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Abstract
Natural Language Processing (NLP) systems have come to permeate so many areas

of daily life that it is difficult to live a day without having one or many experiences

mediated by an NLP system. These systems bring with them many promises: more

accessible information in more languages, real-time content moderation, more data-

driven decision making, intuitive access to information via Question Answering and

chat interfaces. But there is a dark side to these promises, for the past decade of

research has shown that NLP systems can contain social biases and deploying them can

incur serious social costs. Each of these promises has been found to have unintended

consequences: racially charged errors and rampant gender stereotyping in language

translation, censorship of minority voices and dialects, Human Resource systems that

discriminate based on demographic data, a proliferation of toxic generated text and

misinformation, and many subtler issues.

Yet despite these consequences, and the proliferation of bias research attempting to

correct them, NLP systems have not improved very much. There are a few reasons

for this. First, measuring bias is difficult; there are not standardised methods of mea-

surement, and much research relies on one-off methods that are often insufficiently

careful and thoroughly tested. Thus many works have contradictory results that cannot

be reconciled, because of minor differences or assumptions in their metrics. With-

out thorough testing, these metrics can even mislead and give the illusion of progress.

Second, much research adopts an overly simplistic view of the causes and mediators

of bias in a system. NLP systems have multiple components and stages of training,

and many works test fairness at only one stage. They do not study how different parts

of the system interact, and how fairness changes during this process. So it is unclear

whether these isolated results will hold in the full complex system. Here, we address

both of these shortcomings. We conduct a detailed analysis of fairness metrics applied

to upstream language models (models that will be used in a downstream task in transfer

learning). We find that a) the most commonly used upstream fairness metric is not pre-

dictive of downstream fairness, such that it should not be used but that b) information

theoretic probing is a good alternative to these existing fairness metrics, as we find it is

both predictive of downstream bias and robust to different modelling choices. We then

use our findings to track how unfairness, having entered a system, persists and travels

throughout it. We track how fairness issues travel between tasks (from language mod-

elling to classification) in monolingual transfer learning, and between languages, in
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multilingual transfer learning. We find that multilingual transfer learning often exac-

erbates fairness problems and should be used with care, whereas monolingual transfer

learning generally improves fairness. Finally, we track how fairness travels between

source documents and retrieved answers to questions, in fact-based generative systems.

Here we find that, though retrieval systems strongly represent demographic data such

as gender, bias in retrieval question answering benchmarks does not come from the

model representations, but from the queries or the corpora. We reach all of our find-

ings only by looking at the entire transfer learning system as a whole, and we hope

that this encourages other researchers to do the same. We hope that our results can

guide future fairness research to be more consistent between works, better predictive

of real world fairness outcomes, and better able to prevent unfairness from propagating

between different parts of a system.
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Lay Summary
Natural Language Processing describes any AI system that deals with human lan-

guage. Today NLP systems are part of every person’s daily life; visibly as phone

voice assistants and automatic YouTube captioning, and invisibly, when that person

applies for a job or when all the data they put online is analysed for content moder-

ation, marketing, opinion polling, and more. Transfer Learning describes systems

that are multi-part, which almost all systems are today, because they are built from

one big language model, like ChatGPT, Llama, Mistral, or Cohere, which is later fine-

tuned to a particular task, such as customer service or resume processing. Fine-tuning

just means that some data in that domain, usually expensive, often proprietary, is used

after the model is trained in order to make the language model less general purpose

and better at that type of data. This system described so far is Transfer Learning. In

many of today’s systems, the language model is then connected to a RAG (Retrieval

Augmented Generation) component, where the model can search a database of docu-

ments: Wikipedia, confidential medical records, all the PDFs that a PhD student has

downloaded over the course of their degree1. The premise of the research in this the-

sis is that you have to know how the parts of these systems interact, in order to judge

whether a system is fair. This means the interaction between all of: the original big

language model, the data you fine-tune on, anything else you make at the fine-tuning

stage, the retrieval system, the corpus it retrieves from. A system that is fair is one

that doesn’t propagate social biases and stereotypes, and doesn’t screw over minority

groups in society. To be precise to the definition of fairness, it shouldn’t screw over

any group, even straight white men, but the minority ones tend to be the ones we worry

about since they tend to be most screwed over, with some exceptions.

In this work, we discover a couple of things about how the parts of an NLP system

interrelate, with regard to fairness. First, you cannot measure fairness of just the lan-

guage model in isolation and know whether your model will be fair or unfair when it’s

deployed in an application later. You can get an indication as to the model’s potential

for unfairness, but that is all. This idea of potential can be understood by analogy to

genetics—we can measure whether a person is more or less likely to develop cancer,

but whether they do or not over the course of their life depends on whether they work

in copper mines and what they eat, how much they exercise and what pollutants are in

the air where they live. Some people with a high propensity may never develop it, and

1Roughly 1227 papers, in my case.
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some people with no propensity at all still will if they live next to Chernobyl. With

language models, we can measure how much potential there is for unfairness, but we

can’t know what this really means without the environmental factors: the fine-tuning

data, the RAG system, and even the cultural context of deployment, which determines

what demographic groups are considered minorities. We can make predictions about

how likely the model will be to become unfair, if it is fine-tuned on skewed data that

doesn’t have positive examples of good resumes for people who aren’t white, or doesn’t

have high quality RAG data for people who are not male (this is, incidentally, true of

Wikipedia (Sun and Peng, 2021)). So we can improve, or mitigate this potential in a

language model. But in real world applications, where we need know that people are

not screwed over with some degree of certainty, we need to test the final system.

Most language models today are also multilingual. If you type something into Chat-

GPT or Cohere’s model in English, it can retrieve information from documents in

Turkish and summarise them for you in English. If you type something in Korean, it

will respond in Korean. In this work, we discovered that data in one language can in-

fluence fairness behaviour in another language. An NLP system that handles Japanese

can become more sexist and racist when you add data from English, even though the

data you’re adding is not in Japanese, and even though the sexist and racist stereotypes

in English data are not the same as those in native Japanese.

Overall, this work shows that you cannot assume that the addition of new data—from

fine-tuning, for other languages, from RAG—does not change the fairness properties

of an original model. So fairness cannot just be the domain of the tech giants and

gold-plated start-ups, of Google, Meta, Anthropic, Cohere, or whatever companies are

producing the new hot model next year. Is has to be a collaboration between the people

training the big models, the people deploying systems in the real world, and, ideally,

the users.

iv



Acknowledgements
People say that PhDs are the most solitary time of your life. In some ways, I’ve found

that to be true. But I very much did not do this alone.

The inkling in my mind that I wanted to leave my career and go study NLP began

roughly ten years ago, and I would not be here today without the herculean efforts of

some, and the small graces of many. I want to thank first Somusa Ratanarak, who en-

couraged me to leave Google and pursue my passions when all my colleagues thought

leaving a stable job was utterly insane. She’s been with me every step of the way, with

a lot of cleverness and care, and a little bit of 愛の鞭, and I am a much better person

because of her. I want to thank my parents, all of them, Mom#1, Mom#2, Dad, Tyger,

and Rachel, who also didn’t think I was crazy. Thank you for seeing and celebrating

my accomplishments, with flowers and lemons and jam, even when I didn’t stop to ap-

preciate them because I was busy running for the next goalpost. Thank you for being

proud of me.

There were still others whose help I needed even to reach the start of my PhD. I want

to thank Ozan Mindek, for giving me my first chance at NLP on a 20% project. Then

Emily Bender, for walking her talk and creating an MSc program that was truly diverse

in practice. She took me with my undergraduate in Ancient Greek, and my now friends

Brian from the Navy and Lonny working on Yupiq preservation, along with the usual

CS suspects. I aspire to be that conscientious in organisations that I lead, and I can

see already how challenging it will be to live up to. I also need to thank that same di-

verse cohort of Brian, Lonny, Catharine, Genevieve, Amandalynne, Chris, and Ben for

spending Saturday mornings helping me practice interview for my PhD. And I aspire

also to be like two more women who helped me: Fei Xia, who can make absolutely

any question you ask her interesting, no matter how silly it is, and who showed me the

beauty and elegance of statistical machine learning. And Nanyun Peng, for taking on

a green MSc student and teaching me to write papers and staying up late with me, and

showing me that I absolutely loved doing research.

Now we have reached the start of my PhD. Here I want to thank both my advisors.

Björn, for taking me on partway through and bringing his energy and enthusiasm,

at a point in the pandemic when my own energy was flagging; our Meadows walks

kept me going. Adam, for accepting me, trusting whatever direction I ran off in, and

immediately being for me a mentor who cares deeply about both good science and

v



about people. Adam has changed the way I do science and the way I see the world; I

am proud to be in his intellectual lineage.

So many other people made my PhD possible, by keeping me afloat along the way, in

a period in which very many things went wrong in my life and in the world. I owe to

them, and to those moments, both a piece of this research and of who I am.

Late nights walking the City of London with Sameer Bansal, whose dark humour

and enormous generosity lightens all loads. Hikes, bothies, wine and cheese nights

with Kate McCurdy, who would always make me laugh and teach me something mar-

velous about humans or language, and who became a better friend and colleague than I

could’ve ever wished for. Always-inadvisably-late nights by the fire with Henry Con-

klin, with whom I get my most interesting NLP inspiration and also with whom I can

be my whole self, unfiltered. All my adventures in the beautiful wilds with Ida Szubert,

who holds all of my soul and of my delight in life, and with whom it is so easy to share

space, and somehow never a chore to work late, or do anything hard, because I am

with her. Pints at Sandy Bells with Ramon Sanabria, who sees the cheerful beauty in

even quite shitty situations and shows me how to do this too. Dinners and walks with

Yevgen Matusevych, who helped me when I needed it and scolded me for not asking.

Coffees with Tom Hosking, who has a knack for re-energising me about the whole

field of NLP over coffee, just when I’ve been banging my head against a problem so

long it’s become tedious. Writing accountability meetings at the Burn with Tom Sher-

borne, who was instrumental in getting my nightmare multilingual work onto a page,

and has been a companion since. Brewing the worst beer I have ever made with Sander

Bijl de Vroe and drinking it anyway. Walks down the Innocent Railway with Siddarth

Narayanaswamy, reminding me that I wished I’d learnt first principles better, but also

that this wish is why I became a scientist in the first place. Whisky nights with Jasmijn

Bastings, as well as our long chat on my 15-hour solo drive South from NAACL after

I caught Covid-19 there. She was always so easygoing, and foolish/caring enough to

come to all my panels and talks, without me asking.

All of my direct collaborators also kept me going through a PhD that was much, much

lonelier than I could have ever anticipated. Meetings with my collaborators Hadas

Orgad and Yonatan Belinkov, which I would look forward to from the start of every

week and would keep me energised until the end of it. Adam and Sharon’s Agora

research group in ILCC provided feedback, structure, and scholarly companionship.

Diego Marcheggiani and Roi Blanco helped me manage my first enormous multilin-

vi



gual project. Patrick Lewis and Pedro Rodriguez exemplified a combination of rigor

and curiosity in their science, as well as conscience, that I admire and hope to live up

to.

I am thankful for the small graces (and some large graces) far beyond the research

sphere also. To James and Deena Owers-Bardsley for my intro to cycling in Scotland

and for the cocktail kits we left on each others’ doorsteps when we couldn’t see other

people. To David Halliwell and Narma Gebruk, for celebrating my intended submis-

sion with me last May, and keeping the gorse-flame alight the next nine months and

then coming out with me to celebrate again. To the entire Beltane family — especially

my performance groups Veles, Goblin Fire Arch, Goblin Bower, The Summer King,

and Obsidian — who gave me a haven away from academia which at times I desper-

ately needed. To Alison Stewart, for taking me in practically as a family member after

that one coffee in George Square. To Sam Roots and Ruari Cathmoir, for so easily and

comfortably becoming chosen family. To Ellen Mears, who has been my companion

in doing the things that I want to do for me, rather than spending all my time on my

sometimes heavy responsibilities. To Guru Khalsa, for every one of those calls from

the road. To Ivan Ivanov, who was accidentally stuck with me during the pandemic,

and who I hope to get stuck with many more times in my life. To James Hartley, who

is one of the few people in the world I feel I can lean on, and who has always provided

me with so much love it keeps me warm from another hemisphere. To Ezra Baydur,

for drunk-chat-chess and seeing the best in me. To Craig Innes, who has introduced

me to a version of myself that I didn’t know was there before, and that I am so glad

to have gotten to know; who reliably has something uplifting to say about my skills,

to prop me up, before I give a scary public appearance. To Tasuku Koda, Narumi Ota,

and Makoto Takashima, for showing me 本音 and keeping a place on the other side

of the world that feels like home. To Alice in Slumberland, my Burning Man family,

who I saw only once during my PhD but who taught me that I could express myself

any way I wanted, and that I could even redefine the world in which I lived. I’m trying

to do a little bit of that redefinition in here, with this work.

vii



Declaration
I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

My specific contributions are as follows for each chapter:

Chapter 3: I designed the research agenda: I envisioned the research question and

wrote a research plan document with methods, goals, metrics, and a literature review.

I recruited and supervised three MSc students who implemented pipelines for three

different systems and did initial investigations into the correlation between intrinsic

and extrinsic metrics for their MSc theses. I gathered these pipelines together, extended

them, ran experiments, and wrote and presented the paper, with the help of Adam.

Chapter 4: I was second author on this paper, assisting the first author Hadas Or-

gad who proposed this extension of the work in Chapter 3. I implemented some of

the metrics on intrinsic analysis of language model representations, implemented the

additional extrinsic fairness metrics (which are now open-sourced), and co-wrote the

paper with Hadas Orgad and Yonatan Belinkov.

Chapters 5 and 6: I did this project almost entirely on my own save for the writing,

which my supervisors Adam and Björn assisted with greatly. I designed the research

question and outlined the project, developed and programmed the experiment frame-

work, found training data, created evaluation data (with the help of native speakers of

each language) and wrote up the results (with the help of my supervisors). I received

regular weekly consultation from Diego Marcheggiani, Roi Blanco, and Lluis Marquez

at Amazon Barcelona for the first of the two projects.

Chapter 7: I designed the research question in collaboration with Patrick Lewis. I

made the research project plan, chose datasets and interpretability methods, wrote all

pipeline code and ran all experiments, and finally wrote up the findings into a paper,

with help from Pedro Rodriguez.

(Seraphina Goldfarb-Tarrant)

viii



Contents

1 Introduction 1
1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.1.1 Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.1.2 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1.3 Retrievers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Background 16
2.1 Defining Fairness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Measuring Fairness . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Common Approaches to Debiasing . . . . . . . . . . . . . . . . . . . 22

2.4 Fairness as Dataset Artifacts or as Failure to Generalise . . . . . . . . 25

2.5 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

I Measuring the Relationship between Fairness in Pretraining
and Fairness in Downstream Applications 30

3 Intrinsic Bias Metrics Do Not Correlate with Application Bias 33

4 How Gender Debiasing Affects Internal Model Representations, and Why
It Matters 49

II Fairness in Transfer across Languages 79

5 Monolingual Transfer in Sentiment Analysis 83

6 Cross-lingual Transfer in Sentiment Analysis 93

ix



III Fairness and Generalisation in Retrievers 110

7 MultiContrievers: Analysis of Dense Retriever Representations 113

IV Conclusion 136

8 Conclusions, Questions, and the Present Day 137
8.1 Takeaways . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

8.2 Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

8.3 Present Day . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Bibliography 145

x



Chapter 1

Introduction

In the past decade, Natural Language Processing (NLP) systems have come to saturate

everyday life. NLP has expanded from being used to translate webpages and recom-

mend new videos to having inescapable reach. It is now also used to moderate social

media content (Winchcomb, 2019), where all posts are filtered through an NLP system

that judges them as hateful/not-hateful, acceptable/not-acceptable, and either removes

or suppresses the sharing of posts that fail this check. NLP is used to generate answers

to any user questions about any topic (Rajpurkar et al., 2016, 2018), by sifting through

millions of documents and determining which ones are relevant and worth knowing

about and presenting those, discarding others. It is used to track public opinion about

products or politicians (Nissim et al., 2020), by analysing the sentiment of all of the

information said about them online. NLP is used to sort and filter resumes for poten-

tial new workers (Parasurama and Sedoc, 2022), by comparing each new resume to

previous successful hires for a job, and flagging which ones to send to a phone-screen

and which ones to reject. It is also used to later fire those same workers (Kelly, 2023),

by reading data about their productivity and predicting who shouldn’t make the cut.

These examples are a small set of the myriad applications that use NLP today, chosen

as the areas the are directly relevant to the research in this thesis. There are so many

more; most people in the UK and US come into contact with NLP or AI multiple times

daily, though many of them are not aware of it (Kennedy et al., 2023).

This increase in scope and usage of NLP systems comes with many promises of ef-

ficiency, cost reduction, and even social good. For all of the uses above, there are

bright promises. NLP for content moderation on social media can reduce hatespeech
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Chapter 1. Introduction 2

and aggression online, which has reached a volume and velocity that is completely un-

manageable for human moderators. When left unchecked, it is linked to amplification

of violence in the real world. NLP for retrieval and question answering can enable

greater and easier access to information, a necessary step in searching and organising

the vast quantities of digital information and democratising information access. NLP

as sentiment analysis of public opinion can enable direct and inexpensive democratic

feedback for companies or policies; direct feedback that might otherwise be too lo-

gistically challenging and expensive to gather. NLP in hiring systems could enable

processing more applications, which could give a broader segment of the population

a chance, and create systems that are less dependent on ‘who you know’ and on the

instincts of a few HR representatives tasked with reading through a resume slush pile.

But this territorial expansion introduces many new harms that diminish these promises.

The often referenced promise of mathematical objectivity—freeing us from human

subjectivity, inconsistency, and biases—has proven to be mythical. At best, NLP sys-

tems learn and propagate these same biases, but with a veneer of objectivity that fosters

over-reliance (O’Neil, 2016) and reduces accountability and recourse when data is in-

correct and decisions go wrong.

A large and growing body of work analysing NLP systems has shown that they do

not behave similarly and work equally well for different genders, races, nationalities,

and other demographic groups. This disparate performance across demographics is the

standard definition of fairness, which we use throughout this thesis: these systems are

not fair. So given that NLP systems, and the data, models, and optimisation and eval-

uation metrics they are composed of are not inherently fair, we must analyse the ways

they are not, so we know what to expect and can mitigate where possible. When NLP

systems are not fair, companies and organisations using them (and people subjected to

their outputs) are worse off than before automation systems, since this flawed system

has now been scaled. An individual Human Resources manager may have flaws and

biases, but they work for only one or a few companies and have time to read only so

many resumes in a day. Some resumes will be sent to a different person, who may

have different biases, preventing the inequities of the first person’s views from being

complete and consistent over a wide swath of potential jobs. When a flawed and biased

NLP HR system is scaled, it does not sleep, get tired, or clock-off and can process as

many thousands of resumes as time and compute allows. The same system is used by

many companies. The very variability of human behaviour, and the inconsistencies in
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human decisionmaking that are often considered undesirable, limit the possible scope

of each individual’s (or even each company or organisation’s) biases. This lack of scal-

ing of humans is an accidental safeguard. An NLP system, in contrast, replicates the

same biases to an unlimited extent, and whatever unfortunate minorities it is biased

against will experience more widespread discrimination. This is the situation of the

present day, and sets the scene for this research.

The research world noticed this, eventually. Fairness problems in NLP started to be-

come well-known in the NLP community in 2016, as NLP itself began to directly

touch more lives and have more impact (Hovy and Spruit, 2016). Attention in the

research world, and the public, has grown exponentially since1. By the time of writ-

ing, major conferences now have a dedicated track for fairness research2, encourage

papers to self-declare potential hazards3, and have an ethics committee appointed to

review potential fairness problems in any work4. Yet despite all the attention and ef-

fort expended on fairness in NLP, we as a community have made only such a small

dent in known problems as to now be aware of the magnitude of still unaddressed fair-

ness problems. Both discovering and addressing fairness problems in an NLP system

remains extremely challenging.

There are a couple of reasons for this challenge, which have prevented the community

from making a larger dent. One of the most salient ones is that NLP systems today are

complex; they involve multiple stages of model training, as is the case with Transfer

Learning (discussed and defined in §2.5). How to measure and mitigate unfairness in

a multi-part NLP system is not clear, and systems are now always multi-part. How

does a measurement or mitigation at one stage relate to the other stages? What can be

trusted to hold across stages? This thesis attempts to take a step towards remedying

this. It asserts, throughout each of the sections, that you cannot study just one part of

an NLP system in isolation, without first understanding how it affects the other parts.

There is real difficulty in even defining unfairness, and a substantial percentage of

fairness papers neglect to define it at all (Blodgett et al., 2020; Goldfarb-Tarrant et al.,

2023). There are multiple ways that a system can be unfair. NLP systems are often

not allocationally fair; they have different accuracies and rates of false positives and

1https://fairmlclass.github.io/1.html#/4
2https://aclrollingreview.org/cfp
3Section A2 in https://aclrollingreview.org/responsibleNLPresearch/, and section 1c in https://

neurips.cc/Conferences/2021/PaperInformation/PaperChecklist
4https://www.aclweb.org/adminwiki/index.php?title=Formation_of_the_ACL_Ethics_Committee
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false negatives for different demographics. A example such situation is when a toxicity

detection system has much higher rates of false positives for text that is actually benign

or beneficial but contains terms about race, religion, or sexual orientation. In such

as case, a sentence like I am a gay man can be flagged as toxic and censored, as

was the case with Google’s toxicity detection system in 2018 (Dixon et al., 2018).

NLP systems are also often not representationally fair; they reproduce and propagate

negative stereotypes for minoritised demographics (Crawford, 2017). For example,

prominent generation systems will disproportionately describe women as taking carer

roles, and portray racial minorities as criminals (Sheng et al., 2019).

There is not even a consensus on how best to measure each type of unfairness. Most

metrics used to measure fairness are ad-hoc and have not been standardised or anal-

ysed for predictive validity—their ability to predict actual fairness problems that will

occur–or concurrent validity—their agreement with other metrics in use. If you

cannot measure something, ‘your knowledge is of a meagre and unsatisfactory kind’

(Kelvin, 1891) and you cannot know whether any improvements you make actually

worked. So we begin by making some progress towards assessing predictive and con-

current validity of fairness metrics in Part I.

Another challenge is that fairness issues can appear at almost any stage of building an

NLP system (Suresh and Guttag, 2021), and as mentioned, the relationship between the

stages is poorly understood. NLP papers commonly claim that ‘model biases reflect

biases in data they were trained on’5 but this is such a gross oversimplification as to be

both unhelpful and misleading. It glosses over questions such as: how did the biases

get into the data? Do imbalances in labels over different sensitive groups count, or

do only stereotypes count? And it glosses over all the other causes, of which there are

seven high level kinds in Suresh and Guttag (2021), and some additional in other works

(Mehrabi et al., 2021). I expect the prevalence of this statement is a way of shirking

responsibility. If it is the data’s fault for being biased, and society’s fault for creating

biased data, then it is not the fault of the engineer or company for creating a biased

model. It’s just the world we live in.

But it is not the world we live in. It is the world we are making. All choices in the

process of training an NLP model can affect the resulting bias. A resume filtering

5This refrain is ubiquitous, and is apparently even the rationale that ChatGPT gives:
Yes, language models can have biases, because the training data reflects the biases present
in society from which that data was collected. as reported in https://news.mit.edu/2023/
large-language-models-are-biased-can-logic-help-save-them-0303
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system can be trained on data in which humans made racist or sexist decisions – say in

the past they didn’t hire non-men, or non-white, or only hired young people or people

who went to certain schools. This is historical bias, and that bias in the training

data will not only persist, but be amplified, an effect which is much less frequently

discussed but is common (Zhao et al., 2017; Jia et al., 2020; Cabello et al., 2023;

Hashimoto et al., 2018). Then this system, which is already dubiously ‘only reflecting

training data’ will scale, with the authority of an objective AI system behind it. This

happened with Amazon’s attempt at an AI for Human Resources, which would not hire

women at all because, historically, Amazon had not hired very many of them.6 There

are also sampling, aka representation, biases. For instance, a content moderation

and toxicity detection system can be unfamiliar with non-prestige dialects and censor

them incorrectly, as happened when tweets in African-American Vernacular English

(AAVE) were incorrectly flagged as toxic speech (Sap et al., 2019). Even though

AAVE is common in the world, it was not well-represented in data the model has seen.

So even within dataset biases, there are multiple kinds with different reasons behind

them. There are other sources beyond dataset biases. The above example of historical

bias in hiring is actually an example of another type of bias as well, measurement
bias. This NLP resume filtering system uses labelled data for supervised learning (as

is quite common) where the labels are a proxy for the task that is to be learnt – e.g. was

previously hired based on this resume is a proxy for was suitable for the job. That label

can be a better or worse proxy for the desired task. This gap between the thing being

measured and the unmeasurable quantity of interest is measurement bias. These are

only a few of the many ways that unfairness can enter a system, selected as examples

as they are the types that I spend the most time examining below. There are more subtle

ways that can make mitigation even more challenging, which I discuss in Part 2.

An NLP system can contain one, many, or all of these sources of bias, and this bias can

enter in via the data collection, dataset splits, learning objective, model architecture,

model deployment choices (such as decoding hyperparameters or classifier thresholds).

And most of these choices are now made twice or more. Current scale in NLP is driven

by transfer learning, where a model is trained on high resource task(s) or language(s)

(e.g. unstructured web crawl text) and then ported to a lower resourced one (e.g. any

supervised task requiring labels, like sentiment analysis) – not necessarily objectively

low resource, but relatively lower resourced, i.e. with less data than the dominant task

6https://www.reuters.com/article/us-amazon-com-jobs-automation-insight-idUSKCN1MK08G.
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or language being used for transfer. It was already difficult to pinpoint where biases

enter a system, and with transfer learning most systems are composed of multiple sets

of training data, multiple objectives, multiple measurements.

Transfer learning is now the dominant paradigm in NLP, but previous to the work in

this thesis, fairness research considered only one of the two stages: the pre-training or

the fine-tuning stage. If a language model that will later be used in our example resume

filtering system (which we refer to as an upstream model) has been debiased with re-

gard to gender, will the classifier on top of it (which we refer to as the downstream
model) also be debiased, or not? If instead the classifier is debiased, is the language

model also safe to use, or will bias then surface if the language model is used in an-

other task, or directly without the classifier? We cannot answer these questions without

studying the entire system and learning the relationship between upstream and down-

stream models. And without these answers, bias mitigation methods or measurements

are at best ineffective, and at worst misleading. With these answers we can apply effec-

tive bias mitigation strategies at the correct stage of the system, and we will understand

the contribution of transfer learning to fairness in NLP systems and be informed as to

whether systems are becoming better or worse as they scale. This understanding is a

pre-requisite to effective work in NLP bias, and yet before the work in this thesis, the

field had little knowledge of it.

So here, in the below, we explore a previously yet unstudied area of NLP fairness; how

unfairness, having entered a system, persists and travels throughout it.

We first focus, in Part I, on fairness measurement at different stages of transfer learning.

No real research can be done without good measures, and we need an understanding of

how measures of bias relate at different stages of transfer learning, since interventions

are customarily applied at one stage. In Chapter 3, we study whether the most common

intrinsic bias measurements–at the language model pre-training stage–are predictive

of later downstream, or extrinsic, bias in two classification tasks in two languages.

We find that they are not predictive, and that the widespread use of these measures

has been leading to a false sense of progress in debiasing research. Most work was

at the time done on only upstream models, and our work shows that we cannot tell

whether debiasing efforts are propagating downstream. Our results show that more ef-

fort needs to be spent on measuring bias on the downstream task itself. Following this,

in Chapter 4, we study the relationship of transfer learning measurements in the reverse

direction. Here we ask how a pre-trained upstream language model changes when dif-
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ferent debiasing methods are applied downstream. We find that a new metric, based

on information theoretic probing (also known as minimum description length (MDL)

probing) (Voita and Titov, 2020) can, when applied to the pre-trained language model,

differentiate between different downstream bias levels, and different downstream de-

biasing techniques, and show which are more effective. We find that this measure is

predictive of how robust debiasing of the pre-trained language model is, and whether

the debiasing will remain if that model is then used in another task. These two re-

sults together imply that the geometry (cosine or other distance measures, previously

used as upstream metrics) of concepts in language model representation space does

not reliably predict downstream bias, but the extractability of concepts (as measured

by information theoretic codelengths) is better predictor. In that work, we also are the

first to use a wide suite of ten downstream fairness metrics that refer to slightly dif-

ferent notions of fairness. We find that though they tend to track together, if we had

naively used a subset of them, based on what was most popular for certain datasets, we

might have come to a different conclusion. Different metrics are suitable for different

applications and scenarios, and they do not always tell the same story.

We then use our findings on measurement to conduct experiments addressing a broad

question about how the use of transfer learning affects the fairness of a system. There is

no previous work on this, but previous work on aspects of transfer learning leads to two

competing possibilities of how transfer learning could impact fairness. Does transfer

learning improve fairness, because the additional data sources lead to overall better

models that are better at modelling long tail phenomena (and data on minorities is often

long tail)? Or does the additional complexity bring in new or magnified undesirable

biases, via one of the many mechanisms introduced above?

In Part II we pick a task—sentiment analysis, which we selected since this task enables

us to test in a number of languages—and study this effect for transfer learning between

tasks/objectives (the current dominant NLP paradigm, which we will sometimes refer

to as monolingual transfer learning to distinguish it) and transfer learning between

languages, called multilingual or crosslingual transfer learning (used interchangeably

but the field and by us). Prior to our first investigation, previous work had shown that

language models trained on unstructured text have gender and racial biases (Bolukbasi

et al., 2016; Caliskan et al., 2017; Zhao et al., 2019, 2020; Sheng et al., 2019). So we

asked, will this carry through in monolingual transfer learning and cause gender and

racial biases to appear or increase in a downstream sentiment model, beyond what can
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be attributed to the downstream training data? For instance, let’s say that an upstream

language model has learnt to associate conventionally negative attributes with certain

minorities, such as to represent gay men as doing drugs, and black men as pimps

(examples from Sheng et al. (2019)). Will a sentiment classifier built on this upstream

language model also associate negative sentiment with gay and black men, even if

there is little or no data about gay and black men in the sentiment training data? Or

will that bias be overridden or lost, either because the role of the classifier is strong

enough to disregard that, or because the now larger and more expressive system can

generalise better to other positive association involving black and gay men, such as

stars in politics and arts, or affirmational personal stories, such as those in Dixon et al.

(2018)? We find that, overall, the additional stability from transfer learning is helpful

in a resource constrained setting (i.e. one in which you cannot gather more annotated

sentiment data), and this effect is enough to reduce overall gender and racial biases

(despite new negative associations having been introduced).

We also study this effect for transfer learning between languages, or cross-lingual
transfer learning. In this setting, not only can an upstream model learn biases from

multiple data sources, but also from multiple languages. Exactly how much informa-

tion cross-lingual transfer learning shares across languages is not well understood and

there are some contradictory empirical studies (Conneau et al., 2020; Artetxe et al.,

2020). We ask, in cross-lingual transfer learning, if a language model has learnt

harmful stereotypes in one language, can those negative associations carry across

languages? In the above example where a model has learnt negative associations in

English about black and gay men, will a classifier in Japanese have these same as-

sociations, if they do not occur in Japanese? Can the collision between competing

stereotypes in different languages weaken them, and in effect fight bias with bias?

(Stanovsky et al., 2019). Can anything be done in the initial task before transfer, to

ensure better outcomes in the second task? We find that, contrary to what we found

in monolingual transfer learning, cross-lingual transfer learning tends to (with excep-

tions) exacerbate biases, though this effect can be mitigated with distilled/compressed

models with little loss in performance.

In Part III, we look at a third type of system: retrieval augmented generation, which

presents an inversion of the standard transfer learning setup. In the standard setup,

a language model feeds into a classifier, and in retrieval augmented generation, the

classifier selects source documents to answer a query, and this feeds into a language
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model, which conditions on those documents to generate an answer. This inverted

system allows us to also ask the reverse question: if a language model has learnt prob-

lematic associations and stereotypes, can these be counteracted by conditioning on

source documents? For instance, if a language model generates results about women

predominantly in low-prestige roles, will it change this if it is conditioned on source

documents about female CEOs and doctors? Or is it more likely to ignore the source

information in this case then in the case of male CEOs and doctors? Or, as a third

option, the retriever itself is biased, and doesn’t select documents about female CEOs,

so we never even get to that point?

However, prior to our work, not only was there no research examining how fairness

flows between retrieval models and generative language models, there was little re-

search analysing neural retrievers at all. So we began by asking the sub-question,

inspired by all our work in Parts I and II: a retriever representation is necessarily a

compression of a document, so what information is actually in this representation,

such that a language model can condition on it? (Recall Chapter 4 where information

in a representation as measured by information theoretic probing is most predictive

of bias). Is information about demographics–gender, race, etc–in a retriever repre-

sentation predictive of allocational bias in retrieved results? That is, does a retriever

with stronger information about gender pick documents about gender more unequally?

We do a case study in allocational gender bias and find that, though retrievers quite

strongly encode gender in their representations, allocational bias is not attributable to

the representations themselves. This bias persists even when we remove gender from

the representation, meaning that it comes from either the composition of the corpus or

the queries themselves.

We note that we define (un)fairness above generally, to highlight that our methods

could apply to any subgroup divisions. In practice in our explorations, we look at

either gender, race, immigrant status, or country of origin. We choose these types of

bias as they either had pre-existing data, or lent themselves well to generating our own

synthetic data, or labelling our own natural data. E.g. if we are given a few English

paragraphs describing a person, it is usually easy to label their gender, compared to

other features about them. This focus is not unique to our work: gender and race

are the types of bias most represented in research for this reason (Goldfarb-Tarrant

et al., 2023). But formally, we define (un)fairness broadly since everything we do

can be applied to any axis of bias; to other protected characteristics like religion and
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orientation, or to non-protected characteristics that can cause big disparities in NLP

systems, like regional or non-prestige dialects. We further note that our definition of

unfairness is not NLP specific, such that it could be applied to other modalities as

well: this is a larger extension of the work than to new bias types, but is possible since

most of this research operates directly on representations. Each section of work will be

extensible to further bias types, and potentially further modalities, and we encourage

future work to do so.

1.1 Contributions

We make contributions to three broad categories:

1. More meaningful and reliable measurement of fairness in language models

2. Analysis of how transfer learning affects fairness

3. Analysis of fairness in retrieval-augmented generation

1.1.1 Measurement

Chapter 3: Intrinsic Bias Metrics Do Not Correlate with Application Bias

• We did the first study evaluating whether the most commonly used fairness met-

ric for upstream language models correlated with downstream fairness. At the

time, upstream only studies comprised one third of fairness research (Blodgett

et al., 2020).

• We examined a much broader scope of experimental settings than most fair-

ness research at the time. We looked at the relationship between upstream

and downstream metrics across: two types of bias (gender, racial), two differ-

ent tasks (coreference resolution and hatespeech detection), two different lan-

guages (English and Spanish), two common embedding algorithms (fastText and

word2vec), two common methods of debiasing (preprocessing training data, and

post-processing on representations), and two downstream fairness metrics (dif-

ference in precision and difference in recall).

• We found that the common upstream metric, based on cosine similarity, was

not predictive of downstream bias. This changed the focus of the fairness field

as a whole toward evaluating bias downstream, and towards finding alternative
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upstream metrics that are more predictive. Our work has inspired follow up

studies examining the predictive validity of fairness metrics (Cao et al., 2022),

which further extend and corroborate our findings in other settings.

Chapter 4: How Gender Debiasing Affects Internal Model Representations, and
Why It Matters

• We also did the first study investigating how debiasing downstream (rather than

upstream) affects language model (upstream) representations.

• We focused on gender bias in English and considered two common transformer

models, two tasks (coreference resolution, biography classification), three de-

biasing methods, two different intrinsic metrics: a contextual extension of the

cosine similarity metric from the previous work and a new one, MDL compres-

sion, that we proposed adapted from Voita and Titov (2020). We looked at ten

downstream fairness metrics, the largest number of which we are aware in a

fairness study.

• We found that our new proposed metric was predictive of whether the upstream

model had been successfully debiased, and correlated well with most down-

stream metrics.

• We also found that not all downstream fairness metrics correlated to each other,

highlighting the importance of not relying overly much on one metric.

1.1.2 Transfer Learning

Chapter 5: Bias Beyond English: Counterfactual Tests for Bias in Sentiment
Analysis in Four Languages
and

Chapter 6: Cross-lingual Transfer Can Worsen Bias in Sentiment Analysis

• We did the first research on the effect of both standard (monolingual) transfer

learning and cross-lingual transfer learning on gender and racial biases in senti-

ment analysis.

• We first examined whether, for five languages (Japanese, Chinese, Spanish, Ger-

man, English) monolingual transfer learning via pre-trained models changed the

biases in sentiment analysis systems.
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• We found monolingual transfer learning usually reduces biases, even though the

training data used for transfer contains new biases. It stabilises the model and

that effect outweighs bad content learnt in pre-training.

• We then ran similar experiments for the much more complex setup of multi-

lingual transfer learning: via multilingual models and via cross-lingual labelled

data.

• We found that, though the story is reasonably complex, cross-lingual transfer

learning can increase bias even in unexpected cases such as culturally specific

racial biases, which previously would’ve been expected to not transfer.

1.1.3 Retrievers

Chapter 7

• We did the first analysis of the properties of Dense Retrievers (as contrasted

with sparse TF-IDF based approaches), which are the basic component of retrieval-

augmented generation (RAG) systems. Knowing what information is in a re-

trieved representation is a pre-requisite to analysing how the retriever influences

a downstream generative language model, but there was previously no work ap-

plying analysis or interpretability methods to retrievers.

