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A B S T R A C T

Forest fires cause every year damages to biodiversity, atmosphere, and economy activities. Forest fire
simulation have improved significantly, but input data describing fire scenarios are subject to high levels
of uncertainty. In this work the two-stage prediction scheme is used to adjust unknown parameters. This
scheme relies on an input data calibration phase, which is carried over following a genetic algorithm strategy.
The calibrated inputs are then pipelined into the actual prediction phase. This two-stage prediction scheme is
leveraged by the cloud computing paradigm, which enables high level of parallelism on demand, elasticity,
scalability and low-cost. In this paper, all the models designed to properly allocate cloud resources to the
two-stage scheme in a performance-efficient and cost-effective way are described. This Cloud-based Urgent
Computing (CuCo) architecture has been tested using, as study case, an extreme wildland fire that took place
in California in 2018 (Camp Fire).
Software and data availability

• The cloud-based two-stage prediction platform (implemented in
the Java programming language) is available at:
https://github.com/edigley/two-stage-prediction.
Software requirements: Ubuntu 22.04.2 LTS, Java SE 8+, Docker,
Kubernetes.

• All the data (GIS themes, shapefiles, configuration files, etc.)
needed for the Camp Fire (together with other scenarios) can be
found at:
https://github.com/edigley/fire-scenarios.
Size of archive: campfire/landscape/campfire.lcp: 15 MB

1. Introduction

Fire is a natural and sometimes essential element of many ecosys-
tems. They are beneficial for forest renewal, to help control insect and
disease damage, and to reduce the buildup of fuel and thus future
fire intensity. Even large wildfires are part of a defined disturbance
regime (San-Miguel-Ayanz et al., 2013). Nevertheless, frequent and
large-scale fires have negative impacts on the quality of the air and
water, biodiversity, soil, and landscape aesthetics. Not to mention that
they can cause economic damage and loss of human lives in populated
areas. For that reason, the challenge from both a prevention and
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a suppression point of view is to anticipate and reduce the spread
potential of large wildfires and the succeeding risk to human lives,
property, and land use systems (Tyndall, 2023).

Forest fire prevention strategies for detection and suppression have
improved significantly through the years, both due to technological
innovations and the adoption of various skills and methods. Nowadays,
wildfire researchers use technologies that integrate data on weather
prediction, topography, fuel modeling, and other factors to predict
how fires spread (Zacharakis and Tsihrintzis, 2023; Bakhshaii and
Johnson, 2019). Forest fire prediction, prevention, and management
measures have become increasingly important over the decades. Sys-
tems for wildfire prediction represent an essential asset to back up
forest fire monitoring and extinction. They are also applied to predict
forest fire risks, and to help in fire-control planning and resource
allocation (Veronica Casartelli, 2023).

Notwithstanding the significant technological advances over the
past decades, this kind of natural hazard is still difficult to be mod-
eled and to be accurately simulated, for that reason, one can find
different simulations tools devoted to that purpose Wilfire Analyst
(WFA) (Ramirez et al., 2011; Monedero et al., 2019), FARSITE (Finney,
1998), QUIC (Linn et al., 2020), PhyFire (Asensio et al., 2023) among
others.
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Fig. 1. Burned Area Emergency Response Maps. Credit: USDA Forest Service.

A critical point when dealing with forest fire spread simulations
is data uncertainty. A fire spread simulation needs a plethora of dy-
namic and static input data. Dynamic data includes weather inputs
like air temperature and humidity, wind speed and direction, and fuel
conditions like live and dead initial fuel moisture. The static or semi-
static data include spatial information regarding the elevation, slope,
aspect, and fuel types. Furthermore, the simulation process requires
to start up from an initial state of the forest fire (single ignition
point or shape) to be able to predict the behavior of the event in a
near future. Therefore, fire perimeter acquisition is also a key factor
when dealing with this simulations frameworks, not only for initializing
purposes, but also for post event tools validation. Unfortunately, event
ignition points and intermediate perimeters are subject to high levels
of uncertainty at the moment of a disaster occurrence. Besides field
observations, moderate resolution satellite images are used to estimate
fire perimeters, especially those from Terra and Aqua satellites (NASA,
1999).

MODIS (or Moderate Resolution Imaging Spectroradiometer) is a
key instrument aboard Terra and Aqua satellites. Their images are taken
at a resolution from 250 m to 1 Km, and the satellites pass through a
particular area twice a day. Satellites from Landsat (NASA/USGS, 1972)
and Copernicus (ESA, 1998) programs have optimal ground resolution
and spectral bands to efficiently track land use and to document land
change due to wildfire and other natural and human-caused changes.
Landsat has a finer resolution of 15 m and 30 m, but unfortunately
its combined (Landsat 8 + Landsat 9) revisit time for data collection
is eight days, too much longer for disaster response. Using publicly
available data from these global projects is the way-to-go option, but,
with proprietary access to other satellite constellations, more coverage
and higher resolution, intra-daily revisit can also be an option.

Observing surface temperatures from space can be difficult, how-
ever, as atmospheric moisture and air temperature can skew the signals.
Despite of cloud cover, every surface emits thermal infrared radiation,
or heat. By detecting radiation in two thermal wavelengths, satellite’s
instruments can measure the temperature of an observed area. Fire
managers also analyze images from the shortwave-infrared band, which
reflects strongly from exposed ground, to identify scorched areas, as
well as the thermal observations to locate the perimeters of active fires.
Since the thermal bands can penetrate smoke that might otherwise
obscure the view, the resulting images can be used to estimate the fire
perimeters of interest.

When a fire is detected, the first perimeter describing the burned
area is computed by monitoring agencies. This perimeter, with a high
degree of accuracy, is then made available in their systems, like in
the European Forest Fire Information System (EFFIS) and the Fire
Information for Resource Management System (FIRMS) in the United
States and Canada. For example, Fig. 1 shows the location of the 2013
Silver Fire in New Mexico, USA. The image on the left represent the
status ‘‘before’’ the fire event, acquired in May 28, 2013. The middle
image shows the location of the fire (bright red dot) and burn scar (dark
red) on June 13, 2013, ‘‘during’’ event, while the fire was still growing.
The image on the right is an example of a Burned Area Emergency
Response, showing areas with high (red), moderate (yellow) and low
(green) severity burns.
2

Consequently, one can state that input data describing the current
scenario of a given event is subject to high levels of uncertainties
that represent a serious drawback for the correctness of the predic-
tion (Thompson and Calkin, 2011; Benali et al., 2016; K.C. et al.,
2021).

