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ABSTRACT: Britholites are the lanthanide−silica-rich end-
members of the apatite group, commonly studied for their optical
properties. Here, we show ∼50−100 μm single crystals synthesized
hydrothermally at 650−500 °C and 500−300 MPa composed of a
solid solution between Ca2Pr3(SiO4)3F−fluorbritholite and
CaPr4(SiO4)3O−oxybritholite, with a significant carbonate com-
ponent substitution, via C4+ replacing Si4+. Single-crystal X-ray
diffraction and density functional theory computations show that a
planar carbonate group occupies the face of a now-vacant silica
tetrahedron. This modifies Pr−O bond lengths, diversifying
lanthanide optical emission wavelengths. Our britholite was
synthesized in geologically reasonable conditions and composi-
tions, suggesting that carbonated oxybritholites could exist as yet-unrecognized natural minerals.

■ INTRODUCTION
Oxybritholite�CaLn4(SiO4)3O�and other lanthanide-bear-
ing oxyapatites are used in applications such as optics,1−9

biomedical materials,1,3,10−13 nuclear waste immobiliza-
tion,14−20 and solid fuel cells,21−23 where “Ln” refers to the
lanthanides La−Lu and Y (commonly known as the rare earth
elements: REE). Synthesis methods include hydrothermal
growth,10,24−27 solid-state sintering,4,14,15,21−23,28−34 occasion-
ally with preliminary treatments such as sol−gel synthesis,1 or
microwave radiation.10 These methods commonly result in
crystals only a few micrometres large, nanocrystals, or long but
thin needles about 1−2 μm thick.1−3,9−11,15−17,25,26,35,36 This
crystal morphology may not be suitable for all applications.
Additionally, these methods result in either endmember
britholite�Ca2Ln3(SiO4)3OH�or oxybritholite, with no
intermediate compositions that may be useful in certain
applications. Flux melting methods result in crystals 50 μm and
larger, but the composition is limited to solutions of
oxybritholite or fluorbritholite�Ca2Ln3(SiO4)3F�as these
are done at high temperature in air, volatilizing all hydrogen
and presumably all carbonate.7,24,37−40

Here, we show britholite grown in a high-pressure
hydrothermal apparatus and characterized using a variety of
microanalytical, optical, computational, and structural meth-
ods. We use the term “britholite” to refer to our synthetic
compound which consists of the carbonate-bearing solid
solution between fluorbritholite and oxybritholite, noting that
the britholite component sensu stricto contains a hydroxyl

component which was a negligible component in our materials.
We discuss potential applications and ways to control the
britholite composition. Finally, we discuss our findings in the
context of naturally occurring apatite- and britholite-group
minerals.

■ METHODS
The crystals described herein were originally synthesized for an earlier
study on REE mobility in geological hydrothermal settings (run
D2182).41 The lanthanide of choice for that study was Pr, because it
was a single “average” representative of the light lanthanide series (La
to Nd), making it easier to synthesize and subsequently analyze. One
of the products of this experiment was britholite, which upon further
preliminary investigation showed unusual chemical composition and
potential for novel applications in chemistry, motivating the current
study.
Experimental Synthesis. A silver capsule was filled with powder

layers, according to Table 1. The layered approach was chosen to
initially form distinct zones within the capsule where different
materials form and to explore the mobility of the various chemical
components between zones at high temperature and pressure
conditions. A 36.2 mg Ca−Cl−carbonate solution (prepared by
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fully neutralizing a 1 M HCl solution with CaCO3) was added to the
solid starting materials. We note that not all starting materials are
necessary for britholite synthesis. For example, the “SG” rock
component (Table 1) can probably be replaced with pure silica, the
fluorapatite layer can be removed completely, and MgCO3 can be
replaced with CaCO3. The silver capsule was subsequently swaged
and cold-welded according to previously described methods.42 We
used an end-loaded piston cylinder apparatus with a 3/4 in. (19 mm)
assembly size. The silver capsule was placed in a cylindrical MgO rod
with a 10 mm graphite tube heater surrounded by a 19 mm talc sleeve
and Teflon foil. The assembly was pressurized to 500 MPa and heated
to 650 °C over 4 h. It was then held for 1 day at 650 °C and cooled to
500 °C over 4 days, while the pressure was held at 500 MPa for 2 days
and decompressed to 300 MPa over 3 days (i.e., a total of 5 days for
the experiment). The experiment was ended by quenching to room
temperature, and the capsule was removed from the assembly and
sectioned into two halves, which were mounted in epoxy resin for
further analysis. No special safety precautions were required for the
starting materials, as none were hazardous. Acids were treated by
using appropriate protocols for dilute solutions. High-pressure
experiments were conducted in accordance with well-established
risk assessments and mitigations.
X-ray Diffraction. For a single crystal X-ray diffraction (SCXRD)

experiment, a britholite crystal was extracted from the surface of the
polished silver capsule, fixed on a micromount, and placed onto an
Agilent Technologies Xcalibur Eos diffractometer. The X-ray
diffraction data were measured at 293 K using monochromated Mo
Kα radiation. A hemisphere of three-dimensional data was collected
with frame widths of 1° in ω and with a 20 s exposure time. The unit-
cell parameters were refined by least-squares techniques using 462
reflections in the 2θ range of 7.62−55.00. For other details of data
collection and structure refinement, see Table 2.