• We analysed how the information captured in a representation differs for a re-

triever vs. the language model it was initialised from. We used information

theoretic probing (based on the results in Chapter 4 that is was predictive of

bias) to analyse how extractable two features were from a representation: topic

of a passage and gender of a subject.

• We analysed how these features correlated to raw performance and to alloca-

tional gender bias. We found that gender extractability did correlate to perfor-

mance on gender related questions and allocational gender bias, but that alloca-

tional gender bias persisted even when gender information was erased, meaning

it was not attributable to the representation itself. We thus show another case

when an entire system has to be considered in debiasing an NLP system.



Chapter 1. Introduction 13

1.2 Recommendations

In light of this body of research, we make the following recommendations.

On Measurement, we recommend not to use geometric intrinsic measurements of

bias (based on cosine-similarity like WEAT (Caliskan et al., 2017) and CEAT (Guo

and Caliskan, 2021)), as they are not predictive of downstream behaviour. This is true

regardless of whether they are applied to a non-contextual embedding like word2vec

(Mikolov et al., 2013a), or to a language model like BERT (Devlin et al., 2019) or

RoBERTa (Liu et al., 2019) and company. These metrics are good for studying human

social biases via what is reflected in the data that trained the model, as was done in the

original work of Caliskan et al. (2017) that inspired the usage of this type of metric.7

But they are not good for predicting model behaviour.

We can tentatively recommend instead using information theoretic probing as an alter-

native and reliably predictive intrinsic metric. However, this recommendation comes

with two limitations: we studied information theoretic probing only for allocational

gender bias in English. First, gender encoding differs greatly in different languages

(more than other demographics) due to gender agreement systems, so these findings

should be validated in more languages before being trusted beyond English. Second,

even including English, other biases may not be stored the same way (for the same rea-

son of the grammaticality of gender). So for other types of bias, no intrinsic metric has

yet been validated and downstream metrics should still be used until more research has

been done. Research on other options for intrinsic measurements is nascent, and we

recommend always measuring fairness on a downstream task rather than in a language

model when possible.

We also recommend that downstream metrics be selected with reference to the desired

system behaviour. This may seem simple, but few works in the NLP literature ac-

knowledge this, despite that the suite of all downstream fairness metrics is provably

not mutually satisfiable, so you do actually have to pick one as a constraint. Different

downstream metrics mean different things, and debiasing efforts often will only make

sense for some metrics. Equalised false positive rates make more sense in the context

of content moderation or toxicity, where the risk is censorship, equalised false negative

rates make more sense for resume screening where the risk is excluding people from

7Though for this type of use case we note that RIPA (Ethayarajh et al., 2019) is likely better, or at
the very least word frequencies need to be normalised for results to be valid.
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the potential to interview.

In NLP, we often try to avoid making normative decisions about the world that our

models will be embedded in; it is a messy and complex world, even more so than our

data. Part of the brittleness and unreliability of bias evaluations and bias metrics—

poor predictive and concurrent validity—is that researchers don’t always think these

through and make them explicit. Each debiasing method only make sense for some

type of bias, and our better intrinsic metric from Chapter 4 still only correlates with

most (not all) extrinsic measures; there is a family of measures that it does not work

for. Fairness researchers do need to engage with the world they are imagining and how

they believe it should function. All fairness work contains an assertion like this, and

if left implicit, it can be scientifically messy. So we recommend that researchers make

explicit, reasoned choices about the harms they are measuring and why they chose the

metrics that they do.

On Transfer learning, we recommend to use monolingual transfer learning (also

called pre-training) to augment lower-quantity supervised data, at least for classifica-

tion tasks. We tested sentiment classification in three language families, so we expect

our findings to hold for all similar tasks, but cannot claim to generalise to generative

tasks.

However, we recommend to take more care when using cross-lingual transfer learning,

as it risks introducing new biases into the target language from other language data.

When cross-lingual transfer learning is used, we recommend using distilled cross-

lingual models, as we found distilled models to have nearly equivalent performance

and much lower bias overall than their full-size counterparts.

We recommend also the use of two of our analytical methods: causal or counterfactual

evaluations, combined with a granular heatmap based analysis of the results.

On Retrievers, we recommend to analyse the entire system: corpus, queries, and

model representations, as our work shows that a model constrained to have perfectly

fair representation may still create an unfair system because of the other components.

From the extensive experiments on random seed initialisations in this section, and the

smaller scale experiments in the previous, we also recommend to test models based

on a large number of random initialisations. We found this to have a disproportion-

ate effect on model fairness and model performance both. In cases where trustworthy

evaluations are available, ones which are faithful to a use case and which generalise,
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they can be used to select a seed with better generalisation properties for fairness, and

this difference can exceed the difference from any common debiasing approaches or

interventions. In cases where this is not possible, we recommend using majority voting

across three to five random seeds, to minimise by seed variance.



Chapter 2

Background

The following sections give requisite background information common across either

all works or multiple works in this thesis. Background that is relevant to only an indi-

vidual work (probing methodologies, retrieval augmented generation, etc) will instead

appear directly before that work.

2.1 Defining Fairness

Fairness is a relatively recent subject of study within the field of Machine Learning/AI

research. As such it suffers from lack of standardisation in both definitions and meth-

ods of measurement. This is much to the detriment of this growing field. Many works

fail to concretely define fairness (Blodgett et al., 2020; Goldfarb-Tarrant et al., 2023).

Often when doing a meta-analysis or review of fairness literature, it is unclear if con-

flicting results are the result of a methodological problem, an error in code or analysis,

or just a disagreement in definitions and the set of works actually should not be com-

pared.To avoid these pitfalls, all work in this thesis will concretely define what fairness

means in the context of that particular research. As background to all of them, I will

give a brief overview of the discipline of fairness in NLP, how it has grown, and what

‘fairness’ tends to mean in different contexts. Fairness in AI began to gain attention in

2016, following the publication of a few high profile works within Machine Learning.

The first was the popular book Weapons of Math Destruction (O’Neil, 2016), an exposé

of all the ways that Machine Learning systems are invisibly incorporated into parts of

our society, and how the assumptions baked into them propagate injustice. The second

is the NeurIPS research paper from the same year, Man is to Computer Programmer as

16
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Woman is to Homemaker? Debiasing Word Embeddings (Bolukbasi et al., 2016). This

paper showed, via evocative word analogies from neural word embeddings (which was

the standard measure of embedding performance at the time (Mikolov et al., 2013b;

Finkelstein et al., 2002; Drozd et al., 2016)), how career-based gender bias was learnt

by these systems, even when trained on relatively innocuous (for the internet) data like

Google News. The field of Machine Learning was galvanised by these works, and

more work began to be done on fairness analysis and mitigation within the following

few years.1 But definitions and methods are still being solidified.

2.2 Measuring Fairness

Notation: In all fairness metric definitions contained in this work, let a ∈ A be the

demographic variable in question, where A = {privileged,minoritised} group, such as

{male, f emale} or {native, immigrant}2 In classification tasks (all tasks until Part III)

let Y be the true label, Ŷ be the predicted label, and R be the classifier score (which

enables analysis independent of classifier threshold).

Representational fairness has no codified metrics of measurement in NLP. This one

of the clearest areas where NLP could learn from sociology and psychology, for they

have been measuring representational fairness in media for quite some time (Dixon,

2017; Entman, 1992), but we’ve yet to operationalise this in NLP research. NLP

largely neglected to measure representational fairness until Sheng et al. (2019), which

proposed using a classifier to detect regard for the subject of a passage in open-domain

generation. Regard captures how a reader of a text would esteem the subject. Us-

ing regard, they found GPT-2 (Radford et al., 2019) to systematically generate content

causing lower regard when generating about women, African-Americans, and gays.

This work is conceptually satisfying, and important, but difficult to expand due to the

reliance on the classifier, which 1) is limited to English and 2) can become out of date

over time as language drifts (and at the time of writing already has). So there have

been not many follow up replications of this work but it doesn’t have broad adoption

(Goldfarb-Tarrant et al., 2023).
1It is worth noting at this stage that other fields had been aware of fairness issues in automated

systems for some time, as education and hiring had been looking at statistical fairness for the previous
half a century (Hutchinson and Mitchell, 2019). ML works built off of this, though perhaps not as much
as they should’ve, and we did do some reinventing of the wheel.

2An obvious limitation of this is that privileged and minoritised is binary. This tends to be true of
fairness work, including work in this thesis. There is insufficient work on extending fairness metrics
and constraints to multiclass, either theoretically or empirically.
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Approaches that differ from Sheng et al. (2019) tend to use sentiment score of the text

(Goldfarb-Tarrant et al., 2023), and the current cutting edge Large Language Model

(LLM) work still does Touvron et al. (2023); Jiang et al. (2024).3 This is unfortu-

nate, since the relationship of sentiment to representational harm is not well-correlated;

many stereotypes that are harmful in a societal or an HR context can have positive sen-

timent (e.g. women are nurturing) (Fraser et al., 2021). The field is overdue for an

analysis of the impact of this difference.

Other work on representational fairness that avoids using sentiment or regard clas-

sification focuses on discovery of language model stereotypes via challenge sets or

customised prompts, and the likelihood of different generations (Smith et al., 2022).

Challenge sets like this makes up the majority of bias work done on generative models

today (Goldfarb-Tarrant et al., 2023), as generative fairness tends to focus on represen-

tational harms. However, the most prevalent approaches to stereotype measurement

for the past few years, from two benchmark datasets, have been shown to be so flawed

in construction as to be essentially meaningless (Blodgett et al., 2021). More recently,

better and more reliable datasets and examinations have come out for representational

fairness (Esiobu et al., 2023; Hosseini et al., 2023; Smith et al., 2022; Dhamala et al.,

2021). But for the timeline of the work in this thesis, as a result of lack of consensus

and good resources, this thesis focuses on only allocational fairness.

The most comprehensive overviews of strategies for measurement of allocational fair-
ness are Hutchinson and Mitchell (2019) and Barocas et al. (2019). I will explain a

subset of these that are important in this thesis. At a high level, allocational fairness

can be measured as individual fairness, which answers the question ‘are the results for

similar individuals equivalent’ and group fairness, or ‘is the performance for demo-

graphic subgroups equivalent’. In the former, the work lies in defining the similarity

function. What is similar? Are two individuals with the same university degree sim-

ilar? Or only if you bucket by university prestige? Individual similarity requires that

you decide what does matter for similarity and what does not. In the latter, the work

lies in selecting the demographic slices (what are the subgroups that should be equal?),

and in choosing the performance measure. Choosing the demographic slices does not

get much attention in NLP literature. There are a few nods to intersectionality (Sub-

ramanian et al., 2021; Ma et al., 2023; Lalor et al., 2022; Kearns et al., 2018) (i.e.
3This is itself a bit interesting, because the benchmark that current LLMs use, Dhamala et al. (2021),

notes the limitations of most automated metrics, and uses a combination of sentiment, regard, and
toxicity, as well as other two other metrics that they define. But this nuance seems to have been lost.
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‘your groups may be more complicated’) and to unsupervised demographic group dis-

covery (Zhao and Chang, 2020): otherwise works assume that demographic groups

are given, gold standard, and that discrimination against different demographic axes is

independent–i.e. discrimination against women can be treated entirely separately from

against African Americans. This is patently false, gender and racial biases are inter-

dependent and cause new, distinct bias effects when they intersect (Borenstein et al.,

2023). There is much more attention given to how to measure performance disparity.

Most NLP work uses group fairness, and measures this performance disparity. In clas-

sification, sometimes difference in F1 is used (Zhao et al., 2018) but many works use

more granular measures such as equalised odds (Hardt et al., 2016) which enforces

equal false-positive rates (FPR) and true-positive rates (TPR) across groups.

P(Ŷ = 1,A = a,Y = 0)(FPR) (2.1)

P(Ŷ = 1,A = a,Y = 1)(T PR) (2.2)

where 2.1 and 2.2 should be equal ∀a ∈ A.

Note that the second constraint 2.2 is equivalent to recall, as recall can be expressed

the same way:

Ŷ = 1|Y = 1
(Ŷ = 1|Y = 1)+ Ŷ = 0|Y = 1

(2.3)

. The second constraint (recall) is often used in isolation as equality of opportunity
(Hardt et al., 2016), a relaxation of equalised odds.

Occasionally some works include related but different group fairness metrics, dis-

cussed in Barocas et al. (2019), such as independence, separation, and (rarely) suffi-
ciency.

In Chapter 3 we look at differences in recall and in precision, the former is equivalent

to 2.3 above. In 4, we use a broad number of metrics: difference in True Positives,

difference in False Positives, difference in Precision, difference in F1, Independence,

Separation, Sufficiency. The first author of that work goes on in Orgad and Belinkov

(2022) to show how there is often poor coverage of metrics that could be used for a

given dataset or task, based partly on what we learnt in this work.

It is valuable for fairness analysis to report a broad set of metrics because fairness

metrics in practice should be chosen based on the tasks in question. Choices of fair-

ness metrics involve a normative judgment, whether implicit or explicit, though most
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research fails to acknowledge this. This is also too often left implicit, or made based

on what some prior similar work has used, even if a different metric is both able to be

used and would be more suited (Orgad and Belinkov, 2022). In other words, the logic

of why one might choose one or another metric is hidden.

The distinction between allocational representational fairness, and our choice to fo-

cus on metrics for the former, corresponds almost directly to the type of NLP task.

Allocational fairness is used for discriminative tasks and representational for gener-

ative tasks. This correspondence provides another insight into why representational

fairness measurement is less developed than allocational: all evaluation for generative

models is challenging and less reliable than for discriminative models, both automated

evaluation (Novikova et al., 2017; Saphra et al., 2023) and human evaluation (Clark

et al., 2021; Hosking et al., 2024). It is even more task dependent than model de-

pendent; within one model architecture (such as BERT), research will use allocational

fairness when that model is used for classification, and representational fairness when

it is used for next-word prediction. This mapping of discriminative/generative to allo-

cational/representational is how NLP fairness research has played out in practice, but

is not entirely inherent. One could measure allocational fairness of generative models;

for instance, instead of classifying resumes as recruiter callback yes/no, a model could

generate summaries of resumes to be read by recruiters, who then make the callback

decision themselves.4 The difference in quality of summaries for different demograph-

ics would be allocational fairness. But this notion of allocational fairness requires us

to be able to measure a delta in generation quality, and measuring quality of genera-

tions is an unresolved area of its own. This fact, combined with the nascency of using

generative models for tasks that could be, or used to be, discriminative, means that in

practice allocational vs. representational fairness tracks along with discriminative vs.

generative. If the generative NLP hype continues long enough, this relationship may

weaken, and much of the allocational work here could be expanded into generative

NLP.

In Part II we shift to using invariance under a counterfactual in a downstream task.

Invariance under a counterfactual describes the assertion that model predictions

should be invariant to a perturbation: the example sentence My sister had a wonderful

day today should be classified as positive sentiment, and this should not change if it is

perturbed to be textitMy brother had a wonderful day today.

4This is now a genuine practice since the advent of LLMs in common usage.
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This approach is very different in the data it requires and the hypotheses it can and

cannot prove, from the metrics discussed thus far. I describe the distinction between

these two types of measurement as interventional for these, and observational for the

previous metrics. I borrow this terminology from the medical field because it gives

correct intuitions. Observational studies can tell you that phenomena is occurring, but

not why. Your model could be worse at recall of toxic content targeted at women, but

it could be because female targeted toxic content is more diverse in your dataset, and

thus more difficult to detect. Or maybe this isn’t the case, but your classifier is poorly

calibrated for this group compared to others. Interventional studies, by contrast, make

a change (a perturbation) and observe the difference. Invariance under a counterfactual

sets up a tasks where a perturbation should not change a prediction, and then measures

change as a failure. This approach was popularised in ML as a test for robustness to

noise in vision tasks (Zheng et al., 2016); an image correctly classified as a leopard

should not change to being labelled as a butterfly when just a few pixels change, or

when some noise is added that is imperceptible to a human observer. In NLP this

is less easy to do, because it is harder to assert that labels should not change when

working with the discrete space of language. But it works well when done carefully

for fairness, where we can assert that changing the race, gender, or other demographic

information of a name on a resume (from Emily Johnson to Lakisha Brown, as was

done in the real life study of Bertrand and Mullainathan (2004)) should not change an

output label in a resume processing system. So invariance tests require these carefully

paired data points, so they cannot generally be done on the same data as observational

studies.5 The benefit of this type of study is that you don’t have to be careful in slicing

data–when you get a result, you know why. The downside is that the noising has

to be done with care to only perturb where invariance should be true. For this reason

invariance under a counterfactual data is often synthetic, and may not be representative

of the true distribution of data. This is the weakness of this method.

In the first work on measurement (3), we focus on gaps in precision and recall, as

previous work upon which we built our analysis used F1 (Zhao et al., 2018), and

factoring them out gives both more granular analysis and also comparability to the

equality of opportunity measure (Hardt et al., 2016). In the second, we use the full

suite of possible metrics. In Part II we use don’t use a subgroup metric, but instead
5Note that Winobias (Zhao et al., 2018), which we use in both works in Part I, could have been

framed similarly as a counterfactual (though one where the label should flip, so not an invariance test.
It was not framed this way, and instead was framed as subgroup fairness where the groups were ‘pro’
and ‘anti’ stereotypical. But it could have been.
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use counterfactual examples that perturb one demographic variable, where we make an

invariance assumption that values should not change under this perturbation, and the

magnitude of the change is our metric. This method does not fit cleanly into individual

or subgroup fairness, as it can be analysed on an individual example (which we do) but

those examples have also been constructed to stand in for a demographic. E.g. in the

counterfactual example: I made her feel relieved vs. I made him feel relieved, her and

him are individual instances of bias, but also are stand-ins for the concept of gender. In

Part III we measure retrieval rather than classification, so we use performance gap in

the most common retrieval metric. We then construct a separate experiment for causal-

ity even though we have to use an observational metric, which brings the measurement

approaches in Parts I (observational) and II (interventional) together.

To end the measurement section, the two works on measurement were motivation by

the following observation. It seems potentially obvious to state, but the main desirable

characteristic of a measurement of fairness is that it a) accurately measures the con-

cept that it purports to measure and b) has a reliable relationship to real world fairness.

When a and b are both true, the measurement has construct validity – a multi-faceted

concept in the field of measurement modelling from the social sciences (Jacobs and

Wallach, 2021), that attempts to define and make explicit the gaps between conceptu-

alisation (e.g. my model should not discriminate based on race) and operationalisation

(e.g. the performance gap between different racial groups, as identified by dialect iden-

tification).6. Much of the work in Part I was motivated by my observation that these

types of validity had not been examined and were assumed to be true. We thus set out

to test them.

2.3 Common Approaches to Debiasing

Fairness literature, as well as measuring bias, will often propose methods of debiasing.

Debiasing methods proliferate, but most new methods do not get widespread adoption,

since they fail to build trust. Debiasing methods tend to be proven in only quite con-

strained settings, on only one or two models, only in English, and on a limited number

of tasks.7. This thesis therefore focuses on analysis, and does not propose any new

6Formally, a corresponds to content validity and b to predictive validity, as sub-concepts of con-
struct validity

7I would like to here allocate appropriate blame to publication venues for requiring ‘novelty’ such
that new works tend to propose new methods rather than verifying existing methods, leading to the
situation at the commencement of this thesis where we had zillions of methods that no one used
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methods. However, we will briefly survey existing methods that are used in analysis in

Part I and III.

Debiasing approaches fall into high level categories of where they occur in the lifecycle

of training an NLP model: pre-, mid (during), and post. Preprocessing8 approaches

involve a processing step that modifies data before training a model, to reduce signal

that can cause bias. For example, if a system used for resume filtering ought to be

debiased with regard to binary gender, the data can be processed such that there is

an equal co-occurrence of gender signifiers (pronouns, names, other words that en-

code gender information) alongside words that indicate profession or career informa-

tion.9 Preprocessing can be done on unstructured webtext that will be used to learn

embeddings or train language models or on labelled data that is used for supervised

finetuning. These are usually known as dataset balancing, and differences in dataset

balancing approaches stem from both the chosen method of editing data and the axes

along which the data is balanced (gender/profession, race/toxicity, religion/sentiment,

etc). The method falls into broadly two approaches (Schwartz and Stanovsky, 2022).

If there is enough data that some can be removed without much performance penalty

(more commonly true of unstructured text), it can be subsampled such that there is less

but more balanced data (Wang et al., 2019). Other approaches oversample data such

that some data is repeated (Chawla et al., 2002) in order to overweight those exam-

ples because that they occur more frequently in training data. This suffers from lack

of diversity in the minority class, so other works opt to do a third option and instead

create synthetic data for the minority class to remedy this (Dixon et al., 2018; Zhao

et al., 2018). While the preprocessing approach is most reliable, and best understood,

it is only available to practitioners who actually train models, which was always a

small class; increasingly smaller as models scale. There is also very little work that

tries to balance multiple axes at once which highlights the biggest limitation of dataset

balancing. To achieve a minimally biased representation, you have to simultaneously

balance across all genders, races, ages, etc, which is increasingly infeasible in any non-

synthetic approach. Simultaneously balancing multiple axes is a perfectly reasonable

desire in real life applications, and for many cases is a required feature. Very few regu-

lations (or systems of integrity) have the goal of systems that are gender-fair but racist

8I use the term preprocessing rather than pre-training to distinguish from the now common terminol-
ogy of pre-training/finetuning

9This is never easy to do fully, but can be quite successful in English with relatively coarse pro-
cessing. It is not so easy in languages with much more gender marking, and this area is heavily under-
researched. Gonen et al. (2019) looks into using morphological analysers for this.
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and ageist. This is clearly important future work.

Debiasing can be done in postprocessing as well, generally on representations, though

there is some preliminary work investigating utilising decoding parameters (Sheng

et al., 2021). Both approaches are more complex than preprocessing, both conceptu-

ally and in implementation, but do not require retraining a large and expensive model.

Crucially, this enables debiasing to be done by parties further downstream who are

then most connected to a downstream application.10 It further allows more iteration

and experimentation without extensive compute. Ravfogel et al. (2020) operate on

representations via nullspace projection – they learn a linear classifier for a demo-

graphic (binary gender, race) and then project language model representations onto the

nullspace of that classifier. Iskander et al. (2023) extend this method to remove non-

linearly encoded information. We use these methods for causal analysis of the impact

of demographics (rather than debiasing) in Part III. The other methods of debiasing

representations operate on individual words and groups of words that stand in for con-

cepts: Mrkšić et al. (2017) pushes word embeddings together or away from each other

in representation space; we use this method in Chapter 3. More recently a number of

works use model-editing (Meng et al., 2022), where individual neuron values can be

changed in order to change one specific output string. This has some issues with scal-

ing to a full demographic (edits are granular) but would be a promising new direction

for very targeted interventions. It is a promising new direction, but post-dates the work

in this thesis, and thus is not used.

Debiasing during training, via constraints or costs to the learning method (Zhao et al.,

2017), is less commonly done, perhaps partly perhaps because it contains the disadvan-

tages of both preprocessing and postprocessing – it is conceptually more complex and

requires tuning hyperparameters (as does postprocessing) but it also requires retraining

a model. It also is made more complex by Transfer Learning, as it is unclear whether

to do it at one or both stages. The formalisation is satisfying, because explicit con-

straints give quantifiable fairness outcomes, but with increasing scale it is increasingly

impractical. We do no analysis on this kind of debiasing for this reason.

Recent hype around generative language model fairness focuses on a second stage

training process, often called ‘alignment’, which refers to the idea that human morality

(it is never specified which human or which morality) can be instilled in a model via

fine-tuning with a ranking loss over examples that are more or less moral. The majority

10We show this connection to downstream is necessary in Chapter 3.
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of this thesis predates the alignment trend, and very little deals explicitly with genera-

tion, so we do not use any of these techniques. We note also that much of the alignment

work has origins in robotics more than in fairness. We do, however, discuss current im-

plications of this work in the Conclusion (8). However, our work does have interesting

similarities to point out at this stage. In Chapter 4 we measure fairness via differences

in distributions for different demographics, via KL or Wasserstein distance, one of the

standard ways to measure it (§2.2). This measurement is even sometimes directly op-

timised for (in a small violation of Goodhart’s law) in works like Huang et al. (2020),

who regularise output to have similar sentiment distributions between groups. Korbak

et al. (2022) show that Reinforcement Learning from Human Feedback (RLHF), the

most common method of alignment, can be equivalent to distribution matching and

Rafailov et al. (2023) transition the implementation of this to a new objective that does

this explicitly, and many use it for its superior stability and ease of implementation. So

when given an appropriate setup, RLHF could (theoretically) be directly optimising

for a fairness constraint. Again, this postdates this thesis, and we do no alignment at

all, but found it worthwhile to highlight the theoretical continuity in the approaches.

2.4 Fairness as Dataset Artifacts or as Failure to Gen-

eralise

Fairness issues can often be seen as a special case of one of these two areas, though this

is rarely discussed in most fairness work. As an example, take racial bias from AAVE,

in the two forms that we have already discussed in the background and introduction.

In one of the cases, racial bias in toxicity detection has come from the model learning

a dataset artifact, where labelled training data correlated African American dialect

(AAVE) features with toxic content, as a result of an error or a bias in annotation

(Sap et al., 2019). But allocational racial bias can also come from insufficient training

data in AAVE , resulting in higher error rates from that group, as Tatman and Kasten

(2017) measure for automatic captioning. Most work does not address this difference

or disentangle these two causes, and lump both under "bias".

This lack of distinction is one of the reasons fairness work can fail to have predictive

validity. Correcting an anti-AAVE stereotype may not help allocational bias in a model

if the root cause was simply that it modelled AAVE poorly. Even dataset artifacts

can be further disentangled and split into two types of causes conceptually: dataset
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artifacts (or dataset biases) that replicate historical biases (most previous engineers

hired were men, and so the dataset of successful resumes is mostly male resumes) and

more indirect dataset artifacts such as a correlation between line-length of resumes

and the ’hire’ label, combined with a notable difference in resume length between

different genders such that male resumes are more hireable, but only because of an

odd artifact of this dataset that it is correlated with. In some sense these two are the

same, they are detectable via similar methods, and are a shortcut to a real task caused

by a particular dataset construction – but I make the distinction as I’ve found they

may be differently anticipated by humans. One is predictable given knowledge of

historic dataset biases, the other is difficult to anticipate, and often so surprising as to

be comical, as when NLI contradiction could be largely predicted by the presence of

words about cats (Gururangan et al., 2018). They belong in the same category as far as

causal effects, but the conceptual difference can have an impact on discoverability.

The collapse of the two causes–dataset artifacts and failure to generalise–into one mea-

sure is not necessarily bad, since the behaviour in an application is the same, and thus

the real world impact on people is the same. But it would be beneficial for researchers

to develop ways to split out these two causes to better suggest mitigations. Splitting

them out has another important benefit–it shows the overlap between fairness research

and other areas of NLP. Dataset bias work has significant overlap with work on dataset

artifacts and on ‘shortcutting’ (Geirhos et al., 2020), generalisation failures have over-

lap with research on robustness and generalisation (Hupkes et al., 2023). If we explic-

itly recognise and leverage this, the field can share approaches and progress quickly,

more than is currently done. For instance, AFLite is an algorithm developed to search

a dataset for artifacts (such as ‘cat’ and ‘contradiction’) (Bras et al., 2020) and then

filter them, and comes from the dataset artifacts literature. LOGAN (Zhao and Chang,

2020) is an algorithm for unsupervised discovery of social biases, from the fairness

literature. They are implemented differently, AFLite is conceptually similar to k-fold

validation with targeted sampling for artifacts, and LOGAN is a modification of k-

means. But they can both be used to solve the same goal of finding slices of a dataset

that exhibit strong imbalances based on a feature that should not have an imbalance.

Since this comes from different subfields, no one has compared them. Similarly, the

aforementioned work on fairness showing that automatic captioning doesn’t generalise

well to accents beyond white Californian male accents (Tatman and Kasten, 2017) and

that facial recognition doesn’t generalise to non-white skin (Buolamwini and Gebru,
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2018) has much conceptually in common with generalisation work showing that nat-

ural language inference doesn’t generalise to new syntactic structures (McCoy et al.,

2020). The areas do not acknowledge each other currently, nor share mitigation or

analysis techniques, but there is much room to do so.

The field would benefit from the disentanglement of these two causes, but also from

further disentanglement of other contributing factors. Both ’dataset artifacts’ and ’fail-

ure to generalise’ have two contributing factors: the data, and the model. As a result

of the latter, they overlap with research on inductive biases, which inspires the work

in Part III. In Chapter 1, I referenced the common misconception that application bias

results solely from biases in training data. But reliance on dataset artifacts is not just

from data skew, and failure to generalise is not just from insufficient data. Both can

come from either the model or the data.

The exact same data with the same artifacts can result in a model that is strongly re-

liant on those artifacts, or a model that has not learnt them, and instead relies on other

features. We found this in Chapters 4 and 7, and it was also found in Lovering et al.

(2021) and Sellam et al. (2022). A perfect model of data with artifacts strongly corre-

lated to labels would be biased, but an imperfect model of the same data could be more

biased, with more skew (usually termed bias amplification) or could be less biased, if

the artifact was not modelled well. Both of these worsening and lessening effects bias

effects are shown in the spread of WinoBias scores in Sellam et al. (2022), resulting

from different model inductive biases.

Even with perfect data (the admittedly less common possible case), an imperfect model

could learn a function that will induce a skew and cause failure to generalise from the

model alone. In this case, there could be plenty of non-white faces in a facial recog-

nition training dataset but the model still may perform worse on them. Since it is not

a data issue, adding more data and dataset balancing would not be effective mitiga-

tions. This illustrates how work in the fairness field is entangled both with work on

data quality but also with work on inductive biases.

Given this observation, in this thesis I attempt to take inspiration and techniques from

these related fields and incorporate them into fairness research. In Chapter 4 and

Parts II and III we run all experiments on multiple random seed initialisations, and

analyse the models separately by seed. This is rarely done in fairness work, but gen-

eralisation work has shown it to drastically affect results (McCoy et al., 2020; Sellam

et al., 2022). Our results corroborate this; different seeds do show drastically different
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fairness properties despite equivalent development set performance, just as was found

in McCoy et al. (2020).

We hope that in future these fields have more dialogue and joint work.

2.5 Transfer Learning

This thesis is on Fairness for Transfer Learning, so Transfer Learning also deserves

some background explanation. Before this thesis, Transfer Learning had no intersec-

tion with fairness research. This has changed, partly because of the work here and

follow on work it inspired, and partly because, Transfer Learning is, at the point of this

thesis being written, so common that it is not generally specified anymore and is the

unstated default. Back when this thesis was in its infancy, both the fields of fairness

and of Transfer Learning were very small but growing exponentially. It seems that

Transfer Learning has won, as almost everything is Transfer Learning (though fairness

is no small field anymore either).

The central premise of Transfer Learning is that it doesn’t make sense to start from

a tabula rasa randomly initialised weight matrix every time you want to learn a new

task, which we used to do before, but that many of the concepts necessary for one NLP

task may be in common with another. Toxicity detection and sentiment analysis both

require knowledge of basic sentence structure, nouns, verbs, and negative connotations

of different words, and so knowledge from one should be able to augment knowledge

from the other. Even more dissimilar tasks like toxicity detection and coreference res-

olution still require a similar underlying knowledge of sentence structure. Early work

in Transfer Learning often sought to transfer from task to task like this; this approach

is called domain adaptation when done in sequence, or multi-task learning when done

simultaneously (Ruder et al., 2019). Both these approaches are now less common, and

the field of Transfer Learning has coalesced into one paradigm: sequential pre-training

of a language model on unlabelled text, followed by task specific fine-tuning. This

leverages the vast amount of unstructured text to build high quality representations of

language that can then serve as initialisations for any downstream language task. This

is the approach that we use throughout this work.

For additional detail, in Part II, we use a variant of Transfer Learning that combines

aspects of both the pre-train-finetune paradigm and the domain adaptation paradigm,

when we do cross-lingual transfer. In cross-lingual Transfer Learning, the language
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model pre-training stage is multilingual (contains text in a variety of languages) and the

fine-tuning stage is in a high-resource language (usually English) that doesn’t match

the target language at inference time. This is strictly called zero-shot cross-lingual

transfer (ZS-XLT) since the model has never seen labelled data in the target language.

There also exists few-shot cross-lingual transfer (FS-XLT), where the high-resource

fine-tuning is continued with a few examples in the target language (often only hun-

dreds). FS-XLT has been shown to generally perform better than ZS-XLT for relatively

low additional annotation cost (Lauscher et al., 2020), but we use exclusively ZS-XLT

in this work, since FS-XLT adds many additional layers of tuning and variability to the

already complex landscape of cross-lingual transfer, and the small additional bump in

performance was not necessary for our analysis.

Early Transfer Learning research varied between whether to ‘freeze’ the language

model after the first stage, and just learn whatever new parameters need to be added

for the desired final task output space (e.g. the classifier or coreference model or etc

that takes in the representations) or to continue to train the language model along with

the second task, to further refine the representations to best fit the task specific needs.

In this work we use both methods, whichever is most standard for the task and en-

abled ease of analysis. We always specify which we use in each work’s respective

methodology.
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In the sequential transfer learning paradigm – the dominant approach to transfer learn-

ing – a new difficulty for fairness research emerges. A language model, which is

trained first, can be used in many different downstream applications. Any biases learnt

by the language model, can propagate into many different applications. But testing in

every single application would be onerous and is sometimes not possible: the engineer

training a language model may not have the data and expertise to train models in tox-

icity detection and sentiment analysis and named entity recognition and information

retrieval...and the many other tasks that are instantiated from a BERT model, still the

most popular pretrained model at time of writing. Even if they can, they’re unlikely

to have the domain knowledge to reason about the types of algorithmic discrimination

that are risks for each use case. Accurate testing on a full set of downstream applica-

tions is impossible. So it is desirable to have a way to measure bias in the first stage,

at the language model level, and to be able to predict effects downstream.

The NLP field did quickly search for a way to do this. At the same NeurIPS in 2016

one of the keynotes was on the exponential growth of transfer learning (Ng, 2016), and

Bolukbasi et al. (2016) published the first work on gender debiasing word embeddings

using a post-processing method based on PCA. This work analysed bias via the lens of

the word analogy task (man is to woman as king is to _), which had been quite popular

as an assessment of word embedding performance. This was the start of considering

bias to be a property of word embedding geometry. This was reinforced shortly there-

after, when a computational social science work showed that the Implicit Association

Test (IAT) for human psychological biases could replicated via cosine similarities be-

tween word embeddings Caliskan et al. (2017). This new measure, WEAT, became

used as a predictive measure of language model biases, and was used as the sole met-

ric to support a plethora of new embedding debiasing algorithms.11 In both of these,

bias was operationalised as distances between word vectors in three hundred to one

thousand dimensional space, or via finding the principal components associated with a

demographic (usually gender) subspace (Ethayarajh et al., 2019).

The following work challenges the implicit assumption behind this measure – that a

measurement of embedding geometry, WEAT, is predictive of downstream bias mea-

surements. WEAT is observational, like the downstream extrinsic fairness metrics
11The method of Caliskan et al. (2017) was used in 213 different works at the time

that our work came out, as counted by Semantic Scholar Methods citations, https://www.
semanticscholar.org/paper/Semantics-derived-automatically-from-language-Caliskan-Bryson/
5966d7c7f60898d610812e24c64d4d57855ad86a?year%5B0%5D=2017&year%5B1%5D=2021&
sort=relevance&citationIntent=methodology.
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discussed in §2.2, but unlike those metrics, it is not directly observational of societal

harm, the way True Positive Rate gaps are. It is observational of an embedding space,

but the relationship between that space and societal harm has not been established.

Prior to the work below it had only been established to reveal bias and imbalances

in concepts in a dataset, as an additional tool for understanding sampling bias and

reporting bias and even artifacts that are nonetheless in unstructured data and can be

learnt from the collocational way that embeddings are trained. However, the body of

bias work on embeddings used this measure with the assumption that it had predictive

validity. Research implicitly assumed that downstream bias would track with WEAT

metrics, or at the very least, that if WEAT bias measures went down (less bias) then

downstream bias would go down.

Given the many possible definitions of bias and different underlying causes outlined

in §2.2 and §2.4, this is quite a strong claim, too strong to assume to be true from

intuition. On close examination in fact, intuition would not necessarily support this.

Some tasks do rely on concept proximity, like recommendation engines at the time,

and for these intuition would suggest that a measure of embedding geometry might

be predictive of downstream task bias. But this is an exception. For most tasks that

involve transfer learning, the objective function used for training and the output space

for a downstream classifier are very different. This is one of the hallmarks of transfer

learning and makes it complex. In this case it seems unlikely that a simple measure like

WEAT will be consistently predictive of the variety of downstream tasks. The claim

that debiasing an embedding space is helpful not only has unproven predictive validity,

but lacks face validity, which is the ‘sniff test’ of whether it looks on the surface level

to be plausible.

This observation motivates the following work: to discover if and when WEAT has

predictive validity of bias in downstream applications, and the utility of using it as a

measure.
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Abstract

Natural Language Processing (NLP) systems
learn harmful societal biases that cause them
to amplify inequality as they are deployed in
more and more situations. To guide efforts
at debiasing these systems, the NLP commu-
nity relies on a variety of metrics that quan-
tify bias in models. Some of these metrics are
intrinsic, measuring bias in word embedding
spaces, and some are extrinsic, measuring bias
in downstream tasks that the word embeddings
enable. Do these intrinsic and extrinsic met-
rics correlate with each other? We compare
intrinsic and extrinsic metrics across hundreds
of trained models covering different tasks and
experimental conditions. Our results show no
reliable correlation between these metrics that
holds in all scenarios across tasks and lan-
guages. We urge researchers working on de-
biasing to focus on extrinsic measures of bias,
and to make using these measures more feasi-
ble via creation of new challenge sets and an-
notated test data. To aid this effort, we release
code, a new intrinsic metric, and an annotated
test set focused on gender bias in hate speech.1

1 Introduction

Awareness of bias in Natural Language Processing
(NLP) systems has rapidly increased as more and
more systems are discovered to perpetuate societal
unfairness at massive scales. This awareness has
prompted a surge of research into measuring and
mitigating bias, but this research suffers from lack
of consistent metrics that discover and measure
bias. Instead, work on bias is “rife with unstated
assumptions” (Blodgett et al., 2020) and relies on
metrics that are easy to measure rather than metrics
that meaningfully detect bias in applications.