To deal with this issue, the scientific community developed a hand-
ful of input data calibration methods reported in Jain et al. (2020). This
review paper highlights that Genetic Algorithm scheme is the Machine
Learning approach that has been widely used in the forest fire research
community for studying and enhancing the prediction of the area
burned by a forest fire (Pereira et al., 2022). An implementation based
on Genetic Algorithm (GA) has been successfully adopted as a calibration
technique in the two-stage prediction method used in Cencerrado et al.
(2014). The two-stage methodology adjusts the input parameters for a
given forest fire spread prediction in a calibration stage implemented
using GA. This calibration stage uses the recent past data to calibrate
certain input simulator values, in order to later use these values for
predicting the near future evolution of the fire. This approach re-
quires the iterative execution of a widely set of simulations having
each different input parameters configuration. This scheme increases
the overall response time of the simulation framework in a real-time
operational environment, therefore, one of the challenges that arises
consists of finding the best trade off between the time incurred in the
calibration process and the accuracy of the obtained results by keeping
the whole process within hard-deadline constraints. This characteristic
turns the wildfire spread prediction process into a hard-deadline-driven
task. For instance, a wildfire simulation that could accurately predict
the perimeter of a wildfire a couple of hours ahead can help firefighters
to put firebreaks at the most effective place to stop the fire propagation.
Then, for the task of fire suppression, an accurate prediction that comes
up late is useless.

These characteristics represent an urgent computing system: ‘‘simu-
lation results needed by relevant authorities in making timely and informed
decisions to mitigate financial losses, manage affected areas and reduce ca-
sualties’’ (Leong and Kranzlmüller, 2015). The three urgent computing
requirements to be met are:

1. The computation operates under a strict deadline (‘‘late results
are useless’’);

2. The beginning of the event is unpredictable;
3. The computation requires significant resource usage.

Any viable solution must be deadline-driven, on-demand provisioned,
and scalable to fulfill these requirements. To deal with them, High-
Performance Computing (HPC) community used to rely on dedicated
high-end clusters, supercomputers, or distributed computing platforms
(Denham et al., 2022). As an enabling technology, cloud computing
allows new strategies to cope with the urgent computing challenge, as
it offers on-demand provisioning, immediate scalability, and abundant
provision of resources.

In addition, cloud-based solutions allow access to these features for
the price of a few dollars per hour. Such a characteristic is a fit for
forest fire spread prediction systems due to (1) the seasonality of the
wildfire occurrences, and (2) because forest fire prevention services
(fire brigades) usually cannot afford the Total Cost of Ownership (TCO)
to keep an infrastructure idle until eventually needed by an urgent
computation. In this work, we devise and evaluate an adequate solution
to this problem, defining a performance-efficient and cost-effective
cloud-based solution (CuCo) built upon a proven methodology for forest
fire spread prediction. The proof of concept of the CuCo architecture is
described in Fraga et al. (2021). In that work, the authors described the
CuCo’s architecture at a module level by defining what each module
should do and the interactions among them. The modules devoted to
the two-stage prediction scheme incorporate an adaptive evaluation
technique based on a periodic monitoring of the spread prediction
error for the calibration phase, avoiding the waste of computing time
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running undoubtedly unfit individuals. The insight of these modules
are described in Fraga et al. (2020, 2022). However, the design of the
models within the CuCo’s modules associated to the resource allocation
in the cloud environment in an cost-effective way, were not previ-
ously described. In the present work, an overview of the just defined
modules is done, and a deeply description of the proposed models for
the modules devoted to optimize resource allocation in the cloud is
performed, where an elastic and scalable cloud-based solution platform
implemented through coarse-grain parallel processing using a work
queue has been exploited. In consonance with the hard-deadline-driven
nature of fire extinction activities, the proposed strategies improve the
convergence of the genetic algorithm and decrease the response time
for the time-critical calibration stage being a solid step forward to
bring an efficient and cost-effective easy to deploy cloud-version of this
prediction framework.

Finally, the complete framework has been applied to a real complex
forest fire scenario that took place in California (USA) in 2018.

The remainder of this document is organized as follows. Related
work is discussed in Section 2. The cloud-based architecture to deal
with data uncertainty problem including the models for the cost-
effective deployment of the simulations framework is presented in
Section 3. The experimental results are discussed in Section 4 and,
finally, some concluding remarks are given in Section 5.

2. Related work

As it has been stated in the previous section, this work describes a
novel cloud-based architecture for forest fire spread prediction that has
been designed to be deadline-driven, on-demand provisioned and scalable.
This framework is able to calibrate uncertain input parameters using
the two-stage prediction scheme based on GA. The framework can be
deployed in a easy way by automatically select and allocate those
resources that better fits the cost/time constraints defined by the users.
There have been several efforts in the literature to develop easy-to-use
forest fire spread frameworks, however, the majority has been focused
on defining user-friendly API that facilitates the usability of complex
simulators. Although some of them have web oriented graphical user
interface, the simulation tool will be finally running in a dedicate
high-end on premise server.

Arca et al. (2019) presented a web-based wildfire simulator for
operational applications that can assist the incident command teams
in charge of tactical wildfire suppression. The simulator consists of a
graphical user interface, a model devoted to the downscaling of wind
fields, and a module that provides the wildfire propagation. The whole
solution is a client–server application, with the heavy computational
work executed in parallel on a dedicated server. Oliveira et al. (2023)
developed a fire-spread prediction system tailored for the Brazilian
Cerrado. Their system allows automatically upload of hotspots and
satellite data to calculate maps of fuel load and moisture, and prob-
ability of burning for simulating fire spread. Results are available on
an interactive web-platform, used as a tool for fire prevention and
suppression. It is executed on a parallel platform that uses execution
threads boosted by task-stealing algorithms, running on a dedicated
high-end on-premise server.

Wildfire Analyst (WFA) is a software application that allows real-
time analysis of wildfire, simulating the spread of wildfires using
Rothermel’s model among others (Ramirez et al., 2011). It is integrated
with GIS tools, allowing to change parameters to better reflect actual
conditions. Although being originally a desktop application, it has been
updated and it is also offered as a web and mobile, being designed
to be used at the operations center, or directly on scene (Monedero
et al., 2019). It provides a comprehensive set of outputs and tools, also
including a data assimilation technique which tunes the simulations
results to the actual observed fire behavior.

Kalabokidis et al. (2014) implemented a cloud application com-
posed of wildfire risk and spread simulation service. End users access
3

Fig. 2. High-level architecture of the cloud-based two-stage fire spread prediction
solution.

the application in a software as a service delivery model, being charged
for their consumed processing time during the actual wildfire simula-
tion period. The application presents the flexibility to scale up or down
the number of computing nodes needed for the requested processing
depending on the number of simultaneous users.

Altintas et al. (2015) conducted the comprehensive WIFIRE Firemap
project, a dynamic data-driven system to predict wildfire progress
through data analysis and map visualizations. They used FARSITE as
one of the models that are coupled with a wind simulator. Compute-
intensive tasks run in parallel on distributed computing environments.

Miller et al. (2015) presented an integrated software system for
forest fire spread prediction, which uses a user-defined algebraic spread
rate to model fire propagation. The software model is run based on
a modular workflow-based software environment. Garg et al. (2018)
proposed a scalable cloud-based bushfire prediction framework, which
allows forecasting of the probability of fire occurrences. The solutions
allows the selection of different bushfire models for specific regions and
scheduling users’ requests within their specified deadlines.

