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Attention deficit/hyperactivity disorder (ADHD) is a highly heritable neurodevelopmental disorder. We performed a transcriptome-
wide association study (TWAS) using the latest genome-wide association study (GWAS) meta-analysis, in 38,691 individuals with
ADHD and 186,843 controls, and 14 gene-expression reference panels across multiple brain tissues and whole blood. Based on
TWAS results, we selected subsets of genes and constructed transcriptomic risk scores (TRSs) for the disorder in peripheral blood
mononuclear cells of individuals with ADHD and controls. We found evidence of association between ADHD and TRSs constructed
using expression profiles from multiple brain areas, with individuals with ADHD carrying a higher burden of TRSs than controls. TRSs
were uncorrelated with the polygenic risk score (PRS) for ADHD and, in combination with PRS, improved significantly the proportion
of variance explained over the PRS-only model. These results support the complementary predictive potential of genetic and
transcriptomic profiles in blood and underscore the potential utility of gene expression for risk prediction and deeper insight in
molecular mechanisms underlying ADHD.
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INTRODUCTION
Attention deficit hyperactivity disorder (ADHD) is a neurodevelop-
mental disorder characterized by inappropriate levels of inatten-
tiveness, hyperactivity, or impulsivity that affects around 2.6% of
persistent adult ADHD and 6.8% of symptomatic adult ADHD [1].
ADHD increases the risk of health problems, psychiatric co-
morbidities, psychological dysfunction, social disability, academic
and occupational failure, and risk behaviours throughout the
individual’s life [2].
Twin and family studies show a strong genetic component

underlying the disorder, with a heritability of 76% [3, 4]. Recently,
the largest genome-wide association study meta-analysis (GWAS-
MA) on ADHD so far in 38,691 individuals with ADHD and 186,691
controls identified 27 hits for the disorder [5]. In addition, to date
more than 40 relevant studies on polygenic risk scores (PRS) for
ADHD have been published and show evidence of association
between ADHD-PRS and a wide range of traits and disorders,
including ADHD-related traits, reduced brain volume, lower
education attainment, externalizing behaviours, impaired working
memory, higher body mass index or lower socioeconomic status,
among others [6].
The SNP-based heritability for ADHD estimated so far is 0.14 [5]

and the PRS for the disorder explains 5.5% of phenotypic variance

in individuals of European ancestry [7]. A large proportion of the
heritability still needs to be explained and gene expression, which
results from the interplay between genetic and environmental
factors, may help to elucidate additional phenotypic variance. To
date, eight studies on transcriptome profiling in ADHD have been
performed and highlighted genes involved in several neuronal
functions and in the immune system [8–16]. However, this
approach is limited by the inaccessibility of brain samples and
has mainly focused on blood. Alternatively, integrative approaches
have been developed, including transcriptome-wide association
studies (TWAS), which are a powerful method to integrate GWAS
data and multi-tissue expression quantitative trait loci (eQTL) to
correlate genetically predicted gene expression levels with
complex traits. To date, four TWAS on ADHD have been
performed: three using summary statistics from the first GWAS-
MA on ADHD by Demontis et al. [7, 17–19] and one using data
from the latest GWAS-MA on ADHD [5]. Briefly, Fahira et al.
conducted multiple TWAS approaches to identify 47 putative
causal genes and the glutamate receptor signalling pathway
underlying ADHD [17]. Liao et al. performed TWAS on 11 brain
tissues and identified novel genes and several pathways relevant
for ADHD, including the dopaminergic neuron differentiation and
norepinephrine neurotransmitter release cycle [18]. Qi et al.

Received: 7 February 2023 Revised: 17 July 2023 Accepted: 21 July 2023
Published online: 3 August 2023

1Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d’Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
2Department of Mental Health, Hospital Universitari Vall d’Hebron, Barcelona, Spain. 3Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain.
4Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain. 5Department of Biomedicine/Human Genetics, Aarhus
University, Aarhus, Denmark. 6The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark. 7Center for Genomics and Personalized
Medicine, Aarhus, Denmark. 8The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA. 9Department of
Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain. 10These authors contributed equally: Judit Cabana-Domínguez, Natalia Llonga. 11These
authors jointly supervised this work: María Soler Artigas, Marta Ribasés. ✉email: judit.cabana@vhir.org; maria.soler@vhir.org; marta.ribases@vhir.org