∗ Equal contribution. Correspondence to

1https://tinyurl.com/serif-embed

(a) Intrinsic metrics summarize biases in the geometry
of embeddings. For example, in this embedding space,
male words are closer to words about career and about
math & science, whereas female words are closer to
words about family.

(b) Extrinsic bias metrics summarize disparities in appli-
cation performance across populations, such as rates of
false negatives between different gender groups. For ex-
ample, a coreference system may make more errors in
an anti-stereotypical career coreferent (red arc) than in a
pro-stereotypical one (green arc).

Figure 1: The relationship between intrinsic bias met-
rics (a) and extrinsic bias metrics (b) has been assumed,
but not confirmed.

A recent comprehensive survey of bias in NLP
(Blodgett et al., 2020) found that one third of all re-
search papers focused on bias in word embeddings.
This makes embeddings the most common topic
in studies of bias — over twice as common as any
other topic related to bias in NLP. As is visualised
in Figure 1a, bias in embedding spaces is mea-
sured with intrinsic metrics, most commonly with
the Word Embedding Association Test (WEAT)
(Caliskan et al., 2017), which relates bias to the
geometry of the embedding space. Once embed-
dings are incorporated into an application, bias can
be measured via extrinsic metrics (Figure 1b) that
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test whether the application performs differently on
language related to different populations. Hence,
research on debiasing embeddings relies crucially
on a hypothesis that doing so will remove or re-
duce bias in downstream applications. However,
we are aware of no prior research that confirms this
hypothesis.

This untested assumption leaves NLP bias re-
search in a precarious position. Research into the
semantics of word embeddings has already shown
that intrinsic metrics (e.g. using analogies and se-
mantic similarity, as in Hill et al., 2015) do not
correlate well with extrinsic metrics (Faruqui et al.,
2016). Research into the bias of word embeddings
lacks the same type of systematic study, and thus
as a field we are exposed to three large risks: 1)
making misleading claims about the fairness of our
systems, 2) concentrating our efforts on the wrong
problem, and most importantly, 3) feeling a false
sense of security that we are making more progress
on the problem than we are. Our bias research can
be rigorous and innovative, but unless we under-
stand the limitations of metrics we use to evaluate
it, it might have no impact.

In this paper, we ask: Does the commonly used
intrinsic metric for embeddings (WEAT) corre-
late with extrinsic metrics of application bias?
To answer this question, we analyse the relation-
ship between intrinsic and extrinsic bias. Our study
considers two languages (English and Spanish),
two common embedding algorithms (word2vec and
fastText) and two downstream tasks (coreference
resolution and hatespeech detection).

While we find a moderately high correlation be-
tween these metrics in a handful of conditions, we
find no correlation or even negative correlation in
most conditions. Therefore, we recommend that
the ethical scientist or engineer does not rely on
intrinsic metrics when attempting to mitigate bias,
but instead focuses on the harms of specific appli-
cations and test for bias directly.

As additional contributions to these findings, we
release new WEAT metrics for Spanish, and a new
gender-annotated test set for hatespeech detection
for English, both of which we created in the course
of this research.

2 Bias Metrics

In all of our experiments, we compute correlations
between commonly-used metrics, both intrinsic
and extrinsic.

2.1 Intrinsic bias metrics
Intrinsic bias metrics are applied directly to word
embeddings, formulating bias in terms of geomet-
ric relationships between concepts such as male,
female, career, or family. Each concept is in turn
represented by curated wordlists. For example, the
concept male is represented by words like brother,
father, grandfather, etc. while the concept math &
science is represented by words like programmer,
engineer, etc.

The most commonly used metric is WEAT
(Caliskan et al., 2017).2, which measures the differ-
ence in mean cosine similarity between two target
concepts X and Y ; and two attribute concepts A
and B. This difference represents the imbalance
in associations between concepts. Using ~w to rep-
resent the embedding of word w, we have a test
statistic:

s(X,Y,A,B) =
∑

x∈X
s(x,A,B)−

∑

y∈Y
s(y,A,B)

where

s(w,A,B) = mean
a∈A

cos(~w,~a)−mean
b∈B

cos(~w,~b)

This is normalised by the standard deviation to get
the effect size which we use in our experiments.

WEAT was initially developed as an indicator
of bias, to show that the Implicit Association Test
(IAT) from the field of psychology (Greenwald
et al., 1998) can be replicated via word embeddings
measurements. There are thus 10 original tests
chosen to replicate the tests presented to human
subjects in IAT. The tests measure different kinds
of biased associations, such as African-American
names vs. White names with pleasant vs. unpleas-
ant terms, and female terms vs. male terms with
career vs. family words.

WEAT was later repurposed as a predictor of
bias in embedding spaces, via a somewhat muddy
logical journey. It has since been translated into 6
other languages (XWEAT; Lauscher and Glavas,
2019), and extended to operate on full sentences
(May et al., 2019) and on contextual language mod-
els (Kurita et al., 2019). When WEAT is used as a
metric, papers report the effect size of the subset of
tests relevant to the task at hand, each separately.

There are known issues with WEAT, such as sen-
sitivity to corpus word frequency, and sensitivity

2We count 34 papers from *CL and FAT* conferences
since January 2020 that use WEAT or SEAT (May et al., 2019)
in their methodology.
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to target and attribute wordlists, as found by Sedoc
and Ungar (2019) and Ethayarajh et al. (2019). The
latter proposes an alternative more theoretically ro-
bust metric, relational inner product association
(RIPA), which uses the principal component of a
gender subspace (determined via the method of
Bolukbasi et al. (2016)) to directly measure how
”gendered” a word is. We have chosen to use the
most common version of WEAT for this first empir-
ical study, since it is most widely used. It would be
interesting to test RIPA in the same way, if it were
extended to more types of bias and more languages.
But we note that all intrinsic metrics are sensitive
to chosen wordlists, so this must be done carefully,
especially across languages, a topic we will return
to in Section 4.3.

2.2 Extrinsic bias metrics

Extrinsic bias metrics measure bias in applications,
via some variant of performance disparity, or per-
formance gap between groups. For instance, a
speech recognition system is unfair if it has higher
error rates for African-American dialects (Tatman,
2017), meaning that systems perform less well for
those speakers. A hiring classification system is
unfair if it has more false negatives for women
than for men, meaning that more qualified women
are accidentally rejected than are qualified men.3

There are two commonly used metrics to quantify
this possible performance disparity: Predictive Par-
ity (Hutchinson and Mitchell, 2019), which mea-
sures the difference in precision for a privileged and
non-privileged group, and Equality of Opportunity
(Hardt et al., 2016), which measures the difference
in recall between those groups (see Appendix A
for formal definitions).

The metric that best identifies bias in a system
varies based on the task. For different applications,
false negatives may be more harmful, for others
false positives may be. For our first task of coref-
erence (Figure 1b), false negatives — where the
system fails to identify anti-stereotypical corefer-
ence chains (e.g. women as farmers or as CEOs) —
are more harmful to the underprivileged class than
false positives. For our second task, hate speech
detection (Figure 2), both can be harmful, for dif-
ferent reasons. False positives for one group can
systematically censor certain content, as has been
found for hate speech detection applied to African-
American Vernacular English (AAVE) (Sap et al.,

3https://tinyurl.com/y6c6clzu

Figure 2: Examples from twitter hatespeech detection:
correct (a), false positive (b), and false negative (c).
This shows both kinds of problematic performance gap.
b) censors harmless text and c) lets a targeted toxic
comment slip through.

2019; Davidson et al., 2019). False negatives per-
mit abuse of minority populations that are targets
of hate speech. We examine performance gaps in
both precision and in recall for broad coverage.

3 Methodology

Each of our experiments measures the correlation
between a specific instance of WEAT and a spe-
cific extrinsic bias metric. In each experiment, we
train an embedding, measure the bias according to
WEAT, and measure the bias in the downstream
task that uses that embedding. We then modify
the embeddings by applying an algorithm to either
debias them, or — by inverting the algorithm’s
behavior — to overbias them. Again we measure
WEAT on the modified embedding and also the
downstream bias in the target task. When we have
done this multiple times until we reach a stopping
condition (detailed below), we compute the corre-
lation between the two metrics (via Pearson corre-
lation and analysis with scatterplots).

Rather than draw conclusions from a single ex-
periment, we attempt to draw more robust conclu-
sions by running many experiments, which vary
along several dimensions. We consider two com-
mon embedding algorithms, two tasks, and two
languages. A full table of experiment conditions
can be found in Table 1.

3.1 Debiasing and Overbiasing
We need to measure the relationship between intrin-
sic and extrinsic metrics as bias changes, we must
generate many datapoints for each experiment. Pre-
vious work on bias in embeddings studies methods
to reduce embedding bias. To generate enough
data points, we take the novel approach of both
decreasing and increasing bias in the embeddings.
We measure the baseline bias level, via WEAT, for
each embedding trained normally on the original
corpus. We then adjust the bias up or down, re-
measure WEAT, and measure the change in the
downstream task.
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Task Data Bias Type Intrinsic Metrics

English Coreference Ontonotes/WinoBias Gender WEAT 6, 7, 8
English Hate speech Twitter Gender WEAT 6, 7, 8
Spanish Hate speech Twitter Gender XWEAT 7+8 (new)
Spanish Hate speech Twitter Migrants XWEAT Migrants (new)

Table 1: Tasks used in our experiments. Each experiment consists of a task, an embedding method (either word2vec
or fasttext), an intrinsic metric (one experiment for each listed), and an extrinsic metric (either Predictive Parity or
Equality of Opportunity). We run an experiment for all possible combinations. To produce data points for each
experiment, we use preprocessing and post-processing methods to debias and overbias the input word embeddings.

We choose two methods from previous work that
are capable of both debiasing and overbiasing: the
first is a preprocessing method that operates on the
training data before training, the second is a post-
processing method that operates on the embedding
space once it has been trained. This is important
since both kinds of methods may be used in prac-
tice: a large company with proprietary data will
train embeddings from scratch, and thus may use a
preprocessing method; whereas a small company
may rely on publicly available pretrained embed-
dings, and thus use a post-processing method. 4

For preprocessing, we use dataset balancing
(Dixon et al., 2018), which consists of sub-
sampling the training data to be more equal with
respect to some attributes. For instance, if we are
adjusting gender bias, we identify pro-stereotypical
sentences5 such as ‘She was a talented house-
keeper’ vs. anti-stereotypical sentences, such as
‘He was a talented housekeeper’ or ‘She was a
talented analyst’. We sub-sample and reduce the
frequency of the pro-stereotypical collocations to
debias, and sub-sample the anti-stereotypical con-
ditions to overbias.

As a postprocessing method for already trained
embeddings, we use the Attract-Repel (Mrksic
et al., 2017) algorithm. This algorithm was de-

4There are additional embedding based debiasing methods
used in practice, based on identifying and removing a gender
subspace during training or as postprocessing (Bolukbasi et al.,
2016; Zhao et al., 2018b). However, these methods do not
change a word’s nearest neighbour clusters (Gonen and Gold-
berg, 2019), and so we would expect these debiasing methods
to show superficial bias changes in WEAT without changing
downstream bias. Both methods that we select modify the
underlying word distribution and move many words in relation
to each other. We verified this with tSNE visualisation as in
Figure 1a following Gonen and Goldberg (2019) and find that
our bias modification methods do change word clusters.

5Stereotypes as defined by Zhao et al. (2018a) and by
Caliskan et al. (2017), who use the U.S. Bureau of Labor
Statistics and the Implicit Association Test, respectively.

veloped to use dictionary wordlists (synonyms,
antonyms) to refine semantic spaces. It aims to
move similar words (synonyms) close to each
other and dissimilar words (antonyms) farther from
each other, while keeping a regularisation term to
preserve original semantics as much as possible.
Lauscher et al. (2020) used an approach inspired
by Attract-Repel for debiasing, though with con-
straints implemented somewhat differently. We
use the same pro- and anti-stereotypical wordlists
as in dataset-balancing. For debiasing, we use
the algorithm to increase distance between pro-
stereotypical combinations (she, housekeeper) and
decrease distance between anti-stereotypical com-
binations (she, analyst or he, housekeeper). For
overbiasing we do the reverse.6

As the stopping condition for preprocessing, we
constrain the sub-sampling so that it does not sub-
stantially change the dataset size, by limiting it
to removing less than five percent of the original
data. For postprocessing we limit the algorithm to
maximum 5 iterations.

3.2 Embedding Algorithms
We use two common word embedding algorithms:
fastText (Bojanowski et al., 2017) and Skip-gram
word2vec (Mikolov et al., 2013) embeddings.
Word embeddings in fastText are composed from
embeddings of both the word and its subwords
in the form of character n-grams. Lauscher and
Glavas (2019) suggest that this difference may
cause bias to be acquired and encoded differently
in fastText and word2vec (We discuss this in more
detail in Section 5).

Despite recent widespread interest in contextual
embeddings (e.g. BERT; Devlin et al., 2019), our
experiments use these simpler contextless embed-

6Wordlists used for bias-modification and configs for
Attract-Repel are included in the codebase.
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dings because they are widely available in many
toolkits and used in many real-world applications.
Their design simplifies our experiments, whereas
contextual embeddings would add significant com-
plexity. However, we know that bias is still a prob-
lem for large contextual embeddings (Zhao et al.,
2019, 2020; Gehman et al., 2020; Sheng et al.,
2019), so our work remains important. If intrin-
sic and extrinsic measures do not correlate with
simple embeddings, this result is unlikely to be
changed by adding more architectural layers and
configurable hyperparameters.

3.3 Downstream tasks

We use three tasks that appear often in bias lit-
erature: Coreference resolution for English, hate
speech detection for English, and hate speech detec-
tion for Spanish. To make the scenarios as realistic
as possible, we use a common, easy-to-implement
and high performing architecture for each task: the
end-to-end coreference system of Lee et al. (2017)
and the the CNN of Kim (2014), which has been
used in high-scoring systems in recent hate speech
detection shared tasks (Basile et al., 2019). For
each task, we feed pretrained embeddings to the
model, frozen, and then train the model using the
standard hyperparameters published for each model
and task.

3.4 Languages

We experiment on both English and Spanish. It
is important to take a language with pervasive
gender-marking (Spanish) into account, as previous
work has shown that grammatical gender-marking
has a strong effect on gender bias in embeddings
(McCurdy and Serbetci, 2017; Gonen et al., 2019;
Zhou et al., 2019). We use Spanish only for hate
speech detection, because gender marking makes a
challenge-set style coreference evaluation trivial to
resolve and not a candidate for detection of gender
bias.7

4 Experiments

4.1 Datasets

To train embeddings, we use domain-matched data
for each downstream task. For coreference we
train on Wikipedia data, and for hatespeech detec-
tion we train on English tweets or Spanish tweets,

7This fact is the premise behind the work of Stanovsky
et al. (2019) who use the explicit marking in translation to
reveal bias.

consistent with the task.8 Our English Corefer-
ence system is trained on OntoNotes (Weischedel
et al., 2017) and evaluated on Winobias (Zhao et al.,
2018a), a Winograd-schema style challenge set de-
signed to measure gender bias in coreference res-
olution. English hate speech detection uses the
abusive tweets dataset of Founta et al. (2018), and
is evaluated on the test set of ten thousand tweets,
which we have hand labelled as targeted male, fe-
male, and neutral (we release this labelled test
set for future work). Spanish hate speech detec-
tion uses the data from the shared task of Basile
et al. (2019), which contains labels for comments
directed at women and directed at migrants.

4.2 WEAT & Bias modification wordlists

Both WEAT and bias modification methods depend
on seed wordlists.9 These wordlists are closely
related to each other, and we match them by type of
bias, such that we measure WEAT tests for gender
bias with embeddings modified via gender bias
wordlists (themselves derived from WEAT lists, as
detailed below) and WEAT tests for migrant bias
with embeddings modified for migrant bias.

WEAT wordlists are standardised, and for En-
glish we use the three WEAT test wordlists (num-
bers 6,7,8) for gender.10

To generate bias modification wordlists we fol-
low the approach of Lauscher et al. (2020) and use
a pretrained set of embeddings (from spacy.io) to
expand the set of WEAT words to their 100 unique
nearest neighbours. For all experiments, we take
the union of all WEAT terms, expand them, and
use this expanded set for both dataset balancing
and for Attract-Repel.11 For gender bias in corefer-
ence and hate speech, we use terms that are male
vs. female and are career, math, science, vs. fam-
ily, art. For gender bias and migrant bias in Span-
ish hate speech, we compare male/female iden-
tity or migrant/non-migrant identity with pleasant-
unpleasant term expansions.12

8Details of datasets & preprocessing are in Appendix C.
9WEAT uses wordlists to measure relationships between

words in the space, and bias modification depends on identi-
fying words to sub or supersample (for databalancing), or to
adjust (for Attract-Repel). Many other debiasing methods that
we did not use (e.g Bolukbasi et al. (2016)) also use wordlists.

10All WEAT wordlists are in Appendix B. We make a small
substitution of general gender words instead of proper names
in WEAT 6, as proper names by design do not appear in our
coreference task.

11Final word sets are 200-400 words, due to significant
overlap in nearest neighbors & manual removal of odd terms.

12We did additionally experiment with using the exact
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4.3 New Spanish WEAT

We substantially modified Spanish WEAT (aka
XWEAT for non-English WEATs) and added en-
tirely new terms. The reason for this is that the
original XWEAT was translated from English very
literally, which causes two problems.

The first problem with XWEAT is that many of
the terms do not make sense in a Spanish speaking
community — names included in the original, like
Amy, are names in Spanish and thus were untrans-
lated, but are uncommon and have upper class con-
notations not intended in the original test. Another
example is firearms translated as arma de fuego,
which while technically a correct literal translation,
is not commonly used to describe weapons.13

The second problem with XWEAT is that nouns
on the wordlists for both abstract math and science
concepts as well as abstract art concepts are almost
entirely grammatically female. For instance, cien-
cia (science), geometrı́a (geometry) are grammati-
cally female, as are escultura (sculpture) and nov-
ela (novel). It is well established that for languages
with grammatical gender, words that share a gram-
matical gender have embeddings that are closer
together than words that do not (Gonen et al., 2019;
McCurdy and Serbetci, 2017). So, when WEAT
in English was translated into XWEAT in Spanish
(Glavas et al., 2019), the terms were imbalanced
with regard to grammatical gender, which makes
the results misleading. We balance the lists, of-
ten replacing abstract nouns with corresponding
adjectives which can take male or female form,
e.g. cientı́fico and cientı́fica (scientific, male and
female), such that we can use both versions to ac-
count for the effect of grammatical gender.

Finally, we needed a metric to examine bias
against migrants. Metrics for intrinsic bias must
be targeted to the type of harm expected in the
downstream application, and there is not an out-of-
the-box WEAT test for this. So we create a new
WEAT test for bias against migrants in Spanish.
Following the setup of tests for racial bias in orig-
inal WEAT — based on American racial biases
in English — we have lists of names associated
with migrants vs. non-migrants, and compare them
with lists of pleasant and unpleasant terms. The
names are based on work of Salamanca and Pereira

WEAT terms for debiasing, and found the trends to be similar
but of smaller magnitude, so we settled on expanded lists as a
more realistic scenario.

13The standard would be armas. arma de fuego is also com-
posed of three words, and so will not appear in any vocabulary.

(2013), who studied ranking names as lower vs.
upper class; class status is closely correlated with
whether a person is a migrant. We select a subset
of names in which the majority in the study agree
on the class. Pleasant and unpleasant terms exist in
WEAT and XWEAT, but we again modify them to
balance grammatical gender.

5 Results

Figure 3 displays data for all tasks: one scatterplot
per triple of experimental variables: an intrinsic
metric, an extrinsic metric, an embedding algo-
rithm. If we want to be able to broadly use WEAT
metrics for any given bias research, these graphs
should each show a clear and a positive correlation.
None of them do. There are no trends in correlation
between the metrics that hold in all cases regard-
less of experimental detail, for any of the tasks. We
have additionally examined whether there are cor-
relations within one bias modification method (pre
or postprocessing) in case a difference in the way
these methods modify embeddings causes differ-
ences in trends. In most cases this breakout tells the
same story. The select cases where positive (and
negative) correlations are present are discussed be-
low. Further breakout graphs and combinations are
included in Appendix D.

Coreference (en): Gender The coreference task
(Figure 3, rows 1-3) doesn’t display a clear cor-
relation in all cases, and yet it has the clearest
relationship of all three tasks, with a significant
moderate positive correlation for both Predictive
Parity (precision) and Equality of Opportunity (re-
call) for word2vec (columns 3 & 4). The overall
trends are muddied by the data for fastText, which
does not have a significant correlation under any
conditions. Both are expected: that coreference
would display the strongest trends, and that fast-
Text would display more unpredictable or weaker
trends. The Winobias coreference task is as directly
matched to the WEAT tests as it is possible to be
- since both use common career words to measure
bias. So the relationship between the two metrics is
clearest here: moving female terms closer to certain
career terms most directly helps a system resolve
anti-stereotypical coreference chains. However, we
still only see a correlation in wod2vec, not fast-
Text. fastText may behave less predictably because
of its use of subwords; when subwords are used,
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word representations are more interconnected.14

We can debias with regard to a specific word, but
that word’s embedding will still be influenced by
all other words that share its character ngrams. It
is difficult to predict how changing the composi-
tion of a training corpus will affect all words that
contain a certain ngram (e.g. ch) in them. For
this reason, fastText may be initially more resistant
to encoding biases than word2vec, as was found
in Lauscher and Glavas (2019), but may also be
more complex to debias. This has implications for
extending this work to contextual models, which
always use some form of subword unit.

Hatespeech (en): Gender Hatespeech (en) has
fewer and more restricted correlations than corefer-
ence, as can be seen in Figure 3, rows 4-6. These
plots show no relationship at all between intrinsic
and extrinsic metrics. When data is broken out
by bias modification method (see Figure 4b in Ap-
pendix D), it becomes clear that there is a moderate
positive correlation for postprocessing for recall,
and the aggregate appears this way because there
is a moderate negative correlation for preprocess-
ing. This holds for both embedding algorithms,
though both positive and negative correlations are
stronger for fastText. Precision displays no corre-
lation. Note that the absolute variance in recall is
much smaller than for precision, but this is still sig-
nificant for each embedding algorithm individually
and for both grouped together.

Of interest for future bias research is that the
baseline level of bias (premodification, from raw
twitter data) in English hatespeech differs by em-
bedding type, but only for precision. Initial mod-
els (with unmodified embeddings) using fastText
have 10 additional points of precision for male-
targeted hatespeech than for female-targeted. How-
ever initial models using word2vec have the oppo-
site bias and have 4 fewer points of precision for
male-targeted than female targeted hatespeech. For
recall, the two embedding algorithms are equiva-
lent, with 6 fewer points for male-targeted hate-
speech. In fact, in the recall metric there is an early
indication of unreliability of the relationship we
are examining between WEAT and extrinsic bias,
because there is a spread of different WEAT results
that map to nearly the same difference in recall.

14For example, the representation of the word childish is by
design also made up of the representations for child and ish,
but also all unigrams, bigrams, and trigrams it contains (c, ch,
chi, etc).

Hatespeech (es): Gender and Migrant For
hatespeech in Spanish, we examine two kinds of
bias separately — gender bias and bias against mi-
grants, in Figure 3, rows 7,8. Neither gender bias
nor migrant bias show positive correlations in any
experimental conditions.

Gender bias in our models is in an absolute
sense never present, since in Spanish hatespeech
targeted against women is easier to identify than
against others (with F1 in the high 80s).15 But
there are no overall trends when this is bias is mod-
ified to be more or less extreme, and there are no
positive correlations in any conditions. There is
a moderate negative correlation for precision only
when looking at fastText embeddings.

Migrant bias similarly has no trends save in
very restricted conditions broken out by bias modi-
fication type. In contrast to the gender case, hate-
speech against migrants is clearly challenging to
identify, with much lower F1 in the low 60s. There
is a positive correlation between migrant bias and
performance gap for recall with preprocessing in
fastText only. This fits the expectation that fastText
may be more sensitive to preprocessing than post-
processing due to subwords, as discussed above,
though in the gender bias case with negative corre-
lation it is equally sensitive to both, so it is hard to
draw conclusions. Given the smaller number of dat-
apoints for Spanish (discussed below) this is likely
just noise. To confuse the situation further, the only
trends in precision are present in word2vec, and are
negative correlations.

Note that all graphs for Spanish display central
clusters, because it was more difficult to get an
even spread of bias measures, and because Spanish
has fewer data points than English. This is for a
number of reasons that compound and underscore
the difficulty of expanding supposedly language-
agnostic techniques beyond English, even to high
resourced languages like Spanish. We have only
one WEAT test for each type of bias, since we
made our own that carefully balanced grammatical
gender, after rectifying the issues with the existing
translated versions (see Section 4.3). Bias mod-
ification is also more difficult - the richer agree-
ment system in Spanish means that there are more
surface forms of what would be one word in En-
glish. In addition, the language model used for
nearest neighbour expansion of wordlists (see Sec-

15This is perhaps due to examples in the training data having
clearer markers such as specific anti-female slurs, but is itself
an interesting question.
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tion 4.2) produces predominantly formal register
words from news or scientific articles, due to a
less varied makeup of its training data than the En-
glish model. This makes them less well suited to
debiasing twitter data specifically, and there were
no readily available models that had more casual
register. For bias against migrants, there is the ad-
ditional challenge that wordlists are predominantly
based on proper names, which are much rarer in
twitter (which tends to use @ mentions instead)
than in other media.

6 Discussion

The broad result of this research is that changes in
WEAT do not correlate with changes in application
bias, and therefore that WEAT should not be used
to measure progress in debiasing algorithms. We
have found that even when we maximally target
bias modification of an embedding, we cannot pro-
duce a reliable change in bias direction downstream.
There was no pattern or correlation between tasks,
for the same task in different languages, or even
in most cases within one task. And we have cho-
sen one of the simplest possible setups, with full-
word embeddings and a single type of bias at a
time. Real world scenarios can easily be more
complicated and involve multiple types of bias or
subword embeddings. Our findings also indicate
that additional complexity may muddy the relation-
ship further. For example, fastText behaved less
predictably than word2vec across experiments, sug-
gesting that if we were to expand to larger models
that are fully reliant on subwords the patterns may
become even less clear.

The implication of this finding is that an NLP
scientist or engineer has limited options when in-
vestigating and mitigating bias. They must a) find
the specific set of wordlists, embedding algorithms,
downstream tasks, and bias modification methods
that are together predictive of bias for the given
task, language, and model or b) implement full sys-
tems to test application bias directly, even if their
work focuses on embeddings.

While the latter may seem onerous, it may not be
more so than exhaustively searching for a configu-
ration where intrinsic bias metrics are predictive.

This underscores the importance of making good
downstream bias measures available, as either ap-
proach will require these. More datasets that are
collected need to be annotated with subgroup de-
mographic and identity information — there are

very few available. More research needs to focus
on creating good challenge sets to measure applica-
tion bias. Additional research on more broad usage
of unsupervised methods (Zhao and Chang, 2020)
would also be valuable, though those also would
benefit from subgroup identity annotation to make
their results more interpretable.

It is only when more of these things are readily
available that we can see the true measure of the
efficacy of our debiasing efforts.

We do note a limitation of this study in that all
downstream tasks are discriminative classification
tasks. Bias in classification is more straightfor-
ward to measure, with well established metrics, but
covers allocational harms (performance disparity),
whereas the inclusion of generative models could
better cover representational harms (misleading or
harmful representations/portrayals) (Blodgett et al.,
2020; Crawford, 2017). Concurrent research on
causal mediation analysis for bias has shown that
the embedding layer in open-domain generation
has the strongest effect on gender bias (as com-
pared to other layers of the network) (Vig et al.,
2020). Further work could investigate whether gen-
eration tasks have display the same or different
relationship to intrinsic metrics.

7 Conclusion

We have examined the relationship of the intrinsic
bias metric WEAT to the extrinsic bias metrics of
Equality of Opportunity and Predictive Parity, for
multiple tasks and languages, and determined that
positive correlations between them exist only in
very restricted settings. In many cases there is ei-
ther negative correlation or none at all. While intrin-
sic metrics such as WEAT remain good descriptive
metrics for computational social science, and for
examining bias in human texts, we advise that the
NLP community not rely on them for measuring
model bias. We instead advise that they focus on
careful consideration of downstream applications
and the creation of datasets and challenge sets that
enable measurement at this stage.
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A Bias Metric Definitions & Formulas

Performance Gap metrics measure difference in
performance across different demographic splits of
the data, and are in our case (and most commonly)
applied to classification tasks.

Where A is a demographic variable (race,
gender, etc), Y is the true label, and Ŷ is the
predicted label, a fair system will satisfy:

P (Ŷ = 1|A = x, Y = 1) = P (Ŷ = 1|A = y, Y = 1)

where x and y are demographic values usually of
an privileged and a underprivileged group. This
expresses that the probability of a given test sam-
ple being correctly identified as a true positive
should be equal regardless of group, and is known
as Equality of Opportunity (Hardt et al., 2016).
A fair system will also satisfy:

P (Ŷ = 1|A = x, Y = 0) = P (Ŷ = 1|A = y, Y = 0)

which expresses that that probability of a given
test sample being incorrectly identified as positive
is equal regardless of group. This is known
as Predictive Parity and when combined with
Equality of Opportunity is known as Equalized
Odds.

These are easily measured in most NLP sys-
tems. The former is captured by measuring
recall gap, where if x is the privileged group
and y the underprivileged, unfairness is captured
by Recallx − Recally, where any positive
value is unfair. The latter is captured by
Precisionx − Precisiony, again where positive
values are unfair.

B WEAT Formula and Wordlists

B.1 English WEAT lists
All are tests for gender bias.

B.1.1 Weat 6
WEAT 6 was modified to use the general gender
terms of 7,8 rather than proper names, because the
co-reference task contains no names.
Male male, man, boy, brother, he, him, his, son
Female female, woman, girl, sister, she, her, hers,
daughter
Career executive, management, professional,
corporation, salary, office, business, career

Family home, parents, children, family, cousins,
marriage, wedding, relatives

The original WEAT 6 uses the following
male and female names as the gender terms:
Male: John, Paul, Mike, Kevin, Steve, Greg, Jeff,
Bill
Female: Amy, Joan, Lisa, Sarah, Diana, Kate, Ann,
Donna.

B.1.2 Weat 7
Male male, man, boy, brother, he, him, his, son
Female female, woman, girl, sister, she, her, hers,
daughter
Math math, algebra, geometry, calculus, equa-
tions, computation, numbers, addition
Art poetry, art, dance, literature, novel, sym-
phony, drama, sculpture

B.1.3 Weat 8
Male brother, father, uncle, grandfather, son, he,
his, him
Female sister, mother, aunt, grandmother, daugh-
ter, she, hers, her
Science science, technology, physics, chemistry,
Einstein, NASA, experiment, astronomy
Art poetry, art, Shakespeare, dance, literature,
novel, symphony, drama

B.2 Changes to English List

We modify WEAT 6 to use the gender terms for
WEAT 7/8 as the terms for 6, but otherwise leave
terms as is.

WEAT 6 (career/family vs. male/female) uses
proper names as gender terms, whereas the other
two tests use more standard gender terms (she, her,
he, him, mother, father). This is an artifact of repli-
cating IAT, which introduces a confound in their
comparability – if the WEAT tests have different
patterns of correlation, we don’t know whether this
is because of the difference in the way gender bias
patterns for career/family vs. for arts/science or
whether it patterns differently because of proper
names vs. gender terms. This is exacerbated in
our case where proper names are treated even more
differently than usual both in twitter (where @men-
tions stand in for proper names) and in the Wino-
bias metric that we use (where professions are used
instead of proper names precisely because names
contain gender information and the challenge set
intends to be ambiguous).



1938

B.3 Spanish WEAT lists:

Recall that we created these ourselves, the gender
test with reference to both the original gender fo-
cused WEAT 6,7,8 of Caliskan et al. (2017) and the
translation of Lauscher and Glavas (2019), signifi-
cantly modified and extended to balance grammati-
cal gender across sets of words. The migrant test
was created with reference to the tests for racism
that use African-American vs. European-American
names paired with pleasant vs. unpleasant terms in
WEAT 3, 4, 5, using the lists of European Spanish
vs. migrant Spanish names identified by Salamanca
and Pereira (2013).

B.3.1 Gender

Male: masculino, hombre, niño, hermano, él,
hijo, hermano, padre, papá, tı́o, abuelo

Female: femenino, mujer, niña, hermana, ella,
hija, hermana, madre, mamá, tı́a, abuela

Science: cientı́fico, fı́sico, quı́mico, astrónomo,
tecnológico, biólogo, cientı́fica, fı́sica, quı́mica,
astrónoma, tecnológica, bióloga

Art: arquitecto, escultor, pintor, escritor, po-
eta, baiları́n, actor, fotógrafo, arquitecta, escul-
tora, pintora, escritora, poetisa, bailarina, actora,
fotógrafa

B.3.2 Migrants

European-Spanish names: Agustina, Martina,
Josefa, Antonia, Sofı́a, Isidora, Cristóbal, Se-
bastián, Agustı́n, Alonso, Joaquı́n, León, Ignacio,
Julieta, Matilde

Migrant-Spanish names: Shirley, Yamileth,
Sharon, Britney, Maryori, Melody, Nayareth,
Yaritza, Byron, Brian, Jason, Malcon, Justin,
Jeremy, Jordan, Brayan, Yeison, Yeremi, Bairon,
Yastin

Pleasant terms: caricia, libertad, salud, amor,
paz, animar, amistad, cielo, lealtad, placer, dia-
mante, gentil, honestidad, suerte, arcoiris, diploma,
regalo, honor, milagro, amanecer, familia, alegrı́a,
felicidad, risa, paraı́so, vacación, paz, maravilloso,
maravillosa

Unpleasant terms: abuso, choque, suciedad, as-
esinato, enfermedad, accidente, muerte, sufrim-
iento, veneno, hedor, apestar, ataque, asalto, desas-
tre, odio, contaminación, tragedia, divorcio, cárcel,
pobreza, fea, feo, cáncer, matar, vómito, bomba,
maldad, podrido, podrida, agonı́a, terrible, horri-
ble, guerra, repugnante

C Training Data and Preprocessing

This details the data for training embeddings. For
data used in training the final models, see relevant
papers cited in Section 4.1.

C.1 Wikipedia
Wikipedia data is downloaded from the latest
Wikipedia article dump, tokenized with NLTK
(https://www.nltk.org/), and all words appear-
ing less than 10 times are replaced with <unk>.
The final dataset has 439,935,872 words.

C.2 Twitter
Twitter data is from 2019 and is downloaded
from the Internet Archive https://archive.org/

details/twitterstream. Retweets are removed,
and data is lowercased, tokenized with NLTK
TweetTokenizer, and hashtags and @mentions are
replaced with <HASH> and <MENTION> respec-
tively. All words appearing less than 10 times
are replaced with <unk>. English twitter data
size is 3,641,306 tweets with 38,376,060 words.
Spanish twitter data size is 10,683,846 tweets with
142,715,339 words.

D Further Results Graphs

Below are breakouts of graphs by bias modification
method, as well as full graphs with metric scales
and legends.

Figure 4 breaks out all tasks by bias modifica-
tion method (pre- vs. post-processing). The main
interesting thing to note here is for hatespeech in
English. Based on the spread of data points, it is
easy to see that there is overall more effect on preci-
sion gap when embeddings are modified, whereas
recall performance gap occupies a narrower band
over a wide spread of WEAT metrics. Yet recall
is the only metric which has a positive correlation
with WEAT, and then only in the postprocessing
condition. For Spanish it is also visible that it is
much more difficult to modify bias for Spanish
when preprocessing vs. when postprocessing.

Figure 5 shows one graph for each task and bias
type combination, in full, in order to view the effect
of not controlling for experimental variable. It also
shows the scale for the spread of data points.

Finally, for interest, we also include Figure 6,
which displays the correlation broken out by type
of Winobias test (which differ in difficulty because
Type 1 is semantic and Type 2 is syntactic).



1939

(a) Coreference (en) results broken out by bias modification method (pre- vs. post-processing).

(b) Hatespeech (en) results broken out by bias modification method (pre- vs. post-processing).

(c) Hatespeech (es) results for gender bias metrics broken out by bias modification method.

Figure 4: Bias modification method breakout by pre vs. post-processing for gender bias for each task for both
precision and recall.
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(a) Coreference results (en), gender bias (b) Hatespeech detection results (en), gender bias

(c) Hatespeech detection results (es), gender bias (d) Hatespeech detection results (es), migrant bias

Figure 5: Scatterplots showing all data points for each of the 4 tasks: gender bias in co-reference (en), gender bias
in hatespeech detection (en), gender bias in hatespeech detection (es), and migrant bias in hatespeech detection (es).
In each plot, the x-axis represents WEAT, and the y-axis shows performance gap between groups (male-female,
female-other, migrant-other). Original embeddings (before modification) shown in black. There is no correlation
that holds independently of experimental conditions (embedding type, bias modification method, WEAT test).

