0.                 (3.48) 

 

Now, differentiating effective displacement in direction-1̄  with respect to 𝑥̄3 and adding 

that to the differential of effective displacement in direction-3̄  with respect to 𝑥̄1, shear 

strain 𝛾̄13 can be obtained. Comparing that with Eq. (3.44), the following relationship 

can be established: 

𝛾̄0,13 =
𝑢̄(𝑗)3−𝑢̄(𝑖)3

𝑙𝑖
,                 (3.49) 

𝑘̅13 = 0.                 (3.50) 

 

Differentiating effective displacement in direction-1̄  with respect to 𝑥̄2 and adding that 

to the differential of effective displacement in direction-2̄ (i.e. Eqs. (3.28), (3.31), and 

(3.39)) with respect to 𝑥̄1, shear strain 𝛾̄12 can be obtained:  

 

𝛾̄12 = 𝛽𝑠
𝑙𝑖
2𝑑11

′ 

12ℎ
𝐶1.                 (3.51) 

Here we assume cylindrical bending for the composite plate, which results in zero 

curvatures 𝑘̅13 and 𝑘̅33 and transverse shear strain  𝛾̄32. This assumption is made 

considering a thick core where ℎ is considerably greater than 𝑙𝑖 (ℎ>3𝑙𝑖 ) (Zhang & 

Ashby, 1992).  

 

  The total strain energy of a cell wall element 𝑖 (𝑖 refers to cell wall 𝐼, 𝐼𝐼 and 𝐼𝐼𝐼) 

can be expressed as: 

𝑈𝑖
 
 
 
=

1

2
∫ ∫ ∫ (𝜎11𝜀1̅1 + 𝜎33𝜀3̅3 + 𝜏1̅3𝛾̅13 + 𝜏1̅2𝛾̅12)𝑑𝑥̄2𝑑𝑥̄3𝑑𝑥̄1

(𝑡 2⁄ −𝑑)

−(
𝑡

2
+𝑑)

ℎ

0

𝑙

0
.          (3.52)  

 

By substituting Eqs. (3.41) - (3.44) into Eq. (3.52) and simplifying using the definitions 

in Eqs. (3.20) - (3.22), the strain energy of the cell wall element can be derived and 

expressed as: 
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𝑈𝑖
 
 
 
=

1

2
(𝒖̄ 𝑲̅𝒖̄

𝑇 + 2𝒖̄𝑮̅𝜀3̅3 + 𝐴̅33𝜀3̅3
2 ),            (3.53) 

where; 

𝑲̅ =
ℎ

𝑙𝑖
 

[
 
 
 
 
 
 
 
 
 
𝐴̅11
  0 𝐴̅16

  0 −𝐴̅11
 0 −𝐴̅16

 0 

0 𝐾̅22
 
 0 𝐾̅24

 0 𝐾̅26
 0 𝐾̅28

 

𝐴̅16
 0 𝐴̅66

 0 −𝐴̅16
  0 −𝐴̅66

  0 

 0 𝐾̅42
 0 𝐾̅44

 0 𝐾̅46
  0 𝐾̅48

 

−𝐴̅11
  0 −𝐴̅16

  0 𝐴̅11
  

0 𝐴̅16
   0

0 𝐾̅62
 0 𝐾̅64

 
0 𝐾̅66

 
0 𝐾̅68

 

𝐴̅16
  0 −𝐴̅66

  0 𝐴̅16
  0 𝐴̅66

  0

 0 𝐾̅82
 

 0 𝐾̅84
 

 0 𝐾̅86
 

0 𝐾̅88
 ]
 
 
 
 
 
 
 
 
 

,           (3.54) 

𝑮̅ = ℎ[−𝐴̅13
 0 −𝐴̅36

  0 𝐴̅13
 0 𝐴̅36

 0 ]𝑇 ,             (3.55) 

𝐾̅22
 
 
= −𝐾̅26

 = −𝐾̅62
 = 𝐾̅66

 
 
=

𝑆̅𝑒𝑞𝛽
2𝑙𝑖
2+12𝐷̅11

  

𝑙𝑖
2(𝛽+1)2

,            (3.56) 

𝐾̅24
 = 𝐾̅28

 = 𝐾̅42
 = −𝐾̅46

 = −𝐾̅64
 = −𝐾̅68

 = 𝐾̅82
 = −𝐾̅86

 =
𝑆̅𝑒𝑞𝛽

2𝑙𝑖
2+12𝐷̅11

 

2𝑙𝑖
 (𝛽+1)2

,        (3.58) 

𝐾̅44
 = 𝐾̅88

 =
𝑆̅𝑒𝑞𝛽

2𝑙𝑖
2+4𝐷̅11

  ((1+𝛽2)+3)

4(𝛽+1)2
,              (3.59) 

𝐾̅48
 = 𝐾̅84

 =
𝑆̅𝑒𝑞𝛽

2𝑙𝑖
2−4𝐷̅11

 ((1+𝛽2)−3)

4(𝛽+1)2
.              (3.60) 

 

If the transverse shear deformation of the wall is neglected, then 𝑲̅ matrix can be 

written as: 

𝑲̅ =
ℎ

𝑙𝑖
 

[
 
 
 
 
 
 
 
 
 
 
 
𝐴̅11
  0 𝐴̅16

  0 −𝐴̅11
 0 −𝐴̅16

 0 

0
12

𝑙𝑖
2 𝐷̅11

 0
6

𝑙𝑖
 𝐷̅11

 0 −
12

𝑙𝑖
2 𝐷̅11

 0
6

𝑙𝑖
 𝐷̅11

 

𝐴̅16
 0 𝐴̅66

 0 −𝐴̅16
  0 −𝐴̅66

  0 

 0
6

𝑙𝑖
 𝐷̅11

 0 4𝐷̅11
 0 −

6

𝑙𝑖
 𝐷̅11

  0 2𝐷̅11
 

−𝐴̅11
  0 −𝐴̅16

  0 𝐴̅11
  0 𝐴̅16

   0

0 −
12

𝑙𝑖
2 𝐷̅11

 0 −
6

𝑙𝑖
 𝐷̅11

 0
12

𝑙𝑖
2 𝐷̅11

 0 −
6

𝑙𝑖
 𝐷̅11

 

𝐴̅16
  0 −𝐴̅66

  0 𝐴̅16
  0 𝐴̅66

  0

 0
6

𝑙𝑖
 𝐷̅11

  0 2𝐷̅11
  0 −

6

𝑙𝑖
 𝐷̅11

 0 4𝐷̅11
 
]
 
 
 
 
 
 
 
 
 
 
 

         (3.61) 

 

For asymmetric laminates, the elements 𝐴̅𝑖𝑗
   and 𝐷̅𝑖𝑗

  should be replaced with 𝐴̅𝑖𝑗
′  and 𝐷̅𝑖𝑗

′  

according to Eqs. (3.20) - (3.22). 
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Strain energy density of the RVE can be expressed as volume average of the sum of 

the strain energy of each wall in the RVE:  

𝑤 =
1

𝑉𝑅𝑉𝐸
∑ 𝑈𝑖

 𝑛
𝑖=𝐼 .                (3.62)

      

3.2.2 Solving equations to get the effective stiffness components  

  In order to determine the strain energy of the cell wall given in Eq. (3.53), the 

nodal displacement 𝒖̄  must be known. The nodal forces can be obtained by 

differentiating Eq. (3.53) with respect to corresponding nodal displacements. The 

generalised vectors of nodal forces and nodal displacements are related as given by 

the following expression: 

 

𝑭̄ = 𝑲̄𝒖̄ + 𝑮̄𝜀3̅3,                         (3.63) 

where; 

𝑭̄ = {𝐹̄(𝑖)1 𝐹̄(𝑖)2 𝐹̄(𝑖)3 𝑀̄(𝑖)  𝐹̄(𝑗)1 𝐹̄(𝑗)2 𝐹̄(𝑗)3 𝑀̄(𝑗)}
𝑇
.                    (3.64) 

 

Using the force-displacement relationship in Eq. (3.63), nodal displacements of the 

cell wall are determined considering the periodic boundary conditions. Once the nodal 

displacements are obtained, they can be used to determine the effective stiffness 

matrix components defined in Eqs (3.5) – (3.7). The procedure for obtaining effective 

stiffness matrix components, 𝐶𝑖𝑗𝑘𝑙
𝐻  is presented in 5 steps:  

Step 1: In step 1, a suitable RVE for the honeycomb core (e.g., as in Fig. 3.3) is 

selected.  

Step 2: For the selected RVE, nine reference strain states of the RVE are selected at 

a time to obtain nine independent 𝐶𝑖𝑗𝑘𝑙
𝐻   components of effective elasticity tensor as: 

 

𝜀𝑖𝑗 = 𝛿                                 𝑖𝑓: 𝑖 = 𝑗, 𝑘 = 𝑙 𝑎𝑛𝑑 𝑖 = 𝑘 ,           (3.65) 

 𝜀𝑖𝑗 = 𝛿                               𝑖𝑓: 𝑖 ≠ 𝑗, 𝑘 ≠ 𝑙, 𝑖 = 𝑘 𝑎𝑛𝑑 𝑗 = 𝑙,          (3.66) 

𝜀𝑖𝑗 = 𝛿 𝑎𝑛𝑑  𝜀𝑘𝑙 = 𝛿      𝑖𝑓: 𝑖 = 𝑗, 𝑘 = 𝑙 𝑎𝑛𝑑 𝑖 ≠ 𝑘.           (3.67) 
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The volume average strain components defined in Eq. (3.1) can be redefined using 

Gauss’s theorem as an integration around the boundary surfaces 𝛤  of the RVE (Hohe 

& Becker 2001, Xia et al. 2003) as follows: 

 

𝜀𝑖𝑗 =
1

2𝑉𝑅𝑉𝐸
∫ (𝑢𝑖𝑛𝑗 + 𝑢𝑗𝑛𝑖)𝑑𝛤.
 

𝛤
              (3.68) 

 

 and for the RVE considered in Fig.  3.3, average strain components (see Appendix 

A.2) can be defined using Eqs. (3.69) – (3.74): 

 

𝜀11 =
𝑢(3)1−𝑢(1)1

𝑝
,                 (3.69) 

𝜀22 =
𝑢(2)2−𝑢(1)2

𝑞
+

𝑟

𝑝

𝑢(3)2−𝑢(1)2

𝑞
,               (3.70) 

𝜀33 = 𝜀3̅3,                  (3.71) 

𝜀12 =
1

2
(
𝑢(3)2−𝑢(1)2

𝑝
+
𝑢(2)1−𝑢(1)1

𝑞
+

𝑟

𝑝

𝑢(3)1−𝑢(1)1

𝑞
),             (3.72) 

𝜀13 =
1

2

𝑢(3)3−𝑢(1)3

𝑝
,                 (3.73) 

𝜀23 =
1

2
(
𝑢(2)3−𝑢(1)3

𝑞
+

𝑟

𝑝

𝑢(3)3−𝑢(1)3

𝑞
).               (3.74) 

 

Step 3: Determine the nodal displacements of each cell wall element with respect to 

local coordinates considering the periodic boundary conditions and the equilibrium 

conditions of the nodal forces. For the RVE in Fig. 3.3, periodic boundary conditions 

(Hohe & Becker 2001) in Eqs. (3.75) – (3.80) are applied to ensure compatibility of 

displacements with adjacent elements: 

 

𝜑(1) = 𝜑(2),                        (3.75) 

𝜑(3) = 𝜑(4)                 (3.76) 

𝜑(1) = 𝜑(3),                            (3.77) 

𝑢(3)1 − 𝑢(1)1 = 𝑢(4)1 − 𝑢(2)1,               (3.78) 

𝑢(3)2 − 𝑢(1)2 = 𝑢(4)2 − 𝑢(2)2,               (3.79) 

𝑢(3)3 − 𝑢(1)3 = 𝑢(4)3 − 𝑢(2)3.               (3.80) 
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Resultant forces of all corner nodes, at internal nodes and at all pairs of corresponding 

nodes 𝑖 and 𝑖 + 1 on surfaces of RVE should be zero, since there are no external 

forces acting which gives Eqs. (3.81) - (3.85): 

𝐹(1)1 + 𝐹(2)1 + 𝐹(3)1 = 0,                (3.81)  

𝐹(1)2 + 𝐹(2)2 + 𝐹(3)3 = 0,                         (3.82) 

𝐹(1)3 + 𝐹(2)3 + 𝐹(3)3 = 0,                         (3.83) 

𝑀(1) +𝑀(2) +𝑀(3) = 0,                (3.84) 

𝐹(5)1 = 𝐹(5)2 = 𝐹(5)3 = 𝑀(5) = 0.               (3.85) 

 

RVE is not allowed to undergo any rigid body motions. Therefore, we can write Eq. 

(3.86): 

 

𝑢(1)1 = 𝑢(1)2 = 𝑢(1)3 = 𝑢(3)2 = 0.               (3.86) 

 

Step 4: Calculate the strain energy of each wall (Eq. (3.53)) and then the strain energy 

density of the RVE (Eq. (3.62)) by adding the strain energy of all the walls together. 

 

Step 5: Apply Eqs. (3.5) - (3.7) to find the stiffness components of the effective 

elasticity tensor 𝑪 
𝑯: 

The above procedure could be implemented using simple program(MATLAB 

(Version 2022b) program is given in Appendix A.4), thus, it can be solved for different 

material and geometry configurations with little effort. 

3.3 Force-equilibrium based approach 

  The previous section explains a methodology based on strain energy to derive 

equivalent stiffness properties for any type of honeycomb cellular cores. Force 

equilibrium approach is also commonly used for determining the effective stiffness 

properties (Gibson & Asby 1997; Master & Evans 1996; Balawi & Abot 2008; Malek & 

Gibson 2015; Mukherjee & Adhikari 2021), but they are not applicable in general and 

can be only applied with certain limitations (e.g. the shape of the hexagonal). It is 

considered important to compare the results of the methodology derived in the 

previous section based on strain energy with a methodology based on force 

equilibrium to evaluate the effectiveness of the strain-energy based approach against 
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other existing approaches (i.e. force-equilibrium approach). Therefore, in this section, 

a methodology for a composite hexagonal honeycomb core is developed using the 

force-equilibrium approach, and the results are compared with the predictions from the 

previously presented strain-energy based approach. It should be noted that the force-

equilibrium based approach presented in this section can only be applied to hexagonal 

honeycomb cores, while the strain-energy based approach developed in the previous 

section can be applied in general to all types of honeycomb cores.  

  The force-equilibrium approach considers the force-equilibrium of the walls to 

determine the deformation of the walls under applied uniform external stress, and then 

the applied stress is divided by the average strain of the RVE to get the effective elastic 

modulus by dividing the stress by the average strain. Wang & Wang (2018) recently 

proposed an analytical model for the effective elastic properties of the laminated 

composite hexagonal core.  While, for the examples produced in their study, their 

model performed well, their model produces a value of 1 for the effective in-plane 

Poisson’s ratios of a regular hexagonal honeycomb core. This results in singularities 

when calculating 𝑄11
𝐻  and 𝑄22

𝐻 . Therefore, their model cannot be used directly to 

determine 𝑄11
𝐻  and 𝑄22

𝐻 . Recently Mukherjee & Adhikari (2021) also proposed an 

analytical model to determine the effective elastic properties of a hexagonal 

honeycomb core with isotropic walls. Their model, which is the most accurate up to 

date for hexagonal isotropic honeycomb cores, together with CLT to determine cell 

wall properties, are used in this section to derive equations for the effective in-plane 

stiffness properties (𝑄11
𝐻 , 𝑄22

𝐻  and 𝑄66
𝐻 ) of the laminated composite wall hexagonal core.  
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Fig. 3.5: Schematic of deformation pattern of the unit cell under the application of 
uniform stress field 𝝈𝟏𝟏

  in direction-1. 

 
  A RVE of the hexagonal core considered for calculating the effective elastic 

modulus in direction-1 is given in Fig. 3.5. A uniform stress field  𝜎11
   is applied to the 

RVE in direction-1, as shown in Fig. 3.5, to derive the expression of the equivalent 

elastic modulus in direction-1. Applied stress field results in a force 𝐹1 being applied 

at the end points of walls 𝐼𝐼 and 𝐼𝐼𝐼 on the unit cell. The magnitude of the force 𝐹1 is 

given by: 

 

𝐹1 = 𝜎11
 𝑙1(𝑙1 − 𝑙2𝑐𝑜𝑠𝜃).               (3.87) 

 

Deformation 𝑢̄2
𝑏 of the inclined member 𝐼𝐼 due to bending can be written as: 

 

𝑢̄2
𝑏 =

−𝐹1𝑐𝑜𝑠𝜃

𝐾̅55
𝐼𝐼 .                 (3.88) 

 

Deformation 𝑢̄1
𝑎 of the inclined wall 𝐼𝐼 due to axial forces can be written as:  

 

𝑢̄1
𝑎 =

𝐹1𝑠𝑖𝑛𝜃

𝐾̅44
𝐼𝐼 .                 (3.89) 

 

In Eqs. (3.88) and (3.89), 𝐾̅55
𝐼𝐼  and 𝐾̅44

𝐼𝐼  are elements of the Euler-Bernoulli beam 

stiffness matrix of the inclined wall 𝐼𝐼 with length 𝑙2. Considering the symmetry of 

elements 𝐼𝐼 and 𝐼𝐼𝐼 (𝑙2 = 𝑙3), the total deflection in the 1-direction can be obtained as: 

𝑢1
 = 2(𝑢̄1

𝑎𝑠𝑖𝑛𝜃 − 𝑢̄2
𝑏𝑐𝑜𝑠𝜃) = 2𝐹1 (

cos2 𝜃

𝐾̅55
𝐼𝐼 +

sin2 𝜃

𝐾̅44
𝐼𝐼
 
) = 2𝐹1

cos2 𝜃

𝑘55
𝑙 (1 + tan2 𝜃

𝐾̅55
𝐼𝐼 

𝐾̅44
𝐼𝐼
 
).        (3.90) 

 

Hence, the strain in 1- direction is obtained as:  

 

𝜀11
 =

𝑢1
 

2𝑙2𝑠𝑖𝑛𝜃
=

2𝐹1
cos2 𝜃

𝐾̅55
𝐼𝐼 (1+tan

2 𝜃
𝐾̅55
𝐼𝐼 

𝐾̅44
𝐼𝐼
 
)

2𝑙2𝑠𝑖𝑛𝜃
.                       (3.91) 

 

From the normal stress and strain in direction-1, the effective elastic modulus of the 

honeycomb core in direction-1 can be obtained as:  
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𝐸1
𝐻 =

𝜎11
 

𝜀11
 =

𝐾̅55
𝐼𝐼 𝑙2𝑠𝑖𝑛𝜃

ℎ(𝑙1−𝑙2𝑐𝑜𝑠𝜃) cos2 𝜃(1+tan2 𝜃
𝐾̅55
𝐼𝐼 

𝐾̅44
𝐼𝐼
 
)
.             (3.92) 

 

If the cell walls of the hexagonal core are made of laminated composite/multi-layered 

material, then the stretching modulus and bending modulus of the wall could be 

different, and deformations have to be calculated based on the corresponding modulus 

(Min et al. 2020).  Therefore, the stiffness terms 𝑘44
𝐼𝐼  and 𝑘55

𝐼𝐼   in Eq. (3.88) and Eq. 

(3.89) should be calculated based on the equivalent elastic modulus of the wall for 

stretching (𝐸̅1
 𝑠) and bending (𝐸̅1

𝑏), respectively. These can be calculated and are given 

as follows: 

 

𝐾44
𝐼𝐼 = (

𝐸̅1
 𝑠𝐴

𝑙2 
 ) = (

ℎ

𝑙2 
 𝑎̅11
𝐼𝐼 )               (3.93) 

𝐾55
𝐼𝐼 = (

12𝐸̅1
𝑏
𝐼

𝑙2 
3 ) = (

12ℎ

𝑙  
2
3
𝑑̅11
𝐼𝐼 )               (3.94) 

 

Substituting Eqs. (3.93) and (3.94) into Eq. (3.92), we will get the equation for the 

effective modulus 𝐸1
𝐻 of the laminated composite wall hexagonal core as: 

 

𝐸1
𝐻 =

12𝑠𝑖𝑛𝜃

(
𝑙1
𝑙2
−𝑐𝑜𝑠𝜃) cos2 𝜃(𝑙2 

3 𝑑̅11
𝐼𝐼 +12𝑙𝑎̅11

𝐼𝐼 tan2 𝜃)
.             (3.95) 

 

Similarly, other equations for in-plane effective elastic properties 𝐸2
𝐻, 𝑣12

𝐻  and  𝐺12
𝐻   can 

be derived as (refer to Mukherjee & Adhikari 2021): 

 

𝐸2
𝐻 =

𝐾̅55
𝐼𝐼 (

𝑙1
𝑙2
−𝑐𝑜𝑠𝜃)

ℎ sin3 𝜃(1+cot2 𝜃
𝐾̅55
𝐼𝐼 

𝐾̅44
𝐼
 
+2cosec2 𝜃

𝐾̅55
𝐼𝐼 

𝐾̅44
𝐼
 
)
              (3.96) 

𝐸2
𝐻 =

12(
𝑙1
𝑙2
−𝑐𝑜𝑠𝜃)

sin3 𝜃(𝑙2 
3 𝑑̅11

𝐼𝐼 +12𝑙2𝑎̅11
𝐼𝐼 cot2 𝜃+24𝑙1𝑎̅11

𝐼 cosec2 𝜃)
            (3.97) 

𝑣12
𝐻 = −

sin2 𝜃(1−
𝐾̅55
𝐼𝐼 

𝐾̅44
𝐼𝐼
 
)

(
𝑙1
𝑙2
−𝑐𝑜𝑠𝜃)𝑐𝑜𝑠𝜃(1+tan2 𝜃

𝐾̅55
𝐼𝐼 

𝐾̅44
𝐼𝐼
 
)
               (3.98) 

𝑣21
𝐻 = −

sin2 𝜃(𝑙2 
3 𝑑̅11

𝐼𝐼 −12𝑙2𝑎̅11
𝐼𝐼 )

(
𝑙1
𝑙2
−𝑐𝑜𝑠𝜃)𝑐𝑜𝑠𝜃(𝑙2 

3 𝑑̅11
𝐼𝐼 +12𝑙2𝑎̅11

𝐼𝐼 tan2 𝜃)
             (3.99) 
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𝐺12
𝐻 =

(
𝑙1
𝑙2
−𝑐𝑜𝑠𝜃)

ℎ𝑠𝑖𝑛𝜃

(

 
 
−

𝑙1 
2

2𝑙2𝐾̅65
𝐼𝐼 +(

4𝑘66
𝐼  

𝐾̅55
𝐼 
𝐾̅66
𝐼
−(𝐾̅56

𝐼 )
2

 

 

   

)

(
𝑙1
2
)

+
(𝑠𝑖𝑛𝜃−(

𝑙1
𝑙2
−𝑐𝑜𝑠𝜃)𝑐𝑜𝑡𝜃)

2

𝐾̅44
𝐼𝐼
 

  

)

 
 

        (3.101) 

𝐺12
𝐻 =

156(
𝑙1
𝑙2
−𝑐𝑜𝑠𝜃)

𝑠𝑖𝑛𝜃(13𝑙1 
2 𝑙2𝑑̅11

𝐼𝐼 +2𝑙1
3𝑑̅11

𝐼 +156𝑙2(𝑠𝑖𝑛𝜃−(
𝑙1
𝑙2
−𝑐𝑜𝑠𝜃)𝑐𝑜𝑡𝜃)

2
𝑎̅11
𝐼𝐼   )

.                            (3.102) 

 

3.4 Prediction of effective stiffness properties  

3.4.1 Effective properties of laminated composite wall honeycomb core  

To validate the proposed strain-energy based model in section 3.2, the 

proposed model is used to calculate the effective stiffness properties of an equivalent 

shell of hexagonal core (Fig. 3.3). Results are obtained with and without considering 

the transverse shear deformation of the walls. Results are then compared with the 

effective stiffness properties obtained from FE analysis. Predictions for the effective 

stiffness component are then compared with the effective stiffness values obtained 

from FE analysis of the RVEs with prescribed boundary conditions. Investigation 

presented in the current chapter is a theoretical investigation, and the proposed model 

is validated against FE results as both the FE methodology and the proposed 

analytical approach are based on similar idealisations. Knowing FE models are able 

to accurately capture behaviour of honeycomb core structures with idealized 

honeycomb geometries, comparison with FE results provide a good validation for the 

proposed analytical model for similar idealized honeycomb geometries. In real 

structures, such idealized geometry and material assumption may not be correct, thus 

experimental results may vary from the theoretical predictions based on idealized 

geometries. However, the aim of such comparisons will be to identify how much effect 

non-idealized geometric and material parameters (imperfections) will have on the 

predicted behaviour. However, that is beyond the scope of the current study as 

objective of this chapter is to develop an analytical homogenisation model to facilitate 

the preliminary design of the laminated composite honeycomb core considering 

different materials and geometric parameters. In addition, the results from the 

proposed strain-energy based model are compared against results from the force-

equilibrium based model derived based on Mukherjee & Adhikari (2021) in section 3.3, 

and the homogenisation models proposed by Wang & Wang (2018) and 
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Krishnamurthy & Saether (2019) for the laminated composite wall hexagonal core. 

Elastic properties of different FRP materials used for the laminated composite wall 

hexagonal core with respect to principal axes of the lamina are given in Table 3.1. 

Thicknesses of the hexagonal core walls assumed to be equal (Fig. 3.2) and different 

composite fibre lay-ups were considered for the core walls as given in Table 3.2. Each 

ply thickness of the fibre lay-up is assumed to be equal. The core walls’ lengths are 

taken as: 𝑙1 = 𝑙2 = 𝑙3 = 50mm (Fig. 3.3), while the height of the core (h) is taken as 

150mm. The thickness of the core walls for all core configurations was selected to 

have a relative core density (ρ*) of 0.072.  

 

Table 3.1: Mechanical properties of composite wall material. 

Material 
𝐸𝐿  

(𝑁𝑚𝑚−2) 
𝐸𝑇 

(𝑁𝑚𝑚−2)  
𝐺𝐿𝑇 

(𝑁𝑚𝑚−2) 
𝑣𝐿𝑇 (1) 

E-glass/Epoxy(G) 38600 8270 4140 0.26 
Boron/Epoxy(B) 204000 18500 5590 0.23 

 
 
Table 3.2: Material configurations of the laminated composite walls. 

Composite 
wall 

Layer arrangement 
(Material properties for G and 

B are given in Table 1) 
Fibre orientation (0) 

1 G/G/G/G/G 45/-45/0/-45/45 

2 G/G/G/G/G 0/0/90/0/0 

3 G/G/G/G/G 90/0/0/0/90 

4 G/G/G/G/G 0/45/90/45/0 

5 G/G/G/G/G 45/0/90/0/45 

6 G/G/G/G/G 45/-45/45/-45/45 

7 B/G/G/G/B 45/-45/0/-45/45 

8 G/B/G/B /G 0/0/90/0/0 

9 B/G/G/G/B 0/0/90/0/0 

10 G/B/G/B/G 90/0/0/0/90 

11 G/G/B /G/G 0/45/90/45/0 

12 G/G/G/G/B 45/0/90/0/45 

13 B/G/G/B /G 0/0/90/0/0 

14 G/G/G/G/B 45/-45/0/-45/45 
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RVEs of the regular hexagonal cores (Fig. 3.6) are modelled using the 

commercial FE software ABAQUS (version 2021). The S4 shell element is used with 

a mesh size of 10mm selected based on a mesh convergence study. The composite 

shell option available in ABAQUS is used for modelling composite walls, with the 

material properties of each layer assigned based on the properties given in Table 3.1, 

and the local material direction of each layer is assigned based on material 

configurations given in Table 3.2. Prescribed displacement boundary conditions 

similar to Catapano & Montemurro (2014) and Grediac (1993) are applied according 

to Table 3.4 to get the effective properties for equivalent shell analysis. Effective 

properties are calculated based on the total strain energy extracted from the analysis 

of the RVE under applied boundary conditions. Average strain components of RVE 

are calculated based on the characteristic dimensions of RVE (Fig. 3.6(a)) and applied 

displacements.  Table 3.3 illustrates the application of boundary conditions and 

deformed shape of the honeycomb RVE for a typical material configuration in the FE 

analysis. 

 

Fig. 3.6: (a) Boundaries of typical RVE for application of boundary conditions (b) 
RVE of hexagonal core for the FE models. 

 

Table 3.3: Boundary conditions, deformed shapes, and the total strain energy of the 
hexagonal core RVE with material configuration 1. 

Effective 

properties 
Boundary conditions Deformed shape 

Total 

strain 

energy   

(Nmm) 

1 

3 

2 

 (a) (b) 

𝑥2 = 𝑞 

ℎ 𝑞 
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𝑄11
𝐻  

  

20951.1 

 

𝑄22
𝐻  

 

 

27936 

𝑄12
𝐻  

 

 

96749 
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𝑄66
𝐻  

 

 

160.6 

𝑄44
𝐻  

 

 

21801.7 

𝑄55
𝐻  

  

29224.4 
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Table 3.4: Boundary conditions applied to RVEs to get the effective shell stiffness. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Effective 
properties 

At  𝑥1 =  0  
∀ 𝑥2, 𝑥3 

  At  𝑥1 =  𝑝  
∀ 𝑥2, 𝑥3 

  At  𝑥2 =  0  
∀ 𝑥1, 𝑥3 

At  𝑥2 =  𝑞    
∀ 𝑥1, 𝑥3 

At  𝑥3 =  0  
∀ 𝑥1, 𝑥2 

At 𝑥3 = ℎ   
∀ 𝑥1, 𝑥2 

𝑄11
𝐻  

𝑢1
 = 0 

All other degrees 
of freedom are 
set to free 

𝑢1
 = 1 

All other degrees 
of freedom are 
set to free 

𝑢2
 = 0 

All other degrees 
of freedom are 
set to free 

𝑢2
 = 0 

All other degrees 
of freedom are 
set to free  

All degrees of 
freedom are set 
to free. 

All degrees of 
freedom are set 
to free. 

𝑄22
𝐻  

𝑢1
 = 0 

All other degrees 
of freedom are 
set to free 

𝑢1
 = 0 

All other degrees 
of freedom are 
set to free 

𝑢2
 = 0 

All other degrees 
of freedom are 
set to free 

𝑢2
 = 1 

All other degrees 
of freedom are 
set to free 

All degrees of 
freedom are set 
to free. 

All degrees of 
freedom are set 
to free. 

𝑄12
𝐻  

𝑢1
 = 0 

All other degrees 
of freedom are 
set to free 

𝑢1
 = 1 

All other degrees 
of freedom are 
set to free 

𝑢2
 = 0 

All other degrees 
of freedom are 
set to free 

𝑢2
 = 1 

All other degrees 
of freedom are 
set to free 

All degrees of 
freedom are set 
to free. 

All degrees of 
freedom are set 
to free. 

𝑄66
𝐻  

𝑢1
 = 𝑢2

 = 0 
All other degrees 
of freedom are 
set to free 

𝑢1
 = 0, 𝑢2

 = 1 
All other degrees 
of freedom are 
set to free 

𝑢1
 = 0 

All other degrees 
of freedom are 
set to free 

𝑢1
 = 0 

All other degrees 
of freedom are 
set to free 

All degrees of 
freedom are set 
to free. 

All degrees of 
freedom are set 
to free. 

𝑄44
𝐻  

𝑢1
 = 𝑢2

 = 𝑢3
 = 0 

All other degrees 
of freedom are 
set to free 

𝑢1
 = 𝑢2

 = 0 
𝑢3
 = 1 

All other degrees 
of freedom are 
set to free 

𝑢1
 = 𝑢2

 = 0 
All other 

degrees of 
freedom are set 
to free 

𝑢1
 = 𝑢2

 = 0 
All other degrees 
of freedom are 
set to free 

𝑢1
 = 𝑢2

 = 0 
All other 
degrees of 
freedom are set 
to free 

𝑢1
 = 𝑢2

 = 0 
All other 
degrees of 
freedom are set 
to free 

𝑄55
𝐻  

𝑢1
 = 𝑢2

 = 0 
All other degrees 
of freedom are 
set to free 

𝑢1
 = 𝑢2

 = 0 
All other degrees 
of freedom are 
set to free 

𝑢1
 = 𝑢2

 = 𝑢3
 = 0 

All other degrees 
of freedom are 
set to free  

 

𝑢1
 = 𝑢2

 = 0 
𝑢3
 = 1 

All other degrees 
of freedom are 
set to free 

𝑢1
 = 𝑢2

 = 0 
All other 
degrees of 
freedom are set 
to free 

𝑢1
 = 𝑢2

 = 0 
All other 
degrees of 
freedom are set 
to free 
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Table 3.5: Effective stiffness 𝑄11
𝐻  for the regular laminated composite wall hexagonal core. 

 
 
 
 
 

 
* Poisson’s ratio calculated in (1) is used 

Composite 
wall 

Proposed 
(without 

transverse 
shear) 

(1) 
(𝑁𝑚𝑚−2) 

Proposed 
(with 

transverse 
shear) 

(2) 
(𝑁𝑚𝑚−2) 

Modified 
Mukherjee & 

Adhikari  
(2021) 

(3) 
(𝑁𝑚𝑚−2) 

Wang & 
Wang  
(2018) 

(4*) 
(𝑁𝑚𝑚−2) 

Krishna 
murthy & 
Saether 
(2019)  

(5*) 
(𝑁𝑚𝑚−2) 

FE 
(𝑁𝑚𝑚−2) 

Difference % (Proposed- FE)/FE%) 

(1) (2) (3) (4) (5) 

1 324.71 324.67 324.01 328.19 337.29 322.63 0.64 0.63 0.43 1.72 4.54 

2 595.17 594.94 595.09 603.47 504.35 591.66 0.59 0.55 0.58 1.99 -14.76 

3 482.53 482.48 482.50 485.56 855.58 477.88 0.97 0.96 0.97 1.61 79.04 

4 403.27 403.10 403.07 410.41 262.71 398.85 1.11 1.07 1.06 2.90 -34.13 

5 401.50 401.42 400.81 405.95 412.37 399.82 0.42 0.40 0.25 1.53 3.14 

6 228.00 227.95 227.29 231.29 168.11 226.96 0.46 0.43 0.14 1.91 -25.93 

7 385.23 384.83 380.09 394.99 153.08 380.83 1.15 1.05 -0.19 3.72 -59.80 

8 1793.80 1792.90 1793.70 1811.54 2427.61 1785.94 0.44 0.39 0.43 1.43 35.93 

9 1807.10 1803.60 1807.00 1843.09 1073.37 1760.67 2.64 2.44 2.63 4.68 -39.04 

10 1681.60 1681.10 1681.50 1691.27 3154.21 1662.92 1.12 1.09 1.12 1.70 89.68 

11 448.45 448.29 448.27 455.55 323.90 445.37 0.69 0.66 0.65 2.29 -27.27 

12 439.45 439.36 436.84 411.11 275.58 435.58 0.89 0.87 0.29 -5.62 -36.73 

13 1799.70 1797.80 1799.60 1824.87 1481.23 1715.09 4.93 4.82 4.93 6.40 -13.64 

14 360.14 360.08 357.53 330.84 209.00 356.44 1.04 1.02 0.30 -7.18 -41.36 
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Table 3.6: Effective stiffness 𝑄22
𝐻  for the regular laminated composite wall hexagonal core. 

Composite 
wall 

Proposed 
(without 

transverse 
shear) 

(1) 
(𝑁𝑚𝑚−2) 

Proposed 
(with 

transverse 
shear) 

(2) 
(𝑁𝑚𝑚−2) 

Modified 
Mukherjee & 

Adhikari  
(2021) 

(3) 
(𝑁𝑚𝑚−2) 

Wang & 
Wang  
(2018) 

(4†) 
(𝑁𝑚𝑚−2) 

Krishna 
murthy & 
Saether 
(2019)  

(5†) 
(𝑁𝑚𝑚−2) 

FE 
(𝑁𝑚𝑚−2) 

Difference % (Proposed- FE)/FE%) 

(1) (2) (3) (4) (5) 

1 324.71 324.67 324.01 328.19 337.29 322.61 0.65 0.64 0.43 1.73 4.55 

2 595.17 594.94 595.09 603.47 504.35 591.64 0.60 0.56 0.58 2.00 -14.75 

3 482.53 482.48 482.50 485.56 855.58 477.85 0.98 0.97 0.97 1.61 79.05 

4 403.27 403.10 403.07 410.41 262.71 398.84 1.11 1.07 1.06 2.90 -34.13 

5 401.50 401.42 400.81 405.95 412.37 399.84 0.42 0.40 0.24 1.53 3.13 

6 228.00 227.95 227.29 231.29 168.11 226.96 0.46 0.44 0.14 1.91 -25.93 

7 385.23 384.83 380.09 394.99 153.08 380.92 1.13 1.03 -0.22 3.69 -59.81 

8 1793.80 1792.90 1793.70 1811.54 2427.61 1785.82 0.45 0.40 0.44 1.44 35.94 

9 1807.10 1803.60 1807.00 1843.09 1073.37 1760.67 2.64 2.44 2.63 4.68 -39.04 

10 1681.60 1681.10 1681.50 1691.27 3154.21 1662.83 1.13 1.10 1.12 1.71 89.69 

11 448.45 448.29 448.27 455.55 323.90 445.36 0.69 0.66 0.65 2.29 -27.27 

12 439.45 439.36 436.84 411.11 275.58 435.60 0.88 0.86 -2.00 -5.62 -36.73 

13 1799.70 1797.80 1799.60 1824.87 1481.23 1714.91 4.94 4.83 4.94 6.41 -13.63 

14 360.14 360.08 357.53 330.84 209.00 356.38 1.06 1.04 0.32 -7.17 -41.35 

 

 

 

 
† Poisson’s ratio calculated in (1) is used. 
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Table 3.7:Effective stiffness 𝑄12
𝐻  for the regular laminated composite wall hexagonal core. 

Composite 
wall 

Proposed 
(without 

transverse 
shear) 

(1) 
(𝑁𝑚𝑚−2) 

Proposed 
(with 

transverse 
shear) 

(2) 
(𝑁𝑚𝑚−2) 

Modified 
Mukherjee & 

Adhikari  
(2021) 

(3) 
(𝑁𝑚𝑚−2) 

Wang & 
Wang  
(2018) 

(4‡) 
(𝑁𝑚𝑚−2) 

Krishna 
murthy & 
Saether 
(2019)  

(5‡) 
(𝑁𝑚𝑚−2) 

FE 
(𝑁𝑚𝑚−2) 

Difference%(Proposed- FE)/FE%) 

(1) (2) (3) (4) (5) 

1 319.85 319.9 320.56 323.27 332.24 319.03 0.26 0.27 0.48 1.33 4.14 

2 584.25 584.47 584.32 592.39 495.10 584.02 0.04 0.08 0.05 1.43 -15.23 

3 478.29 478.34 478.32 481.30 848.07 474.61 0.77 0.79 0.78 1.41 78.69 

4 393.65 393.82 393.85 400.61 256.44 392.19 0.37 0.41 0.42 2.15 -34.61 

5 395.42 395.5 396.12 399.80 406.13 395.67 -0.06 -0.04 0.11 1.04 2.64 

6 223.19 223.23 223.9 226.41 164.56 223.49 -0.14 -0.12 0.18 1.31 -26.37 

7 370.15 370.55 375.29 379.53 147.09 372.85 -0.72 -0.62 0.66 1.79 -60.55 

8 1773.1 1774.0 1773.2 1790.72 2399.72 1772.24 0.05 0.10 0.05 1.04 35.41 

9 1759.8 1763.3 1759.9 1794.84 1045.27 1732.95 1.55 1.75 1.56 3.57 -39.68 

10 1667.6 1668.1 1667.7 1677.25 3128.06 1653.49 0.85 0.88 0.86 1.44 89.18 

11 438.8 438.96 438.99 445.75 316.93 438.49 0.07 0.11 0.11 1.66 -27.72 

12 428.81 428.9 431.42 401.15 268.91 430.08 -0.30 -0.27 0.31 -6.73 -37.48 

13 1767.2 1769.1 1767.3 1791.91 1454.48 1694.91 4.26 4.38 4.27 5.72 -14.19 

14 350.77 350.84 353.38 322.23 203.56 351.42 -0.18 -0.17 0.56 -8.31 -42.07 

 

 

 
 

 
‡ Poisson’s ratio calculated in (1) is used. 
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Table 3.8: Effective stiffness 𝑄66
𝐻  for the regular laminated composite wall hexagonal core. 

 
 
 
 
 
 
 

Composite 
wall 

Proposed 
(without 

transverse 
shear) 

(1) 
(𝑁𝑚𝑚−2) 

Proposed 
(with 

transverse 
shear) 

(2) 
(𝑁𝑚𝑚−2) 

Modified 
Mukherjee 
& Adhikari  

(2021) 
(3) 

(𝑁𝑚𝑚−2) 

Wang & 
Wang  
(2018) 

(4) 
(𝑁𝑚𝑚−2) 

Krishna 
murthy & 
Saether 
(2019)  

(5) 
(𝑁𝑚𝑚−2) 

FE 
(𝑁𝑚𝑚−2) 

Difference % (Proposed- FE)/FE%) 

(1) (2) (3) (4) (5) 

1 2.43 2.38 1.73 4.88 2.51 2.47 -1.79 -3.68 -30.21 97.03 1.25 

2 5.46 5.23 5.38 10.97 4.59 5.37 1.71 -2.55 0.27 104.35 -14.61 

3 2.12 2.07 2.09 4.24 3.74 2.25 -6.06 -7.95 -6.97 88.30 65.89 

4 4.81 4.64 4.61 9.68 3.10 4.75 1.38 -2.26 -2.86 103.88 -34.74 

5 3.04 2.96 2.34 6.10 3.10 2.93 3.90 1.23 -19.84 108.52 5.91 

6 2.40 2.36 1.69 4.83 1.75 2.39 0.41 -1.49 -29.23 101.61 -26.73 

7 7.54 7.14 2.40 15.15 2.94 5.70 32.32 25.40 -57.93 166.03 -48.45 

8 10.31 9.49 10.23 20.70 13.87 9.63 7.00 -1.54 6.17 114.82 43.93 

9 23.65 20.19 23.53 47.62 13.87 20.25 16.82 -0.29 16.21 135.19 -31.52 

10 6.97 6.49 6.94 13.96 13.02 6.72 3.73 -3.35 3.32 107.90 93.86 

11 4.83 4.67 4.64 9.70 3.45 4.83 -0.08 -3.39 -3.93 100.87 -28.59 

12 5.32 5.23 2.71 9.84 3.30 3.90 36.53 34.03 -30.46 152.39 -15.41 

13 16.26 14.39 16.15 32.66 13.26 14.47 12.33 -0.55 11.60 125.68 -8.41 

14 4.685 4.62 2.07 8.50 2.68 3.46 35.25 33.46 -40.12 145.28 -22.53 
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Table 3.9: Effective stiffness 𝑄44
𝐻  for the regular laminated composite wall hexagonal core. 

