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Abstract: Energy efficiency in museums and buildings that house works of art or cultural heritage
appears to be a difficult achievement if indoor air quality has to be kept at appropriate levels for
artefacts’ long-term sustainability. There is a gap in our scientific literature on the relationship
between indoor air quality and energy efficiency, meaning that there are no numerical data that
examine both of them simultaneously, although this is a theme that is broadly discussed by museum
managers, curators, and scientists. It is certain that the two parameters, indoor air quality (IAQ) and
energy efficiency (EEF) are conflicting and difficult to reconcile. Furthermore, IAQ is not only the
determination of temperature, relative humidity, and CO2, as is usually presented. Using green or
renewable energy does not make a building “energy efficient”. Hence, in the manuscript we review
the literature on IAQ of museums and exhibition buildings, in conjunction with the consideration
of their EEF. Hopefully, reviewing the literature for this problem may lead to carefully designed
monitoring experiments. The selection, application, and testing of appropriate technological measures
can lead to a new balance between the two conflicting parameters. Not only must solutions be found,
but these solutions are necessary in the mitigation battle against climate change.

Keywords: indoor air quality; museum; historical buildings; works of art; energy efficiency; cultural
heritage conservation

1. Introduction

Climate change is a reality in today’s world [1]. It is strongly dependent on the energy
production by fossil fuels and the energy consumption by diverse human activities, both
of which contribute to CO2 and other greenhouse gases emissions. Climate change and
occasionally erratic power supply conditions sped up the political decisions to reduce
energy demand and to produce renewable energy, i.e., energy derived from natural sources
that are replenished at a faster rate than they are consumed. Furthermore, energy efficiency
(EEF) is strongly pursued in an effort to use less energy to achieve the same task or product.

The built environment is critical to achieving energy efficiency and other environmen-
tal objectives. Homes and buildings that are energy efficient use less energy to achieve
comfortable living and working conditions. The Directive 2012/27/EU and the 2018 amend-
ing Directive on Energy Efficiency in the EU seek to save energy while also promoting
good indoor air quality and comfort. However, they do not specify how to achieve both
the goals of energy savings and satisfactory indoor environmental quality. The legislation
governing indoor air quality (IAQ), in particular, is fragmented.

The amount of particulate matter (PM), airborne inorganic, organic, and biological
particles, such as SARS-CoV-2, fungi, bacteria, and gaseous pollutants, present in the indoor
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air is defined as indoor air quality (IAQ). Indoor environmental quality (IEQ) includes
not only air pollution within a building, but also lighting, thermal conditions, ergonomics,
and other conditions that may be harmful to occupants. In other words, all the conditions
within the building that allow it to be used for its intended purpose. Aside from human
health and comfort, the IEQ has an impact on the materials used to create works of art.
Since the 1970s, numerous studies have been conducted to investigate the deterioration
of valuable objects housed in museums, churches, mosques, temples, and other historical
buildings, as well as private collections [2–19].

Climate change influences outdoor air pollution and causes severe and frequent
weather extremes [20]. This changes the indoor environment, affects IEQ and interferes
with energy consumption [21,22], hence undermining climate change mitigation efforts [23].

The COVID-19 pandemic underscored the significance of maintaining proper IAQ
control. Apart from the well-established fact that IAQ affects productivity and wellbeing,
this control or lack of it has emerged as a key factor in the transmission of infectious diseases.
Numerous studies support the notion that in order to achieve good IAQ, particularly in
public buildings such as schools, hospitals, and museums, more energy expenditures are
required for air filtration, ventilation, etc. EEF is thought to be inversely proportional to
good IAQ [24,25]. In crowded buildings, balancing energy efficiency with good indoor air
quality is even more difficult.

Museums preserve the cultural heritage of our planet and promote culture and knowl-
edge. They are popular tourist destinations all over the world. According to UNESCO,
the number of museums worldwide has increased from 22,000 in 1975 to 95,000 today [26].
These structures necessitate a large amount of energy for heating, cooling, and lighting, as
well as good air quality. IEQ management is critical for the preservation of artworks as
well as for the health of both staff and visitors. The world’s cultural heritage is facing new
challenges as a result of climate change and the need to conserve energy [27].