www.nature.com/mpMolecular Psychiatry

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41380-023-02200-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41380-023-02200-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41380-023-02200-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41380-023-02200-1&domain=pdf
http://orcid.org/0000-0002-4732-7284
http://orcid.org/0000-0002-4732-7284
http://orcid.org/0000-0002-4732-7284
http://orcid.org/0000-0002-4732-7284
http://orcid.org/0000-0002-4732-7284
http://orcid.org/0000-0003-4325-6201
http://orcid.org/0000-0003-4325-6201
http://orcid.org/0000-0003-4325-6201
http://orcid.org/0000-0003-4325-6201
http://orcid.org/0000-0003-4325-6201
http://orcid.org/0000-0002-7925-6767
http://orcid.org/0000-0002-7925-6767
http://orcid.org/0000-0002-7925-6767
http://orcid.org/0000-0002-7925-6767
http://orcid.org/0000-0002-7925-6767
http://orcid.org/0000-0001-8758-523X
http://orcid.org/0000-0001-8758-523X
http://orcid.org/0000-0001-8758-523X
http://orcid.org/0000-0001-8758-523X
http://orcid.org/0000-0001-8758-523X
http://orcid.org/0000-0001-9124-2766
http://orcid.org/0000-0001-9124-2766
http://orcid.org/0000-0001-9124-2766
http://orcid.org/0000-0001-9124-2766
http://orcid.org/0000-0001-9124-2766
http://orcid.org/0000-0001-8627-7219
http://orcid.org/0000-0001-8627-7219
http://orcid.org/0000-0001-8627-7219
http://orcid.org/0000-0001-8627-7219
http://orcid.org/0000-0001-8627-7219
http://orcid.org/0000-0003-1622-0350
http://orcid.org/0000-0003-1622-0350
http://orcid.org/0000-0003-1622-0350
http://orcid.org/0000-0003-1622-0350
http://orcid.org/0000-0003-1622-0350
http://orcid.org/0000-0002-3213-1107
http://orcid.org/0000-0002-3213-1107
http://orcid.org/0000-0002-3213-1107
http://orcid.org/0000-0002-3213-1107
http://orcid.org/0000-0002-3213-1107
http://orcid.org/0000-0003-1039-1116
http://orcid.org/0000-0003-1039-1116
http://orcid.org/0000-0003-1039-1116
http://orcid.org/0000-0003-1039-1116
http://orcid.org/0000-0003-1039-1116
https://doi.org/10.1038/s41380-023-02200-1
mailto:judit.cabana@vhir.org
mailto:maria.soler@vhir.org
mailto:marta.ribases@vhir.org
www.nature.com/mp


considered Chinese and European ancestry cohorts and did not
identify transcriptome-wide associated genes with the disorder
either in brain or blood [19]. Finally, Demontis et al. identified 23
distinct genes with differential predicted gene expression in the
dorsolateral prefrontal cortex (DLPFC) in ADHD using the largest
GWAS-MA on ADHD to date and highlighted PPP1R16A and
B4GALT2 as top genes [5].
Given that a substantial proportion of GWAS association signals

demonstrate gene regulation effects [20], risk scores built on eQTL
variants, known as transcriptomic risk scores (TRSs), are promising
gene-based approaches that use gene expression information to
identify trait-associated genes from GWAS. TRSs are significantly
associated with a range of outcomes, including Amyotrophic
Lateral Sclerosis [21], Alzheimer’s disease [22], and Crohn’s disease
[23] based on observed gene expression data, as well as with
ADHD symptoms [24], schizophrenia [25, 26], and major depres-
sive disorder [24, 27] constructed with predicted gene expression.
In addition, the combination of TRS with PRS improves risk
prediction of several traits, including rheumatoid arthritis, height,
body mass index or intelligence [24].
In the present study, we ran a multi-tissue TWAS on the latest

GWAS-MA on ADHD performed so far [5], and for the first time
used TWAS results to select a subset of signature genes per tissue
and construct microarray-based TRSs in peripheral blood mono-
nuclear cells (PBMCs), tested their association with ADHD and
assessed whether the combination of PRS and TRS increases
significantly the proportion of variance explained of ADHD over
PRS alone, in subjects with ADHD and controls.

MATERIALS AND METHODS
Multi-tissue transcriptome-wide association study (TWAS)
TWAS was performed with S-PrediXcan (https://github.com/hakyimlab/
MetaXcan) [28] using summary statistics from the largest GWAS-MA on
ADHD to date in 38,691 individuals with ADHD and 186,843 controls [5],
and SNP-weights of gene expression precomputed with the joint-tissue
imputation (JTI) approach [29]. We used genetic variants with minor allele
frequency (MAF) ≥ 0.01 and INFO score ≥ 0.80, and gene expression
reference panels from GTEx v8 in 14 tissues, including whole blood,
amygdala, anterior cingulate cortex, caudate basal ganglia, cerebellar
hemisphere, cerebellum, cortex, frontal cortex, hippocampus, hypothala-
mus, nucleus accumbens basal ganglia, putamen basal ganglia, spinal cord
cervical C1 and substantia nigra [30]. According to the GTEx webpage
(https://gtexportal.org/home/samplingSitePage) both cortex and frontal
cortex correspond to the same brain area, right cerebral frontal pole cortex,
sampled and collected using different techniques. We considered default
settings in S-Predixcan and linkage disequilibrium (LD) estimates from the
European subset of the 1000 Genomes Phase 3 reference sample with the
precalculated covariances. As TWAS results from different brain areas were
highly correlated (r2 > 0.96 when considering genes nominally associated
with ADHD), we applied Bonferroni correction considering the number of
genes tested within each of the 14 expression reference panels separately
to account for multiple testing.
Summary statistics from TWAS in DLPFC described in Demontis et al.