Considering the evaluated applications and solutions, although be-
ing a step toward the spread of adoption of simulation techniques to
local fire agencies, they do not address the issues related to input data
uncertainties in an agnostic approach, neither was developed to be
applied in urgent computing firefighting scenarios. Both characteristics,
diminishing data uncertainty and easy-to-deploy cloud-based urgent
computing, are the objective of our proposed solution.

3. Methods

This section details the modules of the Cloud-based urgent
Computing (dubbed CuCo) architecture, which are mainly grouped
into two principal components: theTwo-Stage Prediction Engine and the
Optimized Resource Allocation Planner. The scheme of this architecture
is depicted in Fig. 2. The Two-Stage Prediction Engine is responsible for
both the calibration and the prediction stages. The Optimized Resource
Allocation Planner component is capable of minimizing cost while
maintaining a prediction deadline. As it has been previously mentioned,
the design of the modules of the first component has been previously
published in Fraga et al. (2020, 2022), meanwhile the design of the
models involved in the second component (Optimized Resource Alloca-
tion Planner) is the core contribution of this work. In addition to these
two principal components, CuCo includes secondary components such
as: Scheduler, Task Queue, Storage and Resource Provisioner components.
These components are later on described in this work.
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Fig. 3. FARSITE Landscape file (LCP).

3.1. Forest fire spread simulator

The core element of the CuCo’s framework is the underlying for-
est fire spread simulator. As it is has been stated above, there exist
several forest fire spread simulator oriented to reproduce the behavior
of a wildfire. The proposed CuCo architecture has been design to
be simulator independent, so, it could be deployed using different
simulation tools. The forest fire spread simulator used in this work is
FARSITE. FARSITE (Finney, 1998) is a well-known fire growth model-
ing system that uses spatial information on topography and fuels along
with weather and wind inputs. FARSITE requires static data, which is
introduced using a single file, called landscape fir (or LCP for short),
composed by different layers of information each related to one type of
this static input data. Fig. 3 shows the composition of this multi-layer
file.

FARSITE makes it possible to compute wildfire growth and behavior
for long periods under heterogeneous conditions of terrain, fuels, and
weather. It also incorporates existing models for surface fire, crown
fire, spotting, post-frontal combustion, and fire acceleration into a
two-dimensional fire growth model. However, in this work, we do
not consider spot fire models. Any FARSITE simulation generates a
sequence of fire perimeters representing the growth of a fire under
a given input condition. For that purpose, it incorporates, among
others, the simple but effective Rothermel’s surface fire spread behavior
model (Rothermel, 1972) along with Huygens’s Principle of wave prop-
agation. FARSITE is part of FlamMap solution,1 a fire analysis desktop
application.

As wind is one of the most influential environmental factors affect-
ing wildland fire behavior, FARSITE can be coupled with wind models
for better prediction results. WindNinja (Forthofer et al., 2009) is a mi-
croscale wind model developed for use in wildland fire applications. It
computes spatially varying wind fields, generating high resolution wind
prediction in complex terrain. It is specifically designed to simulate the
effect of terrain on wind flow, and it can use information from standard
weather forecasts to help determine the future wind inputs.

A wildfire simulation, whether coupled to a wind field model or not,
is a process inherently complex. Henceforth, a long execution time for a
single simulation is not atypical, especially for large wildfires. Although
most recently there are some independent work improving FARSITE
computation time with more sophisticated strategies (Yoo and Song,
2023), in this work, we use FARSITE in its original version.

3.2. Two-stage prediction engine

Usually, to predict forest fire behavior, a simulator takes the initial
state of the fire front perimeter (𝑃0) along with other parameters as
input. As output, the simulator returns the fire front spread predic-
tion for a later instant in time (𝑃1). After comparing the simulation
result with the actual advanced fire front (𝑃1), the predicted fire line
tends to differ from the actual one. Besides the natural phenomena

1 https://www.firelab.org/project/flammap
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Fig. 4. Basic scheme of the two-stage fire spread prediction method.

modeling complexity uncertainty, the reason for this mismatch is that
the prediction in the classic scheme is based solely on a single set
of input parameters, affected by data uncertainty. To overcome this
drawback, a simulator-independent data-driven prediction method was
proposed to calibrate model input parameters (Abdalhaq et al., 2005).
Due to the inclusion of a Calibration Stage, the set of input parameters
is adjusted before every prediction step. Thus, the solution comes from
reversing the problem, coming up with a parameter configuration such
that the fire simulator would produce predictions that match the actual
fire behavior. After detecting the simulator input that best reproduces
the observed fire propagation, the same set of parameters is used to
describe the conditions for the next prediction (𝑃2), assuming that me-
teorological circumstances remain constant during the next prediction
interval.

We leverage this forest fire prediction method in the Two-Stage
Prediction Engine component of the CuCo’s architecture, which includes
two modules associated each to one of the stages of this approach:
calibration and prediction.

The calibration uses data from the recent past behavior of the fire to
adjust the dynamic input data values and alleviates the data uncertainty
problem. The prediction then applies the adjusted data to estimate
more accurate future fire spreads. The calibration stage is orchestrated
by an iterative data-driven compute-intensive Genetic Algorithm (GA)
that runs FARSITE as the Core Simulator. More precisely, this stage starts
from an initially random population of individuals. One individual
corresponds to a certain configuration of the dynamic input parameter
required to run the simulator. Each one of these input parameters is
referred as gene in the context of GA. In detail, the input parameters
calibrated in this stage are: dead and live fuel moisture, wind speed
and wind direction, air temperature and humidity, vegetation type
and the adjustment factor. As it is shown in Fig. 4, all individuals
can be executed in parallel and, once all individuals have finished,
they are ranked according to a fitness function (FF box in Fig. 4)
that determines the goodness of the simulation result. To determine
the fitness of an individual, we use the goodness-of-fit function, that
compares the predicted and actual fire spreads (This fitness function is
later on introduce in this paper). Then, using the ranked population, a
new evolved population (set of individuals) is generated using the so
called genetic operators: elitism, selection, crossover, and mutation (GA box
in Fig. 4). This process is repeated a predetermined number of times
(GA generations) what could result in a huge number of simulation.
In the end, the best individual is selected as the one to be used
for prediction purposes (Prediction stage). As a data-driven prediction
scheme, to enhance the quality of the predictions, the two-stage method
is applied continuously, as it is shown in Fig. 5, where a new step of the
whole methodology is performed using the subsequent observed real
fire perimeter (𝑃 in Fig. 5).
3
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Fig. 5. Two-stage fire spread prediction method through time.

Fig. 6. Different categories present in forecast verification.

GA are very suitable for dealing with the problem at hand, as
they avoid local minimums, and the convergence of the algorithm is
quite independent of the initial solution. In addition, with regards to
each generation, they are inherently parallelizable, which allows the
fully exploitation of on-demand, scalable, and elastic cloud computing
resources. Nonetheless, there is the sequential part of the GA, where it
is necessary to wait for the end of the slowest simulation of the current
generation in order to apply the GA operators and only then to generate
a new evolved population. In Section 3.2.2 we shall describe how we
deal with this issue.