Composite 
wall 

Proposed 
(without 

transverse 
shear) 

(1) 
(𝑁𝑚𝑚−2) 

Proposed 
(with 

transverse 
shear) 

(2) 
(𝑁𝑚𝑚−2) 

Wang & 
Wang  
(2018) 

(4) 
(𝑁𝑚𝑚−2) 

Krishna 
murthy & 
Saether 
(2019)  

(5) 
(𝑁𝑚𝑚−2) 

FE 
(𝑁𝑚𝑚−2) 

Difference % (Proposed- FE)/FE%) 

(1) (2) (4) (5) 

1 341.61 341.61 341.61 341.07 335.65 1.78 1.78 1.78 1.61 

2 149.39 149.39 149.39 149.15 149.54 -0.10 -0.10 -0.10 -0.26 

3 149.39 149.39 149.39 149.15 149.53 -0.10 -0.10 -0.10 -0.26 

4 231.45 231.45 245.50 218.22 229.92 0.67 0.67 6.78 -5.09 

5 231.42 231.42 245.50 218.22 229.91 0.66 0.66 6.78 -5.08 

6 384.70 384.70 389.67 382.47 385.91 -0.31 -0.31 0.97 -0.89 

7 745.01 744.95 961.64 675.07 756.43 -1.51 -1.52 27.13 -10.76 

8 170.32 170.32 170.32 170.05 170.41 -0.05 -0.05 -0.051 -0.21 

9 170.32 170.32 170.32 170.05 170.47 -0.09 -0.09 -0.091 -0.25 

10 170.32 170.32 170.32 170.05 170.47 -0.09 -0.09 -0.089 -0.25 

11 243.00 243.00 255.97 238.20 249.05 -2.43 -2.43 2.78 -4.36 

12 429.05 429.03 555.51 285.57 398.00 7.80 7.80 39.59 -28.25 

13 170.32 170.32 170.32 169.75 170.47 -0.09 -0.09 -0.091 -0.43 

14 581.06 581.06 651.62 440.41 543.17 6.97 6.97 19.97 -18.92 
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Table 3.10: Effective stiffness 𝑄55
𝐻  for the regular laminated composite wall hexagonal core. 

Composite 
wall 

Proposed 
(without 

transverse 
shear) 

(1) 
(𝑁𝑚𝑚−2) 

Proposed 
(with 

transverse 
shear) 

(2) 
(𝑁𝑚𝑚−2) 

Wang & 
Wang  
(2018) 

(4) 
(𝑁𝑚𝑚−2) 

Krishna 
murthy & 
Saether 
(2019)  

(5) 
(𝑁𝑚𝑚−2) 

FE 
(𝑁𝑚𝑚−2) 

Difference % (Proposed- FE)/FE%) 

(1) (2) (4) (5) 

1 341.61 341.61 341.61 341.07 337.46 1.23 1.23 1.23 1.07 

2 149.39 149.39 149.39 149.15 149.44 -0.03 -0.03 -0.03 -0.19 

3 149.39 149.39 149.39 149.15 149.44 -0.03 -0.03 -0.03 -0.19 

4 231.45 231.45 245.50 218.22 228.69 1.21 1.21 7.35 -4.58 

5 231.42 231.42 245.50 218.22 228.02 1.49 1.49 7.66 -4.30 

6 384.70 384.70 389.67 382.47 385.24 -0.14 -0.14 1.15 -0.72 

7 745.01 744.95 961.64 675.07 735.73 1.26 1.25 30.71 -8.24 

8 170.32 170.32 170.32 170.05 169.84 0.28 0.28 0.28 0.12 

9 170.32 170.32 170.32 170.05 170.36 -0.02 -0.02 -0.02 -0.18 

10 170.32 170.32 170.32 170.05 170.36 -0.02 -0.02 -0.02 -0.18 

11 243.00 243.00 255.97 238.20 246.76 -1.52 -1.52 3.73 -3.47 

12 429.05 429.03 555.51 285.57 371.94 15.36 15.35 49.36 -23.22 

13 170.32 170.32 170.32 169.75 170.36 -0.02 -0.02 -0.02 -0.36 

14 581.06 581.06 651.62 440.41 518.36 12.09 12.09 25.71 -15.04 
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  The proposed strain-energy-based model showed an excellent agreement with 

the FE results, except for predictions of 𝑄66
𝐻  for some of the composite wall material 

configurations considered. The maximum errors in predictions using the proposed 

model for 𝑄 11
𝐻 , 𝑄22

𝐻 , 𝑄12
𝐻  and 𝑄66

𝐻  without  the transverse shear deformation of the walls 

are  4.94%, 4.93% , 4.26% and 36.53%, respectively and with the transverse shear 

deformation of the walls are 4.83%, 4.82%, 4.38% and 34.03% respectively (Tables 

3.5 – 3.8). There is no significant difference between most of results from with and 

without the consideration of transverse shear deformation of the walls. However, for 

the walls consisting of two different material combinations (configuration 7-14, Table 

3.2), there are considerable differences between the results (Table 3.8), with a 

maximum difference of 17.11% between the two cases. Overall, the proposed model 

considering transverse shear deformation of the walls provides better results 

compared to all the other models. For all the properties except for 𝑄66
𝐻 , modified 

Mukherjee & Adhikari’s (2021) and Wang & Wang’s (2018) models also gave good 

agreements with the FE results agreed well with the proposed model results. However, 

it should be noted that Wang & Wang’s (2018) model results were calculated using 

the Poisson’s ratio calculated using the proposed model as the original equation 

provides the value of 1 for the Poisson’s ratio, which leads to an undefined value for 

the effective shell stiffness properties. Predictions for 𝑄66
𝐻   from modified Mukherjee& 

Adhikari’s (2021) and Wang & Wang’s (2018) models showed a significant difference 

to FE results for several composite wall configurations, but former results are better in 

comparison to other.  Results from Sather & Krishnamurthy’s (2019) model are with 

highest error percentage and agreements with FE results are not good in comparison 

to other models. The major reason for the significant difference from other models is 

the effective modulus of laminated walls is calculated from the membrane stiffness of 

the wall, however, hexagonal honeycomb core walls are subjected to significant 

bending deformations under the in-plane loadings. 

   In predicting the transverse shear stiffness, the proposed strain energy-based 

model and FE results are in very good agreement for all the different material 

configurations of the core wall considered (Table 3.9 and Table 3.10). Maximum errors 

in predicting  𝑄44
𝐻  and 𝑄55

𝐻   out of all the combinations considered are 7.8% and 15.36%, 

respectively. Wang and Wang’s (2018) and Sather & Krishnamurthy’s (2019) models 

predicts the stiffness properties with more significant errors than the proposed model, 
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with maximum absolute errors of 39.59% and 28.25% for 𝑄44
𝐻  and 49.36% and 23.22% 

for  𝑄55
𝐻  , respectively.  

 

  From the different material configurations considered, the prediction for the core 

consisting of symmetrically laminated walls shows excellent agreement with the FE 

results. The prediction accuracy reduces when the laminates are not symmetric and/or 

not orthotropic (Table 3.4 – 3.10). When the laminate is not symmetrical, the 

membrane-bending coupling may exist. While for most cases, the condition given in 

Eq. (3.17) for considering the reference plane will eliminate this effect, for some 

unsymmetrical laminates, a reference plane which is also the neutral plane, may not 

exist within the wall thickness. In addition, when the laminate is non-orthotropic and 

non-isotropic, the bending-twisting coupling may also exist. As these components are 

not considered in the analytical models, results may deviate from the exacts when 

bend-twist coupling becomes stronger. However, the proposed model was shown to 

provide reasonable accuracy while significantly reducing the time and effort required 

to predict effective properties for hexagonal honeycomb cores compared to FE 

models. 

 

3.4.2 Comparison of effective properties of honeycomb cores with different 

shapes 

In this section, the performance of the proposed model in predicting the 

effective stiffness properties for different honeycomb core shapes with laminated walls 

is investigated.  Also, the effective stiffness properties of different honeycomb core 

shapes with material configurations considered in Table 3.2 are compared. Triangular, 

square and mixed triangular-rhombus cores (Fig. 3.7) with the same relative core 

density of 0.0722 are considered. Each wall of the core has an identical thickness, and 

each ply thickness is assumed to be equal. Lengths of the honeycomb core walls are 

assumed as: 𝑙2 = 𝑙3 = 𝑙4 = 50mm (Fig. 3.7), while the height of the core (ℎ) is taken 

as 150mm. The same approach as the hexagonal core to model the RVEs (Fig. 3.8) 

in ABAQUS is used, and effective stiffness properties are calculated based on the total 

energy extracted from the FE analysis. Figures. 3.9 – 3.14 compare the effective 

stiffness properties of different honeycomb core shapes under the same core density 

for the different material configurations of the core walls considered in this study.  



80 
 

 

 

 

 

  

 

 

 

Fig. 3.7:  RVEs of (a) square (b) mixed rhombus-triangular and  (c) triangular 
honeycomb core used in the analysis of proposed models. 

 

 

Fig. 3.8:  RVEs of (a) square (b) mixed rhombus-triangular and (c) triangular 
honeycomb core used in FE models. 
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Fig. 3.9: Comparison of (a) effective stiffness 𝑄11
𝐻  of the laminated composite wall 

honeycomb cores and (b) percentage error of predictions relative to FE analysis. 
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 Fig. 3.10: Comparison of (a) effective stiffness 𝑄22
𝐻  of the laminated composite wall 

honeycomb cores and (b) percentage error of predictions relative to FE analysis. 
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Fig. 3.11: Comparison of (a) effective stiffness 𝑄12
𝐻  of the laminated composite wall 

honeycomb cores and (b) percentage error of predictions relative to FE analysis. 
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Fig. 3.12: Comparison of (a) effective stiffness 𝑄66
𝐻  of the laminated composite wall 

honeycomb cores and (b) percentage error of predictions relative to FE analysis. 
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Fig. 3.13: Comparison of (a) effective stiffness 𝑄44
𝐻  of the laminated composite wall 

honeycomb cores and (b) percentage error of predictions relative to FE analysis. 
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Fig. 3.14: Comparison of (a) effective stiffness 𝑄55
𝐻  of the laminated composite wall 

honeycomb cores and (b) percentage error of predictions relative to FE analysis. 
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  For most of the honeycomb core shapes, the predictions from the proposed 

model agreed well with the FE results. However, predictions for 𝑄12
𝐻  and 𝑄66

𝐻  from the 

proposed model showed differences with the FE results for square core shapes (Figs. 

3.11 - 3.12). Nonetheless, the actual values of the 𝑄12
𝐻  and 𝑄66

𝐻  for square cores are 

relatively small; thus, the overall error caused by this mismatch can be expected to be 

small. When stiffness values are relatively large, the proposed model predictions 

agreed well with the FE results. 

  It can be seen from Figs. 3.9 – 3.14 that, although the core density is the same, 

the effective stiffness properties are different for different core shapes and material 

configurations. Out of all the different honeycomb core shapes, the square core shows 

the highest in-plane normal stiffness 𝑄11
𝐻  and 𝑄11

𝐻   while having the lowest in-plane 

shear stiffness 𝑄66
𝐻  for all different material configurations considered. Moreover, it 

gives a very small negative Poisons’ ratio, resulting in the negative stiffness value for  

𝑄12
𝐻  (Fig. 3.11). While the hexagonal core shows the lowest in-plane normal stiffness, 

it shows the highest in-plane normal coupling stiffness 𝑄12
𝐻  for all the cases (Fig. 3.11) 

due to the high effective in-plane Poisson’s ratio. The triangular core shows the highest 

in-plane shear stiffness out of all the honeycomb core shapes considered (Fig. 3.12). 

Except for the mixed rhombus-triangular core, all the other cores behave as 

transversely isotropic material at the effective level, whereas the mixed rhombus-

triangular core shows orthotropic material behaviour.  

In the case of out-of-plane shear stiffness (Figs. 3.13 - 3.14), triangular, square, and 

hexagonal core results in almost the same values for all the different material 

configurations considered. However, mixed rhombus-triangular core results in slightly 

higher values for Q44
𝐻  and lower values for Q55

𝐻   than the other core shapes. Regardless 

of the different honeycomb core shapes, the highest value for transverse shear 

stiffness is observed when the fibre layer arrangement is only with (45o/-45o) plies, and 

stiffness is found to reduce when the fibre layer arrangement consist of (0o/90o) plies 

(Figs. 3.13 - 3.14). 

3.4.3 Design charts for the predictions of effective properties 

While the above developed models were shown to be accurate in determining 

the equivalent effective stiffness properties of the laminated composite honeycomb 

cores, calculations may need little effort, thus may not be attractive for direct use 

design purposes. Therefore, simplified design plots are produced in Figs. 3.15 - 3.18 
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for calculating the effective properties of the honeycomb cores of different shapes with 

orthotropic laminate walls. The plots are produced deriving the corresponding 

equations following the strain-energy based homogenisation procedure in section 

3.2.2. The equations are not shown here as some of the equations derived are quite 

long to show here. The following example demonstrated the use of design plots for 

obtaining the effective stiffness properties for a hexagonal core: 

Examples: Consider the composite wall configuration 1 and 7 in Table 3.2 for the 

hexagonal core. For configuration 1 in Table 3.2, the value of the ratio 𝐴̅12
′ 2/(𝐴̅11

′ 𝐴̅22
′ ) 

is 0.17, while value of the ratio 𝐷̅11
′ /(𝐴̅11

′ 𝑙2)  is 2.62×10-4. Using the above two values 

in Figs. 3.15(a)-(c), values of the ratios (𝑄11
𝐻 𝑙)/𝐴̅11

′ , (𝑄12
𝐻 𝑙)/𝐴̅11

′ , and (𝑄66
𝐻 𝑙)/𝐴̅11

′  can be 

obtained as approximately 0.2405, 0.2377, and 0.0018 respectively. Since value of 

the 𝐴̅11
′  is 6.7281×104Nmm-1, effective properties 𝑄11

𝐻 ,   𝑄12
𝐻 , and 𝑄66

𝐻   can be calculated 

as 323.6Nmm-2, 319.9Nmm-2, and 2.42Nmm-2 respectively.  

For configuration 7 in Table 3.2, the value of the ratio 𝐴̅12
′ 2/(𝐴̅11

′ 𝐴̅22
′ ) is 0.457, 

while value of the ratio 𝐷̅11
′ /(𝐴̅11

′ 𝑙2)  is 4.35×10-4. Using the above two values in Figs. 

3.15(a)-(c), values of the ratios (𝑄11
𝐻 𝑙)/𝐴̅11

′ , (𝑄12
𝐻 𝑙)/𝐴̅11

′ , and (𝑄66
𝐻 𝑙)/𝐴̅11

′  can be obtained 

as approximately 0.159, 0.152, and 0.003 respectively. Since value of the A̅11
′ is 

1.2521×105Nmm-1, effective properties 𝑄11
𝐻 ,   𝑄12

𝐻 , and 𝑄66
𝐻   can be calculated as 

398Nmm-2, 380Nmm-2, and 7.5Nmm-2 respectively. 

 Similarly, plots Fig 3.16, Fig 3.17, and Fig 3.18 can be used for calculating the 

effective properties of square, triangular, and mixed rhombus-triangular core shapes, 

respectively.  
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Fig. 3.15: Influence of wall stiffness parameters on (a)  𝑄11
𝐻  𝑜𝑟 𝑄22

𝐻  (b) 𝑄12
𝐻   and (c) 

𝑄66
𝐻  of the hexagonal core. 
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Fig. 3.16: Influence of wall stiffness parameters on (a)  𝑄11
𝐻  𝑜𝑟 𝑄22

𝐻  (b) 𝑄12
𝐻   and (c) 

𝑄66
𝐻  of the triangular core. 
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 Fig. 3.17: Influence of wall stiffness parameters on (a)  𝑄11
𝐻  𝑜𝑟 𝑄22

𝐻  (b) 𝑄12
𝐻   and (c) 

𝑄66
𝐻  of the square core. 
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Fig. 3.18: Influence of wall stiffness parameters on (a) 𝑄11
𝐻  (b) 𝑄22

𝐻  (c) 𝑄12
𝐻   and (c) 

𝑄66
𝐻  of the mixed rhombus-triangular core.
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3.5 Conclusions 

This chapter presented a new simplified approach to determine the effective 

stiffness properties of the laminated composite wall honeycomb cores, therefore 

providing a pathway for the designers to make better decisions on key design 

parameters such as honeycomb core shape and materials and layer sequences when 

designing honeycomb core sandwich panels to meet a desired performance. The 

effective stiffness values were determined by equating the strain energy of a RVE of 

the honeycomb core to the strain energy of an equivalent homogenised shell under 

the same resulting deformation for a given force. 

The presented study shows that parameters such as layer sequence and fibre 

orientations would significantly influence the effective stiffness properties of the 

laminated composite honeycomb cores in addition to the core shapes. The proposed 

homogenisation model provides a significant advancement in the inverse design 

approach for the all-composite honeycomb core sandwich panels by allowing 

designers to consider key design parameters such as core shape, geometry, 

materials, and composite layer sequences and their interactions in determining optimal 

designs for the required performance. The proposed methodology breaks away the 

limitations in existing methodologies in terms of core shapes, materials and cell wall 

composite layer sequences and provides a unified approach to consider all the above 

in a single modelling approach. 

To compare with existing methodologies for determining effective stiffness 

properties of the laminate composite wall hexagonal honeycomb core, an existing 

model developed based on a force-equilibrium approach for the hexagonal core with 

isotropic materials was also extended to determine effective stiffness properties for 

laminated composite hexagonal core (called modified-existing model). Predictions 

from the proposed model, modified-existing model, and other existing models were 

compared with finite element (FE) results of the hexagonal cores with different material 

configurations for the wall. Predictions from the proposed model were also compared 

with FE results for different honeycomb core shapes and cell wall composite layer 

sequences. 

Comparisons showed that the proposed model provides accurate predictions 

for the effective stiffness properties of the laminated composite hexagonal core for 
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different composite wall layer sequences. A modified-existing model also gave good 

predictions for the hexagonal cores. Both models performed better than the other 

existing models. The proposed model also provided accurate predictions for different 

honeycomb core shapes. The proposed model, therefore, is superior to any other 

existing model in terms of its general applicability. 

Simplified design plots were produced using the proposed model to calculate 

the effective properties of the honeycomb cores of different shapes. These plots are 

valuable in assisting the designers in determining the effective stiffness properties 

without having to go through a rigorous calculation process. 

The primary purpose of calculating the effective stiffness matrix of the 

honeycomb core is to reduce the computation cost associated with the analysis of a 

3D model of the sandwich panel with an actual discrete honeycomb core and to 

generalise the modelling of the sandwich panels. On the other hand, we should also 

have a reasonable accuracy of predictions for the responses using the equivalent 

models of the sandwich panels. The next chapter will investigate the modelling 

accuracy of the equivalent sandwich shell models using the effective stiffness values 

calculated for the honeycomb cores using the proposed homogenisation model. 
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Chapter 4: 
 
Equivalent model of the laminated 
composite honeycomb core sandwich 
panels 

4.1 General 

In Chapter 3, a homogenisation model was developed to predict the effective 

properties of the laminated composite honeycomb cellular cores. In this chapter, the 

effective stiffness properties of the cores are used to model the all-composite 

honeycomb core sandwich panels as equivalent models. Several plate and shell 

theories have been proposed to analyse sandwich panels as equivalent single-layer 

(Ferreira et al. 2005; Aydogdu 2009; Tounsi et al. 2013; Hamidi et al. 2015; Mahi and 

Tounsi 2015) and layer-wise (Plagianakos & Saravanos 2009; Mantari et al. 2012; 

Goswami & Becker 2016) models. Chapter 2 has reviewed several of those theories 

which differ based on their underlying assumptions, accuracy, and complexity in 

applications. Among the several plate theories, the classical laminate plate theory 

(CLT) and the first-order shear deformation theory (FSDT) are the most widely used 

theories for analysing composite and sandwich structures due to their computational 

efficiency while providing good accuracy. However, CLT has limited application for the 

analysis of sandwich structures due to its assumption that the cross-section remains 

plane and perpendicular to the reference surface after deformation, which essentially 

means that there are no transverse shear deformations. FSDT theory, which relaxes 

this assumption and considers transverse shear deformation, is often preferred in the 

analysis of sandwich structures because of its computational efficiency compared to 

higher-order theories and layer-wise theories and better accuracy in predictions 

compared to the CLT. Here, finite element (FE) analysis based on FSDT is used to 

model the sandwich panels as the equivalent single-layer plate together with effective 

core properties. Comparisons are being made for the predictions of the responses, 

such as maximum deflection and flexural stresses at the extreme plies of the face 

sheets under static bending and global buckling load under uniaxial compression  from 
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the equivalent single-layer models and 3D models with actual core geometries. Also, 

the effects of different material configurations of the honeycomb cores on the 

responses of sandwich panels are evaluated. This chapter does not develop any new 

methodologies for the analysis using FSDT; however, comparisons between the 3D 

FE models of sandwich panels with actual discrete core and equivalent models based 

on FSDT are used to further validate the effective stiffness matrix predictions of the 

core and to investigate accuracy of equivalent models compared to 3D models in 

predicting the responses such as overall deflections and global buckling. 

4.2 Equivalent model for the sandwich panels 

Originally, FSDT was developed for homogeneous and isotropic thick plates by 

Reissner and Mindlin (Reissner 1945; Mindlin 1951). Later, several researchers (Allen 

1969; Whitney 1987) extended the theory for the sandwich and composite plates and 

shells for theoretical analysis. As an analysis based on FSDT will be used later in this 

chapter, the FSDT for the sandwich panels is briefly outlined here.  

Consider a section of a sandwich panel (Fig.4.1(b)) of thickness 𝐻  consisting 

of lower and upper face sheets of thicknesses 𝑡𝑓
𝑙  and 𝑡𝑓

𝑢 respectively and a core of 

thickness ℎ. The face sheets are considered to be laminated composite, and the core 

is represented as a homogeneous continuum based on the effective stiffness 

properties. It’s assumed that there is a perfect bond between the face sheets and the 

core. The reference plane of the sandwich panel is assumed to be at the mid-height 

of the plate. The distance to the ply k from the reference plane is 𝑥3
𝑘 . 

 

 

2 

3 

1 
3 

(a) 
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Fig.4.1: (a) A sandwich panel and (b) typical section across the 1-3 plane of the 
sandwich panel under consideration. 

4.2.1 Displacement fields 

The displacement fields of the sandwich panel according to FSDT (Fig.4.2) can 

be written as: 

𝑣1
 (𝑥1

 , 𝑥2
 , 𝑥3

 ) = 𝑣1
𝑜(𝑥1

 , 𝑥2
 ) + 𝑥3

 𝜓1,                  (4.1) 

𝑣2(𝑥1
 , 𝑥2

 , 𝑥3
 ) = 𝑣2

𝑜(𝑥1
 , 𝑥2

 ) + 𝑥3
 𝜓2,                                    (4.2) 

𝑣3(𝑥1
 , 𝑥2

 , 𝑥3
 ) = 𝑣3

𝑜(𝑥1
 , 𝑥2

 ),                                      (4.3) 

where 𝑣1
 , 𝑣2 and 𝑣3 are the displacements at point (𝑥1

 , 𝑥2
 , 𝑥3

 ) in 1, 2 and 3 directions 

respectively. 𝑣1
𝑜 , 𝑣2

𝑜 and 𝑣3
𝑜  are the displacements at point (𝑥1

 , 𝑥2
 ) in the reference 

plane in 1, 2 and 3 directions respectively.  𝜓1 and 𝜓2 are the rotations of the cross 

sections originally perpendicular to axis-1 and axis-2 respectively. 

Fig.4.2:  Illustration of deformation of the sandwich panel in 1-3 plane according to 
FSDT. 
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4.2.2  Stress and strain relationships 

Using the displacement field defined in Eqs. (4.1) - (4.3), strains at a distance 

𝑥3
  from the reference plane can be expressed as: 

𝜀11 =
𝜕𝑣1

 

𝜕𝑥1
 =

𝜕𝑣1
𝑜

𝜕𝑥1
 
 
− 𝑥3

 𝜕𝜓1

𝜕𝑥1
 ,                           (4.4) 

𝜀11 =
𝜕𝑣1

 

𝜕𝑥1
 = 𝜀11

0
 
+ 𝑥3

 𝑘11,                  (4.5) 

𝜀22 =
𝜕𝑣2

 

𝜕𝑥2
 =

𝜕𝑣2
𝑜

𝜕𝑥2
 
 
− 𝑥3

 𝜕𝜓2

𝜕𝑦
,                  (4.6) 

𝜀22 =
𝜕𝑣2

 

𝜕𝑥2
 = 𝜀22

0
 
+ 𝑥3

 𝑘22,                  (4.7) 

𝛾12 =
𝜕𝑣1

 

𝜕𝑥2
 +

𝜕𝑣2
 

𝜕𝑥1
 = (

𝜕𝑣1
𝑜

𝜕𝑥2
 +

𝜕𝑣2
𝑜

𝜕𝑥1
 )
 
− 𝑥3

 (
𝜕𝜓1

𝜕𝑥2
 +

𝜕𝜓2

𝜕𝑥1
 ),               (4.8) 

𝛾12 = 𝛾12
0 + 𝑥3

 𝑘12,                  (4.9) 

𝛾13 = 𝜓1 −
𝜕𝑣3

𝑜

𝜕𝑥1
 ,                    (4.10) 

𝛾23 = 𝜓2 −
𝜕𝑣3

𝑜

𝜕𝑥2
 ,               (4.11) 

 

where 𝜀22 and 𝜀11 are the in-plane normal strains and 𝛾12 is in-plane shear strains at 

point (𝑥1
 , 𝑥2

 , 𝑥3
 ), 𝛾13 and 𝛾23 are the out-of-plane shear strains at point (𝑥1

 , 𝑥2
 , 𝑥3

 ), 𝜀11
0  

and 𝜀22
0  are the in-plane normal strains at point (𝑥1

 , 𝑥2
 ) in the reference plane, 𝑘11 and 

𝑘22 are the bending moments curvatures, and 𝑘12 is the twisting moment curvature. 

The relationship between the in-plane stresses and strains at point (𝑥1
 , 𝑥2

 , 𝑥3
 ) of a ply-

k can be written as: 

 

{

𝜎11
𝑘

𝜎22
𝑘

𝜏12
𝑘

} = [

𝑄11
𝑘 𝑄12

𝑘 𝑄16
𝑘

𝑄12
𝑘 𝑄22

𝑘 𝑄26
𝑘

𝑄16
𝑘 𝑄26

𝑘 𝑄66
𝑘

] {

𝜀11
𝑘

𝜀22
𝑘

𝛾12
𝑘

},              (4.12) 

 

where 𝑄𝑖𝑗
𝑘   are elements of the transformed in-plane material stiffness matrix, 𝜎11

𝑘   and 

𝜎11
𝑘   are the in-plane normal stresses in direction 1 and 2 respectively and 𝜏12

𝑘  is in-

plane shear stress of kth ply in the global coordinates system. The transverse shear 

stresses and strains (Eqs. 4.10 - 4.11) are assumed to be constant across the 

thickness of the sandwich panel and the transverse shear stresses and strains are 
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related using an equivalent transverse stiffness matrix calculated according to the 

methodology given in section 4.2.4. as: 

{
𝜏13
𝜏23
} = [

𝑄44
𝐸 𝑄45

𝐸

𝑄45
𝐸 𝑄55

𝐸 ] {
𝛾13
𝛾23
},               (4.13) 

𝑄𝑖𝑗
𝐸   are the equivalent transverse shear stiffness of the sandwich panel. Combining 

Eq. (4.12) and (4.13), following equation can be obtained: 

 

{
𝝈𝑝
𝝉𝑠
} = [

𝑸𝑝 0

0 𝑸𝑠
] {
𝜺𝑝
𝜸𝑠
},               (4.14) 

 

where; 

 

𝝈𝑝 = {

𝜎11
𝑘

𝜎22
𝑘

𝜏12
𝑘

},      (4.15)   𝝉𝑠 = {
𝜏13
𝜏23
},           (4.16) 

𝜺𝑝 = {

𝜀11
𝜀22
𝛾12
},    (4.17)   𝜸𝑠 = {

𝛾13
𝛾23
},           (4.18) 

 𝑸𝑝 = [

𝑄11
𝑘 𝑄12

𝑘 𝑄16
𝑘

𝑄12
𝑘 𝑄22

𝑘 𝑄26
𝑘

𝑄16
𝑘 𝑄26

𝑘 𝑄66
𝑘

], (4.19)      and   𝑸𝑠 = [
𝑄44
𝐸 𝑄45

𝐸

𝑄45
𝐸 𝑄55

𝐸 ],                 (4.20) 

 

4.2.3 Stress resultants 

Fig.4.3:  Forces and moments acting on the sandwich panel. 
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Forces and moments due to the stress resultants of the sandwich panel in Fig. 4.3 

can be written as in Eq. (4.21) to (4.23) using the stress-strain relationships defined in 

Eq. (4.14). 

𝑭𝑝 = ∫ 𝝈𝑝𝑑𝑥3
 

𝐻

2

−
𝐻

2

,                (4.21) 

𝑴𝑝 = ∫ 𝑥3
 𝝈𝑝𝑑𝑥3

 
𝐻

2

−
𝐻

2

,                  (4.22) 

and 

𝑭𝑠 = ∫ 𝝉𝑠𝑑𝑥3
 

𝐻

2

−
𝐻

2

 ,                (4.23)  

 

where 𝑭𝑝, 𝑴𝑝 and 𝑭𝑠 are the vector of in-plane forces, the moments, and the 

transverse shear forces of unit length respectively. They can be written as: 

 

𝑭𝑝 = {
𝐹11
𝐹22
𝐹12

},  (4.24)  𝑴𝑝 = {
𝑀11
𝑀22

𝑀12

},  (4.25)   and   𝑭𝑠 = {
𝐹13
𝐹23
}.         (4.26) 

 

Using the definition in Eq. (4.21) to Eq. (4.23), force resultants can be expressed in 

terms of the resultant section stiffness, strain vector, and curvature vector as: 

{

𝑭𝑝
𝑴𝑝

𝑭𝑠

} = [
𝑨 𝑩 0
𝑩 𝑫 0
0 0 𝑺

] {

𝜺𝑝
0

𝒌
𝜸𝑠

},                (4.27) 

where; 

𝜺𝑝
0 = {

𝜀11
0

𝜀22
0

𝜀12
0

},      (4.28)   𝒌 = {

𝑘11
𝑘22
𝑘12

},           (4.29) 

𝑨 = ∫ 𝑸𝑝𝑑𝑧 = ∑ 𝑸𝑝(𝑥3
𝑘+1 − 𝑥3

𝑘)𝑛
𝑘=1𝑧

,                  (4.30) 

𝑩 = ∫ 𝑧𝑸𝑝𝑑𝑧 =
1

2
∑ 𝑸𝑝 [(𝑥3

𝑘+1)
2
− (𝑥3

𝑘)
2
]𝑛

𝑘=1𝑧
,                   (4.31) 

𝑫 = ∫ 𝑧2𝑸𝑝𝑑𝑧 =
1

3
∑ 𝑸𝑝 [(𝑥3

𝑘+1)
3
− (𝑥3

𝑘)
3
]𝑛

𝑘=1𝑧
,                  (4.32) 

and 
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𝑺 = 𝐻𝑸𝑠.                 (4.33) 

4.2.4 Equivalent transverse shear stiffness 

In order to apply the FSDT to analyse the sandwich panels, it is essential to 

accurately estimate the equivalent transverse shear stiffness. In the case of a plate 

with homogenous isotropic material which has parabolic shear strain distribution (Fig 

4.4(a)), a unique shear correction factor of 5/6 has been commonly used to calculate 

the equivalent transverse shear stiffness (Timoshenko & Woinowsky 1959). However, 

in the case of a sandwich panel, based on combination of materials and the thickness 

of each layer, different discontinuities in the shear strain gradient may exist (Fig. 

4.4(b)), which could result in different effective shear correction factors (Carlsson & 

Kardomateas 2011). Several studies have been carried out to propose the shear 

correction factor for FSDT of sandwich panels (Vlachoutsis 1992; Birman & Bert 2002; 

Huang & Kardomateas 2002; Hadaviniai et al. 2006; Vrabie, Chiriac & Băetu 2017). 

Researchers have used different approaches and assumptions to calculate the shear 

correction factor of the sandwich panels. Birman & Bert (2002) reviewed the different 

methodologies to calculate the equivalent transverse shear stiffness of the sandwich 

panels and recommended the use of shear correction factor of 1 as an initial 

approximation considering, only the transverse shear stiffness of the core. However, 

the accuracy of the result is compromised when the face sheets are moderately thick 

and core becomes stiff (Carlsson & Kardomateas 2011). Vlachoutis (1992) proposed 

a methodology to estimate the shear correction factor for a sandwich and composite 

plates based on the principle of equivalent shear strain energy of actual structure and 

equivalent structure under cylindrical bending. The methodology used in ABAQUS 

(version 2021) (briefly presented in this section below) is also based on the same 

principle; however, both differ in the following: 

• In the methodology used in ABAQUS, the in-plane normal stress is defined 

using the elements of the compliance matrix of the section (Eq 4.36), whereas 

Vlachoutis (1992) considered only dominant bending stiffness term of the 

section to define in-plane normal stress. 
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• The neutral surface for the bending is defined such that the dominant 

membrane and bending coupling stiffness term becomes zero in Vlachoutis 

(1992). However, the methodology in ABAQUS applies shear stress boundary 

conditions (shear stress at top and bottom fibre should be zero and shear stress 

at the interface between adjacent plies should be equal) to find the position of 

the reference surface.  

 

Fig.4.4: Typical transverse shear strain variation in (a) homogenous isotropic plate 
and (b) sandwich panels. 

 

Here ABAQUS is used for FE analysis and the methodology adopted in the 

ABAQUS to calculate the equivalent transverse shear stiffness is presented below. 

Consider a sandwich panel in Fig. 4.3, only under a cylindrical bending moment 𝑀11 ≠

0  and transverse shear 𝐹13 ≠ 0  without gradient in the direction-2. All the other forces 

and moments are assumed to be zero: 𝐹11 = 𝐹22 = 𝐹12 = 0, 𝑀22 = 𝑀12 = 0 and the 

derivatives with respect to 𝑥2 are assumed to be zero for all the response variables. 

Although this is not true for asymmetric panels, it is used as a simplifying assumption 

to obtain the equivalent transverse shear stiffness. Under the assumptions above, the 

stress equilibrium within the section in the direction-1 can be written as: 

 

𝜕𝜎11

𝜕𝑥1
+
𝜕𝜏13

𝜕𝑥3
= 0.                (4.34) 

 

From the moment equilibrium about the axis-2, we can write: 

 

𝐹13 +
𝜕𝑀11

𝜕𝑥1
= 0.                 (4.35) 

(a) (b) 
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For linear elastic condition, in plane stress 𝜎11 in the 𝑘𝑡ℎ layer can be written as:  

 

      𝜎11
𝑘 = 𝑄11

𝑘 (𝜀11
0 + (𝑥3 − 𝑥3

0)𝑘11) + 𝑄12
𝑘 (𝜀22

0 + (𝑥3 − 𝑥3
0)𝑘22) + 

𝑄16
𝑘 (𝜀12

0 + (𝑥3 − 𝑥3
0)𝑘12,              (4.36) 

 

where the reference surface is considered at unknown distance 𝑥3
0 from the mid-plane 

for the calculation of equivalent transverse shear stiffness. 

The bending moment 𝑀11 and in-plane strains and curvature in Eq. (4.36) can be 

related using the elements of compliance matrix as: 

{
  
 

  
 
𝜀11
0

𝜀22
0

𝜀12
0

𝑘11
𝑘22
𝑘12}

  
 

  
 

=

{
 
 

 
 
𝑏11
𝑏21
𝑏61
𝑑11
𝑑21
𝑑16}

 
 

 
 

𝑀11.                          (4.37) 

 

The compliance matrix can be obtained by inverting section stiffness matrix as given 

in Eq. (4.38): 

 

𝑨𝑩𝑫−1 =

[
 
 
 
 
 
𝑎11 𝑎12 𝑎16
𝑎21 𝑎22 𝑎26
𝑎31 𝑎32 𝑎66

𝑏11 𝑏12 𝑏16
𝑏21 𝑏22 𝑏26
𝑏31 𝑏32 𝑏66

𝑏11 𝑏12 𝑏16
𝑏21 𝑏22 𝑏26
𝑏31 𝑏32 𝑏66

𝑑11 𝑑12 𝑑16
𝑑21 𝑑22 𝑑26
𝑑31 𝑑32 𝑑66]

 
 
 
 
 

.             (4.38) 

 

Substituting Eq. (4.37) into Eq. (4.36): 

 

𝜎11 = (𝐵1
𝑘 + (𝑥3 − 𝑥3

0)𝐵2
𝑘)𝑀11,               (4.39)                                                                        

 

where;  

 

𝐵1
𝑘 = 𝑄11

𝑘 𝑏11 + 𝑄12
𝑘 𝑏21 + 𝑄16

𝑘 𝑏61.               (4.40) 
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𝐵2
𝑘 = 𝑄11

𝑘 𝑑11 + 𝑄12
𝑘 𝑑21 + 𝑄16

𝑘 𝑑16.              (4.41) 

 

Substituting the 𝜎11 in Eq. (4.34) with Eq. (4.39), yields Eq. (4.42) which describes the 

relationship between the transverse shear stress through the thickness of the plate 

and resultant shear force in the section. 

 

𝜕𝜏13

𝜕𝑧
= (𝐵1

𝑘 + (𝑥3 − 𝑥3
0)𝐵2

𝑘)𝐹13             (4.42) 

 

Integrating Eq. (4.42) through the plate thickness and applying the boundary 

conditions (𝜏13 = 0 at top and bottom of the panel and 𝜏13
𝑘 = 𝜏13

𝑘+1) give the transverse 

shear stress distribution in ply k: 

𝜏13
𝑘 = [𝐵1

𝑘(𝑥3 − 𝑥3
0) + (

1

2
((𝑥3)

2 − (𝑥3
𝑘)
2
) − 𝑥3

0(𝑥3 − 𝑥3
𝑘))𝐵2

𝑘 + 𝐵0
𝑘] 𝐹13,         (4.43) 

 

and the distance to the reference plane can be found as: 

 

𝑥3
0 =

∑ (𝑥3
𝑘+1− 𝑥3

𝑘)[
1

2
(𝑥3
𝑘+1+𝑥3

𝑘)𝐵2
𝑘−𝐵1

𝑘]𝑛
𝑘=1

∑ (𝑥3
𝑘+1− 𝑥3

𝑘)[
1

2
(𝑥3
𝑘+1+𝑥3

𝑘)𝐵2
𝑘−𝐵1

𝑘]𝐵2
𝑘𝑛

𝑘=1

,             (4.44) 

 

where; 

𝐵0
𝑘 = ∑ (𝑥3

𝑖+1 − 𝑥3
𝑖 ) [𝐵1

𝑖 − (
1

2
(𝑥3

𝑖+1 + 𝑥3
𝑖 ) − 𝑥3

0)𝐵2
𝑖 ]𝑘−1

𝑖=1 .           (4.45) 

 

Similar procedure can be followed to obtain the equation for shear stress distribution 

𝜏23 through the plate thickness. The equivalent transverse shear stiffness of the 

section can be obtained by matching the total transvers shear strain energy of each 

ply using the shear stress distribution in Eq. (4.43) to the total transverse shear energy 

of the equivalent section: 

 

1

2𝐻
{𝐹13 𝐹23} [

𝑄44
𝐸 𝑄45

𝐸

𝑄45
𝐸 𝑄55

𝐸 ]

−1

{
𝐹13
𝐹23
} =

1

2
∑ ∫ {𝜏13

𝑘 𝜏13
𝑘 } [

𝑄44
𝑘 𝑄45

𝑘

𝑄45
𝑘 𝑄55

𝑘 ]

−1
𝑥3
𝑘+1

𝑥3
𝑘

𝑁
𝑘=1 {

𝜏13
𝑘

𝜏13
𝑘 } 𝑑𝑥3 (4.46) 
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4.3 Analysis of the sandwich panels 

The sandwich panels are analysed using equivalent plate models with 

homogenised core and 3D models with actual discrete core geometry using ABAQUS 

software. The effective stiffness properties of the hexagonal honeycomb core used in 

the analysis are derived using the strain energy-based homogenisation approach 

presented in Chapter 3. The dimensions and core density of the hexagonal core used 

in this analysis are the same as in section 3.4.2. The material configurations of the 

honeycomb core defined in Tables 3.1 and 3.2 are again considered here. However, 

only the first 6 combinations of material lay-ups in Table 3.2 are considered for the 

analysis. Equivalent models of the sandwich panels are analysed using the composite 

shell section feature available in the ABAQUS. ABAQUS provides a number of 

different shell elements to model the thick shell according to FSDT. S8R element (8- 

node thick shell element with reduced integration) with an element size of 50mm was 

selected after a convergence study.  

3D FE models of the sandwich panels considering actual hexagonal core geometry 

and two separate face sheets are used to validate the predictions of the simplified 

modelling technique of the sandwich panels using the equivalent models. Both the 

face sheets and core structures are modelled separately using composite shell 

sections and then assembled using tie constraints between the core and the face 

sheets. All the components of 3D models are modelled using the S4 shell element (4 

node general purpose shell element) with an element size of 25mm after a 

convergence study.  The fibre orientations of each ply are defined with respect to 

positive axis-1 for the face sheets and positive local axis-1̅ of the core walls following 

the sign convention (counterclockwise positive angle). The total thickness of the 

sandwich panels (H) is 160mm, thickness of the core(h) is 150mm, and the 

thicknesses 𝑡𝑓
𝑢 and 𝑡𝑓

𝑙  of both upper and lower face sheets are equal. Face sheets have 

symmetric fibre sequence arrangement of [0/90/0/90/0], and each ply has equal 

thickness. The material properties of Carbon/Epoxy lamina of face sheets with respect 

to its principal axes are defined as: 

𝐸𝐿 = 131000𝑀𝑃𝑎, 𝐸𝑇 = 10300𝑀𝑃𝑎, 𝑣𝐿𝑇 = 0.22 and 𝐺𝑇𝐿 = 6900𝑀𝑃𝑎, and the 

transverse shear moduli of the material are assumed to be equal to the in-plane shear 

modulus in the modelling. Multiple examples are considered for linear static bending 

and global buckling analysis of sandwich panels using equivalent models and 3D 
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models. The results from the equivalent models are compared with the results from 

the 3D models of the sandwich panels with actual core geometry. 

 

4.3.1 Analysis for linear static bending of sandwich panels 

Frist, simply-supported and cantilever sandwich panels under bending are 

considered for the analysis. The Fig. 4.5(a) shows a simply- supported sandwich panel 

with length of 2m and width of 1m. A uniform transverse load of 1𝑀𝑃𝑎 is applied on 

the upper face sheet and the sandwich panel is simply-supported at two opposite 

edges as shown in Fig. 4.5. The sandwich plate has length of 2m and width of 1m. 

The Fig. 4.4(b) shows the cantilever sandwich panel with dimensions of 1m×1m. A 

uniform transverse load of 100𝑁/𝑚𝑚 is applied along edges at the one end of the 

panel and opposite end is clamped. 