2022 were also used in the TRS analysis [5]. In brief, the reference panel
was constructed using EpiXcan and expression data on DLPF of
924 samples with European ancestry from the PsychENCODE Consortium
[31], and the S-PrediXcan method was used to integrate the ADHD GWAS
meta-analysis summary statistics [5].
Enrichment analyses on gene-sets from the Molecular Signatures

Database (MSigDB v6.2), including Gene ontology (GO), KEGG, Reactome,
miRNA targets and GWAS Catalog, were performed on genes nominally
associated with ADHD in each TWAS using a hypergeometric test with the
GENE2FUNC module of FUMA and considering all genes from the TWAS as
background [32]. Enrichment analyses results were corrected for multiple
comparisons in each tissue considering each category separately using 5%
False Discovery Rate (FDR).

Gene locus-level colocalization analysis. Gene locus-level colocalization
probability (GLCP) for significant genes identified in TWAS was performed
using fastENLOC and only genes with a GLCP ≥ 0.5 were considered further

[33, 34]. First, we selected the genetic variants within 1 Mb upstream and
500 kb downstream from each of the 56 significant genes identified in
TWAS with a P < 0.05 in the GWAS-MA of Demontis et al. [5]. These variants
were fine-mapped to generate 95% credible sets, assuming one causal
variant per locus, using the CAUSALdb pipeline (https://github.com/
mulinlab/CAUSALdb-finemapping-pip#4; [35]) which includes three differ-
ent fine-mapping tools, FINEMAP 1.3.1 [36], PAINTOR v3.0 [37] and
CAVIARBF v.0.2.1 [38]. We used the recommended parameters of each tool
and only variants selected by all three methods were considered. For these
variants, Z-scores from the GWAS-MA on ADHD [5] were then converted to
posterior inclusion probabilities using the torus software [39]. Finally, these
data were colocalized with fastENLOC for the 14 GTEx v8 tissues included
in the study [33]. Colocalization was performed using pre-computed GTEx
multi-tissue annotations obtained from https://github.com/xqwen/
fastenloc.

Transcriptomic and polygenic risk scores
Participants and clinical assessment. TRSs and PRS were constructed in an
in-house sample of 222 medication-naïve adult ADHD cases (59.45% male,
mean age=34.03 years, s.d= 11.62) and 269 controls (57.25% male, mean
age=36.6 years, s.d= 10.06). All subjects were from European ancestry,
which was confirmed through principal component analysis (PCA) using
genetic data. Clinical assessment was conducted by structured interviews
and self-reported questionnaires as previously described [14], based in two
steps: (i) assessment of ADHD diagnosis based on symptomatology using
the Conner’s Adult ADHD Diagnostic Interview for DSM-IV (CAADID) and (ii)
assessment of the severity of ADHD symptoms, the levels of impairment
and the presence of comorbid disorders to increase the diagnostic
accuracy with the Conners’ ADHD Rating Scale (CAARS), the ADHD Rating
Scale (ADHD-RS), the Clinical Global Impression (CGI), the Wender Utah
Rating Scale (WURS), the Sheehan Disability Inventory (SDS), and the
Structured Clinical Interview for DSM-IV Axis I and II Disorders (SCID-I and
SCID-II). Exclusion criteria were IQ < 70; a history or the current presence of
a condition or illness, including neurologic, metabolic, cardiac, liver, kidney,
or respiratory disease; a chronic medication of any kind; birth weight
≤1.5 kg; and other neurological or systemic disorders that might explain
ADHD symptoms. All cases were evaluated and recruited prospectively
from a restricted geographic area in a specialized out-patient program for
adult ADHD at the Hospital Universitari Vall d’Hebron of Barcelona (Spain).
The control sample consisted of unrelated blood donors matched by sex

with the clinical group. Individuals with ADHD symptomatology were
excluded retrospectively from the control sample under the following
criteria: (1) diagnosed with ADHD previously and (2) answering positively
to the life-time presence of the following ADHD symptoms: (a) often has
trouble in keeping attention on tasks, (b) usually loses things needed for
tasks, (c) often fidgets with hands or feet or squirms in seat, and (d) often
gets up from seat when remaining in seat is expected. The study was
approved by the Clinical Research Ethics Committee (CREC) of Hospital
Universitari Vall d’Hebron, methods were performed in accordance with
the relevant guidelines and regulations and written informed consent was
obtained from all subjects before inclusion in the study.