3.2.1. How good is a fire spread prediction?
There are different categories present in forecast verification, as

illustrated in Fig. 6. The areas around the simulation map that have not
been burned by the actual fire nor by the simulated fire are considered
Correct Negatives. Hits are areas that have burned in both fires.
Misses are the areas that have burned only in the actual fire, whereas
False Alarms are areas that have burned only in the simulated fire.

We use a Goodness-of-Fit (GoF for short) metric as fitness function
to guide the evolution of the genetic algorithm in the calibration stage.
It was inspired in a method that unambiguously shows the degree of
spatial concordance between two or more categorical maps (Hargrove
et al., 2006). Eq. (1) shows how it is calculated.

𝐺𝑜𝐹 = 𝐻𝑖𝑡𝑠
𝐻𝑖𝑡𝑠 +𝑀𝑖𝑠𝑠𝑒𝑠

× 𝐻𝑖𝑡𝑠
𝐻𝑖𝑡𝑠 + 𝐹𝑎𝑙𝑠𝑒𝐴𝑙𝑎𝑟𝑚𝑠

(1)

Fig. 7 generalizes the idea of the goodness of fit function in terms
of polygons (map) comparison. The GoF metric is based on two values:
(1) the proportion of the intersecting area to the total area from Map 2,
and (2) the proportion of the intersecting area to the total area of Map
1. The first term gives the proportion of ‘‘insideness’’ between Map 2
and Map 1. The second term weights this degree of fit by the fractional
share of the Map 1 area that gets intersected. Notice that there is a
direct relationship between the GoF for map comparison and the one
proposed for fire spread prediction, where 𝐶 = 𝐻𝑖𝑡𝑠, 𝐵 = 𝑀𝑖𝑠𝑠𝑒𝑠, and
𝐴 = 𝐹𝑎𝑙𝑠𝑒𝐴𝑙𝑎𝑟𝑚𝑠.

Fig. 8 depicts the GoF measure as the degree of spatial overlap
between two polygons increases. When spatial overlap gets maximized,
the goodness of fit is high, and GoF suggests an identity between the
5

Fig. 7. Goodness-of-Fit function for generic map comparison (Hargrove et al., 2006).

Fig. 8. Goodness-of-Fit measure as the degree of spatial overlap between two polygons
increases (Hargrove et al., 2006).

map categories. On the other hand, when there is little ‘‘insideness’’, the
goodness of fit is low, and identity is unlikely. An ideal GoF model will
be especially responsive to incremental increases at the high overlap.
This extra sensitivity will discriminate excellent from good fit, while
distinguishing both of them from poor fits. This latter characteristic
is vital when selecting a GoF as a fitness function for an evolutionary
algorithm.

3.2.2. Early adaptive-evaluation strategy
In order to overcome the slow time-to-result characteristic of the

genetic algorithm, we adopt an adaptive evaluation technique (Fraga
et al., 2020). In the past, the strategy used to keep the overall running
time controlled was to simply discard individuals based on a deadline
previously defined to avoid delaying an entire generation due to longer
individuals. Or, even worse, previously filtering out those individuals
whose execution time is estimated to be longer than a preset value.
The problem that arise when discarding individuals is its impact on
the population diversity, a crucial characteristic to the GA’s ability to
continue fruitful exploration of the search space.

The adaptive evaluation strategy overcome such a problem by keep-
ing track of the behavior of each individual simulation at each GA
generation. That is, once the simulation of a given individual starts, at
the same time a monitor agent is launched attached to it, therefore, for
example, for each GA generation with 100 individual population, there
will exist 200 processes running, 100 forest fire spread simulations
plus 100 monitor agents. Since we are dealing with a strict deadline
constraint, the duration of one generation of the GA in the calibration
stage is limited by a deadline previously defined to avoid delaying
one entire generation of the GA due to a few longer individuals. This
deadline is referred as GAiterationTime in Fig. 9, where the interaction
between the simulation process and the monitor agent is depicted.
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Fig. 9. Termination scenarios.

The objective of the monitor agent is to periodically check the simu-
lated time (simulatedTime) spent by the monitored individual and its
predictionError, which is evaluated according to 𝜖 = 1 − 𝐺𝑜𝐹 . The
execution time (clock time) of the monitor agent corresponds to the
elapsedTime value in Fig. 9. This time is set to zero for each individual
and it is increased in steps of 𝑆 seconds, therefore, the monitor agent
performs its checks each 𝑆 seconds. Therefore, when the elapsedTime
reaches the GAiterationTime, that means that the corresponding indi-
vidual simulation cannot finish within the predefined deadline for the
GA generation, the monitor agent then will finish the corresponding
FARSITE simulation.

Furthermore, since the calibration stage uses past information data,
the real spread time of the fire perimeter used to evaluate the predic-
tionError is known. This time corresponds to the ExpectedTime value in
Fig. 9. Then, in those cases that the error associated to the monitored
individual overpasses a predefined errorThreshold and the individual
simulation is still properly running, the monitor agent will also finish
the corresponding FARSITE simulation. This situation corresponds to
an early termination case. The reasoning behind the early termination is
to avoid wasting computing time running individuals that are doomed
to unfitness. If along its execution the monitor agent detects that
the prediction deviates too much from the actual fire spread, it is
considered safe to early terminate the individual.

The rest of the situation are individuals that terminates the simu-
lation within the generation deadline and their errors are kept within
certain limits. These cases corresponds to normal termination cases and
correspond to the right straight dotted line in Fig. 9.

Fig. 10 depicts two individuals being executed and monitored ac-
cording to the monitor flow defined in Fig. 9. The one described
in Fig. 10 (I) terminates normally whereas the other described in
Fig. 10 (II) is early terminated by the monitoring agent due to its
unfitness based on its ongoing prediction error.

To keep the early terminated individuals in the population, we use
a weighted version of the evaluation function. The formula shown
in Eq. (2) is a weighted version in which ExpectedTime is the total time
to be simulated whereas simulatedTime is the total time simulated until
a normal or an early termination takes place.

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =
𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑇 𝑖𝑚𝑒
𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑𝑇 𝑖𝑚𝑒

× 𝐺𝑜𝐹 (2)

In Fig. 10(I), in the scenario of a normal termination, for a total
simulated time equals to 270 min (ExpectedTime), we can see that the
FARSITE simulation reaches the 270 min (simualtedTime) just before
the Termination Event, which is determined by the GAiterationTime.
Therefore, the simulated and expected times are equals, thus, the fitness
function is equal to the goodness of fitness metric. On the other hand,
in the early termination scenario shown in Fig. 10(II), the penalty is
6

Fig. 10. Individual termination strategies.

directly proportional to the simulated time left to a normal termination,
i.e., 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 270

150 ×𝐺𝑜𝐹 = 1.8×𝐺𝑜𝐹 . That is, at a simualtedTime equal to
150 min, the predictionError exceeds the errorThreshold, therefore, the
monitor agent finishes the corresponding FARSITE simulation, which
has only advanced the simulation process until simulation time equal
to 150 min. The idea is to be able to compare unfinished individuals
results against the actual burned area, considering how much has been
simulated until the moment of the early termination: the sooner the
termination, the greater should be the penalty. Therefore the main
advantage of such strategy is to avoid wasting too much computing
time running indubitably unfit individuals. Nevertheless, thanks to the
weighted evaluation function, those individuals can still be evaluated
and be unlikely selected to the following generations, ensuring more
diversity to the GA evolution process.