People in charge of the world’s collections understand that displaying or storing
them in appropriate environmental conditions prevents deterioration more effectively than
restoring them. Air temperature and relative humidity have historically been the primary
conservation concerns in buildings that house works of art, whether historical or modern.
The range of these two parameters for artwork conservation frequently differs from the
accepted range for visitor comfort; thus, much research is devoted to reconciling the two.
This aspect will not be discussed further in this study because the emphasis is on the
atmospheric pollutants that can endanger works of art in relation to the EEF.

Along with microclimatic conditions, the threat of air pollutants degrading the aes-
thetic value of works of art is an age-old concern [2,4]. Some examples of the deterioration
of works of art associated with atmospheric pollution are, for objects made of marble, car-
bonization corrosion, soiling, blackening and biological colonization; for works of art made
of metal, they include surface corrosion, the development of a stable patina, etc. [28–30].
This degradation of works of art has been well established through extensive experimenta-
tion. Furthermore, it is well known that buildings containing works of art have indoor air
pollutant concentrations that exceed the threshold values for proper conservation [31–33].

The critical need to reduce our use of energy in all aspects of our lives and to meet our
needs with renewables has emerged as a major issue in museum operations. The EEF will
reduce operating costs and minimize the museum’s environmental impact in a near-zero
energy consumption museum or a “green” museum. These buildings, whether modern
museums or other historical structures housing works of art, can set a good example of en-
ergy efficiency with acceptable IAQ and, in general, can reduce their environmental impact.
Museums have the potential to play a larger role in reducing the human environmental
footprint and combating climate change [34–36].

We have summarized the most recent understanding of the relationship between IAQ
and EEF in this review. In addition, we discuss strategies for achieving appropriate IAQ
in museums for cultural heritage conservation and human well-being without sacrificing
energy savings or the quality of the visitors’ experience.
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Indoor air quality is a crucial parameter for preserving the high value and cultural
significance of objects housed in museums or historical buildings, over the centuries.
Gaseous pollutants, particulate matter, and microorganisms, if present in a museum, can
create sometimes irreversible damage to works of art. For example, soiling, corrosion, color
fading, cracks, and mold. In times of climate change, the world of museums encounters a
new challenge: energy saving.

2. Materials and Methods

The publications that are included in the present work were written in English and
were retrieved from several databases, such as Google, Scopus, Google Scholar and Web
of Science. Examples of the key words used were: climate change; indoor air quality;
electricity consumption; energy efficiency; greening; indoor environmental quality; retrofit;
refurbish; thermal conditions; decarbonization; sustainability; controlling IAQ; energy
saving. These key words were used in combination with the word “museum” or “cultural
heritage” or “works of art” or “historical building”.

This review is organized as follows: (a) a presentation of a basic IAQ model that
describes the parameters that make up the IAQ and how the IAQ is related to the building’s
energy consumption; (b) a description of the threat to the conservation of the housed
cultural heritage, a summary of proposed indoor air quality guidelines for some key
atmospheric pollutants, and a summary of their measured atmospheric concentrations
in museums; (c) a summary of the studies that reported indoor atmospheric pollutant
monitoring with energy consumption/saving in museums; (d) interventions to improve
IAQ in museums, in conjunction with EEF measures.

The current review highlights gaps in our understanding of the relationship be-
tween IAQ and EEF, i.e., what knowledge is well established and what requires further
scientific investigation.

3. Results and Discussion
3.1. Indoor Air Quality and Energy Consumption Fundamentals

IAQ is affected by the concentrations of air pollutants, gases, or particles in the
atmosphere. Indoor air pollutants can be transported from outside or emitted from inside.
The indoor air pollutant concentrations and their diurnal variation will be shaped by
building characteristics such as air exchange rate, material of the indoor surfaces, and
occupant activity. Depending on the indoor activities, atmospheric pollutants emitted
indoors may be the most serious threat to poor indoor air quality. To demonstrate this, a
simple indoor model, shown in Figure 1, is discussed below.