The crystal structure of our britholite refined in the P63/m space
group to R = 0.028 by means of the SHELXL program43 incorporated
into Olex2 program.44 Empirical absorption correction was applied in
the CrysAlisPro program complex using spherical harmonics,
implemented in the SCALE3 ABSPACK scaling algorithm. Atom
labels given according to actual classification of apatite supergroup of
minerals.45 Visualizations of the crystal structure were performed in
the VESTA program.46

A powder XRD spectrum was simulated using the algorithms of
RIETAN-FP47 incorporated in the VESTA program.46 The powder
XRD pattern was calculated with wavelengths α1 = 1.54059 Å and α2
= 1.54432 Å and Bragg−Brentano geometry in the 2θ range of 0−
120°, and full width at half-maximum (fwhm) set 0.0745.
Chemical analysis. Quantitative chemical composition of

britholite (excluding C and H) was obtained using a field-emission
JEOL 8530F Plus electron probe microanalyzer (EPMA) at the
Centre for Advanced Microscopy, Australian National University,
employing wavelength dispersive spectroscopy (WDS). Full spec-

trometer scans were conducted on the following diffracting crystals:
layered dispersive element (LDE1), large thallium acid phthalate
(TAP), large pentaerythriol (PET), and large lithium fluoride (LIF).
Operating conditions during the scan were 15 kV, 100 nA, and a beam
diameter of 40 μm. Dwell time was 700 ms with a 20 μm step size,
scanning from ∼70 to ∼250 mm on each spectrometer. Once the
elements of interest were identified, 20 spots were measured on
different crystals using a beam current of 10 nA and diameter of 20
μm in order to minimize F migration on random orientations.48−50

We used the following X-ray lines: F Kα, Si Kα, Ca Kα, Pr Lα, and Fe
Kβ (as the Fe Kα background positions had interference from Pr Lγ).
All elements were analyzed for 20 s on peak and 10 s on each
background. Reference materials were fluorite (CaF2) for F, diopside
(CaMgSi2O6) for Si and Ca, hematite (Fe2O3) for Fe, and Pr-
pentaphosphate (PrP5O14) for Pr. All reference materials were
sourced from Astimex.
Infrared Spectroscopy. Fourier transform infrared spectroscopy

attenuated total reflectance (FTIR-ATR) was conducted by using a
germanium crystal mounted on a Bruker A590 microscope with a
Bruker IFS28 spectrometer and HgCdTe (MCT) detector. Spot size
was ∼37.5 μm2, and contact force was 4 N on polished sections
through several single crystals of britholite, which were thoroughly
cleaned with organic solvents and deionized water to remove any
potential contamination or surface residues. Background and ATR
corrections using a refractive index of 1.79 were applied using the
OPUS software. An atmospheric correction was applied to remove the
infrared signal of gaseous CO2 at ∼2340 cm−1.
Raman Spectroscopy. Raman spectral measurements were

performed using a WITec alpha300R confocal Raman spectroscopic
system coupled with a frequency-doubled 532 nm Nd:YAG laser at
room temperature, calibrated on crystalline silicon. The spectra were
recorded with a diffraction grating of 1800 lines per millimeter and a
spectral resolution of 3 cm−1. The laser beam had an output power of
12 mW, and the focal spot diameter sample was between 5 and 10
μm. The backscattered Raman signal was collected by using a Zeiss
50×/NA 0.55 objective in a UHTS300 spectrometer equipped with a
Peltier-cooled, front-illuminated CCD camera. Spectral scan durations
were 30 s, with signals averaging over 5 scans. Raman spectra were
processed using the ArDi web application.51

Table 1. Chemical Components Used in the Starting Mix for
the Britholite Synthesis Experiment, Added as Layers to a
Silver Capsule

compound mass (mg) purpose

Re metal 17.4 oxygen fugacity buffer
SGb 50.8 “rock”
MgCO3 11.4 low-T carbonate source
CaF2 2.1 fluoride source
Pr6O11 12.2 lanthanide layer
fluorapatitea 24.8 phosphate source
CaCO3 11.8 high-T carbonate source
SGb 9.2 “rock”
Re metal 11.7 oxygen fugacity buffer

aIntroduced as stoichiometric mix of Ca3(PO4)2 and CaF2.
bSintered

mix of SiO2: 68.91%, Al2O3: 15.99%, Fe2O3: 6.21%, CaO: 3.15%,
Na2O%: 2.36, K2O: 3.38%.

Table 2. Crystal Data and Structure Refinement for Our
Synthetic Britholite

temperature (K) 293(2)
crystal system hexagonal
space group P63/m
a = b (Å) 9.5588(4)
c (Å) 7.0097(4)
α = β (deg) 90
γ (deg) 120
volume (Å3) 554.67(6)
Z 2
ρcalc (g/cm3) 5.037
μ (mm−1) 16.057
F(000) 761.0
crystal size (mm3) 0.17 × 0.15 × 0.07
radiation Mo Kα (λ = 0.71073)
2Θ range for data collection/° 7.618 to 54.962
index ranges −12 ≤ h ≤ 8, −8 ≤ k ≤ 12, −8 ≤ l ≤ 9
reflections collected 2389
independent reflections 462 [Rint = 0.0463, Rsigma = 0.0271]
data/restraints/parameters 462/10/43
goodness-of-fit on F2 1.194
final R indexes [I ≥ 2σ (I)] R1 = 0.0283, wR2 = 0.0722
final R indexes [all data] R1 = 0.0294, wR2 = 0.0728
largest diff. peak/hole (e Å−3) 1.60/−0.98
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Photoluminescence. Photoluminescence spectra were measured
under 266 nm excitation by using a laser diode. Luminescence was
registered using an Acton SP-2−500 spectrograph. The photo-
luminescence spectrum under 447 nm excitation was measured using
an MDR2 grating monochromator and a H6780−04 Hamamatsu
photomodule operating in counting mode with a spectral slit width of
approximately 0.1 nm. The excitation was performed by using a 447
nm diode laser (837 mW).
Ab Initio Calculations. Geometry optimization was performed