Transcriptomic risk scores. TRSs were constructed from transcriptomic
profiles in PBMCs separated by a Ficoll density gradient method
immediately after blood extraction. Total RNA was isolated using Qiazol
Lysis reagent and the RNAeasy Midi Kit (QIAgen, Hilden, Germany). RNA
integrity and concentration were assayed by 2100 Bioanalyzer (Agilent
Technologies Inc., Santa Clara, CA, USA). RNA was retrotranscribed using
the Ambion WT Expression Kit (Life Technologies, Carlsbad, CA, USA). The
cDNA was subsequently fragmented, labelled, and hybridized with the
GeneChip WT Terminal Labelling and Hybridization Kit (Affymetrix, Santa
Clara, CA, USA). Samples were hybridized to the GeneChip Human Gene
1.1 ST 96-Array plate (Affymetrix), covering a total of 36,079 transcripts that
correspond to 21,014 genes. The array processing and data generation
were assessed using the Gene Titan Affymetrix microarray platform. Raw
data were pre-processed as previously described [40]. In brief, data was
processed with the Robust Multichip Analysis (RMA) algorithm from OligoR
[41], sample outliers were removed using the arrayQualityMetrics [42] and
transcript probes were filtered ending up with 19,004 probes correspond-
ing to 18,055 unique genes. Microarray batch effects and non-biological
experimental variation (RNA integrity number (RIN), age and gender) were
adjusted for using the empiricalBayesLM algorithm included in WGCNA R
package [43]. Raw data from this article is not publicly available because of
limitations in ethical approvals and the summary data will be available
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upon request.
TRSs were calculated as the sum of the standardized expression of each

gene weighted by its signed Z-score value from TWAS results on the
different expression reference panels. TRSs per tissue were constructed by
selecting genes under several TWAS P-value thresholds (Bonferroni, 0.001,
0.05, 0.1, 0.2, 0.3, 0.4, 0.5 and 1) and tested for association with ADHD using
a logistic regression model in R, with sex, age, GWAS wave and the 10 first
principal components based on GWAS data as covariates. For the best P-
value threshold in each tissue, the empirical P-value was calculated by
permuting the target phenotype 10,000 times and repeating the TRS
analysis on each set of permuted phenotypes [44]. Pseudo-R2 were
calculated using the Lee’s formula [45] and considering an ADHD
population prevalence of 5%. The effective number of independent tests
was assessed with the Galwey method [46] considering Pearson correlation
among TRSs from the best P-value threshold at each tissue, which resulted
in 11 independent tissues out of 14. To account for multiple testing, we
used the Sidák correction (P-value < 4.6e-03) for 11 independent tests. To

discard an artificial inflation of the results due to the inclusion of different
genes at the same genomic loci under the control of the same eQTL in the
TRS construction, a sensitivity analysis was performed by calculating TRSs
considering a single gene per locus: the one showing the lowest P-value in
the TWAS at each genomic loci (defined by genes < 500 kb apart).
Colocalization analyses were conducted using the same strategy described
in the TWAS section, selecting genetic variants within a genomic window
of 1 Mb upstream and 500 kb downstream from each of the genes in the
best P-value threshold of TRSs associated with ADHD after multiple
comparison corrections and sensitivity analyses.

Polygenic risk score. DNA samples were genotyped in two genotyping
waves using Omni2.5 (n= 163) and Infinium™ Global Screening Array-24
v2.0 (n= 328) Illumina arrays. Polygenic scoring was conducted using the
summary statistics from the largest GWAS-MA on ADHD in 38,691
individuals with ADHD and 186,843 controls [5], the PRS-CS software to
generate posterior SNP effect sizes under continuous shrinkage (CS) priors
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to model LD between genetic variants (https://github.com/getian107/
PRScs) [47]. The European subset of the 1000 Genomes Phase 3 reference
was used to estimate LD and a global shrinkage parameter of phi = 1e-02
was considered. The PRS was generated using PLINK 1.09 software [48] and
it was tested for association with ADHD using a logistic regression model,
with sex, age, GWAS wave and the 10 first principal components based on
GWAS data as covariates. The increment in pseudo-R2 was calculated using
the Lee’s formula [45] and considering an ADHD population prevalence of
5%. Correlation between significant TRSs and PRS were calculated using
the Pearson correlation coefficient. A likelihood ratio test with the lmtest
R-package was used to compare the goodness of fit of the model that
includes the PRS and covariates with the model that also includes the TRS.