In each room or in an entire building, where air can be assumed to be well mixed,
the rate of change of an air pollutant concentration can be described by a mass balance
equation, as follows [37,38]:

V
dCin

dt
= P f Cout − f Cin + S − R (1)

where Cin and Cout are the respective indoor and outdoor atmospheric pollutant concentra-
tions (µg m−3); f is the air flow rate (m3 h−1); the room air exchange rate (AER) is equal to
f /V (h−1); and S represents the emission rate of the air pollutant from the indoor sources
(µg h−1). The air pollutant loss rate R can be considered to be equal to ud ACin, where
k = ud

A
V (h−1) is the average deposition rate of each pollutant on indoor surfaces. V is the

volume of the room (m3), A is the total interior surface area (m2), and ud is the average
deposition velocity of each air pollutant (m h−1). The parameter P only refers to PM and is
defined as the particle penetration coefficient (dimensionless) [39]. In the case of gaseous
pollutants, P = 1.
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Figure 1. Schematic presentation of a simple IAQ box model. Cin and Cout are the indoor and outdoor
air pollutant concentrations, f the air flow rate.

Certainly, the simple Equation (1) does not account for all of the variables that influence
indoor air pollutant concentrations. Indoor chemical reactions, as well as coagulation or
phase change processes in the case of PM, interfere with the terms S and R; deposition
velocities are not stable and can be different for the diverse orientation of the surfaces; other
phenomena also influence the indoor air pollutant concentrations [38,40–42].

Based on the simple model above, we can refute the widely held belief that changing
the AER of a room would always improve its air quality. Indoor air pollution problems are
not always solved by simply changing the AER. The solution is dependent on a combination
of outdoor and indoor air pollutant concentrations, indoor air pollutant emission and loss
rates, etc., and each combination is unique and may not be applicable for all pollutants
under consideration [43,44].

Many studies use CO2 concentrations as an indicator of IAQ. Indoor CO2 concen-
trations are affected by the number of occupants, their metabolic rate, and in buildings
without combustion sources, such as museums, they are only indicative of whether the AER
is adequate for bio-effluent dilution [45]. Numerous other indoor air pollutants contribute
to poor indoor air quality [46]. VOCs, for example, can come from both outdoor and indoor
sources, such as human breath, personal care products, and cleaning products [47–50].
The materials that are used in the construction of the display cases can be also a source of
dangerous VOCs, such as formic and acetic acid [51]. Particulate matter of various chemical
compositions and sizes causes concern for human health, but it also endangers works of
art [52,53].

As a result, there is no universal solution for every difficult indoor air pollution
situation. An extensive IAQ monitoring program is required to propose IAQ control
measures in each case.

Persily and Emmerich [54] explain that in a building with a heating, ventilation, and
air conditioning (HVAC) system, the main link between IAQ and EEF is the parameter f
in Equation (1), which is the air flow rate that infiltrates or exfiltrates (or exhausts) from
the room per unit of time. The energy consumed to heat or cool the air, and to purify and
circulate it within the building’s duct system is analogous to the f ; the higher the f, the
greater the power requirement [54]. The air flow rate (f ) in a naturally ventilated building is
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uncontrolled and varies over time. Buildings must consume energy in this case to achieve
appropriate microclimatic conditions (heating or cooling), to purify the atmosphere, or to
humidify or dehumidify the air [55]. Energy for lighting is also a significant consumer in
museums [56]. To summarize, museums’ primary energy (E) consumers are:

E = heating (cooling) + lighting + air cleaning + air humidifying (or dehumidifying) (2)

The air flow rate (f ) and indoor and outdoor air pollutant sources and sinks are the
main factors that define the relationship between IAQ and EEF.