using the Broyden−Fletcher−Goldfrab−Shanno (BFGS) iteration
technique and delocalized internals minimizer. Self-consistency
procedures conducted by dint of plane wave basis sets, Ceperley−
Alder and Perdew−Zunger (CA-PZ) exchange-correlation functional,
and on-the-fly generated (OTFG) norm-conversing pseudopotentials
method within the local density approximation (LDA) formalism.
The system was treated by ensemble density functional (EDFT)
method: a self-consistent all-bands wave function search was
performed, which for metals is followed by the self-consistent
updating of occupancies. Relativistic effects were considered with a
zeroth-order regular approximation (ZORA) to the Dirac equation.
This approach was implemented in the CASTEP package.

The SCXRD-obtained crystal structure model was converted into
the Pm space group, with half of C sites at 0.05 occupancy and half of
Si sites at 0.95 occupancy were changed into fully occupied C and Si
sites. Two half-populated X1 sites with a X1-X1 distance of 0.98 Å
were changed to a fully occupied X1 site in the middle position. To
account for charge balance constraints, the M1 site populated by Ca2+
whereas M2 was populated by Pr3+.

Energy cutoff (789.1 eV/atom), self-consistent field (SCF)
tolerance (2 × 10−6 eV/atom), and Monkhorst−Pack mesh
dimension (2 × 2 × 2) values were selected to obtain the desired
convergence: 2 × 10−4 eV/atom for energy, 3 × 10−1 eV/Å for
maximum force, 1 GPa for maximum stress, and 0.2 Å for maximum
displacement.

■ RESULTS
The initial Pr6O11-bearing layer recrystallized to euhedral to
subhedral crystals of britholite, some of which exhibit
hexagonal crystal form characteristic for apatite supergroup
minerals. The crystals were erroneously identified as cerite in a
previous study due to nonstoichiometry.41 The crystals appear
green as expected from a Pr3+-rich material, due to the
utilization of a Re oxygen buffer,52 preventing the formation of
Pr4+.53 Individual crystals can be easily seen in a simple
reflected-light optical image (Figure 1a).
Chemical Composition. Preliminary analysis of britholite

grains by EDS revealed that their mass composition is 20.33%
SiO2, 8.20% CaO, and 67.63% Pr2O3 for a total of 96.17%,
consistent with (Ca1.30Pr3.64)∑4.94Si3.00X, showing nonstoichi-
ometry (i.e., Pr > 3 atoms per formula unit�apfu) and raising
the question of which charge-balancing ions occupy the X-site.
Furthermore, the cation sum of 4.94 also indicated significant
M-site vacancies. To further confirm the chemical composition,
we first conducted a full WDS spectrometer scan to identify all
major and minor elements, which in comparison to the EDS
spectrum, (1) identified the presence of F, whose Kα line is
indistinguishable from the Pr Mζ line (compare Figure 2a,b),
and (2) revealed minor Fe whose Kα line was obscured by the
various Pr Lγ lines (Figure 2). Additionally, the WDS scan
demonstrated the overall purity of the material, which was
surprising given the multitude of chemical components used in
the synthesis experimental run (Table 1).41 Following the scan,
quantitative analysis on individual 22 britholite spots using
WDS and default data reduction routines provided in the
JEOL software (XPP54) revealed that its mass composition is
18.86 ± 0.32% SiO2, 1.19 ± 0.16% F, 8.12 ± 0.19% CaO, 0.07

± 0.07% FeO, and 68.24 ± 0.50% Pr2O3, for an analytical total
of 97.01 ± 0.77%. In contrast to preliminary EDS data,
stoichiometry based on WDS data show that Ca+Pr+Fe equal
5 apfu whereas Si is less than 3 apfu. The T-site silica
deficiency and low analytical totals indicate the potential
incorporation of light elements, most likely H or C.
Further investigation using FTIR showed the presence of

carbonate peaks between 1400 and 1500 cm−1 (Figure 3),55

which indicate B-type carbonate substitution on the T-
site.56−61 The observed B-type peaks are characteristic for
apatite supergroup materials, and distinct from other
carbonate-bearing minerals.62 FTIR also revealed minor OH
contents (at around 3560 cm−1, Figure 3), which were
estimated using the relative ratios of the OH and carbonate
peaks following previous calibrations to be equivalent to
0.063% H2O assuming that carbonate contents fill the T-site to
3 apfu.63,64

Carbonate was also confirmed by using Raman spectroscopy
on different britholite grains (Figure 4). The britholite crystal
structure is similar to apatite, guiding the interpretation of the
britholite spectra.65 Raman bands at 940, 950, and 967 cm−1

correspond to the ν1 mode of symmetrical SiO4
4− tetrahedra

vibrations. A distinct band at 844 cm−1 results from symmetric
stretching of SiO4

4− groups.66 The bands at 387, 419, and 435
cm−1 are attributed to the ν2 mode bending vibrations of
SiO4

4−. The bands at 529, 547, 579, and 606 cm−1 are related to
the ν4 bending mode. The bands at 109 and 221 cm−1 are due
to the lattice modes of the britholite. The weak band at 1114
cm−1 corresponds to the ν3 asymmetrical stretching vibrations
of SiO4