3.3. Optimized resource allocation planner

The Optimized Resource Allocation Planner is the component respon-
sible for defining the resources where the calibration and the prediction
will be executed. As a black box, it simply returns the list of available
machines. But, to its fullest extent, it is a domain-specific module,
crafted to statistically model the forest fire core simulator based on
the specified computational resources properties, and determine the
user preferences through strict deadlines or utility functions. Together,
these information are used to acquire the computing resources that best
fit the user needs. Its three sub-components (illustrated in Fig. 2) are
the following: Runtime and Memory Consumption Models, Price/Resource
Model and User’s Utility Model. Subsequently, each of these elements is
described in more detail.

3.3.1. Runtime and memory consumption models
In order to estimate the execution time of a fire spread simulation,

it is necessary to perform a large set of executions of the underlying
simulator with different input parameters configurations on the target
architecture. The parameters of each individual simulations, together
with the runtime and memory consumption are recorded and, after-
wards, they are used to analyze its behavior. These steps are made
offline, which means that they must be carried out before the fire
occurrence. Typically, this offline study will be done for those areas
with a high wildfire risk. As forest fires show seasonal behavior and
an occurrence pattern that affects the same zones every year, several
indexes have been developed to determine the fire risk and fire spread
potential. Besides past occurrences, these indexes take into account the
underlying vegetation and the meteorological conditions on a given
area. The indexes most used are the Fire Weather Index (FWI, 2008)
and the Haines Index (Haines, 1988). FWI is a meteorologically based



Environmental Modelling and Software 177 (2024) 106057E. Fraga et al.

b

e
m
f
t
i

E
t
I

3

f
e
t
e
o
p
s
T

t
t
f
c
b
g
I
c
p

Table 1
Input parameters distributions.

Input Distribution 𝜇; 𝜎 Min; Max

Vegetation model Uniform – 1; 13
Wind speed Normal 70; 10.0 –
Wind direction Normal 45; 5.0 –
Dead fuel moisture Uniform – 2; 15
Live fuel moisture Uniform – 50; 100
Adjustment factor Uniform – 0.0; 2.0

index used worldwide to estimate fire danger that accounts for the
effects of fuel moisture and wind on fire behavior and spread. Haines
uses the meteorological conditions as an indicator of the potential risk
of wildland fires, considering the stability and moisture content of the
lower atmosphere. In this way, fire analysts can run the executions and
prepare these models in the moment prior to the fire occurrence.

Our methodology is comprised of 3 steps: 1. prepare the training
database; 2. trace the information regarding runtime and memory
consumption; 3. build the regression models.

• Training database: Currently, we work with training databases
composed of 10,000 up to almost 40,000 different scenarios. Each
one represents a random individual, an input configuration for the
target scenario. For the use case presented in this study, the distri-
bution of each input parameter corresponds to the ones specified
in Table 1. The vegetation models correspond to the 13 standard
Northern Forest Fire Laboratory (NFFL) fuel models (Anderson,
1982).

• Determination of execution time and memory consumption:
For each execution we trace the Runtime and the maximum Resi-
dent Set Size (the portion of memory occupied by a process held in
main memory) metrics. Fig. 11 depicts the multivariate relation
between runtime and the most important individual parameters.
As it can be seen, after calculating the Pearson Coefficient, we
conclude that wind speed and humidity are the two parameters
that most impact on the runtime. The scattering plot confirms
visually such importance. Similar relations happen considering
memory consumption.

• Building the regression models: We evaluated 5 multiple regres-
sion techniques to build a cross-validated regression model rep-
resenting the relation between the parameters and the response
metrics. The models are: Multiple Linear Regression, Principal Com-
ponent Regression, Partial Least Square, Regularized Regression Elas-
tic Net and Multivariate Adaptive Regression Splines (MARS). From
the built models we choose the best one based on the standard
deviation of the residuals measure, i.e. the prediction errors, also
called Root Mean Square Error (RMSE).
Table 2 shows a summary of the prediction performance for each
model.

Based on the prediction performance, we have chosen MARS as the
est model to characterize FARSITE runtime based on input parameters.

Considering median and mean columns, we can see that it shows results
with the smaller errors. MARS is a form of non-parametric regression
analysis technique and it is an extension of linear models that au-
tomatically models non-linearities and interactions between predictor
variables (Friedman, 1991). Equivalent results apply to the memory
consumption analysis. Fig. 12 shows the graphical representation of the
two built models. From the two graphics we can observe that there is
a region where runtime and memory consumption grow significantly.
Considering an informed two-stage prediction scheduler, individuals
located in such region should be allocated in the most efficient available
resources in order to decrease the overall calibration and the final fire
spread prediction time.

Once this methodology is followed, only a last step remains: the
7

application of the resulting model with the scenario describing the t
ongoing fire, in order to assess in advance the execution time its
simulation will produce. This action supposes a negligible cost, in
terms of time overhead (on the order of a few seconds). Accurate
FARSITE runtime and memory consumption models are used to predict
performance of actual GA individuals in the specified cloud resources
and, then, determine the resulting monetary cost.

3.3.2. Price and resource models
In this work, we consider an Infrastructure-as-a-Service (IaaS) cloud

system, in which a number of data centers deliver on-demand stor-
age and compute capacities over the Internet. These computational
resources are provided in the form of an abstract unit of compute and
storage called Virtual Machine (VM for short), object storage, or remote
file systems volumes. In a cloud, VMs are offered in several types,
each of which has distinct characteristics such as different numbers of
CPUs, amount of memory, and network bandwidth capacity. We have
chosen Amazon Web Services (AWS) as the public cloud provider. AWS
is a comprehensive and broadly adopted cloud platform, offering fully
featured services from data centers globally. We then use the resources
characteristics, including their pay-as-you-go prices, to characterize
the Price/Resource Model, against which we build the Runtime and
Memory Consumption Models. Assessing the requirements of the forest
fire prediction model and selecting the appropriate instance family is
the starting point for the application performance testing. It is crucial
to identify how the model needs compare to different instance families
(e.g. if it is compute-bound, memory-bound, network-bound, etc.), and
to size the workload to identify the appropriate instance size. Related to
Resource Model, Amazon Web Services (AWS) Elastic Compute Cloud
(EC2) provides a variety of instance types, each one providing different
combinations of CPU, memory, disk, and networking. As of May, 2023,
there are six families optimized for several types of applications and,
for each one, ten different instance types. Table 3 presents the families,
the number of instances available, the number of CPUs, and the range
of on-demand cost per hour for each one of them.

Furthermore, the Cost Models must be taken into account, as with
verything, there are costs associated with the cloud usage. With the
any economic benefits of the cloud, this may often seem negligible

or simple workloads. For applications with highly parallel workloads,
he cost may easily surpass a thousand of dollars in a couple of hours
f the instance provision is not made in a diligent way.