3.2. IAQ in Museums

It is well established that air pollutants can harm works of art, and in some cases the
damage is irreversible [33,57]. For example, O3 and NO2 concentrations must be close to
zero in order to preserve works of art for an extended period of time [8,58]. Particulate
matter in the air comes from both indoor and outdoor sources. The impact on works
of art is determined by their size, concentration, and chemical composition [52,59]. The
concentration and chemical composition of airborne particulate matter inside and outside
of five museums in California (USA) were studied as part of an extensive monitoring
program [60]. The Sepulveda House is an historical building with natural airflow and
this museum had the highest indoor/outdoor (I/O) fine PM ratio = 0.94, i.e., the same
levels as outdoors. On the contrary the Norton Simon Museum (with HVAC and PM
filtering system) had the lowest I/O fine PM ratio, which was 0.18. The concentrations of
black elemental carbon particles and fine soil-dust particles in all of the museums ranged
from 20 to 100% of the outdoor levels, depending on the presence or absence of an HVAC
and PM filtering system. At the sites with a HVAC and a PM filtering system, the indoor
airborne particles were mostly fine, consisted largely of organic matter and at two sites,
indoor concentrations of organic matter exceeded the respective outdoor concentrations.
According to the authors, PM deposition can affect the surfaces of works of art by soiling
them or by attacking them chemically, depending on PM chemical composition [60].

Table 1 compares guidelines developed by the World Health Organization (WHO)
for the most common air pollutant concentrations for human health protection, with
guidelines proposed for the preservation of housed works of art for the same pollutant.
The preservation target is the amount of time (in years) that the objects can be exposed to
the indicated level of pollutants without deterioration.

Table 1. Proposed guideline values for air pollutant concentrations.

Human Health
WHO (2021) [61]

Museums
Tétreault (2003) [9]

Museums
Grzywacz, C.M. (2006) [57]

Main sources Air pollutant Indoors or outdoors Maximum concentrations
for one year preservation Sensitive materials Other materials

Outdoor O3 (ppb) 50 (24-h) 5 <0.05 0.5–5
Outdoor NO2 (ppb) 5 (annual) 5 <0.05–2.6 2–10
Indoor

Outdoor PM2.5 (µg m−3) 5 (annual) 10

Table 2 summarizes the findings of some monitoring campaigns that measured indoor
and outdoor pollutant concentrations (and the respective I/O ratio) in museums or his-
torical buildings. Only the results for the pollutants presented in Table 1 are included in
Table 2. It should be noted that the average time for the reported atmospheric pollutant
concentrations and the applied monitoring method varies by museum.
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Table 2. Air pollutant concentrations as measured in museums/historical buildings.

Museum/Historical Building
O3
(In)
(Ppb)

O3
(Out)
(Ppb)

O3
(I/O)

NO2
(In)
(Ppb)

NO2
(Out)(Ppb)

NO2
(I/O)

Fine
PM
(in)
(µg m−3)

Fine PM (Out)
(µg m−3) PM (I/O) References

Sainsbury Centre for Visual Arts,
Norwich, UK
(no air conditioning system)

10 12 0.80 [62]

Correr Museum, Venice, Italy winter 10.4 24.3 0.43

[63]
summer 10.6 14.2 0.75

Victoria and Albert Museum,
London, UK 20.7 20.8 1.00

Residenz, Würzburg, Germany 9.1 14.3 0.64

Bethnal Green Museum
(natural ventilation) 22.6 26.8 8 6 1.33

[32]
Museum of London, UK
(HVAC and air filtration) 5.8 3.6 2 13 0.15

Gene Autry Museum (USA)
(HVAC and air filtration)

[64]
Buffer zone (roll-up door was closed) 7 28 0.27

±0.15 13 39 0.32
±0.15

Buffer zone (roll-up door was
opened) 22 25 0.88

±0.15 56 65 0.85
±0.15

Trail View Window 3 8 0.33
±0.15

São Paulo History Museum, Brazil
(MP), Exhibition
(natural ventilation)

10–14 0.72–0.99 14.5 0.57 5.8 6.8 0.85

[65,66]
São Paulo State Art Museum, Brazil
(PE), Exhibition
(HVAC)

3 0.22 12 0.46 5.1 8.4 0.61

Museu de Arqueologia
e Etnologia, São Paulo, Brazil
(HVAC and air filtration)

3.5 6.2 0.56 [66]

Galleria degli Uffizi in Florence, Italy
(natural ventilation) 19–30 40–70 [67]
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Table 2. Cont.