 

 

Fig.4.5:  (a) Simply-supported and (b) cantilever sandwich panels considered for the 
analysis. 
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Results are obtained for the displacement in 3-direction (𝑣3) and in-plane 

normal stress (𝜎11
 ) along the mid-line of the sandwich panels normal to axis-2. For the 

equivalent models, the displacement 𝑣3  is obtained at the reference surface as there 

is no through-thickness variation considered in theory, and for the 3D models, the 

displacement 𝑣3 is obtained at the upper and lower surface of face sheets (Fig. 4.6 & 

Fig. 4.7). The displacements from both equivalent models and 3D models for the 

simply-supported and cantilever sandwich panels with honeycomb core having 

different fibre lay-ups (Table 3.2) are plotted and shown in Fig. 4.8 and Fig. 4.9. 

Comparisons of the maximum displacement along the mid-line are given in Table 4.1 

and Table 4.2 for the simply-supported and cantilever panels respectively. The in-

plane normal stress 𝜎11
  values are obtained at the uppermost ply and bottommost ply 

of the face sheets of both 3D models and equivalent models to get the variation of the 

compressive and tensile stress (Fig. 4.10 & Fig. 4.12). The plots for the comparisons 

of stresses along the length from the equivalent models and 3D models of simply- 

supported and cantilever sandwich panels are given in Fig. 4.11 and Fig. 4.13, 

respectively. 

  

(b) 

3 

(a) 
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Fig.4.6:  Contour maps of the displacement of (a) 3D model and (b) equivalent 
model of the simply-supported sandwich panel having hexagonal core of fibre lay-up 

[45/-45/0/-45/45]. 

 Fig.4.7:  Contour maps of the displacement of (a) 3D model and (b) equivalent 
model of the cantilever sandwich panel having hexagonal core of fibre lay-up [45/-

45/0/-45/45]. 
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Fig.4.8:  Comparison of displacement of 3D models and equivalent models of the 
simply-supported sandwich panels having hexagonal core of different fibre lay-up. 
The displacement for the 3D models were obtained at upper (U) and lower (L) face 

sheets. 

 

Fig.4.9: Comparison of displacement of 3D models and equivalent models of the 
cantilever sandwich panels having hexagonal core of different fibre lay-up. The 
displacement for the 3D models were obtained at upper (U) and lower (L) face 

sheets. 
 

The displacements from the equivalent models showed good agreement with 
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16.4% and 19.59% lower than the maximum displacements of sandwich panels 

consisting of the core with the fibre lay-up [90/0/0/0/90] for simply-supported and 

cantilever conditions respectively according to the 3D models. For the same cases, 

the equivalent models predicted 19.15% and 22.45% lower maximum displacements 

for the sandwich panels consisting of the core with fibre lay-up [45/-45/45/-45/45] than 

the sandwich panels consisting of the core with fibre lay-up [90/0/0/0/90]. The 

maximum displacements of sandwich panels consisting of the cores, which have the 

same effective transverse shear stiffness but different in-plane stiffness (E.g. fibre lay-

ups 2 & 3), differ by less than 1% in both 3D and equivalent models. In general, the 

sandwich panels consisting of the cores with a higher percentage of angle-ply give 

lower displacement in comparison to the sandwich panels consisting of the cores with 

cross-ply due to the reason that the angle-ply laminate which has the higher in-plane 

shear stiffness than cross-ply laminate would positively affect the effective transverse 

shear stiffness of the cores.  While the FSDT-based equivalent models cannot predict 

the variation of the displacement across the depth of the sandwich panels, the 

predictions from the 3D models at the lower and upper surface are almost equal mainly 

because of the high out-of-plane normal stiffness of the honeycombs, which makes 

the panel stiff in out-of-plane normal direction. This also implies that using the higher 

order theories, which take into account the variation of the out-of-plane normal 

displacement across the depth of sandwich panels, may not significantly improve the 

accuracy of the predictions for the displacements of honeycomb core sandwich 

panels. Overall, the predictions of the displacements based on the equivalent models, 

together with the effective stiffness properties of the core, are reasonably accurate 

and consistent with the predictions from 3D models. 

Table 4.1: Comparison of normalised maximum displacements of simply-supported 
sandwich panels.    

Material 
lay-up 

Normalised maximum 
displacement 

(𝑏 − 𝑎)

𝑎
% 3D model 

(Lower face 
sheet) (a) 

Equivalent 
model (b) 

1 83.60 85.38 2.14 

2 99.50 104.06 4.58 

3 100.00 104.53 4.53 

4 90.15 92.18 2.25 

5 90.15 92.23 2.31 
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Table 4.2: Comparison of normalised maximum displacements of cantilever sandwich 
panels. 
 

 

 

 

6 48.97 49.54 1.16 

Material 
lay-up 

Normalised maximum 
displacement 

(𝑏 − 𝑎)

𝑎
% 3D model 

(Lower face 
sheet) (a) 

Equivalent 
model (b) 

1 80.41 81.92 1.88 

2 99.80 104.04 4.25 

3 100.00 104.37 4.37 

4 88.24 90.13 2.14 

5 88.23 90.18 2.21 

6 79.03 80.26 1.55 
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Fig.4.10: Contour maps of the in-plane normal stress 𝜎11
  of (a) uppermost ply of 3D 

model, (b) uppermost ply of equivalent model, (c) lowermost ply of 3D model,  and 
(d) lowermost  ply of equivalent model of the simply-supported sandwich panel 

consisting of hexagonal core with fibre lay-up [45/-45/0/-45/45]. 

(a) 

(b) 

(c) 

(d) 

3 
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(a) 

 

(b)    

Fig.4.11: Comparisons of in-plane normal stress 𝜎11
  from 3D models and equivalent 

models for the (a) uppermost ply and (b) lowermost ply of the simply-supported 
sandwich panels along axis-1 for different fibre lay-up of the hexagonal core.  
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Fig.4.12: Contour maps of the in-plane normal stress 𝜎11
  of (a) uppermost ply of 3D 

model, (b) uppermost ply of equivalent model, (c) lowermost ply of 3D model, and (d) 
lowermost  ply of equivalent model of the cantilever sandwich panel consisting of  

hexagonal core with fibre lay-up [45/-45/0/-45/45]. 
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3 



117 
 

 

      (a) 

 

      (b) 

Fig.4.13: Comparisons of in-plane normal stress 𝜎11
  from 3D models and equivalent 

models for the (a) uppermost ply and (b) lowermost ply of the cantilever sandwich 
panels along axis-1 for different fibre lay-up of the hexagonal core.  
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The in-plane stresses of the face sheets are important to determine the failure 

of the face sheets of the sandwich panels. Figs. 4.11 and 4.13 compare the in-plane 

normal stresses of simply supported and cantilever panels along the midline 

perpendicular to 2-axis. It can be seen from Figs. 4.11 and 4.13, although the results 

from the 3D model fluctuate in the adjacent points due to supported and unsupported 

areas in the hexagonal core, overall, the stress predictions are very close to the results 

from the equivalent models. The predictions of in-plane normal stresses at the 

uppermost and lowermost plies of the sandwich panels from the equivalent models of 

simply-supported and cantilever panels are consistent with the predictions of 3D 

models. Unlike the deflections of the sandwich panels, the in-plane normal stresses in 

the sandwich panels do not differ significantly based on the material configurations of 

the core. The in-plane normal stresses of the sandwich panels having cores with the 

cross-ply laminates (fibre lay-ups 2 & 3) are slightly lower due to higher in-plane 

stiffness of the core than the sandwich panels having cores with the angle-ply 

laminates in both the predictions from equivalent models and 3D models. The 

differences between the maximum stresses at the lowermost ply and uppermost ply 

from the equivalent models and 3D models of simply-supported sandwich panels are 

less than 2% and 3.4%, respectively, considering all the different material 

configurations of the core. For the cantilever sandwich panels, these differences are 

2.8% and 3.2%, respectively, for the stresses at 50mm away from the support. While 

the equivalent models are capable of predicting the in-plane stresses at the face 

sheets with reasonable accuracy, the equivalent models cannot predict the stresses 

at the individual cell walls of the core as the core is represented as a homogenised 

effective medium in sandwich panels. Therefore, the direct comparisons of stresses in 

the core between equivalent models and 3D models are not meaningful. However, the 

stresses in the core walls become the important responses to evaluate the local 

stability and material strength failure at the core, which are some of the failure modes 

that need to be considered in the design of the sandwich panels. As each individual 

wall of the core carries the stresses in the actual core structure, the stresses calculated 

in the homogenous core need to be related back to the individual plate to analyse the 

strength and stability of the cell walls of the core in the sandwich panels.   
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4.3.2 Influence of important parameters of sandwich panels on the accuracy 

of equivalent models 

The prediction accuracy of FSDT-based equivalent models depends on the 

accuracy of estimation of the equivalent transverse shear stiffness of sandwich panels. 

As discussed in section 4.2.4, the estimation of the equivalent transverse shear 

stiffness varies depending on the combination of the material and geometric 

parameters of the face sheets and core of the sandwich panels. This section 

investigates the consistency of the methodology in section 4.2.4 for the sandwich 

panels in estimating the equivalent transverse shear stiffness of the sandwich panels. 

Because it is common to assume (Zenkert, 1997) that the transverse shear stiffness 

of a sandwich panel is equal to the transverse shear stiffness of the core only when 

the face sheet thickness is small in comparison to the sandwich panel thickness, the 

displacements are also calculated under this assumption for the purpose of 

comparison (shown as equivalent model-2 in Table 4.3-4.6). Tables 4.3 and 4.4 show 

the comparisons between the maximum displacements for the simply-supported 

sandwich panels in Fig. 4.5(a) with different face sheet thickness to sandwich 

thickness ratios. In this case, the thicknesses of both upper and lower face sheets are 

varied equally while keeping the total thickness of the sandwich panel at 160mm. 

Tables 4.5 and 4.6 show the comparison between the maximum displacements for the 

simply-supported sandwich panels in Fig.4.5 (a) with the asymmetric face sheets 

having different thicknesses. Here, the total thickness of the sandwich panels and the 

thickness of the lower face sheet remain at 160mm and 5mm, respectively, while the 

thickness of the upper face sheet varies only. The displacements are calculated for 

the sandwich panels consisting of the core with two different fibre lay-ups [45/-45/0/-

45/45] and [0/0/90/0/0]. The displacements are normalised with respect to maximum 

displacement from 3D models in each case for the comparison.  

Table 4.3: Comparison of normalised maximum displacements for different face sheet 
to sandwich panel thickness ratios with core fibre lay-up of [45/-45/0/-45/45]. 

(𝑡𝑓
𝑙 + 𝑡𝑓

𝑢)

𝐻
    

 

Normalised maximum displacement 
(𝑏 − 𝑎)

𝑎
% 

(𝑐 − 𝑎)

𝑎
% 3D model 

 (a) 

Equivalent 
model-1 

(b) 

Equivalent 
model-2 

(c) 

0.07 100.00 101.86 104.68 1.86 4.68 

0.14 62.24 63.33 66.56 1.75 6.93 

0.23 49.21 50.30 55.04 2.21 11.84 
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Table 4.4: Comparison of normalised maximum displacements for different face sheet 
to sandwich panel thickness ratios with core fibre lay-up of [0/0/90/0/0]. 

 

Table 4.5: Comparison of normalised maximum displacements for different upper face 
sheet to lower face sheet thickness ratios with core fibre lay-up of [45/-45/0/-45/45]. 

 

Table 4.6: Comparison of normalised maximum displacements for different upper face 
sheet to lower face sheet thickness ratios with core fibre lay-up of [0/0/90/0/0]. 

 

0.33 42.56 43.69 50.63 2.65 18.96 

0.45 38.26 39.55 49.07 3.37 28.26 

(𝑡𝑓
𝑙 + 𝑡𝑓

𝑢)

𝐻
      

 

Normalised maximum displacement 
(𝑏 − 𝑎)

𝑎
% 

(𝑐 − 𝑎)

𝑎
% 3D model 

 (a) 

Equivalent 
model-1 

(b) 

Equivalent 
model-2 

(c) 

0.07 100.00 104.45 109.12 4.45 9.12 

0.14 68.92 72.76 78.60 5.57 14.04 

0.23 57.87 61.76 70.78 6.73 22.31 

0.33 51.78 55.91 69.07 7.97 33.40 

0.45 47.55 51.98 70.22 9.32 47.69 

𝑡𝑓
𝑢

𝑡𝑓
𝑙     

 

Normalised maximum displacement 
(𝑏 − 𝑎)

𝑎
% 

(𝑐 − 𝑎)

𝑎
% 3D model 

 (a) 

Equivalent 
model-1 

 (b) 

Equivalent 
model-2 

(c) 

1 100.00 101.86 104.68 1.86 4.68 

2 81.57 83.00 86.16 1.76 5.64 

3 75.88 77.31 81.38 1.89 7.26 

4 73.38 74.85 80.03 2.01 9.07 

5 72.03 73.52 79.97 2.07 11.03 

𝑡𝑓
𝑢

𝑡𝑓
𝑙     

 

Normalised maximum displacement 
(𝑏 − 𝑎)

𝑎
% 

(𝑐 − 𝑎)

𝑎
% 3D model 

 (a) 

Equivalent 
model-1 

 (b) 

Equivalent 
model-2 

 (c) 

1 100.00 104.45 109.12 4.45 9.12 

2 84.67 88.93 94.35 5.04 11.43 

3 79.70 84.01 91.12 5.41 14.33 

4 77.16 81.56 90.83 5.70 17.72 

5 75.40 80.03 91.68 6.15 21.59 
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When the face sheets to sandwich panel thickness ratio increases from 0.07 to 

0.45, the errors in the predictions of maximum displacements using the equivalent 

models increase from 1.86% to 3.37% (Table 4.3) and 4.45% to 9.32% (Table 4.4) for 

the fibre lay-up [45/-45/0/-45/45] and [0/0/90/0/0] respectively of the core.  When the 

upper face sheet to lower face sheet thickness ratio increases from 1 to 5, the errors 

in the predictions of displacements using the equivalent models increase from 1.86% 

to 2.07% (Table 4.5) and 4.45% to 6.15% (Table 4.6) for the fibre lay-up [45/-45/0/-

45/45] and [0/0/90/0/0] respectively of the core. However, the equivalent models 

considering the transverse shear stiffness of the sandwich panels is equal to the 

transverse shear stiffness of the core (results from equivalent model-2 in Tables 4.3-

4.6) fail to give satisfactory results when the face sheet thicknesses are not very small 

in comparison to the thickness of the sandwich panels. Considering all the different 

cases, the equivalent models of sandwich panels give reasonably accurate results for 

a wide range of face sheet to sandwich panel thickness ratios and asymmetric 

configuration of the face sheets when the transverse shear stiffness of the sandwich 

panels is estimated according to Eq. 4.46 in section 4.2.4. 

4.3.3 Analysis for global buckling of sandwich panels 

 Fig.4.14: Sandwich panel under uniaxial loading for the global buckling analysis. 

 

Linear Eigenvalue buckling analysis is conducted using 3D models and 

equivalent models to find the critical global buckling loads of sandwich panels under 

uniaxial loading (Fig. 4.14). A comparison of the results from the models is given in 

Table 4.7. The maximum difference between the critical global buckling load from the 

2𝑚 

1𝑚 
1 

3 

2 
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equivalent models and 3D models is 6.1%, which is for the sandwich panel consisting 

of a core with fibre lay-up [0/0/90/0/0]. The critical global buckling load of the sandwich 

panel is more sensitive to the transverse shear stiffness of the core than the in-plane 

stiffness of the core. The cores which have higher in-plane stiffness and lower 

transverse shear stiffness (cores with the cross-ply laminates) provide lower critical 

global buckling load than cores with lower in-plane stiffness and higher transverse 

shear stiffness (cores with angle ply laminates). The sandwich panel having the core 

with fibre lay-up [90/0/0/0/90] has the lowest global buckling load, which is predicted 

as 8748kN and 8218kN by the 3D model and equivalent model, respectively. The 

sandwich panel having the core with fibre lay-up [45/-45/45/-45/45] has the highest 

global buckling load, which is a 21.8% and 25.4% increase from the lowest buckling 

load according to the 3D model and equivalent model, respectively.   

Table 4.7: Comparison of global buckling loads under uniaxial compression. 
 

 

 

 

 

 

4.3.4 Sandwich panels with different honeycomb core shapes 

Figure. 4.15 shows the comparisons of the maximum displacements 𝑣3 of the 

simply-supported sandwich panels (Fig. 4.5(a)) consisting of different honeycomb core 

shapes such as hexagonal, triangular, and square cores with different fibre lay-up 

considered in the study. For all the different core shapes, the dimensions and relative 

core density are the same as in section 3.4.2. The calculated effective properties of 

the triangular and square cores in section 3.4.4 are used for the equivalent models of 

the sandwich panels.  For all the different core shapes, a very good agreement 

between the result from the equivalent models and the 3D models is seen. Also, for 

all the different material configurations of the cores, the maximum displacements of 

the sandwich panels do not differ significantly between different core shapes 

considered because the transverse shear stiffnesses of the different core shapes are 

Material 
lay-up 

Critical global buckling load(kN) 
(𝑏 − 𝑎)

𝑎
% 3D model 

(a) 
Equivalent 
model (b) 

1 10517.80 10134.00 -3.65 

2 8788.00 8252.00 -6.10 

3 8748.00 8218.00 -6.06 

4 9731.20 9341.00 -4.01 

5 9731.20 9336.00 -4.06 

6 10658.00 10307.00 -3.29 
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almost equal for all the different material configurations of the cores even though the 

in-plane stiffnesses are different (Figs.3.9 - 3.14). 

 

Fig.4.15:  Comparison of maximum displacements of the sandwich panels with 
different honeycomb core shapes. 

 

4.3.5 Comparison of the predictions with existing experimental studies 

While the purpose of the inverse design is to systematically determine the 

preliminary design parameters considering various design variables, the comparison 

of the predictions from the equivalent models against the experimental data could 

provide insight into how accurate and justifiable the predictions of equivalent models 

are for informing the optimal parameters for the detailed design based on complex and 

costly numerical models and experiments.  

Here we consider experiments conducted by Wei et al. (2020) to study three-

point bending behaviour all-composite beams. Both face sheets and hexagonal core 

of the sandwich panels used in their experiment were manufactured using T300-3K 

woven CFRP/epoxy having the properties as follows: tensile and compressive elastic 

moduli in principal directions are 𝐸𝐿
𝑡 = 𝐸𝑇

𝑡 = 54500𝑀𝑃𝑎 and 𝐸𝐿
𝑐 = 𝐸𝑇

𝑐 =

45790𝑀𝑃𝑎 respectively, Poisson's ratio 𝑣𝐿𝑇 = 0.0638, in-plane shear moduli  𝐺𝑇𝐿 =

3750𝑀𝑃𝑎 and compressive strength 𝜎𝐿
𝑐 = 𝜎𝑇

𝑐 = 528.95𝑀𝑃𝑎. The panels have 
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dimension of 305mm×84mm×16.18mm. Thickness of each face sheet is tf = 0.59mm. 

Thickness of the inclined walls of the hexagonal core is t=0.43mm and other wall has 

double the thickness of the inclined walls. Length of the core walls is l=8mm. For both 

face sheets and core, all the plies of laminate were arranged in same orientation 

(0/90). 

Fig.4.16: (a)All-CFRP sandwich panel under three-point loading and (b) failure due 
to face fracture (Wei et al. 2020). 

Figure 4.17 shows comparison of load-displacement behaviour from the 

experiments (Wei et al. 2020) and the equivalent models. The failure loads from the 

experiments varies between 3953N and 4285N while the maximum displacement at 

failure varies between 8.9mm and 10.9mm among the three different specimen. For 

the same scenario, the equivalent model of the sandwich panel consisting of the core 

with (0/90) plies predicts the maximum load of 5740N and maximum displacement of 

12.7mm at the face sheet failure stress of 526Mpa. The equivalent model of sandwich 

panel consisting of core with (45/-45) plies gives the maximum load of 5460N and 

maximum displacement of 11mm when the face sheet reaches the failure stress. The 

equivalent model consisting of (45/-45) plies for the core yields a lower failure load 

due to the core's reduced effective in-plane stiffness. Additionally, it exhibits lower 

deflection, attributed to the core's larger transverse shear stiffness, in contrast to the 

equivalent model with a (0/90) core. Unfortunately, experimental studies are very 

limited for all-composite honeycomb cores, and there are no adequate experimental 

results for the all-composite sandwich panels to investigate the influence of core and 

face sheets material configurations on the behaviour of sandwich panels. 

Discrepancies in failure load and maximum displacement between experiments and 

equivalent models may stem from various factors. Differences in laminate material 

properties obtained through testing may not precisely mirror those used in panel 

fabrication. Additionally, the equivalent model analysis does not consider nonlinear 

84mm 

(a) (b) 

305mm 
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effects present in the experiments, potentially resulting in stiffness and strength loss 

under loading. While visible face sheet fractures were evident in experiments, initiation 

of other, less apparent local failure modes may have occurred concurrently, their 

interaction potentially contributing to stiffness and strength degradation, phenomena 

not captured by the equivalent model. However, conducting experiments and 

employing complex 3D numerical models to assess the influence of various materials 

and geometric configurations on different failure modes and stiffness of sandwich 

panels is impractical due to the associated costs and time constraints. Therefore, 

inverse design offers a systematic and efficient approach to consider a large number 

of parameters and select optimal ones for target performance criteria. Despite this, the 

equivalent model approach remains valuable in the context of inverse design for 

sandwich panels. 

 

Fig.4.17:  Comparisons of load-displacement behaviour from the 3-point bending 
experiments of Wei et al. (2020) and the equivalent models. 

 

4.4 Conclusions 

This chapter presents an investigation of the effectiveness of the equivalent 

models in predicting the responses of sandwich panels against the 3D models with 

actual core structures. The sandwich panels consisting of hexagonal honeycomb 
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7000 
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cores with different material configurations were analysed for the deflections and in-

plane normal stresses under static bending, and the global critical buckling load under 

uniaxial compression using the equivalent models based on FSDT and predictions 

were compared against results from the 3D models with actual core structure. The 

analysis showed that FSDT-based equivalent models, together with effective 

properties of cores, could predict global responses of the sandwich panels to a 

reasonable accuracy. The accuracy of predicting the responses using FSDT depends 

on the accuracy of the estimation of equivalent transverse shear stiffness. The 

methodology assuming the shear strain energy equivalence under cylindrical bending 

used in the study performs consistently over a wide range of parameters, and 

predictions are in good agreement with 3D models. Although FSDT-based analysis 

was implemented using FE software in this study, results could be obtained to the 

same accuracy using analytical or semi-analytical approaches based on FSDT 

together with the methodology used for the equivalent transverse shear stiffness 

estimation in this study. While the significant time saving from modelling and analysis 

of equivalent models based on FSDT makes this approach more suitable for the 

inverse design of the sandwich panels compared to other complex models, there are 

certain limitations in using FSDT for the sandwich panel analysis. Because the 

equivalent models based on FSDT represent the sandwich panels as single-layer 

plates with homogenised core properties, these models are not capable of predicting 

the local failures such as cell wall buckling of the core and local buckling of face sheets, 

which are some of the important failure modes governing the performance of sandwich 

panels. On the other hand, 3D models of the sandwich panels could be used to predict 

every important response governing the design of the sandwich panels with linear and 

non-linear analysis techniques; however, this would require significant computational 

time and effort.  

Therefore, detailed models or more complex models are not suitable for the 

inverse design of the sandwich panels as this would require several repetitive 

evaluations of the domain of design variables. Nevertheless, it is necessary to have 

an approach to predict the local failures of all-composite honeycomb sandwich panels.  
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Chapter 5: 
 
Local buckling of laminated composite 
honeycomb core in sandwich panels 

5.1 General 

In Chapter 4, a FSDT-based equivalent model of the honeycomb core sandwich 

panels was developed to predict the global responses of the sandwich panels. The 

study illustrated that the equivalent model of all-composite sandwich panels, where 

the honeycomb core is represented as a homogenous continuum with effective 

stiffness, is capable of predicting the global responses such as maximum deflection, 

rupture of face sheets, and global buckling accurately. However, the equivalent 

models cannot predict the local failures such as local buckling of core walls and face 

sheets. Local buckling of the honeycomb core walls is related to the responses at the 

local level (stresses at each wall) which cannot be calculated directly based on the 

effective stiffness of the core. The stresses at the local level depend on the geometry 

and material parameters of the core, thus it’s necessary to have relationships relating 

the macro-level responses of the core at the continuum level to the local responses. 

As the transverse shear force is predominantly carried by the core, the shear buckling 

of the core wall is one of the important failure modes to be considered in the design of 

honeycomb core sandwich panels. In the past, researchers (Banerjee et al. 2010; Kim 

& Christensen 2000; López Jiménez & Triantafyllidis 2013; Pan et al. 2006, 2008; Shi 

& Tong 1994; Qiu et al. 2020; Zhang & Ashby 1992) have investigated the shear 

buckling behaviour of honeycomb cores. However, most of the studies are limited to 

cores of certain geometric shapes (mainly limited to hexagonal honeycomb core) and 

made using isotropic materials. In addition, those studies considered shear loading in 

two major directions separately and failed to consider the effects of resulting shear. 

The shear buckling strength of the honeycomb core depends on the effective direction 

of shear loading when the honeycomb core is subjected to combined transverse shear 

in two different directions (Cote et al. 2006), an aspect not considered in the existing 

models. In order to carryout inverse design of sandwich panels, in addition to the 
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equivalent stiffness models, it is also necessary to develop accurate yet simple models 

to predict shear buckling failures of honeycomb core sandwich panels.  

This chapter presents a simplified approach to predict the critical shear buckling 

load of the composite honeycomb cores, considering various geometries and material 

configurations. The predictions of the buckling loads for the honeycomb cores with 

different materials and geometric configurations using the proposed approach are 

verified using the results from the finite element (FE) analysis of RVEs of the 

honeycomb cores. 

5.2 Shear buckling of the core walls 

Consider a typical periodic honeycomb core structure built using laminated 

composite plates having different fibre layer sequences (Fig. 3.2).  In sandwich panels 

subjected to flexural loadings, the transverse shear forces are predominantly carried 

by the honeycomb core. While it is possible that honeycomb core cell walls may also 

carry compression forces, considering core depth is typically much larger than the 

thickness of the cell walls, such compressive forces can be taken as negligible 

compared to transverse shear forces acting on the cell walls (Zenkert 1997). 

Therefore, only transverse shear forces acting on cell walls are considered in this 

study. Similar to the assumptions made in existing studies (Shi & Tong 1994; Zhang 

& Ashby 1992), this study also assumes that transverse shear stresses are constant 

across the depth of the core. This can also be understood from the linear static bending 

analysis in section 4.1.1.  Figure. 5.1(a) shows the shear strain variation of the 

honeycomb core walls of the simply supported sandwich panel considered in the 

analysis of section 4.1.1, and Fig. 5.1(b) shows the variation of the shear strain of core 

walls at lower (L), middle (M) and upper (U) points of the core walls along the midline 

of the honeycomb core structure having fibre lay-up of [45/-45/0/-45/45]. From Fig. 

5.1(b), it can be seen that the shear strains along the height of the core walls remain 

relatively constant.   

 



131 
 

 

Fig. 5.1:  (a) Contour map of the shear strain of the hexagonal core with fibre lay-up 
[45/-45/0/-45/45] and (b) variation of the shear strain at lower (L), middle (M) and 

upper (U) points of the core walls. 

5.2.1 Relationship between the shear strain of each plate and the global 

transverse shear strain of the core 

The RVE of honeycomb cores were represented to be a homogeneous 

continuum core to analyse the global behaviour of sandwich panels (in Chapters 3 and 

4). For the study presented in this chapter, it is necessary to relate back the shear 

responses of the homogenous core to the individual plate of the actual discrete core 

to identify the local buckling behaviour of the individual plate. To illustrate the proposed 

approach, a RVE of the hexagonal core shown in Fig. 5.2(a) subjected to certain global 

transverse shear strain is considered. Then, each plate of the selected RVE of the 

hexagonal core (Fig. 5.2(a)), which is subjected to certain in-plane shear strain, is 
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approximated to be under a constant shear strain according to the assumption 

discussed in the previous section. Under this assumption, each node of the RVE (Fig. 

5.2(a)) is considered to be subjected to a normal displacement in direction-3 or 3̄ due 

to the applied transverse shear load on the RVE of the core. Fibre orientations of the 

composite core wall (Fig. 5.2(b)) are defined such that the anti-clockwise angle (𝜙) is 

positive with respect to positive local direction-1̄. The positive local direction-1̄  is 

defined for the plate-I, plate-II and plate-III, from node 1 to 5, node 5 to 2 and node 5 

to 4 respectively (Fig. 5.2(a)).  The positive direction-3̄ of the core wall is always 

defined in the positive global direction-3. Considering the sign convention assumed 

here, the positive shear strain of each plate is expressed as: 

𝛾̅13
𝐼 =

𝑢(5)3−𝑢(1)3

𝑙1
=

𝑢(5)3−𝑢(1)3

𝑙1
,                 (5.1)  

𝛾̅13
𝐼𝐼 =

𝑢(2)3−𝑢(5)3

𝑙1
=

𝑢(2)3−𝑢(5)3

𝑙2
,                 (5.2) 

𝛾̅13
𝐼𝐼𝐼 =

𝑢(4)3−𝑢(5)3

𝑙1
=

𝑢(4)3−𝑢(5)3

𝑙3
                   (5.3) 

where, 𝑢̅(𝑖)3 and 𝑢(4)3 are displacement at node i in global 3 and local 3̄  directions 

respectively. 

  

Fig. 5.2:  (a) RVE of hexagonal core with the nodal numbers and characteristic 
dimensions, (b) deformed shape of the plate under positive shear strain. The positive 

angle 𝜙 of the fibre orientation is measured counterclockwise with respect to the 

positive 1̄  direction. 
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The relationship between a laminated composite plate's shear load and shear 

strain can also be written using the classical laminate theory (CLT). Considering the 

assumption that the core is subjected to only the transverse shear strain, we may also 

assume that in-plane normal strains 𝜀1̅1
  and 𝜀3̅3

  of the plates are equal to zero, ignoring 

the shear-extensional coupling. Therefore, the relationship between the in-plane shear 

strain to the shear force of the plate -i (refers to I, II and III)  can be simplified as: 

𝛾̅13
𝑖 =

 𝐹̅13
𝑖 

𝐴̅66
𝑖 ,                   (5.4) 

where 𝐹̅13
𝑖  and 𝐴̅66

𝑖  are in-plane shear load and the section in-plane shear stiffness of 

plate-i respectively.  

In order to find the relationship between the applied global shear strain on the 

hexagonal core to shear strain at each plate, first, it’s necessary to solve for the 

displacement at each node, taking into account the periodic nature of the honeycomb 

core. Considering the periodic boundary conditions and force equilibrium of the RVE, 

nodal displacements can be solved to get the strain at each plate due to the applied 

global strain. Applying the periodic boundary condition to the RVE in Fig. 5.2, we can 

write: 

𝑢(3)1 − 𝑢(1)1 = 𝑢(4)1 − 𝑢(2)1.                 (5.5) 

RVE does not undergo any rigid body motions, therefore, we can write: 

𝑢(1)3 = 0.                              (5.6) 

We can define the average global shear strains of the RVE using the same definition 

of Eq. (3.68):  

𝛾13
 =

𝑢(3)3−𝑢(1)3

𝑝
,                   (5.7) 

𝛾23
 =

𝑢(2)3−𝑢(1)3

𝑞
+

𝑟

𝑝

𝑢(3)3−𝑢(1)3

𝑞
,                (5.8) 

The average global shear strain 𝛾13
  and 𝛾23

  of the hexagonal core RVE are illustrated 

in Fig. 5.3. 
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Fig. 5.3: Illustration of the global transverse shear strains of typical honeycomb RVE. 

 

 In addition to the conditions in Eqs. (5.5) – (5.8), we can also write additional 

equations considering the force equilibrium conditions of the RVE. Considering the 

force equilibrium of the RVE in Fig. 5.2(b), sum of the forces in all four corner nodes 

should be zero in the periodic honeycomb core. This can be explained considering the 

periodicity of the RVE in Fig. 5.4.  

 

Fig. 5.4:  Repetition of the RVEs to form the periodic honeycomb core. 
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Considering the adjacent RVEs a, b, c and d in Fig.5.4, the resultant force at point O 

should be zero:  

𝐹(4𝑎)13 + 𝐹(2𝑐)13 + 𝐹(1𝑑)13 = 0,                 (5.9) 

where 𝐹(𝑖)13 is the shear force at node i. Considering the repetitiveness of the RVEs, 

it is possible to write: 

𝐹(1𝑑)13 = 𝐹(1𝑎)13  and  𝐹(2𝑐)13 = 𝐹(2𝑎)13.             (5.10) 

From Eqs. (5.10), the Eq. (5.9) can be equivalently written for the RVE of the 

hexagonal core in the Fig. (5.2) as: 

𝐹(1)13 + 𝐹(2)13 + 𝐹(4)13 = 0.                (5.11) 

Resultant force at the internal node-(5) of the hexagonal RVE (Fig. (5.2)) also should 

be zero, which gives: 

𝐹(5)13 = 0.                          (5.12) 

For the hexagonal RVE considered (Fig. (5.2)), Eq. (5.12) is not an independent 

equation because by considering the local equilibrium of each plate, Eq. (5.11) can be 

shown to equal to Eq. (5.12).  

 

The general procedure to formulate the required equations to solve for the 

displacements of the RVE was presented until now. Considering the Eqs. (5.4) - (5.12), 

the nodal displacements can be found in terms of geometric and stiffness parameters 

of the RVE and substituting the results into Eqs. (5.1) - (5.3), the relationships between 

the applied global shear strains 𝛾13
  and 𝛾23

  of the hexagonal RVE to the shear strain 

of each plate  𝛾̅13
𝑖  of the RVE can be derived as: 

𝛾̅13
𝐼 =

𝛾23
 (𝐴̅66

𝐼𝐼 +𝐴̅66
𝐼𝐼𝐼 )(𝑙1−𝑙2𝑐𝑜𝑠𝜃) + 𝛾13

  (𝐴̅66
𝐼𝐼𝐼 −𝐴̅66

𝐼𝐼 )𝑙2𝑠𝑖𝑛𝜃

𝐴̅66
𝐼 𝑙2+(𝐴̅66

𝐼𝐼 +𝐴̅66
𝐼𝐼𝐼 )𝑙1

,             (5.13) 

𝛾̅13
𝐼𝐼 =

𝛾23
 (𝑙1−𝑙2𝑐𝑜𝑠𝜃)𝐴̅66

𝐼 −𝛾13
 (𝑙2𝐴̅66

𝐼 +2𝑙1𝐴̅66
𝐼𝐼𝐼 )𝑠𝑖𝑛𝜃

𝐴̅66
𝐼 𝑙2+(𝐴̅66

𝐼𝐼 +𝐴̅66
𝐼𝐼𝐼 )𝑙1

,             (5.14)   

𝛾̅13
𝐼𝐼𝐼 =

𝛾23
 ((𝑙1−𝑙2𝑐𝑜𝑠𝜃)𝐴̅66

𝐼 + 𝛾13
 (𝑙2𝐴̅66

𝐼 +2𝑙1𝐴̅66
𝐼𝐼 )𝑠𝑖𝑛𝜃

𝐴̅66
𝐼 𝑙2+(𝐴̅66

𝐼𝐼 +𝐴̅66
𝐼𝐼𝐼 )𝑙1

.            (5.15) 



136 
 

 

By considering the ratio between the applied shear strain 𝛾13
 /𝛾23

  as 𝑘, the shear strain  

𝛾̅13
𝑖  of the plate-i can be expressed as: 

𝛾̅13
𝑖 = 𝛾13

 𝑓𝑖,                  (5.16) 

where; 

𝑓𝐼 =
𝑘(𝐴̅66

𝐼 +𝐴̅66
𝐼𝐼𝐼 )(𝑙1−𝑙2𝑐𝑜𝑠𝜃) + (𝐴̅66

𝐼𝐼𝐼 −𝐴̅66
𝐼𝐼 )𝑙2𝑠𝑖𝑛𝜃

𝐴̅66
𝐼 𝑙2+(𝐴̅66

𝐼𝐼 +𝐴̅66
𝐼𝐼𝐼 )𝑙1

,             (5.17) 

𝑓𝐼𝐼 =
𝑘(𝑙1−𝑙2𝑐𝑜𝑠𝜃)𝐴̅66

𝐼 −(𝑙2𝐴̅66
𝐼 +2𝑙1𝐴̅66

𝐼𝐼𝐼 )𝑠𝑖𝑛𝜃

𝐴̅66
𝐼 𝑙2+(𝐴̅66

𝐼𝐼 +𝐴̅66
𝐼𝐼𝐼 )𝑙1

,             (5.18) 

𝑓𝐼𝐼𝐼 =
𝑘((𝑙1−𝑙2𝑐𝑜𝑠𝜃)𝐴̅66

𝐼 + (𝑙2𝐴̅66
𝐼 +2𝑙1𝐴̅66

𝐼𝐼 )𝑠𝑖𝑛𝜃

𝐴̅66
𝐼 𝑙2+(𝐴̅66

𝐼𝐼 +𝐴̅66
𝐼𝐼𝐼 )𝑙1

.            (5.19) 

Substituting Eq. (5.16) with Eq. (5.4), we can write the following relationship for the 

shear strain 𝛾13
  of the RVE: 

𝛾13
 =

𝐹13
𝑖   

𝐴̅66
𝑖 𝑓𝑖

 .                 (5.20) 

The critical shear buckling load of the honeycomb core is defined as the minimum 

shear load which requires for any wall of the RVE to buckle, therefore, the condition 

to determine the critical shear strain of the hexagonal core can be written from 

Eq.(5.20) as:  

𝛾𝑐𝑟 = 𝑚𝑖𝑛 {|
𝐹𝑐𝑟
𝐼   

𝐴̅66
𝐼 𝑓𝐼

| , |
𝐹𝑐𝑟
𝐼𝐼   

𝐴̅66
𝐼𝐼 𝑓𝐼𝐼

| , |
𝐹𝑐𝑟
𝐼𝐼𝐼   

𝐴̅66
𝐼𝐼𝐼 𝑓𝐼𝐼𝐼

|},             (5.21) 

where 𝐹̅𝑐𝑟
𝑖  is the critical shear buckling load of plate-i. 

 

5.2.2 Critical shear buckling load of the composite plate 

To find the critical shear strain of the hexagonal core using Eq. (5.21), it is 

necessary to solve for the critical shear buckling load of the composite wall. Closed-

form solutions for bucking problem may only be obtained for certain boundary and 

loading conditions. However, for the case of shear loading condition and with complex 

laminates where the coupling terms exist (𝐷̅16
 ≠ 0, 𝐷̅36

 ≠ 0), closed-form solutions 

may not be obtained, and only approximate solutions may be possible. For many of 

the approximate solutions, the formulation of the buckling problems is carried out using 
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the principle of minimum energy and approximate solutions are obtained using the 

Rayleigh-Ritz method (Leissa, 2005). The accuracy and computational efficiency of 

the Rayleigh-Ritz method in predicting the critical buckling load greatly depend on the 

choice of appropriate displacement function of the plate. Moreno-Garcia et al. (2016) 

provides a detailed overview of the various admissible function types commonly used 

in the Rayleigh-Ritz method, including trigonometric functions, characteristic functions, 

and orthogonal polynomials. Here, we will also use the Rayleigh-Ritz method based 

solution to calculate the critical shear buckling load of the composite wall.  Consider a 

plate (which is the composite wall) subjected to in-plane shear having rotationally 

restrained along the long edges (h>3l) and simply supported along short edges (Fig. 

5.5). For a long plate under in-plane shear load, the function in Eq. (5.22) can be used 

to approximately describe the out-of-plane displacement due to buckling (Qiao & Huo 

2011). The function consists of a term R, which takes into account the degree of 

rotational restraint at the boundaries of the plate. 

 

𝑢̅2(𝑥̅1, 𝑥̅3) =  𝐴𝑚
 [(1 − 𝑅) 𝑠𝑖𝑛 (

𝜋𝑥̅1

𝑙𝑖
) + 𝑅 (1 − 𝑐𝑜𝑠 (

2𝜋𝑥̅1

𝑙𝑖
))] 𝑠𝑖𝑛 (

𝜋(𝑥̅3−𝛼𝑥̅1)

𝑚𝑙𝑖
),        (5.22) 

 

where 𝑢̅2(𝑥̅1, 𝑥̅3) is the out-of-plane displacement of the plate-i in direction-2̅, 𝐴𝑚
 , 𝑚 

and α are the amplitude of the wave, ratio of the half wave length to 𝑙𝑖  and skew angle 

of the wave respectively and 𝑥̅1 and 𝑥̅3 are coordinates in directions-1̅ and direction-3̅ 

respectively. The function consists of a weighted term R, which takes into account the 

degree of rotational restrain of the plate. When R becomes zero, then the 

displacement function represents the simply-supported boundaries for all the edges 

and when R becomes 1, then the displacement function implies the clamped longer 

edges. R could be determined considering the boundary conditions along the 

rotationally restrained edges.  
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Fig. 5.5:  (a) Composite plate subjected to in-plane shear (b) rotationally restrained 
plate along longer edges. 

 

The boundary conditions along the rotationally restrained edges of the plate can be 

written as (Qiao & Huo 2011): 

𝑢̅2(0, 𝑥̅3) = 0,     𝑢̅2(𝑙𝑖, 𝑥̅3) = 0,               (5.23)  

 

𝑀11(0, 𝑥̅3) = −𝐷̅16
 (

𝜕2𝑢2

𝜕𝑥̅1𝜕𝑥̅3
)
𝑥̅1=0

− 𝐷̅13
 (

𝜕2𝑢2

𝜕𝑥̅3
2 )

𝑥̅1=0
 − 𝐷̅11

 (
𝜕2𝑢2

𝜕𝑥̅1
2 )

𝑥̅1=0
= −𝑘1 (

𝜕𝑢2

𝜕𝑥̅1
)
𝑥̅1=0

,  

      (5.24) 

𝑀11(𝑙𝑖, 𝑥̅3) = −𝐷̅16
 (

𝜕2𝑢2

𝜕𝑥̅1𝜕𝑥̅3
)
𝑥̅1=𝑙𝑖

− 𝐷̅13
 (

𝜕2𝑢2

𝜕𝑥̅3
2 )

𝑥̅1=𝑙𝑖

 − 𝐷̅11
 (

𝜕2𝑢2

𝜕𝑥̅1
2 )

𝑥̅1=𝑙𝑖

= 𝑘1 (
𝜕𝑢2

𝜕𝑥̅
)
𝑥̅1=𝑙𝑖

,  

       (5.25) 

where  𝐷̅𝑖𝑗
  is the element of the plate bending stiffness matrix defined with respect to 

the (1̄, 2̄,3̄) coordinate system and 𝑘1 is the stiffness of the edge rotational restrain due 

to unbuckled adjacent plate or plates. Simplifying the Eqs. (5.24) - (5.25) under the 

assumption of cylindrical bending (Qiao & Huo 2011) and with the substitution of Eq. 