RESULTS
Transcriptome-wide association study
We performed a TWAS in ADHD using multiple brain tissues and
whole blood expression reference panels and summary-level data
from the largest GWAS-MA on ADHD so far in 38,691 cases and
186,843 controls [5, 30] (Supplementary Fig. S1). Overall, we tested
20,225 predicted genes across expression reference panels,
ranging from 6213 to 11,473 depending on the tissue under
study, representing at least 95% of the genes included in each
expression reference panel (Supplementary Table S1). We
identified a total of 4134 unique genes showing nominal
association (P < 0.05) with ADHD in at least one tissue, including
2234 that were significant in more than one and 94 in all of them.
These genes were enriched for genes previously associated with
social interaction (e.g. regular attendance at a religious group,
regular attendance at a gym or sports club or social communica-
tion problems), psychiatric disorders (e.g. autism spectrum
disorder, schizophrenia or bipolar disorder) and body fat
distribution, among others (Supplementary Table S2). Besides,
analysis on miRNA target genes revealed significant enrichment of
targets of miRNA-34b/c and miR-449 among genes differentially
expressed in the cerebellum and of 14 mature miRNAs in cortex
(Supplementary Table S3). No association with other categories
from the MSigDB was found.
After Bonferroni correction, 56 unique genes in 28 independent

loci (defined by genes > 500 kb apart) showed transcriptome-wide
significance, of which 28 were significant in more than one tissue,
all of them showing consistent direction of the effect (Fig. 1 and
Supplementary Table S4). Of them, 8 genes were identified both in
blood and at least one brain tissue, and 26 in at least two brain
areas, being NAA80 the only gene differentially expressed in all the

studied tissues (Fig. 1 and Supplementary Table S4). From the
genes identified in the TWAS, 31 were novel and 25 were
previously associated with ADHD either by TWAS or GWAS in the
study by Demontis et al. 2022 (Fig. 1, Supplementary Table S5 and
Supplementary Fig. S2).
When comparing the predicted differential expression from

TWAS with observed differential expression in PBMCs in our in-
house sample, we found that 41 out of 56 genes identified in
TWAS were available in our microarray analysis and from those, six
were significantly differentially expressed. Out of the five genes
differentially expressed in PBMCs and in at least one brain tissue,
four showed consistent direction of effect (HELZ, GIGYF2, SLC25A22
and PNPLA2), with PNPLA2 and HELZ also differentially expressed
in the whole blood TWAS and with consistent direction of effect
(Fig. 1 and Supplementary Table S4). TSC22D2 had discordant
direction of effect between PBMCs and cerebellar hemisphere/
cerebellum and MPHOSPH9 between PBMCs and whole blood
(Fig. 1 and Supplementary Table S4). Finally, colocalization
analyses of the 56 genes identified in TWAS revealed 14 genes
with a GLCP ≥ 0.5 in at least one of the studied tissues, four of
them differentially expressed also in PBMCs with consistent
direction of effect (GIGYF2, HELZ, PNPLA2 and SLC25A22; Supple-
mentary Table S6). PNPLA2 was the most ubiquitous gene found
colocalized in 9 tissues (GCLP range: 0.643– 0.896), followed by
REELD1 in 8 tissues (GCLP range: 0.615–0.818), and LSM6 in 7
tissues (GCLP range: 0.724–0.844; Supplementary Table S6).

Transcriptomic risk scores
TRSs based on multi-tissue TWAS results were constructed at
different significance thresholds using expression data from
PBMCs in an in-house sample of 222 subjects with ADHD and
269 controls (Supplementary Fig. S1). We found strong evidence
of association in brain, with TRSs based on TWAS from 11 out of 13
brain tissues significantly associated with ADHD status after
computing the empirical P-values (free from inflation due
to overfitting) being cortex the most significant one (Pempirical=
1e-04; Table 1 and Supplementary Fig. S3).
Although significant associations with ADHD were observed