Museum/Historical Building
O3
(In)
(Ppb)

O3
(Out)
(Ppb)

O3
(I/O)

NO2
(In)
(Ppb)

NO2
(Out)(Ppb)

NO2
(I/O)

Fine
PM
(in)
(µg m−3)

Fine PM (Out)
(µg m−3) PM (I/O) References

Jinsha Site Museum, Chengdu, China 33.3 ± 6.6 39.4
±11.4 0.85 [68]

five museums
(2 with natural ventilation) Yangtze
River, China
winter

2–9 0.46–1.5 1–9 0.16–0.75 33.9–79.6 0.89–1.09
[69]

summer 1–19 0.14–0.95 1–11 0.03–0.92 52.8–113.0 0.61–0.94

Archaeological museum of
Thessaloniki, Greece,
(natural ventilation)

40.5 ± 19.1 24.1
±8.85 1.8 [59]

Plantin-Moretus Museum,
Antwerp, Belgium
(natural ventilation)

Very low NO (in) ≈ NO (out) 12–15 21–31 0.39–0.66 [70]

Museum (criminology findings),
Athens, Greece 25.4 ± 7.9 20.0 ± 12.6 19.7 20.3 ± 2.7 24.0 [71]
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Several studies, both old and new, have reported particle number concentrations and
size distribution, PM chemical composition, VOCs, organic and inorganic acids, SO2, H2S,
CO2, and microorganisms [16,17,28,32,72–80]. Table 2 shows a small sample of such studies
to demonstrate that the issue of elevated indoor air pollutants is always current.

Works of art have been and continue to be threatened as a result of a variety of
indoor and outdoor pollutant sources [81]. Museums are typically located in congested,
central areas with significant outdoor air pollution, which can be transported indoors via
windows, ventilation systems, or by visitors (for example road dust from their shoes) [82].
Indoor sources, on the other hand, are unambiguous in museums. Visitors are an obvious
and significant source of indoor air pollution. People emit particulate matter, including
bioaerosols, through their skin and clothing, and by speaking and breathing, and they
also cause PM resuspension [83–85]. Other chemical compounds, such as VOCs, are also
emitted by people through their breath and personal care products, as well as from building
and construction materials [50,86,87]. Vacuuming and cleaning the rooms can release a
variety of gaseous and particulate pollutants into the atmosphere [49,88].

A sophisticated HVAC system with appropriate air filtration is the most commonly
recommended intervention to reduce indoor air pollutants [89]. Without air filters, the
HVAC system cannot adequately protect the artworks housed [90]. Hu et al. [69] measured
indoor air pollutants above the recommended levels in five museums (three of which
had HVAC systems but no filtration) (Table 2). Hisham and Grosjean [64,91] monitored
the IAQ in museums in California, USA; these authors measured indoor and outdoor
concentrations of O3, NO2, SO2, H2S, total reduced sulfur (TRS), peroxyacetyl nitrate
(PAN), methyl chloroform, and tetrachloroethylene in three of the 12 examined museums.
In the remaining nine museums, they monitored NO2, PAN, nitrate, methylchloroform,
tetrachloroethylene, and nitric acid. They concluded that the chlorinated hydrocarbon
I/O concentration ratios were greater than unity in all locations, indicating indoor sources.
Many consumer and industrial products, such as cleaning products, contain chlorinated
hydrocarbons [64,92]. Hisham and Grosjean [64,91] observed that the influx of outdoor air
diluted the chlorinated hydrocarbons and reduced their I/O ratio. On the contrary, because
pollutants like PAN originate outside, the influx of outdoor air increased their I/O ratio.
Except for two museums, the authors reported that PAN indoor concentrations were close
to outdoor levels in all of them. They observed that, in museums without an HVAC system,
indoor air pollutant concentrations were very close to outdoor levels. They found a modest
removal of NO2, PAN, and chlorinated hydrocarbons in museums with HVAC systems.
Only one of the three museums equipped with HVAC and chemical filtration achieved low
I/O air pollutant concentration ratios [64].