Table 4 presents the different cost models used to pay for Amazon
C2 instances. Although the Saving Plans might be an interesting model
o high-demanding fire analysts, we focus on the On-Demand and Spot
nstances models to perform the characterizations.

.3.3. User’s utility model
Once the models are built, they can be actioned upon the utility

unctions to capture user’s satisfaction over prediction time and mon-
tary cost of the overall fire spread prediction and, therefore, define
he list of machines that will be provisioned to run the prediction
ngine. Utility functions are commonly used to communicate the value
f work and other quality of service aspects such as its timely com-
letion (Walsh et al., 2004). A utility function commonly used is the
implified version of the Cobb–Douglas production function (Holmes
homas and Calkin David, 2013).

We consider the FARSITE characterization described in Section 3.3.1
o define the most cost-effective AWS EC2 instance types to be used as
he underlying virtual infrastructure. As a result, the Compute Optimized
amily listed in Table 5 has been chosen. The Optimized Resource Allo-
ation Planner is fed with these prices and resource characteristics and,
ased on the Core Runtime and Memory Consumption Models (see Fig. 2),
enerates as output the average cost per individual per calibration time.
n Fig. 13 we can see the result for configuration spanning a potential
luster with 1, 2, 4, 8, 16, and 32 nodes. Estimations are grouped per
otential cluster size, as instances are immediately terminated when

here is no workload to be processed.
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Fig. 11. Multivariate analysis of the runtime for FARSITE executions.
Table 2
Standard deviation of the prediction errors - Root Mean Square Error (RMSE).

Model Min. 1st Qu. Median Mean 3rd Qu. Max

Multiple Linear Regression 1022.458 1267.519 2215.918 2591.679 3984.889 4889.377
Principal Component
Regression (PCR)

989.443 1263.651 2234.553 2590.982 3992.400 4867.281

Partial Least Square (PLS) 1018.913 1266.828 2216.746 2590.798 3984.444 4887.721
Regularized Regression
Elastic Net

760.384 1030.713 2202.121 2533.858 4049.466 4978.295

Multivariate Adaptive
Regression Splines (MARS)

746.422 1112.445 1670.995 2249.241 3430.974 4624.153
Last step is to decide which configuration will be used based on the
user’s preference. We model the user’s preference as a utility function, a
mathematical function that ranks alternatives according to their utility
to an individual. As it has been previously mentioned, a commonly
used utility function is the simplified version of the Cobb–Douglas
production function 𝑢(𝑥1, 𝑥2) = 𝑥𝑏11 𝑥𝑏22 , where 𝑏1 and 𝑏2 are positive
numbers describing the preferences of the consumer. Applying it for
𝑏1 = 1

2 and 𝑏2 = 1
2 , i.e. the user is equally concerned with price

and runtime, the resulting ranking of preference is shown in Table 6.
There are 6 × 6 = 36 configurations in total (the number of instance
types × the number of options for cluster size). Considering the results,
the configuration that gives more utility to user preferences is the
one with 4 nodes of type c5.2xlarge. For different parameters of the
utility function, a new ranking is provided, but it is up to the user,
i.e. the wildfire analyst, to inform his or her preferences. The Resource
Provisioner module can provision the corresponding virtual resources
and then trigger the Scheduler to perform the scheduling task.l

3.4. Secondary components

Finally, to properly deploy the complete CuCo architecture, several
considerations must be taken into account related to other components
required. Regarding the Storage, as an urgent computing solution, it is
necessary to have on-demand access to the input data. It is needed a
persistent repository consisting of all the static data for the areas with a
greater probability of forest fire occurrence (those with high fire danger
indices). For these static data, as a data lake, the solution leverage
object storage services that offers industry-leading scalability, data
availability, security, and performance. Furthermore, a Task Queue
8

module is required to integrate the different components providing
an Application Programming Interface (API) to create queues as well as
send, receive, and delete messages. Messages are used to represent
simulation tasks, and to queue states to trigger orchestration or schedul-
ing activities. The Scheduler is in charge of assigning resources to
perform computing tasks and it determines, which resources are valid
placements for each task according to their constraints. Finally, the Re-
source Provisioner is responsible for providing the virtual resources in
which the actual simulation will be run. After understanding the mem-
ory consumption and runtime of the core simulator, a suitable memory
or compute-intensive pool of instances can then be provisioned.

4. Results and discussion

In this section, the proof-of-concept implementation of the high-
level architecture of the cloud-based solution is presented and dis-
cussed. Later, the solution is validated against a case study of a chal-
lenging and destructive forest fire scenario.

4.1. Implementation details

The implementation uses well-established cloud tools, being possi-
ble to be easily deployed on a public cloud or on-premise infrastructure.
It also relies on scalable object-storage service to allow the efficient
parallel retrieval and storage of input and output data. The Resource
Provisioner is linked to the AWS EC2 infrastructure, FARSITE is the
Core Simulator and it has been isolated as a containerized application
running on Docker runtime engine.
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Fig. 12. MARS runtime and memory models for FARSITE executions.

Fig. 13. Estimations for cloud cost for the calibration phase.
9

Table 3
AWS EC2 families of instances.

Family Recommendation # vCPU $

General
purpose

Variety of diverse
workloads. Balance of
compute, memory, and
networking resources.

114 1 to 192 0.005 to
9.677

Compute
optimized

Compute bound
applications that
benefit from high
performance processors.

85 1 to 192 0.042 to
9.158

Memory
optimized

Workloads that process
large data sets in
memory.

96 1 to 128 0.056 to
34.68

Accelerated
computing

Use hardware
accelerators, or
co-processors, to
perform functions more
efficiently than is
possible in software
running on CPUs.

14 4 to 96 0.274 to
9.389

Storage
optimized

Workloads that require
high, sequential read
and write access to
very large data sets on
local storage.

27 2 to 128 0.172 to
12.109

HPC
optimized

Built to offer the best
price performance for
running HPC workloads
at scale.

– – –

Table 4
AWS EC2 cost models.

Model Description

On-demand pay for compute capacity by
the hour or the second
depending on which instances
are run. No longer-term
commitments or upfront
payments are needed.

Spot instances request spare EC2 computing
capacity for up to 90% off the
On-Demand price.

Savings plans offers low prices on EC2
usage, in exchange for a
commitment to a consistent
amount of usage (measured in
$/h) for a one- or three-year
term.

Dedicated host a physical EC2 dedicated
server.

Table 5
AWS EC2 compute instances family.

Model #vCPU Memory (GiB) Cost per Hour

c5.large 2 4 $ 0.085
c5. × large 4 8 $ 0.17
c5.2 × large 8 16 $ 0.34
c5.4 × large 16 32 $ 0.68
c5.9 × large 36 72 $ 1.53
c5.18 × large 72 144 $ 3.06

The stream of generations from the Genetic Algorithm is responsible
for generating all the compute demands that will be fulfilled by the
orchestrating component (Kubernetes). For each generation, a Kuber-
netes Job performs a coarse parallel processing using a work queue.
The initial population is randomly generated and, for each one of its
individuals, a task definition is created and pushed to the task queue.