across the different TWAS P-value thresholds in most of the brain
areas, there was clear evidence of increased proportion of
variance explained by TRSs as lower P-value thresholds were
used (Supplementary Fig. S3). After correction for multiple
comparisons, TRSs remained significantly associated with
ADHD when constructed on TWAS from five brain tissues,
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including cortex (Pempirical = 1.0e-04, pseudo-R2= 0.032), frontal
cortex (Pempirical = 4.0e-04, pseudo-R2= 0.023), putamen
(Pempirical = 5.0e-04, pseudo-R2= 0.023), caudate basal
ganglia (Pempirical = 1.5e-03, pseudo-R2= 0.016) and amygdala
(Pempirical = 3.5e-03, pseudo-R2= 0.014), with subjects with ADHD-
having a significantly higher ADHD-TRS than controls in all of
them (Table 1 and Supplementary Fig. S4). Associations remained
significant in the sensitivity analyses considering only the most
significant gene per locus in the TRS construction, with the
exception of the TRS based on TWAS results in putamen
(Supplementary Table S7 and Fig. S5). The quintiles of the
remaining TRSs showed the expected trend of higher ADHD odds
for individuals in higher quintiles (Fig. 2) and positive correlations
were found between the four TRSs (corrected P < 7.1e-04 and
0.22≤ r ≤ 0.62) (Supplementary Fig. S6). Out of the 112 genes
included in at least one of these TRSs, three were used in all four:
GMPPB, PLK1S1 and PNPLA2 (Supplementary Table S8). Despite the
proportion of variance explained for the TRSs being in line with
that of PRS (Estimate = 0.3295, P= 9.4e-04, pseudo-R2= 0.019,
Fig. 3), both scores were not correlated in any of the tissues
with significant results after the sensitivity analyses (r ≤ -0.02;
Supplementary Fig. S6) and combining TRSs and PRS improved
the fit of the model over PRS alone (P < 0.03), with TRSs from
cortex showing the best results and reaching a pseudo-R2 of 0.052
in the combined model (P= 7.1e-06, Table 1 and Fig. 3).
We also constructed TRSs restricted to colocalized genes (TRScol)

for the TRSs significantly associated with ADHD after multiple
comparison corrections and sensitivity analyses. We found that,
despite reducing the number of genes included, the association
signal remained in all four tissues and that the predictive
performance improved for TRScol in three of them, amygdala,
caudate basal ganglia and frontal cortex (Supplementary Table S9).
Interestingly, out of the 24 genes included in at least one of these
TRScol, three genes were included in three out of the four analyses:
LSM6, PIDD1 and PNPLA2, with consistent direction effects across
tissues (Supplementary Table S8). In line with the results from TRSs
calculated with all genes, the combination of TRScol with PRS

improved the fit of the model over PRS alone for all four tissues
(P < 9.59e-04; Fig. 3 and Supplementary Table S9).
Finally, to assess the robustness of our results further, we used

TWAS results from DLPFC [5] on a larger reference panel from the
PsychENCODE Consortium [31]. TRS from DLPFC was also
significantly associated with ADHD (Pempirical=9.9e-05, pseudo-
R2= 0.028), remained significant in the sensitivity analysis
considering only the most significant gene per locus (Supple-
mentary Table S7), and combined with PRS improved the fit of the
model over PRS alone (P= 6.9e-05), reaching a pseudo-R2 of 0.046
in the combined model (Table 1).

DISCUSSION
To our knowledge, this is the first study to construct TRSs for
ADHD based on observed expression data. We undertook TWAS
on ADHD using the latest ADHD GWAS-MA summary statistics and
14 expression reference panels across a range of brain tissues and
whole blood to prioritize genes and construct transcriptome-
based risk scores for the disorder [5, 30]. Given that a substantial
proportion of GWAS hits demonstrate gene regulation effects [20],
risk scores based on eQTL variants integrate biological information
for disease prediction, link genetic associations to biological
disease mechanisms and provide an additional layer of biological
interpretability.
We found 56 genes showing transcriptome-wide significant

association with ADHD, of which 31 did not overlap with
previously described GWAS loci or TWAS results by Demontis
et al. [5]. The variability observed between studies could be mainly
due to differences in the tissues and methods used to construct
the expression reference panel, as Demontis et al. used a different
eQTL reference panel in DLPFC from the PsychENCODE Con-
sortium [31], and we used GTEx v8 data on 14 tissues based on JTI
methodology, to exploit the power of multi-tissue transcriptomes
to improve prediction accuracy. Among the new genes identified,
NAA80, associated with ADHD in all expression reference panels,
encodes an actin-specific N-acetyltransferase that may play a role
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in excitatory synapses, which is consistent with alterations in the
reorganization of synaptic actin described in neurodevelopmental
disorders [49]. PNPLA2 was transcriptome-wide significant in all
the expression reference panels but substantia nigra and
differentially expressed in the PBMCs with consistent direction
of effect. It encodes a lipase related with obesity, highly comorbid
with ADHD [50], and was recently pointed as one of the most
high-confidence causal genes for ADHD [17]. Other interesting
transcriptome-wide significant signals included several long non-
coding RNA, a group of regulatory RNA involved in neural
differentiation and synaptic plasticity that have been related with
psychiatric disorders [51, 52], or target genes for miRNA-34,
previously associated with ADHD [53]. This miRNA family
participates in neuronal differentiation and synaptogenesis [54]
and is among the most upregulated miRNAs during dopaminergic
differentiation [55].
We selected a subset of relevant genes from TWAS results and