Nazaroff et al. [60] monitored airborne particles indoors and outdoors of museums in
California, USA: a historical museum, an archaeological museum, and three art museums.
In the historical museum, the Sepulveda House, the indoor fine-particle concentrations
were nearly identical to those outdoors. However, the coarse particle concentrations were
much lower than outdoors. The indoor particle concentrations at the three museums
with sophisticated HVAC systems and particle filtration were significantly lower than
those measured outdoors. In particular, the lowest indoor particle concentrations were
found at the Norton Simon Museum. In this museum, with a high air recirculation rate,
the infiltrated air from outdoors and the recirculated air passed through a series of air
filters. Thus, among all the museums studied, its indoor PM levels were the lowest [60].
Godoi et al. [90] found that the Oscar Niemeyer Museum (MON) in Curitiba, Brazil has
satisfactory air quality, which may be favoring the conservation of its art collection. The
quantity of bulk particles in the MON was lower than outdoors. However, air filters with a
higher efficiency were suggested for use in the HVAC system of the MON, particularly to
capture fine particles.

HVAC systems with an appropriate air filtration system (and heat recovery) make it
possible to prevent outdoor atmospheric pollutants from entering the museum. Thus, the
inflow of fresh outdoor air can be increased (f in Equation (1)) to supply clean outdoor air
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indoors to dilute the indoor-generated atmospheric pollutants. However, applying such
a system to historical buildings, such as churches, is difficult, and it is unclear whether
they will function properly to provide stable conditions for the conservation of works of
art [93]. In any case, it is an expensive addition to any museum, old or new. To keep these
systems running properly, not only for the safety of visitors but also to maintain stable
conditions for the housed works of art, they must be constantly monitored, resulting in
an increased cost for their operation and maintenance. Failure of these systems can have
serious consequences for the conservation of works of art [94–96]. Humidifiers or desiccant
systems are also used in museums to control humidity. These systems must be carefully
installed and maintained in order to function properly [18,97].

3.3. IAQ and EEF in Museums

Saving energy and producing energy from renewable sources has become a global
necessity, and it is a critical component of the “green building” concept. The IEQ is a
fundamental credit category in many green building rating systems (GBRSs), including
LEED, Green Globes, WELL, and BREEAM [98]. However, in a study published by Licina
and Langer (2021), measurements did not demonstrate that these GBRSs reduced indoor
atmospheric pollutants [99]. In the case of museums, particularly historical buildings,
it appears to be a difficult endeavor to reduce indoor air pollution while also saving
energy [100].

Several studies have emerged that propose solutions for retrofitting museums to save
energy. For example, Katsaprakakis et al. [101] present the findings of a proposed project
aimed at improving the energy efficiency of the Natural History Museum of Crete, Greece,
from class D to class A+ using a combination of passive and active measures. The IAQ was
not assessed. The new Audain Art Museum (Whistler, BC, Canada), a Class AA building,
was opened in 2020. In this museum, overall heating energy savings account for 70% of
total energy savings. As long as the sophisticated air filters work properly, a combination
of them ensures good IAQ. However, measurements were not used to assess the IAQ in
this study [94].

The balance between acceptable microclimatic conditions (for works of art and vis-
itor thermal comfort) and the EEF was examined in museums by monitoring indoor air
temperature and relative humidity, and the EEF was typically evaluated using simulation
tools [97,102,103]. CO2 concentrations were also monitored and reported as an IAQ indica-
tor in some studies. The latter is far from scientific reality. Table 3 compiles a list of relevant
publications.

Table 3. IEQ and EEF in museums and historical buildings.