Figure 6: Coreference (en) results broken out by type of Winobias challenge, Type 1 is more difficult as there are
only semantic cues to correct coreference, Type 2 has also syntactic cues.



Chapter 4

How Gender Debiasing Affects

Internal Model Representations, and

Why It Matters

The previous work showed that WEAT, the common measure of bias in embedding

spaces, doesn’t correlate with application bias. Debiasing at the language model could

still sometimes work, but we showed that we cannot tell if it has worked without im-

plementing a downstream system. We recommended that bias be always tested in a

downstream application.

This recommendation was strengthened when our work was later replicated with con-

textual embeddings in Cao et al. (2022), who study a less extensive set of demographics

and of languages, but a more broad set of intrinsic and extrinsic metrics, for 19 differ-

ent contextualised models. They still find no reliable correlation, thought they make

small modifications to intrinsic and extrinsic metrics to try to make them align better.

But implementing downstream systems is exactly what the field is trying to avoid.

The increase in scale of pre-training over the past five years is only exacerbating this;

less and less pre-training is done by people who deploy systems. I pre-trained the

embeddings in the previous chapter (3) on a university cluster, but very few train new

BERT models, and only a handful train LLMs.

So in the following, we make progress on understanding the relationship between in-

trinsic and extrinsic bias by studying the reverse direction. We cannot yet tell in what

way modifying a language model representation affects downstream bias, so how does

49
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downstream debiasing affect an upstreadm langauge model? We know a priori that de-

biasing at the second stage of transfer learning works. So perhaps this is a better place

to start, and it will be more enlightening to look at how debiasing downstream (the

thing we understand better) affects representations upstream (the thing we understand

less well).

This motivates the following work, we try to understand language model representa-

tions better by studying the impact of downstream debiasing. We know that down-

stream debiasing does improve downstream bias metrics. If the language model is not

‘frozen’ (e.g. the downstream debiasing backpropagates to change the language model

parameters) then this changes model representations as well. This worked. We found

the CEAT metric (contextualised WEAT) to be as uncorrelated in this reverse direction

of downstream task → language model as we and (Cao et al., 2022) had found WEAT

and CEAT to be when going in the original direction of language model → downstream

task. But we found that information theoretic probing could be adopted as a good

gender bias metric when applied to gender demographic information. Information the-

oretic probing had previously been used as a method of analysis of compressibility

of linguistic properties of a learned representation: POS tags, dependency parses, etc.

By this ‘reversed’ method of the previous analysis we were able to adapt it into an

upstream language model bias metric.

In this work we also disentangled of the role of the language model vs. the downstream

classifier for fairness in transfer learning. Through information theoretic probing we

were able to identify a language model’s ‘potential’ for gender bias, which then may

or may not be realised by the classifier depending on the downstream fine-tuning data.

When Sandra Kublik interviewed me and we discussed this work, she suggested a

genetic analogy to give intuition for this behaviour clearly to laypeople. I can have

a genetic propensity for breast cancer, or for schizophrenia, but that may or may not

ever be realised depending on my environmental factors. Similarly, if the language

model has strong potential for gender bias, and the downstream fine-tuning data is

imbalanced such that gender A is a strong predictor of labels Y , then the language

model will be biased. But even with strong potential, if the fine-tuning data is not

imbalanced, then the potential will not be realised. Conversely, with a language model

with lower potential, the imbalance in fine-tuning data has a smaller effect. So this

work shows that, just as with genetics, the full story cannot be determined from the

language model, but some of the story can be.
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In this work we also used the full suite of ten bias metrics that are generally applied

to classification, which is rarely done. They tend to track with each other, but for one

of the two tasks had very different magnitudes, so had we studied a smaller subset of

them, we may have come to different conclusions. Fairness metrics must be matched

to downstream applications, as discussed in §2.2, but for work that analyses general

relationships between metrics, we show that it is necessary to include the broad range

to draw robust conclusions. We also find a pattern in a specific type of bias metric:

Pearson correlation to real-word bias statistics, and show it to be flawed. Pearson cor-

relation metrics correlate one of the performance gap metrics mentioned in §2.2 to real

world disparities, which for these studies is the gender bias in profession classification

or profession based co-reference resolution to gender disparities in professions in the

real-world (usually the United States). We show that these metrics are extremely un-

reliable because they hide a confound: whether or not the statistics of the pre-training

data reflect the statistics of the real world. So we recommend at least using one of

the other metrics, unless the relationship to the real world is the object of study itself,

rather than the bias behaviour of a language model (this is rarely the case in work in

ML venues). I did not include correlation based metrics in my overview of fairness

metrics §2.2 because of these flaws.
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Abstract

Common studies of gender bias in NLP focus
either on extrinsic bias measured by model per-
formance on a downstream task or on intrinsic
bias found in models’ internal representations.
However, the relationship between extrinsic
and intrinsic bias is relatively unknown. In
this work, we illuminate this relationship by
measuring both quantities together: we debias
a model during downstream fine-tuning, which
reduces extrinsic bias, and measure the effect
on intrinsic bias, which is operationalized as
bias extractability with information-theoretic
probing. Through experiments on two tasks
and multiple bias metrics, we show that our
intrinsic bias metric is a better indicator of de-
biasing than (a contextual adaptation of) the
standard WEAT metric, and can also expose
cases of superficial debiasing. Our framework
provides a comprehensive perspective on bias
in NLP models, which can be applied to deploy
NLP systems in a more informed manner. 1

1 Introduction

Efforts to identify and mitigate gender bias in Nat-
ural Language Processing (NLP) systems typically
target one of two notions of bias. Extrinsic evalua-
tion methods and debiasing techniques focus on the
bias reflected in a downstream task (De-Arteaga
et al., 2019; Zhao et al., 2018), while intrinsic
methods focus on a model’s internal representa-
tions, such as word or sentence embedding geom-
etry (Caliskan et al., 2017; Bolukbasi et al., 2016;
Guo and Caliskan, 2021). Despite an abundance
of evidence pointing towards gender bias in pre-
trained language models (LMs), the extent of harm
caused by these biases is not clear when it is not
reflected in a specific downstream task (Barocas

∗Supported by the Viterbi Fellowship in the Center for
Computer Engineering at the Technion.

1Our code and model checkpoints are publicly avail-
able at https://github.com/technion-cs-nlp/
gender_internal
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(a) Training a model on the original task’s dataset

(b) Training another model on a debiased dataset

Compression
(intrinsic bias)

(c) Measuring our intrinsic metric on the debiased and
original dataset using probing

Figure 1: Our proposed framework. Black arrows mark
forward passes, red arrows mark things we measure. We
first (a) train a model on a downstream task, then (b)
train another model on the same task using a debiased
dataset, and finally (c) measure intrinsic bias in both
models and compare.

et al., 2017; Kate Crawford, 2017; Blodgett et al.,
2020; Bommasani et al., 2021). For instance, while
the word embedding proximity of “doctor” to “man”
and “nurse” to “woman” is intuitively normatively
wrong, it is not clear when such phenomena would
lead to downstream predictions manifesting in so-
cial biases. Recently, Goldfarb-Tarrant et al. (2021)
have shown that debiasing static embeddings in-
trinsically is not correlated with extrinsic gender
bias measures, but the nature of the reverse relation-
ship is unknown: how are extrinsic interventions
reflected in intrinsic representations? Furthermore,
Gonen and Goldberg (2019a) demonstrated that a
number of intrinsic debiasing methods applied to
static embeddings only partially remove the bias
and that most of it is still hidden within the embed-
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ding. Complementing their view, we examine ex-
trinsic debiasing methods, as well as demonstrate
the possible harm this could cause. Contrary to
their conclusion, we do not claim that these debias-
ing methods should not be trusted, as long as they
are utilized with care.

Our goal is to gain a better understanding of the
relationship between a model’s internal represen-
tations and its extrinsic gender bias by examining
the effects of various debiasing methods on the
model’s representations. Specifically, we fine-tune
models with and without gender debiasing strate-
gies, evaluate their external bias using various bias
metrics, and measure intrinsic bias in the represen-
tations. We operationalize intrinsic bias via two
metrics: First, we use CEAT (Guo and Caliskan,
2021), a contextual adaptation of the widely used
intrinsic bias metric WEAT (Caliskan et al., 2017).
Second, we propose to use an information-theoretic
probe to quantify the degree to which gender can be
extracted from the internal model representations.
Then, we examine how these intrinsic metrics corre-
late with a variety of extrinsic bias metrics that we
measure on the model’s downstream performance.
Our approach is visualised in Figure 1.

We perform extensive experiments on two down-
stream tasks (occupation prediction and corefer-
ence resolution); several debiasing strategies that
involve alterations to the training dataset (such as
removing names and gender indicators, or balanc-
ing the data by oversampling or downsampling);
and a multitude of extrinsic bias metrics. Our anal-
ysis reveals new insights into the way language
models encode and use information on gender:

• The effect of debiasing on internal represen-
tations is reflected in gender extractability,
while not always in CEAT. Thus, gender ex-
tractability is a more reliable indicator of gen-
der bias in NLP models.

• In cases of high gender extractability but low
extrinsic bias metrics, the debiasing is super-
ficial, and the internal representations are a
good indicator for this: The bias is still present
in internal representations and can be restored
by retraining the classification layer. There-
fore, our proposed measuring method can help
in detecting such cases before deploying the
model.

• The two tasks show different patterns of cor-
relation between intrinsic and extrinsic bias.

The coreference task exhibits a high correla-
tion. The occupation prediction task exhibits a
lower correlation, but it increases after retrain-
ing (a case of superficial debiasing). Gender
extractability shows higher correlations with
extrinsic metrics than CEAT, increasing the
confidence in this metric as a reliable measure
for gender bias in NLP models.

2 Methodology

In this study, we investigate the relationship be-
tween extrinsic bias metrics of a task and a model’s
internal representations, under various debiasing
conditions, for two datasets in English. We perform
extrinsic debiasing, evaluate various extrinsic and
intrinsic bias metrics before and after debiasing,
and examine correlations.

Dataset. Let D = {X,Y ,Z} be a dataset con-
sisting of input data X , labels Y and protected
attributes Z.2 This work focuses on gender as the
protected attribute z. In all definitions, F and M
indicate female and male gender, respectively, as
the value of the protected attribute z.

Trained Model. The model is optimized to solve
the downstream task posed by the dataset. It can
be formalized as f ◦ g : X → R|Y|, where g(·) is
the feature extractor, implemented by a language
model, e.g., RoBERTa (Liu et al., 2019), f(·) is
the classification function, and Y is the set of the
possible labels for the task.

2.1 Bias Metrics
Each bias evaluation method described in the lit-
erature can be categorized as extrinsic or intrinsic.
In all definitions, r indicates the model’s output
probabilities.

2.1.1 Extrinsic Metrics
Extrinsic methods involve measuring the bias of a
model solving a downstream problem. The extrin-
sic metric is a function:

E(X,Y ,R,Z) ∈ R

The output represents the quantity of bias mea-
sured; the further from 0 the number is, the larger
the bias is. Our analysis comprises a wide range

2Z is by convention used for attributes for which we want
to ensure fairness, such as gender, race, etc. It is purposefully
broad, and depending on the task and data could refer to the
gender of an entity in coreference, the subject of a text, the
demographics of the author of a text, etc.
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of extrinsic metrics, including some that have been
measured in the past on the analyzed tasks (Zhao
et al., 2018; De-Arteaga et al., 2019; Ravfogel et al.,
2020; Goldfarb-Tarrant et al., 2021) and some that
have never been measured before, and shows our
results apply to many of them. For illustration,
we will consider occupation prediction, a common
task in research on gender bias (De-Arteaga et al.,
2019; Ravfogel et al., 2020; Romanov et al., 2019).
The input x is a biography and the prediction y is
the profession of the person described in it. The
protected attribute z is the gender of that person.

Performance gap. This is the difference in per-
formance metric for two different groups, for in-
stance two groups of binary genders, or a group of
pro-stereotypical and a group of anti-stereotypical
examples. We measure the following metrics: True
Positive Rate (TPR), False Positive Rate (FPR), and
Precision. In occupation prediction, for instance,
the TPR gap for each profession y expresses the
difference in the percentage of women and men
whose profession is y and are correctly classified
as such. We also measure F1 of three standard
clustering metrics for coreference resolution. Each
such performance gap captures a different facet of
gender bias, and one might be more interested in
one of the metrics depending on the application.

We compute two types of performance gap met-
rics: (1) the sum of absolute gap values over all
classes; (2) the Pearson correlation between the
performance gap for a class and the percentage of
women in that class. For instance, if y is a pro-
fession, we measure the correlation between per-
formance gaps and percentages of women in each
profession.3 The two metrics are closely related but
answer slightly different questions: the sum quanti-
fies how a model behaves differently on different
genders, and the correlation shows the relation of
model behaviour to social biases (in the world or
the data) without regard to actual gap size.

Statistical metrics. For breadth of analysis, we
examine three additional statistical metrics (Baro-
cas et al., 2019), which correspond to different no-
tions of bias. All three are measured as differences
(d) between two probability distributions, and we
then obtain a single bias quantity per metric by
summing all computed distances.

3Percentages for coreference resolution are taken from
labour statistics, following Zhao et al. (2018). For occupation
prediction we use training set statistics following De-Arteaga
et al. (2019), before balancing.

• Independence: d
(
P (r|z = z), P (r)

)
∀z ∈

{F,M}. For instance, we measure the difference
between the distribution of model’s predictions
on women and the distribution of all predictions.
Independence is stronger as the prediction r is
less correlated with the protected attribute z. It
is measured with no relation to the gold labels.

• Separation: d
(
P (r|y = y, z = z), P (r|y = y)

)

∀y ∈ Y, z ∈ {F,M}. For instance, we mea-
sure the difference between the distribution of a
model’s predictions on women who are teachers
and the distribution of predictions on all teachers.
It encapsulates the TPR and FPR gaps discussed
previously, and can be seen as a more general
metric.

• Sufficiency: d
(
P (y|r = r, z = z), P (y|r = r)

)
.

For instance, we measure the difference between
the distribution of gold labels on women classi-
fied as teachers by the model and the distribu-
tion of gold labels on all individuals classified
as teachers by the model. Sufficiency relates to
the concept of calibration in classification. A dif-
ference in the classifier’s scores for men and for
women indicates that it might be penalizing or
over-promoting one of the genders.

2.1.2 Intrinsic Metrics
Intrinsic methods are applied to the representation
obtained from the feature extractor. These meth-
ods are independent of any downstream task. The
intrinsic metric is a function:

I(g(X),Z) ∈ R

Compression. Our main intrinsic metric is the
compression of gender information evaluated by a
minimum description length (MDL) probing clas-
sifier (Voita and Titov, 2020), trained to predict
gender from the model’s representations. Probing
classifiers are widely used for predicting various
properties of interest from frozen model represen-
tations (Belinkov and Glass, 2019). MDL probes
were proposed because a probe’s accuracy may be
misleading due to memorization and other issues
(Hewitt and Liang, 2019; Belinkov, 2021). We use
the MDL online code, where the probe is trained in
timesteps, on increasing subsets of the training set,
then evaluated against the rest of it. Higher com-
pression indicates greater gender extractability.

CEAT. We also measure CEAT (Guo and
Caliskan, 2021), which is a contextualized version
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of WEAT (Caliskan et al., 2017), a widely used
bias metric for static word embeddings. WEAT de-
fines sets X and Y of target words, and sets A and
B of attribute words. For instance, A and B contain
males and females names, while X and Y contain
career and family related words, respectively. The
bias is operationalized as the geometric proximity
between the target and attribute word embeddings,
and is quantified in CEAT by the Combined Effect
Size (CES) and a p-value for the null hypothesis of
having no biased associations. For more informa-
tion on CEAT refer to Appendix A.4.3.

2.2 Debiasing Techniques

We debias models by modifying the downstream
task’s training data before fine-tuning. Scrub-
bing (De-Arteaga et al., 2019) removes first names
and gender-specific terms (“he”, “she”, “husband”,
“wife”, “Mr”, “Mrs”, etc.). Balancing subsamples
or oversamples examples such that each gender is
equally represented in the resulting dataset w.r.t
each label. Anonymization (Zhao et al., 2018) re-
moves named entities. Counterfactual Augmenta-
tion (Zhao et al., 2018) involves replacing male
entities in an example with female entities, and
adding the modified example to the training set.
As some of these are dataset/task-specific, we give
more details in the following section.

3 Experiments

In each experiment, we fine-tune a model for a
downstream task. For training, we use either the
original dataset or a dataset debiased with one of
the methods from Section 2.2. Figure 2 presents
examples of debiasing methods for the two down-
stream tasks. We measure two intrinsic metrics by
probing that model’s inner representations for gen-
der extractability (as measured by MDL) and by
CEAT, and test various extrinsic metrics. The rela-
tion between one intrinsic and one extrinsic metric
becomes one data point, and we repeat over many
random seeds (for both the model and the probe).
Further implementation details are in appendix A.

3.1 Occupation Prediction

The task of occupation prediction is to predict a
person’s occupations (from a closed set), based on
their biography. We use the Bias in Bios dataset
(De-Arteaga et al., 2019). Regardless of the train-
ing method, the test set is subsampled such that
each profession has equal gender representation.

Britney currently works on CNN’s 
newest primetime show. She has 

also written for the New York 
Times.

_ currently works on CNN’s 
newest primetime show. _ has 
also written for the New York 

Times.

Scrubbing

My sister is taking a painting 
class this summer, so she has 
been sharing the latest lesson 

with me.

My brother is taking a painting 
class this summer, so he has 

been sharing the latest lesson 
with me.

Counterfactual augmentation

Occupation Classification Coreference Resolution

Original dataset Original dataset

Figure 2: Examples of two debiasing methods per-
formed on the data.

Model. Our main model is a RoBERTa model
(Liu et al., 2019) topped with a linear classifier,
which receives the [CLS] token embedding as in-
put and generates a probability distribution over the
professions. In addition, we experiment with train-
ing a baseline classifier layer on top of a frozen,
non-finetuned RoBERTa. We also replicate our
RoBERTa experiments with a DeBERTa model (He
et al., 2020), to verify that our results are are not
model specific and hold more broadly.

Debiasing Techniques. Following De-Arteaga
et al. (2019) we experiment with scrubbing the
training dataset. Figure 2 shows an example biog-
raphy snippet and its scrubbed version. We also
conduct balancing (per profession, subsampling
and oversampling to ensure an equal number of
males and females per profession), which has not
previously been used on this dataset and task.

Metrics. We measure all bias metrics from Sec-
tion 2.1 except for F1.

Probing. The probing dataset for this task is the
test set, and the gender label of a single biography
is the gender of the person described in it. We probe
the [CLS] token representation of the biography. In
addition to the models described above, we mea-
sure baseline extractability of gender information
from a randomly initialized RoBERTa model.

3.2 Coreference Resolution

The task of coreference resolution is to find all tex-
tual expressions referring to the same real-world
entities. We train on Ontonotes 5.0 (Weischedel
et al., 2013) and test on the Winobias challenge
dataset (Zhao et al., 2018). Winobias consists of
sentence pairs, pro- and anti-stereotypical variants,
with individuals referred to by their profession. For
example, “The physician hired the secretary be-
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Extrinsic

Debiasing
Strategy

Intrinsic Before After

Compression CEAT TPR (P) FPR (S) Sep Suff TPR (P) FPR (S) Sep Suff

Random 5.61* 0.12† - - - - - - - -
Pre-trained 10.12 0.49* - - - - - - - -
None 4.12 0.22 0.76 0.08 0.33 9.45 0.78 0.073 0.33 9.70
Oversampling 8.52* 0.29 0.73 0.09* 0.31 8.32* 0.81* 0.068* 0.33 10.91*

Subsampling 3.57 0.22 0.32* 0.03* 0.20* 1.22* 0.70* 0.08* 0.30* 1.32*

Scrubbing 1.70* 0.23 0.70* 0.06* 0.30 4.93* 0.71* 0.06* 2.56* 0.81*

(a) Occupation classification: Comparison of intrinsic and extrinsic metrics before and after retraining of classification layer,
over 10 seeds per fine-tuned model and per retrained classification model.

Extrinsic

Debiasing
Strategy

Intrinsic Before After

Compression CEAT F1 diff FPR (S) Sep Suff F1 diff FPR (S) Sep Suff

Random 0.83* 0.12† - - - - - - - -
Pre-trained 0.96 0.49* - - - - - - - -
None 1.98 0.35 6.63 0.12 1.25 8.69 6.07 0.11 1.19 7.35
Anon 2.07* 0.31* 7.26 0.13 1.34 8.82 7.42* 0.13* 1.34* 8.66*

CA 1.50* 0.27* 2.30* 0.05* 0.54* 1.67* 3.67* 0.06* 0.67* 2.40*

Anon + CA 1.54* 0.25* 2.42* 0.049* 0.56* 1.56* 2.86* 0.05* 0.59* 1.65*

(b) Coreference resolution: Comparison of intrinsic and extrinsic metrics before and after retraining of classification layer, over
10 seeds per fine-tuned model and 5 seeds per retrained classification model.

Table 1: Results on both tasks. * marks significant reduction or increase in bias (p < 0.05 on Pitman’s permutation
test), compared to the non-debiased model (debiasing strategy None). The lowest bias score in each column is
marked with bold. P = Pearson; S = Sum. † was computed only on 3 out of 10 tests for which CEAT’s p < 0.05.

cause he/she was busy.” is pro/anti-stereotypical,
based on US labor statistics. 4 A coreference sys-
tem is measured by the performance gap between
the pro- and anti-stereotypical subsets.

Model. We use the model presented in Lee et al.
(2018a) with RoBERTa as a feature extractor.

Debiasing Techniques. Following Zhao et al.
(2018), we apply anonymization (denoted as Anon)
and counterfactual augmentation (CA) on the train-
ing set. These techniques were used jointly in pre-
vious work; we examine each individually as well.

Metrics. Following Zhao et al. (2018), we mea-
sure the F1 difference between anti- and pro-
stereotypical examples.5 We also interpret the task
as a classification problem, and measure all met-
rics from Section 2.1. For more details refer to
Appendix A.4.2.

Probing. We probe the representation of a pro-
fession word as extracted from Winobias sentences,

4Labor Force Statistics from the Current Population Sur-
vey, https://www.bls.gov/cps/cpsaat11.htm

5We combined the T1 and T2 datasets, as well as the dev
and test datasets, to create a single held-out challenge dataset.

after masking out the pronouns. We define a pro-
fession’s gender as the stereotypical gender for this
profession. To prevent memorization by the probe—
given the small number of professions—the dataset
is sorted so that professions are gradually added to
the training set, so a success on the validation set
is on previously unseen professions.

4 Results

Tables 1a and 1b present intrinsic and extrinsic
metrics for RoBERTa models on the occupation
prediction and coreference resolution tasks, respec-
tively. We present a representative subset of the
measured metrics that demonstrate the observed
phenomena; full results are found in Appendix B.
The DeBERTa model results are consistent with
the RoBERTa model trends.

4.1 Compression Reflects Debiasing Effects

As shown in the tables, compression captures dif-
ferences in models that were debiased differently.
CEAT, however, cannot differentiate between oc-
cupation prediction models. For example, in occu-
pation prediction (Table 1a) the compression rate
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varies significantly between a non-debiased and a
debiased model via scrubbing and oversampling,
while CEAT detects no difference between the mod-
els. In coreference resolution (Table 1b), both com-
pression and CEAT are able to identify differences
between the non-debiased model and the others,
such as CA, which has both a lower compression
and CEAT effect. But the CEAT effect sizes are
small (below 0.5), which implies no bias, in con-
trast to the extrinsic metrics.

4.2 High Gender Extractability Implies
Superficial Debiasing

Extrinsic and intrinsic effects of debiasing. In
occupation classification (Table 1a), somewhat sur-
prisingly, subsampling the training data has the
strongest effect on extrinsic metrics, but not on
compression rate. Scrubbing reduces both intrinsic
and extrinsic metrics, although its effect on extrin-
sic metrics is limited compared to subsampling.
Training with oversampling caused less reduction
in extrinsic bias metrics. A consequence of over-
sampling is that some metrics are less biased, but
compression rates are increased, so gender infor-
mation is more accessible. The effectiveness of
subsampling over other metrics is further discussed
in appendix C. In coreference resolution (Table 1b),
while both CA and CA with anonymization reduced
gender extractability as well as external bias met-
rics, anonymization alone increased intrinsic bias
without affecting external bias metrics significantly.

Debiasing without fine-tuning. As the effect on
extrinsic bias did not match the effect on intrinsic
bias in several cases, we examined the role of the
classification layer. We trained a model for occupa-
tion prediction without fine-tuning the underlying
RoBERTa model. Training on a subsampled dataset
also reduced the extrinsic metrics (0.15, 0.03, 0.20,
and 0.31, respectively, on TPR gaps Pearson, FPR
gaps sum, separation sum, and sufficiency sum).
Detailed results of this experiment can be found in
Appendix B. Since no updates were made to the
LM, the internal representations could not be debi-
ased, thus the debiasing observed in this model can
only be superficial.

Retraining the classification layer. Fine-tuning
of both tasks revealed that lower extrinsic metrics
did not always lead to lower compression. Does
this indicate cases where the debiasing process is
only superficial, and the internal representations
remain biased? To test this hypothesis, we froze the

previously fine-tuned LM’s weights, and retrained
the classification layer. We used the original (non-
debiased) training set for retraining.

Tables 1a and 1b also compare extrinsic metrics
before and after retraining. All models show bias
restoration, due to the classification layer being
trained on the biased dataset.6 The amount of bias
restored varies between models in a way that is
predictable by the compression metric.

In the occupation prediction task, comparing Be-
fore and After numbers in Table 1a, the model
fine-tuned using a scrubbed dataset—which has the
lowest compression rate—displays the least bias
restoration, confirming that the LM absorbed the
process of debiasing. The model fine-tuned on sub-
sampled data has higher extrinsic bias after retrain-
ing. Hence, the debiasing was primarily cosmetic,
and the representations within the LM were not
debiased. The model fine-tuned on oversampled
data—which has the highest compression—has the
highest extrinsic bias (except for FPR), even though
this was not true before retraining.

In coreference resolution, comparing Before and
After numbers in Table 1b, models with the least
extrinsic bias (CA and CA+Anon) are also least
biased after retraining. Compression rate predicted
this; these models also had lower compression rates
than non-debiased models. Interestingly, the model
fine-tuned with an anonymized dataset is the most
biased after retraining, consistent with its high com-
pression rate relative to the other models. As with
subsampling and oversampling in occupation pre-
diction, anonymization’s (lack of) effect on extrin-
sic metrics was cosmetic (compare None and Anon
in Before block, Table 1b). Anonymization actu-
ally had a biasing effect on the LM, which was
realized after retraining.

We conclude that compression rate is a useful in-
dicator of superficial debiasing, and can potentially
be used to verify and gain confidence in attempts
to debias an NLP model, especially when there is
little or no testing data.

4.3 Correlation between Extrinsic and
Intrinsic Metrics

Table 2 shows correlations between compression
rate and various extrinsic metrics before and after

6The training datasets contain bias. The occupation pre-
diction set has an unbalanced amount of males and females
per profession (for example 15% of software engineers are
females). The coreference resolution training set has more
male than female pronouns, and males are more likely to be
referred to by their profession (Zhao et al., 2018).
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Occupation Classification Coreference Resolution
R2 Compression R2 CEAT R2 Compression R2 CEAT

Metric Before After Before After Before After Before After

F1 diff (pro− anti) - - - - 0.821 0.709 0.246 0.005
TPR gap (P) 0.046 0.304 0.042 0.049 0.222 0.006 0.008 0.012
TPR gap (S) 0.049 0.449 0.022 0.036 0.817 0.752 0.297 0.003
FPR gap (P) 0.001 0.120 0.008 0.002 0.021 0.054 0.002 0.000
FPR gap (S) 0.353 0.046 0.079 0.001 0.844 0.773 0.263 0.004
Precision gap (P) 0.032 0.173 0.000 0.000 0.068 0.038 0.019 0.000
Precision gap (S) 0.174 0.529 0.000 0.021 0.849 0.774 0.268 0.006
Independence gap (S) 0.251 0.382 0.050 0.005 0.778 0.732 0.355 0.001
Separation gap (S) 0.066 0.165 0.046 0.009 0.835 0.776 0.261 0.005
Sufficiency gap (S) 0.202 0.567 0.040 0.034 0.825 0.753 0.287 0.002

Table 2: Coefficient determination of the regression line taken on the compression rate or CEAT and each extrinsic
metric, before and after retraining of the classification layer. P = Pearson; S = Sum.

(a) Fine-tuned models. Each point is a single seed for training
and testing the model.

(b) After retraining. Each box represents 10 runs of retraining
on the same fine-tuned feature extractor.

Figure 3: Occupation prediction: Compression vs. TPR-gap (Pearson) after various debiasing strategies.

retraining. In occupation prediction, certain extrin-
sic metrics have a weak correlation with compres-
sion rate, while others do not. Except one metric
(FPR gap sum), the compression rate and the extrin-
sic metric correlate more after retraining. Figure 3
illustrates this for TPR-gap (Pearson). The increase
is due to superficial debiasing, especially by sub-
sampling data, which prior to retraining had low
extrinsic metrics and relatively high intrinsic met-
rics. This shows that correlation between extrinsic
metrics and compression rate for certain metrics
is stronger than it appeared before retraining. It is
unsurprising that CEAT does not correlate with any
extrinsic metrics, since CEAT could not distinguish
between different models.

Coreference resolution shows stronger correla-
tions between compression rate and extrinsic met-

rics, but low correlations between Pearson metrics.
We further discuss cases of no correlation in ap-
pendix D. Correlations decrease after retraining,
but metrics that were highly correlated remain so
(> 0.7 after retraining). The correlations are visu-
alized for F1 difference metrics in Figure 4. CEAT
and extrinsic metrics correlate much less than com-
pression rate (Table 2). Our results are in line with
those of Goldfarb-Tarrant et al. (2021), who found
a lack of correlation between extrinsic metrics and
WEAT, the static-embedded version of CEAT.

Given that recent work (Goldfarb-Tarrant et al.,
2021; Cao et al., 2022) questions the validity of
intrinsic metrics as a reliable indicator for gender
bias, the compression rate provides a reliable al-
ternative to current intrinsic metrics, by offering
correlation to many extrinsic bias metrics.
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(a) Fine-tuned models. Each point is a single seed for training
and testing the model.

(b) After retraining. Each box represents 5 runs of retraining
on the same fine-tuned feature extractor.

Figure 4: Coreference resolution: Compression vs. F1 difference after various debiasing strategies.

5 Related Work

There are few studies that examine both intrinsic
and extrinsic metrics. Previous work by Goldfarb-
Tarrant et al. (2021) showed that debiasing static
embeddings intrinsically is not correlated with ex-
trinsic bias, challenging the assumption that intrin-
sic metrics are predictive of bias. We examine the
other direction, exploring how extrinsic debiasing
affects intrinsic metrics. We also extend beyond
their work to contextualized embeddings, a wider
range of extrinsic metrics, and a new, more effec-
tive intrinsic metric based on information-theoretic
probing. A contemporary work by Cao et al. (2022)
measured the correlations between intrinsic and
extrinsic metrics in contextualized settings across
different language models. In contrast, our work
examines the correlations across different versions
of the same language model by fine-tuning it using
various debiasing techniques.

Studies that inspect extrinsic metrics include ei-
ther a challenge dataset curated to expose differ-
ences in model behavior by gender, or a test dataset
labelled by gender. Among these datasets are Wino-
bias (Zhao et al., 2018), Winogender (Rudinger
et al., 2018) and GAP (Webster et al., 2018) for
coreference resolution, WinoMT (Stanovsky et al.,
2019) for machine translation, EEC (Kiritchenko
and Mohammad, 2018) for sentiment analysis,
BOLD (Dhamala et al., 2021) for language gen-
eration, gendered NLI (Sharma et al., 2020) for
natural language inference and Bias in Bios (De-
Arteaga et al., 2019) for occupation prediction.

Studies that measure gender bias intrinsically
in static word or sentence embeddings measure
characteristics of the geometry, such as the prox-

imity between female- and male-related words to
stereotypical words, or how embeddings cluster
or relate to a gender subspace (Bolukbasi et al.,
2016; Caliskan et al., 2017; Gonen and Goldberg,
2019b; Ethayarajh et al., 2019). However, metrics
and debiasing methods for static embeddings do
not apply directly to contextualized ones. Several
studies use sentence templates to adapt to contex-
tual embeddings (May et al., 2019; Kurita et al.,
2019; Tan and Celis, 2019). This templated ap-
proach is difficult to scale, and lacks the range of
representations that a contextual embedding offers.
Other work extracts embedding representations of
words from natural corpora (Zhao et al., 2019; Guo
and Caliskan, 2021; Basta et al., 2019). These
studies often adapt the WEAT method (Caliskan
et al., 2017), which measures embedding geometry.
None measure the effect of the presumably found
“bias” on a downstream task.

There is a growing conversation in the field
(Barocas et al., 2017; Kate Crawford, 2017; Blod-
gett et al., 2020; Bommasani et al., 2021) about the
importance of articulating the harms of measured
bias. In general, extrinsic metrics have clear, in-
terpretable impacts for which harm can be defined.
Intrinsic metrics have an unclear effect. Without
evidence from a concrete downstream task, a found
intrinsic bias is only theoretically harmful. Our
work is a step towards understanding whether in-
trinsic metrics provide valuable insights about bias
in a model.

6 Discussion and Conclusions

This study examined whether bias in internal repre-
sentations is related to extrinsic bias. We designed
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a new framework in which we debias a model on
a downstream task, and measure its intrinsic bias.
We found that gender extractability from internal
representations, measured by compression rate via
MDL probing, reflects bias in a model. Compres-
sion was much more reliable than an alternative
intrinsic metric for contextualised representations,
CEAT. Compression correlated well—to varying
degrees—with many extrinsic metrics. We thus
encourage NLP practitioners to use compression
as an intrinsic indicator for gender bias in NLP
models. When comparing two alternative models,
a lower compression rate provides confidence in a
model’s superiority in terms of gender bias. The
relative success of compression over CEAT may
be because the compression rate was calculated on
the same dataset as the extrinsic metrics, whereas
CEAT was measured on a different dataset not nec-
essarily aligned with a specific downstream task.
The use of a non-task-aligned dataset is a common
strategy among other intrinsic metrics (May et al.,
2019; Kurita et al., 2019; Basta et al., 2021). An-
other possible explanation is that compression rate
measures a more focused concept, namely the gen-
der information within the internal representations.
CEAT measures proximity among embeddings of
general terms that may include other social contexts
that do not directly relate to gender (e.g. a female
term like ‘lady’ or ‘Sarah’ contains information
about not just gender but class, culture, formality,
etc, and it can be hard to isolate just one of these
from the rest).

Our results show that when a debiasing method
reduces extrinsic metrics but not compression, it
indicates that the language model remains biased.
When such superficial debiasing occurs, the debi-
ased language model may be reapplied to another
task, as in Jin et al. (2021), resulting in unexpected
biases and nullifying the supposed debiasing. Our
findings suggest that practitioners of NLP should
take special care when adopting previously debi-
ased models and inspect them carefully, perhaps
using our framework. Our results differ from those
of Mendelson and Belinkov (2021a), who found
that the debiasing increases bias extractability as
measured by compression rate. However, they stud-
ied different, non-social biases, that arise from spu-
rious or unintended correlations in training datasets
(often called dataset biases). In our case, some
debiasing strategies increase intrinsic bias while
others decrease it. Future work could investigate

why debiasing affects extractability differently for
these two types of biases.

Our work also highlighted the importance of the
classification layer. Using a debiased objective,
such as a balanced dataset, the classification layer
can provide significant debiasing. This holds even
if the internal representations are biased and the
classifier is a single linear layer, as shown in the
occupation prediction task. Bias stems in part from
internal LM bias and in part from classification
bias. Practitioners should focus their efforts on
both parts when attempting to debias a model.

We used a broader set of extrinsic metrics than
is typically used, and found that the bias metrics
behaved differently: some decreased more than oth-
ers after debiasing, and they correlated differently
with compression rate. Debiasing efforts may not
be fully understood by testing only a few extrin-
sic metrics. However, compression as an intrinsic
bias metric can indicate meaningful debiasing of
internal model representations even when not all
metrics are easily measurable, since it correlates
well with many extrinsic metrics.

A major limitation of this study is the use of gen-
der as a binary variable, which is trans-exclusive.
Cao and Daumé III (2020) made the first steps
towards inclusive gender bias evaluation in NLP,
revealing that coreference systems fail on gender-
inclusive text. Further work is required to adjust
our framework to non-binary genders, potentially
revealing insights about the poor performance of
NLP systems in that area.
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A Implementation Details

We used RoBERTa in all models (base size, 120M
parameters). We use following random seeds in
all repeated experiments: 0, 5, 11, 26, 42, 46, 50,
63, 83, 90. Our code was implemented mainly
using the Python libraries Pytorch (Paszke et al.,
2019), Transformers (Wolf et al., 2020), Sklearn
(Pedregosa et al., 2011), and the experiments were
logged using Wandb (Biewald, 2020).