constructed TRSs using microarray expression data in PBMCs from
222 individuals with ADHD and 269 controls. TRSs based on TWAS
results from most of the brain tissues were associated with ADHD,
with individuals with ADHD carrying a higher burden of TRS than
controls. In contrast, no association was found when the TRS was
constructed based on TWAS results in whole blood, which
suggests that the performance of the TRS is optimized when
selecting genes from expression reference panels in relevant
tissues for the disorder. This is likely due to the eQTL tissue
specificity previously described [56] and is in line with our findings
where the TRSs that surpassed multiple comparison corrections
and sensitivity analyses were constructed from expression
reference panels in four brain areas associated with ADHD,
namely cortex, frontal cortex, caudate basal ganglia and amygdala
[57–59].
Genes included in the best-performing TRSs provide additional

information to prioritize candidates for further investigation of
biological mechanisms underlying ADHD. For example, all TRSs
associated with ADHD include three genes, PNPLA2, PLK1S1 and
GMPPB, previously associated with ADHD and/or other neurode-
velopmental disorders [17, 60–62]. Of them, PNPLA2, already
discussed as one of the top hits in the multiple-tissue TWAS, is the
only gene with a high colocalization score in three out of the four
tissues studied, and seems to play an important role in the TRScol
of amygdala, caudate basal ganglia and frontal cortex, which
points it as one of the most promising candidate genes. Besides,
we also highlight other genes with high colocalization scores in
different tissues: the GIGYF2 gene, significantly associated with
ADHD across the lifespan [63], which contributes to the TRScol
from both cortex and frontal cortex, the SLC25A22 gene, which
encodes a glutamate transporter with strong expression in the
developing brain, that adds important weight to the TRScol from
caudate basal ganglia and frontal cortex, and CKS2, a cyclin-
dependent kinase involved in the control neuronal differentiation
[64], which contributes to the TRScol from the amygdala.
Interestingly, according to the GWAS catalog genetic variants in
these genes and others included in TRScol (i.e. CTNNB1, COPA,
CCDC71 and BLOC1S2) have been associated with psychiatric
disorders (e.g. schizophrenia, externalizing behavior, smoking
initiation, autism spectrum disorder, anorexia nervosa, depression
and anxiety disorder), cognitive function (e.g. intelligence,
educational attainment and mathematical ability) or ADHD
comorbid somatic traits like obesity or extreme body mass index,
suggesting a potential importance of these genes in the context
of ADHD and its comorbid conditions.
For most of the brain tissues, the TRSs constructed under

stricter TWAS P-value thresholds showed clear evidence of better
performance and stronger associations with ADHD, a pattern
similar to the one observed for TRS in amyotrophic lateral sclerosis
based on observed expression data [21]. This contrasts with the
pattern of association found for PRSs or imputed gene expression-

based risk scores, where the variance explained tends to increase
as more relaxed P-value thresholds are used [24, 26]. These
different patterns could result from methodological limitations in
TWAS that hamper the statistical power of TRSs from observed
gene expression, especially when more genes with weaker
association signals are included in the analysis. These could
include noisy beta estimates in TWAS due to the limited sample
size of both GWAS-MA on ADHD and GTEx v8 reference
panels [5, 30] , or false positive associations in the TWAS due to
pleiotropy or linkage disequilibrium. Also, TRSs-based on observed
expression data may reflect a dynamic layer of biological
regulation that could explain the difference found. While using
predicted expression data provides an accurate estimate of the
genetic risk conferred via cis-regulated gene expression, TRSs
constructed on observed expression datasets may be also
attributable to other influences including trans-acting genetic
effects or environmental effects and may provide a closer
connection to the disorder than standard PRSs or TRSs calculated
on imputed gene expression levels. This is consistent with findings
showing that a substantial proportion of gene expression
heritability may not result from common cis-eQTL SNPs, but
rather stem from trans-variants which may act predominantly in a
tissue-specific manner, and points to the need for further studies
on the trans-regulatory landscape [65].
In agreement with a previous study in depression [66], TRSs

were uncorrelated with genome-wide PRS. This lack of correlation
may highlight that TRSs based on observed gene expression data
capture more information than cis-eQTL genetic risk variants, such
as trans-eQTL, environment factors or epigenetics, as well as
interaction effects between genes and environment, among
others. In addition, compared with PRS-only models, models
combining PRS and TRSs provided substantial improvement in
model fit for ADHD, which supports that gene expression explains
additional phenotypic variance for the disorder than PRSs and is
consistent with the complementary predictive potential of genetic
and transcriptomic signatures [24].
Apart from TWAS, other methods have been designed to