(5.22), we will get: 

𝑅 =
1

1+
4𝜋𝐷̅11

 

𝑙𝑘1

,                 (5.26) 

𝑙𝑖 

ℎ 

1̅ 

3̅ 
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3̅ 
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where 𝑘1 is the stiffness of the rotational restrain of longer edges due to unbuckled 

adjacent plate or plates. When  𝑘1 = 0  →  𝑅 = 0, then simply supported conditions 

exist along all edges. The Rayliegh-Ritz method based solution for the buckling 

problem can be conveniently formulated using principle of minimum energy. Now total 

potential energy of the plate (Fig. 5.5) in equilibrium at the buckled state can be written 

as sum of strain energy due to bending (𝑈𝑏), strain energy stored in the rotational 

spring (𝑈𝑟) and the work done (𝑉): 

Π =  𝑈𝑏 + 𝑈𝑟 + 𝑉,                (5.27) 

where; 

𝑈𝑏 =
1

2
∬𝐷̅11

 (
𝜕2𝑢2

𝜕𝑥̅1
2 )

2

+  2𝐷̅13
 𝜕2𝑢2

𝜕𝑥̅1
2

𝜕2𝑢2

𝜕𝑥̅3
2 +𝐷̅33

 (
𝜕2𝑢2

𝜕𝑥̅3
2 )

2

+ 4𝐷̅16
 𝜕2𝑢2

𝜕𝑥̅1
2

𝜕2𝑢2

𝜕𝑥̅1𝜕𝑥̅3
+

4𝐷̅36
 𝜕2𝑢2

𝜕𝑥̅3
2

𝜕2𝑢2

𝜕𝑥̅1𝜕𝑥̅3
+ 4𝐷̅66

 (
𝜕2𝑢2

𝜕𝑥̅1𝜕𝑥̅3
)
2

𝑑𝑥̅1𝑑𝑥̅3,             (5.28) 

𝑈𝑟 =
1

2
∫ 𝑘1 (

𝜕𝑢2

𝜕𝑥̅1
)
𝑥̅1=0

2

+ 𝑘1 (
𝜕𝑢2

𝜕𝑥̅1
)
𝑥̅1=𝑙𝑖

2

𝑑𝑥̅3
 

 
,              (5.29) 

𝑉 =  ∬𝐹̅13
 𝜕𝑢2

𝜕𝑥̅1

𝜕𝑢2

𝜕𝑥̅3
𝑑𝑥̅1𝑑𝑥̅3.                (5.30) 

Substituting the displacement function (Eq. (5.22)) into Eq. (5.28) and then getting the 

first variation of total potential energy of the plate gives the condition for the minimum 

energy: 

δΠ = 𝛿𝑈𝑏 + 𝛿𝑈𝑟 + 𝛿𝑉 = 0.                        (5.31) 

By simplifying Eq. (5.31), the shear buckling load of the plate can be determined as: 

𝐹̅13
 =

𝜋2

𝑙2
[(

𝛼3

2𝑚2 +
𝑚2

2𝛼
+ 3𝛼  ) 𝐷̅11

 +
𝐷̅33
 

2𝑚2𝛼
+ (

𝛼 

𝑚2 +
1

𝛼
) 𝐷̅13

 − (
2𝛼2

𝑚2 +
6𝜋2

𝑙2
) 𝐷̅16

 −
2𝐷̅36

 

𝑚2 + (
2𝛼 

𝑚2 +

2

𝛼
) 𝐷̅66

 ] +
3𝜋3𝑅2

2𝑙2𝛼(3𝜋+𝑅𝑛)
[(6𝛼2 + 26𝑚2)𝐷̅11

 + 2𝐷̅13
 − 12𝛼𝐷̅16

 + 4𝐷̅66
 +

4𝑘1𝑚
2𝑙(−1+𝑅)2

𝜋2𝑅2
],                (5.32) 

where; 

𝑅𝑛 = 32𝑅 − 6𝜋𝑅 − 32𝑅2 + 12𝜋𝑅2.              (5.33) 
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In order to find the minimum critical shear buckling load 𝐹̅𝑐𝑟
 , Eq. (5.32) has to be 

minimised with respect to two unknowns α and 𝑚. A numerical solution procedure is 

implemented using MATLAB ‘fmincon’ function to get the critical skew angle 𝛼𝑐𝑟 and 

critical aspect ratio 𝑚𝑐𝑟. The upper and lower limits for the 𝛼 and 𝑚 are defined as [0, 

𝜋/2] and [0, ℎ/𝑙𝑖] respectively for positive shear load and [-𝜋/2,0] and [0, ℎ/𝑙𝑖] 

respectively for the negative shear load acting on the plate. Plate may subject to 

positive or negative shear depending on the applied global shear strain and the plate 

position in the RVE. 

 

5.2.3 Determination of rotational stiffness 

Depending on the shear load carried by each plate, core walls may not buckle 

simultaneously. Therefore, when one or more plates buckle (referred to as ‘critical 

plate/plates’ hereafter) at a time, other adjacent non-buckled plate or plates (referred 

to as ‘restraining plate/plates’ hereafter) restrain the rotation of the critical plate (or 

plates). Therefore, the boundary of the critical plate should be considered to lie 

between simply-supported (i.e. no restrain against the rotation at the boundaries) and 

fixed-supported (i.e. fully clamped against the rotation at the boundaries) for more 

accurate predictions. The effect of the rotational restraint provided by the restraining 

plates at the boundaries of the critical plates against buckling should be considered. 

The critical plates and restraining plates of the RVE could be identified based on the 

predictions of shear buckling strain for each plate, considering all the edges of plates 

are simply-supported in Eq. (5.21). Rotational stiffness provided by the restraining 

plates can be conservatively written in the following form assuming cylindrical bending 

(Kollár 2003): 

𝑘1 =
𝑐(𝐷̅11

 )𝑟𝑠
 

𝑙

1

𝑟𝑎
,                         (5.34) 

where c can be conservatively assumed to be equal to 2 when the restraining plate is 

subjected to the equal and opposite moment, (𝐷̅11
 )𝑟𝑠 is the bending stiffness of the 

restraining plate and 𝑟 is the amplification factor depending on the loading on the 

restraining plate. The factor 𝑟 is defined as (Kollár 2003): 

 𝑟𝑎 =
1

1− 
(𝐹̅13
 )

𝑟𝑠
𝑠𝑠

(𝐹̅𝑐𝑟
 )𝑟𝑠

𝑠𝑠

,                 (5.35) 
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the ratio (𝐹̅13
 )𝑟𝑠

𝑠𝑠/(𝐹̅𝑐𝑟
 )𝑟𝑠

𝑠𝑠 being defined as follows: 

(𝐹13
 )𝑟𝑠

𝑠𝑠

(𝐹𝑐𝑟
 )𝑟𝑠

𝑠𝑠 =
𝐴̅66
 (𝛾̅13

 )𝑟𝑠
𝑠𝑠

𝐴̅66
 (𝛾̅𝑐𝑟

 )𝑟𝑠
𝑠𝑠 =

(𝛾̅13
 )𝑟𝑠

𝑠𝑠

(𝛾̅𝑐𝑟
 )𝑟𝑠

𝑠𝑠 ,               (5.36) 

where (𝐹̅𝑐𝑟
 )𝑟𝑠

𝑠𝑠  is the critical shear buckling load of restraining plate with all boundaries 

simply-supported and (𝐹̅13
 )𝑟𝑠

𝑠𝑠  is the shear load carried by the restraining plate at the 

time of buckling of the critical plate considering simply supported boundaries. Two 

examples are presented in the following to illustrate the calculation of rotational 

stiffness 𝑘1 for the critical plate of the RVE (Fig. 5.2):   

1. If plate-II and plate-III (critical plates) buckle simultaneously before plate-I 

(restraining plate), then plate-I will restrain the rotation of plate-II and plate-III. 

Rotational stiffness provided by the plate-I can be determined as follows: 

 

𝑘1 =
1

2

2(𝐷̅11
 )𝑝1

 

𝑙1

1

𝑟𝑝1
,                 (5.37) 

 

where (𝐷̅11
 )𝑝1 and 𝑟𝑝1 are the bending stiffness and amplification factor of the 

plate-I. 

2. If plate-III (critical plate) only buckles first, then plate-I and plate-II (restraining 

plates) together will restrain the rotation of plate-I. Rotational stiffness provided 

by the restraining plates can be determined as follows: 

 

𝑘1 =
2(𝐷̅11

 )𝑝2
 

𝑙2

1

𝑟𝑝2
+
2(𝐷̅11

 )𝑝3
 

𝑙3

1

𝑟𝑝3
.             (5.38) 

 

Similar way, other scenarios can be considered by identifying the critical plate and 

restraining plates of the RVE. Once we determine the rotational stiffness of the critical 

plate, then critical shear buckling shear strain of the honeycomb can be calculated as 

illustrated using flowchart in Fig.5.6.  
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Fig. 5.6:  Flowchart for the calculation of critical shear buckling strain of a 
honeycomb core. 

 

5.3 Theoretical analysis 

5.3.1 Hexagonal core with identical plates 

For simplicity, it is assumed that all the plates in the RVE (Fig. 5.7) have an 

identical fibre layer arrangement, length (l) and thickness (t). Typical deformed 

configurations of regular hexagonal core (𝜃 = 120𝑜) in Fig. 5.6 illustrate the 
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displacements of each plate under different global shear strains of the RVE. For a RVE 

subjected to the shear strain of 𝛾13
  (Fig. 5.7(a)), only the plate-II and plate-III carry the 

load, and the plate-III does not take any shear load. Plate-III and plate-II are subject 

to positive shear and negative shear, respectively. Since the magnitudes of the shear 

strains are equal, both plates will buckle simultaneously if the plates are identical and 

without any bend-twist coupling. This is not true when plates are fabricated using 

angle-ply laminates consisting of bend-twist coupling. In such a case, shear buckling 

loads for the plates will be different depending on the fibre orientations and the 

direction of shear in the plate due to applied global strain. When the RVE is subjected 

to a shear strain 𝛾23
 (Fig. 5.7(b)), all the plates experience positive shear and plate-I is 

subjected to the largest shear strain. Therefore, plate-I will buckle first because the 

material and geometric parameters are identical for all three plates.  Similarly, when 

the RVE is subjected to combined shear of 𝛾13
 /𝛾13

 = 1 , plate-III will buckle first.  

 

Fig. 5.7:  Deformed configuration of hexagonal RVE with identical composite plates 
under the shear load (a) 𝛾13

  (b) 𝛾23
  and (c) 𝛾13

 /𝛾23
 = 1. 

 

It can be noted that depending on applied shear strain ratio on the RVE, the critical 

plate of RVE may be different which can be easily identified using a phase failure map. 

As all plates are identical in this case, the magnitude of the term  𝐹̅𝑐𝑟
𝑖 /𝐴̅66

𝑖 
 
 (Eq. (5.20)) 

is equal for all three plates if the plates are perfectly orthotropic laminates. Then Eq. 

(5.21) can be simplified to a form in Eq. (5.39) to plot the phase failure map in Fig 5.8. 

 

(a) (c) (b) 
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𝛾𝑐𝑟 = 𝑚𝑖𝑛 {|
𝐹𝑐𝑟
𝐼    

𝑘𝐴̅66
𝐼 | , |

2𝐹𝑐𝑟
𝐼𝐼   

𝐴̅66
𝐼𝐼 (𝑘−√3)

| , |
2𝐹𝑐𝑟

𝐼𝐼𝐼    

𝐴̅66
𝐼𝐼𝐼 (𝑘+√3)

|}.                      (5.39) 

 

From the phase failure map in Fig. 5.8, we can identify that if: 

• 𝑘 > √3 or 𝑘 < −√3, then plate-I buckles first,     

• 𝑘 = 0, then plate-II and plate-III buckle simultaneously before plate-I,  

• 𝑘 = √3, then plate-I and plate-II buckle simultaneously before plate-III, 

• 𝑘 = −√3, then plate-I and plate-III buckle simultaneously before plate-II, 

• 0 < 𝑘 < √3, then only plate-II buckles first, and 

• −√3 < 𝑘 < 0, then plate-III buckles first. 

 

  

Fig. 5.8:  Failure phase map of the hexagonal core with identical orthotropic plates. 

 

The failure map in Fig. 5.8 shows a coloured region for each plate where the plate is 

safe against the buckling under the applied shear load. The common intersecting 

region of all three plates shows a feasible design region where the honeycomb core 

is safe against shear buckling. 

5.3.2 Hexagonal core with non-identical plates 

If plate-II and plate-III have an identical fibre layer arrangement, length (l) and 

thickness (t), and plate-I has a double thickness (2t), same length and symmetric fibre 

ቤ
𝛾𝐴̅66

𝑖

𝐹̅𝑐𝑟
𝑖   
ቤ 

𝑘 

III II I 
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layup of plate-I and plate II, then deformed configurations of RVE of regular hexagonal 

core (𝜃 = 120𝑜)  for different shear strain conditions can be plotted as in Fig. 5.9. The 

plate-II and plate-III will buckle simultaneously under both the shear strains 𝛾13
  and 

𝛾13
 . However, when RVE is subjected to 𝛾23

 , both plates experience positive shear in 

contrast to the  𝛾13
  (Figs. 5.9(a) - (b)). Like in the RVE with identical plates, in this case 

also, Plate-III buckles first under combined shear 𝛾13
 /𝛾13

 = 1; however, the ratios of 

the shear strains between the plates are different to those in the RVE with identical 

plates. It can also be identified from Fig. 5.7 that nodal points of the deform 

configurations are coplanar in the hexagonal RVE with identical plates. However, in 

the case where Plate-I is different to the Plate II and Plate-III, the nodal points of the 

deform configurations are not coplanar (Fig.9(b) - (c)), which is not compatible with the 

deformation of the face sheets in the sandwich panels. Therefore, the honeycomb core 

with non-identical plates is subjected to bending due to a skin effect (Grediac 1993) of 

the sandwich panel. This effect is minimal if the bending rigidity of the face sheets 

(typically thin face sheets) is very small in comparison to the bending rigidity of the 

core (typically for a thick core).  

 

Fig. 5.9: Deformed configuration of hexagonal RVE with non-identical composite 
plates under the shear load (a) 𝛾13

  (b) 𝛾23
  and (c) 𝛾13

 /𝛾23
 = 1.  

 

For the regular hexagonal core, the critical shear strain 𝛾𝑐𝑟  of the core for the shear 

buckling can be derived from Eq. (5.21) as:  

 𝛾𝑐𝑟 = 𝑚𝑖𝑛 {|
2𝐹𝑐𝑟

𝐼    

𝐴̅66
𝐼 3𝑘

| , |
4𝐹𝑐𝑟

𝐼𝐼    

𝐴̅66
𝐼𝐼 (3𝑘−2√3)

| , |
4𝐹𝑐𝑟

𝐼𝐼𝐼     

𝐴̅66
𝐼𝐼𝐼 (3𝑘+2√3)

|}.            (5.40) 

(a) (b) (c)
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Here, for the purpose of plotting the failure phase map (Fig. 5.10), additionally, we also 

assume that 𝐹̅𝑐𝑟
𝐼 = 8𝐹̅𝑐𝑟

𝐼𝐼 . This is true when the RVE consists of plates having all the 

plies arranged in the same orientation. However, this may or may not be true for the 

other fibre lay-up of the plates. Subjected to the condition above, the failure phase 

map can be used as a theoretical guidance to identify the critical plates and the critical 

shear strain. 

 

 Fig. 5.10:  Failure phase map of the hexagonal core with non-identical orthotropic 
plates. Plate-I has double thickness of plate-II and plate-III. 

 

5.4 Shear buckling of honeycomb core with different shapes 

 

(a)  

III I II 

ቤ
𝛾𝐴̅66
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      (b)  

Fig. 5.11:  RVEs of (a) triangular core (b) rectangular core. 

Following the same procedure as in section 5.2.1, we can derive the equations 

for the critical shear strain of the honeycomb cores with different shapes. For 

rectangular and triangular cores, RVEs in Fig. 5.11 are used to analyse and to obtain 

the required equations for the critical shear strain of the cores. For the triangular core, 

positive direction - 1̅ is defined for the plates-I, plates-II, and plates-III from nodes 7 to 

9 (or 9-8), 1 to 9 (or 9-6) and 3 to 9 (or 9-4) respectively (Fig. 5.11(a)).  For the 

rectangular core, positive direction 1̅ is defined for the plates-I and plates-II from nodes 

5 to 7 (or 7-6) and 1 to 7 (or 7-4) respectively (Fig. 5.11(b)).  

For the triangular core in Fig. 5.11(a) with all members having identical laminate, strain 

at each plate can be derived as: 

𝛾̅13
𝐼 = 𝛾13

 ,                  (5.41) 

𝛾̅13
𝐼𝐼 =

𝛾13
 (𝑙1+𝑙3 cos(θ+β)+𝑘𝑙2sinβ)

𝑙2
,              (5.42) 

𝛾̅13
𝐼𝐼𝐼 =

𝛾13
 (𝑙3 cos(θ+β)+𝑘𝑙2sinβ)

𝑙3
,               (5.43) 

where; 

θ = cos−1 (
(𝑙2
2+𝑙3

2)−𝑙1
2

2𝑙2𝑙3
) and                (5.44) 

β = cos−1 (
(𝑙1
2+𝑙2

2)−𝑙3
2

2𝑙1𝑙2
) .                (5.45) 
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Fig. 5.12: Deformed configuration of triangular RVE with identical composite plates 
under the shear load (a) 𝛾13

  (b) 𝛾23
  and (c) 𝛾13

 /𝛾23
 = 1.  

Figure 5.12 illustrates the deformed configuration of an equilateral triangular 

core consisting of identical plates. In the presence of the 𝛾13
  global shear condition, 

all plates carry the shear load. However, plate-I emerges as the critical plate since it 

bears the largest shear load among the three plates in the RVE. Under the 𝛾23
  global 

shear condition, both plate-II and plate-III carry equal shear loads, while plate-I carries 

none, leading to the simultaneous buckling of both plates, especially if they are made 

of orthotropic laminates. In combined shear conditions, plate-II carries the largest 

shear load among the three plates, thus determining the core's shear buckling 

strength. Critical shear buckling strains under various shear strain conditions can be 

predicted using a phase failure map (illustrated in Fig. 5.13). 

For an equilateral triangular core with identical laminates for all the plates, the critical 

shear strain of core 𝛾𝑐𝑟  can be written as: 

 𝛾𝑐𝑟 = 𝑚𝑖𝑛 {|
𝐹𝑐𝑟
𝐼    

𝐴̅66
𝐼 | , |

2𝐹𝑐𝑟
𝐼𝐼    

𝐴̅66
𝐼𝐼 (1+√3𝑘)

| , |
2𝐹𝑐𝑟

𝐼𝐼𝐼   

𝐴̅66
𝐼𝐼𝐼 (−1+√3)

|}.            (5.46) 

The failure phase map in Fig. 5.11 can be plotted using the Eq. (5.46).  

(a) (b) (c) 
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Fig. 5.13:  Failure phase map of the triangular core with identical orthotropic plates. 

From the failure map in Fig.13, it can be identified that if,  

• −
1

√3
< 𝑘 <

1

√3
, then the plate-I buckles first,  

• 𝑘 =
1

√3
, then plate-I and plate-II buckle simultaneously, 

• 𝑘 = −
1

√3
, then plate-I and plate-III buckle simultaneously, 

• 𝑘 >
1

√3
, then plate-II buckles first, and 

• 𝑘 < −
1

√3
, then only plate-III buckles first. 

For rectangular honeycomb core (Fig. 5.11(b)), regardless of length and stiffness ratio 

of the plates, the applied shear strain in each direction is equal to shear strain at each 

plate when the plates are orthotropic. 

𝛾̅13
𝐼 = 𝛾13

 ,                 (5.47) 

𝛾̅13
𝐼𝐼 = 𝑘𝛾13

 .                 (5.48) 

This can be understood from the Fig. 5.14 which illustrates the deformed configuration 

of a square core under different shear strain conditions. 

 

ቤ
𝛾𝐴̅66
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Fig. 5.14: Deformed configuration of square RVE with identical composite plates 
under the shear load (a) 𝛾13

  (b) 𝛾23
  and (c) 𝛾13

 /𝛾23
 = 1.  

 

5.5 Validation of the proposed approach 

In order to validate the proposed semi-analytical approach, results are 

compared with the predictions from the linear buckling analysis of the RVEs carried 

out using ABAQUS software. RVEs of the hexagonal core are modelled with S4 shell 

elements and material properties are assigned using composite shell section feature 

available in ABAQUS. The fibre orientation of each lamina is defined according to 

positive local direction of each plate considered in this study. The element size of 5mm 

was selected following a mesh convergence study. Prescribed displacement boundary 

conditions are used to apply the shear load on models. Shear loads are applied to 

represent the following average global shear strain conditions on the RVEs: (a) 𝛾13
 ,     

(b) 𝛾23
 , and (c) 𝛾13

 /𝛾23
 = 1 (Fig. 5.15). Critical shear buckling strains and the critical 

plate of the RVEs are determined for positive and negative shear loading under above 

different scenarios. 

(a) (b) (c) 
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   (a)  (b) (c) 

Fig. 5.15: FE models analysed for the shear load (a) 𝛾13
   (b) 𝛾23

  and (c)  𝛾13
 /𝛾23

 = 1. 

Elastic properties of E-glass/Epoxy used for composite wall honeycomb cores with 

respect to principal axes of the lamina in the analysis are 𝐸̅𝐿 = 38600𝑁𝑚𝑚
−2, 𝐸̅𝑇 =

8270𝑁𝑚𝑚−2, 𝐺̅𝐿𝑇 = 4140𝑁𝑚𝑚−2, and 𝑣̅𝐿𝑇 = 0.26.  The hexagonal core wall lengths 

are equal and taken as l = 50mm, while the height of the core (h) is 150mm. The 

thickness of plate-I of the hexagonal core (Fig. 5.2) is double the thickness of the 

inclined plates (Plate II and III).  In this study hexagonal core having two different 

relative core densities (𝜌∗) 0.0722 and 0.036 are considered for the analysis. The 

thicknesses of plates are chosen to satisfy the requirement of the relative core 

density(ρ*). Fibre lay-ups and orientations defined in Table 5.1 for the inclined plates 

are assigned with respect to the local axes of the plates and fibre layer sequence and 

orientations of the plate-I are assumed to be symmetrical lay-up of the inclined plates. 

Each ply of the laminate has an equal thickness. 

 

Table 5.1: Material configurations of the core walls. 

Material 
lay-up 

Fibre orientation (0) 

1 0/0/90/0/0 

2 0/90/90/90/0 

3 90/0/0/0/90 

4 45/-45/0/-45/45 

5 45/-45/90/-45/45 

1 
2 

3 

𝑢1 = 𝑢2 = 𝑢3 = 0 

𝑢1 = 𝑢2 = 𝑢3 = 1 

𝑢1 = 𝑢2 = 𝑢3 = 0 𝑢1 = 𝑢2 = 0 

𝑢3 = 1 

𝑢3 = 1 +
𝑞

𝑝
 

𝑢3 =
𝑞

𝑝
 

𝑢1 = 𝑢2 = 0 

𝑢1 = 𝑢2 = 0 

𝑝 𝑞 
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6 45/-45/45/-45/45 

 

5.5.1 Predictions of the shear buckling for the hexagonal core 

The proposed approach is used to predict the critical shear buckling load of the 

hexagonal core, assuming the boundaries of core walls are simply-supported (SS) and 

rotationally restrained (RR) along longer edges. Predicted results for the hexagonal 

core with different material configurations are then compared with results from the FE 

analysis to validate the proposed approach. Tables 5.2-5.7 show the comparison of 

the results for the hexagonal core with relative core density (𝜌∗)  0.072 and Tables 5.8 

– 5.13 show the comparisons for the relative core density (𝜌∗) 0.036. Both positive and 

negative critical strains of the hexagonal core have been calculated and compared 

against the FE results. For the buckling under negative shear strains of the hexagonal 

core, the absolutes values of critical shear strains are shown in the Tables. 

 

Table 5.2: Critical shear strain of the hexagonal core (𝜌∗ = 0.072) under  𝛾13
 = 𝛾 

(positive) and 𝛾23
 = 0.  

 

 

Table 5.3: Critical shear strain of the hexagonal core (𝜌∗ = 0.072) under  𝛾13
 = 𝛾 

(negative) and 𝛾23
 = 0. 

Fibre 

lay-up 

Critical shear buckling strain Error% Critical plate 

Proposed-

SS(a) 

Proposed-

RR(b) 
FE(c) 

(𝑎 − 𝑐)

𝑐
% 

(𝑏 − 𝑐)

𝑐
% Proposed FE 

1 0.06476 0.08574 0.09076 -28.6 -5.5 II& III II&III 

2 0.06226 0.08064 0.09007 -30.9 -10.5 II& III II&III 

3 0.04234 0.06087 0.06813 -37.9 -10.7 II& III II&III 

4 0.01884 0.02797 0.03014 -37.5 -7.2 III III 

5 0.01867 0.02703 0.03000 37.8 -9.9 III III 

6 0.01636 0.02388 0.02852 -42.7 -16.3 III III 

Fibre 

lay-up 

Critical shear buckling strain Error % Critical plate 

Proposed-

SS(a) 

Proposed-

RR(b) 
FE(c) 

(𝑎 − 𝑐)

𝑐
% 

(𝑏 − 𝑐)

𝑐
% Proposed FE 

1 0.06476 0.08574 0.09076 -28.6 -5.5 II& III II&III 
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Table 5.4: Critical shear strain of the hexagonal core (𝜌∗ = 0.072) under  𝛾13
 = 0 and 

𝛾23
 = 𝛾  (positive). 

 

Table 5.5:  Critical shear strain of the hexagonal core (𝜌∗ = 0.072) under  𝛾13
 = 0 

and 𝛾23
 = 𝛾  (negative). 

 

Table 5.6: Critical shear strain of the hexagonal core ( 𝜌∗ = 0.072) under  𝛾13
 = 𝛾 and 

𝛾23
 = 𝛾  (positive). 

2 0.06226 0.08064 0.09007 -30.9 -10.5 II& III II&III 

3 0.04234 0.06087 0.06813 -37.9 -10.7 II& III II&III 

4 0.01884 0.02797 0.03014 -37.5 -7.2 II II 

5 0.01867 0.02703 0.03000 -37.8 -9.9 II II 

6 0.01636 0.02388 0.02852 -42.7 -16.3 II II 

Fibre 

lay-up 

Critical shear buckling strain Error % Critical plate 

Proposed-

SS(a) 

Proposed-

RR(b) 
FE(c) 

(𝑎 − 𝑐)

𝑐
% 

(𝑏 − 𝑐)

𝑐
% Proposed FE 

1 0.07478 0.09513 0.10400 -28.1 -8.5 II& III II&III 

2 0.07189 0.08900 0.10333 -30.4 -13.9 II& III II&III 

3 0.04889 0.06837 0.07827 -37.5 -12.6 II& III II&III 

4 0.02175 0.02881 0.03387 -35.8 -14.9 II&III II&III 

5 0.02155 0.02802 0.03347 -35.6 -16.3 II&III II&III 

6 0.01889 0.02436 0.03367 -43.9 -27.6 II&III II&III 

Fibre 

lay-up 

Critical shear buckling strain Error % Critical plate 

Proposed-

SS(a) 

Proposed-

RR(b) 
FE(c) 

(𝑎 − 𝑐)

𝑐
% 

(𝑏 − 𝑐)

𝑐
% Proposed FE 

1 0.07478 0.09513 0.10400 -28.1 -8.5 II& III II&III 

2 0.07189 0.08900 0.10333 -30.4 -13.9 II& III II&III 

3 0.04889 0.06837 0.07827 -37.5 -12.6 II& III II&III 

4 0.03924 0.04944 0.05467 -28.2 -9.6 II&III II&III 

5 0.03900 0.04738 0.05400 -27.8 -12.3 II&III II&III 

6 0.03440 0.04247 0.04200 -18.1 1.1 II&III II&III 

Fibre Critical shear buckling strain Error % Critical plate 
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Table 5.7: Critical shear strain of the hexagonal core ( 𝜌∗ = 0.072) under  𝛾13
 = 𝛾 

(negative) and 𝛾23
 = 𝛾  (negative). 

 

 

Table 5.8: Critical shear strain of the hexagonal core (𝜌∗ = 0.036) under  𝛾13
 = 𝛾 

(positive) and 𝛾23
 = 0.  

 

lay-up Proposed-

SS(a) 

Proposed-

RR(b) 
FE(c) 

(𝑎 − 𝑐)

𝑐
% 

(𝑏 − 𝑐)

𝑐
% Proposed FE 

1 0.03471 0.05036 0.04885 -28.9 3.1 III III 

2 0.03336 0.04760 0.04792 -30.4 -0.7 III III 

3 0.02269 0.03512 0.03614 -37.2 -2.8 III III 

4 0.01010 0.01494 0.01570 -35.7 -4.8 III III 

5 0.01000 0.01445 0.01547 -35.4 -6.6 III III 

6 0.00877 0.01275 0.01467 -40.2 -13.0 III III 

Fibre 

lay-up 

Critical shear buckling strain Error % Critical plate 

Proposed-

SS(a) 

Proposed-

RR(b) 
FE(c) 

(𝑎 − 𝑐)

𝑐
% 

(𝑏 − 𝑐)

𝑐
% Proposed FE 

1 0.03471 0.05036 0.04885 -28.9 3.1 III III 

2 0.03336 0.04760 0.04792 -30.4 -0.7 III III 

3 0.02269 0.03512 0.03614 -37.2 -2.8 III III 

4 0.01821 0.02579 0.02552 -28.6 1.1 III III 

5 0.01810 0.02499 0.02506 -27.8 -0.3 III III 

6 0.01597 0.02225 0.02079 -23.2 7.0 III III 

Fibre 

lay-up 

Critical shear buckling strain Error % Critical plate 

Proposed-

SS(a) 

Proposed-

RR(b) 
FE(c) 

(𝑎 − 𝑐)

𝑐
% 

(𝑏 − 𝑐)

𝑐
% Proposed FE 

1 0.01619 0.02344 0.02575 -37.1 -9.0 II& III II&III 

2 0.01557 0.02216 0.02540 -38.7 -12.8 II& III II&III 

3 0.01059 0.01592 0.01848 -42.7 -13.8 II& III II&III 

4 0.00471 0.00714 0.00820 -42.6 -12.9 III III 

5 0.00467 0.00695 0.00814 -42.7 -14.6 III III 

6 0.00409 0.00613 0.00774 -47.1 -20.8 III III 
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Table 5.9: Critical shear strain of the hexagonal core ( 𝜌∗ = 0.036) under  𝛾13
 = 𝛾 

(negative) and 𝛾23
 = 0. 

 

Table 5.10: Critical shear strain of the hexagonal core ( 𝜌∗ = 0.036) under  𝛾13
 = 0 

and 𝛾23
 = 𝛾  (positive). 

 

Table 5.11: Critical shear strain of the hexagonal core (𝜌∗ = 0.036) under  𝛾13
 = 0 

and 𝛾23
 = 𝛾  (negative). 

Fibre 

lay-up 

Critical shear buckling strain Error % Critical plate 

Proposed-

SS(a) 

Proposed-

RR(b) 
FE(c) 

(𝑎 − 𝑐)

𝑐
% 

(𝑏 − 𝑐)

𝑐
% Proposed FE 

1 0.01619 0.02344 0.02575 -37.1 -9.0 II& III II&III 

2 0.01557 0.02216 0.02540 -38.7 -12.8 II& III II&III 

3 0.01059 0.01592 0.01848 -42.7 -13.8 II& III II&III 

4 0.00471 0.00714 0.00820 -42.6 -12.9 II II 

5 0.00467 0.00695 0.00814 -42.7 -14.6 II II 

6 0.00409 0.00613 0.00774 -47.1 -20.8 II II 

Fibre 

lay-up 

Critical shear buckling strain Error % Critical plate 

Proposed-

SS(a) 

Proposed-

RR(b) 
FE(c) 

(𝑎 − 𝑐)

𝑐
% 

(𝑏 − 𝑐)

𝑐
% Proposed FE 

1 0.01870 0.02578 0.02967 -37.0 -13.1 II& III II&III 

2 0.01797 0.02425 0.02900 -38.0 -16.4 II& III II&III 

3 0.01222 0.01809 0.02133 -42.7 -15.2 II& III II&III 

4 0.00588 0.00806 0.00920 -36.0 -12.4 II&III II&III 

5 0.00583 0.00777 0.00907 -35.7 -14.3 II&III II&III 

6 0.00505 0.00679 0.00913 -44.7 -25.6 II&III II&III 

Fibre 

lay-up 

Critical shear buckling strain Error % Critical plate 

Proposed-

SS(a) 

Proposed-

RR(b) 
FE(c) 

(𝑎 − 𝑐)

𝑐
% 

(𝑏 − 𝑐)

𝑐
% Proposed FE 

1 0.01870 0.02578 0.02967 -37.0 -13.1 II& III II&III 

2 0.01797 0.02425 0.02900 -38.0 -16.4 II& III II&III 

3 0.01222 0.01809 0.02133 -42.7 -15.2 II& III II&III 

4 0.01061 0.01373 0.01520 -30.2 -9.7 II&III II&III 

5 0.01055 0.01326 0.01500 -29.7 -11.6 II&III II&III 



156 
 

 

Table 5.12: Critical shear strain of the hexagonal core (𝜌∗ = 0.036) under  𝛾13
 = 𝛾 

(positive) and 𝛾23
 = 𝛾  (positive). 

 

Table 5.13: Critical shear strain of the hexagonal core ( 𝜌∗ = 0.036) under  𝛾13
 = 𝛾 

(negative) and 𝛾23
 = 𝛾  (negative). 

 

6 0.00860 0.01062 0.01160 -25.9 -8.5 II&III II&III 

Fibre 

lay-up 

Critical shear buckling strain Error % Critical plate 

Proposed-

SS(a) 

Proposed-

RR(b) 
FE(c) 

(𝑎 − 𝑐)

𝑐
% 

(𝑏 − 𝑐)

𝑐
% Proposed FE 

1 0.00868 0.01259 0.01374 -36.9 -8.4 III III 

2 0.00834 0.01190 0.01339 -37.7 -11.2 III III 

3 0.00567 0.00878 0.00970 -41.5 -9.5 III III 

4 0.00252 0.00374 0.00427 -40.9 -12.6 III III 

5 0.00250 0.00361 0.00416 -39.8 -13.1 III III 

6 0.00219 0.00319 0.00393 -44.2 -18.8 III III 

Fibre 

lay-up 

Critical shear buckling strain Error % Critical plate 

Proposed-

SS(a) 

Proposed-

RR(b) 
FE(c) 

(𝑎 − 𝑐)

𝑐
% 

(𝑏 − 𝑐)

𝑐
% Proposed FE 

1 0.00868 0.01259 0.01374 -36.9 -8.4 III III 

2 0.00834 0.01190 0.01339 -37.7 -11.2 III III 

3 0.00567 0.00878 0.00970 -41.5 -9.5 III III 

4 0.00455 0.00645 0.00704 -35.4 -8.5 III III 

5 0.00453 0.00625 0.00693 -34.7 -9.8 III III 

6 0.00399 0.00556 0.00577 -30.9 -3.7 III III 
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Fig. 5.16: Top view and side view of critical buckling mode shapes for  the shear 
load (a-b) 𝛾13

 ( positive shear), (c-d)  𝛾13
 (negative  shear), (e-f)  𝛾23

 (positive shear), 

(g-h) 𝛾23
 (negative  shear), (i-j) 𝛾13

 / 𝛾23
 = 1(positive shear), and  (k-l) 𝛾13

 /𝛾23
 =

1(negative shear). The critical buckling mode shapes are shown for the hexagonal 
core RVEs with (0/0/90/0/0) and (45/-45/0/-45/45)   laminates and relative core 

density of 0.072. 1st and 3rd critical mode shapes of each row are for (0/0/90/0/0) 
laminate and 2nd and 4th are for (45/-45/0/-45/45) laminate. 

(i) (j) (k) (l) 

(e) (f) (g) (h) 

(a) (b) (c) (d) 
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It can be seen from Tables 5.2 – 5.13 that the predictions using the proposed 

approach give conservative results for all the different cases under the assumption 

that all the edges of the plates are simply-supported. The error percentage varies from 

-29% to -47 %, considering two different core densities. On the other hand, except for 

a few cases of fibre lay-up 6, the predictions are much closer to FE results under the 

assumption that longer edges of the plates are rotationally restrained. The fibre lay-up 

6 is unbalanced and symmetric laminate, causing extensional-shear and bend-twist 

coupling. Although bend-twist coupling is accounted for in the Eq. (5.32), the 

extensional-shear coupling is not considered in the shear buckling Eq. (5.32) of the 

composite plate. The presence of extensional and shear coupling in the laminate tends 

to underestimate or overestimate the critical strain depending on whether the normal 

stress caused is tensile or compressive, respectively. In all other fibre lay-ups, the 

absolute error is less than 16% (Tables 5.2 – 5.13) for all the different load cases and 

core densities. For the shear load of  𝛾13
 ,  the same absolute values of critical shear 

strains are obtained regardless of the positive and negative direction of applied shear 

load on the RVE of the hexagonal core for all the different material configurations 

(Tables 5.2-5.3 & Tables 5.8-5.9).  Under this shear loading on the RVE, only inclined 

plates (Plate II and Plate III) carry the shear load, and one of the inclined plates is 

under positive shear and the other is under negative shear (Figs. 5.16(a)-(d)). For the 

cross-ply laminates (fibre lay-up 1-3 in Table 5.1) RVE, both inclined plates buckle 

simultaneously since the magnitudes of critical shear strains are equal. However, for 

the RVE having angle-ply laminates (Fibre lay-up 4-6 in Table 5.1), the magnitudes of 

critical shear strains for the buckling of the inclined plates (plate II and plate III) are 

different due to effect of bend-twist coupling, therefore only one of the inclined plates 

which has the lowest critical shear buckling load buckles. When the direction of the 

shear load on the RVE is changed (positive to negative or vice-versa), other inclined 

plate buckles at the same absolute critical strain. Therefore, the change in the direction 

(positive to negative or vice-versa), of the applied shear loading 𝛾13
  does not change 

the critical shear buckling strain of the hexagonal core. 

 For the shear strain of 𝛾23
  on the RVE, critical shear buckling strain of the 

hexagonal core with specific fibre lay-up changes depending on the positive and 

negative direction of the applied shear load (Tables 5.4 - 5.5 & Tables 5.9 - 5.10). 

Under 𝛾23
  loading, for all the material configurations and for both negative and positive 
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shear loading, plate-II and plate-III buckle simultaneously (Figs. 5.16 (e)-(h)), and all 

the plates experience the strain in the same direction. Therefore, the change in the 

direction of the applied shear load (positive to negative or vice-versa) on the RVE gives 

different critical strains for the hexagonal cores with angle-ply laminates due to the 

effect of bend-twist coupling. However, for the hexagonal core with cross-ply 

laminates, the same magnitudes of the critical strains are obtained regardless of the 

direction of loading on the RVE. The difference between the critical shear strains for 

the positive and negative shear loading on the RVE with the angle-ply laminates is 

significant (the critical strain for negative shear is approximately 1.7 times the critical 

strain for the positive shear). Therefore, neglecting bend-twist coupling of laminates 

will under or overestimate the results for critical shear strain under 𝛾23
  loading.  

Comparing the critical shear strains of the hexagonal core under shear loadings 

𝛾13
  and 𝛾23

 , a slightly higher results are obtained for the shear load  𝛾23
  for all fibre 

lay-ups (Table 5.1) in positive shear and for the cross-ply laminates in negative shear. 

However, the critical strains of the hexagonal core under negative 𝛾23
  loading are 

significantly higher than for negative 𝛾13
  loading for the angle-ply laminates. In the 

combined shear loading where 𝛾13
  and 𝛾23

  are equal, the buckling behaviour is similar 

to 𝛾23
  loading in terms of the impact of the positive and negative shear loading on the 

hexagonal core. However, here only one of the inclined plates (Plate-III) buckles (Figs. 

5.16 (i) - (l)). 

 

5.5.2 Influence of important parameters 

In the previous section, the predictions using the proposed approach were 

validated using the results from FE. In this section the proposed approach is used to 

study the influence of important parameters on the critical shear buckling strain. The 

Fig. 5.17 shows the variation of the critical strains against the walls’ length ratio of the 

hexagonal core with constant relative core density of 0.072. The length of plate-II and 

plate-III are varied while length of the plate-I remains still at 50mm. The requirement 

of constant core density is maintained by selecting the suitable thickness for plates. 

All other conditions such as the thickness ratio of plates and material lay-up are kept 

the same as in the previous analysis.  
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Fig. 5.17:  Variation of the critical shear buckling strain with different length ratio 
between plate-I and plate-II for the shear load (a) 𝛾13

  (positive and negative shear), 

(b) 𝛾23
 (positive shear) and (c) 𝛾23

 (negative shear). 

 

Figure. 5.17(a) shows the variation of the critical strains with different length 

ratios between plate-I and plate-II under 𝛾13
  shear loading. Increasing the length ratio 

of plates reduces the critical strain of the RVE. Increasing the length of the plate-II and 

plate-III under constant core density leads to the reduction of the thickness of the 

inclined plates leading to the monotonic reduction of the buckling load as the plate-I 

does not contribute to any load sharing due to its orientation in the core.  On the other 

hand, different trends can be seen in the variations of the critical strains under the  𝛾23
  

loading on the RVE (Figs. 5.17(b)-(c)). Under 𝛾23
  loading, shear load on the hexagonal 

core is carried by all three plates; therefore, changing the length ratio leads to a 
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transition of critical strain dependency between the plate-I and the inclined plates 

(plate-II and plate-III). At the lower length ratio, the plate-I buckles first and governs 

the critical strain of the core. As the length ratio increases, both inclined plates buckle 

before the plate-I, and the critical strain is almost constant with the variation of the 

length ratio. For the cross-ply laminates, the transition of buckling from the plate-I to 

inclined plates happens at a length ratio of 0.75 for both positive and negative shear 

on the RVE. For the angle-ply laminates, the transition happens at a length ratio of 0.5 

for the positive shear and 0.75 for the negative shear. 

Figure. 5.18 shows the variation of the critical strain with the change of angle 

between the plates while the relative core density remains constant at 0.072. The 

maximum critical shear strains of the hexagonal core are obtained at around 130o and 

110o for the shear strains 𝛾13
   and 𝛾23

  respectively, regardless of positive or negative 

shear and the material configuration of the plates. It can be noted that although the 

thickness of each plate at these angles are lower than the thickness when the angle 

is 120o, the ratios in Eq. (5.21) become maximum at 130o and 110o for the respective 

shear loading. 
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Fig. 5.18:  Variation of the critical shear buckling strain with the angle 𝜃 between the 
plates for the shear load (a) 𝛾13

 (positive and negative shear), (b) 𝛾23
  (positive shear) 

and (c) 𝛾13
  (negative shear). 