A.1 Occupation Classification

We fine-tuned a RoBERTa-base model with a lin-
ear classification layer on top. Training was done
for 10 epochs at a learning rate of 5e-5, batch size
of 64. The input to RoBERTa was the biography
tokens, which is limited to the first 128 tokens. The
resulting [CLS] token embedding is fed to the clas-
sifier to predict the occupation. The probing task
involves using the same [CLS] token and training
the probing classifier to predict the gender of the
person in the biography. The experiments without
fine-tuning included either a pre-trained or a pre-
viously fine-tuned RoBERTa. We first extracted
the pre-trained RoBERTa’s embeddings of tokens
from the [CLS] and then trained a linear classi-
fier on them. The learning rate was 0.001 and the
batch size was 64. We trained the classification
layer with pre-trained RoBERTa on 300 epochs,
but with fine-tuned RoBERTa, 10 epochs were suf-
ficient. For all training processes, the epoch with
the greatest validation accuracy was saved. Fine-
tuning took 7 hours on a GeForce RTX 2080 Ti
GPU. Bias in Bios contains almost 400k biogra-
phies, and we obtain validation (10%) and test set
(25%) by splitting with Scikit-learn’s (Pedregosa
et al., 2011) test_train_split with our random seeds.

A.2 Coreference Resolution

We use the implementation of Xu and Choi (2020),
a model that was introduced by Lee et al. (2018b)
and has been adopted by many coreference resolu-
tion models. Coreference resolution is the process
of clustering different mentions in a text that refer
to the same real-world entities. The task is solved
by detecting mentions through text spans and then
predicting for each pair of spans if they represent
the same entity. The span representations were ex-
tracted with a RoBERTa model, which is fine-tuned
throughout the training process, except in the re-
training experiment. Fine-tuning took 3 hours on
an NVIDIA RTX A6000 GPU. Ontonotes 5.0 has

625k sentences and we use the standard validation
and test splits.

A.3 Probing Classifier
We use the MDL probe (Voita and Titov, 2020) im-
plementation by Mendelson and Belinkov (2021b).
In all experiments, we use a linear probe and train
it with a batch size of 16 and a learning rate of
1e-3. The timestamps used, meaning the accumu-
lating fractions of data that the probe is trained on,
are 2.0%, 3.0%, 4.4%, 6.5%, 9.5%, 14.0%, 21.0%,
31.0%, 45.7%, 67.6%, 100%.

A.4 Metrics
A.4.1 Fairness-Based Metrics Implementation
All three statistical fairness metrics measure the
difference between two probability distributions,
where this difference describes a notion of bias.
We calculate Independence and Separation via
Kullback–Leibler (KL) divergence, using the Al-
lenNLP implementation (https://github.com/
allenai/allennlp). We calculate Sufficiency via
Wasserstein distance instead, which is motivated
by Kwegyir-Aggrey et al. (2021). In this case, we
cannot use KL divergence, since there are some
classes that do not occur in model predictions for
both male and female genders. This causes the
probability distributions to not have the same sup-
port, and KL divergence is unbounded. Wasserstein
distance lacks the requirement for equal support.

A.4.2 Classification Metrics Interpretation in
Winobias

Winobias datasets contain pairs of stereotypical and
anti-stereotypical sentences. The stereotypes are
derived from the US labor statistics (for instance, a
profession with a majority of males is stereotypi-
cally male). Since coreference resolution is viewed
as a clustering problem, it is usually measured via
clustering evaluation metrics. Coreference resolu-
tion is commonly measured as the average F1 score
of these, and the same is true for Winobias. Nev-
ertheless, coreference resolution is accomplished
by making a prediction for each pair of mentions,
so it can be seen as a classification task. Wino-
bias can be viewed as a simpler task than general
coreference resolution, as it contains exactly two
mentions of professions and one pronoun, which
refers to exactly one profession. Therefore, we re-
frame it as a classification problem. In a Winobias
sentence with two professions x and y, as well as a
pronoun p, where p is referring to x, a true positive
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would be to cluster x and p together, while a false
positive would be to cluster y and p together. Our
classification metrics are derived based on these
definitions. For instance, the TPR gap for pro-
fession “teacher”, which is a stereotypical female
occupation, is the TPR rate on pro-stereotypical
sentences (with a female pronoun) minus the TPR
rate on anti-stereotypical sentences (with a male
pronoun).

A.4.3 CEAT
The Word Embedding Association Test (WEAT)
developed by (Caliskan et al., 2017) is a method
for evaluating bias in static word embeddings. The
test is defined as follows: given two sets of target
words X,Y (e.g., ’executive’, ’management’, ’pro-
fessional’ and ’home’, ’parents’, ’children’) and
two sets of attribute words (e.g., male names and
female names), and using w⃗ to represent the word
embedding for word w, the effect size is:

ES = meanx∈Xs(x,A,B)− meany∈Ys(y,A,B)

where

s(x,A,B) =

meana∈Acos(x⃗, a⃗)− meana∈Acos(x⃗, b⃗)
std-devw∈X⋃

Ys(w,A,B)

In essence, the effect size measures how differ-
ent are the distances between the embedding vec-
tors of each target group and the attribute groups.
Specifically, if s(x,A,B) > 0, x⃗ is more simi-
lar to attribute words B and vice versa. For in-
stance, a larger effect size is observed if target
words X are more similar to attribute words A and
target words Y are more similar to attribute words
B. |ES| > 0.5 and |ES| > 0.8 are considered
medium and large effect sizes, respectively (Rice
and Harris, 2005). The null hypothesis holds that
there is no difference between the two sets of target
words in terms of their relative similarity to the
two sets of attribute words, indicating that there are
no biased associations. Statistical significance is
defined by the p-value of WEAT, which reflects the
probability of observing the effect size under the
null hypothesis.

Since a word can take on a great variety of vector
representations in a contextual setting, ES varies
according to the sentences used to extract word
representation. Thus, to adopt WEAT to contextu-
alized representations, the Combined Effect Size
(CES) (Guo and Caliskan, 2021) is derived as the

distribution of WEAT effect sizes over many possi-
ble contextual word representations:

CES(X,Y,A,B) =
∑N

i=1 viESi∑N
i=1 vi

where ESi denotes the WEAT effect size of the i’th
choice of word representations from a large corpus,
and vi is the inverse of the sum of in-sample vari-
ance Vi and between-sample variance in the distri-
bution of random-effects. As in Guo and Caliskan
(2021), the representation for each word is derived
from 10,000 random sentences extracted from a
corpus of Reddit comments.

The combined effect size of each of the models
is examined on WEAT stimulus 6, which contains
target words of career/family and attribute words
of male/female names. This was the only one that
detected bias on a pre-trained RoBERTa (CES close
to 0.5 and p < 0.05). The points that we kept in
our analysis are those where p < 0.05, which make
up 90% of the points in occupation prediction and
95% of the points in coreference resolution.

B Full Results
In this section we provide the full results of a
RoBERTa model trained on the downstream task.

Table 3 presents results for the occupation pre-
diction task after fine-tuning, Table 4 presents the
retrained model results.

Figure 5 illustrates the correlations between ex-
trinsic metrics and compression rate before and
after retraining.

Table 5 presents the complete results for the oc-
cupation prediction task of the model trained with-
out fine-tuning, meaning that the RoBERTa model
is the pretrained version from Liu et al. (2019)
and only the classification layer was updated. Sub-
sampling the dataset has significant debiasing ef-
fects, which suggests that this debiasing method
can achieve low extrinsic bias even when internal
bias exists. The Pearson correlation on precision ex-
hibits a different behavior. It makes sense nonethe-
less: precision is computed as TP\(TP +FP ). A
biased model will assign more examples of a spe-
cific profession to a specific gender (which aligns
with the percentage of biographies of this profes-
sion with this gender on the training set), increasing
both TP and FP and decreasing precision. The
results on the coreference resolution task align with
the results of occupation prediction.
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Table 6 presents the results using a DeBERTa
model (He et al., 2020) for the occupation classi-
fication task. The trends are similar to those of
RoBERTa, with the same metrics showing an in-
crease, no change, or decrease in correlation after
re-training, suggesting a general trend in the behav-
ior of these metrics in relation to internal model
representations.

Table 7 displays the results on a finetuned model
for the coreference resolution task and Table 8 dis-
plays the retraining results.

Figure 6 shows the correlations between com-
pression rate and extrinsic metrics before and after
the retraining.
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Debiasing Strategy

Metric None Oversampling Subsampling Scrubbing

Compression 4.121 ± 1.238 8.522* ± 2.354 3.568 ± 1.516 1.699* ± 0.138
Accuracy 0.861 ± 0.005 0.852* ± 0.004 0.861 ± 0.003 0.851* ± 0.003
TPR gap (P) 0.763 ± 0.071 0.729 ± 0.067 0.319* ± 0.114 0.704* ± 0.068
TPR gap (S) 2.391 ± 0.257 2.145* ± 0.220 1.598* ± 0.273 2.019* ± 0.262
FPR gap (P) 0.591 ± 0.052 0.491* ± 0.059 0.087* ± 0.094 0.552 ± 0.063
FPR gap (S) 0.075 ± 0.010 0.085* ± 0.011 0.030* ± 0.006 0.057* ± 0.007
Precision gap (P) -0.880 ± 0.031 -0.855 ± 0.115 -0.299* ± 0.215 -0.815* ± 0.040
Precision gap (S) 3.621 ± 0.337 3.401 ± 0.667 1.549* ± 0.229 2.590* ± 0.279
Independence gap (S) 0.009 ± 0.002 0.008 ± 0.002 0.001* ± 0.000 0.005* ± 0.001
Separation gap (S) 0.327 ± 0.051 0.305 ± 0.030 0.204* ± 0.032 0.296 ± 0.053
Sufficiency gap (S) 9.451 ± 1.945 8.324* ± 1.537 1.218* ± 0.330 4.930* ± 0.927

Table 3: Occupation Prediction: Results on a RoBERTa-based model trained over 10 seeds. Significant reduction
or increase in a metric (p < 0.05 on Pitman’s permutation test), compared to the non-debiased model (debiasing
strategy is None), is marked with *. The lowest bias score or highest performance metric in each column is marked
with bold. P = Pearson; S = Sum.

Debiasing Strategy

Metric None Oversampling Subsampling Scrubbing

Compression 4.121 ± 1.238 8.522 ± 2.354 3.568 ± 1.516 1.699 ± 0.138
Accuracy 0.859 ± 0.004 0.856 ± 0.003 0.853 ± 0.003 0.854 ± 0.003
TPR gap (P) 0.777 ± 0.047 0.813* ± 0.040 0.704* ± 0.075 0.714* ± 0.068
TPR gap (S) 2.482 ± 0.238 2.593* ± 0.240 2.164* ± 0.284 1.989* ± 0.227
FPR gap (P) 0.596 ± 0.041 0.603 ± 0.047 0.602 ± 0.041 0.536* ± 0.038
FPR gap (S) 0.073 ± 0.008 0.068* ± 0.007 0.081* ± 0.012 0.059* ± 0.005
Precision gap (P) -0.877 ± 0.027 -0.891* ± 0.023 -0.889* ± 0.035 -0.817* ± 0.058
Precision gap (S) 3.710 ± 0.251 3.996* ± 0.272 3.555* ± 0.598 2.703* ± 0.255
Independence gap (S) 0.009 ± 0.002 0.010* ± 0.002 0.009 ± 0.003 0.005* ± 0.001
Separation gap (S) 0.334 ± 0.050 0.328 ± 0.048 0.300* ± 0.049 0.274* ± 0.041
Sufficiency gap (S) 9.701 ± 1.305 10.908* ± 1.354 8.370* ± 2.558 5.239* ± 0.798

Table 4: Occupation Prediction after retraining: Results on a RoBERTa-based model after retraining of the
classification layer with 10 seeds for each pre-trained model. Significant reduction or increase in a metric (p < 0.05
on Pitman’s permutation test), compared to the non-debiased model (debiasing strategy is None), is marked with *.
The lowest bias score or highest performance metric in each column is marked with bold. P = Pearson; S = Sum.
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Debiasing Strategy

Metric None Oversampling Subsampling Scrubbing

Accuracy 0.824 ± 0.003 0.815* ± 0.005 0.831* ± 0.001 0.807* ± 0.003
TPR gap (P) 0.839 ± 0.011 0.443* ± 0.053 0.158* ± 0.156 0.814 ± 0.029
TPR gap (S) 3.088 ± 0.192 1.545* ± 0.177 1.621* ± 0.088 3.154 ± 0.332
FPR gap (P) 0.598 ± 0.016 0.369* ± 0.029 0.067* ± 0.050 0.550* ± 0.012
FPR gap (S) 0.087 ± 0.004 0.041* ± 0.004 0.027* ± 0.003 0.112* ± 0.005
Precision gap (P) -0.872 ± 0.028 -0.427* ± 0.074 -0.161* ± 0.162 -0.853 ± 0.019
Precision gap (S) 3.811 ± 0.253 1.736* ± 0.108 1.551* ± 0.195 3.907 ± 0.184
Independence gap (S) 0.014* ± 0.002 0.001* ± 0.000 0.000* ± 0.000 0.022* ± 0.001
Separation gap (S) 0.336* ± 0.044 0.214* ± 0.038 0.203* ± 0.024 0.432* ± 0.048
Sufficiency gap (S) 12.019* ± 1.721 2.105* ± 0.576 1.478* ± 0.394 13.798* ± 0.966

Table 5: Occupation Prediction: Results on a RoBERTa-based model trained without fine-tuning, over 5 seeds.
The compression rate computed on a pre-trained RoBERTa model is 10.122. Significant reduction or increase in a
metric (p < 0.05 on Pitman’s permutation test), compared to the non-debiased model (debiasing strategy is None),
is marked with *. The lowest bias score or highest performance metric in each column is marked with bold. P =
Pearson; S = Sum.

R2 Compression R2 CEAT

Metric Before After Before After

TPR gap (P) 0.023 0.120 0.051 0.006
TPR gap (S) 0.000 0.200 0.036 0.098
FPR gap (P) 0.083 0.153 0.121 0.149
FPR gap (S) 0.055 0.013 0.009 0.021
Precision gap (P) 0.002 0.135 0.046 0.031
Precision gap (S) 0.024 0.362 0.026 0.103
Independence gap (S) 0.034 0.084 0.0 0.054
Separation gap (S) 0.000 0.117 0.008 0.009
Sufficiency gap (S) 0.016 0.250 0.046 0.042

Table 6: Results for a DeBERTa model trained on occupation prediction task. Coefficient determination of the
regression line taken on the compression rate or CEAT and each extrinsic metric, before and after retraining of
the classification layer. P = Pearson; S = Sum. Coefficients are of lower magnitude for DeBERTa than RoBERTa
models, but the same trends apply. They largely increase after retraining (save for FPR gap, and a few of the very
low magnitude Pearson metrics). The increase after retraining does not apply to CEAT, and the correlations with
CEAT are usually lower.
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Figure 5: Occupation prediction: Before (left) and after (right) plots of compression rate versus and extrinsic metric.
Cases of low correlation are discussed in D.1.
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Cases of low correlation are discussed in D.1.
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Debiasing Strategy

Metric None Anon CA Anon + CA

Compression 1.984 ± 0.101 2.073* ± 0.102 1.502* ± 0.075 1.540* ± 0.098
F1 (Ontonotes test) 76.406 ± 0.165 76.538 ± 0.176 77.187* ± 0.071 77.246* ± 0.230
F1 diff (pro− anti) 6.631 ± 1.013 7.256 ± 0.846 2.302* ± 0.466 2.422* ± 0.714
TPR gap (P) 0.654 ± 0.069 0.710* ± 0.047 0.607 ± 0.082 0.627 ± 0.100
TPR gap (S) 4.884 ± 0.698 4.870 ± 0.509 2.041* ± 0.228 2.014* ± 0.286
FPR gap (P) 0.602 ± 0.036 0.620 ± 0.056 0.572 ± 0.078 0.629 ± 0.107
FPR gap (S) 0.120 ± 0.015 0.128 ± 0.011 0.050* ± 0.006 0.049* ± 0.007
Precision gap (P) -0.549 ± 0.051 -0.571 ± 0.052 -0.491* ± 0.081 -0.569 ± 0.122
Precision gap (S) 3.080 ± 0.275 3.266 ± 0.264 1.421* ± 0.181 1.390* ± 0.216
Independence gap (S) 0.027 ± 0.008 0.025 ± 0.004 0.004* ± 0.001 0.004* ± 0.001
Separation gap (S) 1.247 ± 0.150 1.344 ± 0.137 0.537* ± 0.061 0.557* ± 0.070
Sufficiency gap (S) 8.684 ± 1.883 8.816 ± 1.544 1.673* ± 0.354 1.557* ± 0.384

Table 7: Coreference resolution: results on Ontonotes test set and Winobias challenge set. Each model was trained
over 10 seeds. * Marks significant reduction or increase in bias (p < 0.05 on Pitman’s permutation test), compared
to the non-debiased model (debiasing strategy None). The lowest bias score or highest performance metric in each
column is in bold. P = Pearson; S = Sum.

Debiasing Strategy

Metric None Anon CA Anon + CA

Compression 1.984 ± 0.065 2.073* ± 0.104 1.502* ± 0.081 1.540* ± 0.079
F1 (Ontonotes test) 76.40* ± 0.16 76.48* ± 0.22 76.72* ± 0.15 76.91* ± 0.19
F1 diff (pro− anti) 6.072 ± 0.789 7.417* ± 1.280 3.674* ± 0.599 2.858* ± 0.382
TPR gap (P) 0.635 ± 0.053 0.688* ± 0.052 0.679* ± 0.062 0.654 ± 0.049
TPR gap (S) 4.561 ± 0.414 5.143* ± 0.713 2.590* ± 0.420 2.178* ± 0.201
FPR gap (P) 0.579 ± 0.046 0.637* ± 0.055 0.620* ± 0.070 0.692* ± 0.075
FPR gap (S) 0.113 ± 0.011 0.126* ± 0.016 0.063* ± 0.010 0.052* ± 0.004
Precision gap (P) -0.512 ± 0.060 -0.581* ± 0.057 -0.550* ± 0.083 -0.632* ± 0.098
Precision gap (S) 2.943 ± 0.215 3.221* ± 0.384 1.690* ± 0.242 1.446* ± 0.146
Independence gap (S) 0.022 ± 0.003 0.026* ± 0.006 0.006* ± 0.002 0.004* ± 0.001
Separation gap (S) 1.188 ± 0.114 1.336* ± 0.175 0.670* ± 0.111 0.594* ± 0.057
Sufficiency gap (S) 7.350 ± 0.914 8.655* ± 1.726 0.2.401* ± 0.610 1.653* ± 0.294

Table 8: Coreference resolution after retraining: results on Ontonotes test set and extrinsic bias metrics on Winobias
challenge set. Each model finetuned over 10 seeds and re-trained over 5 seeds. * Marks significant reduction or
increase in bias (p < 0.05 on Pitman’s permutation test), compared to the non-debiased model (debiasing strategy
None). The lowest bias score or highest performance metric in each column is in bold. P = Pearson; S = Sum.
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Figure 6: Coreference resolution: Before (left) and after (right) plots of compression rate versus and extrinsic metric.
Cases of low and no correlation with the Pearson metrics are discussed in D.2.
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Female Male
Words Words

husband, women, chief, companies
gender, listed, computer,
practices, nurse, applications,
specializes, md, accepts,
children, known, doctors,
ba, child, npi, sports,
reading, families, philosoph’,
location, place, problems, rating,
affiliated, family, no, systems,
experiences, theory, practicing,
spanish, software,
love, justice security, major

Table 9: Top 20 significant words used to predict gender
on all biographies, as obtained from a logistic regres-
sion model trained on predicting the gender of a person
described in a biography. The words are sorted by im-
portance.

Female Male
Words Words

husband , women, holds , emergency,
midwife , providing vanderbilt, forces,
book , includes, registered, mental,
joining, faculty assistant, president

Table 10: Top 8 words used to predict gender of female
and male nurses, as obtained from a logistic regres-
sion model trained on predicting the gender of a person
described in a biography. The words are sorted by im-
portance.

C Why is scrubbing not as effective as
subsampling?

The debiasing method of subsampling significantly
reduced external biases in the occupation predic-
tion task. Although compression rates show that
scrubbing reduced more gender information, sub-
sampling outperforms it as a debiasing method. We
find that in spite of the scrubbing, a probe is able
to correctly identify the gender from an internal
representation with 68.8% accuracy compared to
90.7% on the original, non-scrubbed data. This
means that although the scrubbing process reduces
extrinsic bias significantly, gender information is
still embedded in the [CLS] token embeddings.

To investigate the source of gender information
after scrubbing, we use logistic regression (LR)

model to predict the gender from the Bag-of-Words
of the scrubbed biographies. We perform an itera-
tive process for automatic extra scrubbing: in each
iteration we (1) train a LR model for gender predic-
tion (2) scrub the n most significant words for each
gender according to the LR weights. The most rel-
evant words among 5 seeds of training with n=10
words scrubbed per iteration are displayed in Table
9. The model learns indirect correlations to gender
in the absence of explicit gendered words. Because
the significant words are related to male- or female-
dominated professions, we conducted the process
on a specific profession. Table 10 presents the most
significant words for biographies of nurses. There
are differences in wording even between females
and males in the same profession. The results of
this study are in line with the results of other studies
that have been conducted on the way biographies
are written for men and women (Wagner et al.,
2016; Sun and Peng, 2021).

Subsampling is therefore more effective even
when gender information is present since it pre-
vents the model from learning correlations between
gender information and a profession whereas scrub-
bing only attempts to remove gender indicators
without removing correlations. On the other hand,
it is possible that oversampling is less effective for
debiasing since seeing more non-unique examples
an unrepresented group encourages learning corre-
lations.

D A closer look into no-correlation cases

D.1 Occupation Prediction

Although compression has the ability to identify
bias in most cases, some metrics still show little or
no correlation with compression rate. These results
suggest that gender information comprises only
one facet of embedded bias in the representations.
Other factors that may influence these metrics are
not considered or measured, such as the connection
between a name and a profession.

For example, as can be see in Tables 3 and 4,
LMs finetuned on subsampled data have the largest
FPR gaps after retraining, despite being the least
biased before retraining, while those finetuned on
oversampled data have the next-to-lowest FPR gaps
after retraining. The information encoded in the
internal representations may have been encoded
in a manner that allowed the classification layer
to exhibit a smaller FPR gap when trained on a
balanced dataset. However, when the classification
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layer was retrained on biased training data, it used
the same features to make biased predictions.

D.2 Coreference Resolution
The cases where there is no correlation between
our intrinsic metric and an extrinsic metric are the
cases where the metric is based on Pearson corre-
lation. Unlike occupation prediction, coreference
resolution seems to exhibit no correlation between
those metrics and compression rate. These metrics
are computed as the Pearson correlation between a
performance gap for a specific profession and the
percentage of women in that profession, however
the percentages are computed differently in each
task: in occupation prediction, the percentages are
computed from the train set, focusing on the rep-
resentation each gender has in the data. In Wino-
bias, the percentages are taken from the US labor
statistics, and are unrelated to the training dataset
statistics. We note that the two statistics can be dif-
ferent - the real-world representation of women in a
profession does not have to be equal to their repre-
sentation in written text (Suresh and Guttag, 2021).
We thus decided to test what happens if we change
the statistics used in Winobias to dataset statistics,
but Ontonotes 5.0 has very little representation to
each profession and the statistics extracted from
it would not be reliable. We thus took a different
approach and computed the Pearson correlations
for occupation prediction with real world statistics
instead of dataset statistics. To do this, we mapped
the professions appearing in this dataset to pro-
fessions from the US labor statistics, and dropped
those who could no be mapped (6 out of 29 of the
professions which is 21.4%). We then repeated
all experiments on the Pearson metrics using these
statistics. Figure 7 shows the results. Correlations
are very different when computed with respect to
real-world statistics. TPR-gap has no correlation at
all although it had with training data statistics, the
correlation for FPR-gap after retraining exists but
is negative, and the correlation with precision-gap
does not exist after retraining. We thus conclude
that the Pearson metrics are less reliable as they are
heavily dependent on the statistics with respect to
which they are calculated.
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Figure 7: Occupation prediction: Before (left) and after (right) plots of compression rate versus Pearson metrics
as computed from real-world statistics (as opposed to statistics derived from the training dataset). This shows the
unrealiability of using real world statistics to draw conclusions, as they may not be reflected in the data.

2628



Part II

Fairness in Transfer across Languages
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We now have an understanding of the relationship between upstream and downstream

fairness. In the second half of Part I we established that, within English, for gender

bias, upstream potential can be realised in downstream behaviour, but is not always,

depending on downstream data.

In Part II we look into more complex cases: more languages, more types of biases,

and more complex transfer learning across languages rather than just across objec-

tives/tasks. We ask two questions: ‘Do other languages behave like English with regard

to fairness?’ ‘Does cross-lingual transfer affect fairness outcomes?’.

At the time this work was done, there were almost no resources available for testing

bias downstream in multiple languages (with the exception of a multilingual version of

WEAT (Lauscher and Glavaš, 2019)), which we established in Chapter 3 fails to have

predictive validity). At the time of writing this thesis years later, there is still very little,

despite that models are by now in the LLM-age, default multilingual. Even purportedly

English only models readily speak high resource languages due to data contamination

in the petabytes of pre-training data. Common use is determined by capabilities rather

than by terms of use – so all models are now multilingual.

There was also a lack of pre-existing research into this topic. When this work was done

there were three works examining the effect of grammatical gender on gender bias in

multilingual word embeddings (Gonen et al., 2019; Zhou et al., 2019; McCurdy and

Serbetci, 2017) and we built hypotheses and experiments upon this work. But there

was nothing examining cross-lingual transfer. I initially proposed to look at this in

2018, so I have always found it surprising that still few have. To date there are only a

handful more works.

Different languages have different distributions of strings, concepts, function words,

grammatical markers, and these determine many things that matter. They determine

the distribution learnt, what type of information is encoded, what is emphasised, what

is compressed, what is lost. The work on multilingual word embeddings mentioned

above (Gonen et al., 2019; Zhou et al., 2019; McCurdy and Serbetci, 2017) shows that

grammatical gender dramatically affects representations learned even when not aligned

to semantic gender. La amiga in Spanish "the female friend" has grammatical gender

aligned to semantic gender, the feminine grammar form expresses the real world gen-

der of the referent, contrasted with el amigo "the male friend", or in recent years also

le amige, for expressing non-binary gender or leaving gender under-specified. La tabla
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"the table" in Spanish also expresses grammatical female gender, but is not aligned to

semantic gender (as we do not generally consider tables to have semantic gender in the

cultures with which I am familiar)(Fedden et al., 2018; Corbett, 1991). Those three

works found that even though for most words grammatical gender has no semantic

meaning, it is one of the signals most strongly encoded in representations, so it effects

the learned semantics. Gonen et al. (2022) applied the PCA of Bolukbasi et al. (2016)

multilingually, and found that you cannot isolate gender to the first principle compo-

nent in gender marking languages, as you can in English. In gender marking languages

the information is encoded across more axes.

So we know that even if we entirely discount cultural differences (which is clearly non-

sense, but measuring cultural differences notoriously difficult) linguistic differences

change the representations and vocabulary distributions learnt. And we also know that

these same characteristics of distributions and representations: compression, what is

encoded, etc, are strong causal factors in inequities and biases expressed by a model.

This is what we discovered in Chapter 4. So is there some effect on fairness from su-

perimposing one language onto another, or from blending language data? It is a more

ambitious form of transfer learning with not just disjoint vocabularies (across domains)

or labels (across tasks) but also structures (across languages). This section builds to

rigorously showing that there is an effect, expressed in the second title Cross-lingual

Transfer Learning Can Worsen Biases in Sentiment Analysis. This effect turns out to be

very complex and difficult to disentangle from other confounds, but there is definitely

not no effect.

In this section, we begin by creating a resource to answer our questions. We select

the task of sentiment analysis as it has data in many languages. We create an evalua-

tion benchmark to test fairness properties for sentiment analysis in a number of these

languages, using the methodology for English in Kiritchenko and Mohammad (2018).

Their method sets up counterfactual tests for the effect of demographics on sentiment.

Once we’ve created the resource, we ask set of research questions that slowly build

towards answering questions about cross-lingual transfer. The two works that follow

directly build on each other: the first examines how transfer learning affects fairness

within one language, for four languages (+ English). The second moves on, using

the same resource, to asking more complex questions: how does cross-lingual transfer

affect bias?

Models today by default use both transfer learning and cross-lingual transfer, though
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both things are now so common that they are generally not stated. Multilingual fairness

research is not increasing commensurate with the growth of utilisation of multilingual

models in practice, or even increasing much at all (Ruder et al., 2022; Blasi et al.,

2022).

As with bias analysis as opposed to debiasing, publication processes disincentivise

multilingual work. Multilingual work scales linearly in compute, experiment manage-

ment, and analysis time in number of languages.

But we risk leaving other languages behind, in fairness particularly. What does it

mean if an NLP system exists in one hundred languages, but is fair in only English? It

is always a question whether new technologies will benefit society and improve lives,

or will increase inequalities. The answer is almost always a blend of these, but quite

clearly if we ensure fair NLP technologies only in English, we will tip farther towards

increasing inequalities.



Chapter 5

Monolingual Transfer in Sentiment

Analysis
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Bias Beyond English: Counterfactual Tests for Bias in Sentiment Analysis
in Four Languages

Seraphina Goldfarb-Tarrant∗† Adam Lopez†
Roi Blanco‡ Diego Marcheggiani‡
†University of Edinburgh, ‡Amazon

Abstract

Sentiment analysis (SA) systems are used in
many products and hundreds of languages.
Gender and racial biases are well-studied in
English SA systems, but understudied in other
languages, with few resources for such studies.
To remedy this, we build a counterfactual eval-
uation corpus for gender and racial/migrant
bias in four languages. We demonstrate its use-
fulness by answering a simple but important
question that an engineer might need to answer
when deploying a system: What biases do
systems import from pre-trained models when
compared to a baseline with no pre-training?
Our evaluation corpus, by virtue of being coun-
terfactual, not only reveals which models have
less bias, but also pinpoints changes in model
bias behaviour, which enables more targeted
mitigation strategies. We release our code
and evaluation corpora to facilitate future re-
search.1

1 Introduction

Sentiment Analysis (SA) systems are among the
most widely deployed NLP systems, used in hun-
dreds of languages (Chen and Skiena, 2014). It is
well-known that English SA models exhibit gen-
der and racial biases (Kiritchenko and Moham-
mad, 2018; Thelwall, 2018; Sweeney and Najafian,
2020), which are acquired from their training
data, training objective, and other system choices
(Suresh and Guttag, 2019). Other languages are
understudied; though many papers study SA bias in
English, few study SA bias in other languages. This
may be partly attributable to resource constraints:
there are fewer corpora available to audit systems
for bias in non-English languages. To remedy this,
we create evaluation datasets to evaluate gender and

∗ Correspondence to . Work
completed while at an internship at Amazon.

1All code, evaluation data, and links to models and
raw data can be found here: https://github.com/
seraphinatarrant/multilingual_sentiment_
analysis

Sentiment data
(japanese)

sentiment
model R

Sentiment data
(japanese)

その人との会話はむかつかた。
The conversation with that person is annoying.

The conversation with that Korean person is annoying.

韓国人との会話はむかつかた。

R(Sa) - R(Sb)Bias

Sb

Sa

sentiment
model R

Pretrained models

Baseline models

Corpus 
(japanese)

Figure 1: We create corpora and then do counterfac-
tual evaluation to evaluate how bias is transferred from
training data. Counterfactual pairs (e.g. sentences a, b)
vary a single demographic variable (e.g. race). We mea-
sure bias as the difference in scores for the pair. An un-
biased model should be invariant to the counterfactual,
with a difference of zero.

racial bias in four languages: Japanese (ja), simpli-
fied Chinese (zh), Spanish (es), German (de). Each
of these four languages has publicly available data
for training SA systems (Keung et al., 2020b), and
together they represent three distinct language fam-
ilies. To complement their existing resources with a
new resource that measures bias, we use counterfac-
tual evaluation (Figure 1), in which test examples
are edited to change a single variable of interest—
such as the race of the subject—extending previous
work done in English (Kiritchenko and Moham-
mad, 2018). We release the evaluation dataset to
facilitate further research.1

We demonstrate the value of these evaluation re-
sources by answering the following research ques-
tions: (RQ1) What biases do we find in other lan-
guages, compared to in English? (RQ2) How does
the use of pre-trained models affect bias in SA sys-
tems? While pre-trained models are common in
NLP, they may import biases not present in task
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supervision data, since a large pre-training corpus
may embody biases not present in the supervision
corpus. On the other hand, pre-training might di-
minish biases that arise from the small sample sizes
typical of SA training corpora.

Our experiments show that both gender and
racial bias are present in SA systems for all four
languages: when model architecture, data quan-
tity, and domain are held constant, SA systems in
other languages display quantitatively more bias
than SA systems in English. For RQ2, we find that
pre-training also makes SA systems less biased for
all languages, in aggregate, though in surprising
ways: our non-pre-trained models exhibit extreme
changes in behaviour on counterfactual examples,
whereas pre-trained models exhibit many small nu-
anced changes.

2 New Counterfactual Evaluation
Corpus

Counterfactual (or contrastive) evaluation estab-
lishes causal attribution by modifying a single in-
put variable, so that any changes in output can be
attributed to that intervention (Pearl, 2009). For
example, if our variable of interest is gender, and
our original sentence is The conversation with that
boy was irritating, then our intervention creates
the counterfactual sentence The conversation with
that girl was irritating. Importantly, we change
no other variables, such as age (boy → woman),
register (boy→ lady), or relationship (boy→ sis-
ter). We then evaluate the behavior of our model
on many such pairs of original and counterfactual
sentences. In a model with no gender bias, senti-
ment should not change under this intervention. If
it does, and does so systematically over many coun-
terfactuals, we conclude that our model is biased.

To create counterfactual examples for non-
English languages we use template sentences, illus-
trated in Table 1. Each template has a placeholder
for a demographic word, in order to represent the
counterfactual; and an emotion word, in order to
represent different levels of sentiment polarity.

The templates of Kiritchenko and Mohammad
(2018) only needed to handle the weak agreement
and inflectional morphology of English, so we ex-
tend their methodology to handle a variety of gram-
matical phenomena in other languages. For exam-
ple, in German we add gender agreement (mas-
culine, feminine, neuter) and noun declension; in
Spanish we add gender agreement (masculine, fem-

inine, plural of both) and idiomatic verb usage;2

in Japanese we add a distinction between active
and passive forms. Chinese requires no special han-
dling since it lacks gender agreement or inflectional
morphology.

In all languages, we create a gender bias test
set by providing contrasting pairs of male/female
terms that can fill the placeholder for demographic
variable. In German and Japanese we also pro-
vide pairs of terms for racial and anti-immigrant
bias, which we derive from NGOs, sociology
and anthropology resources, and government cen-
sus data (Buckley, 2006; Weiner, 2009; Muigai,
2010; , FADA). We usually leave the privileged
group unmarked to avoid the unnaturalness of
markedness (Blodgett et al., 2021).3 For Span-
ish anti-immigrant bias, we create pairs of names
by using name lists that are strongly associated
with migrants or with non-migrants, sourced from
Goldfarb-Tarrant et al. (2021), which are based
on social science research (Salamanca and Pereira,
2013). We lacked equivalent resources for Chi-
nese, so we test only gender bias. The resulting
corpora (Table 2) are comparable to or larger than
other common contrastive evaluation benchmarks
(Blodgett et al., 2021).

To produce the templates, we worked alongside
native speakers in Japanese, German, Spanish, and
Chinese to translate the English templates of Kir-
itchenko and Mohammad (2018), often modifying
them to prefer naturalness in the target language
while preserving sentiment. Our Japanese transla-
tor had professional translation experience, while
our German, Spanish, and Chinese translators had
training in linguistics. While collaborative devel-
opment and refinement of the translation process
required about a week, actual translation took about
four hours for each dataset. Further details in A.

3 Methodology

For our SA task, we focus on sentiment polarity
detection (Pang and Lee, 2007), where the output
label represents the sentiment of a text as an or-
dinal score (shown in parentheses): very negative

2Many emotions in Spanish can idiomatically only be ex-
pressed with ‘to be’ or ‘to have’, but not both. Some take both,
e.g., estoy enfadado vs. tengo un enfado — I am angry vs. I
have an anger, but some emotions can use only one, or as in
that example, the form changes.

3For example, for anti-Turkish bias in German, we replace
person dative object in Table 1 by contrasting dem
Türken (Turkish person (male gender)) with the unmarked ihm
(him).



Template Counterfactual sentences

en The conversation with <person object> was <emotional situation word>. The conversation with [him\her] was irritating.
ja <person> との会は <emotion word passive>た [彼\彼女] との会は イライラさた。
zh 跟 <person> 的谈话很 <emotional situation word>. 跟 [他\她] 的谈话很 令人生气.
de Das Gespräch mit <person dat. object> war <emotional situation word>. Das Gespräch mit [ihm\ihr] war irritierend.
es La conversación con <person> fue <emotional situation word female>. La conversación con [él\ella] fue irritante.

Table 1: Example sentence templates for each language and their counterfactual words that, when filled in, create
a contrastive pair; in this case, for gender bias. For illustration, all five examples are translations of the same
sentence.

Gender Race/Immigrant

Japanese 3340 2004
Chinese 4928 -
German 3200 5236
Spanish 4240 6360
English 2880 5760

Table 2: Counterfactual pairs in each evaluation set, in-
cluding original reference English. Differences in cor-
pus size are due to differing number of grammatical
variants and demographic words across languages.

(1), negative (2), neutral (3), positive (4), or very
positive (5).4

3.1 Metrics
We measure the mean and variance of the differ-
ences in sentiment score between each pair of coun-
terfactual sentences. Formally, each corpus con-
sists of n sentences, S = {si...sn}, and a demo-
graphic variable A = {a, b} where a is the priv-
ileged class (male or privileged) and b is the mi-
noritised class (female or racial minority). The
sentiment classifier produces a score R for each
sentence, and our aggregate measure of bias is:

1

N

n∑

i=0

R(si | A = a)−R(si | A = b)

Values greater than zero indicate bias against the
minoritised group, values less than zero indicate
bias against the privileged group, and zero indicates
no bias. Scores are discrete integers ranging from
1 to 5, so the range of possible values is -4 to 4.