The Kubernetes Job starts one FARSITE pod for each task in order
to obtain maximum parallelism. Each of them takes one task from the
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Table 6
Resulting ranking of preference to run the calibration.

Rank Utility #Nodes Instance Type

1 0.6545 4 c5.2 × large
2 0.5598 2 c5. × large
3 0.5418 1 c5. × large
4 0.5044 16 c5.large
5 0.4316 2 c5.2 × large
... ... ... ...
35 0.1327 2 c5.large
36 0.0916 1 c5.large

Fig. 14. Interaction flow between the main components of the cloud-based two-stage
fire spread prediction.

message queue, processes it, and gets terminated. Once the current
generation is entirely evaluated, a new one can be computed, and the
message queue can be filled up again. One task represents a scenario
describing parameters for every single FARSITE execution, taking the
role of an individual of the Genetic Algorithm. Its message must include
the input bucket and the input directory name. Likewise, the output
bucket needs to be informed, accompanied by the name of the directory
to which the output files are pushed.

A Docker template has been prepared to build a containerized
version of FARSITE. In its first execution, the container attempts to
consume a message from the task queue. In case there is at least one
task, it proceeds to run the scenario that the task describes and, in
the end, push the results to the output directory. At the end of the
execution, the message gets deleted from the queue. Once there is no
message to be consumed, the pod gets terminated.

Once the queue is empty, the Genetic Algorithm can take back the
control of the execution and, if the evolution is not complete yet,
applies the genetic operators (elitism, selection, crossover, and muta-
tion) resulting in a new generation. The queue is filled up again and
Kubernetes takes the control in order to deploy, start, and at the end
terminate all the pods used to run the individuals.

The process is repeated until the pre-defined number of generations
is reached. In the end, the parameters and files from the best individuals
are made available in the output bucket and they can then be used in
the Prediction Stage. Fig. 14 illustrates the interaction flow between the
main CuCo’s components for both the Calibration and Prediction stages.
The wildfire analyst informs the scenario’s configuration (1), with all
the static data available in a storage service. For each generation,
10
Fig. 15. Camp Fire location (Butte County, California - USA), and its initial perimeters
at 06:15, 10:45, and 18:00.

the Optimized Resource Allocation Planner gets consulted (2), and an
allocation plan is defined (3). The list of resources to be acquired is
then informed to (4) and provisioned by the Resource Provisioner. It is
responsible for requesting (5), receiving (6), and passing them to the
Two-Stage Prediction Engine (7). The Scheduler (8) receives the list of
resources used to start a Kubernetes Job (9). The queue gets fed with
the tasks (10) used to define each FARSITE scenario that later will be
consumed (11) by the pods running in the Kubernetes cluster. Results
are sent to the output bucket (12) until the end of the Calibration Stage.
Once the calibration finishes, the adjusted parameters get passed on
to the Prediction Stage (13) that runs the actual prediction on a high-
performance container (14). In the end, the prediction result (15) is
made available to the wildfire analyst.

4.2. Experimental study

The enhancements to the two-stage prediction framework presented
in this work have been validated against fire scenarios in the Mediter-
ranean region at Spain and Greece (Fraga et al., 2020, 2021, 2022).
These scenarios have been thoroughly explored, studied, and compared
in previous works by our research team (Artés et al., 2013). In this
work, we have set up an experimental study to validate the CuCo
platform against the Camp Fire, a deadliest and destructive wildfire that
occurred in California - USA in the year 2018.

The West part of the USA is one of the regions most affected by for-
est fires during high-risk seasons. In particular, the state of California is
frequently affected by wildfires. In relation to the two-stage prediction
methodology, Camp Fire’s calibration is particularly challenging due to
the unusual weather conditions that cause the fire to spread faster than
expected. It is a resource-demanding scenario, represents an urge for
timely predictions, and gives much less time to act.

4.2.1. Camp Fire’s scenario
The Camp Fire was, at that time, the most destructive wildfire in

California’s history. The fire started on Thursday, November 8, 2018
at 6:15 a.m., in Northern California’s Butte County (see Fig. 15).
Ignited by a faulty electric transmission line, the fire originated above
several communities and an east wind drove the fire downhill through
developed areas. Sustained winds of 40 to 48 km/h, with gusts ranging
from 65 to 80 km/h, drove rapid fire spread. Drought was a major
factor for the fire intensity and spread. Relative humidity across the
area was generally below 20 percent. Exhibiting extreme fire spread,
fireline intensity, and spotting behaviors through rural communities,
an urban firestorm also formed in a foothill town.

The fire advanced nearly 24 km in the first 12 h, burning over 22,000
hectares. This means that the average rate of spread of the fire was,
approximately, 2 km∕h but, as it will later on explained, the rate of
spread was more than twice this velocity during the first hour of the
fire evolution. Only after the arrival of the first winter rainstorm of the
season, the fire reached 100 percent containment after seventeen days
on November 25 (Maranghides et al., 2021).
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Fig. 16. Landsat 8 multispectral and infrared satellite images captured at 10:45 a.m.,
four hours after fire ignition.

Fig. 17. Result of calibration stage from 6:15 to 10:45. Calibration perimeter (𝑃 ′
1 )

is shown overlaid in mustard while the actual fire spread is shown in purple (𝑃1).
Calibration shape in lighter shade represents False Alarms, while darker one represents
Hits.

In the following sections, we analyze each iteration of the whole
prediction scheme separately, in order to better understand the re-
sults obtained when applying the two-stage strategy. Although the fire
spread over 17 days in total, we consider only the perimeters in the
propagation occurred in the first 12 h, which was the most critical
ones. The propagation results have been compared using the function
stated in Eq. (1), which evaluates the goodness-of-fit of a fire spread
prediction.

4.2.2. Calibration window
The time window selected for the Calibration goes from 6:15 a.m.

to 10:45 a.m., covering from the ignition point until the first complete
perimeter extracted from a satellite image. That is, the calibration stage
covers the initial 4,5 h of the fire event, while the corresponding
prediction stage covers the following 7,25 h (from 10:45 to 18:00).

Fig. 16 shows Landsat 8 captures at about 10:45 a.m. PST on
Thursday, Nov. 8, just around four hours after fire ignition. In its
corresponding short-wave infrared band, the images are processed to
show green vegetation in the near infrared (NIR), and dead vegetation
and the fire in red colors using shortwave infrared (SWIR), with the
burn front clearly visible. It shows the full extent of the actively
burning area, and the red patches are fires that leap in front of the
primary burn front (spot fires). The fire was growing from 6:25 to
7:25 at a rate of approximately 5 km per hour, decreasing its rate
of spread to approximately 3 km∕h during the rest of the calibration
window (Maranghides et al., 2021).