4− tetrahedra or the ν1 CO3
2− mode. The band at 865

Figure 1. (a) Reflected light image of a sectioned capsule. Gray
surface on the edges is silver, bright green is britholite, and the various
browns are byproduct silicate material. Width of the image is about 6
mm. (b) Backscattered electron image of britholite crystals. Note the
minor zoning that follows crystal growth patterns. Black is an epoxy
resin.
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cm−1 is attributed to overlapping of the ν4 modes of the CO3
2−

and Si−OH stretching vibration. The bands at 3527 and 3565
cm−1 are due to the stretching vibration of O−H. The
differences between the spectra of the two grains are attributed
to the different orientations of the grains relative to the
incident laser beam in the Raman spectrometer.
The spectrum of calcite, which is found in association with

britholite, is presented in Figure 4 (dashed curve). The Raman
bands of calcite differ from those of britholite, demonstrating
that the britholite spectrum does not suffer from calcite
contamination.
In order to improve the accuracy of light element

quantification (H, C, and F) and stoichiometric determination,
we attempted to recalculate the britholite composition based
on the EPMA raw data output using CalcZAF (v.12.8.9, after
CITZAF67). However, any material such as a carbonated
lanthanide phosphate contains atoms of highly contrasting
atomic mass, meaning that absorption within the material can
be large and requires large ZAF corrections. Differences and
systematic errors in correction procedures caused by the
different underlying physical models can therefore result in
significant differences between the true and calculated
compositions. This is especially problematic where some
elements must be calculated by difference, in this case, C,
because that difference incorporates both analytical uncertainty
and the cumulative uncertainty in the intensities of all analyzed
elements. Our approach was to simulate the X-rays emitted
from a hypothetical britholite with a composition close to our
unknown and to quantify those X-rays as if they are an
unknown material. By identifying the calculation conditions
that could most successfully recover the composition of our
simulated britholite, we could then proceed to quantify our real
EPMA measurements of the unknown britholite with the
highest accuracy.
The predicted characteristic X-ray yield was modeled with

Monte Carlo simulations performed with the simulation
package PENEPMA (v.2014),68 which is a package of the
general-purpose PENELOPE code69 optimized for EPMA
applications that has been demonstrated to be accurate.70 For
our simulation, a hypothetical britholite was defined with a
composition and density as similar as possible to those of the
measured unknown britholite. A 1 cm-diameter, 1 cm-deep
disk of the composition (Ca1.4Pr3.6)5.0(Si2.8C0.2)3.0-
O12(F0.4O0.6)1.0 with a density of 5.129 g cm−3 was centered
perpendicular to the simulated incident electron beam. This
composition was selected based on preliminary uncorrected
data obtained from EPMA and assumed stoichiometry.
To simulate realistic EPMA conditions, an accelerating

voltage of 15 kV was used, and generated X-rays were counted
by an annular (360°) detector with a 10° opening from 35 to
45° was to simulate the typical 40° takeoff angle in the EPMA
instrument. Interaction forcings were applied to increase
computational efficiency.71 The britholite simulation was run
until the relative 3σ uncertainty on the F kα intensity was
reduced to around 0.04%, requiring around 24 million
electrons; all other elements had a relative uncertainty better
than 0.02%. A lower energy cutoff of 500 eV was applied to
increase simulation efficiency. This meant that�like the real
unknown measurements�C was not directly measured;
rather, its concentration was considered a known parameter.
Oxygen was likewise not measured but was calculated by
stoichiometry. Other elements were quantified with pure
standards of the same geometry that were simulated under the

Figure 2. (a) Representative EDS spectrum of a britholite crystal,
showing overlap of F and Pr. Energy range of each WDS analyzing
crystal is shown by the colored horizontal bands. (b, e) WDS scans of
britholite using the different analyzing crystals. Only first order peaks
are annotated, despite the occurrence of second and higher order
peaks (identified by lower intensity and atypical sharp resolution).
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same conditions: diopside (Si and Ca); fluorite (F); and Pr-
pentaphosphate (Pr). Simulations of standards were run until
the element of interest reached a 3σ relative uncertainty of 0.02
(Pr) or 0.01 (other elements).
Just as for the real EPMA measurements, relative X-ray

intensities from the simulated “unknown” (Ca1.4Pr3.6)-
(Si2.8C0.2)O12(F0.4O0.6) were quantified from k-ratios of
known simulated standards using the software package
CalcZAF.72 Using CalcZAF, we could explore the effects of
using a range of typical ZAF and (φ)ρz correction procedures
and different MAC tables on the accuracy of the quantification
of various oxide concentrations of the britholite. We found that
the Heinrich/Duncumb-Reed correction quantified all ele-
ments the best. Of all the MAC tables, LINEMU, the default in
CalcZAF, performed most accurately for this particular
composition.
Based on this investigation, we chose to quantify our

unknown from EPMA measurements, including the C content
by difference and O by stoichiometry, with iterative
calculations using the Heinrich/Duncumb-Reed correction

routine with LINEMU MACs. Our approach consisted of
initially calculating a C-free composition, normalizing allM-site
cations (Ca + Pr + Fe) to 5, and calculating C by difference
from the Si deficit in the T-site. Next, the by-difference
calculated C contents were fed back to CalcZAF and the
composition was calculated again. This was repeated several
times until the T-site contained 3 apfu to within 0.01 atoms.
Our final result is an average of this process on 20 analytical
spots, giving the composition (Ca1.33Pr3.66Fe0.01)∑=5-
(Si2.83C0.17)∑=3O12(F0.58OH0.06O0.36)∑=1[O0.15]. For charge
balance, 0.15 apfu of excess O2− were required, which
constitute 1.19% of the total O budget of the chemical
formula. Given the large number of assumptions and
uncertainties inherent to this calculation, this is an excellent
result and provides additional confirmation for carbonate
incorporation in britholite. The excess negative charge also
argues against the presence of X-site vacancies,73 as these
would increase the negative charge imbalance.74 Analytical
totals are 100.53%, which likewise indicate an excellent result,
as apatite-group materials are notorious for totals that strongly
differ from 100%.
Crystal Structure. The full results of crystal structure