Our counterfactual evaluation process enables
us to examine bias behaviour more granularly as
well. We generate confusion matrices of privi-
leged vs. minoritised scores such that an unbiased
model would have all scores along the diagonal.
This enables us to distinguish between many mi-
nor changes in sentiment or fewer large changes,

4This is the most common approach for sentiment systems
trained on user reviews, i.e. IMDB, RottenTomatoes, Yelp,
Amazon products (Poria et al., 2020).

which are otherwise obscured by aggregate metrics
as described above.

In results we shade 3% of total range for easier
visual inspection. This is an arbitrary choice: ‘no
bias’ differs by application and values within the
shaded range may still be unacceptable. Intuitively,
this corresponds to models being maximally biased
for three of every hundred examples, or making
minor biased errors for twelve of every hundred.

4 Experiments

We want to answer the questions: what biases arise
in SA systems in each of these languages (RQ1)?
Does pre-training improve or worsen biases (RQ2)?
To answer these questions, we measure the bias of
a baseline SVM classification model to a model
based on a pre-trained transformer model. We com-
pare standard and distilled transformer models; dis-
tilled models are often used in practice since they
are better suited to the computational constraints
of real-world systems.

Our baseline (no pre-training) models are bag-
of-words linear kernel support vector machines
(SVMs) trained on the supervision data in each
language. Our pre-trained (mono-T) models are
pre-trained bert-base (Devlin et al., 2018) for
each language. We randomly initialise a lin-
ear classification layer and simultaneously train
the classifier and fine-tune the language model
on the same supervision data. Our distilled
(distil-mono-T) models are identical, but based on
distilbert-base (Sanh et al., 2019).

We train each model five times with different
random seeds (or five separate runs for the baseline)
and then ensemble by taking their majority vote, a
standard procedure to reduce variance. All models
converge to performance on par with SotA on this
task and data. Training details and F1 scores on the
SA task are reported in Appendix B and C.

Training data For each model, we use the lan-
guage appropriate subset of the Multilingual Ama-
zon Reviews Corpus (MARC; Keung et al., 2020a),





Seshadri et al. (2022) find many ways that other
templates for bias evaluation can be brittle, so fu-
ture work should take this into account and take
measures to ensure robustness, such as testing with
multiple paraphrases of the templates.

We have laid the groundwork for investigating
bias in sentiment analysis beyond English. We cre-
ated resources, presented an evaluation procedure,
and used it to do the first analysis of bias in SA in
a simulated low-resource setting across multiple
languages. We showed that using pre-trained mod-
els produces much less biased models than using
baseline SVMs. We also showed that pre-trained
models have very different patterns of bias; a type
of analysis that is enabled by the counterfactual
design of our corpus. We invite the NLP commu-
nity to use the data and methods from this work to
continue analysis of languages beyond English.

7 Limitations

Like all bias tests, these experiments have positive
predictive power: they can find the biases they test
for, but they cannot eliminate the possibility of
there being biases that the tests overlook.

Our Japanese, German, Spanish, and Chinese
translators were from Japan, Germany, Spain, and
mainland China, respectively. Hence, their trans-
lations may reflect their native dialects of these
languages. While these dialects are consistent with
the corresponding training datasets in these lan-
guages, this fact may limit conclusions that we or
others can draw about SA in other dialects of these
languages, such as Central and South American
dialects of Spanish, or Chinese (Traditional).

8 Ethics Statement

Because of the aforementioned limitation regard-
ing positive predictive power, there is always a risk
with research on social biases that it can give prac-
titioners a false sense of security. It is absolutely
possible to evaluate on our corpus and get no bias,
and still end up causing harm to racial or gender
demographics, since they do not cover all biases or
all domains. This should be kept in mind whenever
applying this research.
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A Benchmark Dataset Creation

We followed the recommendations of Blodgett et al.
(2021) to ensure the validity of our datasets. Many
of the pitfalls enumerated in their work do not ap-
ply to our dataset, as we are measuring sentiment,
rather than stereotypes, but we took care to avoid
those that do apply. These are:

Markedness. In most cases we contrast the
minority group, e.g. Turkish people with the un-
marked group, e.g. people. Using a marked privi-
leged group—white people, straight people, etc—
is in most cases uncommon and occurs in only
particular settings, which threatens the validity of
the contrastive test (Blodgett et al., 2021). We do
make a few exceptions and mark privileged groups.
We do mark them for gender bias, since gender
is explicitly marked in language more than other
demographic traits (e.g. we contrast woman with
man, not with person). We also sometimes use
first names as proxies for demographics such as
race, class, and immigration status (in Spanish and
English) and in these cases the privileged group is
another name.

Naturalistic Text. Some of the sentences
in the original Kiritchenko and Mohammad
(2018) would be valid grammatical sentences
if translated directly into other languages, but
would not sound natural. For example, re-
flexive pronouns (himself, herself) aren’t used
the same way in Chinese as in English, so
in translating the English template <person
subject> found himself/herself in
a/an <emotional situation word>
situation. we instead used the Chinese
template <person subject> 经 历 了 一
件<emotional situation word> 的
事., which means <person subject> was
in a <emotional situation word>
situation. These small changes preserve
the same rough semantics, and more importantly
preserve naturalness.

Indirect Demographic Identification. Blod-
gett et al. (2021) caution against the use of proper
names or other proxies as a stand in for a demo-
graphic group, because their reliability for this use
is untested. We would add that names are difficult
to use in a contrastive pair where we need to change
only one demographic variable, because names in-
dicate many bits of demographic information at
once: race, gender, class, place of birth, period
of birth, etc. We intentionally avoid this by using

identity terms (Turk, Korean, etc) most of the time,
which do sometimes conflate race and country of
origin, but are otherwise the most precise option.
We use proper names only in Spanish based on the
work of Goldfarb-Tarrant et al. (2021) and Sala-
manca and Pereira (2013), who show that there is
data backing up the migrant vs. non-migrant names.
Even so, there is some conflation between migrant
status and socioeconomic class in that set of names:
we consider that acceptable for our purposes. There
are also names as a proxy for African-Americans
in English, as the dataset is from Kiritchenko and
Mohammad (2018) and that is what they use.

Basic Consistency A few other applicable
pitfalls, which Blodgett et al. (2021) capture under
the heading ‘Basic Control and Consistency’ we
avoid organically by our template based construc-
tion, e.g. differences in sentence length between
sentences A and B, are a possible confound, but by
construction we contrast only one word in a pair
and the sentence is otherwise unperturbed.

Once we had designed our translation process,
we did a multi-step qualitative evaluation. After
we had settled on the first version of the three
sets of templates, demographic terms, and emotion
words in each language, we worked with the native
speaker to iterate and make sure there were no ac-
cidental unnatural sentences or grammatical errors.
We generated a few examples for each template +
emotion + demographic combination, manually re-
viewed 200 examples per language, and then made
corrections to the templates, words and the rules
for combining them. We then repeated this exact
process a second time after the adjustments.

B Model Implementation Details

Monolingual transformer models have 110 million
parameters (± 1 million) and vocabularies of 30-
32k with 768D embeddings. We train the mono-
lingual models with the same training settings as
preferred in Keung et al. (2020a), and allow the pre-
trained weights to fine-tune along with the newly
initialised classification layer.

C Model Performance

Performance at convergence for models in each
language is given in Table 3.

We determined convergence by examining loss
curves and selecting the model where training loss
was flat, and validation had not yet increased. We



did not use early-stopping, as we wanted to save
many model checkpoints in order to study the train-
ing dynamics of bias, including after convergence
when the model was overtrained. However, we
found no clear trends in how bias changed over the
course of training, so for this study we used only
one model, at convergence, per language. We hope
that by releasing all model checkpoints (15 per lan-
guage), other researchers may be able to expand
our work into the training dynamics of bias.

Standard Distilled Baseline
F1 Steps F1 Steps F1

ja 0.62 44370 0.61 60436 0.38
zh 0.56 35190 0.53 43750 0.42
de 0.63 36720 0.63 52621 0.51
es 0.61 41310 - 0.48
en 0.65 27050 0.65 44285 0.53

Table 3: F1 at convergence and steps at convergence
for standard size, distilled, and baseline models. Per-
formance is measured on the MARC data.

D Full set of confusion matrices
comparing baseline and monolingual
models.

Figure 4 contains all confusion matrices for all
languages, of which we displayed a subset in the
body of this work.





Chapter 6

Cross-lingual Transfer in Sentiment

Analysis

The next work directly follows on from the previous results: the experiments were

planned together and directly inform each other, despite being published separately.

In the previous work, we created the resources needed to do these experiments, as it

was the first work on fairness in language models across multiple language families.

We found that there is an effect on fairness from transfer learning within one language.

We can’t disentangle the exact causes of this effect from those experiments: whether

it is information contained in the data, or the additional stability of the model from the

addition of more data, though we hypothesise the latter (stability from more data) is

the cause. Regardless of the causes, the findings are useful in practice under resource

constraints, if less scientifically satisfying than if we had controlled all variables.

In the following work, we examine the more complex setting of cross-lingual transfer

in all the same languages, and again ask how this setting changes fairness outcomes.

However, we set up our experiments to control as many variables as possible and es-

tablish causes, without pre-training all new models from scratch (that is, we limit our-

selves to fine-tuning only, as the multilingual setup has already extremely many vari-

ables and requirements on compute resources). The full set of experimental variables

we consider is:

• Type of bias. We look at gender bias and racial/country of origin bias. We

might expect these to have different patterns of cross-lingual transfer as gender

is encoded in some languages in a way that race is not (via gender agreement)
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and as gender biases tend to be global and common across languages in a way

that racial biases are not (the minoritised racial groups differ culture to culture).

• Mono vs. multilingual pre-training. We examine what happens when changing

from monolingual to multilingual pretraining without changing the fine-tuning

data. This would not be none in practice in a production system, but enables us

to isolate the two types of data (pretraining and fine-tuning) that usually change

when going from a monolingual transfer to a cross-lingual transfer model. In

our first experiments, we hold fine-tuning data constant for each language and

change only pretraining data.

• Target language fine-tuning vs. transfer language fine-tuning. In a monolin-

gual transfer setup, a model applied to Spanish as the target language will be

fine-tuned on Spanish. In cross-lingual transfer, it will be fine-tuned in another

language (in this case English) and then applied to Spanish. In these next ex-

periments, we hold the pretrained multilingual model constant and change the

fine-tuning data.

• Random seed. All experiments report the majority vote over five random seeds

for the weight initialisation of the classifier and the data shuffle for fine-tuning.

We initially did an analysis by individual random seed, and found them to differ

so strongly that sometimes even polarity of the bias flipped: that is, for random

seed A there would be anti-female bias and for random seed B there would be

anti-male bias. We take majority vote to indicate what would be the most likely

thing to happen for a random seed picked out of a hat.

• Distillation. We do the same set of experiments for full-size (100-150 million

parameters) and for distilled models, which are approcimately half the number of

parameters. These experiments make our results more applicable in practice, as

distilled models are commonly used in combination with cross-lingual transfer

as both are methods to deal with insufficient data or resources.

There are nonetheless two experimental variables that we consider important but were

unable to include. We do not look at the effect of modifying pretraining data: it is

an important variable in the manifestation of social bias, but it is the most difficult

to experiment on because training a model from scratch is so challenging. It is also

the one least likely for developers of NLP systems to modify in practice, for that very

reason. We also do not look at the effect of domain match/mismatch. In practice
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many sentiment systems have a domain mismatch, since sentiment training data tends

to be from domains where sentiment can be determined from freely available metadata

without an annotation effort: movie, restaurant, and product reviews. Our experiments

reflect this domain mismatch by training on product reviews and using standard text at

inference. However, results may differ for in-domain data, and it would be possible to

also create a bias evaluation dataset from in-domain data and observe the differences.

As a result of these ablations, this work focuses on two types of causal tests. The

evaluation dataset is based on counterfactual pairs, which are causal tests that answer

the question not just what changed (as an observational study does) but also why did

it change (a property of an interventional or causal study). This is a different why than

is answered when we do all of our experiments, which are themselves a different kind

of counterfactual. The evaluation data holds everything fixed save the demographic

variable, such that any change is attributable to the perturbation of the demographic

variable. The many experimental scenarios hold everything fixed save a specific dif-

ference in model training, so that difference becomes the variable that can establish

causality. We also leverage the analytical method from the previous work on using a

counterfactual confusion matrix to visually inspect patterns of bias.

The many experiments thus answer whether the observed behaviour came from pre-

training or fine tuning as best as possible. There is a limitation, which is that this setup

is unable to isolate any interaction effects (which there almost certainly is because pre-

training sets inductive biases). It also doesn’t answer what about each step caused the

change (what segment of data, what hyperparameter). We are unaware of any work

that can manage these questions, but we do want to call out that though this work is

very rigorous on causal attribution, it is still able to establish causality to only a lim-

ited extent and far more research into this area is needed for it to be understood. We

released all the models in the hopes that other researchers will do some of this work.
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Abstract

Sentiment analysis (SA) systems are widely de-
ployed in many of the world’s languages, and
there is well-documented evidence of demo-
graphic bias in these systems. In languages
beyond English, scarcer training data is often
supplemented with transfer learning using pre-
trained models, including multilingual mod-
els trained on other languages. In some cases,
even supervision data comes from other lan-
guages. Does cross-lingual transfer also import
new biases? To answer this question, we use
counterfactual evaluation to test whether gen-
der or racial biases are imported when using
cross-lingual transfer, compared to a monolin-
gual transfer setting. Across five languages, we
find that systems using cross-lingual transfer
usually become more biased than their monolin-
gual counterparts. We also find racial biases to
be much more prevalent than gender biases. To
spur further research on this topic, we release
the sentiment models we used for this study,
and the intermediate checkpoints throughout
training, yielding 1,525 distinct models; we
also release our evaluation code.1

1 Introduction

Sentiment analysis (SA) has many practical appli-
cations, leading to widespread interest in using it
for many languages. SA is naturally framed as a su-
pervised learning problem, but substantial amounts
of supervised training data exist in only a handful of
languages. Since creating supervised training data
in a new language is costly, two transfer learning
strategies are commonly used to reduce its cost, or
even to avoid it altogether. The first, which reduces
cost, is monolingual transfer: we pre-train an un-
supervised model on a large corpus in the target
language, fine-tune on a small amount of supervi-
sion data in that language, and apply the model
in that language (Gururangan et al., 2020). The

1https://github.com/seraphinatarrant/
multilingual_sentiment_analysis

その人との会話はむかつかた。
The conversation with that person is annoying.

The conversation with that Korean person is annoying.

韓国人との会話はむかつかた。

R(Sa) - R(Sb)Bias

Sb

Sa

Monolingual Cross-lingual

Corpus 
(multilingual)

Corpus 
(japanese)
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(english)
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Figure 1: We use counterfactual evaluation to evaluate
how bias is differs in monolingual vs. cross-lingual
systems. Counterfactual pairs (e.g. sentences a, b) vary
a single demographic variable (e.g. race). We measure
bias as the difference in scores for the pair. An unbiased
model should be invariant to the counterfactual, with a
difference of zero.

second, which avoids annotation cost altogether,
is zero-shot cross-lingual transfer: we pre-train
an unsupervised model on a large corpus in many
languages, fine-tune on already available supervi-
sion data in a high-resource language, and use the
model directly in the target language (Eisenschlos
et al., 2019; Ranasinghe and Zampieri, 2020).

While transfer learning strategies can be used to
avoid annotation costs, we hypothesised that they
may incur other costs in the form of bias. It is
well-known that high-resource SA models exhibit
gender and racial biases (Kiritchenko and Moham-
mad, 2018; Thelwall, 2018; Sweeney and Najafian,



2020). Less is known about bias in other languages.
A recent study found that SA models trained with
monolingual transfer were less biased than those
trained without any transfer learning (Goldfarb-
Tarrant et al., 2023). As far as we are aware, there
is no work that studies the effect of cross-lingual
transfer on bias.

But there is good reason to hypothesise that
cross-lingual transfer may introduce new biases.
Specific cultural meanings, multiple word senses,
and dialect differences often contribute to errors in
multilingual SA systems (Mohammad et al., 2016;
Troiano et al., 2020), and are also sources of bias
(Sap et al., 2019). For example, the English word
foreigner translates to the Japanese word gaijin (外
人) which has approximately the same meaning,
but more negative sentiment. Bias may also arise
from differences in what is explicitly expressed.
For example, there is evidence that syntactic gen-
der agreement increases gender information in rep-
resentations (Gonen et al., 2019a; McCurdy and
Serbetci, 2017), and there is also evidence that
gender information in representations correlates
with gender bias (Orgad et al., 2022). From these
facts, we hypothesise that multilingual pre-training
on languages with gender agreement will produce
more gender bias in target languages without gen-
der agreement, while producing less bias in target
languages with gender agreement.

In this paper, we conduct the first investigation
of biases imported by cross-lingual transfer, an-
swering the following research questions: (RQ1)
What biases are imported via cross-lingual transfer,
compared to those found in monolingual transfer?
When using cross-lingual transfer, are observed bi-
ases explained by the pre-training data, or by the
cross-lingual supervision data? Since practical sys-
tems often use distilled models, we also ask: (RQ2)
Do distilled transfer models show the same trends
as standard ones?

We investigate these questions via counterfac-
tual evaluation, in which test examples are edited
to change a single variable of interest—such as the
race of the subject—so that any change in model
behaviour can be attributed to that edit. We use
the counterfactual evaluation benchmarks of Kir-
itchenko and Mohammad (2018) and an extension
of it (Goldfarb-Tarrant et al., 2023) to test for gen-
der, racial, and immigrant bias in five languages:
Japanese (ja), simplified Chinese (zh), Spanish (es),
German (de), and English (en). The first four lan-

guages cover three different language families, that
all have fewer sentiment analysis resources then
English; including English in the study enables us
to compare to previous work. We find that:

1. Zero-shot multilingual transfer generally in-
creases bias compared to monolingual models.
Racial bias in particular changes dramatically.

2. The increase in bias in cross-lingual transfer is
largely, but not entirely attributable to the mul-
tilingual pre-training data, rather than cross-
lingual supervision data.

3. As hypothesised, gender bias is influenced
by multilingual pre-training in directions that
are predictable by the presence or absence
of syntactic gender agreement in the target
language.

4. Compressing models via distillation often re-
duces bias, but not always.

We conclude with a set of recommendations to
test for bias in zero-shot cross-lingual transfer learn-
ing, to create more resources to allow testing, and
to expand bias research outside of English. We re-
lease all models and code used for our experiments,
to facilitate further research.1

2 Background

2.1 Cross-lingual Transfer
The aim of transfer learning is to leverage a plen-
tiful resource to bootstrap learning for a task with
few resources. Cross-lingual transfer learning
(Ruder et al., 2019; Pires et al., 2019; Wu and
Dredze, 2019) extends this idea to transferring
across languages. It works by pre-training a model
on text in many languages, including both the tar-
get language and one or more additional languages
with substantial resources in the target task. For
example, we pre-train a model on a multilingual
web crawl containing both English and Japanese,
and fine-tune on many English reviews (plentiful
resource). We then assume that since the model
knows about both Japanese and polarity detection,
it can be applied to the task even though it has never
seen examples of polarity detection in Japanese.
We call this zero-shot cross-lingual transfer (ZS-
XLT). An alternative approach is few-shot transfer,
where we also use a very small amount of target-
language supervision. We focus on zero-shot trans-
fer because it makes clear any causal link between
multilingual training and bias transfer.



2.2 Counterfactual Evaluation

Counterfactual evaluation is an approach that al-
lows us to establish causal attribution: a single
input variable is modified at a time, so that one can
be sure that any changes in the output are due to
that change (Pearl, 2009).

Benchmarks for evaluating model fairness with
this strategy are constructed so that model predic-
tions should be invariant to changes in a demo-
graphic or protected variable such as race or gender
(Kusner et al., 2017).2 For example, the sentiment
scores of The conversation with that boy was ir-
ritating and The conversation with that girl was
irritating should be equal. If there is a systematic
difference in predicted sentiment scores between
such pairs of sentences, we conclude that our model
is biased. Biased models for sentiment analysis are
likely to propagate representational harm (Craw-
ford, 2017) by systematically associating minori-
tised groups with more negative sentiment. They
also can propagate allocational harm by being less
stable at sentiment prediction in the presence of
certain demographic information. Sentiment analy-
sis is often a component of another application, so
the specific harm depends on the application.

3 Methodology

We treat sentiment polarity detection as a five-way
classification problem: very negative (1), negative
(2), neutral (3), positive (4), or very positive (5). In
figures, we refer to these classes by using symbols
--, -, 0, + and ++. This ordinal labeling scheme is
commonly used when systems are trained on user
reviews with a star rating (Poria et al., 2020).

We train monolingual and cross-lingual mod-
els, then evaluate them on counterfactual corpora
and compare their differences in bias measures.
We look at both average bias using aggregate met-
rics and granular bias using a contingency table of
counterfactuals. This enables us to build an overall
picture of model comparability and also to differ-
entiate between models with identical aggregate
bias but different behaviour – some models may
make many small errors, and some may make few
large errors, and this may matter for minimising
real world harms.

2There are tasks where invariance to demographics doesn’t
make sense, such as hate speech classification. Our evaluation
data are designed so that all examples should be invariant.

3.1 Evaluation Benchmarks

To evaluate social bias in our experiments, we use
multiple different counterfactual benchmarks. Ta-
ble 1 contains examples from all datasets. For
English, we use the counterfactual corpus of Kir-
itchenko and Mohammad (2018), which covers
binary gender bias, and racial bias. Gender is rep-
resented by common gender terms (he, she, sister,
brother), and African American race is represented
by African-American first names contrasted with
European American ones, derived from Caliskan
et al. (2017). For non-English language bench-
marks, we use the corpus of Goldfarb-Tarrant et al.
(2023) which follows the methodology of Kir-
itchenko and Mohammad (2018) to create the same
kind of benchmark in German, Spanish, Japanese,
and Chinese, extended to respect linguistic and cul-
tural specifics of those languages. In the Goldfarb-
Tarrant et al. (2023) benchmark, all languages have
a test for gender bias, where gender is binary and
is similarly represented by common gender terms
(as above). The German resource covers anti-
immigrant bias, using identity terms of race and
nationality identified by governmental and NGO
resources as immigrant categories that are targets
of hate (Muigai, 2010; , FADA) e.g. Turk, Arab,
Muslim, Roma, Sinti. The Japanese resource covers
bias against racial minorities, using identity terms
of minoritised groups from sociology resources
(Buckley, 2006; Weiner, 2009), e.g Chinese, Ko-
rean, Okinawan. The Spanish resource tests anti-
immigrant bias via name proxies of immigrant first
names, taken from Goldfarb-Tarrant et al. (2021)
based on the social science research of Salamanca
and Pereira (2013). The benchmark provides only
gender bias tests for Chinese, so this work includes
an analysis of gender bias only for Chinese. For
reference, we have included the full set of racial
and nationality groups covered in the benchmark
in Appendix C.

In all datasets, counterfactual pairs are generated
from template sentences (Table 1) that vary both the
counterfactual and the sentiment polarity, by using
placeholders for demographic words and emotion
words, respectively. Demographic words are as de-
scribed above, for emotion words, Kiritchenko and
Mohammad (2018) use 40 English emotion words
that fit into high level categories of fear, anger, joy,
and sadness (this granularity allows testing more
granular sentiment and emotion rather than simply
polarity, if desired). Goldfarb-Tarrant et al. (2023)



use emotion words from the same high level cate-
gories and about 10 emotions per category as well,
though sometimes this is many more than 10 ac-
tual words to account for grammar in non-English
languages (gender, case, etc). Datasets range from
3-5k pairs per language, which gives sufficient sta-
tistical power for the differences we observe. We
nonetheless include confidence intervals in all our
analysis.

There exists an additional benchmark of the
same construction covering Arabic also Câmara
et al. (2022). It was not yet available at the begin-
ning of this work (and there is no equivalent Arabic
sentiment data for us to use) so we did not use it in
this work, but it may be helpful for future research
to include an additional language family.

3.2 Metrics
We need an aggregate measure of overall bias and
a way to look at results in more detail. For our
aggregate metric, we measure the difference in sen-
timent score between each pair of counterfactual
sentences, and then analyse the mean and variance
over all pairs. Formally, each corpus consists of
n sentences, S = {si...sn}, and a demographic
variable A = {a, b} where a is the privileged class
(male or privileged / unmarked race) and b is the
minoritised class (female or racial minority). The
sentiment classifier produces a score R for each
sentence, and our aggregate measure of bias is:

1

N

n∑

i=0

R(si | A = a)−R(si | A = b)

In this formulation, values greater than zero indi-
cate bias against the minoritised group, values less
than zero indicate bias against the privileged group,
and zero indicates no bias. Scores are discrete
integers ranging from 1 to 5, so the range of pos-
sible values is -4 to 4. For example, if a sentence
received a score of 4 with the male demographic
term, and a score of 1 with the female demographic
term, then the score gap for that example is 3.

To put our results in context, Kiritchenko and
Mohammad (2018) found the average bias of a sys-
tem to be ≤ 3% of the output score range, which
corresponds to a gap of 0.12 on our scale. In prac-
tice, this is equivalent to reducing the sentiment
score by one for twelve out of every hundred re-
views mentioning a minoritised group, or to flip-
ping the score from maximally positive to maxi-
mally negative for three out of every hundred.

For more granular analysis we examine contin-
gency tables of privileged vs. minoritised scores
for each example. This enables us to distinguish be-
tween many minor changes in sentiment or fewer
large changes, which are otherwise obscured by
aggregate metrics as described above.3

4 Experimental Setup

Our goal is to simulate practical conditions as much
as is possible with available resources and datasets,
so we start with pre-trained models from hugging-
face (Wolf et al., 2020) which are commonly used
in sentiment benchmarks and previous work on
our data.4 We then fine-tune these models on su-
pervised training for the polarity detection task
and apply to the counterfactual evaluation set in
the target language. Both monolingual and mul-
tilingual models have as similar numbers of pa-
rameters and fine-tuning procedures as is possible,
to minimise confounds while being realistic (Ap-
pendix A). Models are fine-tuned until convergence
using early stopping on the development set. All
models (multilingual and monolingual) converge to
equivalent performance as previous work (Keung
et al., 2020), which is state of the art on this task.
F1 scores and steps to convergence are included in
Appendix B.
Monolingual transfer (mono-T) models are
based on pre-trained bert-base-uncased
(Devlin et al., 2018) in the target language.
We randomly initialise a linear classification
layer, then simultaneously train it and fine-tune
the language model on monolingual supervision
data. Our distilled monolingual model (distil-
mono-T) is identical, except that it is based
on distilbert-base-uncased (Sanh et al.,
2019).
Multilingual models are based on pre-trained
mbert-base-uncased then fine-tuned on a
large volume of sentiment data in English only,
the standard approach to zero-shot cross-lingual
transfer (ZS-XLT). We also fine-tune a distilled ZS-
XLT model (distil-ZS-XLT), identical except that
it is based on distilmbert-base-uncased.

3Readers familiar with Kiritchenko and Mohammad (2018)
may recall that they provide an aggregate measure in the form
of a graph, as we do, and more granular measures of amount
of bias per group (e.g. for male and female separately), in a
table. We forgo the table as we use contingency tables in our
analysis, which contain a superset of the same information
(bias by group, as well as bias by label).

4https://paperswithcode.com/task/
sentiment-analysis#benchmarks



Template Counterfactual sentences

en The conversation with <person object> was <emotional situation word>. The conversation with [him\her] was irritating.
ja <person> との会は <emotion word passive>た [彼\彼女] との会は イライラさた。
zh 跟 <person> 的谈话很 <emotional situation word>. 跟 [他\她] 的谈话很 令人生气.
de Das Gespräch mit <person dat. object> war <emotional situation word>. Das Gespräch mit [ihm\ihr] war irritierend.
es La conversación con <person> fue <emotional situation word female>. La conversación con [él\ella] fue irritante.

Table 1: Example sentence templates for each language and their counterfactual words that, when filled in, create a
contrastive pair; in this case, for gender bias. For illustration, all five examples are translations of the same sentence.

Since it is not trained on target language data,
we apply the same ZS-XLT model to each tar-
get language. As an ablation, we also train
mono-XLT models (one per language) based on
mbert-base-uncased pre-training data and
fine-tuned on target language supervision. Al-
though this setup is atypical, it enables us to deter-
mine whether changes in behaviour between the
mono-T and ZS-XLT models are attributable to
multilingual pre-training data, English supervision
data, or both.
Fine-tuning data. Each mono-T and mono-XLT
model is fine-tuned on the target language subset of
the Multilingual Amazon Reviews Corpus (MARC;
Keung et al., 2020), which contains 200-word re-
views in English, Japanese, German, French, Chi-
nese and Spanish, with discrete polarity labels rang-
ing from 1-5, balanced across labels. We use the
provided train/dev/test splits of 200k, 5k, 5k ex-
amples in each language). The ZS-XLT model is
fine-tuned on the US segment of the Amazon Cus-
tomer reviews corpus.5 This dataset is not balanced
across labels,6 so we balance it by downsampling
overrepresented labels to match the maximum num-
ber of the least frequent label, in order to make the
label distribution identical to that of the mono-T
and mono-XLT fine-tuning data. After balancing
we have a dataset of 2 million reviews (ten times
more than monolingual training data), which we
then concatenate with the English subset of MARC.
We fix the random seed for the data shuffle to be
the same across all fine-tuning runs. Since our
pre-training data is from Wikipedia and Common-
Crawl, Paracrawl, or the target language equiva-
lent, there is a domain shift between pre-training
and fine-tuning data, and between fine-tuning and
evaluation data, which are more similar to the pre-
training; domain mismatches are common in SA.7

5https://s3.amazonaws.com/
amazon-reviews-pds/readme.html

6As is common in user-generated review data, the distri-
bution is skewed towards extreme labels, and in the original
review data 1 and 5 are 73% of data.

7Note that pretraining data is fixed within one language,
allowing comparison between models within a language, but

We train each model five times with different ran-
dom seeds and then ensemble by taking their major-
ity vote, a standard procedure to reduce variance. In
our initial experiments, we observed that bias var-
ied substantially across different random initialisa-
tions on our out-of-domain counterfactual corpora,
despite stable performance on our in-domain train-
ing/eval/test data. Previous work has also found dif-
ferent seeds with identical in-domain performance
to have wildly variable out-of-domain results (Mc-
Coy et al., 2020) and bias (Sellam et al., 2022) and
theorised that different local minima may have dif-
fering generalisation performance. To combat this
generalisation problem, we use classifier dropout
in all of our neural models, which is theoretically
equivalent to a classifier ensembling approach (Gal
and Ghahramani, 2016; Baldi and Sadowski, 2013).

5 Results

We examine whether system bias is affected by
a decision to use zero-shot cross-lingual transfer
(ZS-XLT) instead of monolingual transfer. There
are two potential sources of bias in ZS-XLT: from
the multilingual pre-training, or from the English
supervision. Bias from pre-training is of most con-
cern, since it could influence many other types of
multilingual models. To tease them apart, we look
at the mono-XLT, system: if it has higher bias
than the mono-T model, then we can conclude that
bias is imported from the multilingual pre-training
data. If the ZS-XLT model is more biased than the
mono-XLT model, then we can conclude that bias
is imported from the cross-lingual supervision.

5.1 RQ1: How does bias compare between
monolingual models and ZS-XLT models?
Are observed changes from pre-training
or from supervision?

Figure 2 shows comparison between mono-T,
mono-XLT, and ZS-XLT models.

not across languages, making it more difficult to make cross-
linguistic comparisons, which is why we make very few and
are predominantly interested in the effect of cross-linguistic
transfer within one language.







languages with more gender agreement (German,
Spanish) (irrespective of cultural attitudes toward
women, which are very variable). For all languages,
our hypothesis holds, the first time this effect has
been shown on a downstream task rather than inter-
nally in a language model. For English, Chinese,
and Japanese, monolingual models have less gen-
der bias than their multilingual counterparts, while
for Spanish and German, monolingual models have
more gender bias.
The Case of Race For racial bias, the source of
the bias is less systematic: Sometimes the ZS-XLT
model bias is unchanged—as with Japanese and
English—and sometimes it increases, as with Ger-
man and Spanish. The presence of cross-lingual
racial bias is surprising. Racial bias tends to be cul-
turally specific, so we did not expect it to transfer
across language data the way gender bias might;
we expected ZS-XLT to have either equivalent or
less racial bias than mono-T. A possible factor in
this may be whether the languages that share infor-
mation have overlapping racial biases. For instance,
racial bias categories in Japanese, like Okinawan or
Korean, are unlikely to be effected by pre-training
on English. Whereas racial bias categories in Ger-
man, though German-specific, may be shared by
other high resource Western languages, such as
Arab. Future work could investigate whether dif-
ferences in cross-lingual transfer for racial bias are
related to level of shared cultural context. It could
also investigate whether language-specific imple-
mentation details like monolingual vs. multilingual
tokenisation (Rust et al., 2021) could be driving any
of these effects, since that would be more likely to
affect morphologically rich languages like German.
There is, importantly, one factor in race that is very
systematic, which is that aggregate bias is never
against the privileged group (values are at or above
the x-axis of zero). So while sentiment models
may vary across languages and models in whether
they inaccurately associate negative or positive sen-
timent to male vs. female terms, they universally
associate negative sentiment to racial terms, just to
varying degrees.

6 RQ2: Do distilled models show the
same trends?

Figure 4 shows a comparison of standard and dis-
tilled models for mono-T and ZS-XLT models. The
patterns are still not consistent, but are striking. For
cross-lingual transfer, distillation dampens racial

biases. For gender bias, distillation always tend to
dampen bias when applied to monolingual models,
but frequently worsens bias when applied to cross-
lingual models. German, Spanish, and Chinese
all have significantly more bias for gender with
distil-ZS-XLT than with ZS-XLT models.

Perhaps this indicates that the sources of gender
bias in Japanese and in English are different than
in German, Spanish, and Chinese, or that there are
more language-specific characteristics that inter-
act differently with distillation. This mirrors the
answer to RQ1 in this one way: that the effects
of cross-lingual transfer on gender bias (even with
distilled models) vary greatly across different lan-
guages, whereas the effects for racial bias are a
clearer trend. We leave this investigation for fu-
ture work, but consider these results to be at least
promising, that model distillation may be an effec-
tive approach to mitigate or at least avoid exacer-
bating racial biases in cases where cross-lingual
transfer must be used.

7 Recommendations and Conclusions

This broad set of experiments has shown that bias
can change drastically as a result of any of the stan-
dard engineering choices for making an SA system
in a lower resourced language. In light of these
results, we make the following recommendations:
Do not assume that more data will improve
biases Assess bias of all new model and data
choices. Use granular bias by sentiment label, as
well as aggregate bias, to make decisions that best
suit the intended application.
Don’t rely solely on aggregate measures. Our
results highlight how summary statistics can make
different underlying distributions appear identical,
a point made by Matejka and Fitzmaurice (2017) in
general, and by Zhao and Chang (2020) specifically
for bias, but still frequently overlooked in most bias
research. Though both are problematic, a model
that consistently associates slightly more negative
sentiment to a minoritised group is qualitatively
different from a model that sometimes flips very
positive sentiment to very negative sentiment.
Beware of bias introduced cross-lingually. Bias
can transfer across languages from pre-training or
from supervision data, which means that cross-
lingual transfer has the opportunity to introduce
non-local biases. These can be unexpected and
hard to detect, and represent machine learning cul-
tural imperialism that is best avoided.





bias in English, it represents only a fraction of the
world’s languages. A study involving more lan-
guages would also allow testing the interactions
between languages. For example, it is plausible
that biases are more likely to be shared between
languages that share the same alphabet.

Finally, this paper contributes to understanding
how cross-lingual transfer affects the presence of
bias, but this is only one of the sources of bias.
Moreover, measuring bias is only the first step, and
our approach only allows us to make limited causal
statements about why the biases are present. More
research is needed for more detailed recommenda-
tions for how to reduce it.

9 Ethics Statement

Our work is a direct response to the risks posed by
biased AI. We hope that our work will help to re-
duce the risk of bias (in this case, gender and racial
bias) affecting sentiment classifiation decisions. In
doing so, we are releasing models that we know to
be biased. These models could, in theory, be used
by others for dubious purposes. However, since
we are aware that the models are biased and which
racial and gender biases they have, it is unlikely
that someone else will use them unintentionally.
After weighing up the risks and benefits, we there-
fore release them in the interest of reproducibility
and of people who wish to build on our work.

The dataset we use, which ultimately derives
from the templates collected by Kiritchenko and
Mohammad (2018), does not contain any informa-
tion that names or uniquely identifies individual
people or offensive content. Our use of this dataset
is consistent with its intended use, to measure gen-
der and racial bias in sentiment analysis systems.
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Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
8342–8360, Online. Association for Computational
Linguistics.

Sara Hooker, Nyalleng Moorosi, G. Clark, S. Bengio,
and Emily L. Denton. 2020. Characterising bias in
compressed models. ArXiv, abs/2010.03058.

Phillip Keung, Yichao Lu, György Szarvas, and Noah A.
Smith. 2020. The multilingual Amazon reviews cor-
pus. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 4563–4568, Online. Association for
Computational Linguistics.

Svetlana Kiritchenko and Saif Mohammad. 2018. Ex-
amining gender and race bias in two hundred senti-
ment analysis systems. In Proceedings of the Sev-
enth Joint Conference on Lexical and Computational
Semantics, pages 43–53, New Orleans, Louisiana.
Association for Computational Linguistics.

Matt J. Kusner, Joshua R. Loftus, Chris Russell, and
Ricardo Silva. 2017. Counterfactual fairness. In Ad-
vances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Process-
ing Systems 2017, December 4-9, 2017, Long Beach,
CA, USA, pages 4066–4076.