We use actual values of elevation, slope and aspect of the terrain,
fuels (vegetation types) and canopy cover. The genetic algorithm gets
configured to evolve for 10 generations, each one with a population size
set to 64 individuals. The probabilities of crossover and mutation used
11
Fig. 18. Prediction results from 10:45 to 18:00. Prediction shape (𝑃 ′
2 ) is shown in

yellow (False Alarms) and orange (Hits). The actual fire spreads are shown in purple
for perimeter (𝑃1) while perimeter (𝑃2) is shown in red and orange, to account for the
Hits in the prediction.

in the executions are 0.8 and 0.1, respectively. Those values are used
empirically and used to present good calibration results (Artés et al.,
2017). Each individual gets simulated, and the resulting fire perimeter
is compared to the actual fire spread using the weighted GoF function,
as described in Section 3.2.1.

First of all, we need to be sure that there are enough available
pods/cores to run all individuals in parallel and then avoid queuing
FARSITE tasks (see Section 3). In the present case, we are not con-
cerned about what instances get actually chosen to host the pods, as
long as we can obtain the maximum level of parallelism at the same
performance level. Although we could have by-passed the Optimized
Resource Allocation Planner informing directly the cluster configuration
of preference, we obtained the same result setting the parameters of the
utility function (see Section 3.3.3). Setting 𝑏1 =

9
10 and 𝑏2 =

1
10 , i.e. the

user is much more concerned with the runtime than with the cost. In
this case, the chosen instance is again the c5.2xlarge, but this time for
the configuration with 8 nodes.

The results obtained for this calibration stage are shown in Fig. 17.
As it can be observed, although not capturing the spotting behavior of
the fire, it resembles the main trend of the actual fire shape, resulting
in a somewhat good calibration. The parameters corresponding to this
best individual can then be immediately fed into the prediction stage.

4.2.3. Prediction window
Prediction stage goes from 10:45 to 18:00 and uses the adjusted

input data resulting from the calibration stage. This simulation is chal-
lenging as its reference fire affects both rural communities, urban
constructions, and forest fuel. Wildfires in these conditions do not
spread exactly as modeled in the fire propagation reference patterns.
Besides, the expansion of the high number of spot fires increases the
prediction time.

Notwithstanding these caveats, the prediction managed to capture
the flanks of the actual fire spread, thanks to the incorporation of
wind field model. Fig. 18 shows the resulting prediction perimeter,
contrasted with the actual fire spread at the same time. The resulting
prediction overestimates the fire spread, but it clearly describes the
three main spread direction of the fire. Overestimation of the fire
spread is not really a big concern, as in the real case the wildfire does
not spread freely due to human intervention.

Curiously, an important fire front on the north-west part was not
detected. This was probably due to that part being the one affected
by an urban firestorm in the foothill town, difficult to modeling as it
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Fig. 19. Execution time and quality of prediction for calibration and prediction stages
f the Camp Fire scenario, running on a virtual cluster comprised of 8 instances of
ype c5.2xlarge.

Fig. 20. Cloud cost for calibration and prediction stages.

ropagated mainly by new spot fires over a Wildland–Urban interface
(WUI).

The execution of the two-stage prediction scheme has been repeated
10 times and each data point in Figs. 19(a) and 19(b) shows the average
of these runs. The error bar represents the corresponding standard
deviation. Fig. 19(a) shows the execution time for the calibration and
prediction stages, while Fig. 19(b) shows the average goodness-of-fit
(i.e. prediction quality, see Eq. (1)) also for both stages.

Regarding the execution time, the most important is the timely-
response. As the real event occurs in a time-window of 7 h and 15 min,
the prediction must be delivered in a fraction of that time. The two-
stage prediction takes around 1 h and 30 min (55 min from calibration
and 35 min from the prediction stage), around 20% of the prediction
window.

As we can see in Fig. 20, the prediction cost is just a minor fraction
of the overall two-stage cost. Due to the high-parallel and compute-
intensive nature of the genetic algorithm calibration, its execution
consumes 95% of the two-stage prediction budget. Although the pre-
diction stage execution time is around 60% of the calibration stage,
we can see that when it comes to the cost, its comparison with the
12

calibration is fairly negligible.
Fig. 21. Comparison of calibration execution time and cost between clusters of two
selected instance types: c5.18xlarge, offering more performance, and c5.2xlarge, most
ost-effective.

Although we have engineered the solution to be cost-effective,
.e. able to balance between cost and time-to-response, in an opera-
ional event, the fire analyst may want to allocate the most powerful
esource, no matter how much it cost. In this case, the Optimized Re-

source Allocation Planner can be by-passed and the Resource Provisioner
allocates the cluster configuration informed by the analyst.

For example, if the fire analyst believes that having more virtual
machines the workload can be evenly spread between them, resulting
in an improved performance, he or she can then choose a configuration
with 4 instances of type c5.18xlarge, with 288 vCPUs in total (4 × 72 =
288). We would then have the results showed in Fig. 21, where we can
surprisingly see indeed a significant reduction in the time needed for
the calibration stage. This result cannot be explained by considering the
number of cores (or vCPUs) alone, as a virtual cluster with 8 instances
of type c5.2xlarge has exactly 64 vCPUs (8×8 = 64), sufficient to run all
he individual of a given generation in parallel. The reason must be the
nderlying resources, as the cloud provider usually allocated the most
owerful instances in high-end physical machines. On the other hand,
uch calibration cost double in comparison with the cluster suggested
y the Optimized Resource Allocation Planner.

In the end, it is a decision justifiable in the presence of the trade-
ff between cost and performance while facing a natural hazard. In
he day-to-day activities, involving planning wildfire prevention and
uppression, where thousands of wildfire simulations need to be run,
he decision needs to be well informed and cost-effective.

. Conclusion

Forest fire is a significant natural hazard that every year cause
mportant damages in areas with high fire risk indexes. Wildfire models
nd their implementation in simulators can provide estimations of fire
ehavior, but their results are affected by high level of data uncertainty.
esides, input parameters are difficult to know or even to estimate so
here is a need of strategies to minimize this uncertainty and to provide
etter predictions. When applied to a real case scenario in production,
here is also an extra key factor that challenge the forecast process: the
esponse time. In such situation, late results are useless.

In this work, we present a cloud-based solution for the data uncer-
ainty problem in forest fire spread prediction. We build up our work
n an established two-stage fire spread prediction model. Our solution
ses a goodness-of-fit function for the genetic algorithm calibration
hase, improving the genetic algorithm convergence and decreasing the
esponse time for the calibration stage. We use an adaptive evaluation
echnique to evaluate the individuals, based on a periodic monitoring
f their fitness, avoiding the waste of computing time running undoubt-
dly unfit individuals. This strategy is able to, at the same time, simplify
mplementation and improve response time of the critical calibration
tage of the two-stage prediction framework.
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We have also set up an experimental study to validate the platform
against the Camp Fire, a deadliest and destructive wildfire that occurred
in California - USA in the year 2018. The results showed that the final
prediction has successfully captured the main fire growth trend for the
first 12 h of fire, using the first 4 h of data to calibrate and then predict
the fire spread for the next 8 h.

It is part of our ongoing work to evaluate the cloud platform
and an strict deadline policy using other real fire spread scenarios.
We also plan to follow a dynamic approach to terminate the genetic
algorithm evolution, being able to save time that can be used in the
prediction phase. Another non-excluding option is to evaluate the effect
of increasing the population size in favor of a decrease in the number
of generations.
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