Museum/
Historical Building

Microclimatic
Conditions CO2

Other Atmospheric
Pollutants

Energy Consumption
/Saving References

“La Specola” Museum of
Florence (Italy) Yes simulation [15]

Viking Age Museum
(Norway) Yes simulation [102]

Museum in Pisa (Italy) Yes simulation [104]
Technical Museum Nikola
Tesla (Zagreb Fair, Croatia) Yes Yes measurements before and

after refurbishment [105]

Athens University Museum
(Greece) Yes Yes TVOC Suggestions for building

retrofitting [106]

The Hermitage Amsterdam
(the Netherlands) Yes

simulation
and
measurements

[103,107]

Table 3 shows that proper IAQ monitoring (aerosol, VOCs, etc.) simultaneous with
EEF modeling/monitoring is largely absent in museums. Despite this, there are few
studies for buildings other than museums. Asere and Blumberga [24] investigated the
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effect of reducing energy consumption on IAQ in several public buildings in Latvia using
a simulation tool. They conclude that energy efficiency measures in public buildings
reduce national energy consumption while worsening IAQ. It was dubbed the “energy
efficiency/indoor air quality dilemma”. Chatzidiakou et al. [108] compared two schools, an
old Victorian building and a new, low-carbon designed building. Their findings revealed
that school building maintenance and operation, as well as occupant behavior, had a
significant impact on IAQ and energy consumption.

Hence, it is more than obvious that a nearly acceptable IAQ requires an appreciable
amount of supplied energy (energy consumption), proving the contrasting effects of the two
parameters. High IAQ leads to low EEF and vice versa. It is important here to emphasize
that dedicated, specific, and systematic studies of these two interplaying parameters are
very few or absent from the literature.

4. Promoting IAQ and EEF in Museums

To ensure the longevity of the aesthetic value of the exhibits, specific and consistent en-
vironmental conditions must be maintained in all buildings housing works of art, whether
modern or historical. These conditions must be maintained at all times, whether there are
visitors or not. Furthermore, the building must provide visual and thermal comfort, as
well as good IAQ for visitors and staff. These objectives necessitate a significant amount
of energy, primarily for lighting, heating or cooling, and systems that humidify or dehu-
midify the atmosphere in the exhibition halls, as well as in the storage rooms and offices.
Nonetheless, energy conservation efforts in museums are inevitable [109,110].

Ventilation is one of the most important aspects of a museum’s IAQ and EEF. The
majority of published studies agree that a sophisticated HVAC system with appropriate
air filtration can control indoor atmospheric pollutants in the museum, at least to some
extent [60,90]. Other control strategies are also available, as is guidance for museum
authorities and curators to prevent the deterioration of works of art due to air pollutants.
Every museum can set its own air pollutant concentration targets based on the materials
that make up its collections (marble, ceramic, silver, copper, and so on). The relevant
literature discusses showcases, standalone air purifiers, and non-invasive treatments for
exhibits. However, measures that can be taken to achieve adequate IAQ must take other
factors into account, such as resource availability and priority setting.

Concerning EEF, several studies proposed museum-specific interventions [105,111,112].
These include using renewable energy sources, natural daylight lighting and replacing
old lighting with non-energy-consuming lamps, mixed mode ventilation, phase change
materials, display cases, and other building modifications where possible, such as adding
an intelligent facade system with external shading, natural ventilation, and night cooling
systems [34,56,104,113–116].

In addition, new indices [117], such as life cycle analysis, used to calculate energy
consumption and greenhouse gas emissions [118], and “choosing by advantages”, are being
developed to aid decisions for innervations [119].

Controlling energy consumption as well as IAQ in museums and historical buildings
that preserve our world’s history remains a challenge. Extensive IAQ and EEF monitoring
campaigns must be carried out in each museum, tailored to each special housed collection.
Every proposed strategy for improved IAQ, comfort, and climate resilience, as well as the
goal of energy savings, should be based on the “world” of hard numerical data.

Finally, in the context of climate change, the Coalition of Museums for Climate Justice
has encouraged the museum world to consider “their tremendous potential to influence climate
action through their programs, research, and advocacy” [120,121]. Museums can contribute to
climate change actions, and, because they attract a large number of visitors, these structures
can serve as a model for balancing IAQ and EEF [34–36].
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