Alexandra Luccioni and Joseph Viviano. 2021. What’s
in the box? an analysis of undesirable content in the
Common Crawl corpus. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 2:
Short Papers), pages 182–189, Online. Association
for Computational Linguistics.

Justin Matejka and George Fitzmaurice. 2017. In
Proceedings of the 2017 CHI Conference on Hu-
man Factors in Computing Systems, CHI ’17, page
1290–1294, New York, NY, USA. Association for
Computing Machinery. [link].

R. Thomas McCoy, Junghyun Min, and Tal Linzen.
2020. BERTs of a feather do not generalize together:
Large variability in generalization across models with
similar test set performance. In Proceedings of the
Third BlackboxNLP Workshop on Analyzing and In-
terpreting Neural Networks for NLP, pages 217–227,
Online. Association for Computational Linguistics.

K. McCurdy and Oguz Serbetci. 2017. Grammat-
ical gender associations outweigh topical gender
bias in crosslinguistic word embeddings. ArXiv,
abs/2005.08864.

Saif M. Mohammad, Mohammad Salameh, and Svet-
lana Kiritchenko. 2016. How translation alters senti-
ment. J. Artif. Intell. Res., 55:95–130.

Githu Muigai. 2010. Report of the special rapporteur on
contemporary forms of racism, racial discrimination,
xenophobia and related intolerance, githu muigai, on
his mission to germany (22 june - 1 july 2009).

Hadas Orgad, Seraphina Goldfarb-Tarrant, and Yonatan
Belinkov. 2022. How gender debiasing affects in-
ternal model representations, and why it matters. In
Proceedings of the 2022 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 2602–2628, Seattle, United States. Association
for Computational Linguistics.

Judea Pearl. 2009. Causal inference in statistics: An
overview. Statistics Surveys, 3:96–146.

Jonas Pfeiffer, Naman Goyal, Xi Lin, Xian Li, James
Cross, Sebastian Riedel, and Mikel Artetxe. 2022.
Lifting the curse of multilinguality by pre-training
modular transformers. In Proceedings of the 2022
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 3479–3495, Seattle,
United States. Association for Computational Lin-
guistics.

Telmo Pires, Eva Schlinger, and Dan Garrette. 2019.
How multilingual is multilingual BERT? In Proceed-
ings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4996–5001, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Soujanya Poria, Devamanyu Hazarika, Navonil Ma-
jumder, and Rada Mihalcea. 2020. Beneath the tip of
the iceberg: Current challenges and new directions in
sentiment analysis research. CoRR, abs/2005.00357.

Tharindu Ranasinghe and Marcos Zampieri. 2020. Mul-
tilingual offensive language identification with cross-
lingual embeddings. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language



Processing (EMNLP), pages 5838–5844, Online. As-
sociation for Computational Linguistics.

Sebastian Ruder, Ivan Vulić, and Anders Søgaard. 2019.
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A Model Implementation Details

Monolingual transformer models have 110 million
parameters (± 1 million) and vocabularies of 30-
32k with 768D embeddings. Multilingual models
have 179 million parameters, a vocabulary of 120k,
with 768D embeddings. We train the monolingual
models with the same training settings as preferred
in Keung et al. (2020), and allow the pre-trained
weights to fine-tune along with the newly initialised
classification layer. The multilingual models are
trained identically, save that they have a 100x larger
learning rate, and learning rate annealing.

All models were trained for 5 seeds, models
trained on monolingual data (mono-T, mono-XLT,
and distil-mono-T) were checkpointed 15 times.
ZS-XLT models were checkpointed 6 times. In
total we train 1525 models: 3 monolingual (non-
baseline) model types with 5 seeds across 5 lan-
guages and 15 checkpoints (1,225 models) and
2 multilingual model types (ZS-XLT, distil-XLT)
with 5 seeds and 5 languages and 6 checkpoints
(300) models.

This study was done on only the converged mod-
els, but all models are released for further study.

Computational Resources. Each model was
trained on 4 NVIDIA Tesla V100 GPUs with 16GB
memory. mono-T and mono-XLT models took 6-8
hours to converge, ZS-XLT and distil-ZS-XLT took
15 hours. This is a total of 620 total hours, or 2,480
GPU hours on our resource.

B Model Performance

Standard Distilled
F1 Steps Reference F1 Steps

ja 0.62 44370 0.57 0.61 60436
zh 0.56 35190 0.55 0.53 43750
de 0.63 36720 0.62 0.63 52621
es 0.61 41310 0.59 - -
en 0.65 27050 0.63 0.65 44285
ZS-XLT 0.69 75000 0.68 33336

Table 2: F1 at convergence and steps at convergence for
standard size and distilled models. Monolingual model
performance is measured on the MARC data, ZS-XLT
model performance on the US reviews data. Refereence
performance taken from Keung et al. (2020), classifi-
cation accuracy. They don’t train monolingual models,
so the reference performance is mBERT classification
accuracy.

C Demographics Included in Benchmark
Datasets

Racial Minoritised Groups included in the bench-
mark dataset of Goldfarb-Tarrant et al. (2023) are
as below:
For German, this includes Jewish, Roma, Sinti,
Arab and Muslim from the UN report, Sorbs as an
officially recognised minority, and Polish, Roma-
nian, Turks, Kazakh, Kurds, Russian, Syria, Iraq,
Afghanistan, Vietnamese as official large immi-
grant groups.
For Japanese, this is Chinese, Korean, Okinawan,
and generic “Foreign”.
For Spanish there is a list of proper names collected
from a sociology study that are immigrant names
(Salamanca and Pereira, 2013).
For English this is a replication of Kiritchenko
and Mohammad (2018) so it is African American
proper names.

D Full set of contingency tables
comparing baseline and monolingual
models.

The contingency tables for all languages can be
shown in Figure 5. A subset of these are included
in the main body of the paper.

It is worth noting that saturations are not nor-
malised across all languages and models; this is not
a proxy for aggregate comparative bias, it shows
the pattern across sentiment scores. The contin-
gency tables also do not show actual (ground-truth)
sentiment scores. We include baseline models (left-
column) not used in this work for maximum visual
comparability to previous work on these bench-
marks.
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In this section, we take everything we’ve learnt about analysing classification systems,

and apply it to retrieval systems. Retrieval systems for generation grew in prominence

over the course of this research, and are now one of the primary paradigms of genera-

tive NLP.

A neural retrieval system is often called dense retrieval to contrast with sparse vectors

from lexical word-counting based approaches (Robertson and Zaragoza, 2009). These

systems start with a pre-trained language model as an initialisation – just as in all the

previous sections – but then instead of fine-tuning that model with a classification layer,

it is fine-tuned on data to optimise the quality of the representation for determining

relevance between a query and a document. If used in a generative system later, the

top N retrieved document representations are context used to generate an answer to a

query, out of the composition of both model parameters and document representations

(Lewis et al., 2020b; Izacard et al., 2023).

Retrieval is thus a very similar but also very different setup, and adds a new element to

the previous factors that could affect fairness: the retrieval corpus itself.

In the following work, we analyse gender bias and the properties of dense retrieval

systems across many random seed initialisations. We build upon both the methods and

the questions that we accumulated in previous work in this thesis. We use informa-

tion theoretic probing for gender information, as a predictor of gender bias that we

discovered in Chapter 4. We analyse the impact of the new retrieval training objective

on gender information and show that it is a predictor of allocational bias, even in this

new setup. We also do an extensive investigation into the impact of random seeds,

based on the findings from both our works in Part II on the surprisingly large impact

of random initialisation on fairness. This effect was also found by the work of Sellam

et al. (2022), which came out in the interim and found the same effect across 25 BERT

initialisations, to the extent that one random seed wwas drastically less biased from the

start, and another became the only one of the 25 that increased in bias when a common

and proven debiasing method was applied..

In this work, we answer a few separate questions:

1. What impact does retriever training have on the demographic gender encoded in

the retrieved document representation, and how does this differ from a standard

language model (which we analysed in 4)?

2. What impact does random seed have on our results?
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3. What is the cause of any observed gender bias?

Many of these questions had very surprising results. The random seed experiments

showed far more variability in performance than we expected to find from just vary-

ing random initialisation, and we dedicated more experiments and analysis to that than

expected. We also found that, for the dataset we looked at, the gender bias was not at-

tributable to the representations, but was instead caused by the corpus and the queries

such that in this case gender biases cannot be corrected by representations alone. In-

stead,

So we leave this as an interesting final piece of work. In 4, removing gender from

language model representations did correlate with downstream fairness, but in this

work, we find a system where it does not. This expands our view, and shows the

true complexity of the fairness space, and the reinforces the need to focus on a whole

system not any single aspect of modelling. The first work in this thesis showed that a

language model can’t be measured in isolation from a downstream application. This

work shows that in many now commonly used systems, a model even trained on an

application cannot be considered in isolation from the data it is retrieving. It also

shows that factors such as random seeds, which were not previously thought to matter

at all for fairness before (Sellam et al., 2022), can drastically increase or decrease

performance and bias in retrievers just as they were recently shown to do in encoder-

language models (the subject of Sellam et al. (2022), who studied BERT models).



Chapter 7

MultiContrievers: Analysis of Dense

Retriever Representations

113



MultiContrievers: Analysis of Dense Retrieval Representations

Seraphina Goldfarb-Tarrant♡♠∗, Pedro Rodriguez♢, Jane Dwivedi-Yu♢, Patrick Lewis♡
♡ Cohere, ♠ University of Edinburgh, ♢ FAIR, Meta

Abstract

Dense retrievers compress source documents
into (possibly lossy) vector representations,
yet there is little analysis of what informa-
tion is lost versus preserved, and how it affects
downstream tasks. We conduct the first anal-
ysis of the information captured by dense re-
trievers compared to the language models they
are based on (e.g., BERT versus Contriever).
We use 25 MultiBert checkpoints as random-
ized initialisations to train MultiContrievers,
a set of 25 contriever models. We test whether
specific pieces of information—such as gender
and occupation—can be extracted from con-
triever vectors of wikipedia-like documents.
We measure this extractability via information
theoretic probing. We then examine the rela-
tionship of extractability to performance and
gender bias, as well as the sensitivity of these
results to many random initialisations and data
shuffles. We find that (1) contriever mod-
els have significantly increased extractabil-
ity, but extractability usually correlates poorly
with benchmark performance 2) gender bias
is present, but is not caused by the contriever
representations 3) there is high sensitivity to
both random initialisation and to data shuffle,
suggesting that future retrieval research should
test across a wider spread of both.1

1 Introduction

Dense retrievers (Karpukhin et al., 2020; Izacard
et al., 2022; Hofstätter et al., 2021) are a standard
component of retrieval augmented Question
Answering (QA) (Lewis et al., 2020a), and other
retrieval systems such as fact-checking (Thorne
et al., 2018), argumentation (Wachsmuth et al.,
2018), and others. Despite their ubiquity, we lack
an understanding of the information recoverable
from dense retriever representations, and how

∗ Work done while interning at FAIR, Meta.
1We release our 25 MultiContrievers (including interme-

diate checkpoints), all code, and all results, to facilitate fur-
ther analysis. URL is withheld for anonymity.
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A) Set of Male Queries
Who was the first male prime

minister of Finland?

Mary Somerville was a
Scottish scientist,

writer, and polymath.
In 1835 she and

Caroline Herschel
were elected as the

first female Honorary
Members of the Royal
Astronomical Society.

Probe
Classifier

Extractability
Gender

Occupation

B) Set of Female Queries
Who was the first female prime

minister of Finland?
Gender Bias: Δ Performance(Set A) - Performance(Set B)

Part 1
Part 2

Figure 1: Part 1: We train 25 Contrievers from the 25
MultiBerts, and compare the information theoretic ex-
tractability of gender and occupation from each of their
representations of documents. Part 2: We then compare
these to metrics of performance and of gender bias to
better understand the properties of dense retrievers.

it affects retrieval system behaviour. This lack
of analytical work is surprising. Retrievers
are widespread, and are used in contexts that
require trust: increasing factuality and decreasing
hallucination (Shuster et al., 2021), and providing
trust and transparency (Lewis et al., 2020b) via
a source document that has provenance and can
be examined. The information a representation
retains from a source document constrains these
abilities. Dense retrievers lossily encode input
documents into N-dimensional representations,
and by doing so necessarily emphasise some
pieces of information over others. A biography of
Mary Somerville will contain many details about
her: her profession (astronomy and mathemat-
ics), her gender (female), her political influence
(women’s suffrage), her country of origin (Scot-
land) and others. Each of these features are
relevant to different kinds of queries. Which ones
will a given retriever represent most recoverably?

Some analysis of this type exists for Masked
Language Models (MLMs) (§2.2), but there is no
such analysis for retrievers, which optimise a con-
trastive loss. Contrastive training is a very differ-
ent objective than MLM, based on (dis)similarity
of paired samples. The choice of pair affects fea-
ture suppression – what is recoverable and what



is not (Robinson et al., 2021). So we extend this
previous analytical work into the retrieval domain,
by training 25 MultiContrievers initialised from
MultiBert checkpoints (Sellam et al., 2022). This
is the first study that includes variability over a
large number of retriever initialisations, with some
surprising results from this alone. We use in-
formation theoretic probing, also known as min-
imum description length (MDL) probing (Voita
and Titov, 2020), to measure the information in
MultiContriever representations. We evaluate the
models on 14 retrieval datasets from the BEIR
benchmark (Thakur et al., 2021). We test how well
retrievers preserve information in a document, like
gender and occupation, which we refer to as fea-
tures. We adapt the existing datasets to better test
for knowledge of these, by creating a new manu-
ally annotated gender subset of Natural Questions,
NQ-gender. We ultimately test if gender informa-
tion is predictive of gender bias, as it was in pre-
vious MLM work (§2.2).We address the following
four research questions:

Q1 To what extent do retrievers preserve infor-
mation like gender and occupation in an encoded
document? (§4.1)

For both MultiBerts and MultiContrievers, gen-
der is more extractable than occupation, which
can cause a model to rely on gender heuristics (a
source of gender bias). But there are noticeable
differences in the models. Both features are more
extractable in MultiContrievers than MultiBerts,
but there is a lower ratio (less difference) between
gender and occupation. This indicates MultiCon-
trievers are less likely to rely less on gender heuris-
tics (Lovering et al., 2021), but still might.

Q2 How sensitive is this to random initialisation
and data shuffle? (§4.2)

In MultiBerts, extractability is very sensitive
to random initialisation and shuffle, in MultiCon-
trievers it is not. MultiContrievers have a much
smaller variance between the 25 seeds, suggesting
a regularising effect. However, MultiContriever
performance is surprisingly sensitive to both ran-
dom initialisation and to data shuffle. MultiCon-
trievers have a very wide range of performance on
BEIR benchmarks, despite identical loss curves.
But it is not easy to select a ‘best’ model, since
the best and worst model is not consistent across
datasets - the ranking of each model can change,
sometimes drastically.

Q3 Do differences in this information correlate
with performance on retrieval benchmarks? (§4.3)

On partitions of examples that ostensibly re-
quire gender information (NQ-gender), we show
that gender extractability is highly correlated with
retrieval performance. However, overall retrieval
performance on benchmarks like BEIR is poorly
correlated with extractability. This suggests that
while some benchmark examples do reward mod-
els for preserving gender information, most exam-
ples do not require that, so the benchmark as a
whole does not require that capability.
Q4 Is gender information in retrievers predictive
of their gender bias? (§4.4)

Despite the evidence that extractability of gen-
der information is helpful to a model, it is not the
cause of gender bias in the NQ-gender dataset.
When we do a causal analysis by removing gen-
der from MultiContriever representations, gender
bias persists, suggesting that the source of bias is
in the queries or corpus.

Our contributions are: 1) the first information
theoretic analysis of dense retrievers, 2) an anal-
ysis of variability in performance and social bias
across random retriever seeds, 3) the first causal
analysis of sources of social bias in dense retriev-
ers, 4) NQ-gender, an annotated subset of Natural
Questions for queries that constrain gender, and 5)
a suite of 25 MultiContrievers for use in future
work, with all training and evaluation code.

2 Background and Related Work

The below covers dense retrievers, information
theoretic probing for extractability, and what ex-
tractability can tell us about model behaviour.

2.1 What is a retriever?
Retrievers take an input query and return rele-
vance scores for documents from a corpus. We
encode documents D and queries Q separately by
the same model fθ. Given a query qi and docu-
ment di, relevance is the dot product between the
document and query representations.

s(di, qi) = fθ(qi) · fθ(di) (1)

Training fθ is a challenge. Language models
like BERT (Devlin et al., 2019), are not good re-
trievers out-of-the-box, but retrieval training re-
sources are limited and labour intensive to cre-
ate, since they involve matching candidate docu-
ments to a query from a corpus of potentially mil-
lions. So retrievers are either trained on one of the



few corpora available, such as Natural Questions
(NQ) (Kwiatkowski et al., 2019) or MS MARCO
(Campos et al., 2016) as supervision (Hofstätter
et al., 2021; Karpukhin et al., 2020), or on a self-
supervised proxy for the retrieval task (Izacard
et al., 2022). Both approaches result in a domain
shift between training and later inference, making
retrieval a generalisation task. This motivates our
analysis, as Lovering et al. (2021)’s work shows
that information theoretic probing is predictive of
where a model would generalise and where it re-
lies on simple heuristics and dataset artifacts.

In this work, we focus on the self-supervised
Contriever (Izacard et al., 2022), initialised from
a BERT model and then fine-tuned with a con-
trastive objective.2 For this objective, all docu-
ments in a large corpus are broken into chunks,
where chunks from the same document are pos-
itive pairs and chunks from different documents
are negative pairs. This is a loose proxy for ‘rele-
vance’ in the retrieval sense, so we are interested
in what information this objective encourages con-
triever to emphasise, what to retain, what to lose,
and what this means for the eventual retrieval task.

2.2 What is Information Theoretic (MDL)
probing?

Diagnostic classifiers, or probes, are a powerful
tool for determining what information is in
a model representation (Belinkov and Glass,
2019). Let DS = {(di, yi), ..., dn, yn)} be a
dataset, where d is a document (e.g. a chunk of
a Wikipedia biography about Mary Somerville)
and y is a label from a set of k discrete labels
yi ∈ Y , Y = {1, ...k} for some information in
that document (e.g. mathematics, astronomy if
probing for occupation).

In a probing task, we want to measure how
well fθ(di) encodes yi, for all d1:n, y1:n. We use
Minimum Description Length (MDL) probing
(Voita and Titov, 2020), or information theoretic
probing, in our experiments. This measures
extractability of Y via compression of informa-
tion y1:n from fθ(di:n) via the ratio of uniform
codelength to online codelength.

Compression =
Luniform

Lonline
(2)

2We choose Contriever for societal relevance of
our results, as it has two orders of magnitude more
monthly downloads than other popular models: https:
//huggingface.co/facebook/contriever.

where Luniform(y1:n|fθ(di:n) = n log2 k and
Lonline is calculated by training the probe on
increasing subsets of the dataset, and thus mea-
sures quality of the probe relative to the number
of training examples. Better performance with
less examples will result in a shorter online
codelength, and a higher compression, showing
that Y is more extractable from fθ(di:n).

In this work, we probe for binary gender,
where Y = {m, f} and occupation, where Y =
{lawyer, doctor, ...}

Extractability, as measured by MDL probing,
is predictive of shortcutting; when a model relies
on a heuristic feature to solve a task, which has
sufficient correlation with the actual task to have
high accuracy on the training set, but is not the true
task (Geirhos et al., 2020). Shortcutting causes
failure to generalise; a heuristic that worked on
the training set due to a spurious correlation will
not work after a distributional shift: e.g. relying
on the word ‘not’ to predict negation may work
for one dataset but not all (Gururangan et al.,
2018). Lovering et al. (2021) look at linguistic
information in MLM representations (such as
subject verb agreement) which is necessary for
the task of grammaticality judgments, and find
that spurious features are relied on if they are
very extractable. This is of particular interest to
retrievers, which depend on generalisation, but
which are also contrastively trained, which can
encourage shortcutting (Robinson et al., 2021).

Shortcutting is also often the cause of social
biases. Orgad et al. (2022) find that extractability
of gender in language models is predictive of
gender bias in coreference resolution and biog-
raphy classification. So when some information,
such as gender, is more extractable than other
information, such as anaphora resolution, the
model is risk of using gender as a heuristic, if
the data supports this usage. And thus of both
failing to generalise and of propagating biases.
For instance, for the case of Mary Somerville, if
gender is easier for a model to extract than profes-
sion, then a model might have actually learnt to
identify mathematicians via male, instead of via
maths (the true relationship), since it is both easier
to learn and the error penalty on that is small, as
there are not many female mathematicians.



3 Methodology

We analyse the relationship between information
in different model representations, and their
performance & fairness. This requires at min-
imum a model, a probing dataset (with labels
for information we want to probe for), and a
performance dataset. We need some of the
performance dataset to have gender metadata to
calculate performance difference across gender
demographics (Fig 1) also called gender bias, or
more precisely, allocational fairness.

3.1 Models

For the majority of our experiments, we compare
our 25 MultiContriever models to the 25 Multi-
Berts models (Sellam et al., 2022). We access
the MultiBerts via huggingface3 and train the con-
trievers via modifying the repository released in
Izacard et al. (2022). We use the same contrastive
training data as Izacard et al. (2022), to maximise
comparability. This comprises a 50/50 mix of
Wikipedia and CCNet from 2019. As a result, five
of the fourteen performance datasets involve tem-
poral generalisation, since they postdate both the
MultiContriever and the MultiBert training data.
This most obviously affects the TREC-COVID
dataset (QA), though also four additional datasets:
Touché-2020 (argumentation), SCIDOCS (cita-
tion prediction), and Climate-FEVER and Sci-
fact (fact-checking). Further details on contriever
training and infrastructure are in Appendix A.

We train 25 random seeds as both generalisation
and bias vary greatly by random seed initialisation
(McCoy et al., 2020). MultiContrievers have
no new parameters, so the random seed affects
only their data shuffle. The MultiBerts each
have a different random seed for both weight
initialisation and data shuffle.

3.2 Probing Datasets

We verify that results are not dataset specific, or
the result of dataset artifacts, by using two prob-
ing datasets. First the BiasinBios dataset (De-
Arteaga et al., 2019), which contains biographies
from the web annotated with labels of the sub-
ject’s binary gender (male, female) and biography
topic (lawyer, journalist, etc). We also use the
Wikipedia dataset from md gender (Dinan et al.,

3e.g. https://huggingface.co/google/
MultiBerts-seed_[SEED]

2020), which contains Wikipedia pages about peo-
ple, annotated with binary gender labels.4 For gen-
der labels, BiasinBios is close to balanced, with
55% male and 45% female labels, but Wikipedia is
very imbalanced, with 85% male and 15% female.
For topic labels, BiasinBios has a long-tail zip-
fian distribution over 28 professions, with profes-
sor and physician together as a third of examples
and rapper and personal trainer as 0.7%. Examples
from both datasets can be found in Appendix B.

To verify the quality of each dataset’s labels, we
manually annotated 20 random samples and com-
pared to gold labels. BiasinBios agreement with
our labels was 100%, and Wikipedia’s was 88%.5

We focus on the higher quality BiasinBios dataset
for most of our graphs and analysis, though we
replicate all experiments on Wikipedia.

3.3 Evaluation Datasets and Metrics

We evaluate on the BEIR benchmark, which
covers retrieval for seven different tasks (fact-
checking, citation prediction, duplicate question
retrieval, argument retrieval, question answering,
bio-medical information retrieval, and entity re-
trieval).6. We initially analysed all standard met-
rics used in BEIR and TREC (e.g. NDCG, Re-
call, MAP, MRR, @10 and @100). We observed
similar trends across all metrics, somewhat to our
surprise, since many retrieval papers focus on the
superiority of a particular metric (Wang et al.,
2013). We thus predominantly report NDCG@10,
but more metrics (NDCG@100, and Recall@100)
are included in Appendix G.

For allocational fairness evaluation, we create
NQ-gender, a subset of Natural Questions (NQ)
about entities, annotated with male, female, and
neutral (no gender). Further details on annotation
in Appendix C. We measure allocational fairness
as the difference between the female and male
query performance. We use the neutral/no gender
entity queries as a control to make sure the system

4This dataset does contain non-binary labels, but there are
few (0.003%, or 1̃80 examples out of 6 million). Uniform
codelength (dataset size ∗ log2(num classes)) affects in-
formation theoretic probing; additional class with very few
examples can significantly affect results. This dataset was
also noisier, making small data subsets less trustworthy.

5We investigated other md gender datasets in the hope of
replicating these results on a different domain such as dia-
logue (e.g. Wizard of Wikipedia), but found the labels to be
of insufficiently high agreement to use.

6The BEIR benchmark itself contains two additional
tasks, tweet retrieval, and news retrieval, but these datasets
are not publicly available.



performs normally on this type of query.

4 Results

We address our four research questions: how does
extractability change (Q1), how sensitive are re-
trievers to random initialisation (Q2), do changes
in extractability correlate with performance (Q3),
and is it predictive of allocational bias (Q4).

4.1 Q1: Information Extractability
Both gender (Fig 2a) and occupation (Fig 2b)
are more extractable in MultiContrievers than
MultiBerts. Gender compression ranges for
MultiContrievers are 4-12 points higher, or a
9-47% increase (depending on seed initialisation),
than the corresponding MultiBerts. Occupation
compression ranges are 1.7-2.12 points higher
for MultiContrievers; as the overall compression
is much lower this is a 19-38% increase over
MultiBerts. Both graphs also show a regular-
isation effect; MultiBerts have a large range
of compression across random seeds, whereas
MultiContrievers have similar values.

Figure 2c shows that though MultiContrievers
have higher extractability for gender and occupa-
tion, the ratio between them decreases. So while
MultiContrievers do represent gender far more
strongly than occupation, this effect is lessened vs.
MultiBerts, which means they should be slightly
less likely to shortcut based on gender.

4.2 Q2: Sensitivity to Random Initialisation
We analysed the distribution of performance by
dataset for 24 seeds, as both generalisation and
fairness are sensitive to initialisation in MLMs
(Sellam et al., 2022).7 Figure 4 shows this data,
broken out by dataset, with a dashed line at previ-
ous reference performance (Izacard et al., 2022).

A few things are notable: first, there is a large
range of benchmark performance across seeds
with for identical contrastive losses. During
training, MultiContrievers converge to the same
accuracy (Appendix A) and (usually) have the
same aggregate BEIR performance reported in
Izacard et al. (2022). However, the range of

7Seed 13 (ominously) is excluded from our analysis be-
cause of extreme outlier behaviour, which was not reported in
(Sellam et al., 2022). We investigated this behaviour, and it is
fascinating, but orthogonal to this work, so we have excluded
the seed from all analysis. Our investigation can be found in
Appendix E and should be of interest to researchers inves-
tigating properties of good representations (e.g. anisotropy)
and of random initialisations.

scores per dataset is often quite large, and for some
datasets the original reference Contriever is in the
tail of the distribution: e.g in Climate-Fever (row
1 column 2) it performs much worse than all 24
models. It is also worse than almost all models for
Fiqa and Arguana.8 Nothing changed between the
different MultiContrievers except the random seed
for MultiBert initialisation, and the random seed
for the data shuffle for contrastive fine-tuning.9

Second, the potential increase in perfor-
mance across random seeds can exceed the in-
crease in performance from training on super-
vised data (e.g. MSMARCO). We see this ef-
fect for half the datasets in BEIR. The higher per-
forming seeds surpass the performance on all su-
pervised models from Thakur et al. (2021)10 on
three datasets (Fever, Scifact, and Scidocs) and
surpass all but one model (TAS-B) on Climate-
fever. These datasets are the fact-checking and ci-
tation prediction datasets in the benchmark, sug-
gesting that even under mild task shifts from su-
pervision data (which is always QA), random ini-
tialisation can have a greater effect than super-
vision. This effect exists across diverse non-QA
tasks; for four additional datasets the best random
seeds are better than all but one supervised model:
this is true for Arguana and Touché (argumenta-
tion), HotpotQA (multihop QA), and Quora (du-
plicate question retrieval).

Third, the best and worst model across the
BEIR benchmark datasets is not consistent
(Figure 5); not only is the range large across seeds
but the ranking of each seed is very variable. The
best model on average, seed 24, is top-ranked
on only one dataset, and the second-best average
model, seed 2, is best on no individual datasets.
The best or worst model on any given dataset
is almost always the best or worst on only that
dataset and none of the other 14. Sometimes, the
best model on one dataset is worst on another, e.g.

8For Fiqa 19 models are up to 2.5 points better, for Ar-
guana 20 models are up to 6.3 points better.

9There are a few small differences between the original
released BERT, which Contriever was trained on, and the
MultiBerts, which we trained on, detailed in Sellam et al.
(2022). But not between our 25 MultiBerts.

10The BEIR benchmark reports performance on all
datasets for four dense retrieval systems—DPR(Karpukhin
et al., 2020), ANCE (Xiong et al., 2021), TAS-B (Hofstätter
et al., 2021), and GENQ (their own system)—which all use
supervision of some kind. DPR uses NQ and Trivia QA, as
well as two others, ANCE, GENQ, and TAS-B all use MS-
MARCO. Note that the original Contriever underperformed
these other models until supervision was added.







would mean extractable gender information was
not necessary. A drop in performance on both gen-
der and control queries would support the ‘mini-
mum threshold’ explanation, or mean that the rep-
resentation was sufficiently degraded by the re-
moval of gender that other functions were harmed.

Gender information post-INLP drops to 1.4
(nearly none, as 1 is no compression over uni-
form, Eq 2). Performance on non-gendered en-
tity queries is unaffected, but performance on
gendered entity questions drops significantly (5
points) (Fig 6a). From these two experiments
we conclude that the increased information ex-
tractability was useful for answering specific ques-
tions that require that information. But most
queries in the available benchmarks simply don’t
require that information to answer them.

4.4 Q4: Gender Extractability and
Allocational Gender Bias

Orgad et al. (2022) found gender extractability
in representations to be predictive of allocational
gender bias for classification tasks; when gender
information was reduced or removed, bias also re-
duced.13 We found that gender information is used
(§4.3) so now we ask: is it predictive of gender
bias? At least for our dataset, it is not (Fig 6b. This
graph shows that there is allocational bias between
the female and male queries, and also that the bias
remains after we remove gender via INLP. All per-
formance drops, as we saw for the gendered enti-
ties in §4.3. But performance drops by equivalent
amounts for female and male entities. These re-
sults diverge from what we expected based on the
findings of Orgad et al. (2022) for MLMs, who
found gender in representations did matter. Our
findings suggest that in this case the gender bias
comes from the retrieval corpus or the queries, or
from a combination. The corpus could have lower
quality or less informative articles about female
entities (as was found for Wikipedia by Sun and
Peng (2021)), or queries about women could be
structurally harder in some way.

5 Discussion, Future Work, Conclusion

We trained a suite of 25 MultiContrievers, anal-
ysed their performance on the BEIR benchmark,
probed them for gender and occupation informa-

13Orgad et al. (2022) use a lexical method to remove gen-
der, but we chose INLP as a more elegant, extensible solution.
We replicated their paper with INLP, showing equivalence.

tion, and removed gender information from repre-
sentations to analyse gender bias.

We showed performance to be extremely
variable by random seed initialisation, as was
the performance ranking of different random
initialisations across datasets, despite equal losses
during training. Best seed performances often
exceed the performance of more complex dense
retrievers that use explicit supervision. Future
analysis of retriever loss basins to look for dif-
fering generalisation strategies could be valuable
(Juneja et al., 2023). Our results show that a better
understanding of initialisations may be more valu-
able than developing new models. Our work also
highlights the usefulness of metadata enriched
datasets for analysis, and we were limited by what
was available. Future work could create these
datasets and then probe for additional targeted
information to learn more about retrievers. This
would also enable analysis of demographic biases
beyond binary gender.

Gender and occupation extractability was not
predictive of performance except in subsets of
queries that require gender information. Though
both gender and occupation increase in Multi-
Contrievers, the ratio between them decreases, so
MultiContrievers should be less likely to shortcut
based on gender compared to MultiBerts. We
established that the gender bias that we found was
not caused by the representations, as it persists
when gender is removed. Future work should test
in a pipeline is best to correct bias, and how vari-
ous parts interact. This work also shows the utility
of information removal (INLP, others) for causal-
ity and interpretability, rather than just debiasing.
More availability of test sets for shortcutting could
increase the scope of these preliminary results.

Finally, we have analysed only the retriever
component of a retrieval system. In an even-
tual retrieval augmented generation task, the re-
trieval representation will have to compete with
language model priors. The generation will be
a composition between unconditionally probable
text, and text attested by the retrieved data. Fu-
ture work could investigate the role of informa-
tion extractability in the full system, and how this
bears on vital questions like hallucination in re-
trieval augmented generation. We have done the
first information theoretic analysis of retrieval sys-
tems, and the first causal analysis of the reasons
for allocational gender bias in retrievers. We re-



lease our code and resources for the community
to expand and continue this line of enquiry. This
is particularly important in the current generative
NLP landscape, which is increasingly reliant on
retrievers and where understanding of models lags
so far behind development.

6 Limitations

This work is limited by analysing only one ar-
chitecture of dense retriever; we chose to experi-
ment instead with random initialisations and shuf-
fles rather than different architectures, so we fo-
cused on only the most popular one. So these
results may not generalise to all retriever archi-
tectures. Our analysis covered only English, and
there is work that shows that gender is encoded in
a more complex way in other languages (Gonen
et al., 2022). INLP, the method we used for causal
analysis, is linear, so it might not even work be-
yond English, though there are recent non-linear
extensions of it (Iskander et al., 2023) that could
be used in future work.
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Heinrich Küttler, Mike Lewis, Wen-tau Yih,
Tim Rocktäschel, Sebastian Riedel, and Douwe
Kiela. 2020a. Retrieval-augmented generation for
knowledge-intensive nlp tasks. In Advances in Neu-
ral Information Processing Systems, volume 33,
pages 9459–9474. Curran Associates, Inc.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
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A Contriever Training

Each MultiContriever model was initialised
from a MultiBert checkpoint for each of
the 25 seeds from 0 - 24, accessed at
https://huggingface.co/google/
multiberts-seed_X where X is an integer
from 0 - 24. NB: MultiBerts released many
checkpoints to enable study of training dynamics,
we use only the final complete checkpoint.

Hyperparameters and training regime is exactly
matched to the original Contriever work of (Izac-
ard et al., 2022). Hyperparams can be found in
Table 1. Data used was identical to in (Izacard
et al., 2022) (from 2019) and was a 50/50 CCNet
Wikipedia split.

Each MultiContriever was trained across 4
nodes with 8 GPUs per node (32 GPUs total)
for on average 2.5 days. Each MultiContriever
was trained for the full 500,000 steps, and check-
pointed often; but in all but one seed the best per-
forming checkpoint was the final one (so for that
one we use the model at 450,000 steps). This is
excepting seed 13, which was anomalous in many
other ways (see E).

All MultiContrievers have similar loss and ac-
curacy curves, with seeds 12 and 13 excerpted
in Figure 7. All models steeply increase accu-
racy/decrease loss within 10,000 steps, and then
asymptotically approach 69% accuracy by 50,000
steps.



sampling coefficient 0
pooling average
augmentation delete
probability augmentation 0.1
momentum 0.9995
temperature 0.05
queue size 131072
chunk length 256
warmup steps 20000
total steps 500000
learning rate 0.00005
scheduler linear
optimizer adamw
batch size (per gpu) 64

Table 1: Hyperparameters used for training MultiCon-
trievers.
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Figure 7: Loss and accuracy for seeds 12 and 13, steps on x-axis and loss or accuracy on y-axis.



B Probing Datasets

We rely on two datasets. The first is BiasinBios
(De-Arteaga et al., 2019), which is a dataset of
web biographies labelled with binary gender, and
biography profession. We use De-Arteaga et al.
(2019)’s train/dev/test splits of 65:10:25, yield-
ing 255,710 train 39,369 dev, and 98,344 test dat-
apoints. Second is the Wikipedia slice of the
md gender dataset (Dinan et al., 2020). This
has only labels for gender, which we restrict to
be binary since non-binary gender is so small and
would adversely affect this analysis. We filter out
texts below 10 words (words, not tokens) leaving
a dataset of size 10,681,700, split 65:10:25 into
6,943,105 train, 934,649 dev, 2,803,946 test. For
practical reasons, we shard it to 9 shards (650,000
train examples each) and then check the results
on each shard. All shards behaved consistently.
As noted in the text, BiasinBios is nearly bal-
anced with regard to gender labels, but Wikipedia
is severely imbalanced.

For both datasets, we use the train set for prob-
ing, and the test set for measuring accuracy on the
final probe. We investigated using other datasets,
but none were of sufficient quality that they were
usable. We tested usability very simply: each of
the authors labelled a different random sample of
20 examples by hand, and we measured accuracy
of dataset labels against our labels, and only took
datasets with over 80% accuracy, since our prob-
ing task is sensitive to errors in labelling. No other
subsets of md gender nor external datasets that we
surveyed passed this bar. We didn’t multiply anno-
tate as we found no examples to be at ambiguous.

C Annotation of NQ gender subset

To do our experiments we create a subset of Natu-
ral Questions, NQ-gender.

We subsample Natural Questions to entity
queries by filtering automatically for queries
containing any of who, whose, whom,
person, name. We similarly filter this set into
gendered entity queries by using a modified subset
of gender terms from Bolukbasi et al. (2016).
From this we get a set of queries that is just
about entities Who was the first prime minister of
Finland?, and gendered entities (a female query
is Who was the first female prime minister of
Finland? and a male query is Who was the first
male prime minister of Finland?).