determination are deposited in the Cambridge Crystallo-
graphic Data Centre (CCDC) under entry number 2314987.
Full SCXRD data including final atom coordinates, displace-
ment parameters and site occupancies are given in the
Supporting Information (Tables S1 and S2). Selected
interatomic distances are reported in Table S3 of the
Supporting Information.
The crystal structure of apatite-related compounds based

upon heteropolyhedral framework that consists of M1
tricapped trigonal prism (9-coordinated) edge-shared with 7-
coordinated M2 site and TO4 tetrahedra.

45 The general view of
our britholite structure projected along its c axis is shown in
Figure 5. The M1 (4f) site is nearly equally populated by Ca
and Pr, and its refined occupancy is (Ca0.54Pr0.46)1.00. The mean
M1−O bond lengths of 2.573 Å are consistent with 2.523 Å in
britholite-(Ce).75 The M2 (6h) site is predominately occupied
by Pr with total occupancy of (Pr0.85Ca0.15)1.00 (Figure 6),
consistent with previous studies showing lanthanide preference
for the M2 site.76 The mean T1−O bond lengths of 1.615 Å
and its scattering factor are slightly less than those of full
occupancy by Si atoms only. The thermal ellipsoid of X1 site
(see Supporting Information, Table S3) has elongation along c

Figure 3. (a) Set of FTIR-ATR spectra obtained on random orientations of britholite. (b) Close-up of the H2O/OH− region. (c) Close-up of the
carbonate region.

Figure 4. Raman spectra of two different britholite grains (black and
blue curves). Red dotted curve shows Raman spectrum of britholite-
associated calcite. Cyan and brown curves show deconvolution of
measured data to individual peaks. Inset shows the region of O−H
stretching vibration modes.
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axis, a typical feature for fluorine-bearing apatite supergroup
species.73 During refinement, the X1 (4e) site has split into
two subsites with X1-X1 distance of 0.981 Å and total
occupancy of each subsite fixed with 0.5. Such splitting may be
occurring through local O−F ordering (due its near equal
occupancy). The total refined occupancy of the X1 site is
F0.54O0.46 is in a good agreement with EPMA data (neglecting
minor OH− contents, challenging to distinguish using XRD).
Insofar as the Pr3+ cations are partially ordered among M-sites,
no symmetry lowering was observed from P63/m symmetry, as
observed previously.75,77

As a second step of the crystal structure refinement process,
we attempted to find a C atom in the T site by using indirect
parameters. The T−O(1) bond of 1.626 Å is elongated
compared to other tetrahedral bonds (1.610 × 2 and 1.612).
Together with the increase of O atom thermal ellipsoids in the
triangle O(3)−O(2)−(3), we expect the carbonate anion to be
present at this face. The possible presence of roughly 5% CO3

2−

(i.e., 0.15 apfu) at these T1-tetrahedra faces is in excellent
agreement with EPMA chemical determination (Figure 7).

Our model explains the presence of the Si vacancy, where the
T site is populated with C. The carbonate group has a
triangular coordination, and as such it is located on the T1
tetrahedron face, whereas the tetrahedron center now contains
a vacancy.
The full crystal-chemical formula for the synthesized

oxybritholite, as determined by crystal structure refinement,
is (Pr3.46Ca1.54)5(Si2.85C0.15)3O12(O0.54F0.46). Inclusion of car-
bonate in apatite-group minerals is occasionally explained by
formation of vacancies in the M-site,78−80 but in our case, a
quadrivalent cation (C4+) substitutes for another quadrivalent
cation (Si4+), and the surrounding oxygens are merely
structurally rearranged, thus no vacancy formation is required.
A simulated powder XRD pattern derived from SCXRD data is
given in Figure 8.
DFT Optimization. The energy minimization procedure

led to the refined parameters of the britholite unit cell of a =
9.3353 Å, b = 6.7451 Å, c = 9.3358, and β = 119.97°. The
procedure revealed a symmetry reduction from P63/m to Pm
and a unit cell volume reduction from 554 to 509 Å3. We
found that ΔE = 5.79235 eV/cell with the final energy being
E = −24805.38262 eV/cell and the final free energy being
F = E−TS = −24805.53929 eV/cell. Fractional coordinates of
the ground state structure units are presented in the
Supporting Information (Table S4). The refined formula is
Ca4Pr6C3Si3O24F2. In general, the Si−O, M1−O, and M2−O
distances in optimized model are consistent with the same
values in known britholite structures.75,77 The geometry is also
consistent with initial assumption, but we note slightly
increased values of C−O bonds in CO3

2− triangles of 1.38−
1.40 Å compared to the calculated values of 1.32 Å.81 Figure 9
shows the fragments in the refined and DFT-optimized
structure. The replacement of half of the Si by C sites leads
to the loss of center of symmetry. Nevertheless, the whole
structure topology remains the same.
Photoluminescence. The presence of CO3

2− groups would
trigger local geometry of bothM1 and M2 polyhedra to change
and may affect luminescent properties. Therefore, we

Figure 5. General top view of the britholite structure projected along
the c axis. The unit cell is outlined in the dashed line. Oxygen atoms
in red, T-site tetrahedra in blue, M1-site polyhedra in light gray, and
M2-site polyhedra in yellow.