 

 Figure. 5.19 shows the variation of the critical strain and shear buckling strength 

of the hexagonal core with relative core density. The shear buckling strength of the 

hexagonal core is calculated by multiplying the critical strain with the effective shear 

stiffness obtained from the proposed homogenisation approach in Chapter 3. The 

relative core density is varied by changing the thicknesses of the plates while keeping 

the length of each wall constant at 50mm. However, it can be deduced from Eq. (5.21) 

that even if the length of plates is changed (without changing the thickness) to vary 

the relative core density, the same effect on the critical shear strain could be obtained 

as long as the length ratio of the plates remains constant and the core depth to length 

ratio is adequate to consider as long plate. The Fig. 5.19(a) - (b) shows the critical 

shear buckling strain and corresponding shear buckling strength for the positive and 

negative shear strain 𝛾13
  with the change of core density. Although the effective 

stiffnesses of the hexagonal core with angle-ply laminates are higher than the effective 

stiffness of the hexagonal core with cross-ply laminates (Figs. 5.19(g) -(h)), the 

buckling strength of the hexagonal core with cross-ply laminates are higher than angle-

ply laminates for the positive and negative shear strain 𝛾13
  (Fig. 5.19(b)) and positive 

shear strain 𝛾23
  (Fig. 5.19(d)). For negative shear strain 𝛾23

 , the hexagonal core with 

angle-ply laminates shows higher shear buckling strength than the cross-ply laminates 

(Fig. 5.19(f)). It can be seen from Figs. 5.19(a) - (f), the shear buckling strength for the  

𝛾13
  loading is always lower than the shear buckling strength for  𝛾23

  loading. Therefore, 
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for the uniaxial bending, it is always efficient to orient the plate-I along the longitudinal 

axis of the beam and to use angle-ply laminates considering the direction of the shear. 

However, for the plates subjected to combined shear, using the angle-ply laminates 

for the core is beneficial if the design is governed by the stiffness (e.g. deflection). If 

the buckling strength governs the design, then material configurations and geometry 

of the hexagonal core need to be designed for the specific loadings for optimal 

performance.  
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Fig. 5.19:  Variation of the critical shear buckling strain and shear buckling strength 
for the shear load (a-b) 𝛾13

  (positive and negative shear), (c-d) 𝛾23
  (positive shear) 

and (e-f) 𝛾13
  (negative shear) and variation of the effective shear stiffness (g) 𝐺13

   

and (h) 𝐺23
  with the relative core density of the honeycomb. Shear buckling strength 

of the honeycomb core is calculated by multiplying the critical strain by the effective 
shear stiffness of the core. 

 

As discussed earlier, the presence of bend-twist coupling in the angle ply 

laminates positively and negatively influences the shear buckling strength of the 

honeycomb core. Figure. 5.20 shows comparisons of the critical strains obtained for 

the hexagonal core without considering the bend-twist coupling (orthotropic solution 

𝐷̅16 = 0 and 𝐷̅36 = 0)  with the predictions considering the effect of bend-twist coupling 
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for the material lay-up [45/-45/0/-45/45] in Table 5.1. The ratio of  𝐷̅16/𝐷̅66  is varied by 

changing the ratio of thickness of 45/-45 plies to 0-ply while the laminate remains still 

symmetric and balanced, and the relative core density of the hexagonal core is 0.072. 

For the 𝛾13
  loading, the critical strain is overestimated with an orthotropic buckling 

solution (Fig. 5.20(a)). Maximum error is found to be approx. 60% (Fig.5.20(b)) when 

the thickness of the 0-ply approaches zero. On the other hand, predictions with and 

without the bend-twist coupling converge to the same results as the percentage of 45/-

45 plies approaches zero. For the 𝛾23
  loading, the critical shear strain of the 

honeycomb core is overestimated by a maximum of 56% and underestimated by 25% 

for the positive and negative shear, respectively. When the thicknesses of each ply of 

laminate are equal (honeycomb cores considered in Table 5.2 - 5.3), the error 

percentages are 41%, 36% and -20% for positive and negative 𝛾13
 ,  positive 𝛾23

  and 

negative 𝛾23
 , respectively.   

Fig. 5.20:  Comparison of (a) the predictions for the critical shear strains and (b) 
percentage of difference in   predictions between with and without bend-twist 

coupling. Thickness of (45/-45) plies and 0-ply of angle ply laminate (45/-45/0/-45/45) 
in Table 1 were varied without changing the total thickness of the laminate (constant 

relative core density) to vary the influence of bend-twist coupling. 
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5.5.3 Comparisons between different honeycomb core shapes 
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Fig. 5.21:  Comparison of critical shear strain between honeycomb cores with 
different shapes  for the shear load (a) 𝛾13

 (positive shear), (b) 𝛾13
  (negative shear), 

(c) 𝛾23
  (positive shear), (d) 𝛾23

  (negative shear), (e) 𝛾13
 / 𝛾23

 = 1 (positive shear) and 
(f) 𝛾13

 / 𝛾23
 = 1 (negative shear). 

 

Table 5.14: Comparison of maximum of critical shear buckling strain of different 
honeycomb core shapes. 

 

Figure. 5.21 shows the comparison of critical shear buckling strains of different 

core shapes with an equal relative core density of 0.072. Here, plates’ lengths of 

equilateral triangular core and rectangular core are selected such that the 

characteristics dimensions p and q of the honeycomb RVEs are equal to the 

hexagonal core considered in this study, which are 86.6mm and 75mm, respectively. 

The hexagonal core has the highest critical buckling strains (Table 5.14) for all the 

different load cases compared to triangular and rectangular cores (Figs. 5.21(a)-(f)). 

The superior performance of the hexagonal core in comparison to other core shapes 

is mainly due its geometric configuration and the loading conditions considered.  

However, under the combined shear condition, the relative reduction in the shear 

buckling capacity of the hexagonal core is higher than the other core shapes. It can 

be noted that for the same relative core density and for selected plate lengths, 

rectangular and triangular cores have lower plate thickness than the hexagonal core. 

By selecting larger plates’ length 𝑙 for the triangular and rectangular cores, one may 

consider higher thickness for plates keeping the core density constant.  However, it 

Fibre 
lay-up 

Strain 
condition 

Maximum critical shear buckling strain (×10-3) 

Hexagonal 

Proposed | FE 

Triangular 

Proposed | FE 

Rectangular 

Proposed | FE 

Cross-

ply 

±𝑉𝑒 𝛾13
  85.74 | 90.76 34.18 | 40.28 12.70 | 15.29 

±𝑉𝑒 𝛾23
  95.13 | 104.00 44.12 | 52.00 13.83 | 15.67 

±𝑉𝑒 𝛾23
  /𝛾13

  48.85 | 50.36 30.38 | 32.64 9.29 | 11.41 

Angle-

ply 

+𝑉𝑒 𝛾13
  27.97 | 30.14 9.85 | 12.52 3.73 | 4.70 

−𝑉𝑒 𝛾13
  27.97 | 30.14 17.35 | 20.96 6.21 | 7.85 

+𝑉𝑒 𝛾23
  28.81| 33.87 12.74| 16.40 3.98 | 5.20 

−𝑉𝑒 𝛾23
  49.44 | 54.67 22.40 | 27.00 7.15 | 9.00 

+𝑉𝑒 𝛾23
  /𝛾13

  14.94 | 15.70 8.80 | 10.64 2.66 | 3.34 

−𝑉𝑒 𝛾23
  /𝛾13

  25.52 | 25.79 15.72 | 17.80 4.71 | 5.66 
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can be deduced from Eq. (5.21) that the critical strain of the sufficiently thick core does 

not vary with the length of the plate as long as the core density and length ratio 

between the plates remain constant.   

5.6 Conclusions 

A new simplified semi-analytical approach to predict the critical shear buckling 

load of the composite honeycomb cores was presented. The proposed approach is 

more general than the existing approaches and can be used to predict shear buckling 

loads of different honeycomb core shapes and material configurations. In the proposed 

model, using simply-supported boundaries for all the edges of the plates leads to the 

conservative prediction of the critical buckling load, while using boundary conditions 

of two edges simply-supported and the other two restrained against rotations leads to 

close predictions of critical shear buckling strains to the FE results. The hexagonal 

honeycomb core with the cross-ply laminates and the angle-ply laminates were 

investigated, while the cores with the cross-ply laminates provided the same critical 

shear buckling strains regardless of the positive and negative shear, the angle-ply 

laminates positively and negatively influenced the critical shear buckling load 

depending on the direction of applied shear loads on the core. As the bend-twist 

coupling exists in the angle-ply laminates, neglecting bend-twist terms may over or 

underestimates the results significantly. Comparing different core shapes, for the load 

cases considered in this study, the hexagonal core showed superior performance.  

The shear buckling strength of honeycomb cores can be optimised not only by 

changing material configurations but also changing the geometric parameters of the 

core. Because the proposed approach can be easily implemented and efficient 

compared to FE in predicting the shear buckling failure of the sandwich panels, it would 

be instrumental in selecting the honeycomb core shapes and material configurations 

of the core for the optimal design of sandwich panels. 
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Chapter 6: 
 
Local buckling of face sheets in 
sandwich panels 

6.1 General 

In Chapter 5, a novel approach to predict the local shear buckling of the 

honeycomb cores was presented. Another critical failure to consider in design of 

sandwich panels is the local buckling of face sheets (Allen 1969; Zenkert 1997). Face 

sheets of the honeycomb core sandwich panels can experience mainly two types of 

local buckling failures, namely, wrinkling and intracellular buckling, depending on the 

geometric and material configurations. Several researchers have investigated the 

wrinkling of thick and thin sandwich panels consisting of isotropic cores (Hoff & 

Maunters 1945; Plantema 1966; Allen 1969; Niu & Talreja 1999; Birman 2004) or 

orthotropic cores (Vonach & Rammerstorfer 2000; Pozorski et al. 2021 Wrinkling 

failure is a buckling failure of the face sheets, which is a short-wave buckling that 

occurs over multiple cells of the core, while intracellular buckling is a short-wave 

buckling occurring within a single cell of the core. Analytical (Hoff & Maunters 1945; 

Plantema 1966; Allen 1969; Birman 2004; Pozorski et al. 2021) and semi-analytical 

(Niu & Talreja 1999; Pozorski et al. 2021) solutions for the wrinkling failure have been 

presented for different loading conditions. As the methodologies and equations for the 

wrinkling failure were developed based on the assumptions that face sheets are 

supported by homogenous elastic foundations, those solutions cannot be used to 

predict the intracellular buckling of factsheets which occurs within a cell of the core. 

Existing analytical solutions (Norris 1964; Blass 1984; Thomsen & Banks 2004) for the 

intracellular buckling of sandwich panels were developed under several simplified 

assumptions related to geometry and boundary conditions. Therefore, it’s found to 

underpredict the intracellular buckling loads significantly. Considering the research 

carried out up to now on the local buckling of face sheets, very few studies are 

available on the intracellular buckling of sandwich panels. Therefore, the objective of 

this chapter is to develop a semi-analytical approach to accurately predict the 

intracellular buckling load of the cellular core sandwich panel. The proposed solution 
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methodology is developed considering the geometry of the cell, boundary, and 

different loading conditions. The proposed semi-analytical approach is verified using 

the FE results of the sandwich panels. Existing methodologies are also used to 

calculate the intracellular buckling loads, and comparisons have been made between 

different methodologies.  

6.2 Intracellular buckling of sandwich panels 

Consider a sandwich panel consisting of composite face sheets and a 

honeycomb core subjected to biaxial compressive forces at the lower and upper face 

sheets. It’s assumed that each cell of the face sheet is subjected to uniform and equal 

compressive force before the bifurcation point (Fig. 6.1(a)). As the interest is in the 

intracellular buckling load of the sandwich panel, a cell as shown in Fig. 6.1(b) is 

selected for the buckling analysis of plate considering the boundaries are rotationally 

restrained due to the core walls attached to the edges.   

Fig.6.1: (a) A sandwich panel with intracellular buckling and (b) typical hexagonal cell 
of factsheet subjected to uniform biaxial compressive force. 

 

6.2.1 Admissible displacement function 

As this is a buckling problem of a non-rectangular shape plate (e.g. Fig. 6.1(b)) 

with combined loading conditions and with the laminates having the coupling terms, a 

closed-form solution may not be possible. Therefore, Rayleigh-Ritz method is adopted 

to get an approximate solution. In the past, the studies on the intracellular buckling of 

the sandwich panels (Norris 1964; Blass 1984; Thomsen & Banks 2004), restricted 

support conditions of the cell to classical conditions such as simply-supported or 

(a) (b) 

𝐹̅11 𝐹̅11 
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clamped. However, considering the intracellular buckling of honeycomb core sandwich 

panels, the edges of each cell may not be simplified to classical support conditions for 

more accurate predictions.  The degree of restraint offered by the core walls to the cell 

edges could vary between null restraint, representing the simply-supported condition, 

and full restraint, representing a clamped condition. Since the accuracy and 

computational efficiency of Rayleigh-Ritz method in predicting the critical buckling load 

greatly depends on the choice of appropriate displacement function of the plate, it’s 

critical to choose a suitable function to satisfy the edge restrain conditions. Such edge 

restraint conditions can be accounted for by considering the displacement of such a 

plate as a weighted superposition of the displacement function for simply-supported 

edges and that of clamped edges (Yang & Wang, 2017), with the contribution of each 

depending on the degree of edge rotational restraint at the boundaries. For a 

rectangular plate (Fig. 6.2), a compatible displacement function can be written of the 

form (Chai (1994)):   

 

𝑣̅3(𝑥̅1, 𝑥̅2) =  ∑ 𝐴𝑚𝑛𝑋𝑚(𝑥̅1)𝑌𝑛(𝑥̅2),
𝑀,𝑁
𝑚,𝑛                 (6.1) 

 

where, 𝑋𝑚 and 𝑌𝑛 are suitable functions, which satisfy the geometric boundary 

conditions of the plate on the edges perpendicular to the 1̅ and 2̅ axis respectively, and 

𝐴𝑚𝑛 are the unknown coefficients of the function and 𝑣̅3(𝑥̅1, 𝑥̅2) is the out-of-plane 

normal displacement at coordinate(𝑥̅1, 𝑥̅2). 

 

Fig.6.2: Rectangular plate of all edges rotationally restrained subjected to biaxial 
compression. 

𝐹̅22 
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Extending the Eq. (6.1), Qio & Shan (2007) defined a function for the out-of-plane 

displacement as in Eq. (6.2) for the buckling problem of a rectangular plate (Fig. (6.2)) 

with all edges rotationally restrained:  

 

𝑣̅3(𝑥̅1, 𝑥̅2) =  ∑ 𝐴𝑚𝑛 [(1 − 𝑅1) sin (
𝑚𝜋𝑥̅1

𝑙1
) + 𝑅1 (1 − cos (

2𝑚𝜋𝑥̅1

𝑙1
)) ] [(1 −𝑀,𝑁

𝑚,𝑛

𝑅2) sin (
𝑛𝜋𝑥̅2

𝑙2
) + 𝑅2 (1 − cos (

2𝑛𝜋𝑥̅2

𝑙2
))] ,            (6.2) 

where; 

 𝑋𝑚 (𝑥̅1) = [(1 − 𝑅1) sin (
𝑚𝜋𝑥̅1

𝑙1
) + 𝑅1 (1 − cos (

2𝑚𝜋𝑥̅1

𝑙1
)) ]             (6.3) 

 

𝑌𝑛 (𝑥̅2) = [(1 − 𝑅2) sin (
𝑛𝜋𝑥̅2

𝑙2
) + 𝑅2 (1 − cos (

2𝑛𝜋𝑥̅2

𝑙2
)) ]              (6.4) 

 

𝑅1 and 𝑅2 are the degree of rational restraints along the edges parallel to 1̅ and 2̅ axis 

respectively. The expressions for the 𝑅1 and 𝑅2 can be derived from satisfaction of the 

required boundary conditions along the edges of the plate. The boundary conditions 

along rotationally restrained edges parallel to the axis-1̅  can be written as:  

𝑣̅3(0, 𝑥̅2) = 0,                     (6.5) 

𝑣̅3(𝑙2, 𝑥̅2) = 0,                   (6.6) 

 

𝑀̅11
 (0, 𝑥̅2) = −𝐷̅11

𝑓
(
𝜕2𝑣̅3

𝜕𝑥̅1
2 )

𝑥̅1=0
− 𝐷̅12

𝑓
(
𝜕2𝑣̅3

𝜕𝑥̅2
2 )

𝑥̅1=0
− 𝐷̅16

𝑓
(
𝜕2𝑣̅3

𝜕𝑥̅1𝜕𝑥̅2
)
𝑥̅1=0

= −𝑘1 (
𝜕𝑣̅3

𝜕𝑥̅1
)
𝑥̅1=0

, (6.7) 

 

𝑀̅11
 (𝑙1, 𝑥̅2) = −𝐷̅11

𝑓
(
𝜕2𝑣̅3

𝜕𝑥̅1
2 )

𝑥̅1=𝑙1

− 𝐷̅12
𝑓
(
𝜕2𝑣̅3

𝜕𝑥̅2
2 )

𝑥̅1=𝑙1

− 𝐷̅16
𝑓
(
𝜕2𝑣̅3

𝜕𝑥̅1𝜕𝑥̅2
)
𝑥̅1=𝑙1

= 𝑘1 (
𝜕𝑣̅3

𝜕𝑥̅1
)
𝑥̅1=𝑙1

  

                   (6.8) 

Similarly, the boundary conditions along rotationally restrained edges parallel to the 

axis-2̅  can be written as: 

 

𝑣̅3(𝑥̅1, 0) = 0,                   (6.9) 

 

𝑣̅3(𝑥̅1, 𝑙2) = 0,                 (6.10) 
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𝑀̅22
 (𝑥̅1, 0) = −𝐷̅22

𝑓
(
𝜕2𝑣̅3

𝜕𝑥̅2
2 )

𝑥̅2=0
− 𝐷̅12

𝑓
(
𝜕2𝑣̅3

𝜕𝑥̅1
2 )

𝑥̅2=0
− 𝐷̅16

𝑓
(
𝜕2𝑣̅3

𝜕𝑥̅1𝜕𝑥̅2
)
𝑥̅2=0

= −𝑘2 (
𝜕𝑣̅3

𝜕𝑥̅2
)
𝑥̅2=0

(6.11) 

 

𝑀̅22
 (𝑥̅1, 𝑙2) = −𝐷̅22

𝑓
(
𝜕2𝑣̅3

𝜕𝑥̅2
2 )

𝑥̅2=𝑙2

− 𝐷̅12
𝑓
(
𝜕2𝑣̅3

𝜕𝑥̅1
2 )

𝑥̅2=𝑙2

− 𝐷̅16
𝑓
(
𝜕2𝑣̅3

𝜕𝑥̅1𝜕𝑥̅2
)
𝑥̅2=𝑙2

= −𝑘2 (
𝜕𝑣̅3

𝜕𝑥̅2
)
𝑥̅2=𝑙2

,

                  (6.12) 

 

where, 𝐷̅𝑖𝑗
𝑓
 are the element of bending stiffness matrix of factsheet. Substituting Eq. 

(6.3) - (6.10) with Eq. (6.2) and simplifying with the conservative assumption that plate 

undergoes cylindrical bending in each direction (Qio & Shan 2007), we will get: 

 

𝑅1 =
1

1+(
4𝑚𝜋𝐷̅11

𝑓

𝑘1𝑙1
)

                (6.13) 

 

𝑅2 =
1

1+(
4𝑛𝜋𝐷̅22

𝑓

𝑘2𝑙2
)

                (6.14) 

 

where, 𝑘1 and 𝑘2 are the stiffnesses of rotational restraints along the boundaries 

parallel to axis-1̅ and axis-2̅ respectively. Higginson et al. (2021) showed that the out-

of-plane displacement function for the buckling problem of a curved plate may be 

written in form as:  

 

𝑣̅3(𝑥̅1, 𝑥̅2) =  ∑ 𝐴𝑚𝑛𝑋𝑚(𝑥̅1)𝑌𝑛(𝑥̅1, 𝑥̅2)
𝑀,𝑁
𝑚,𝑛               (6.15) 

 

Now, combining Eq. (6.2) and Eq. (6.15), we can write a displacement function for the 

buckling problem of non-rectangular plate consisting of all the boundaries with 

rotationally restrained conditions. We consider the function 𝑋𝑚(𝑥̅1) is same as in Eq. 

(6.2) and we define the function 𝑌(𝑥̅2, 𝑥̅1) as: 

 

𝑌(𝑥̅2, 𝑥̅1) = [(1 − 𝑅2) sin (
𝑛𝜋(𝑥̅2−𝑓1(𝑥̅1))

𝑙2(𝑥̅1)
) + 𝑅2(1 − cos (

2𝑛𝜋(𝑥̅2−𝑓1(𝑥̅1))

𝑙2(𝑥̅1)
) ]           (6.16) 
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with 𝑓1(𝑥̅1) being a polynomial function approximately defines the boundaries (a-b-c) 

of the cell in Fig. 6.3(a). The function 𝑙2(𝑥̅1) is the variation of distance between the 

boundaries in direction-2̅ which is defined to be (𝑓2(𝑥̅1) − 𝑓2(𝑥̅1)). The factors 𝑅1 and 

𝑅2, defining the degree of the rotational restraints along the boundaries of the cell in 

Fig. 6.3(b), are approximated as in Eqs. (6.13) and (6.14) respectively. In Eqs. (6.13) 

and (6.14), the average values of the distance between boundaries in direction 1̅  and 

2̅ are used. For instance, the distance 𝑙1 in Eq. (6.13) is calculated as the average 

distance between the boundaries (b-a-d-e) and (b-c-f-e), and the average distance 𝑙2 

in Eq. (6.14) is calculated as the average distance between the boundaries (a-b-c) and 

(d-e-f). Similarly, the rotational restraints stiffnesses are also estimated to be the 

average rotational restraints along the boundaries as explained and illustrated in 

section 6.2.3. Although, these conditions will not exactly satisfy the equilibrium of 

moments (Eqs. (6.11) - (6.12)) at the boundaries (Fig. 6.3(b)), the assumptions are 

made for 𝑅1 and 𝑅2  in order to simplify the calculations while satisfying the boundary 

conditions to a certain degree. 

 

Fig.6.3:  A hexagonal cell (a) with approximate boundaries defined using polynomial 
functions and (b) with the boundary moments at the rotationally restrained edges. 

 
 

6.2.2 Minimisation of the total potential energy of the plate  

The buckling problem based on the Rayleigh-Ritz method can be formulated 

using the principle of minimum total energy or the variational principle. It’s assumed 

that the face sheets consist of symmetric laminate then the total potential energy (Π) 

of a face sheet while in equilibrium in a displaced buckling mode is the sum of strain 

𝑀̅11(0, 𝑥2) 

 
𝑀̅11(𝑙1, 𝑥2) 

𝑀̅11(𝑥1, 𝑓1(𝑥1)) 

𝑀̅22(𝑥1, 𝑓1(𝑥1)) 

 
𝑀̅11(𝑥1, 𝑓1(𝑥1)) 

𝑀̅11(𝑥1, 𝑓1(𝑥1)) 

 

𝑀̅22(𝑥1, 𝑓2(𝑥1)) 

 
𝑀̅11(𝑥1, 𝑓2(𝑥1)) 

 

𝑀̅11(𝑥1, 𝑓2(𝑥1))  

𝑀̅22(𝑥1, 𝑓2(𝑥1)) 

 

2̅  

1̅  
1̅  

2̅  

𝑎 

𝑏  

𝑐  

𝑑  

𝑒  

𝑓  

𝑙1 

𝑙2 

𝑓2(𝑥̅1)  

𝑓1(𝑥̅1)  

(a) (b) 

𝑙2(𝑥̅1)  



176 
 

energy due to bending (𝑈𝑏), strain energy stored in rotational springs along the 

boundaries (𝑈𝑟) and the energy due to applied loads (𝑉): 

 

Π =  𝑈𝑏 + 𝑈𝑟 + 𝑉,                (6.17) 

 

where, the bending energy 𝑈𝑏 of the face sheet’s cell of area 𝐴  can be obtained as: 

 

𝑈𝑏 = ∬ [𝐷̅11
𝑓
(
𝜕2𝑣̅3

𝜕𝑥̅1
2 )

2

+  2𝐷̅12
𝑓 𝜕2𝑣̅3

𝜕𝑥̅1
2

𝜕2𝑣̅3

𝜕𝑥̅2
2 +𝐷̅22

𝑓
(
𝜕2𝑣̅3

𝜕𝑥̅2
2 )

2

+ 4𝐷̅16
𝑓 𝜕2𝑣̅3

𝜕𝑥̅1
2

𝜕2𝑣̅3

𝜕𝑥̅1𝜕𝑥̅2
+ 4𝐷̅26

𝑓 𝜕2𝑣̅3

𝜕𝑥̅2
2

𝜕2𝑣̅3

𝜕𝑥̅1𝜕𝑥̅2
+

𝐴

4𝐷̅66
𝑓
(
𝜕2𝑣̅3

𝜕𝑥̅1𝜕𝑥̅2
)
2

] 𝑑𝐴,                          (6.18) 

 

the strain energy stored in rotational spring 𝑈𝑟 along boundary ᴦ can be written as: 

 

𝑈𝑟 =
1

2
∫  
 

ᴦ
[𝑘1 (

𝜕𝑣̅3

𝜕𝑥̅1
)
𝑥̅1=0

2

+ 𝑘1 (
𝜕𝑣̅3

𝜕𝑥̅1
)
𝑥̅1=𝑙1

2

+ 𝑘1 (
𝜕𝑣̅3

𝜕𝑥̅1
)
𝑥̅2=𝑓1(𝑥̅1)

2

+ 𝑘1 (
𝜕𝑣̅3

𝜕𝑥̅1
)
𝑥̅2=𝑓2(𝑥̅1)

2

+

𝑘2 (
𝜕𝑣̅3

𝜕𝑥̅2
)
𝑥̅2=𝑓1(𝑥̅1)

2

+ 𝑘2 (
𝜕𝑣̅3

𝜕𝑥̅2
)
𝑥̅2=𝑓1(𝑥̅1)

2

] 𝑑ᴦ,           (6.19) 

 

The work done by the uniform compressive loads on the plate can be written as: 

 

𝑉 =
1

2
∬  
 

𝐴
[− 𝐹̅11

 (
𝜕𝑣̅3

𝜕𝑥̅1
)
 

2

− 𝐹̅22
 (

𝜕𝑣̅3

𝜕𝑥̅2
)
 

2

] 𝑑𝐴.              (6.20) 

 

For a plate in an equilibrium state, the total potential energy becomes minimum when 

the first variation of the total potential energy (Eq. (6.17)) is zero. Then, the condition 

for the state of minimum energy is expressed as: 

 

𝛿𝛱 = 𝛿𝑈𝑏 + 𝛿𝑈𝑟 + 𝛿𝑉 = 0,               (6.21) 

where, the 𝛿𝑈𝑏, 𝛿𝑈𝑟 and 𝛿𝑉 are given by Eqs. (6.20) - (6.22): 
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𝛿𝑈𝑏 = ∬  
 

𝐴
[𝐷̅11

𝑓
(
𝜕2𝑣̅3

𝜕𝑥̅1
2 ) (

𝜕2𝛿𝑣̅3

𝜕𝑥̅1
2 )

 

+  𝐷̅12
𝑓
(
𝜕2𝑣̅3

𝜕𝑥̅1
2

𝜕2𝛿𝑣̅3

𝜕𝑥̅2
2 +

𝜕2𝛿𝑣̅3

𝜕𝑥̅1
2

𝜕2𝑣̅3

𝜕𝑥̅2
2 )+𝐷̅22

𝑓
(
𝜕2𝑣̅3

𝜕𝑥̅1
2 ) (

𝜕2𝛿𝑣̅3

𝜕𝑥̅1
2 )

  

+

2𝐷̅16
𝑓
(
𝜕2𝑣̅3

𝜕𝑥̅1
2

𝜕2𝛿𝑣̅3

𝜕𝑥̅1𝜕𝑥̅2
+
𝜕2𝛿𝑣̅3

𝜕𝑥̅1
2

𝜕2𝑣̅3

𝜕𝑥̅1𝜕𝑥̅2
) + 2𝐷̅26

𝑓
(
𝜕2𝑣̅3

𝜕𝑥̅2
2

𝜕2𝛿𝑣̅3

𝜕𝑥̅1𝜕𝑥̅2
+
𝜕2𝛿𝑣̅3

𝜕𝑥̅1
2

𝜕2𝑣̅3

𝜕𝑥̅1𝜕𝑥̅2
) +

4𝐷̅66
𝑓
(
𝜕2𝑣̅3

𝜕𝑥̅1𝜕𝑥̅2
) (

𝜕2𝛿𝑣̅3

𝜕𝑥̅1𝜕𝑥̅2
)
 

] 𝑑𝐴,            (6.22) 

 

𝛿𝑈𝑟 = ∫  
 

ᴦ
[𝑘1 (

𝜕𝑣̅3

𝜕𝑥̅1
)
𝑥̅1=0

 

𝛿 (
𝜕𝑣̅3

𝜕𝑥̅1
)
𝑥̅1=0

 

+ 𝑘1 (
𝜕𝑣̅3

𝜕𝑥̅1
)
𝑥̅1=𝑙1

 

𝛿 (
𝜕𝑣̅3

𝜕𝑥̅1
)
𝑥̅1=𝑙1

 

+

𝑘1 (
𝜕𝑣̅3

𝜕𝑥̅1
)
𝑥̅2=𝑓1(𝑥̅1)

 

𝛿 (
𝜕𝑣̅3

𝜕𝑥̅1
)
𝑥̅2=𝑓1(𝑥̅1)

 

+ 𝑘1 (
𝜕𝑣̅3

𝜕𝑥̅1
)
𝑥̅2=𝑓2(𝑥̅1)

 

𝛿 (
𝜕𝑣̅3

𝜕𝑥̅1
)
𝑥̅2=𝑓2(𝑥̅1)

 

+

𝑘2 (
𝜕𝑣̅3

𝜕𝑥̅2
)
𝑥̅2=𝑓1(𝑥̅1)

 

𝛿 (
𝜕𝑣̅3

𝜕𝑥̅2
)
𝑥̅2=𝑓1(𝑥̅1)

 

+ 𝑘2 (
𝜕𝑣̅3

𝜕𝑥̅2
)
𝑥̅2=𝑓1(𝑥̅1)

 

𝛿 (
𝜕𝑣̅3

𝜕𝑥̅2
)
𝑥̅2=𝑓1(𝑥̅1)

 

] 𝑑ᴦ,   (6.23) 

 

and 

𝛿𝑉 = ∬  
 

𝐴
[ − 𝐹̅11

 (
𝜕𝑣̅3

𝜕𝑥̅1
) (

𝜕𝛿𝑣̅3

𝜕𝑥̅1
)
 

 

 

 

− 𝐹̅22
 (

𝜕𝑣̅3

𝜕𝑥̅2
) (

𝜕𝛿𝑣̅3

𝜕𝑥̅2
)
 

 

] 𝑑𝐴.           (6.24) 

 

The derivation of the equation for the total potential energy of a composite plate with 

an arbitrary lay-up can be found in Leissa (1985), where it is shown that the strain 

energy of an unsymmetrical laminate consists of components corresponding to 

stretching and bend-stretch coupling in addition to the components of energy in Eq. 

(6.15). For unsymmetrical laminates, use of the reduced bending stiffness approach 

(Ashton, 1969) allows decoupling of the stretching and bending components and 

hence the same variation in total potential energy equation of symmetric plates (Eq. 

(6.17)) may be applied for approximate solution for the face sheet with asymmetric 

laminate using the reduced bending stiffness matrix.  

Substituting the Eq. (6.21) with the displacement function defined in Eq. (6.15) 

leads to: 

0 = ∑ ∑ {∑ ∑ 𝐴𝑚𝑛[𝐷̅11
𝑓
𝐼1(𝑚,𝑛)
 𝐼1(𝑝,𝑞)

 + 𝐷̅12
𝑓
[𝐼1(𝑚,𝑛)
 𝐼2(𝑝,𝑞)

 + 𝐼2(𝑚,𝑛)
 𝐼2(𝑝,𝑞)

 ] +𝑁
𝑛=1

𝑀
𝑚=1

𝑄
𝑞=1

𝑃
𝑝=1

𝐷̅22
𝑓
𝐼1(𝑚,𝑛)
 𝐼1(𝑝,𝑞)

  + 2𝐷̅16
𝑓
[𝐼1(𝑚,𝑛)
 𝐼3(𝑝,𝑞)

 + 𝐼3(𝑚,𝑛)
 𝐼1(𝑚,𝑛)

 ] +

2𝐷̅26
𝑓
[𝐼1(𝑚,𝑛)
 𝐼3(𝑝,𝑞)

 + 𝐼3(𝑚,𝑛)
 𝐼1

 ] + 4𝐷̅11
𝑓
𝐼3(𝑚,𝑛)
 𝐼3(𝑝,𝑞)

 +

𝑘1𝐼4(𝑚,𝑛)
 𝐼4(𝑝,𝑞)

 + 𝑘2𝐼5(𝑚,𝑛)
 𝐼5(𝑝,𝑞)

 − 𝐹̅11
 𝐼6(𝑚,𝑛)

 𝐼6(𝑝,𝑞)
 −

𝐹̅22
 𝐼7(𝑚,𝑛)

 𝐼7(𝑝,𝑞)
 ]}𝛿𝐴𝑝𝑞 ,                    (6.25) 
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where; 

 

𝐼1(𝑚,𝑛)
 = ∬  

 

𝐴
[2

𝜕𝑋𝑚
 

𝜕𝑥̅1

𝜕𝑌𝑛
 

𝜕𝑥̅1
+ 𝑌𝑛

𝜕2𝑋𝑚
 

𝜕𝑥̅1
2 + 𝑋𝑚

𝜕2𝑌𝑛

𝜕𝑥̅1
2 ] 𝑑𝐴,             (6.26) 

 

𝐼2(𝑚,𝑛)
 = ∬  

 

𝐴
[𝑋𝑚

𝜕2𝑌𝑛

𝜕𝑥̅2
2 ] 𝑑𝐴,                (6.27) 

 

𝐼3(𝑚,𝑛)
 = ∬  

 

𝐴
[
𝜕𝑋𝑚

 

𝜕𝑥̅1

𝜕𝑌𝑛
 

𝜕𝑥̅2
+ 𝑋𝑚

𝜕2𝑌𝑛
 

𝜕𝑥̅1
 𝜕𝑥̅2

 ] 𝑑𝐴,              (6.28) 

 

𝐼4(𝑚,𝑛)
 = ∫  

 

ᴦ
[
𝜕𝑋𝑚

 

𝜕𝑥̅1
|
𝑥̅1=0

𝑌𝑛(0, 𝑥̅2) + 𝑋𝑚(0)
𝜕𝑌𝑛

 

𝜕𝑥̅1
|
𝑥̅1=0

+ 
𝜕𝑋𝑚

 

𝜕𝑥̅1
|
𝑥̅1=𝑙1

𝑌𝑛(0, 𝑥̅2) +

+𝑋𝑚(𝑙1)
𝜕𝑌𝑛

 

𝜕𝑥̅1
|
𝑥̅1=𝑙1

+
𝜕𝑋𝑚

 

𝜕𝑥̅1
|
𝑥̅2=𝑓1(𝑥̅1)

𝑌𝑛(0, 𝑥̅2) + 𝑋𝑚(0)
𝜕𝑌𝑛

 

𝜕𝑥̅1
|
𝑥̅2=𝑓1(𝑥̅1)

+

𝜕𝑋𝑚
 

𝜕𝑥̅1
|
𝑥̅2=𝑓2(𝑥̅2)

𝑌𝑛(0, 𝑥̅2) + 𝑋𝑚(0)
𝜕𝑌𝑛

 

𝜕𝑥̅1
|
𝑥̅2=𝑓2(𝑥̅2)

] 𝑑ᴦ,           (6.29) 

 

𝐼5(𝑚,𝑛)
 = ∫  

 

ᴦ
[𝑋𝑚

𝜕𝑌𝑛
 

𝜕𝑥̅2
|
𝑥̅2=𝑓1(𝑥̅1)

+ 𝑋𝑚
𝜕𝑌𝑛

 

𝜕𝑥̅2
|
𝑥̅2=𝑓2(𝑥̅2)

] 𝑑ᴦ,            (6.30) 

 

𝐼6(𝑚,𝑛)
 = ∬  [

𝜕𝑋𝑚
 

𝜕𝑥̅1
𝑌𝑛 + 𝑋𝑚

𝜕𝑌𝑛
 

𝜕𝑥̅1
]

 

𝐴
𝑑𝐴,  and             (6.31) 

 

𝐼7(𝑚,𝑛)
 = ∬  [𝑋𝑚

𝜕𝑌𝑛
 

𝜕𝑥̅2
]

 

𝐴
𝑑𝐴.                (6.32) 

 

Since the condition in Eq. (6.23) should be true for any arbitrary variations 𝛿𝐴𝑝𝑞, then 

for every 𝑝, 𝑞 = 1,2…., the equation inside the curly bracket should be zero which 

gives: 

∑ ∑ 𝐴𝑚𝑛[𝐷̅11
𝑓
𝐼1(𝑚,𝑛)
 𝐼1(𝑝,𝑞)

 + 𝐷̅12
𝑓
[𝐼1(𝑚,𝑛)
 𝐼2(𝑝,𝑞)

 + 𝐼2(𝑚,𝑛)
 𝐼2(𝑝,𝑞)

 ] + 𝐷̅22
𝑓
𝐼1(𝑚,𝑛)
 𝐼1(𝑝,𝑞)

  +𝑄
𝑞=1

𝑃
𝑝=1

2𝐷̅16
𝑓
[𝐼1(𝑚,𝑛)
 𝐼3(𝑝,𝑞)

 + 𝐼3(𝑚,𝑛)
 𝐼1

 ] + 2𝐷̅26
𝑓
[𝐼1(𝑚,𝑛)
 𝐼3(𝑝,𝑞)

 + 𝐼3(𝑚,𝑛)
 𝐼1(𝑚,𝑛)

 ] +

4𝐷̅11
𝑓
𝐼3(𝑚,𝑛)
 𝐼3(𝑝,𝑞)

 + 𝑘2𝐼4(𝑚,𝑛)
 𝐼4(𝑝,𝑞)

 + 𝑘1𝐼5(𝑚,𝑛)
 𝐼5(𝑝,𝑞)

 − 𝐹̅11
 𝐼6(𝑚,𝑛)

 𝐼6(𝑝,𝑞)
 −

𝐹̅22
 𝐼7(𝑚,𝑛)

 𝐼7(𝑝,𝑞)
 ].               (6.33) 
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The Eq. (6.33) will give a system of 𝑀 ×𝑁 linear equations which can be written in 

matrix form of the generalized eigenvalue problem as: 

 

[𝑲̅]{𝐴𝑚𝑛} = 𝐹̅𝑐𝑟[𝑲̅𝒔]{𝐴𝑚𝑛},               (6.34) 

 

where [𝑲̅] is the stiffness matrix, [𝑲̅𝒔] is the geometric stiffness matrix, and {𝐴𝑚𝑛} is a 

vector of the unknown coefficients. The lowest eigenvalue gives the critical buckling 

load 𝐹̅𝑐𝑟, with the corresponding eigenvector depicting the mode shape. By using 

sufficient number of terms (𝑚, 𝑛) for the displacement function in Eq. (6.15), the 

convergence of the buckling solution can be achieved for Eq. (6.34) (Jones, 1998). 

The critical buckling load can be obtained from the minimum eigenvalue of the 

converged solution of the buckling problem. 

Because the calculation involves complex integrations terms to calculate the 

total potential energy, numerical integration technique would be more efficient, and it 

is used to evaluate the associated energy components defined with the integrals in 

Eqs. (6.24) - (6.30). Considering the hexagonal profile of composite plate in Fig. 6.3(a), 

a coordinate transformation into natural co-ordinates (𝜉, 𝜂) ranging from -1 to 1 over a 

rectangular profile can be undertaken through the following equations: 

𝜉 =
2𝑥̅1

𝑙1
− 1,                 (6.35) 

𝜂 =
𝑥̅2−

𝑙2
2

𝑙2
2
−𝑓1(𝑥̅1)

.                 (6.36) 

 

The double integrals functions defined in Eqs. (6.26) - (6.32) can be then simplified 

as:  

 

∬𝑔(𝑥̅1, 𝑥̅2) 𝜕𝑥̅1𝜕𝑥̅2 = ∬𝑔(𝑥̅1(𝜉, 𝜂), 𝑥̅2(𝜉, 𝜂)) |𝐽|𝜕𝜉𝜕𝜂 =

  ∑ ∑ 𝑤𝑖𝑤𝑗
𝑁
𝑗=1 𝑔(𝑥̅1(𝜉𝑖, 𝜂𝑗), 𝑥̅2(𝜉𝑖, 𝜂𝑗))|𝐽|

𝑁
𝑖=1 ,          (6.37) 

where; 
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𝐽 = [

𝜕𝑥̅1

𝑑𝜉

𝜕𝑥̅2

𝑑𝜉

𝜕𝑥̅1

𝑑𝜂

𝜕𝑥̅2

𝑑𝜂

],                 (6.38) 

 

(𝜉𝑖, 𝜂𝑗) is the location of the integration point, and (𝑤𝑖, 𝑤𝑗) are the corresponding 

weight factors.  

6.2.3 Rotational restraint stiffness at the boundaries of the cell 

Because the boundaries of a cell are connected to core walls and adjacent 

cells, the edges of the cell are restrained against the rotation, therefore, the boundaries 

of the cell may not be considered as fully simply-supported or fully clamped. Since we 

assume that each cell of face sheets carries equal and uniform compressive stress, 

all the cells face sheet may be assumed to buckle at the same time; thus, rotational 

restraints provided by the adjacent cells may be neglected (Bleich 1952). Therefore, 

we assume that rotational restraint is provided only by the core walls attached to the 

edges of the cells of the face sheets. In order to estimate the stiffness of rotational 

restraint provided by the core walls, it’s important to understand the deformed shape 

of core walls for the critical buckling mode under axial compression and bending of a 

sandwich panel. Multiple FE models of the sandwich panels (Fig. 6.1(a)) were created 

with various core densities to understand the deformed configuration of core walls 

under intracellular buckling. The FE models of sandwich panels under axial 

compression showed both symmetric and antisymmetric modes of buckling (Fig. 

6.4(a)-(d)). Although it is common to have a symmetric buckling mode shape as a 

critical mode when the sandwich panel is subjected to wrinkling due to axial 

compression (Ley et al. 1999), nevertheless, it was observed that the critical 

intracellular buckling load always occurs with antisymmetric mode shape (Fig. 6.4(a)-

(b)).The FE models for intracellular buckling of the sandwich panels under bending 

were considered by applying the axial compression to the upper factsheet and tension 

to the bottom face sheet (Fig. 6.4(e)-(f)). 
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Fig.6.4:   Typical section of the deformed shape of sandwich panel across (a) 1 − 3 
and (b) 2 − 3  planes for anti-symmetric mode, (c) 1 − 3 and (d) 2 − 3  planes for 

symmetric mode under axial compression and (e) 1 − 3 and (f) 2 − 3  planes under 

bending.  
 

 
Fig.6.5: Illustration of rotational restrain provided by the core walls against buckling 

of face sheets under (a) axial compression and (b) bending of sandwich panel.   
 