This automatic process is low precision/high

recall. It captures queries with gendered terms
in prepositional phrases, (Who starred in
O Brother Where Art Thou?) which are
common false positives in QA datasets, as they are
not about brothers. So we manually filter these
results by annotating with two criteria: gender
of the subject (male, female, or neutral/none (in
cases where the gender term was actually in a ti-
tle or other prepositional phrase as in the exam-
ple), and a binary tag with whether the query ac-
tually constrains the gender of the answer. This
second annotation is somewhat subtle, but very
important. For example, in our dataset there
is the query Who was the actress that
played Bee, which contains a gendered word
(actress) but it is not necessary to answer the ques-
tion; all actors that played Bee are female, and the
question could be as easily answered in the form
Who played Bee?. Whereas in another ex-
ample query, Who plays the sister in
Home Alone 3? the query does constrain the
gender of the answer. We annotated 816 queries
with both of these attributes, of which 51% have
a gender constraint, with a gender breakdown of
59% female and 41% male.

We do this annotation ourselves (two of the au-
thors), and we throw out examples that we don’t
agree on. We are not a representative sample of
people (we are all NLP researchers after all) but
we consider this lack of diversity to be acceptable
since we are not making subjective judgments but
are just providing metadata labels.

It is also worth mentioning that two very dif-
ferent types of gender bias in retriever works do
create artifacts also, but they are unsuitable for
our type of analysis for the following reasons.
Rekabsaz and Schedl (2020) and Klasnja et al.
(2022) release subsets of MSMARCO, which we
did examine and use in initial tests early in this
work. Those works define bias very differently,
as the genderedness of retrieved documents based
on lexical terms, making the implicit normative
statement that lack of bias means equal repre-
sentation of male and female documents in non-
gendered queries. This is essentially an indepen-
dence assertion from fairness literature (Barocas
et al., 2019). This is quite different to our ap-
proach, which looks at performance disparity be-
tween queries that require male and female gender
information to answer. Our approach has more im-
mediate practical utility for a real world retriever,



and also ties in to the work on information theory
by restricting to queries that require gender infor-
mation. So the lexical document based approach
cannot be adapted for our purpose.

D Data Shuffle Experiments

We wanted to answer the question of If you be-
gin from a worse random initialisation, can you
fix it via data shuffle?. This is of significant prac-
tical utility to researchers, who often cannot re-
train an existing model from scratch before adapt-
ing it to their purpose. Figure 8 shows the best,
worst, and a middle performing seed with five ad-
ditional different data shuffles, and the variance in
performance over the datasets. We can see that
the worst performing seed is characterised by high
variability overall, and the best seed by low vari-
ability. So the overall picture is that, on average,
the different initialisations determine the quality
of the retriever more than the data shuffle. This
is in agreement with the findings of Sellam et al.
(2022) for MLMs. However, variability is suffi-
ciently high enough that you could get lucky and
get the best performance from varying the shuffle,
if that is the option available. It would be valu-
able to extend these to explicit generalisation tasks
and interpretabilty challenge sets to see if the high
performing shuffles of very variable seeds can be
trusted in all settings.
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Figure 8: Performance for 5 random datashuffles for a fixed MultiBERT seed - the worst, the best, and a middling
seed based on previous experiments. This answers the question of how much variance comes from the random
initialisation of parameters, and how much from the data shuffle. It also answers the practical question of ‘if you
are fine-tuning one model, are you doomed based on the state of the initial model?’ The answer is, sort of, but not
entirely.



E Seed 13

MultiContrievers were trained with seeds 0-24
based on respective MultiBerts 0-24. Seed 13 was
excluded from all analysis as it displayed repeat-
edly anomalous behaviour. During the course of
contriever training it appeared indistinguishable
from other seeds, loss curves looked normal, there
were no signs of overfitting. Performance con-
verged to the same level as other MultiContriev-
ers. However, when applied to the datasets of the
BEIR benchmark it did not perform at all, with
NDCG of between 2 and 20 on each dataset. We
retrained once to replicate the behaviour, and then
twice more with different seeds for data shuffle,
with identical results. We thus exclude it from all
analysis. To aid in future investigations we include
our initial analysis of seed 13 irregularities here.
We follow the method of analysis of representation
spaces from Ethayarajh (2019). We measure the
L2 norm of all representations in the BiasinBios
dataset (272k) as well as average self-similarity of
1000 randomly sampled representations of those
bigraphies, as measured by cosine similarity and
by dot product. The former answers the question
of how much volume the representations occupy,
the latter describes the vector space via how coni-
cal (anisotropic) or spherical it is.

In Figure 9, we observe that the vector space
of MultiContriever 13 is both larger volume and
more obtusely anisotropic (i.e. it occupies a wider
cone) than other MultiContrievers. The more ob-
tuse anisotropy originates from MultiBert 13, as
can be seen in the high variances for both seeds
in cosine similarity. But the larger relative volume
happens during the training of the MultiContriever
and is unique to it. For MultiBert 13, L2 norm is
within normal range, and the anomalous seeds are
seeds 10 and 23, which both have larger norms
and 5x the variance of other seeds. MultiCon-
triever 13, however, has 1.5x the average norms
of all other seeds (which have regularised and be-
come closer in values) and 6x the variance of oth-
ers. Both MultiBert 13 and MultiContriever 13
have very high variance to average cosine similar-
ity, where the effective range of MultiContriever
13 is -0.03 to 0.53, and MultiBert 13 is 0.02 to
0.58, as compared to other models have a range of
0.28-0.32, for both types of models.

We hypothesise that this reveals a limitation of
reliance on the dot product for retrieval, any op-
eration reliant on the dot product loses informa-

tion when there is a chance of a cosine similar-
ity of zero. We leave other investigation – such
as why this would persist from a difference of
only random seed initialisation, or why this issue
would appear in retrieval, but not in any tasks in
the MultiBerts paper, or in the contrastive training
process – to future work.

We also note that seed 10 was anomalous in per-
formance compared to the other seeds on the BEIR
benchmark; not so anomalous as to be excluded,
but it was reliably performing poorly. We can see
the higher variance in L2 norms for 10 and 23 in
MultiBerts, and then for 10 still in MultiContriever
(though nothing noticeable in cosine similarity).
Seeds 10 and 13 were not found to be anoma-
lous by Sellam et al. (2022), but they did find seed
23 to display strange behaviour and be extremely
unbiased (or even anti-biased) on the Winogender
benchmark.

We hope that future work will use our models
and continue this line of analysis.



(a) MultiBerts (mean) (b) MultiBerts (var) (c) MultiContriever (mean) (d) MultiContriever (var)

(e) MultiBerts (mean) (f) MultiBerts (var) (g) MultiContriever (mean) (h) MultiContriever (var)

Figure 9: Top row: mean and var of L2 norms of the full BiasinBios dataset for all MultiBert and MultiContriever
seeds. Bottom row: mean and var cosine similarity between 1000 random biographies.



F Full set of results for correlation
between extractability and
performance

Full set of correlations between gender compres-
sion and performance in Figure 10 and between
profession compression and performance in Fig-
ure 11. The latter (profession correlation) have
misleading regression lines as only three of 24
models had large differences in compression, such
that the line is based off insufficient datapoints. It
is included for completeness but left out of analy-
sis for that reason. Gender compression numbers
(Figure 10) are distributed more evenly. There
are four statistically significant correlations (re-
ferred to as by row 1-4, and column a-d, such
that the upper left cell is 1a and the lower right
cell is 4d). Arguana (1a), Scifact (2b), Webis-
Touche (3a), and NQ (4b). All have middling cor-
relation coefficients: Arguana -0.41, Scifact 0.41,
Webis-Touche 0.31, NQ 0.42. There is also little
in common between these datasets, Arguana and
Webis-Touche are argumentation, Scifact is fact-
checking, and NQ is google-search style ques-
tions. As this leaves most datasets with no cor-
relations, we consider the correlation overall to be
weak. We do note that the temporal generalisation
datasets are overrepresented in this set (Webis-
Touche and Scifact), but leave an investigation of
that for future work.

Arguana in particular is unique in having a sig-
nificant negative correlation. We have no answers
as to why this might be. It may be a fluke due to
peculiarities of this dataset: the dataset is small
(less thank 2k datapoints), and is not structured
in the same way with query (input) and passage
(retrieved) but instead uses a full document pas-
sage as the query. It is unclear why this might
cause a deterioration in performance from better
gender or profession encoding (as we observe the
same in profession compression). The Arguana
task should match the unsupervised training much
more closely since they both are matching the rel-
evance of to document chunks. We leave an inves-
tigation into the peculiarities of that dataset also to
future work.

G Additional metrics
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Chapter 8

Conclusions, Questions, and the

Present Day

“For every subtle and complicated question, there is a perfectly simple and straight-

forward answer, which is wrong.” —H.L. Mencken

In this section I will condense the takeaways from my work, then expand them into

the new questions they pose to the field. I’ll discuss implications for future work,

do a bit more reflection than in each individual piece of research, made possible by

the aggregation of all the my work. I will also include a less traditionally academic

section, and relate my work to the present day mania for Large Language models

(LLMs), generative AI, and scaling.

8.1 Takeaways

This body of work has focused on measurement of fairness, and then, with respect

to those measurements, on analysis of monolingual and cross-lingual transfer, and

finally analysis of dense retrievers. It contributes to enriching our understanding of

fairness within a multi-part system, which was previously poorly understood. This

poverty was much more marked at the commencement of this work than today, but

does still persist. Fairness and interpretability research have grown exponentially, but

so has the field as a whole, at an equal pace.1 The scale and speed of productionisation

1Fairness work has grown exponentially, but so have ACL and NeurIPS,
both with about 40-50% growth in submissions year over year, https://aclweb.
org/aclwiki/Conference_acceptance_rates and https://medium.com/criteo-engineering/
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still far outstrips our understanding of NLP systems.

In Part I I first examined the dominant method of bias evaluation in language models,

based on embedding geometry and cosine similarity, and found it to have poor predic-

tive validity. I advocated for measuring bias downstream. I next found an alternative

upstream measure in information theoretic probing of demographics. This measure

shows though only potential for social bias downstream, a potential that may or may

not be realised depending on classifier training. This both enables better understand-

ing, but also reinforces that the full NLP system is still needed to accurately measure

fairness.

In Part II, I examined monolingual and cross-lingual transfer in the setting of senti-

ment classification, in five languages, and found that both settings changed fairness

outcomes. Monolingual transfer generally improved fairness despite that this intro-

duces reams of foul pretraining data scraped from the depths of Common Crawl. I

attributed this to increased stability in model decisions from the additional data: where

stability is defined as not just fewer errors under the counterfactual, but smaller mag-

nitude ones.

Multilingual transfer, however, often worsened fairness outcomes, despite using more

data than monolingual transfer. This may not contradict the previous result, as there are

less parameters per language, such that even with regard to performance multilingual

transfer models are not more stable than monolingual transfer models. The reasons for

this difference are left to future work.

In Part III, I examined dense retrieval models, using the tools and research questions

accumulated in Parts I and II. I found that random initialisation and random data shuffle

play a much larger role than previously thought, and that both performance and fairness

were quite sensitive to them. This challenges the standard practice of using only one

model with one initialisation and data shuffle for research. Using only one model was

then common and is now ubiquitous in the age of LLMs, where training one model

takes over 400,000 kWh (Luccioni et al., 2023), or the same amount of energy to make

14 million cups of tea, approximately the same amount that is drunk in Scotland daily.2

neurips-2020-comprehensive-analysis-of-authors-organizations-and-countries-a1b55a08132e).
2It takes about 336000 joules to raise 1 liter (4 cups of tea) of water to a boil, which is equivalent

to 0.116 kWh assuming an electric kettle at 80% efficiency. This makes an LLM equivalent to approx-
imately 13,714,286 cups of tea. The UK drinks on average 3 cups of tea per day (ITC, 2024), and the
population of Scotland is 5.4 million today.
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In this work I also found a case where information theoretic probing was not predictive

of gender bias in retrievers, because the bias was caused by other factors beyond the

model representation itself.

The combined work in this thesis repeatedly shows how little it makes sense to
make choices or come to conclusions about fairness without understanding and
simulating the entire system.

8.2 Questions

Each individual work raised as many new questions as it answered. These questions

are significant in both size and importance and would be valuable extensions to the

understanding of the field, even in the era of LLMs.

For both works in Part I the question remains: what about generative models? What

is the relationship between upstream language model metrics and downstream bias

in generation, as opposed to in classification? The objective in generation is more

similar to that of pre-training, so there is a chance that there is a more predictable

correspondence between the two stages. Chapter 4 additionally showed that whether

bias was realised was a property of both the language model and the classifier, so what

if there’s no classifier? Future work could use some of the very recent progress in

measuring biases in generation and measuring representational biases (discussed in

§2.2) to answer these questions.

In this section (Part I) for classification, I used observational studies to determine

allocational bias by measuring whether the error rates were equal across different

demographic populations (male group vs. female group, etc). In Part II I used inter-
ventional studies that measured whether a change in demographic variable changed

predictions, when the predictions should be equal. Both of these measurements require

a notion of equality — which is very easy with a discrete label space or ordinal val-

ues. The same type of study could and should be done for generative models: instead

of classifying resumes, a model could write summaries of resumes with a recommen-

dation to proceed or not, which is then read by a human.3 We can make the same

invariance assertion as we made in classification: if we change the gender or race

on the resume, the summary should not materially change. But what is a material
3This is what is happening in practice with generative AI now, as I will discuss in the next section

about my experience in Industry.
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change? In principle, it is a change that is large enough to cause the summary to be

less accurate. Or to be equivalently accurate but to affect a human’s opinion positively

or negatively. Both would be good operationalisations for different contexts. How do

we measure this?

There is scarce previous work on counterfactuals in generative systems, but it raises

just as many questions. Vig et al. (2020) consider social bias in generation to be the

relative probability of professions like doctor and nurse under a counterfactual where

male and female pronouns are swapped. How would that be extended to different

grammatical systems, like Turkish, which has no gendered pronouns? What about

different demographic biases that aren’t encoded the way gender is? There is far less

research about other demographic biases in this kind of setting. The comparatively

thin coverage has been noted for race (Field et al., 2021), and there is vanishingly

little on other demographic biases (with some exceptions of different coverage, such

as Hutchinson et al. (2020), and of very broad coverage, such as Esiobu et al. (2023)).

But though they are less well represented in NLP, they are no less important from the

viewpoint of ethics or of law.

The second work in Part I, Chapter 4, raises the question: what about beyond gen-

der? Most work in this thesis by design looks at bias beyond gender (3, 5, and 6 all

include some notion of race or country of origin) but this one, which proposes a new

metric, looks only at gender (partly for lack of suitable datasets beyond it). But gender

is encoded very differently in language than other demographic features, so it could

reasonably have a different way it operates in model representations and social bias.

In English, which weakly marks gender, and other languages with stronger gender

agreement, gender information is necessary for correct grammar. A model will need to

represent gender well for correct language reconstruction of any text from a noising ob-

jective, which is how Transformer models are currently trained (Liu et al., 2019; Lewis

et al., 2020a; Vaswani et al., 2017). But race and country of origin are not as strong

signals. It is not easy to determine these save from specific words like names,and even

then the signal is not as clear as with pronouns, as names do not just encode race but

also class, gender, time period, etc. How does this difference in encoded information

affect the relationship between language models and downstream bias?

In Part II, Chapter 5, we found that there was less bias in aggregate in monolingual

transfer, and more reasonable patterns of bias, evidenced by less dramatic changes

in sentiment score under the counterfactual. But what about tracing individual ex-
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amples through from pre-training? Could we track a specific negative stereotype in

pre-training and see if it affects decisions later? Extending to the work in Chapter 6,

could we extend tracing individual biases into multiple languages?4 Almost all bias

research is done on aggregate information, and we extended our focus to be on patterns

of bias, but we stopped short of doing fine-grained analysis, which would be valuable.

We’ve spent this thesis tracing how fairness persists and travels through a system at a

macro level, but we could extend this to a micro level. Such research would not even

be bias specific; for there isn’t concrete knowledge yet of how any information travels

between different training stages of models (of which there are increasingly many in

the age of LLMs).5

In Background Section 2.4, I introduced the notion of fairness as a generalisation error

vs. as a learnt dataset artifact—whether an artifact from spurious correlation or a

historical bias. Investigation into this difference in causes could help enlighten why

racial bias can increase with cross-lingual transfer. Is it really compounding biases

(stereotypes) or could it be a generalisation error? Can an investigation into model

uncertainty help illuminate which of these cases causes the effects we have observed?

Part III shares the question of ‘biases beyond gender’ from Chapter 4, as it is also

solely gender focused. It also raises questions are general to our understanding of NLP

systems as a whole, but have particular importance to fairness. Why is random seed

initialisation so important for bias and for generalisation? Why is it possible for a

couple of seeds to just not work at all, never mind fairness? Some of the anistropy

of the representations from earlier training stages seems potentially predictive of later

behaviour. Can we understand this well enough to utilise it? If so we could potentially

be able to actively encourage model training that is less prone to shortcutting.

8.3 Present Day

Now I want to bring this into current industry practice and zeitgeist. I do this partly

because I’ve spent the better part of the last year working full-time on fairness at an

LLM company (Cohere). And partly because, in reviewing my PhD work, I don’t

4One work has recently come out that also shows ‘stereotype leakage’ across languages (Cao et al.,
2023), which also helps form a foundation for this new question.

5There are some methods like this that are starting to do this, like influence functions (Grosse et al.,
2023) and some methods that try to do this with Natural Language explanations, which is nonsense and
does not work, as Huang et al. (2023) found ‘no evidence for causal efficacy’ of them.
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want to ignore the sea change in NLP research that’s taken place over the past year

and a hald. I am not someone for whom ‘scaling is a way of life’6, but it would be

disingenuous, in a field intended to improve people’s lives, to not speak about how my

work relates to current research, current discourse, and current industry practice. This

thesis was initially inspired by a sea change that I saw happening six years ago, after

all.

This work was all done on models three orders of magnitude smaller than the ones that

I deal with in my work today.

This does not matter as much as it might seem. No conclusions in this thesis were

model specific. If some architecture arises to replace neural embeddings, LSTMs, and

Transformers which bears no genetic link to them, then they may no longer hold. But

until then, the differences between the models I use at work today and the models in

this thesis are: 1) scale 2) a veneer of preference tuning (RLHF, DPO, etc) (Rafailov

et al., 2024) 3) instruction tuning (Ouyang et al., 2022) and 4) more training data that

is explicitly in the domain of math, logic, and code than we used to include in general

NLP models.7 None of these differences affect my conclusions.

In my first rebuttal to ACL reviewers when the work in Chapter 3 was under review,

one of the reviewers asked the common reviewer question ‘But have you tried this

on Newest Model Architecture’ (which in this case, was BERT). Adam gave me

the advice to turn that into a the question: ‘Is there any reason to expect that Newest

Model Architecture would behave differently? Otherwise, they’re just saying it is

magic’. To answer this question broadly for LLMs: there is no reason to believe any

of the four recent innovations change the things we discovered about fairness in this

thesis.

Here are some examples of this being proven.

The replication and extension of my work in Chapter 3 by Cao et al. (2022) did use

BERT, and 18 other transformer architectures of varying sizes, and came to the same

conclusions. We’ve seen the same bias amplification affects in LLMs at scale (Bianchi

et al., 2023) that we saw in small models in Zhao et al. (2017).

Current research shows that RLHF and the family of preference tuning algorithms pre-

6This light shade given by Tatsunori Hashimoto when questioned about it at GenBench at EMNLP
2023.

7Though some amount of math and code will be present in CommonCrawl, which does drive the
models in this thesis.
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dominantly affect style and structure of generation, rather than content (Min et al.,

2022; Lin et al., 2023). More research shows it can be trivially changed with a few

dozen fine-tuning examples (Qi et al., 2023) and that it quickly ‘wears off’ over con-

versation turns (Touvron et al., 2023). All information is learnt at earlier stages, pre-

dominantly pretraining (Zhou et al., 2023). So from this we conclude that preference

tuning will not affect our conclusions.

There is no research I have seen that enables inferences on the effect of instruction

tuning or the inclusion of more code and math in data, but there’s no reason a priori to

think they would change fairness behaviour.

There is one salient change that will matter. Language models are trained to compress

and then reconstruct the data they were trained on, and this lossy compression has

become less lossy as an effect of scaling. That is: LLMs memorise more individual

training samples (Karamolegkou et al., 2023). This could change fairness outcomes,

though will it help or will it harm? This depends somewhat on whether the source of

the unfairness is a dataset artifact or a generalisation error (§2.4). On the one hand,

overall increased memorisation is likely to exacerbate the learning of artifacts. On

the other hand, we don’t yet understand how scaling affects generalisation, as it is too

difficult to test in the current era of closed language models and unknown pretraining

and fine-tuning data.

Regardless of this, scaling won’t affect the measurements or mechanisms of bias trans-

fer. But these potential interactions of scaling do lend weight to the need for more work

on disentangling sources of bias and looking at the effects of increased memorisation

from overparameterisation. To date almost all work on memorisation has been from

the viewpoint of copyright (Karamolegkou et al., 2023), security and privacy (Smith

et al., 2023; Hartmann et al., 2023), or rarely, model quality (where memorisation is at

odds with generalisation) (Tänzer et al., 2022). The NLP community should also look

at it from the viewpoint of fairness.

When I started this thesis I focused on validating metrics, not because of a dedication

to evaluation; I had grand plans for applying my ideas to cross-lingual bias mitigation.

But I’d seen unvalidated assumptions in the standard metrics of the field, and it made

me unwilling to use those metrics in my own work. I didn’t want to stake my PhD

research on a metric that I didn’t trust, and find out 1.5 years in that my intuition not

to trust it had been correct. But now that I work on a deployed product, I spend at
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least half my time on evaluation. Because good evaluation was always very hard and

the rise of generative AI has only made it harder. And I can only throw darts at a wall

(a perhaps unfair caricature of LLM training) if I know when they’ve hit something

useful, and that’s the hard part, not the dart throwing.

There is some irony in how Chapter 3, my first fairness work, was the seminal work

showing that you cannot do upstream social bias mitigation, and then I took a job

where I am supposed to do just that. In practice, I need to try, since education about

NLP systems is not yet good enough, and the deployers of language models do not

yet have the knowledge and resources to do bias mitigation themselves. So I use the

tools and discoveries that I made over the course of this thesis to evaluate my models,

and measure wide bounds for what types of bias could occur in different reasonable

settings, and then make this information public, so that deployers know, can work

around it, and maybe do something about it.

But this is still not satisfying enough. I do not think we will ever get to a point in

which we rely on one single large pretrained model for thousands of use cases and

can predict bias effects downstream for anything but the most common ones. All

of this research has progressively taught me that I need to consider the entire NLP

system in my measurements for bias: the pretraining, the fine-tuning, the task, the

inputs, the corpus that a model can query. The limit case of this it that I need to

consider the user interface, the users themselves, the societal power structures within

which the NLP system is embedded. And I do think, at some stage, these need to be

part of NLP experimental conditions. We cannot consider the harmful effects of QA

systems providing false information in absence of how it is displayed in a UI, and how

much that UI encourages trust or overreliance (Buçinca et al., 2021). Bias research

cannot consider stereotypes in absence of the power structures that make them harmful

(Blodgett et al., 2021). No more can most NLP systems be considered without these

things, which all together make it increasingly complex to predict all of these things at

an upstream stage.

But we can get to a point where we understand better the effect of the choices we’ve

made in the life-cycle of an NLP system. Which ones tend to make things worse,

which better, and why. With that, we can better predict potential bias in new systems,

and then allocate evaluations and mitigation methods accordingly. But first, we need

to understand our systems as a whole.
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Lauscher, A., Ravishankar, V., Vulić, I., and Glavaš, G. (2020). From zero to hero:

On the limitations of zero-shot language transfer with multilingual Transformers. In

Webber, B., Cohn, T., He, Y., and Liu, Y., editors, Proceedings of the 2020 Con-

ference on Empirical Methods in Natural Language Processing (EMNLP), pages

4483–4499, Online. Association for Computational Linguistics.

Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., Stoy-

anov, V., and Zettlemoyer, L. (2020a). BART: Denoising sequence-to-sequence

pre-training for natural language generation, translation, and comprehension. In

Jurafsky, D., Chai, J., Schluter, N., and Tetreault, J., editors, Proceedings of the

58th Annual Meeting of the Association for Computational Linguistics, pages 7871–

7880, Online. Association for Computational Linguistics.



Bibliography 154

Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., Küttler, H.,

Lewis, M., Yih, W.-t., Rocktäschel, T., et al. (2020b). Retrieval-augmented genera-

tion for knowledge-intensive nlp tasks. Advances in Neural Information Processing

Systems, 33:9459–9474.

Lin, B. Y., Ravichander, A., Lu, X., Dziri, N., Sclar, M., Chandu, K., Bhagavatula, C.,

and Choi, Y. (2023). The unlocking spell on base llms: Rethinking alignment via

in-context learning.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettle-

moyer, L., and Stoyanov, V. (2019). Roberta: A robustly optimized bert pretraining

approach. arXiv preprint arXiv:1907.11692.

Lovering, C., Jha, R., Linzen, T., and Pavlick, E. (2021). Predicting inductive biases

of pre-trained models. In International Conference on Learning Representations.

Luccioni, A. S., Viguier, S., and Ligozat, A.-L. (2023). Estimating the carbon foot-

print of bloom, a 176b parameter language model. Journal of Machine Learning

Research, 24(253):1–15.

Ma, W., Chiang, B., Wu, T., Wang, L., and Vosoughi, S. (2023). Intersectional stereo-

types in large language models: Dataset and analysis. In Bouamor, H., Pino, J.,

and Bali, K., editors, Findings of the Association for Computational Linguistics:

EMNLP 2023, pages 8589–8597, Singapore. Association for Computational Lin-

guistics.

McCoy, R. T., Min, J., and Linzen, T. (2020). BERTs of a feather do not generalize

together: Large variability in generalization across models with similar test set per-

formance. In Alishahi, A., Belinkov, Y., Chrupała, G., Hupkes, D., Pinter, Y., and

Sajjad, H., editors, Proceedings of the Third BlackboxNLP Workshop on Analyzing

and Interpreting Neural Networks for NLP, pages 217–227, Online. Association for

Computational Linguistics.

McCurdy, K. and Serbetci, O. (2017). Grammatical gender associations outweigh

topical gender bias in crosslinguistic word embeddings. WiNLP.

Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., and Galstyan, A. (2021). A survey

on bias and fairness in machine learning. ACM Comput. Surv., 54(6).

Meng, K., Bau, D., Andonian, A., and Belinkov, Y. (2022). Locating and editing



Bibliography 155

factual associations in GPT. Advances in Neural Information Processing Systems,

36.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013a). Distributed

representations of words and phrases and their compositionality. In Burges, C.,

Bottou, L., Welling, M., Ghahramani, Z., and Weinberger, K., editors, Advances in

Neural Information Processing Systems, volume 26. Curran Associates, Inc.

Mikolov, T., Yih, W.-t., and Zweig, G. (2013b). Linguistic regularities in continuous

space word representations. In Vanderwende, L., Daumé III, H., and Kirchhoff, K.,

editors, Proceedings of the 2013 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies, pages

746–751, Atlanta, Georgia. Association for Computational Linguistics.

Min, S., Lyu, X., Holtzman, A., Artetxe, M., Lewis, M., Hajishirzi, H., and Zettle-

moyer, L. (2022). Rethinking the role of demonstrations: What makes in-context

learning work? In Goldberg, Y., Kozareva, Z., and Zhang, Y., editors, Proceedings of

the 2022 Conference on Empirical Methods in Natural Language Processing, pages

11048–11064, Abu Dhabi, United Arab Emirates. Association for Computational

Linguistics.
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Ruder, S., Vulić, I., and Søgaard, A. (2022). Square one bias in NLP: Towards a multi-

dimensional exploration of the research manifold. In Muresan, S., Nakov, P., and

Villavicencio, A., editors, Findings of the Association for Computational Linguis-

tics: ACL 2022, pages 2340–2354, Dublin, Ireland. Association for Computational

Linguistics.

Sap, M., Card, D., Gabriel, S., Choi, Y., and Smith, N. A. (2019). The risk of racial

bias in hate speech detection. In Korhonen, A., Traum, D., and Màrquez, L., edi-

tors, Proceedings of the 57th Annual Meeting of the Association for Computational

Linguistics, pages 1668–1678, Florence, Italy. Association for Computational Lin-

guistics.

Saphra, N., Fleisig, E., Cho, K., and Lopez, A. (2023). First tragedy, then parse: His-

tory repeats itself in the new era of large language models. ArXiv, abs/2311.05020.

Schwartz, R. and Stanovsky, G. (2022). On the limitations of dataset balancing: The

lost battle against spurious correlations. In Carpuat, M., de Marneffe, M.-C., and

Meza Ruiz, I. V., editors, Findings of the Association for Computational Linguistics:



Bibliography 158

NAACL 2022, pages 2182–2194, Seattle, United States. Association for Computa-

tional Linguistics.

Sellam, T., Yadlowsky, S., Tenney, I., Wei, J., Saphra, N., D’Amour, A. N., Linzen, T.,

Bastings, J., Turc, I. R., Eisenstein, J., Das, D., and Pavlick, E., editors (2022). The

MultiBERTs: BERT Reproductions for Robustness Analysis.

Sheng, E., Chang, K.-W., Natarajan, P., and Peng, N. (2019). The woman worked

as a babysitter: On biases in language generation. In Inui, K., Jiang, J., Ng, V.,

and Wan, X., editors, Proceedings of the 2019 Conference on Empirical Methods in

Natural Language Processing and the 9th International Joint Conference on Natural

Language Processing (EMNLP-IJCNLP), pages 3407–3412, Hong Kong, China.

Association for Computational Linguistics.

Sheng, E., Chang, K.-W., Natarajan, P., and Peng, N. (2021). Societal biases in lan-

guage generation: Progress and challenges. In Zong, C., Xia, F., Li, W., and Navigli,

R., editors, Proceedings of the 59th Annual Meeting of the Association for Computa-

tional Linguistics and the 11th International Joint Conference on Natural Language

Processing (Volume 1: Long Papers), pages 4275–4293, Online. Association for

Computational Linguistics.

Smith, E. M., Hall, M., Kambadur, M., Presani, E., and Williams, A. (2022). “I’m

sorry to hear that”: Finding new biases in language models with a holistic descrip-

tor dataset. In Goldberg, Y., Kozareva, Z., and Zhang, Y., editors, Proceedings of

the 2022 Conference on Empirical Methods in Natural Language Processing, pages

9180–9211, Abu Dhabi, United Arab Emirates. Association for Computational Lin-

guistics.

Smith, V., Shamsabadi, A. S., Ashurst, C., and Weller, A. (2023). Identifying and

mitigating privacy risks stemming from language models: A survey.

Stanovsky, G., Smith, N. A., and Zettlemoyer, L. (2019). Evaluating gender bias in ma-

chine translation. In Korhonen, A., Traum, D., and Màrquez, L., editors, Proceed-

ings of the 57th Annual Meeting of the Association for Computational Linguistics,

pages 1679–1684, Florence, Italy. Association for Computational Linguistics.

Subramanian, S., Han, X., Baldwin, T., Cohn, T., and Frermann, L. (2021). Eval-

uating debiasing techniques for intersectional biases. In Moens, M.-F., Huang, X.,

Specia, L., and Yih, S. W.-t., editors, Proceedings of the 2021 Conference on Empir-



Bibliography 159

ical Methods in Natural Language Processing, pages 2492–2498, Online and Punta

Cana, Dominican Republic. Association for Computational Linguistics.

Sun, J. and Peng, N. (2021). Men are elected, women are married: Events gender bias

on Wikipedia. In Zong, C., Xia, F., Li, W., and Navigli, R., editors, Proceedings of

the 59th Annual Meeting of the Association for Computational Linguistics and the

11th International Joint Conference on Natural Language Processing (Volume 2:

Short Papers), pages 350–360, Online. Association for Computational Linguistics.

Suresh, H. and Guttag, J. (2021). A framework for understanding sources of harm

throughout the machine learning life cycle. In Proceedings of the 1st ACM Confer-

ence on Equity and Access in Algorithms, Mechanisms, and Optimization, EAAMO

’21, New York, NY, USA. Association for Computing Machinery.

Tänzer, M., Ruder, S., and Rei, M. (2022). Memorisation versus generalisation in pre-

trained language models. In Muresan, S., Nakov, P., and Villavicencio, A., editors,

Proceedings of the 60th Annual Meeting of the Association for Computational Lin-

guistics (Volume 1: Long Papers), pages 7564–7578, Dublin, Ireland. Association

for Computational Linguistics.

Tatman, R. and Kasten, C. (2017). Effects of Talker Dialect, Gender and Race on

Accuracy of Bing Speech and YouTube Automatic Captions. In Proc. Interspeech

2017, pages 934–938.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov,

N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C. C., Chen,

M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., Fuller, B., Gao, C.,

Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas,

M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P. S., Lachaux, M.-

A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T.,

Mishra, P., Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi,

K., Schelten, A., Silva, R., Smith, E. M., Subramanian, R., Tan, X. E., Tang, B.,

Taylor, R., Williams, A., Kuan, J. X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A.,

Kambadur, M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S., and Scialom,

T. (2023). Llama 2: Open foundation and fine-tuned chat models. arXiv preprint

arXiv:2307.09288.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,

L. u., and Polosukhin, I. (2017). Attention is all you need. In Guyon, I., Luxburg,



Bibliography 160

U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., edi-

tors, Advances in Neural Information Processing Systems, volume 30. Curran Asso-

ciates, Inc.

Vig, J., Gehrmann, S., Belinkov, Y., Qian, S., Nevo, D., Singer, Y., and Shieber, S.

(2020). Investigating gender bias in language models using causal mediation anal-

ysis. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. F., and Lin, H., edi-

tors, Advances in Neural Information Processing Systems, volume 33, pages 12388–

12401. Curran Associates, Inc.

Voita, E. and Titov, I. (2020). Information-theoretic probing with minimum description

length. In Webber, B., Cohn, T., He, Y., and Liu, Y., editors, Proceedings of the

2020 Conference on Empirical Methods in Natural Language Processing (EMNLP),

pages 183–196, Online. Association for Computational Linguistics.

Wang, T., Zhao, J., Yatskar, M., Chang, K.-W., and Ordonez, V. (2019). Balanced

datasets are not enough: Estimating and mitigating gender bias in deep image rep-

resentations. In 2019 IEEE/CVF International Conference on Computer Vision

(ICCV), pages 5309–5318.

Winchcomb, T. (2019). Use of ai in online content moderation. Technical report,

Ofcom.

Zhao, J. and Chang, K.-W. (2020). LOGAN: Local group bias detection by clustering.

In Webber, B., Cohn, T., He, Y., and Liu, Y., editors, Proceedings of the 2020 Con-

ference on Empirical Methods in Natural Language Processing (EMNLP), pages

1968–1977, Online. Association for Computational Linguistics.

Zhao, J., Mukherjee, S., Hosseini, S., Chang, K.-W., and Hassan Awadallah, A. (2020).

Gender bias in multilingual embeddings and cross-lingual transfer. In Jurafsky, D.,

Chai, J., Schluter, N., and Tetreault, J., editors, Proceedings of the 58th Annual

Meeting of the Association for Computational Linguistics, pages 2896–2907, On-

line. Association for Computational Linguistics.

Zhao, J., Wang, T., Yatskar, M., Cotterell, R., Ordonez, V., and Chang, K.-W. (2019).

Gender bias in contextualized word embeddings. In Burstein, J., Doran, C., and

Solorio, T., editors, Proceedings of the 2019 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language Tech-



Bibliography 161

nologies, Volume 1 (Long and Short Papers), pages 629–634, Minneapolis, Min-

nesota. Association for Computational Linguistics.

Zhao, J., Wang, T., Yatskar, M., Ordonez, V., and Chang, K.-W. (2017). Men also

like shopping: Reducing gender bias amplification using corpus-level constraints.

In Palmer, M., Hwa, R., and Riedel, S., editors, Proceedings of the 2017 Conference

on Empirical Methods in Natural Language Processing, pages 2979–2989, Copen-

hagen, Denmark. Association for Computational Linguistics.

Zhao, J., Wang, T., Yatskar, M., Ordonez, V., and Chang, K.-W. (2018). Gender bias

in coreference resolution: Evaluation and debiasing methods. In Walker, M., Ji,

H., and Stent, A., editors, Proceedings of the 2018 Conference of the North Amer-

ican Chapter of the Association for Computational Linguistics: Human Language

Technologies, Volume 2 (Short Papers), pages 15–20, New Orleans, Louisiana. As-

sociation for Computational Linguistics.

Zheng, S., Song, Y., Leung, T., and Goodfellow, I. J. (2016). Improving the robustness

of deep neural networks via stability training. 2016 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 4480–4488.

Zhou, C., Liu, P., Xu, P., Iyer, S., Sun, J., Mao, Y., Ma, X., Efrat, A., Yu, P., YU,

L., Zhang, S., Ghosh, G., Lewis, M., Zettlemoyer, L., and Levy, O. (2023). LIMA:

Less is more for alignment. In Thirty-seventh Conference on Neural Information

Processing Systems.

Zhou, P., Shi, W., Zhao, J., Huang, K.-H., Chen, M., Cotterell, R., and Chang, K.-

W. (2019). Examining gender bias in languages with grammatical gender. In Inui,

K., Jiang, J., Ng, V., and Wan, X., editors, Proceedings of the 2019 Conference on

Empirical Methods in Natural Language Processing and the 9th International Joint

Conference on Natural Language Processing (EMNLP-IJCNLP), pages 5276–5284,

Hong Kong, China. Association for Computational Linguistics.