Figure 6. Coordination of cationic sites in the britholite crystal structure. Oxygen atoms are colored red, calcium in teal, praseodymium in yellow,
and T-site atoms in blue.

Figure 7. Arrangement of CO3 groups on T1 tetrahedra faces.
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investigated the optical properties of our synthetic britholite.
The photoluminescence spectrum under 266 nm excitation is
shown as curve 1 in Figure 10. Two relatively wide bands with
maxima at 305 and 325 nm are observed. These bands are
attributed to 5d−4f transitions in Pr3+ ions. In silicates such as
LiLa9(SiO4)6O2 with an apatite structure, the 5d−4f
luminescence bands have been observed in the region of
295−344 nm for Pr3+ ions in low symmetry point group
ligands.82,83

In phosphate-dominated apatite supergroup materials, the
Pr3+ 5d−4f luminescence bands are typically found in the
240−280 nm region, whereas the bands at 305 and 325 nm
correspond to 5d−4f transitions of Ce3+.83 However, in
apatite-structured silicates such as LiLa9(SiO4)6O2, the 5d−4f
luminescence bands have been observed at longer wavelengths
or lower energy region, specifically in the range of 295−344
nm for Pr3+ ions in low symmetry point group ligands.82 On
the one hand, silicate-containing complexes exhibit higher

polarizability compared to phosphates, resulting in an energy
shift of 4f−5d transitions to lower energy regions in silicate
complexes. The presence of carbonate adjacent to Pr3+ cations,
for the same reason, can cause an even greater shift of the band
toward lower energies.84 On the other hand, the position of the
Ce3+ luminescence band can be estimated to be around 410
nm based on the mean M2−O distance.85 Therefore, we infer
that the observed luminescence bands at 305 and 325 nm are
attributed to 5d−4f transitions in Pr3+ ions.
A reddish luminescence is observed in the samples under

447 nm excitation (Figure 10, curves 2 and 3). Bands at 490,
531, 600, 610, 650, 686, 709, and 727 nm are observed, as
previously reported.9 These bands correspond to intra-
configurational 4f−4f transitions in Pr3+ ions. The sample
contains two regions that differ in the shape of the bands at
600 and 610 nm. These regions contain a different
concentration of carbonate groups as was measured by
FTIR-ATR spectroscopy (Figure 3). The high-carbonate

Figure 8. Simulated britholite powder XRD pattern using a = 9.5588(4) Å and c = 7.0097(4) Å. Calculated using VESTA.46

Figure 9. Arrangement of M1O6 and M2O6X1 columns in the refined (a, c) and DFT-optimized (b, d) structure.
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britholite crystals demonstrate widening luminescence bands
due to the presence of cationic vacancies and a higher
disordering of the local Pr3+ environment (Figure 10, curve 2).
The crystals with a lower concentration of carbonate group
demonstrate well-resolved luminescence bands (Figure 10,
curve 3).
While the excitation energy is close to the 3H4−1I6 electron

transition, the band attributed to the transition from the 1I6
and neighboring 3P0 levels with blue luminescence is located at
490 nm. The strong red luminescence at 600 nm occurs from
the 3P0 to 3H6 and luminescence at 610 nm is from the 1D2 to
3H4 level due to multiphonon excitation from the 3P0 to 1D2
level at room temperature. The main phonon frequency is
about 970 cm−1, and the distance between the 1D2 and 3P0
levels is about 3880 cm−1,86 which corresponds to four
phonons. The main phonon frequency of carbonate groups
that is located near Pr3+ is higher, and only three required
phonons. Therefore, the nonradiative rate from 3P0 to 1D2 is
faster than the radiative decay from the 3P0-3H6 level, and the
relationship between 600 and 610 nm bands is different. The
648 nm band corresponds to 3P0-3F2 transitions, while the
680−710 nm bands are due to 3P0,1-3F3 transitions, and the
bands at 727 nm are attributed to the 3P0−3F4 transition.

■ DISCUSSION
The method presented here allows growth of well-crystallized
britholite grains several tens of micrometres wide. The key to
reaching this size is the separation of starting materials. Instead
of preparing a well-homogenized reagent mix, the chemical
components are added as distinct layers to the capsule (Table
1). This retards britholite nucleation because the lanthanide
layer is initially starved of the other components (e.g., CaO,
SiO2). Crystal growth proceeds by transport via the hydro-
thermal fluid, in a manner similar to chemical vapor deposition,
albeit at high pressure instead of vacuum.
Carbonate in Britholite. In our britholite, C atoms

occupy the face of the O3−O2−O3 SiO4 tetrahedra.
Increasing Si4+ → C4+ substitution leads to the shortening of
the number of O−O contacts in the carbonate triangle face.
Typically, O−O distances in SiO4

4− tetrahedra of britholite
range from 2.54 to 2.67 Å.78,79 Full occupancy of the C1 site

with a mean C−O bond distance of 1.32 Å81 leads to a
decrease of the O−O distances in the carbonate triangle face to
2.25 Å. We observe the same O−O contact length decrease in
our synthetic material as well. The DFT calculations
demonstrate that local symmetry changes from Cs to C1 for
the M2 site, whereas the M1 site preserves C3 symmetry. Full
occupancy of the C1 site leads to shortening of the O3−O3
distance from 2.559 to 2.369 Å and decrease of the O3-M2-O3
angle from 59.9 to 56.7° in the DFT model compared with our
initial structure determination (Figure 11). Since CO3