Based on the study in section 6.2.3, we consider the section of the sandwich 

panel in Fig. 6.5 for the analysis which shows the restraining moments acting on the 

face sheets subjected to intracellular buckling under axial compression (Fig. 6.5(a)) 

and bending (Fig. 6.5(b)). The restraining moments are acting along the edges of the 

cells due to the core walls attached to it; therefore, the core walls will experience 

opposite and equal moments as shown in Fig. 6.5, which may be approximately written 

assuming the core walls as combinations of several strips of beam elements across 
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the depth of the core. Considering the Fig. 6.5(a) for intracellular buckling under the 

axial compression, the restraining moment 𝑀𝑟1𝑎 can be written as: 

 

𝑀𝑟1𝑎 = (
4(𝐸𝐼)

ℎ
)𝜑1 + (

2(𝐸𝐼)

ℎ
)𝜑2,               (6.39) 

 

where, 𝐸𝐼 is the flexural rigidity of a strip of the core the wall and ℎ is the depth of the 

core. Assuming the sandwich panel is symmetric (both bottom and upper face sheet 

are equal), it’s possible to take 𝜑1 = 𝜑2 and the moment 𝑀𝑟1𝑎 = 𝑀𝑟1𝑎 = 𝑀𝑟𝑎 can be 

written as: 

 

𝑀𝑟𝑎 = (
6(𝐸𝐼)

ℎ
)𝜑1.                 (6.40) 

 

While a core wall is attached to two adjacent cells, only a single cell for buckling 

analysis is considered. Therefore, the restraining moment along boundaries of the cell 

can be written as: 

 

𝑀𝑟𝑎 =
1

2
(
6(𝐸𝐼)

ℎ
)𝜑1.                 (6.41) 

 

From Eq. (6.41), rotational restraint stiffnesses 𝑘1 and 𝑘1 for case of buckling under 

axial compression can be obtained as: 

 

𝑘1 = (
3(𝐸𝐼̅̅ ̅)1 

ℎ
),                 (6.42) 

𝑘2 = (
3(𝐸𝐼̅̅ ̅)2 

ℎ
).                 (6.43) 

 

(𝐸𝐼̅̅ ̅)1 and (𝐸𝐼̅̅ ̅)2 are average flexural rigidity of core walls along the edges b-a-d-e 

(subjected to the moment 𝑀̅11) and a-b-c (subjected to the moment 𝑀̅22) respectively 

in Fig. 6.3(b). 

Similarly, for intracellular buckling of face sheet under bending, the rotational restraint 

stiffnesses can be obtained as:  
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𝑘1 = (
2(𝐸𝐼̅̅ ̅)1 

ℎ
),                 (6.44) 

𝑘2 = (
2(𝐸𝐼̅̅ ̅)2 

ℎ
).                 (6.45) 

 

6.3 Validation of the proposed approach 

In section 6.2.2, the Rayleigh-Ritz method based solution for the intracellular 

buckling was formulated using the variational approach. The solution procedure is 

implemented in MATLAB for the intracellular buckling of sandwich panels with a 

hexagonal core (Fig. 6.6). The intracellular buckling loads are calculated for the 

sandwich panels with various configurations such as different cell size, core density, 

thickness, and fibre lay-up face sheets and different loading conditions to validate 

accuracy and consistency of the proposed approach. The total thickness of the 

sandwich panel(H) is 160 mm, the thickness of core(h) is 150 mm, and the thicknesses 

𝑡𝑓
𝑢 and 𝑡𝑓

𝑙  of both upper and lower face sheets are 5 mm. Inclined walls of the 

hexagonal core have fibre lay-up of [0/90/90/90/0]  and vertical wall has the symmetric 

fibre lay-up and double the thickness of the inclined walls. Each ply of the core walls 

is considered to be of equal thickness. Both face sheets and core walls are assumed 

to be fabricated out of E-glass/Epoxy, and the material properties of E-glass/Epoxy 

lamina with respect to its principal axes are defined as: 𝐸𝐿 = 38600 𝑀𝑃𝑎, 𝐸𝑇 =

8270 𝑀𝑃𝑎, 𝑣𝐿𝑇 = 0.26 and 𝐺𝑇𝐿 = 4140 𝑀𝑃𝑎. The fibre orientations of each ply are 

defined with respect to the positive 1-axis for the face sheets and positive 1̅-axis of the 

core walls following the sign convention defined (counterclockwise positive angle). For 

the displacement function of the Rayleigh-Ritz based approach, using 𝑛 = 𝑚 = 12  

was found sufficient for the convergence of solutions. The functions 𝑓2(𝑥̅1) and 𝑓2(𝑥̅1) 

are selected to be quadratic polynomials to approximate boundaries of the cell (Fig. 

6.3(a)). The results from the proposed semi-analytical approach are verified against 

the results from the linear buckling analysis of sandwich panels consisting of multiple 

cells as in Fig. 6.6 using ABAQUS. Both face sheets and core are modelled using S4 

shell element with a size of 10 mm. In the FE models, the compressive loads are 

applied along the edges of the factsheets. Additionally, the intracellular buckling loads 

from other existing analytical approaches discussed in section 2.4.4 of Chapter 2 are 

also calculated for the purpose of comparison with the results from the proposed 

approach. 
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Fig.6.6: The sandwich panel considered for the intracellular buckling analysis.   

 

6.3.1 The effect of cell size on the intracellular buckling 

The cell size of face sheets (Fig. 6.6) is varied from 𝑙 = 40 𝑚𝑚 to 100 𝑚𝑚 to 

validate the consistency of the proposed approach and to study the effect of boundary 

conditions on the intracellular buckling.  In this case, the relative core density (𝜌∗) is 

kept constant at 0.072 and both upper and lower face sheets have fibre lay-up of 

[0/90/0/90/0]. All other parameters are chosen as defined in section 4.3. Tables 6.1 - 

6.6 show comparisons of the results for the intracellular buckling loads from the 

proposed semi-analytical approach and FE for various loading conditions. Figure. 6.7 

shows a comparison of normalised buckling loads (normalised by the maximum 

buckling loads for direction-1 from FE) for different axial compressive loadings. The 

predictions from the proposed approach are also compared with analytical solutions 

from the existing literature (section 2.4.4) and shown in (Figs. 6.8 - 6.9).  

 

Table 6.1: Comparison of intracellular buckling load of sandwich panels with different 
cell sizes under axial uniaxial compression in direction-1. 

 
 

𝑙 (𝑚𝑚) 

Intracellular buckling load(N/mm) Error % 

Proposed-

SS (a) 

Proposed-

RR (b) 
FE(c) 

(𝑎 − 𝑐)

𝑐
% 

(𝑏 − 𝑐)

𝑐
% 

40 1752 2529 2690 -34.9 -6.0 

50 1121 2088 2146 -47.7 -2.7 

60 779 1709 1651 -52.8 3.5 

70 572 1385 1343 -57.4 3.2 

80 438 1148 1125 -61.1 2.0 

ℎ  

𝐻  

𝑙  
𝑙  𝑡𝑓

𝑢  

𝑡𝑓
𝑙   

2 
1 
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Table 6.2: Comparison of intracellular buckling load of sandwich panels with different 
cell sizes under uniaxial compression in direction-2. 

 

Table 6.3: Comparison of intracellular buckling load of sandwich panels with different 
cell sizes under biaxial compression. 

 

Fig. 6.7: Variation of intracellular buckling loads with cell sizes under different axial 
compressive loadings. 

 

𝑙 (𝑚𝑚) 

Intracellular buckling load(N/mm) Error % 

Proposed-

SS (a) 

Proposed-

RR (b) 
FE(c) 

(𝑎 − 𝑐)

𝑐
% 

(𝑏 − 𝑐)

𝑐
% 

40 2122 2508 2543 -16.6 -1.4 

50 1358 1893 1912 -29.0 -1.0 

60 943 1512 1498 -37.0 0.9 

70 693 1216 1190 -41.8 2.2 

80 530 995 988 -46.3 0.7 

𝑙 (𝑚𝑚) 

Intracellular buckling load(N/mm) Error % 

Proposed-

SS (a) 

Proposed-

RR (b) 
FE(c) 

(𝑎 − 𝑐)

𝑐
% 

(𝑏 − 𝑐)

𝑐
% 

40 968 1422 1431 -32.3 -0.6 

50 620 1194 1103 -43.8 8.3 

60 430 978 870 -50.5 12.4 

70 316 788 713 -55.7 10.6 

80 242 650 586 -58.7 11.0 
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Tables 6.1 and 6.2 show the predictions of the intracellular buckling loads under 

uniaxial compression in direction-1 and direction-2, respectively. The predictions from 

the proposed approach with rotationally restrained boundaries differ by maximum of -

6% and -1.4% from the FE results for the uniaxial compression in direction-1 and 

direction-2, respectively. The corresponding errors are much higher when the 

boundaries of the cell are considered to be simply-supported. As the cell size 

increases, the prediction errors become higher with simply-supported boundaries for 

the cell. That is because, with the increase in cell size under the constant relative core 

density, the thickness of the core wall also increases providing additional rotational 

restraints to the edges of the cell. Comparing the buckling loads for the uniaxial 

compression in direction-1 and direction-2 for different cell sizes, the intracellular 

buckling loads for direction-1 are always slightly higher than direction-2 (Fig. 6.7). 

However, the predictions considering the simply-supported boundaries for the cell 

show higher buckling loads for the direction-2 than direction-1. It is expected that an 

increase in cell size will reduce intracellular buckling load for the sandwich panel even 

though the rotational restraint due to the core walls increases with cell size (Fig. 6.7). 

These effects have been correctly reflected in the results from the proposed approach. 

The existing closed-form analytical solutions can only be used to predict the 

intracellular buckling loads under uniaxial compression. However, it may be 

unavoidable to have biaxial compressive loading conditions in the sandwich panels. 

Table 6.3 shows the comparison of the buckling loads for biaxial compression from 

the proposed approach and FE. The predictions using the proposed approach with 

rotationally restrained boundaries for the cell are within reasonable accuracy with a 

maximum error of 12.4%. Overall, the predictions using the proposed semi-analytical 

approach with the rotationally restrained boundaries for the cell agree well with the 

predictions from FE (Fig. 6.7) for all different cell sizes and for all different axial 

compressive loading conditions. 
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Fig. 6.8: Comparison of intracellular buckling loads of different cell sizes from 

various methods for the uniaxial compression in direction-1. 

 

Fig. 6.9: Comparison of intracellular buckling loads of different cell sizes from 
various methods for the uniaxial compression in direction-2.   

 

Figures. 6.8 and 6.9 show the comparisons of the buckling loads for uniaxial 

compression in direction-1 and direction-2, respectively, from various analytical 
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solutions and the proposed approach. From Fig.  6.8, it is clear that the classical 

method (Eq. (2.6)), which is based on an empirical factor and approximated geometry 

of the hexagonal cell with the largest inscribed circle, gives the lowest buckling loads. 

The Fokker formula (Eq. (2.7)), which also considers the approximated geometry of a 

square having side dimensions equal to the diameter of a largest inscribed circle within 

the cell and simply-supported boundaries, gives slightly higher buckling loads than the 

classical method. While the proposed approach with simply-supported boundaries for 

the cell gives better results than both the classical and Fokker formulas, predicted 

buckling loads are still significantly lower than the FE results. The proposed approach 

with rotationally restrained boundaries for the cell gives much closer result to the FE 

results. For the axial compression in direction-2, trends of the predictions from different 

models are similar to those in direction-1 (Fig 6.9). The classical approach gives 

significantly lower results than the other methods as it considers only a single bending 

stiffness term of the composite face sheet for the buckling load calculations. The 

Fokker formula provides same buckling loads regardless of the direction of the 

loadings, as it is analogous to the buckling equation of a simply-supported square 

composite plate. Since Thomsen & Banks (2004) considered an approximated 

geometry of rectangular profile for the cell with fixed and simply-supported boundaries 

for shorter and longer edges respectively (Fig. 2.9(b)), their method (Eq. (2.8)) gives 

better results compared to the classical and Fokker formulas. Nonetheless, the results 

deviate considerably from the predictions of FE analysis. The proposed approach with 

simply-supported conditions again provides lower predictions than the FE results, 

while the proposed method with rotationally restrained boundary conditions provides 

predictions similar to the FE results.  

Tables 6.4 - 6.6 show intracellular buckling loads of the top face sheet under 

the bending of sandwich panels. The bending of sandwich panels is considered by 

applying compressive force to the upper face sheet and an equal magnitude of tensile 

force to the bottom face sheet. Again, assuming simply supported support conditions 

results in much lower predictions than the FE results and the proposed method with 

rotationally restrained boundaries provides results closer to the FE predictions. The 

intracellular buckling loads under bending (Tables 6.4 - 6.6) are found to be slightly 

lower than the corresponding intracellular buckling loads under axial compression 

(Tables 6.1 - 6.4) of the sandwich panels because of the effect of the difference in the 
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rotational restraints due to core walls during bending and axial compression(section 

6.2.3).  

 

Table 6.4: Comparison of intracellular buckling load of sandwich panels with different 
cell sizes under bending about axis-2. 

 
 
Table 6.5: Comparison of intracellular buckling load of sandwich panels with different 
cell sizes under bending about axis-1. 

 

Table 6.6: Comparison of intracellular buckling load of sandwich panels with 
different cell sizes under biaxial bending. 

 

𝑙1(𝑚𝑚) 

Intracellular buckling load(N/mm) Error % 

Proposed-

SS (a) 

Proposed-

RR (b) 
FE(c) 

(𝑎 − 𝑐)

𝑐
% 

(𝑏 − 𝑐)

𝑐
% 

40 1752 2321 2598 -32.6 -10.7 

50 1121 1907 1992 -43.7 -4.2 

60 779 1599 1540 -49.4 3.8 

70 572 1317 1245 -54.0 5.8 

80 438 1088 1020 -57.1 6.7 

𝑙1(𝑚𝑚) 

Intracellular buckling load(N/mm) Error % 

Proposed-

SS (a) 

Proposed-

RR (b) 
FE(c) 

(𝑎 − 𝑐)

𝑐
% 

(𝑏 − 𝑐)

𝑐
% 

40 2122 2402 2444 -13.2 -1.7 

50 1358 1773 1834 -26.0 -3.3 

60 943 1425 1399 -32.6 1.9 

70 693 1162 1115 -37.9 4.2 

80 530 953 918 -42.2 3.8 

𝑙1(𝑚𝑚) 

Intracellular buckling load(N/mm) Error % 

Proposed-

SS (a) 

Proposed-

RR (b) 
FE(c) 

(𝑎 − 𝑐)

𝑐
% 

(𝑏 − 𝑐)

𝑐
% 

40 968 1298 1396 -30.6 -7.0 

50 620 1085 1103 -43.8 -1.6 

60 430 917 824 -47.8 11.3 

70 316 752 670 -52.8 12.2 

80 242 618 553 -56.2 11.7 
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6.3.2 The effect of core density on the intracellular buckling 

The degree of rotational restraints provided by the core walls depends mainly 

on the bending rigidity of the core walls. Therefore, varying the core density for 

constant cell size can be expected to influence the intracellular buckling load. 

Therefore, it is necessary to investigate the effect of core density on intracellular 

buckling. The relative core density(ρ*) is varied from 0.036 to 0.108 while the cell size 

is constant with 𝑙 = 50 𝑚𝑚 (Fig. 6.6).  All other parameters are the same as defined 

in section 4.3. Tables 6.7 - 6.9 show the comparisons of results for intracellular 

buckling loads from the proposed approach and the FE under axial compression. The 

variation of normalised buckling loads with relative core density for different 

compressive loadings is shown in Fig. 6.10. The comparisons of the predictions of the 

intracellular buckling loads from various analytical methods available in the literature 

are shown in Figs. 6.11- 6.12. 

 
Table 6.7: Comparison of intracellular buckling load of sandwich panels with different 
relative core density under uniaxial compression in direction-1. 

 

Table 6.8: Comparison of intracellular buckling load of sandwich panels with different 
relative core density under uniaxial compression in direction-2. 

 

 

𝜌∗ 

Intracellular buckling load(N/mm) Error % 

Proposed-

SS (a) 

Proposed-

RR (b) 
FE(c) 

(𝑎 − 𝑐)

𝑐
% 

(𝑏 − 𝑐)

𝑐
% 

0.036 1135 1349 1512 -28.7 -10.8 

0.054 1135 1714 1866 -39.2 -8.1 

0.072 1135 2088 2146 -47.1 -2.7 

0.090 1135 2373 2334 -51.4 1.7 

0.108 1135 2584 2530 -55.1 2.1 

𝜌∗ 

Intracellular buckling load(N/mm) Error % 

Proposed-

SS (a) 

Proposed-

RR (b) 
FE(c) 

(𝑎 − 𝑐)

𝑐
% 

(𝑏 − 𝑐)

𝑐
% 

0.036 1358 1473 1489 -8.8 -1.1 

0.054 1358 1657 1679 -19.1 -1.3 

0.072 1358 1893 1912 -29.0 -1.0 

0.090 1358 2106 2116 -35.8 -0.5 

0.108 1358 2271 2250 -39.6  0.9 
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Table 6.9: Comparison of intracellular buckling load of sandwich panels with different 
relative core density under biaxial compression. 

 

Fig. 6.10: Variation of intracellular buckling loads with relative core density under 
different axial compressive loadings. 

 

It can be seen from Table 6.7, for the uniaxial compression in direction-1, the 

absolute errors in the predictions from the proposed methodology with rotationally 

restrained boundaries for the cell are less than 8.1% (except for the case of lowest 

core density which has an error of 10.8%).  When the boundaries of the cell are simply- 

supported, the absolute error percentage varies from 28.7% to 55.1% as core density 

increases. Table 6.8 shows the predictions of the buckling loads under uniaxial 

compression in direction-2. An excellent agreement between results from the FE and 

the proposed approach with rotationally restrained boundaries can be seen. The 

maximum absolute error of predictions between FE and the proposed with rotationally 
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𝑐
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0.036 620 750 827 25.1 9.3 

0.054 620 968 952 34.9 -1.6 

0.072 620 1194 1103 43.8 -8.3 

0.090 620 1361 1247 50.3 -9.1 

0.108 620 1477 1376 55.0 -7.3 
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restrained boundaries is just 1.3%, while the error increased to 39.6% with simply 

supported boundaries for the cell. The intracellular buckling loads for direction-1 are 

higher than for direction-2, and the difference between the direction-1 and direction-2 

buckling loads increases with core density; however, this increase in load is mainly 

due to positive influence of fibre orientation and rotationally restrained boundaries 

rather than positive influence of the geometry of the cell in the direction-1. This 

behaviour is correctly captured by the proposed approach only when boundaries of 

the cell are considered to be rotationally restrained. Table 6.9 shows the predictions 

of buckling loads under biaxial compression. The absolute errors of predictions from 

the proposed approach are under 9.3% when the boundaries of the cell are considered 

to be rotationally restrained, while the maximum error is 55% with simply supported 

boundaries for the cell. For all different loading conditions, the predictions for the 

intracellular buckling loads converge towards the simply supported solutions when the 

relative core density is low. It is also possible that other buckling failure modes, such 

as wrinkling and core wall buckling, become dominant at low core densities (Ley et al. 

1999). When the core density increases from 0.036 to 0.108, the increase in the 

buckling loads varies between about 50-60% (Fig. 6.10), depending on the axial 

compression loading conditions. The buckling load for the biaxial compression is about 

half the buckling loads of axial compression in direction-1 at the core density of 0.036 

and about 60% when the core density is 0.108. Overall, the predictions from the 

proposed approach with the rotationally restrained boundaries for the cell are in very 

good agreement with results from the FE (Fig. 6.10) for all the core densities 

considered. 

Figures. 6.11 and 6.12 show the comparisons of the intracellular buckling loads 

for the sandwich panels with varying core density under axial compression in direction-

1 and direction-2, respectively. As it can be seen from Figs. 6.11 - 6.12, the classical 

and Fokker closed-form solutions significantly underpredict the intracellular buckling 

loads as the core density increases. The classical solution underpredicts the buckling 

loads up to 2.8 and 3.3 times compared to the FE for the axial compression in 

direction-1 and direction-2, respectively. The Fokker formula underpredicts the 

buckling loads up to 2.7 and 2.4 times, respectively. The solution proposed by 

Thomsen & Banks (2004) is applicable only for the axial compression in direction-2, 

which considerably overpredicts the buckling loads at the lower core density and 

underpredicts the buckling loads at higher density.  
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Fig. 6.11: Comparison of intracellular buckling loads for different relative core 

density from various analytical methods for the uniaxial compression in direction-1.  
 

 
Fig.6.12: Comparisons of intracellular buckling loads for different relative core 

density from various analytical methods for the uniaxial compression in direction-2. 

 

6.3.3 The effect of the face sheet fibre lay-up on the intracellular buckling 

Another important variable to consider in intracellular buckling is the fibre lay-

up of the factsheet. In order to investigate this, the relative core density is kept at a 

constant of 0.072, and the cell size is chosen to be 𝑙 = 50 𝑚𝑚 (Fig.6.6). The fibre lay-

ups considered for the face sheet in this study are given in Table 6.10. 
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Table 6.10: The fibre lay-ups considered for the face sheets. 
 

 

 

 

 

Figure. 6.13 shows intracellular buckling loads for the uniaxial compression in 

direction-1 for the different fibre lay-ups in Table 6.10.  It can be seen that cross-ply 

laminates with 00 ply as topmost and bottommost ply (fibre lay-ups 1 and 2) have the 

highest buckling load, while the cross-ply laminate which has 900 ply as topmost and 

bottommost ply gives the lowest buckling load (Fibre lay-up 3). Buckling loads of all 

the angle-ply laminates are close to each other and considerably lower than the cross-

ply laminates with fibre lay-ups 1 and 2. Except for the proposed approach with 

rotationally restrained boundaries for the cell, all the other models fail to predict the 

buckling loads to a reasonable accuracy, and they are not consistent with the trend of 

the buckling loads from the FE for different fibre lay-ups. Fig. 6.14 shows the 

intracellular buckling loads for the uniaxial compression in direction-2. The trend is 

found to be opposite to that of direction-1 loading. Face sheets with angle-ply 

laminates show higher buckling loads than the face sheets with cross-ply laminates.  

Only the proposed approach with rotationally restrained boundaries and Thomsen & 

Banks (2004) method predict the buckling loads close to the FE results. The 

predictions from all other methods are significantly different from the FE. The buckling 

loads for biaxial compression show a similar trend as buckling under axial 

compression in direction-1, however, with different ratios between the buckling loads. 

The buckling loads for the biaxial compression have also been predicted to have 

reasonable accuracy using the proposed approach with rotational restrained 

boundaries for the cell.  Although the proposed approach considering simply 

supported boundaries yields lower predictions for buckling loads compared to those 

with rotationally restrained boundaries and FE results across various loading 

scenarios due to boundary considerations, these predictions outperform classical and 

Fokker solutions due to their consideration of accurate geometry and alignment with 

Fibre 
 lay-up 

Fibre orientation (0) 

1 0/90/0/90/0 

2 0/90/90/90/0 

3 90/0/0/0/90 

4 45/-45/0/-45/45 

5 45/-45/90/-45/45 

6 45/-45/45/-45/45 



195 
 

the trend observed in FE and the proposed approach employing rotationally restrained 

boundaries. 

 

Fig.6.13: Comparisons of intracellular buckling loads for different fibre lay-up of the 
face sheet under uniaxial compression in direction-1.  

 

 

Fig.6.14:  Comparisons of intracellular buckling loads for different fibre lay-up of the 
face sheet under uniaxial compression in direction-2. 
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Fig.6.15: Comparisons of intracellular buckling loads for different fibre lay-up of the 
face sheet under biaxial compression. 

 

6.3.4 Comparison of predictions with existing experimental studies  

  In this section, comparisons are conducted between predictions derived from 

our proposed semi-analytical approach, other existing analytical models utilized in the 

inverse design approach, and experimental findings from previous studies. Due to the 

limited availability of experimental data, conducting a comprehensive comparison 

across various parameters is impractical. Nonetheless, an effort is made to assess the 

performance of the proposed approach by comparing it to the results of uniaxial 

compression tests conducted on all-CFRP sandwich panels (manufactured using 

T300-3K woven CFRP/epoxy) by Wei et al. (2022), aimed at intracellular buckling 

failure in the sandwich panels.  

  The sandwich panels tested have dimension of 140mm×80mm×15.38mm. 

Material propertied of T300-3K woven CFRP/epoxy are same as given section in 

section 4.3.5. Thickness of each face sheet is tf = 0.19mm. Thickness of the inclined 

walls of the hexagonal core is t=0.21mm and other wall has double the thickness of 

the inclined wall. Length of the core walls is l=8mm. For both face sheet and core, all 

the plies of laminate were arranged in same orientation (0/90). 
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Fig.6.16: (a) All-CFRP sandwich panel tested under axial compression and (b) 
intracellular buckling mode of failure (Wei et al. 2022). 

 

Since the failure in the sandwich panels tested was initiated due to intracellular 

buckling (Fig.6.16b), it’s reasonable to consider that applied uniaxial compression at 

the failure is very close to intracellular buckling load of the sandwich panels. Figure 

6.17 shows the comparison of the predictions for the intracellular buckling from the 

proposed approach and the experimental results. The failure loads from the 

experiments vary between 2.91kN-3.33kN between the specimens. For the same 

panels, the proposed model incorporating the rotational restrain boundaries predicts 

the intracellular buckling load to be 2.61kN which is 16% lower than average failure 

load from the experiments.  This disparity between predictions and experiments could 

be attributed to the mismatch between the failure modes at maximum load. As 

illustrated in the tested specimens in Fig. 6.16(b), real-world structures may 

experience a loss of stiffness rather than immediate collapse following intracellular 

buckling (Thomsen & Banks, 2004), potentially carrying additional loads until 

collapsing due to interactions with other failure modes (i.e., intracellular buckling 

occurs close to position II, but panels carry further load until they collapse due to 

wrinkling & debonding as illustrated in Fig. 6.17). Therefore, the maximum load 

obtained in the experiment may not exactly represent the actual theoretical 

intracellular buckling loads. Nonetheless, honeycomb core sandwich panels are 

always designed to resist intracellular buckling occurrence (Zenkert, 1997), as such 

buckling could subsequently trigger other failure modes like delamination, wrinkling, 

etc., ultimately leading to structural collapse. Except for the proposed model with 

Steel clamp mould 

Epoxy resin. 

(b) (a) 
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rotational restrain boundaries, all the other predictions are much lower than 

experimental results which may lead to much conservative design rather than optimal 

or near optimal design. Consequently, the use of such conservative models could 

negatively impact the accuracy of inverse design solutions in detailed analyses, even 

when employing highly efficient search algorithms. This discordant scenario 

underscores the critical need for precise and robust analytical models in intracellular 

buckling predictions. 

Fig.6.17: Comparison of intracellular buckling predictions with the experimental 
results of Wei et al. (2022). 

 

6.4 Intracellular buckling of face sheets with different cell shapes 

Previous sections validated the proposed approach for intracellular buckling of 

face sheets with hexagonal cells. This section will focus on extending the application 

of the proposed methodology for intracellular buckling of face sheets of different cell 

shapes. The classical and Fokker formulas (Eqs. (2.6) - (2.7)) cannot differentiate 

between specific geometries of the cell, although different cell shapes can result in 

different buckling loads. For instance, according to the classical and Fokker buckling 

formulas, intracellular buckling loads will be equal for the square and rhombus (rotated 

square with equal angles) cells. However, this is not the case, as the orientation of the 

geometry concerning the fibre orientation and loadings would be different, which may 

significantly affect the buckling loads of the cell. The proposed approach for 

intracellular buckling loads  can be generalised to other geometries to be used for 

sandwich panels consisting of other cell shapes such as triangular, rhombus, etc.  
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Consider rhombus and triangular cells in Fig. 6.18. The displacement function 

in Eq. (6.3) may be manipulated for the buckling problem of the rhombus and triangular 

cells by selecting a suitable polynomial to define the boundaries. Suitable polynomial 

functions 𝑓1(𝑥̅1) and  𝑓2(𝑥̅1) may be selected to define the boundaries of the rhombus 

and triangular cells. In Eq. (6.4),  𝑙2(𝑥̅1) should not be zero at any boundary points at 

as it will cause a singularity in the calculations. In order avoid these numerical issues, 

𝑙2(𝑥̅1) should be defined such that 𝑙2(𝑥̅1) at the corner points a and c (Fig.6.18) should 

not be zero.  Equations. (6.43) and (6.44) may be used to define 𝑙2(𝑥̅1)  for the 

rhombus cell and triangular cell shapes respectively: 

 

𝑙2(𝑥̅1) = (𝑓2(𝑥̅1) − 𝑓1(𝑥̅1)) + 𝛿𝑙,               (6.43) 

𝑙2(𝑥̅1) = −𝑓1(𝑥̅1) + 𝛿𝑙,               (6.44) 

 

where, 𝛿𝑙 is very small value to avoid the singularity at the corner points. Now, the 

buckling problems can be solved following same procedure discussed in section 6.3.  

Fig. 6.18: Illustration of definition of the displacement functions for the (a) 
rhombus and (b) triangular cells. 

6.4.1 Comparison of intracellular buckling of different cell shapes  

In this section, intracellular buckling behaviour of different cell shapes is 

studied. Regular hexagonal, equilateral triangular, square and 45o rotated square (will 

be referred as ‘rhombus’ afterwards) shapes are considered for the study. Cell sizes 

of different shapes have been selected such that 
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1. the diameter of the largest inscribed circle within the cell of different shapes 

(Fig.6.19) is equal to each other (D1 = D2 = D3) and 

 

2. the area of the cell of different shapes is equal to each other. 

Fig. 6.19: Different cell shapes considered for the analysis of intracellular 
buckling. 

The material properties of the honeycomb core and face sheets considered 

here are the same as in section 6.3. Face sheets of sandwich panels have a thickness 

of 5mm and fibre lay-up of [0,90,0,90,0] with equal ply thickness. Except for the 

hexagonal core (the vertical wall of the hexagonal core has double the thickness of 

the inclined walls), the core walls of each cell shape have identical thicknesses. The 

relative core density of the sandwich panel varies from 0.054 - 0.108, and the 

thicknesses of the core walls of each cell shape are selected to have a specified 

relative core density. Sandwich panels consisting of honeycomb cores of different 

shapes and core densities are analysed for the intracellular buckling loads under 

uniaxial compression in direction-1 and direction-2 using the proposed semi-analytical 

approach considering the cell boundaries as rotationally restrained. Linear buckling 

analysis is carried out using ABAQUS on the sandwich panels consisting of the 

honeycomb cores of different shapes to compare with the predictions from the 

proposed approach. Comparisons of the buckling loads between the different cell 

shapes are shown in Fig.6.20 - 6.21. 

Figure. 6.20(a) compares intracellular buckling loads of different cell shapes 

with equal inscribed circles under uniaxial compression in direction-1. It can be seen 

from Fig.6.20(a) that the predictions for intracellular buckling loads from the Fokker 

formula are equal regardless of different cell shapes. In contrast, the predictions from 

the proposed approach and FE significantly differ from those from the Fokker formula, 

mainly because the proposed semi-analytical approach and FE analysis consider the 

effect of different cell shapes and the core density on the intracellular buckling loads, 
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while the Fokker formula cannot differentiate the cell shapes having inscribed circles 

with equal diameters and does not consider the effect of core density on the restraint 

along the boundaries of the cells. Considering the different cell shapes of equal 

inscribed circles and with equal core density, the hexagonal cell shape provides the 

highest intracellular buckling loads under uniaxial compression in both direction-1 and 

direction-2. Although the square cell has the lowest buckling loads under compression 

in direction-1, the rhombus cell shape (rotated square) provides the second-highest 

buckling loads under loading in direction-1 and direction-2. The triangular cell shape 

provides better results than the square cell under the loading in direction-1. However, 

intracellular buckling loads of triangular cells become lowest under the axial 

compression in direction-2. Comparing the corresponding buckling loads for different 

core densities under the loading in direction-1 and direction-2 for different cell shapes, 

they are not equal, which is caused by effect of the geometry of the cell and the fibre 

orientations of plies on the buckling loads. Considering the square cell and rhombus, 

both provide slightly better buckling loads for the loading in direction-1 than direction-

2 because of the difference in the material stiffness of the face sheet in both directions; 

however, for other shapes, the differences are due to the combination of the effects of 

geometry and material. At the same time, the Fokker formula predicts the same 

buckling loads for direction-1 and direction-2 as it is analogous to the buckling formula 

of a simply-supported square plate. 

Comparing the results from the proposed approach with the FE results, it can 

be seen that there is a considerable difference between the results for the square, 

rhombus and triangular cores in comparison to the hexagonal core; this is mainly due 

to the influence of increased in-plane stiffness of those cores than the hexagonal core. 

Therefore, compression loads applied along the edges of face sheets in FE models 

(Fig. 6.6) may differ considerably from the intracellular buckling stress at the factsheet, 

as the face sheet will not carry the full compression load. Nevertheless, consistency 

in the prediction trend of the intracellular buckling loads from the proposed approach 

and FE predictions can be seen. As core density becomes lower, buckling of the core 

walls starts to interact with the intracellular buckling of the face sheets, causing some 

change in the trend, which needs to be further studied to understand the behaviour. 

Considering the different cell shapes with equal area, the predictions from the 

proposed approach and FE in Fig.6.21 show that still the hexagonal cell has the 
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highest buckling loads for the loading in both direction-1 and direction-2 and square 

and triangular cells have the lowest buckling load for loading in direction-1 and 

direction-2 respectively. However, the Fokker formula contradicts the results of the 

proposed approach and FE and predicts the lowest and highest buckling loads for the 

hexagonal and triangular cell, respectively, as the diameter of the inscribed circle of 

hexagonal is larger than the diameter of the inscribed circle of a triangular cell having 

an equal area of the hexagonal cell. The analysis highlights the contradictions of using 

the Fokker formula to predict the intracellular buckling loads of the sandwich panels in 

the inverse design and, the importance of considering different geometries and the 

effect of core density on the boundary restrain in predicting the intracellular buckling 

loads. 

It's widely recognized that any flaws associated with materials or geometry 

within the core or face sheet can influence buckling loads, potentially leading to lower 

values. The management of these imperfections is primarily attributed to 

manufacturing techniques and quality control processes, which can vary significantly. 

A thorough understanding of the specific formulation considering various 

imperfections such as initial curvature, voids, material inhomogeneity, etc., requires 

investigation in detailed design process, often necessitating advanced numerical 

models or experimental studies which is beyond the scope of the present study. 

However, if we aim to account for imperfections' effects on buckling during the 

preliminary material and geometry selections in the sandwich panel design, few 

approaches can be adopted. One option involves incorporating knockdown factors 

based on anticipated imperfections, while another involves employing conservative 

estimates, such as assuming simply supported boundaries for the edges. These 

strategies provide practical means to address imperfection-related concerns at the 

early stages of design without necessitating exhaustive detailed analyses. 
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Fig. 6.20: Comparison of intracellular buckling loads of different cell shapes 
consisting of equal inscribed circle under uniaxial compression (a) direction-1 and (b) 

direction-2. 
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Fig. 6.21: Comparison of intracellular buckling loads of different cell shapes of equal 

area under uniaxial compression in (a) direction-1 and (b) direction-2. 
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6.5 Conclusions 

A novel approach to predict the intracellular buckling load of sandwich panels 

with honeycomb cores was presented. The proposed semi-analytical approach was 

validated for the hexagonal cell with different geometric and material configurations. 

The proposed approach was formulated to take into account the geometric shape of 

the cell, rotational restraints at the boundaries, and different loading conditions. 

Existing closed-form solutions for intracellular buckling loads give significantly 

conservative results and are found to be not consistent with the FE results. While the 

proposed approach with simply-supported boundaries for the cell gives conservative 

results, predictions with rotationally restrained boundaries for the cell are very close to 

the FE results under various conditions, such as different cell sizes, core densities, 

face sheet fibre lay-ups, and different loading conditions. The proposed approach is 

more general and can be used to predict shear buckling loads of different cell shapes 

and material configurations.  

The proposed semi-analytical approach can be easily manipulated to vary 

parameters such as cell size, core density, loading ratios, face sheet’s fibre lay-up, 

thickness, etc., and the buckling loads can be predicted to reasonable accuracy with 

less computational effort compared to FE. Therefore, the proposed approach can be 

used effectively for the inverse design of the sandwich panels. 

 

6.6 References 

Allen, H. G. (1969). Analysis and Design of Structural Sandwich Panels: Pergamon. 
ABAQUS version 2021. Dassault Systemes Simulia Corporation. Providence, RI, 

USA. 
Ashton, J. E. 1969. Approximate Solutions for Unsymmetrically Laminated Plates. 

Journal of Composite Materials. 3(1). 189–191.  
Birman, V., & Bert, C. W. (2004). Wrinkling of composite-facing sandwich panels 

under biaxial loading. Journal of Sandwich Structures & Materials, 6(3), 217-
237.  

Blaas, C. (1984). Local instability for sandwich panels. Fokker report TR-N-84-CSE-
061. 

Bleich, F. (1952). Buckling strength of metal structures. New York, NY: McGraw-Hill. 
Chai, G. B. (1994). Buckling of generally laminated composite plates with various 

edge support conditions. Composite Structures. 29(3). 299-310. 
Higginson, K., Fernando, D., Veidt, M., Burnton, P., You, Z., & Heitzmann, M. (2021). 

Local buckling of FRP thin-walled plates, shells and hollow sections with 
curved edges and arbitrary lamination. Thin-Walled Structures, 168, 108242.  



206 
 

Hemp, W. (1948). On a theory of sandwich construction.  
Hoff, N. J., & Mautner, S. (1945). The buckling of sandwich-type panels. Journal of 

the Aeronautical Sciences, 12(3), 285-297.  
Kollár, L. P. (2003). Local buckling of fiber reinforced plastic composite structural 

members with open and closed cross sections. Journal of Structural 
Engineering, 129(11), 1503-1513.  

Leissa, A. W. (1985). Buckling of laminated composite plates and shell panels (No. 
OSURF-762513/713464). Ohio State Univ Research Foundation Columbus. 

Ley, R. P., Lin, W., & Mbanefo, U. (1999). Facesheet wrinkling in sandwich 
structures (No. NAS 1.26: 208994). 

MathWorks Inc. (2022). MATLAB version: 9.13.0 (R2022b), Natick, Massachusetts: 
The MathWorks Inc. 

Niu, K., & Talreja, R. (1999). Modeling of Wrinkling in Sandwich Panels under 
Compression. Journal of Engineering Mechanics, 125(8), 875-883.  

Norris, C. B. (1964). Short-column compressive strength of sandwich constructions 
as affected by size of cells of honeycomb core materials (Vol. 26): US 
Department of Agriculture, Forest Service, Forest Products Laboratory. 

Plantema, F. J. (1966). Sandwich construction: the bending and buckling of 
sandwich beams, plates, and shells: Wiley. 

Pozorski, Z., Pozorska, J., Kreja, I., & Smakosz, Ł. (2021). On Wrinkling in Sandwich 
Panels with an Orthotropic Core. Materials, 14(17), 5043.  

Qiao, P., & Shan, L. (2007). Explicit local buckling analysis of rotationally restrained 
composite plates under biaxial loading. International Journal of Structural 
Stability and Dynamics, 7(03), 487-517.  

Thomsen, O. T., & Banks, W. M. (2004). An improved model for the prediction of 
intra-cell buckling in CFRP sandwich panels under in-plane compressive 
loading. Composite Structures, 65(3-4), 259-268.  

Timoshenko, S.P. and Gere, J.M. (1961) Theory of Elastic Stability. Second Edition, 
McGraw-Hill Book Co. Inc., New York. 

Vonach, W. K., & Rammerstorfer, F. G. (2000). The effects of in-plane core stiffness 
on the wrinkling behavior of thick sandwiches. Acta Mechanica, 141(1-2), 1-
10.  

Wei, X., Wu, Q., Gao, Y., Yang, Q., & Xiong, J. (2022). Composite honeycomb 
sandwich columns under in-plane compression: Optimal geometrical design 
and three-dimensional failure mechanism maps. European Journal of 
Mechanics-A/Solids, 91, 104415.  

Yang, B., & Wang, D. (2017). Buckling strength of rectangular plates with elastically 
restrained edges subjected to in-plane impact loading. Proceedings of the 
Institution of Mechanical Engineers, Part C: Journal of Mechanical 
Engineering Science.231(20):3743-3752.  

Zenkert, D. (1997). The handbook of sandwich construction: Engineering Materials 
Advisory Services. 

  



207 
 

Chapter 7: 
 
Conclusions  

7.1 Summary of key findings and impacts 

In recent years, all-composite honeycomb core sandwich panels have gained 

wide popularity in lightweight sandwich structure applications due to their excellent 

specific stiffness, strength, and multifunctional advantages. A detailed literature review 

in Chapter 2 on the past research studies related to the sandwich panels revealed that 

the application of the inverse design for all-composite honeycomb core sandwich 

panels is limited due to the lack of versatile and robust design tools to consider various 

materials and geometry configurations as well as different loadings. This PhD thesis 

aimed to address this gap by developing innovative methodologies to facilitate the 

inverse design of all-composite honeycomb core sandwich panels while considering 

key variables related to geometry, materials and loadings. 

Chapter 3 focused on developing an analytical model for homogenising the 

laminated composite honeycomb cores with various geometry and material 

configurations. The proposed model, based on the strain energy approach, 

demonstrated excellent agreement with FE analysis results, outperforming existing 

analytical models in terms of accuracy and broader applicability to different material 

and geometry configurations of the core. Chapter 4 investigated the effectiveness and 

accuracy of the equivalent models in predicting sandwich panel responses against 3D 

models with actual discrete core structures. The study showed that equivalent models 

based on FSDT provided reasonably accurate predictions for various honeycomb core 

configurations, with proper estimation of the shear correction factor and effective 

stiffness matrix of the core. 

Chapter 5 introduced a novel semi-analytical approach to predict the critical 

shear buckling load of laminated composite honeycomb cores. The proposed model 

accounted for the bend-twist coupling effects of the laminate on the shear buckling, 

which significantly influenced the shear buckling strength of the laminated composite 

honeycomb core. The study highlighted the effect of different core shapes, ply 
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arrangements and shear loading conditions on the shear buckling strength. The study 

also highlighted the effect of different boundary conditions on the accuracy of 

predicting the shear buckling strength of the core. Chapter 6 addressed the 

intracellular buckling of laminated composite face sheets, developing a semi-analytical 

approach capable of predicting buckling loads with high accuracy. Unlike the existing 

models for intracellular buckling, the proposed model was developed considering 

different cell shapes of composite face sheets under various compressive loadings.    

The impacts of this research are significant in several key areas: 

• Advancement of Lightweight Sandwich Panel Design: By developing 

accurate methodologies for the inverse design of all-composite honeycomb 

core sandwich panels, this research facilitates the creation of lightweight 

structures with enhanced stiffness and strength using different materials and 

core shapes. This is particularly valuable in industries where weight reduction 

is critical, such as aerospace, automotive, and marine engineering. 

• Closing Knowledge Gaps: The research addresses existing knowledge gaps 

in the inverse design of composite honeycomb core sandwich panels. Through 

comprehensive analysis and validation against FE analysis results, the study 

provides robust analytical and semi-analytical models that improve our 

understanding of the stiffness and strength of the panel behaviour under 

various conditions. 

• Versatile Design Tools: The developed models offer versatility by 

accommodating different core shapes, material configurations, and loading 

conditions. This enables designers to tailor panel designs to specific 

performance requirements more efficiently and accurately, ultimately leading to 

more optimised structures. 

• Cost and Time Savings: The use of equivalent models based on effective 

stiffness and semi-analytical models to predict the local buckling failures offers 

significant time savings in modelling and analysis compared to complex 3D 

models and experiments. This makes the inverse design process more 

accessible and cost-effective for engineers and researchers. 