prioritize likely causal genes by combining genomic, transcrip-
tomic, and other regulatory and functional information including
colocalization methods, that use a Bayesian framework to infer
whether a regulatory SNP is also responsible for the association
with a trait of interest, or summary-based Mendelian randomiza-
tion (SMR), that combines GWAS and eQTL data to prioritize target
genes with evidence for causal or pleiotropic effects. In order to
narrow down the number of genes identified by TWAS and
included in the TRS analyses, we assessed colocalization and
found that the signal for 14 out of the 56 genes identified in the
TWAS was supported by the colocalization analyses. This low
convergence between TWAS and colocalization signals is con-
sistent with other studies [34] and may result from several factors
including failure to identify either the phenotype-SNP association
or the expression-SNP association, given the relatively limited
sample size of both GWAS-MA on ADHD and GTEx v8 reference
panels [5, 30], especially for brain areas. Also, colocalization signals
may arise from direct genetic effects, while TWAS signals may
result from complex interactions between multiple genes and
genetic variants [33]. When restricting best-performing TRSs to the
colocalized genes, despite a reduction of at least the 70% in the
number of genes included, the association signal remained and
even became stronger for amygdala, caudate basal ganglia and
frontal cortex. These results are in line with previous studies
[21, 23] and point to the high specificity of the colocalization
approach [33].
The results of the present study, however, should be interpreted

in the context of several strengths and limitations: (i) Due to
linkage disequilibrium, a single genetic variant might point to
several TWAS associations in the same locus. For that reason,
sensitivity analysis using only the most significant gene in each
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locus was performed to discard artefactual inflation in the TRS
analysis. However, considering that genes located in the same
region are not necessarily involved in the same biological
processes and given the difficulty to determine which ones really
contribute to the phenotype, enrichment analysis were performed
including all significant genes from TWAS, which could have
potentially biased these results. (ii) In this study, the PRS failed to
approach the performance of the two best-performing TRSs (from
cortex and frontal cortex), which suggests that TRSs may
potentially outperform PRSs and provide a closer physiological
picture of the disorder; (iii) While TRSs differences may reflect
distinct molecular pathways captured by each of the tissues
considered, the variability in sample size between the expression
reference panels may limit our ability to compare TRSs results
across tissues. Besides, in the present study we used multiple-
tissue TWAS. Although this method shows improved prediction
over single tissue approaches and it underscores specific genes
overlapping between tissues [29], additional approaches are
required to identify tissue-specific expression profiles; (iv) We
found significant correlation between the TRSs associated with
ADHD, probably, in part, because the different brain areas from
which they were constructed are both functionally and structurally
connected. However, selecting genes for the construction of TRSs
based on multiple-tissue TWAS results, where information is
borrowed across transcriptomes of different tissues, may also
contributed to artificially inflate these correlations; (v) The positive
results obtained for TRSs capturing expression in brain areas
implicated in ADHD but not in whole blood suggests that the
relevance of the tissue to the outcome may also influence the
predictive performance of the TRS; (vi) Although TRS constructed
on real expression datasets may provide a closer connection to
the disorder and may capture gene expression within a range of
contexts, they may be influenced by confounding factors such as
gender, age, comorbid disorders or medication. We frequency sex-
matched ADHD cases and controls and restricted the clinical
sample to ADHD medication-naïve adult subjects, which is a major
strength of our study design that may allow us to identify
transcriptomic signatures that might be neglected by broader
study designs. We cannot discard residual confounding by other
factors not available. In the same line, observed differential
expression associated with ADHD may reflect both a gene’s causal
role in the disorder or be consequence of the disorder itself.
However, given that genetically-inferred differential expression
from TWAS may not be susceptible to reverse causation, we think
that most genes included in our TRSs are more prone to it because
of the disorder rather than consequence; (vii) Further studies
considering low frequency and rare variants and using more
unbiased profiling methods, such as RNA sequencing techniques,
may allow the inclusion of novel and low abundance transcripts
and relevant genes to improve the predictive power of TRS
approaches. In addition, as resources used for eQTL mapping
expand in sample size and integrate additional regulatory and
epigenetic data, we expect TRS performance to improve. (viii)
Finally, longitudinal studies will be required to disentangle the
performance of TRSs across the lifespan and their role on the
remittent and/or persistent form of the disorder.
In conclusion, we found association between ADHD and TRSs in

PBMCs constructed using TWAS results from multiple brain areas
implicated in the disorder, showing that individuals with ADHD
carry a higher burden of TRSs than controls. TRSs combined with
PRS increased significantly the proportion of variance explained of
ADHD over genome-wide PRS alone, which points to the
complementary predictive potential of genetic and transcriptomic
signatures and support that integrating biological information
may benefit standard PRS prediction approaches. Through this
approach that leverages GWAS summary statistics, multi-tissue cis-
eQTL reference panels and target sample gene expression data we
underscore the potential of utilizing transcriptomic information to

improve risk prediction and provide deeper insight into the
molecular mechanisms underlying ADHD.
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