2−

triangles and SiO4
4− tetrahedra are stiffer polyhedra compared

with M1 and M2, increasing the degree of occupancy of the C1
position will locally change the coordination of Pr3+ in the M2
site. This causes the gradient change in the britholite
luminescence properties as a function of carbonate content,
widening spectral emission bands.
Our discovery of the previously unrecognized carbonate

substitution in britholite raises a concern and an application.
The concern is the unintended incorporation of carbonate.
Many synthesis routes include the use of organic materials or
carbonates in the starting materials.1,2,7,12,14,21−23,28,29,31,32,35,

87,88 Indeed, carbonate is occasionally observed in synthetic
apatites and britholites, even though it is presumably volatile
and expected to degas as CO2 during calcining.1,3,13,31,89,90

Evidently, some carbonate is stabilized and retained in the
crystal lattice.80 As starting materials are usually prepared
stoichiometrically, this leads to the problem of excess Si, which
could then either precipitate as a silica polymorph (SiO2�
either quartz or tridymite), or bond with other components in
the system to form other byproduct phases (e.g., CaSiO3�
wollastonite). This may result in impure material of inferior
quality, which may not always be easily discernible, particularly
when synthesizing nanoscale materials.33 Careful stoichiometry
control by calcining of starting materials and subsequent
confirmation of complete carbonate loss using FTIR is highly
recommended.91 Furthermore, as carbon is not easily detected
or analyzed using electron beam methods and is not readily
obvious in XRD studies due to its low electron density, its
presence might be overlooked�potentially leading to
erroneous determinations of stoichiometry, composition, and
inferred vacancies. However, the detection of carbonate is
straightforward using FTIR, and we encourage all researchers
to specifically look for the carbonate peaks.
The inclusion of carbonate via solid solution is not

necessarily a nuisance but can also be exploited. As seen in
the structure determination, some oxygen to metal cation bond
lengths are shorter when adjacent to a carbonate group. This
shortening alters the local environment and bond energies of

Figure 10. Luminescence spectra of the britholite sample under 266
nm excitation (curve 1), and 447 nm excitation in two different spots
(curves 2 and 3).

Figure 11. Location coordination of the M2 site in the crystal
structure of the investigated britholite with (a) 5% occupancy of a C1
site, and (b) DFT model with a fully occupied C1 site.
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some metal cations, but not others, leading to additional
vibrational and emission bands compared to carbonate-free
compounds (e.g., Figure 10).92 Our britholites were grown at
high pressure in a hydrothermal environment saturated with
carbonate (in the form of calcite), maximizing the amount of
carbonate incorporated into britholite. It remains to be tested
what levels of carbonate can be sequestered in solid solution
when traditional solid-state sintering methods are employed,
ideally in a CO2 atmosphere. Interestingly, a previous study
concluded that carbonate promotes the introduction of
lanthanides into the apatite crystal structure, in the absence
of silica.80 Using the example of europium, they suggest that
the replacement mechanism was 3Ca2+ = 2Eu3+ + □. Our
results suggest that perhaps the alternative vector of Ca2+ + P5+

= Eu3+ + C4+ is responsible as a suitable pathway for the
introduction of lanthanide to apatite-type materials.
Oxybritholite. Ca−Ln−P−Si-apatites may be more

accurately represented as an apatite−britholite−oxybritholite
ternary system instead of an apatite−britholite binary system.
This relation was well demonstrated in a previous study.25

They attempted to synthesize compositions along the
hydroxylapatite−britholite−(Y) binary at 650 °C and 1.5
kbar, but found that as the Y contents increased, so did proton
vacancies (i.e., OH → O + □). Evidently, the britholite and
oxybritholite components in their apatite increased simulta-
neously.
Accurate control of OH− contents has been previously

demonstrated to enhance luminescent properties of apatite.93

The equilibrium relations governing the introduction of
nonstoichiometric lanthanides into britholite or fluorbritholite
via the oxybritholite component are

+

= + +

Ln Ln

Ln

2Ca (SiO ) OH O

2Ca (SiO ) O 2CaO H O
2 3 4 3 2 3

4 4 3 2
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= + +
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where “F2O−1” is the charge-neutral thermodynamic compo-
nent of F when all components are considered as an oxide
species and can be considered as the result of separating CaF2
into CaO and F2O−1.

94,95 The equilibrium constants can be
formulated as
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where k is the equilibrium constant at any combination of
pressure and temperature. Thus, when grown hydrothermally,
the ratio of the britholite and fluorbritholite components to the
oxybritholite component (and as a corollary, the Ca/Ln ratio)
in the desired product can be varied by controlling the H2O
activity. For a fixed Ca/Ln activity ratio, the oxybritholite
component would be stabilized in fluids where the F or H2O
components has been diluted. These dilutants could be other
volatile components (e.g., CO2, SO2), acids (e.g., HCl), or
other species (e.g., SiO2, NaCl). This equilibrium occurs
independently of the apatite−britholite exchange (Ca2+ + P5+ =
Ln3+ + Si4+). In a synthetic system, it might be easier to add

other components that are incompatible in britholite. Possible
candidates could be heavy alkali metal halides consisting of Rb,
Cs, Br and I, which together act to dilute H2O and control
F2O−1 activity. At lower temperatures (e.g., lower than 400
°C), acid−base reactions become important, and the reaction
can be rewritten as

+

= + +

+

+ +

Ln Ln

Ln

Ca (SiO ) OH

Ca (SiO ) O Ca H

2 3 4 3 (s)
3

(aq)