• Potential for Multidisciplinary Applications: The methodologies and findings 

of this research have implications beyond sandwich panel design. They can be 

applied to various fields involving composite materials and structural 
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optimisation, expanding the reach of lightweight design principles across 

different engineering disciplines and industries. 

7.2 Recommendations for future research 

The present research study generates numerous future research avenues that 

either directly extend or relate to the current thesis. Below, a summary of some 

potential directions is provided for the readers of this thesis: 

• The current investigation concentrated on developing analytical tools for the 

inverse design of all-composite honeycomb core sandwich panels. As a 

prospective endeavour, these design tools could be integrated with suitable 

search algorithms to achieve optimal designs of such panels tailored to specific 

performance targets. 

• The current study assumed small deformations for the core walls, neglecting 

geometric non-linearity. Exploring non-linear homogenisation models for core 

walls undergoing large deformations could serve as another extension of this 

study. 

• While the model proposed for the local buckling of the honeycomb core in 

Chapter 5 only considered transverse shear force, incorporating the effect of 

normal force could enhance prediction accuracy, particularly when the core in-

plane stiffness contribution to the sandwich panels is significant. Extending the 

model to account for combined loadings in core buckling could further improve 

predictive capabilities. 

• Although the current study addressed the impact of bend-twist coupling on the 

local buckling of composite honeycomb cores and face sheets, further 

investigation into extensional-shear and membrane-bending coupling effects is 

recommended. 

• The study delineated separate buckling failure models for wrinkling and 

intracellular buckling modes; however, the interaction between these modes 

may not be accurately captured by either model. Developing a unified 

formulation for buckling that accounts for interactions among different variables 

associated with face sheets and core could be a promising avenue for future 

research. 
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• The developed design tools were predicated on the assumption of structural 

perfection and were validated using FE models. However, further exploration 

via experiments is warranted to scrutinize the local buckling phenomena of 

honeycomb cores and face sheets, as well as the effective stiffness of 

laminated composite honeycomb cores under real-world manufacturing 

conditions, where imperfections are inevitable. 

• While the current study relied on simplified linear buckling predictions for 

inverse design, employing non-linear buckling analyses based on detailed 3D 

models of sandwich panels could offer deeper insights into the effects of 

imperfections and post-buckling behaviour across various face sheet and core 

configurations. 
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Appendix  

A1. Shear corretion factor 

 

 

  

Ply-1 bottom and top axis 2̅ values are 𝑥̅2
1 and 𝑥̅2

2 respectively. 

Ply-k bottom and top axis 2̅ values are 𝑥̅2
𝑘 and 𝑥̅2

𝑘+1 respectively. 

The stress equilibrium within the section in the direction-1̅ assuming cylindrical 

bending can be written as: 

𝜕 𝜎̅11

𝜕𝑥̅1
+
𝜕𝜏̅12

𝜕𝑥̅2
= 0.                (A.1) 

From the moment equilibrium about the axis-3̅, we can write: 

𝐹̅12 +
𝜕𝑀̅11

𝜕𝑥1
= 0.                (A.2) 

From Eq. (A.1) and (A.2), we can write: 

𝜏1̅2 = −∫ (
𝜕 𝜎̅11

𝜕𝑥̅1
) 𝑑𝑥̄2

𝑥̅2

−(
𝑡

2
+𝑑)

,               (A.3) 

𝜏1̅2 = −∫ (
𝜕𝑀̅11

𝜕𝑥1
) (

𝑄̅11(𝑥̅2)

𝐷̅11
) 𝑥̄2𝑑𝑥̄2,

𝑥̅2

−(
𝑡

2
+𝑑)

             (A.4) 

𝜏1̅2 = −∫ 𝐹̅12 (
𝑄̅11(𝑥̅2)

𝐷̅11
) 𝑥̄2𝑑𝑥̄2

𝑥̅2

−(
𝑡

2
+𝑑)

,                        (A.5) 

𝜏1̅2 = −(
𝐹12

𝐷̅11
) 𝑔(𝑥̅2).                (A.6) 

where  𝑔(𝑥̅2) = ∫ 𝑄̅11(𝑥̅2)𝑥̄2𝑑𝑥̄2
𝑥̅2

−(
𝑡

2
+𝑑)

. 

The strain energy due to the transverse shear per unit middle surface area of the 

laminate is:   

 𝑈𝑠 =
1

2
∫

(𝜏̅12)
2

𝑄̅44(𝑥̅2)
𝑑𝑥̄2

(𝑡 2⁄ −𝑑)

−(
𝑡

2
+𝑑)

,                 (A.7) 

𝑈𝑠 =
1

2
(
𝐹12

𝐷̅11
)
2

∫
𝑔(𝑥̅2)

2 

𝑄̅44(𝑥̅2) 
𝑑𝑥̄2

(𝑡 2⁄ −𝑑)

−(
𝑡

2
+𝑑)

.                (A.8) 

1̅ 

2̅ 

𝑑 𝑡 

𝑡/2 1 
2 

𝑘 
𝑘 + 1 
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For the equivalent section with constant transverse shear strain, the strain energy due 

to the transverse shear per unit middle surface area is:  

𝑈̅𝑠 =
1

2
∫ 𝛾̅12𝑄̅44(𝑥̅2)𝛾̅12𝑑𝑥̄2
(𝑡 2⁄ −𝑑)

−(
𝑡

2
+𝑑)

=
(𝐹12)

2

𝐴̅44
.               (A.9) 

From Eqs. (3A.8) and (3A.9), we can write shear correction factor as: 

𝑘1 =
𝑈̅𝑠

𝑈𝑠
=

𝐷̅11
2

𝐴̅44 ∫
𝑔(𝑥̅2)

2 

𝑄̅44(𝑥̅2)
 𝑑𝑥̄2

(𝑡 2⁄ −𝑑)

−(
𝑡
2
+𝑑)

.               (A.10) 

Equivalent shear stiffness is given as: 

𝑆𝑒𝑞 = 𝑘1𝐴̅44.               (A.11) 

 

A2. Average strain components of RVE of periodic honeycomb core  

 

 

 

 

Let say the coordinates of points (1a) and (1b) are (𝑥1
𝑜 , 𝑥2

𝑜, 𝑥3
𝑜) and (𝑥1

𝑜 , 𝑥2
𝑜, 𝑥3

𝑜 + ℎ) 

Outward unit normal vector for the surface (1a-1b-3b-3a):   

  𝒏̂1−3 = < 0,−1,0 >              (A.12) 

Outward unit normal vector for the surface (2a-2b-4b-4a):   

 𝒏̂2−4 = < 0, 1,0 >              (A.13) 
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3 

1 

1 

2 

3 

4 

𝑝 
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𝑟 

5 𝐼𝐼𝐼 
𝐼𝐼 

𝐼 
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Outward unit normal vector for the surface (1a-2a-2b-1b):     

𝒏̂2−4 = 
−1

√𝑞2+𝑟2
< 𝑞, 𝑟, 0 >              (A.14) 

Outward unit normal vector for the surface (3a-4a-4b-3b):   

 𝒏̂2−4 = 
1

√𝑞2+𝑟2
< 𝑞, 𝑟, 0 >             (A.15) 

The global strain of the RVE can be written as: 

𝜀𝑖𝑗 =
1

2𝑉𝑅𝑉𝐸
∫ (𝑢𝑖𝑛𝑗 + 𝑢𝑗𝑛𝑖)𝑑𝛤.
 

𝛤
               (A.16) 

𝜀11 =
1

2 ∗ ℎ ∗ 𝑝 ∗ 𝑞
∫ [2(𝑢1(2−4) − 𝑢1(1−3)) ∗ 0 + 2 ∗ (𝑢1(3−4) − 𝑢1(1−2)) ∗

𝑞

√𝑞2 + 𝑟2
] 𝑑𝛤,

 

𝛤

 

=
1

2 ∗ ℎ ∗ 𝑝 ∗ 𝑞
∗ (2 ∗ (𝑢1(3−4) − 𝑢1(1−2)) ∗

𝑞

√𝑞2 + 𝑟2
) ∗ (√𝑞2 + 𝑟2 ∗ ℎ) , 

=
(𝑢1(3−4) − 𝑢1(1−2))

𝑝
, 

=
(𝑢1(3) − 𝑢1(1))

𝑝
. 

               (A.17) 

𝜀22 =
1

2 ∗ ℎ ∗ 𝑝 ∗ 𝑞
∫ [2(𝑢2(2−4) − 𝑢2(1−3)) ∗ 1 + 2 ∗ (𝑢2(3−4) − 𝑢2(1−2)) ∗

𝑟

√𝑞2 + 𝑟2
] 𝑑𝛤,

 

𝛤

 

=
1

2 ∗ ℎ ∗ 𝑝 ∗ 𝑞

∗ [2(𝑢2(2−4) − 𝑢2(1−3)) ∗ 𝑝 ∗ ℎ + (2 ∗ (𝑢2(3−4) − 𝑢2(1−2)) ∗
𝑟

√𝑞2 + 𝑟2
)

∗ (√𝑞2 + 𝑟2 ∗ ℎ)], 

=
(𝑢1(2−4) − 𝑢1(1−3))

𝑝
+
𝑟

𝑞

(𝑢2(3−4) − 𝑢2(1−2))

𝑝
. 

=
(𝑢1(2) − 𝑢1(1))

𝑝
+
𝑟

𝑞

(𝑢2(3) − 𝑢2(1))

𝑝
. 

              (A.18) 
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𝜀12 =
1

2 ∗ ℎ ∗ 𝑝 ∗ 𝑞
∫ [(𝑢1(2−4) − 𝑢1(1−3)) ∗ 1 + (𝑢1(2−4) − 𝑢1(1−3)) ∗ 0

 

𝛤

+ (𝑢1(3−4) − 𝑢1(1−2)) ∗
𝑟

√𝑞2 + 𝑟2
+ (𝑢2(3−4) − 𝑢2(1−2)) ∗

𝑞

√𝑞2 + 𝑟2
] 𝑑𝛤, 

=
1

2 ∗ ℎ ∗ 𝑝 ∗ 𝑞

∗ [2(𝑢1(2−4) − 𝑢1(1−3)) ∗ 𝑝 ∗ ℎ

+
1

√𝑞2 + 𝑟2
((𝑢1(3−4) − 𝑢1(1−2)) ∗ 𝑟 + (𝑢2(3−4) − 𝑢2(1−2)) ∗ 𝑞)

∗ (√𝑞2 + 𝑟2 ∗ ℎ) +], 

=
1

2
(
(𝑢2(3−4) − 𝑢2(1−2))

𝑝
+
(𝑢1(2−4) − 𝑢1(1−3))

𝑞
+
𝑟

𝑞

(𝑢1(3−4) − 𝑢1(1−2))

𝑝
). 

=
1

2
(
(𝑢2(3) − 𝑢2(1))

𝑝
+
(𝑢1(2) − 𝑢1(1))

𝑞
+
𝑟

𝑞

(𝑢1(3) − 𝑢1(1))

𝑝
). 

              (A.19) 

𝜀13 =
1

2 ∗ ℎ ∗ 𝑝 ∗ 𝑞
∫ [(𝑢1(2−4) − 𝑢1(1−3)) ∗ 0 + (𝑢3(2−4) − 𝑢3(1−3)) ∗ 0

 

𝛤

+ (𝑢1(3−4) − 𝑢1(1−2)) ∗ 0 + (𝑢3(3−4) − 𝑢3(1−2)) ∗
𝑞

√𝑞2 + 𝑟2
] 𝑑𝛤, 

=
1

2 ∗ ℎ ∗ 𝑝 ∗ 𝑞
∗ [((𝑢3(3−4) − 𝑢3(1−2)) ∗

𝑞

√𝑞2 + 𝑟2
) ∗ (√𝑞2 + 𝑟2 ∗ ℎ) +] 

=
1

2
(
(𝑢3(3−4) − 𝑢3(1−2))

𝑝
). 

=
1

2
(
(𝑢3(3) − 𝑢3(1))

𝑝
). 

              (A.20) 
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𝜀23 =
1

2 ∗ ℎ ∗ 𝑝 ∗ 𝑞
∫ [(𝑢2(2−4) − 𝑢2(1−3)) ∗ 0 + (𝑢3(2−4) − 𝑢3(1−3)) ∗ 1

 

𝛤

+ (𝑢2(3−4) − 𝑢2(1−2)) ∗ 0 + (𝑢3(3−4) − 𝑢3(1−2)) ∗
𝑟

√𝑞2 + 𝑟2
] 𝑑𝛤, 

=
1

2 ∗ ℎ ∗ 𝑝 ∗ 𝑞

∗ [(𝑢3(2−4) − 𝑢3(1−3)) ∗ 𝑝 ∗ ℎ + ((𝑢3(3−4) − 𝑢3(1−2)) ∗
𝑟

√𝑞2 + 𝑟2
)

∗ (√𝑞2 + 𝑟2 ∗ ℎ) +] 

=
1

2
(
(𝑢3(2−4) − 𝑢3(1−3))

𝑝
+
𝑟

𝑞

(𝑢3(3−4) − 𝑢3(1−2))

𝑝
). 

=
1

2
(
(𝑢3(2) − 𝑢3(1))

𝑝
+
𝑟

𝑞

(𝑢3(3) − 𝑢3(1))

𝑝
). 

              (A.21) 

A3. Equations to find the nodal displacements of RVE 

 

Equations for solving nodal displacements. 

I.  Applying the periodic boundary conditions to the RVE, we will have the followings: 

 𝜑(𝑖) = 𝜑(𝑖 + 1),    𝑖 = 1,3, … . . , 𝑚 

 𝑢(𝑚 )𝑙 − 𝑢(𝑖 )𝑙 =  𝑢(𝑚+1 )𝑙 − 𝑢(𝑖+1 )𝑙,  𝑖 = 1,3, … . . , 𝑚,   𝑙 = 1,2,3 

 𝜑(𝑗) = 𝜑(𝑗 + 1),    𝑗 = (𝑚 + 2), (𝑚 + 4),… . . , 𝑛 

 𝑢(2 )𝑙 − 𝑢(𝑗 )𝑙 =  𝑢(𝑚+1 )𝑙 − 𝑢(𝑗+1 )𝑙,  𝑗 = (𝑚 + 2), (𝑚 + 4),… . . , 𝑛 ,  𝑙 = 1,2,3          

 𝜑(1) = 𝜑(𝑚).                (A.22) 
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II.  RVE does not undergo any rigid body motions, then we will have the followings: 

 𝑢(1 )1 = 0,   𝑢(1 )2 = 0,  𝑢(1 )3 = 0,   𝑎𝑛𝑑  𝑢(𝑚 )2 = 0.         (A.23) 

III.  Resultant forces at all internal nodes and at all pairs of corresponding nodes 𝑖 and 

𝑖 + 1 should be zero, which gives the followings:  

𝐹(1)𝑙 + 𝐹(2)𝑙 + 𝐹(𝑚)𝑙 + 𝐹(𝑚+1)𝑙 = 0, 𝑙 = 1,2,3 

𝑀(1) +𝑀(2) +𝑀(𝑚) +𝑀(𝑚+1) = 0, 

𝐹(𝑖)𝑙 + 𝐹(𝑖+1)𝑙 = 0,    𝑖 = 3,5, … . . , (𝑚 − 2) 𝑎𝑛𝑑 

𝑀(𝑖) +𝑀(𝑖+1) = 0,    𝑖 = (𝑚 + 2), (𝑚 + 4),… , 𝑛,       𝑙 = 1,2,3 

𝐹(𝑘)𝑙 = 0,      𝑘 = (𝑛 + 2), (𝑛 + 3),… , 𝑠,       𝑙 = 1,2,3 

 𝑀(𝑘)𝑙 = 0.                (A.24) 

 

  Equations in (A.22), (A.23) and (A.24) together with the Eqs. (A.17) - (A.21) will 

provide (4𝑠 + 3) equations to solve for the nodal displacements of RVE. Equations in 

(A.24) will provide three redundant equations which should be eliminated to solve for 

the nodal displacements. 

 

A4. MATLAB program for the homogenisation of the hexagonal core  

Hexagonal. m 

clc 
clear 
syms L teta t E h u  real 
syms V11 V12 V13 V21 V22 V23 V31 V32 V33 k real 
syms C1 C2 C3 C4 x1 y1 x2 y2 x3 y3 z X Y  real 
syms v11 v12 v13 dw1 v31 v32 v33 dw3 v41 v42 v43 dw4 v51 v52 v53 dw5 v21 v22 v23      
dw2 real 
syms E11 E22 E33 E23 E13 E12 real 
 
 
 
L1=50;              %Vertical walls 
L2=50;               %inclined walls 
h=150;              %height of the honeycomb 
t1=3.12;             %thickness of vertical leg 
t2=3.12;            %thickness of inclined leg 
t3=3.12; 
teta=120*pi/180;    %% Angle between inclined and vertical 
 
%%Material properties of FRP materials of (A,B &C)   with respect to its principle 
axes 
E1A=204000;          
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E1B=38600; 
E1C=131000; 
E2A=18500; 
E2B=8270; 
E2c=10300; 
GA=5590; 
GB=4140; 
Gc=6900; 
VA=0.23; 
VB=0.26; 
VC=0.22; 
 
%%% Define thickness of each ply of each wall 
 
layer_thickness1=t2/5*[1,1,1,1,1];%,0,0,0,0,0]+t3/5*[0,0,0,0,0,1,1,1,1,1]; 
  
layer_thickness2=t2/5*[1,1,1,1,1];     
layer_thickness3=t3/5*[1,1,1,1,1];     
 
%%% Material properties of each ply of each wall 
 
E1layer1=[E1A,E1A,E1A,E1A,E1A];  
E2layer1=[E2A,E2A,E2A,E2A,E2A];   
Glayer1=[GA,GA,GA,GA,GA];     
vlayer1=[VA,VA,VA,VA,VA];     
 
 
E1layer2=[E1B,E1B,E1A,E1B,E1B];    
E2layer2=[E2B,E2B,E2A,E2B,E2B];   
Glayer2=[GB,GB,GA,GB,GB];     
vlayer2=[VB,VB,VA,VB,VB]; 
 
E1layer3=[E1B,E1A,E1B,E1A,E1B];  
E2layer3=[E2B,E2A,E2B,E2A,E2B];    
Glayer3=[GB,GA,GB,GA,GB];    
vlayer3=[VB,VA,VB,VA,VB];   
 
%%% Ply orientation of each ply of each wall 
 
nOrient1=[0*pi/12,3*pi/12,6*pi/12,3*pi/12,0*pi/12];      
nOrient2=[6*pi/12,0*pi/12,0*pi/12,0*pi/12,6*pi/12];      
nOrient3=[6*pi/12,0*pi/12,0*pi/12,0*pi/12,6*pi/12];      
 
% Calculate the section stiffness of each wall 
 
[A1,B1,D1,Se1]=MaterialPropThick(t1,layer_thickness1,E1layer1,E2layer1,Glayer1,vla
yer1,nOrient1); 
[A2,B2,D2,Se2]=MaterialPropThick(t1,layer_thickness1,E1layer1,E2layer1,Glayer1,vla
yer1,nOrient1); 
[A3,B3,D3,Se3]=MaterialPropThick(t1,layer_thickness1,E1layer1,E2layer1,Glayer1,vla
yer1,nOrient1); 
 
%%Define the characteristic dimensions of the RVE 
 
a=2*L2*sin(teta);            
b=(L1+L2*cos(pi-teta));  
c=L2*sin(teta); 
V=a*b*h;                    %volume of RVE 
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disp('relative coredensity'); 
Dr=(t3*L2*h+t2*L2*h+t1*L1*h)/V; %% Relative core density 
disp(Dr) 
 
%%Define 9 independent strain states to calculate the effective stiffness 
%%tensor 
 
for i=1:1:9 
    switch i 
        case 1 
            e11=1;e22=0;E33=0;e23=0;e13=0;e12=0; 
        case 2 
            e11=0;e22=1;E33=0;e23=0;e13=0;e12=0; 
        case 3 
            e11=0;e22=0;E33=1;e23=0;e13=0;e12=0;   
        case 4 
            e11=0;e22=0;E33=0;e23=0;e13=1;e12=0;  
        case 5 
            e11=0;e22=0;E33=0;e23=1;e13=0;e12=0; 
        case 6 
            e11=0;e22=0;E33=0;e23=0;e13=0;e12=1; 
        case 7 
            e11=1;e22=1;E33=0;e23=0;e13=0;e12=0; 
        case 8 
            e11=1;e22=0;E33=1;e23=0;e13=0;e12=0; 
        case 9 
            e11=0;e22=1;E33=1;e23=0;e13=0;e12=0; 
    end 
  
 
 
        %%Define stiffness matrix of wall 1_Vertical wall 
 
        L=L1; 
        A=A1;B=B1;D=D1;             %%In-plane stiffness 
        Seq=Se1;                    %%Transverse shear stiffness. 
        n=12*D(1,1)/(L^2*Seq);      %%%Seq=kGA 
 
K1=[(A(1,1)*h)/L,0,  (A(1,3)*h)/L, 0, -(A(1,1)*h)/L, 0, -(A(1,3)*h)/L, 0; 

0,(h*(Seq*L^2*n^2 + 12*D(1,1)))/(L^3*(n + 1)^2),0, (h*(Seq*L^2*n^2 + 
12*D(1,1)))/(2*L^2*(n + 1)^2),0,-(h*(Seq*L^2*n^2 + 12*D(1,1)))/(L^3*(n + 
1)^2),0,(h*(Seq*L^2*n^2 + 12*D(1,1)))/(2*L^2*(n + 1)^2); 

      (A(1,3)*h)/L,0,(A(3,3)*h)/L,0, -(A(1,3)*h)/L,0, -(A(3,3)*h)/L,0; 
0, (h*(Seq*L^2*n^2 + 12*D(1,1)))/(2*L^2*(n + 1)^2), 0, (h*(Seq*L^2*n^2 + 
4*D(1,1)*n^2 + 8*D(1,1)*n + 16*D(1,1)))/(4*L*(n + 1)^2),  0, -(h*(Seq*L^2*n^2 
+ 12*D(1,1)))/(2*L^2*(n + 1)^2),  0, (h*(Seq*L^2*n^2 - 4*D(1,1)*n^2 - 
8*D(1,1)*n + 8*D(1,1)))/(4*L*(n + 1)^2); 

       -(A(1,1)*h)/L, 0, -(A(1,3)*h)/L,0,  (A(1,1)*h)/L,0,  (A(1,3)*h)/L,0; 
0, -(h*(Seq*L^2*n^2 + 12*D(1,1)))/(L^3*(n + 1)^2), 0,-(h*(Seq*L^2*n^2 + 
12*D(1,1)))/(2*L^2*(n + 1)^2),0,    (h*(Seq*L^2*n^2 + 12*D(1,1)))/(L^3*(n + 
1)^2),0,-(h*(Seq*L^2*n^2 + 12*D(1,1)))/(2*L^2*(n + 1)^2); 

       -(A(1,3)*h)/L,0, -(A(3,3)*h)/L,0,  (A(1,3)*h)/L,0,  (A(3,3)*h)/L,0; 
0, (h*(Seq*L^2*n^2 + 12*D(1,1)))/(2*L^2*(n + 1)^2), 0, (h*(Seq*L^2*n^2 - 
4*D(1,1)*n^2 - 8*D(1,1)*n + 8*D(1,1)))/(4*L*(n + 1)^2), 0, -(h*(Seq*L^2*n^2 
+ 12*D(1,1)))/(2*L^2*(n + 1)^2), 0, (h*(Seq*L^2*n^2 + 4*D(1,1)*n^2 + 
8*D(1,1)*n + 16*D(1,1)))/(4*L*(n + 1)^2)]; 
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       K2=h*[-A(1,2) 0 -A(2,3) 0 A(1,2) 0 A(2,3) 0]';%%Stiffness matrix with respct 
to the local axes 
 
 
%%Transformation matrix for wall 1_vertical wall  
 
 
        T1=[cos(pi/2) -sin(pi/2) 0 0 0 0 0 0;... 
            sin(pi/2) cos(pi/2) 0 0 0 0 0 0;... 
            0 0 1 0 0 0 0 0;... 
             0 0 0 1 0 0 0 0;... 
             0 0 0 0 cos(pi/2) -sin(pi/2) 0 0;... 
             0 0 0 0 sin(pi/2) cos(pi/2) 0 0;... 
             0 0 0 0 0 0 1 0;... 
             0 0 0 0 0 0 0 1]; 
        K11t=T1*K1*T1';     
        K21t=T1*K2; 
 
 
%%Define global force-displacement relationship  
        F1=K11t*[v11 v12 v13 dw1 v51 v52 v53 dw5]'+K21t*E33; 
 
 
 
        %%Define stiffness matrix of wall 2_Inclined wall 1 
 
         L=L2; 
         A=A2;B=B2;D=D2; 
         Seq=Se2; 
         n=12*D(1,1)/(L^2*Seq); %%%Seq=kGA 
 
         K1=[(A(1,1)*h)/L,0,  (A(1,3)*h)/L, 0, -(A(1,1)*h)/L, 0, -(A(1,3)*h)/L, 0; 

0,(h*(Seq*L^2*n^2 + 12*D(1,1)))/(L^3*(n + 1)^2),0, (h*(Seq*L^2*n^2 + 
12*D(1,1)))/(2*L^2*(n + 1)^2),0,-(h*(Seq*L^2*n^2 + 
12*D(1,1)))/(L^3*(n + 1)^2),0,(h*(Seq*L^2*n^2 + 12*D(1,1)))/(2*L^2*(n 
+ 1)^2); 

             (A(1,3)*h)/L,0,(A(3,3)*h)/L,0, -(A(1,3)*h)/L,0, -(A(3,3)*h)/L,0; 
 0, (h*(Seq*L^2*n^2 + 12*D(1,1)))/(2*L^2*(n + 1)^2), 0, 
(h*(Seq*L^2*n^2 + 4*D(1,1)*n^2 + 8*D(1,1)*n + 16*D(1,1)))/(4*L*(n + 
1)^2),  0, -(h*(Seq*L^2*n^2 + 12*D(1,1)))/(2*L^2*(n + 1)^2),  0, 
(h*(Seq*L^2*n^2 - 4*D(1,1)*n^2 - 8*D(1,1)*n + 8*D(1,1)))/(4*L*(n + 
1)^2); 

             -(A(1,1)*h)/L, 0, -(A(1,3)*h)/L,0,  (A(1,1)*h)/L,0,  (A(1,3)*h)/L,0; 
 0, -(h*(Seq*L^2*n^2 + 12*D(1,1)))/(L^3*(n + 1)^2), 0,-(h*(Seq*L^2*n^2 
+ 12*D(1,1)))/(2*L^2*(n + 1)^2),0,    (h*(Seq*L^2*n^2 + 
12*D(1,1)))/(L^3*(n + 1)^2),0,-(h*(Seq*L^2*n^2 + 
12*D(1,1)))/(2*L^2*(n + 1)^2); 

             -(A(1,3)*h)/L,0, -(A(3,3)*h)/L,0,  (A(1,3)*h)/L,0,  (A(3,3)*h)/L,0; 
0, (h*(Seq*L^2*n^2 + 12*D(1,1)))/(2*L^2*(n + 1)^2), 0, (h*(Seq*L^2*n^2 
- 4*D(1,1)*n^2 - 8*D(1,1)*n + 8*D(1,1)))/(4*L*(n + 1)^2), 0, -
(h*(Seq*L^2*n^2 + 12*D(1,1)))/(2*L^2*(n + 1)^2), 0, (h*(Seq*L^2*n^2 + 
4*D(1,1)*n^2 + 8*D(1,1)*n + 16*D(1,1)))/(4*L*(n + 1)^2)]; 

 
        K2=h*[-A(1,2) 0 -A(2,3) 0 A(1,2) 0 A(2,3) 0]';%%Stiffness matrix with respct 
to the local axes 
 
        %%Transpformation matrix for inclned wall 1  
 
        T2=[cos((5*pi/2-teta)) -sin((5*pi/2-teta)) 0 0 0 0 0 0;... 
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            sin((5*pi/2-teta)) cos((5*pi/2-teta)) 0 0 0 0 0 0;... 
            0 0 1 0 0 0 0 0;... 
            0 0 0 1 0 0 0 0;... 
             0 0 0 0 cos((5*pi/2-teta)) -sin((5*pi/2-teta)) 0 0;... 
            0 0 0 0  sin((5*pi/2-teta)) cos((5*pi/2-teta)) 0 0;... 
             0 0 0 0 0 0 1 0;... 
             0 0 0 0 0 0 0 1]; 
     
        K12t=T2*K1*T2'; 
        K22t=T2*K2; 
        %%Define global force-displacement relationship  
        F2=K12t*[v21 v22 v23 dw2 v51 v52 v53 dw5]'+K22t*E33; 
 
 
 
        %%Define stiffness matrix of wall 2_Inclined wall 2 
        L=L2; 
        A=A3;B=B3;D=D3; 
        Seq=Se3; 
        n=12*D(1,1)/(L^2*Seq); %%%Seq=kGA 
 
        K1=[(A(1,1)*h)/L,0,  (A(1,3)*h)/L, 0, -(A(1,1)*h)/L, 0, -(A(1,3)*h)/L, 0; 

0,(h*(Seq*L^2*n^2 + 12*D(1,1)))/(L^3*(n + 1)^2),0, (h*(Seq*L^2*n^2 + 
12*D(1,1)))/(2*L^2*(n + 1)^2),0,-(h*(Seq*L^2*n^2 + 
12*D(1,1)))/(L^3*(n + 1)^2),0,(h*(Seq*L^2*n^2 + 12*D(1,1)))/(2*L^2*(n 
+ 1)^2); 

             (A(1,3)*h)/L,0,(A(3,3)*h)/L,0, -(A(1,3)*h)/L,0, -(A(3,3)*h)/L,0; 
0, (h*(Seq*L^2*n^2 + 12*D(1,1)))/(2*L^2*(n + 1)^2), 0, (h*(Seq*L^2*n^2 
+ 4*D(1,1)*n^2 + 8*D(1,1)*n + 16*D(1,1)))/(4*L*(n + 1)^2),  0, -
(h*(Seq*L^2*n^2 + 12*D(1,1)))/(2*L^2*(n + 1)^2),  0, (h*(Seq*L^2*n^2 
- 4*D(1,1)*n^2 - 8*D(1,1)*n + 8*D(1,1)))/(4*L*(n + 1)^2); 

             -(A(1,1)*h)/L, 0, -(A(1,3)*h)/L,0,  (A(1,1)*h)/L,0,  (A(1,3)*h)/L,0; 
0, -(h*(Seq*L^2*n^2 + 12*D(1,1)))/(L^3*(n + 1)^2), 0,-(h*(Seq*L^2*n^2 
+ 12*D(1,1)))/(2*L^2*(n + 1)^2),0,    (h*(Seq*L^2*n^2 + 
12*D(1,1)))/(L^3*(n + 1)^2),0,-(h*(Seq*L^2*n^2 + 
12*D(1,1)))/(2*L^2*(n + 1)^2); 

             -(A(1,3)*h)/L,0, -(A(3,3)*h)/L,0,  (A(1,3)*h)/L,0,  (A(3,3)*h)/L,0; 
 0, (h*(Seq*L^2*n^2 + 12*D(1,1)))/(2*L^2*(n + 1)^2), 0, 
(h*(Seq*L^2*n^2 - 4*D(1,1)*n^2 - 8*D(1,1)*n + 8*D(1,1)))/(4*L*(n + 
1)^2), 0, -(h*(Seq*L^2*n^2 + 12*D(1,1)))/(2*L^2*(n + 1)^2), 0, 
(h*(Seq*L^2*n^2 + 4*D(1,1)*n^2 + 8*D(1,1)*n + 16*D(1,1)))/(4*L*(n + 
1)^2)]; 

 
        K2=h*[-A(1,2) 0 -A(2,3) 0 A(1,2) 0 A(2,3) 0]';%%Stiffness matrix with 
respect to the local axes 
 
 
        %%Transformation matrix for inclined wall 2  
        T3=[cos(pi/2+teta) -sin(pi/2+teta) 0 0 0 0 0 0;... 
            sin(pi/2+teta) cos(pi/2+teta) 0 0 0 0 0 0;... 
            0 0 1 0 0 0 0 0;... 
            0 0 0 1 0 0 0 0;... 
            0 0 0 0 cos(pi/2+teta) -sin(pi/2+teta) 0 0;... 
            0 0 0 0 sin(pi/2+teta) cos(pi/2+teta) 0 0;... 
            0 0 0 0 0 0 1 0;... 
            0 0 0 0 0 0 0 1]; 
 
        K13t=T3*K1*T3';  
        K23t=T3*K2; 
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        F3=K13t*[v41 v42 v43 dw4 v51 v52 v53 dw5]'+K23t*E33; 
         
        %%Equations for force equilibrium 
        S1=F1(1)+F2(1)+F3(1); 
        S2=F1(2)+F2(2)+F3(2); 
        S3=F1(3)+F2(3)+F3(3); 
        S4=F1(4)+F2(4)+F3(4); 
        S5=F1(5)+F2(5)+F3(5); 
        S6=F1(6)+F2(6)+F3(6); 
        S7=F1(7)+F2(7)+F3(7); 
        S8=F1(8)+F2(8)+F3(8); 
 
 
        %%Periodic boundary conditions 
        S9=dw1-dw2; 
        S10=dw3-dw4; 
        S11=dw1-dw3; 
        S12=(v41-v21)+(v11-v31); 
        S13=(v42-v22)+(v12-v32); 
        S14=(v43-v23)+(v13-v33); 
         
        %%Strain definition of RVE 
        E11=(v31-v11)/a; 
        E22=(v22-v12)/b+c/a*(v32-v12)/b; 
        E23=1/2*((v23-v13)/b+c/a*(v33-v13)/b); 
        E13=1/2*(v33-v13)/a; 
        E12=1/2*((v32-v12)/a+(v21-v11)/b+c/a*(v31-v11)/b); 
 
        %%Solving equations to get the displacement 
        
[A,B]=equationsToMatrix([S1==0,S2==0,S3==0,S4==0,S5==0,S6==0,S7==0,S8==0,S9==0,S10
==0,S11==0,S12==0,... 
                S13==0,S14==0,v11==0,v12==0,v13==0,v32==0,E11-e11==0,E22-
e22==0,E23-e23==0,E13-e13==0,E12-e12==0],[v11 v12 v13 dw1 v21 v22 v23 dw2 v31 v32 
v33 dw3 v41 v42 v43 dw4 ,... 
                v51 v52 v53 dw5]); 
 
        C=linsolve(A,B); 
            V11=C(1); V12=C(2);V13=C(3);DW1=C(4); 
            V21=C(5); V22=C(6);V23=C(7);DW2=C(8); 
            V31=C(9);V32=C(10);V33=C(11);DW3=C(12); 
            V41=C(13);V42=C(14);V43=C(15);DW4=C(16); 
            V51=C(17);V52=C(18);V53=C(19);DW5=C(20); 
 
        %Displacement vector of each wall in global coordinate system 
        V1=[V11 V12 V13 DW1 V51 V52 V53 DW5]'; 
        V2=[V21 V22 V23 DW2 V51 V52 V53 DW5]'; 
        V3=[V41 V42 V43 DW4 V51 V52 V53 DW5]'; 
 
        %%Strain energy of walls 
        A=A1;B=B1;D=D1; 
        L=L1; 
        W1=1/2*V1'*K11t*V1+V1'*K21t*E33+1/2*A(2,2)*E33^2*L*h; 
 
        A=A2;B=B2;D=D2; 
        L=L2; 
        W2=1/2*V2'*K12t*V2+V2'*K22t*E33+1/2*A(2,2)*E33^2*L*h; 
 
        A=A3;B=B3;D=D3; 
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        L=L2; 
        W3=1/2*V3'*K13t*V3+V3'*K23t*E33+1/2*A(2,2)*E33^2*L*h; 
 
    W(i)=W1+W2+W3; %%%total strain energy of the RVE 
     
        %%Calculating the stiffness of component of effective elastic 
        %%tensor for 3D analysis 
        switch i 
            case 1 
               C1111=2*W(1)/(V); 
            case 2 
               C2222=2*W(2)/(V); 
            case 3 
               C3333=2*W(3)/(V); 
            case 4 
               C1313=0.5*W(4)/(V); 
            case 5 
               C2323=0.5*W(5)/(V); 
            case 6 
               C1212=0.5*W(6)/(V); 
            case 7 
               C1122=(W(7)-W(1)-W(2))/(V); 
            case 8 
               C1133=(W(8)-W(1)-W(3))/(V); 
            case 9 
               C2233=(W(9)-W(2)-W(3))/(V); 
    
        end  
end 
 
 
C=[C1111 C1122 C1133 0 0 0;C1122 C2222 C2233 0 0 0; C1133 C2233 C3333 0 0 0;.... 
    0 0 0 C2323 0 0; 0 0 0 0 C1313 0;0 0 0 0 0 C1212]; 
disp(vpa(C,5)) 
S=inv(C); 
u21=-S(1,2)/S(2,2); 
u31=-S(1,3)/S(3,3); 
u32=-S(2,3)/S(3,3); 
u13=-S(3,1)/S(1,1); 
u23=-S(3,2)/S(1,1); 
 
%disp(vpa(u21,5)); 
u12=-S(2,1)/S(1,1); 
%disp(vpa(u12,5)); 
E1111=1/S(1,1); 
 
E2222=1/S(2,2); 
E3333=1/S(3,3); 
 
%Effective stiffness properties for the plane stress condition 
Q11=E1111/(1-u21*u12); 
Q22=E2222/(1-u21*u12); 
Q12=u12*E2222/(1-u21*u12); 
Q66=1/S(6,6); 
G23=1/S(4,4); 
G13=1/S(5,5); 
 
disp('******') 
disp(vpa(Q11,5)) 
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disp(vpa(Q22,5)) 
disp(vpa(Q12,5)) 
disp(vpa(Q66,5)) 
disp(vpa(G13,5)) 
disp(vpa(G23,5)) 
 

 

function [An,Bn,Dn,Seq]=MaterialPropThick(tot_thickness,layer_thickness,E1layer, 
E2layer, Glayer, vlayer,nOrient) 
syms z 
% plate thickness 
 
nc=length(layer_thickness); 
 
 
for n=1:1:nc 
    ct=cos(nOrient(n)); 
    st=sin(nOrient(n)); 
    E1=E1layer(n); 
    E2=E2layer(n); 
    G1=Glayer(n); 
    v1=vlayer(n); 
    v2=E2/E1*v1; 
    Q=[E1/(1-v1*v2) v1*E2/(1-v1*v2) 0;v1*E2/(1-v1*v2) E2/(1-v1*v2) 0;0 0 G1]; 
     
    Q11t=ct^4*Q(1,1)+st^4*Q(2,2)+2*ct^2*st^2*(Q(1,2)+2*Q(3,3)); 
    Q22t=st^4*Q(1,1)+ct^4*Q(2,2)+2*ct^2*st^2*(Q(1,2)+2*Q(3,3)); 
    Q12t=ct^2*st^2*(Q(1,1)+Q(2,2)-4*Q(3,3))+(ct^4+st^4)*Q(1,2); 
    Q66t=ct^2*st^2*(Q(1,1)+Q(2,2)-2*Q(1,2))+(ct^2-st^2)^2*Q(3,3);  
    Q16t=ct*st*(ct^2*Q(1,1)-st^2*Q(2,2)-(ct^2-st^2)*(Q(1,2)+2*Q(3,3))); 
    Q26t=ct*st*(st^2*Q(1,1)-ct^2*Q(2,2)+(ct^2-st^2)*(Q(1,2)+2*Q(3,3))); 
    TrQt(:,:,n)=[Q11t,Q12t,Q16t;Q12t,Q22t,Q26t;Q16t,Q26t,Q66t];  
    %%disp(TrQt(:,:,n)) 
end 
 
z1k=0; 
z2k=0; 
for n=1:1:nc 
    if(n==1) 
    z1k(n)=-tot_thickness/2+layer_thickness(n); 
    z2k(n)=z1k(n)-layer_thickness(n); 
     
    else 
    z1k(n)=layer_thickness(n)+z1k(n-1); 
    z2k(n)=z1k(n)-layer_thickness(n); 
    end 
 
end 
 
thick=layer_thickness; 
 
A11=0;A22=0;A12=0;A16=0;A26=0;A66=0; 
B11=0;B22=0;B12=0;B16=0;B26=0;B66=0; 
D11=0;D22=0;D12=0;D16=0;D26=0;D66=0; 
A44=0; 
%B1n=0; 
%A1n=0; 
for n=1:1:nc 



xxxix 
 

 %Membrane 
    A11=A11+TrQt(1,1,n)*(z1k(n)-z2k(n)); 
    A1n(n)=A11; 
    A22=A22+TrQt(2,2,n)*(z1k(n)-z2k(n)); 
    A12=A12+TrQt(1,2,n)*(z1k(n)-z2k(n)); 
    A16=A16+TrQt(1,3,n)*(z1k(n)-z2k(n)); 
    A26=A26+TrQt(2,3,n)*(z1k(n)-z2k(n)); 
    A66=A66+TrQt(3,3,n)*(z1k(n)-z2k(n)); 
 
    B11=B11+TrQt(1,1,n)*(z1k(n)^2-z2k(n)^2)/2; 
    B1n(n)=B11; 
    B22=B22+TrQt(2,2,n)*(z1k(n)^2-z2k(n)^2)/2; 
    B12=B12+TrQt(1,2,n)*(z1k(n)^2-z2k(n)^2)/2; 
    B16=B16+TrQt(1,3,n)*(z1k(n)^2-z2k(n)^2)/2; 
    B26=B26+TrQt(2,3,n)*(z1k(n)^2-z2k(n)^2)/2; 
    B66=B66+TrQt(3,3,n)*(z1k(n)^2-z2k(n)^2)/2; 
 
    %Bending 
 
    D11=D11+TrQt(1,1,n)*(z1k(n)^3-z2k(n)^3)/3; 
    D22=D22+TrQt(2,2,n)*(z1k(n)^3-z2k(n)^3)/3; 
    D12=D12+TrQt(1,2,n)*(z1k(n)^3-z2k(n)^3)/3; 
    D16=D16+TrQt(1,3,n)*(z1k(n)^3-z2k(n)^3)/3; 
    D26=D26+TrQt(2,3,n)*(z1k(n)^3-z2k(n)^3)/3; 
    D66=D66+TrQt(3,3,n)*(z1k(n)^3-z2k(n)^3)/3; 
 
    A44=A44+Glayer(n)*(z1k(n)-z2k(n)); 
end 
 
A=[A11 A12 A16; A12 A22 A26; A16 A26 A66]; 
B=[B11 B12 B16; B12 B22 B26; B16 B26 B66]; 
D=[D11 D12 D16; D12 D22 D26; D16 D26 D66]; 
 
K=[A,B;B,D]; 
 
 
C=inv(K); 
nd=-C(1,4)/C(4,4); 
 
An=A; 
Bn= zeros(3); 
Dn=D-2*nd*B+nd^2*A; 
 