4 4 3 (s)
2

(aq) (aq)

Therefore, the britholite/oxybritholite ratio in the product
can also be controlled by the pH of the hydrothermal fluid,
with the oxybritholite component preferred at basic conditions
(high pH).
Geological Implications. The britholites are a mineral

group within the apatite supergroup45 with the general formula
Ca2Ln3(SiO4)3OH (where Ln are the lanthanides La−Lu and
Y). Currently, two species of britholite are recognized:
britholite-(Ce), and britholite-(Y),77,96,97 with britholite-(La)
described,98 but not formally approved by the IMA. An
additional species with intermediate apatite−britholite compo-
sition, where Ca > Ln and Si > P, is named calciobritholite,99

although not formally IMA-approved. Fluorine-rich britholites
are also known (where F− substitutes for OH−) and contain
the prefix “fluor” in their name: fluorbritholite-(Ce),
fluorbritholite-(Y), fluorbritholite-(Nd), and fluorcalciobritho-
lite.66,100−102

Currently, the two substitution mechanisms introducing Ln
into apatite strongly supported by data are Ca2+ + P5+ = Ln3+ +
Si4+, and 2Ca2+ = Na+ + Ln3+.99,103−122 However, the
correlation between Ln and Na or Si is not always perfect.123

Although this mismatch can be often attributed to analytical
uncertainties,111 our geologically reasonable conditions
employed in the synthesis described above indicate that an
oxybritholite component may contribute to the mismatch.
Silica-deficient and low-totals britholites observed in some
localities are potential hosts for undetected carbonates.124−126

In some cases, apatite−britholite analyses plot consistently
below the 1:1 line on a Ca+P−REE+Si plot,111,127−130 which
could be easily explained by the presence of carbonate
substituting for silicate. We expect this to occur mostly in
carbonatite-associated fluorapatite.131,132

The apatite−britholite substitution requires that endmember
britholite should contain two Ca apfu and three Ln apfu,
limited by three phosphate groups available for substitution by
orthosilicate groups. However, there are reports of non-
stoichiometric britholite in natural rocks containing REE/Ca >
3/2, where “Ca” includes other divalent cations that commonly
substitute on the Ca-dominated M-site such as Sr or
Mn,75,97,101,126,133−135 with the nonstoichiometry occasionally
exacerbated by presence of phosphate (i.e., nonendmember
britholite).128 Characterization of these natural britholites is
challenging because they often contain a mix of all 14
lanthanides and other monovalent or divalent cations (e.g.,
Na+, Mn2+, Sr2+), and they may be metamict due to the
presence of quadrivalent Th.45,100,128,135 Additionally, some
orthosilicate may be substituted by phosphate or other
oxyanions (carbonate, borate, arsenate, or vanadate).136

Finally, as britholites are apatite-supergroup minerals, they
suffer the same difficulties when analyzing for the halogens F
and Cl,48−50 and hydroxyl analysis requires separate methods
(e.g., SIMS or FTIR). Therefore, establishing the precise
stoichiometry of a britholite137 in order to understand the
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crystal chemical constraints that allow incorporation of the
excess lanthanides is fraught with uncertainties. This has led to
a plethora of proposed substitution mechanisms, but evidence
for one mechanism or the other has hitherto been
inconclusive.74

The data presented here provide strong support for the
stability of the oxybritholite component under geologically
reasonable conditions. In contrast, we found no evidence for
excess lanthanide incorporation into britholite by vacancy as
suggested by some authors (e.g., 3Ca2+ = 2Ln3+ + □).138,139

Endmember or near-endmember oxybritholite has not yet
been found in natural rocks. In our case, the studied britholite
crystals were homogeneous, large enough for single crystal
diffraction, and were dominated by the oxybritholite
component. Unfortunately, natural apatite supergroup minerals
are not as simple,140 and it remains to be seen whether an
oxybritholite component can be detected in future studies.
However, an appreciable amount of excess lanthanides in
britholite is occasionally found. For example, lanthanide-rich
britholites in the Norberg District, Sweden contain up to 3.55
apfu Ln,133 and an “oxy” component has been calculated for
britholites from Keivy, Russia.130 This suggests that, pending
full and accurate chemical characterization, they may be
reclassified as the type locality of naturally occurring
oxybritholite.

■ CONCLUSIONS
We find two new substitution mechanisms that operate in
apatite supergroup minerals. The first is the incorporation of
additional lanthanides into the structure by formation of an
oxybritholite or oxyapatite structure:

+ = ++ +LnCa (OH, F, Cl) O2 3 2

Although well-known from materials science,8 it has received
essentially no consideration in the mineralogical literature. The
endmembers formulas for oxybritholite and oxyapatite are
CaLn4(SiO4)3O and Ca4Ln(PO4)3O, respectively. The latter is
a novel substitution vector for natural apatites.
The second is the charge balanced replacement of an

orthosilicate group by a carbonate and an additional oxygen:

= +SiO CO O4
4

3
2 2

This substitution vector is currently undescribed for both
natural and synthetic materials, and here, we provided the first
full characterization of its structure and demonstration of its
thermodynamic stability and existence. It expands the well-
known “britholite component” of lanthanide incorporation in
apatite (i.e., Ca2+ + P5+ = Ln3+ + Si4+) into an additional novel
substitution vector for natural apatites:

+ = ++ + + +LnCa P C2 5 3 4

Both substitution vectors lead to increased variety in local
environments and bond lengths for metal cations in the M1
and M2 sites and importantly any lanthanides. This leads to
additional or wider optical emission peaks upon photo-
luminescent excitation.
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