Gssum=0; 
 
for n=1:1:nc 
     
        if(n==1) 
            G=@(z)(TrQt(1,1,n)*(z.^2-(-tot_thickness/2)^2)/2-nd*TrQt(1,1,n)*(z-
tot_thickness/2)).^2; 
            Gssum=integral(G,-tot_thickness/2,z1k(n))./Glayer(n);      
        end 
 
        if(n>1) 
            G=@(z)(B1n(n-1)-nd*A1n(n-1)+TrQt(1,1,n)*(z.^2-z2k(n).^2)./2-
nd*TrQt(1,1,n)*(z-z2k(n))).^2; 
    
            Gssum=Gssum+integral(G,z2k(n),z1k(n))./Glayer(n); 
        end 



xl 
 

end 
 
Seq=A44*(Dn(1,1)^2/(Gssum*A44)); 
 
 
End 

A4. MATLAB program for the shear buckling of the hexagonal core  

 
clc 
clear 
syms L teta teta1 t E h u  L1 L2 t1 t2 q  k real  
syms V11 V12 V13 V21 V22 V23 V31 V32 V33 k real 
syms C1 C2 C3 C4 x1 y1 x2 y2 x3 y3 z X Y  K R NCR1 NCR2 NCR3 real 
syms v11 v12 v13 dw1 v31 v32 v33 dw3 v41 v42 v43 dw4 v51 v52 v53 dw5 v21 v22 v23 
dw2 real 
syms E11 E22 E33 E23 E13 E12 real 
syms A11 A12 A16 A22 A26 A66 D11 D22 D12 D16 D26 D66 B11 B12 B22 B16 B26 B66 real 
syms a11 a12 a16 a22 a26 a66 d11 d22 d12 d16 d26 d66 B11 B12 B22 B16 B26 B66 real 
 
L1=50;          %Vertical leg 
L2=50;          %inclined leg 
h=150;          %height of the honeycomb 
t1=4.6875;      %thickness of vertical leg 
t2=4.6875/2;    %% %thickness of incclined leg 
 
teta=pi/180*120 ; 
 
%%%Angle between the  
 
E1A=204000; 
E1B=38600; 
E1C=131000; 
E2A=18500; 
E2B=8270; 
E2c=10300; 
GA=5590; 
GB=4140; 
Gc=6900; 
VA=0.23; 
VB=0.26; 
VC=0.22; 
 
layer_thickness1=t1/10*[1,1,1,1,1,1,1,1,1,1];      
layer_thickness2=t2/5*[1,1,1,1,1]; 
 
%%vertical leg    
%E1layer1=[E1B,E1B,E1B,E1B,E1B];     
%E2layer1=[E2B,E2B,E2B,E2B,E2B];      
%Glayer1=[GB,GB,GB,GB,GB];    
%vlayer1=[VB,VB,VB,VB,VB]; 
E1layer1=[E1B,E1B,E1B,E1B,E1B,E1B,E1B,E1B,E1B,E1B];     
E2layer1=[E2B,E2B,E2B,E2B,E2B,E2B,E2B,E2B,E2B,E2B];     
Glayer1=[GB,GB,GB,GB,GB,GB,GB,GB,GB,GB];     
vlayer1=[VB,VB,VB,VB,VB,VB,VB,VB,VB,VB]; 
 
 
%%inclined 
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E1layer2=[E1B,E1B,E1B,E1B,E1B];     
E2layer2=[E2B,E2B,E2B,E2B,E2B];      
Glayer2=[GB,GB,GB,GB,GB];    
vlayer2=[VB,VB,VB,VB,VB];    
 
%%vertical leg 
nOrient1=[3*pi/12,-3*pi/12,90*pi/12, -3*pi/12, 3*pi/12,3*pi/12,-3*pi/12,90*pi/12, 
-3*pi/12, 3*pi/12];  
%nOrient1=[3*pi/12,-3*pi/12,0*pi/12, -3*pi/12, 3*pi/12];  
 
nOrient2=[3*pi/12,-3*pi/12,90*pi/12, -3*pi/12, 3*pi/12];  
 
 
[A1,B1,D1]=MaterialProp(t1,layer_thickness1,E1layer1,E2layer1,Glayer1,vlayer1,nOri
ent1); 
[A2,B2,D2]=MaterialProp(t2,layer_thickness2,E1layer2,E2layer2,Glayer2,vlayer2,nOri
ent2); 
D1=double(D1); 
 
A1(1,3)=0; 
A2(1,3)=0; 
A1(2,3)=0; 
A2(2,3)=0; 
 
 
a1=inv(A1); 
a2=inv(A2); 
 
 
a=2*L2*sin(teta);   %% 
b=(L1+L2*cos(pi-teta));  
c=L2*sin(teta); 
V=a*b*h;     %volume of RVE 
 
disp('coredensity'); 
Dr=(2*t2*L2*h+t1*L1*h)/V; 
disp(Dr) 
 
A66=A1(3,3); 
a66=A2(3,3); 
m66=A2(3,3); 
 
 
n=1; 
k=0; 
 
e13=1*q/2;e23=0*q/2; 
     
V1s=(n*q*(L2*m66*sin(teta) + L1*a66*k + L1*k*m66 - L2*a66*sin(teta) - 
L2*a66*k*cos(teta) - L2*k*m66*cos(teta)))/(L1*a66 + L1*m66 + A66*L2); 
V2s=-(n*q*(2*L1*m66*sin(teta) - A66*L1*k + A66*L2*sin(teta) + 
A66*L2*k*cos(teta)))/(L1*a66 + L1*m66 + A66*L2); 
V3s=(n*q*(A66*L1*k + A66*L2*sin(teta) + 2*L1*a66*sin(teta) - 
A66*L2*k*cos(teta)))/(L1*a66 + L1*m66 + A66*L2); 
 
if(e13==0) 
V1s=(n*q*(a66 + m66)*(L1 - L2*cos(teta)))/(L1*a66 + L1*m66 + A66*L2); 
  
V2s=(A66*n*q*(L1 - L2*cos(teta)))/(L1*a66 + L1*m66 + A66*L2); 



xlii 
 

  
V3s=(A66*n*q*(L1 - L2*cos(teta)))/(L1*a66 + L1*m66 + A66*L2); 
end 
 
 
 
%%%Calculate critcal strain under simply supported 
  
%wall_1_vertical wall_1 
 
if(double(V1s/q)<0) 
NL1=Critical_Load(D1,L1,h,1e-25, -1); 
else 
NL1=Critical_Load(D1,L1,h,1e-25,1); 
end 
 
 
ecr1=NL1/A1(3,3); 
 
if(abs(double(V1s/q))<0.000000000000001) 
        ecrRVE1=1e12; 
else 
ecrRVE1=solve(ecr1-V1s==0,q); 
end 
 
disp(vpa(ecrRVE1,5)); 
 
 
%%inclined wall_1 
            if(double(V2s/q)<0) 
            NL2=Critical_Load(D2,L2,h,1e-25,-1); 
            
            else 
            NL2=Critical_Load(D2,L2,h,1e-25,1); 
            
            end 
 
ecr2=(double(NL2)/A2(3,3)); 
ecrRVE2=solve(ecr2-V2s==0,q); 
disp(vpa(ecrRVE2,5)); 
 
 
if(ecrRVE2>1e12) 
    ecrRVE2=1e12; 
end 
 
disp(vpa(ecrRVE2,5)); 
 
 
%wall 3 %Inclined wall_2 
 
            if(double(V3s/q)<0) 
            NL3=Critical_Load(D2,L2,h,1e-25,-1); 
            
            else 
            NL3=Critical_Load(D2,L2,h,1e-25,1); 
            
            end 
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ecr3=NL3/A2(3,3); 
ecrRVE3=solve(ecr3-V3s==0,q); 
 
disp(vpa(ecrRVE3,5)); 
 
 
if(ecrRVE3>1e12) 
    ecrRVE3=1e12; 
end 
 
disp(vpa(ecrRVE3,5)); 
 
ecrRVE=[abs(ecrRVE1), abs(ecrRVE2),abs(ecrRVE3)]; 
disp(vpa(ecrRVE,5)) 
ecrRVEmin=min(ecrRVE); 
linearIndices = find(ecrRVE==ecrRVEmin); 
 
 
if(abs(ecrRVE1)-abs(ecrRVE2)>0.000000001&& abs(ecrRVE1)-abs(ecrRVE3)>0.000000001&& 
abs(abs(ecrRVE2)-abs(ecrRVE3))<0.0000000000001) 
            V11s=V1s;   
            e1=subs(V11s,q,ecrRVEmin); 
             
            %disp('inclined_one_and_two'); 
            legCritical='inclined_one_and_two'; 
            ksp=min(1/2*2*D1(1,1)/(L1)*(1-abs(e1/ecr1))); 
             
                     
            %wall 2 %Inclined wall 
             
            if(double(V2s/q)<0) 
            [NL2,Dir,X]=Critical_Load(D2,L2,h,ksp,-1); 
            disp(vpa(NL2)) 
            disp(Dir) 
            disp(X) 
            else 
            [NL2,Dir,X]=Critical_Load(D2,L2,h,ksp,1); 
            disp(vpa(NL2)) 
            disp(Dir) 
            disp(X) 
            end 
            ecr2=NL2/A2(3,3); 
            ecrRVE2=solve(ecr2-V2s==0,q); 
            disp('inclined one and two'); 
            disp(vpa(ecrRVE2,5)); 
             
           
end 
 
if(abs(ecrRVE2)-abs(ecrRVE1)>0.00000001&& abs(ecrRVE3)-abs(ecrRVE1)>0.000000001) 
            V22s=V2s;   
            V33s=V3s;   
            e2=subs(V22s,q,ecrRVEmin); 
            e3=subs(V33s,q,ecrRVEmin); 
            legCritical='vertical'; 
            ksp=2*D2(1,1)/(L2)*(1-abs(e2/ecr2))+2*D2(1,1)/(L2)*(1-abs(e3/ecr3)); 
            disp('vertical'); 
             
            if(double(V1s/q)<0) 
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            NL1=Critical_Load(D1,L1,h,ksp,-1); 
            ecr1=-NL1/A1(3,3); 
            ecrRVE1=solve(ecr1-V1s==0,q); 
            disp(vpa(ecrRVE1,5)); 
            else 
            NL1=Critical_Load(D1,L1,h,ksp,1); 
            ecr1=NL1/A1(3,3); 
            ecrRVE1=solve(ecr1-V1s==0,q); 
            disp(vpa(ecrRVE1,5)); 
            end 
     
            
end 
 
if((abs(ecrRVE1)-
abs(ecrRVE2)>0.000000001)&&(abs(ecrRVE3)abs(ecrRVE2))>0.00000000001&&abs(ecrRVE3)~
=abs(ecrRVE2)) 
            V11s=V1s;   
            V33s=V3s;   
            e1=subs(V11s,q,ecrRVEmin); 
            e3=subs(V33s,q,ecrRVEmin); 
            legCritical='inclined_one_only'; 
            ksp=2*D1(1,1)/(L1)*(1-abs(e1/ecr1))+2*D2(1,1)/(L2)*(1-abs(e3/ecr3)); 
            
            disp('inclined_one_only'); 
            
            if(double(V2s/q)<0) 
            [NL2,Dir,X]=Critical_Load(D2,L2,h,ksp,-1); 
            disp(vpa(NL2)) 
            disp(Dir) 
            disp(X) 
            else 
            [NL2,Dir,X]=Critical_Load(D2,L2,h,ksp,1); 
            disp(vpa(NL2)) 
            disp(Dir) 
            disp(X) 
            end 
            ecr2=NL2/A2(3,3); 
            ecrRVE2=solve(ecr2-V2s==0,q); 
            disp('inclined one '); 
            disp(vpa(ecrRVE2,5)); 
 
end 
 
if((abs(ecrRVE1)-
abs(ecrRVE3)>0.000000001)&&(abs(ecrRVE2)abs(ecrRVE3))>0.00000000001&&abs(ecrRVE3)~
=abs(ecrRVE2)) 
            V11s=V1s;   
            V22s=V2s;  
            e1=subs(V11s,q,ecrRVEmin); 
            e2=subs(V22s,q,ecrRVEmin); 
            %disp(vpa(e2,5)); 
            legCritical='inclined_two_only'; 
            disp('inclined_two_only'); 
            ksp=double(2*D1(1,1)/(L1)*(1-abs(e1/ecr1))+2*D2(1,1)/(L2)*(1-
abs(e2/ecr2)));              
           
            
           if(double(V3s/q)<0) 
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            [NL3,Dir,X]=Critical_Load(D2,L2,h,ksp,-1); 
            disp(vpa(NL3)) 
            disp(Dir) 
            disp(X) 
            else 
            [NL3,Dir,X]=Critical_Load(D2,L2,h,ksp,1); 
            disp(vpa(NL3)) 
            disp(Dir) 
            disp(X) 
            end 
 
            ecr3=NL3/A2(3,3); 
            ecrRVE3=solve(ecr3-V3s==0,q); 
            disp('inclined two '); 
             
            disp(vpa(ecrRVE3,5)); 
             
      
end 

 

function [Ncr,Dir,X]=Critical_Load(D1,z,L1,h,K,A1,dir) 
 
syms   R   x y real positive  
syms B A real  positive 
 
D = [D1(2,2),D1(1,2),D1(1,1),D1(2,3),D1(1,3),D1(3,3)]; 
 
%disp('buckling') 
%disp(D); 
D11=D(1); 
D12=D(2); 
D22=D(3); 
D16=D(4); 
D26=D(5); 
D66=D(6); 
 
b=L1; 
 
 
K=double(K); 
if(K<1e-10) 
    R=0; 
 
else 
     
    R=double(1/(1+4*pi*D(3)/(K*b))); 
 
    
end 
 
N=@(x)dir*(6*x(1)*((x(1)*K*pi^2*(R - 1)^2)/b + (x(1)*D22*pi^3*(32*R + 3*pi - 6*pi*R 
+ 51*pi*R^2 - 32*R^2))/(12*b^2) + (D11*pi^3*(32*R + 3*pi - 6*pi*R + 12*pi*R^2 - 
32*R^2))/(12*x(1)^3*b^2) + (D12*pi^3*(32*R + 3*pi - 6*pi*R + 15*pi*R^2 - 
32*R^2))/(6*x(1)*b^2) + (D66*pi^3*(32*R + 3*pi - 6*pi*R + 15*pi*R^2 - 
32*R^2))/(3*x(1)*b^2) - (x(2)*D16*pi^3*(32*R + 3*pi - 6*pi*R + 12*pi*R^2 - 
32*R^2))/(3*x(1)^3*b^2) - (x(2)*D26*pi^3*(96*R + 9*pi - 18*pi*R + 45*pi*R^2 - 
96*R^2))/(3*x(1)*b^2) + (x(2)^2*D12*pi^3*(32*R + 3*pi - 6*pi*R + 12*pi*R^2 - 
32*R^2))/(6*x(1)^3*b^2) + (x(2)^2*D22*pi^3*(32*R + 3*pi - 6*pi*R + 15*pi*R^2 - 
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32*R^2))/(2*x(1)*b^2) + (x(2)^4*D22*pi^3*(32*R + 3*pi - 6*pi*R + 12*pi*R^2 - 
32*R^2))/(12*x(1)^3*b^2) - (x(2)^3*D26*pi^3*(32*R + 3*pi - 6*pi*R + 12*pi*R^2 - 
32*R^2))/(3*x(1)^3*b^2) + (x(2)^2*D66*pi^3*(32*R + 3*pi - 6*pi*R + 12*pi*R^2 - 
32*R^2))/(3*x(1)^3*b^2)))/(x(2)*pi*(32*R + 3*pi - 6*pi*R + 12*pi*R^2 - 32*R^2)); 
 
 
options = optimoptions('fmincon','Display','off'); 
 
if(dir==1) 
lb=[0,0]; 
lu=[h/b,pi/2]; 
Xo=(lb+lu)/2; 
 
[X,Ncr]=fmincon(N,Xo,[],[],[],[],lb,lu,[],options); 
Dir=dir; 
disp(vpa(Ncr)); 
end 
 
if(dir==-1) 
lb=[0,-pi/2]; 
lu=[h/b,0]; 
Xo=(lb+lu)/2; 
[X,Ncr]=fmincon(N,Xo,[],[],[],[],lb,lu,[],options); 
 
disp(vpa(Ncr)); 
Dir=dir; 
 
end 
 
disp(vpa(Ncr)); 
 
 
end 

 

 

A4. MATLAB program for the intracellular buckling of the hexagonal cell  

 
clc  
clear 
syms Amn m n p q x y a b D11  D12 D22 D16 D26 D66 B1 B2 B3 C1 C2 C3 teta L real 
  
 
     
        teta=120*pi/180; 
    
        L1=50; %%%vertical leg length 
        L2=50;  %%%inclined leg length 
        t1=4.6875; 
        t2=4.6875/2; 
  
h=150; 
tf=5; 
 
a=2*L2*sin(teta);   %%%%(2*pi-2*teta)/2 
b=(L1+L2*cos(pi-teta));  
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c=L2*sin(teta); 
V=a*b*h;        %volume of RVE 
 
disp('coredensity'); 
Dr=(2*t2*L2*h+t1*L1*h)/V; 
disp(Dr) 
 
 
%%%Angle between the  
 
E1A=204000; 
E1B=38600; 
E1C=131000; 
E2A=18500; 
E2B=8270; 
E2C=10300; 
GA=5590; 
GB=4140; 
GC=6900; 
VA=0.23; 
VB=0.26; 
VC=0.22; 
 
%%%vertical leg 
layer_thickness1=t1/10*[1,1,1,1,1,1,1,1,1,1]; 
 
%%inclinded leg 
layer_thickness2=t2/5*[1,1,1,1,1]; 
 
%%face sheet 
layer_thicknessf=tf/5*[1,1,1,1,1]; 
 
%%vertical leg    
E1layer1=[E1B,E1B,E1B,E1B,E1B,E1B,E1B,E1B,E1B,E1B];     
E2layer1=[E2B,E2B,E2B,E2B,E2B,E2B,E2B,E2B,E2B,E2B];     
Glayer1=[GB,GB,GB,GB,GB,GB,GB,GB,GB,GB];     
vlayer1=[VB,VB,VB,VB,VB,VB,VB,VB,VB,VB]; 
 
 
%%inclined 
E1layer2=[E1B,E1B,E1B,E1B,E1B];     
E2layer2=[E2B,E2B,E2B,E2B,E2B];     
Glayer2=[GB,GB,GB,GB,GB];     
vlayer2=[VB,VB,VB,VB,VB];  
 
%%Facesheet 
E1layerf=[E1B,E1B,E1B,E1B,E1B]; %[E1C,E1C,E1C,E1C,E1C];     
E2layerf=[E2B,E2B,E2B,E2B,E2B];%[E2C,E2C,E2C,E2C,E2C];     
Glayerf=[GB,GB,GB,GB,GB];%[GC,GC,GC,GC,GC];     
vlayerf=[VB,VB,VB,VB,VB];%[VC,VC,VC,VC,VC]; 
 
    
nOrient1=[0*pi/12,6*pi/12,6*pi/12,6*pi/12,0*pi/12,0*pi/12,6*pi/12,6*pi/12,6*pi/12,
0*pi/12];%,6*pi/12,0*pi/12,0*pi/12,0*pi/12,6*pi/12];  
    %inclined 
    nOrient2=[0*pi/12,6*pi/12,6*pi/12,6*pi/12,0*pi/12]; 
    nOrientf=[0*pi/12,6*pi/12,0*pi/12,6*pi/12,0*pi/12]; 
 
    



xlviii 
 

 
[A1,B1,D1]=MaterialProp(t1,layer_thickness1,E1layer1,E2layer1,Glayer1,vlayer1,nOri
ent1);%stiffness of the vertical wall section 
[A2,B2,D2]=MaterialProp(t2,layer_thickness2,E1layer2,E2layer2,Glayer2,vlayer2,nOri
ent2); %%stifness of inclined wall section 
[Af,Bf,Df]=MaterialProp(tf,layer_thicknessf,E1layerf,E2layerf,Glayerf,vlayerf,nOri
entf);%stiffness of the vertical wall section 
 
disp(vpa(Af)) 
 
%Axial compression 
 
ao = 2*L2*sin(teta); 
bo =L1; 
 
Df(1,3)=0; 
Df(2,3)=0; 
 
D = Df; 
 
T = 4; 
 
%H = 0.1; 
a1 = -cos(teta)/(L2*sin(teta)^2); 
c1 = ao/2; 
c = a1;  
e = -2*a1*c1; 
 
y1 = @(x)a1*x.^2-2*a1*c1*x; 
y1x = @(x)2*a1*x-2*a1*c1; 
y1xx = @(x)2*a1; 
y2 =  @(x)bo-y1(x); 
y2x = @(x)-y1x(x); 
 
 
a=ao; 
%ay=@(y)0; 
%ayy=@(y)0; 
 
b =  @(x)bo-2*y1(x); 
bx = @(x)-2*y1x(x); 
bxx = @(x)-2*y1xx(x); 
 
%Ky=@(x)2*D/b(x); 
%Kx=2*D/a; 
%Axial compression 
kx=(0.5*6*(2*D1(2,2)+4*D2(2,2))/(6*h)); 
ky=0.5*6*D2(2,2)/h; 
 
bn=bx(ao/2); 
R1=1/(1+4*pi*Df(1,1)/(kx*ao*3/4)); 
R2=1/(1+4*pi*Df(2,2)/(ky*bo*3/2)); 
disp('R1,R2') 
disp(vpa(R1)); 
disp(vpa(R2)); 
%%functions and derivatives 
xm=@(x,m)(1-R1)*sin(m*pi*x/a) + R1*(1 - cos(2*m*pi*x/a)); 
 
xmx=@(x,m)(1-R1)*(m*pi/a).*cos(m*pi*x/a)+(2*m*pi*R1./a).*sin(2*m*pi*x/a); 
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xmxx=@(x,m)4*m^2*pi^2/a^2*R1*cos(2*m*pi*x/a)-(1-R1)*m^2*pi^2/a^2*sin(m*pi*x/a); 
yn=@(x,y,n)(1-R2)*sin(n*pi*(y - y1(x))./b(x)) + R2*(1 - cos(2*n*pi*(y - 
y1(x))./b(x))); %%%%1%%%%R-Degree of rotational restraint 
 
ynx=@(x,y,n)R2*sin(2*n*pi*(y - y1(x))./b(x)).*(-2*n*pi*(y-y1(x)).*bx(x)./b(x).^2-
2*n*pi*y1x(x)./b(x))+(1-R2)*((-n*pi*b(x).*y1x(x)-bx(x)*n*pi.*(y-
y1(x)))./(b(x).^2)).*cos(n*pi*(y-y1(x))./b(x)); 
 
ynxx=@(x,y,n)(1-R2)*(-sin(n*pi*(y-y1(x))./b(x)).*(-(n*pi.*bx(x)./b(x).^2).*(y-
y1(x))-n*pi.*y1x(x)./b(x)).^2+cos(n*pi*(y - 
y1(x))./b(x)).*((2*n*pi*bx(x).^2./b(x).^3).*(y - 
y1(x))+2*n*pi*bx(x).*y1x(x)./b(x).^2-(n*pi*bxx(x)./b(x).^2).*(y-y1(x))-
n*pi*y1xx(x)./b(x)))+... 
    R2*(cos(2*n*pi*(y-y1(x))./b(x)).*(-(2*n*pi*bx(x)./b(x).^2).*(y-y1(x))-
2*n*pi*y1x(x)./b(x)).^2+sin(2*n*pi*(y-
y1(x))./b(x)).*((4*n*pi*bx(x).^2./b(x).^3).*(y - 
y1(x))+4*n*pi*bx(x).*y1x(x)./b(x).^2-(2*n*pi*bxx(x)./b(x).^2).*(y-y1(x))-
2*n*pi*y1xx(x)./b(x))); 
 
 
ynxy=@(x,y,n)-(1-R2)*n*pi*cos(n*pi*(y-y1(x))./b(x)).*bx(x)./b(x).^2-
2*n*pi*R2*sin(2*n*pi*(y-y1(x))./b(x)).*bx(x)./b(x).^2+2*n*pi*R2*cos(2*n*pi*(y-
y1(x))./b(x)).*(-2*n*pi*(y-y1(x)).*bx(x)./b(x).^2-2*n*pi*y1x(x)./b(x))./b(x)-(1-
R2)*n*pi*sin(n*pi*(y-y1(x))./b(x)).*(-n*pi*(y-y1(x)).*bx(x)./b(x).^2-
n*pi*y1x(x)./b(x))./b(x); 
 
yny=@(x,y,n)(1-R2)*(n*pi./b(x)).*cos(n*pi*(y-
y1(x))./b(x))+(2*n*pi*R2./b(x)).*sin(2*n*pi*(y-y1(x))./b(x)); 
 
 
ynyy=@(x,y,n)4*n^2*pi^2*R2*cos(2*n*pi*(y-y1(x))./b(x))./b(x).^2-(1-
R2)*n^2*pi^2*sin(n*pi*(y-y1(x))./b(x))./b(x).^2; 
 
 
%%functions and derivatives - p/q 
xp=@(x,p)(1-R1)*sin(p*pi*x/a) + R1*(1 - cos(2*p*pi*x/a)); 
 
xpx=@(x,p)(1-R1)*(p*pi/a).*cos(p*pi*x/a)+(2*p*pi*R1./a).*sin(2*p*pi*x/a); 
 
xpxx=@(x,p)4*p^2*pi^2/a^2*R1*cos(2*p*pi*x/a)-(1-R1)*p^2*pi^2/a^2*sin(p*pi*x/a); 
 
 
yq = @(x,y,q)(1-R2)*sin(q*pi*(y - y1(x))./b(x)) + R2*(1 - cos(2*q*pi*(y - 
y1(x))./b(x))); 
yqx =@(x,y,q)R2*sin(2*q*pi*(y - y1(x))./b(x)).*(-2*q*pi*(y-y1(x)).*bx(x)./b(x).^2-
2*q*pi*y1x(x)./b(x))+(1-R2)*((-q*pi*b(x).*y1x(x)-bx(x)*q*pi.*(y-
y1(x)))./(b(x).^2)).*cos(q*pi*(y-y1(x))./b(x)); 
 
yqxx =@(x,y,q)(1-R2)*(-sin(q*pi*(y-y1(x))./b(x)).*(-q*pi*(y-
y1(x)).*bx(x)./b(x).^2-q*pi*y1x(x)./b(x)).^2+cos(q*pi*(y - 
y1(x))./b(x)).*(2*q*pi*(y - 
y1(x)).*bx(x).^2./b(x).^3+2*q*pi*bx(x).*y1x(x)./b(x).^2-q*pi*(y-
y1(x)).*bxx(x)./b(x).^2-q*pi*y1xx(x)./b(x)))+... 
      R2*(cos(2*q*pi*(y-y1(x))./b(x)).*(-2*q*pi*(y-y1(x)).*bx(x)./b(x).^2-
2*q*pi*y1x(x)./b(x)).^2+sin(2*q*pi*(y-y1(x))./b(x)).*(4*q*pi*(y - 
y1(x)).*bx(x).^2./b(x).^3+4*q*pi*bx(x).*y1x(x)./b(x).^2-2*q*pi*(y-
y1(x)).*bxx(x)./b(x).^2-2*q*pi*y1xx(x)./b(x))); 
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yqxy =@(x,y,q)-(1-R2)*(q*pi.*bx(x)./b(x).^2).*cos(q*pi*(y-y1(x))./b(x))-
(2*q*pi*R2.*bx(x)./b(x).^2).*sin(2*q*pi*(y-y1(x))./b(x))+2*q*pi*R2*cos(2*q*pi*(y-
y1(x))./b(x)).*(-2*q*pi*(y-y1(x)).*bx(x)./b(x).^2-2*q*pi*y1x(x)./b(x))./b(x)-(1-
R2)*q*pi*sin(q*pi*(y-y1(x))./b(x)).*(-q*pi*(y-y1(x)).*bx(x)./b(x).^2-
q*pi*y1x(x)./b(x))./b(x); 
 
yqy = @(x,y,q)(1-R2)*q*pi*cos(q*pi*(y-y1(x))./b(x))./b(x)+2*q*pi*R2*sin(2*q*pi*(y-
y1(x))./b(x))./b(x); 
 
yqyy =@(x,y,q)4*q^2*pi^2*R2*cos(2*q*pi*(y-y1(x))./b(x))./b(x).^2-(1-
R2)*q^2*pi^2*sin(q*pi*(y-y1(x))./b(x))./b(x).^2; 
 
%functions 
        Nx =@(x)1; 
        Ny = @(x,y)0; 
         
I1_ 
=@(x,y,m,p,n,q)(xm(x,m).*ynxx(x,y,n)+2*xmx(x,m).*ynx(x,y,n)+xmxx(x,m).*yn(x,y,n)).
*(xp(x,p).*yqxx(x,y,q)+2*xpx(x,p).*yqx(x,y,q)+xpxx(x,p).*yq(x,y,q)); %D11 
I2_ 
=@(x,y,m,p,n,q)(xm(x,m).*ynxx(x,y,n)+2*xmx(x,m).*ynx(x,y,n)+xmxx(x,m).*yn(x,y,n)).
*(xp(x,p).*yqyy(x,y,q))+(xp(x,p).*yqxx(x,y,q)+2*xpx(x,p).*yqx(x,y,q)+xpxx(x,p).*yq
(x,y,q)).*(xm(x,m).*ynyy(x,y,n)); %D12 
I3_ =@(x,y,m,p,n,q)xm(x,m).*xp(x,p).*ynyy(x,y,n).*yqyy(x,y,q);%D22 
I4_ 
=@(x,y,m,p,n,q)((xm(x,m).*ynxx(x,y,n)+2*xmx(x,m).*yny(x,y,n)+xmxx(x,m).*yn(x,y,n))
.*(xp(x,p).*yqxy(x,y,q)+xpx(x,p).*yqy(x,y,q))+(xp(x,p).*yqxx(x,y,q)+2*xpx(x,p).*yq
x(x,y,q)+xpxx(x,p).*yq(x,y,q)).*(xm(x,m).*ynxy(x,y,n)+xm(x,m).*yny(x,y,n)));%D16 
I5_ 
=@(x,y,m,p,n,q)(xm(x,m).*ynyy(x,y,n).*(xp(x,p).*yqxy(x,y,q)+xpx(x,p).*yqy(x,y,q))+
xp(x,p).*yqyy(x,y,q).*(xm(x,m).*ynxy(x,y,n)+xmx(x,m).*yny(x,y,n))); %D26 
I6_ 
=@(x,y,m,p,n,q)((xm(x,m).*ynxy(x,y,n)+xmx(x,m).*yny(x,y,n)).*(xp(x,p).*yqxy(x,y,q)
+xpx(x,p).*yqy(x,y,q))); %D66 
I7_ 
=@(x,y,m,p,n,q)(xm(x,m).*ynx(x,y,n)+yn(x,y,n).*xmx(x,m)).*(xp(x,p).*yqx(x,y,q)+yq(
x,y,q).*xpx(x,p)).*Nx(x); 
I8_ 
=@(x,y,m,p,n,q)((xm(x,m).*ynx(x,y,n)+yn(x,y,n).*xmx(x,m)).*(xp(x,p).*yqy(x,y,q)) + 
(xp(x,p).*yqx(x,y,q)+yq(x,y,q).*xpx(x,p)).*(xm(x,m).*yny(x,y,n))).*Nxy(x,y); 
I9_ =@(x,y,m,p,n,q)xm(x,m).*yqy(x,y,q).*xp(x,p).*yny(x,y,n).*Ny(x,y); 
I10_=@(x,y,m,p,n,q)xm(x,m).*yqy(x,y,q).*xp(x,p).*yny(x,y,n).*ky; 
I11_=@(x,y,m,p,n,q)(xmx(x,m).*yq(x,y,q)+xm(x,m).*yqx(x,y,q)).*(xpx(x,p).*yn(x,y,n)
+xp(x,p).*ynx(x,y,n)).*kx; 
 
 
 
%gaussian 
x_tr = @(X)X.*ao/2 +ao/2; 
y_tr = @(X,Y)Y.*(bo/2-0.25*ao^2*c*X.^2-0.5*ao^2*c*X-0.25*ao^2*c-0.5*ao*e*X-
0.5*ao*e)+bo/2; 
F_int 
=@(X,Y,m,p,n,q)(Df(1,1).*I1_(x_tr(X),y_tr(X,Y),m,p,n,q)+Df(1,2).*I2_(x_tr(X),y_tr(
X,Y),m,p,n,q)+Df(2,2).*I3_(x_tr(X),y_tr(X,Y),m,p,n,q)+2*Df(1,3).*I4_(x_tr(X),y_tr(
X,Y),m,p,n,q)+2*Df(2,3).*I5_(x_tr(X),y_tr(X,Y),m,p,n,q)+4*Df(3,3).*I6_(x_tr(X),y_t
r(X,Y),m,p,n,q)).*(0.5*ao*(bo/2-0.25*ao^2*c*X.^2-0.5*ao^2*c*X-0.25*ao^2*c-
0.5*ao*e*X-0.5*ao*e));  
F_ext 
=@(X,Y,m,p,n,q)(I7_(x_tr(X),y_tr(X,Y),m,p,n,q)+I8_(x_tr(X),y_tr(X,Y),m,p,n,q)+I9_(
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x_tr(X),y_tr(X,Y),m,p,n,q)).*(0.5*ao*(bo/2-0.25*ao^2*c*X.^2-0.5*ao^2*c*X-
0.25*ao^2*c-0.5*ao*e*X-0.5*ao*e)); 
F_spring1=@(X,Y,m,p,n,q)I10_(x_tr(X),y_tr(X,Y),m,p,n,q).*(0.5*ao*(bo/2-
0.25*ao^2*c*X.^2-0.5*ao^2*c*X-0.25*ao^2*c-0.5*ao*e*X-0.5*ao*e)); 
F_spring2=@(X,Y,m,p,n,q)I11_(x_tr(X),y_tr(X,Y),m,p,n,q).*(0.5*ao*(bo/2-
0.25*ao^2*c*X.^2-0.5*ao^2*c*X-0.25*ao^2*c-0.5*ao*e*X-0.5*ao*e)); 
 
 
node = [-0.996893484074649,-0.983668123279747,-0.960021864968307,-
0.926200047429274,-0.882560535792052,-0.829565762382768,-0.767777432104826,-
0.697850494793315,-0.620526182989242,-0.536624148142019,-0.447033769538089,-
0.352704725530878,-0.254636926167889,-0.153869913608583,-
0.0514718425553177,0.0514718425553177,0.153869913608583,0.254636926167889,0.352704
725530878,0.447033769538089,0.536624148142019,0.620526182989242,0.697850494793315,
0.767777432104826,0.829565762382768,0.882560535792052,0.926200047429274,0.96002186
4968307,0.983668123279747,0.996893484074649]; 
weight 
=[0.0079681924961666,0.018466468311091,0.0287847078833234,0.0387991925696271,0.048
4026728305941,0.0574931562176191,0.0659742298821805,0.0737559747377052,0.080755895
2294202,0.086899787201083,0.0921225222377861,0.0963687371746443,0.0995934205867953
,0.101762389748405,0.102852652893558,0.102852652893558,0.101762389748405,0.0995934
205867953,0.0963687371746443,0.0921225222377861,0.086899787201083,0.08075589522942
02,0.0737559747377052,0.0659742298821805,0.0574931562176191,0.0484026728305941,0.0
387991925696271,0.0287847078833234,0.018466468311091,0.0079681924961666]; 
 
PE_U1=@(m,p,n,q)(sum(F_int(node',node(1),m,p,n,q).*(weight(1)*weight)')+sum(F_int(
node',node(2),m,p,n,q).*(weight(2)*weight)')+sum(F_int(node',node(3),m,p,n,q).*(we
ight(3)*weight)')+sum(F_int(node',node(4),m,p,n,q).*(weight(4)*weight)')+sum(F_int
(node',node(5),m,p,n,q).*(weight(5)*weight)')+sum(F_int(node',node(6),m,p,n,q).*(w
eight(6)*weight)')+... 
      
sum(F_int(node',node(7),m,p,n,q).*(weight(7)*weight)')+sum(F_int(node',node(8),m,p
,n,q).*(weight(8)*weight)')+sum(F_int(node',node(9),m,p,n,q).*(weight(9)*weight)')
+sum(F_int(node',node(10),m,p,n,q).*(weight(10)*weight)')+sum(F_int(node',node(11)
,m,p,n,q).*(weight(11)*weight)')+sum(F_int(node',node(12),m,p,n,q).*(weight(12)*we
ight)')+... 
      
sum(F_int(node',node(13),m,p,n,q).*(weight(13)*weight)')+sum(F_int(node',node(14),
m,p,n,q).*(weight(14)*weight)')+sum(F_int(node',node(15),m,p,n,q).*(weight(15)*wei
ght)')+sum(F_int(node',node(16),m,p,n,q).*(weight(16)*weight)')+sum(F_int(node',no
de(17),m,p,n,q).*(weight(17)*weight)')+sum(F_int(node',node(18),m,p,n,q).*(weight(
18)*weight)')+... 
      
sum(F_int(node',node(19),m,p,n,q).*(weight(19)*weight)')+sum(F_int(node',node(20),
m,p,n,q).*(weight(20)*weight)')+sum(F_int(node',node(21),m,p,n,q).*(weight(21)*wei
ght)')+sum(F_int(node',node(22),m,p,n,q).*(weight(22)*weight)')+sum(F_int(node',no
de(23),m,p,n,q).*(weight(23)*weight)')+sum(F_int(node',node(24),m,p,n,q).*(weight(
24)*weight)')+... 
      
sum(F_int(node',node(25),m,p,n,q).*(weight(25)*weight)')+sum(F_int(node',node(26),
m,p,n,q).*(weight(26)*weight)')+sum(F_int(node',node(27),m,p,n,q).*(weight(27)*wei
ght)')+sum(F_int(node',node(28),m,p,n,q).*(weight(28)*weight)')+sum(F_int(node',no
de(29),m,p,n,q).*(weight(29)*weight)')+sum(F_int(node',node(30),m,p,n,q).*(weight(
30)*weight)')); 
 
PE_S=@(m,p,n,q)(sum(F_spring1(node',node(1),m,p,n,q).*(weight)')+ 
sum(F_spring1(node',node(30),m,p,n,q).*(weight)')+sum(F_spring2(node(1),node,m,p,n
,q).*(weight))+ sum(F_spring2(node(30),node,m,p,n,q).*(weight))); 
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PE_V1=@(m,p,n,q)(sum(F_ext(node(1),node',m,p,n,q).*(weight(1)*weight)')+sum(F_ext(
node(2),node',m,p,n,q).*(weight(2)*weight)')+sum(F_ext(node(3),node',m,p,n,q).*(we
ight(3)*weight)')+sum(F_ext(node(4),node',m,p,n,q).*(weight(4)*weight)')+sum(F_ext
(node(5),node',m,p,n,q).*(weight(5)*weight)')+sum(F_ext(node(6),node',m,p,n,q).*(w
eight(6)*weight)')+... 
       
sum(F_ext(node(7),node',m,p,n,q).*(weight(7)*weight)')+sum(F_ext(node(8),node',m,p
,n,q).*(weight(8)*weight)')+sum(F_ext(node(9),node',m,p,n,q).*(weight(9)*weight)')
+sum(F_ext(node(10),node',m,p,n,q).*(weight(10)*weight)')+sum(F_ext(node(11),node'
,m,p,n,q).*(weight(11)*weight)')+sum(F_ext(node(12),node',m,p,n,q).*(weight(12)*we
ight)')+... 
       
sum(F_ext(node(13),node',m,p,n,q).*(weight(13)*weight)')+sum(F_ext(node(14),node',
m,p,n,q).*(weight(14)*weight)')+sum(F_ext(node(15),node',m,p,n,q).*(weight(15)*wei
ght)')+sum(F_ext(node(16),node',m,p,n,q).*(weight(16)*weight)')+sum(F_ext(node(17)
,node',m,p,n,q).*(weight(17)*weight)')+sum(F_ext(node(18),node',m,p,n,q).*(weight(
18)*weight)')+... 
       
sum(F_ext(node(19),node',m,p,n,q).*(weight(19)*weight)')+sum(F_ext(node(20),node',
m,p,n,q).*(weight(20)*weight)')+sum(F_ext(node(21),node',m,p,n,q).*(weight(21)*wei
ght)')+sum(F_ext(node(22),node',m,p,n,q).*(weight(22)*weight)')+sum(F_ext(node(23)
,node',m,p,n,q).*(weight(23)*weight)')+sum(F_ext(node(24),node',m,p,n,q).*(weight(
24)*weight)')+... 
       
sum(F_ext(node(25),node',m,p,n,q).*(weight(25)*weight)')+sum(F_ext(node(26),node',
m,p,n,q).*(weight(26)*weight)')+sum(F_ext(node(27),node',m,p,n,q).*(weight(27)*wei
ght)')+sum(F_ext(node(28),node',m,p,n,q).*(weight(28)*weight)')+sum(F_ext(node(29)
,node',m,p,n,q).*(weight(29)*weight)')+sum(F_ext(node(30),node',m,p,n,q).*(weight(
30)*weight)')); 
 
 
 
K_U=[]; 
 
for p=1:1:T 
    for q=1:1:T 
              G=[];   
            for m=1:1:T 
                for n=1:1:T 
                   % FFint=@(X,Y)F_int(X,Y,m,p,n,q); 
                    %G1(n)=integral2(FFint,-1,1,-1,1); 
                    G1(n)=PE_U1(m,p,n,q); 
                end 
              G=horzcat(G1,G);  
            end 
             
            K_U=vertcat(G,K_U); 
    end 
   
end 
 
K_U2=[]; 
 
for p=1:1:T 
    for q=1:1:T 
              G=[];   
            for m=1:1:T 
                for n=1:1:T 
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                    FSp1=@(X)F_spring1(X,-1,m,p,n,q); 
                    FSp2=@(X)F_spring1(X,1,m,p,n,q); 
                    FSp3=@(Y)F_spring2(-1,Y,m,p,n,q); 
                    FSp4=@(Y)F_spring2(1,Y,m,p,n,q); 
                    FSp5=@(X)F_spring2(X,-1,m,p,n,q); 
                    FSp6=@(X)F_spring2(X,1,m,p,n,q); 
                    G1(n)=integral(FSp1,-1,1)+integral(FSp2,-1,1)+integral(FSp3,-
1,1)+integral(FSp4,-1,1)+integral(FSp5,-1,1)+integral(FSp6,-1,1); 
                   
                   % G1(n)=PE_S(m,p,n,q); 
                end 
              G=horzcat(G1,G);  
            end 
             
            K_U2=vertcat(G,K_U2); 
    end 
   
end 
 
 
 
 
 
K_V=[]; 
 
for p=1:1:T 
    for q=1:1:T 
              G=[];   
            for m=1:1:T 
                for n=1:1:T 
                    %FFext=@(X,Y)F_ext(X,Y,m,p,n,q); 
                    %G1(n)=integral2(FFext,-1,1,-1,1); 
                    G1(n)=PE_V1(m,p,n,q); 
                end 
              G=horzcat(G1,G);  
            end 
             
            K_V=vertcat(G,K_V); 
    end 
   
end 
 
 
K_UU=K_U+K_U2; 
%A=inv(K_V)*K_U; 
Eig=eig(K_UU,K_V); 
%disp(Eig) 
minEig=min(abs(Eig)); 
disp(vpa(minEig,5)); 
%end 
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A4. Intracellular buckling mode shapes of different cell shapes of equal area 

under uniaxial compression in direction-1 and direction-2 
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