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Epigenome-wide gene–gene (G × G) interactions associated with non-

small-cell lung cancer (NSCLC) survival may provide insights into molecu-

lar mechanisms and therapeutic targets. Hence, we proposed a three-step

analytic strategy to identify significant and robust G × G interactions that

are relevant to NSCLC survival. In the first step, among 49 billion pairs of

DNA methylation probes, we identified 175 775 G × G interactions with

PBonferroni ≤ 0.05 in the discovery phase of epigenomic analysis; among

them, 15 534 were confirmed with P ≤ 0.05 in the validation phase. In the

second step, we further performed a functional validation for these G × G

interactions at the gene expression level by way of a two-phase (discovery

and validation) transcriptomic analysis, and confirmed 25 significant G ×
G interactions enriched in the 6p21.33 and 6p22.1 regions. In the third

step, we identified two G × G interactions using the trans-omics analysis,

which had significant (P ≤ 0.05) epigenetic cis-regulation of transcription

and robust G × G interactions at both the epigenetic and transcriptional

levels. These interactions were cg14391855 × cg23937960 (βinteraction = 0.018,

P = 1.87 × 10−12), which mapped to RELA × HLA-G (βinteraction = 0.218,

P = 8.82 × 10−11) and cg08872738 × cg27077312 (βinteraction = −0.010,
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P = 1.16 × 10−11), which mapped to TUBA1B × TOMM40 (βinteraction =
−0.250, P = 3.83 × 10−10). A trans-omics mediation analysis revealed that

20.3% of epigenetic effects on NSCLC survival were significantly

(P = 0.034) mediated through transcriptional expression. These statistically

significant trans-omics G × G interactions can also discriminate patients

with high risk of mortality. In summary, we identified two G × G interac-

tions at both the epigenetic and transcriptional levels, and our findings

may provide potential clues for precision treatment of NSCLC.

1. Introduction

Lung cancer is widely prevalent and is the most lethal

disease among all malignant cancers; in year 2020 alone,

more than 2.2 million patients were diagnosed with lung

cancer and nearly 1.8 million patients succumbed to the

disease [1]. About 85% of lung cancer cases are non-

small-cell lung cancer (NSCLC). Compared to those

diagnosed with advanced-stage NSCLC, early-stage

patients tend to have a more favourable prognosis.

However, wide clinical variation is observed among

early-stage NSCLC patients, even among those with

similar clinical characteristics [2], indicating possible

heterogenous molecular characteristics of the disease [3].

DNA methylation, a heritable, reversible, and epige-

netic modification involving the DNA spatial confor-

mation [4], plays an essential role in prognosis and

therapeutic target of cancers [5], including NSCLC [6].

Moreover, gene–gene (G × G) interactions may pro-

vide pivotal clues regarding the biologic mechanisms

of complex diseases [7] and enhance the accuracy of

prediction models [8,9]. G × G interactions, as an

essential element of personalized medicine, reflect that

the effects of one gene on the disease outcome may

vary across patients with different characteristics on

another gene. Our previous studies have identified sev-

eral epigenetic G × G interactions [10,11] and gene–
environment (G × E) interactions [12–14] relevant to

NSCLC survival. However, these studies only focused

on target genes that were identified in the literature.

Subsequently, we performed the first genome-wide G ×
G interaction study of lung cancer risk among the

Asian and European populations, respectively [15,16],

and identified several novel biomarkers associated with

lung cancer risk. We further conjectured that a com-

prehensive epigenomic G × G interaction study of

NSCLC survival could identify novel interactions, pro-

viding insights into molecular mechanism and guiding

precision treatment of NSCLC. However, virtually no

studies have related epigenome-wide G × G

interactions to NSCLC survival, owing to enormous

computational challenges and lack of reproducibility.

In this study, we integrated epigenomic and tran-

scriptomic data of multiple cohorts and utilized a

three-step analytic strategy to identify robust G × G

interactions. First, we performed an epigenome-wide

G × G interaction study of lung cancer survival using

samples from Lung Cancer Survival Epigenome

Research Group (LCSERG) and further validated the

selected signals using The Cancer Genome Atlas

(TCGA). Second, we functionally evaluated the signifi-

cant epigenetic G × G interactions and validated them

at the gene expression level using transcriptomic data.

Third, focusing on these G × G interactions having

epigenetic cis-regulation of transcription, we conducted

a trans-omics mediation analysis.

2. Materials and methods

2.1. Study populations of DNA methylation data

WeharmonizedtheDNAmethylationdata forearly-stage

(stages I and II) NSCLC patients from LCSERG and

TCGA. LCSERG is an international collaborative team

composed of four study sites, including USA-Harvard,

Spain,Norway,andSweden[9].Allpatientsprovidedwrit-

ten informed consent. The study methodologies con-

formed to the standards set by theDeclaration ofHelsinki

andwasapprovedbythelocalethicscommittee.

2.1.1. USA-Harvard

The USA-Harvard site consisted of patients recruited

at Massachusetts General Hospital (MGH) since 1992

[17]. All were newly diagnosed and histologically

confirmed as primary NSCLC at the time of recruit-

ment. Snap-frozen tumour samples were taken from

patients during complete resection. A series of 151

early-stage patients selected in this study had complete
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survival information. Tumour DNA was extracted

from 5-μm-thick histopathological sections. Each speci-

men was evaluated by an MGH pathologist for the

amount (tumour cellularity > 70%) and quality of tumour

cells. All specimens were histologically classified using the

Word Health Organization (WHO) criteria. The study

was approved by the Institutional Review Boards of the

Massachusetts General Hospital (Partners Human

Research Committee, Protocol #1999P004935/MGH).

2.1.2. Spain

The Spanish centre is a collaborative study centre, con-

sisted of multiple research institutions from Spain (Cata-

lan Institute of Oncology; Center for Applied Medical

Research; and Bellvitge Biomedical Research Institute),

Italy (IRCCS Foundation National Cancer Institute;

and University of Turin), UK (University of Liverpool

Cancer Research Centre), France (CHU Albert Michal-

lon), and the USA (University of Michigan Medical

School). Tumours were collected by surgical resection

from 226 patients between 1991 and 2009 [18]. DNA

extraction was performed on tumour specimens (10 μm-

thick, tumour cellularity > 50%). The study was

approved by the Bellvitge Biomedical Research Institute

Institutional Review Board (PR055/10).

2.1.3. Norway

Participants were 133 lung adenocarcinoma (LUAD)

patients with operable lung cancer tumours seen at the

Oslo University Hospital between 2006 and 2011 [19].

Tumour tissues were collected during surgery, snap-

frozen in liquid nitrogen, and stored at −80 °C until

DNA isolation. The project was approved by the Oslo

University Institutional Review Board and the Regio-

nal Ethics Committee (S-05307).

2.1.4. Sweden

Tumour tissue samples were collected from 103 patients

with early-stage NSCLC who underwent operation,

including 80 patients with LUAD and 23 patients with

lung squamous cell carcinoma (LUSC) at the Skane

University Hospital [20]. The study was approved by the

Regional Ethical Review Board in Lund, Sweden (Regis-

tration nos. 2004/762 and 2008/702).

2.1.5. TCGA

A total of 332 LUAD and 285 LUSC with full DNA

methylation, survival time, and covariates data were

included. Level 1 HumanMethylation450 DNA

methylation data from patients with early-stage

NSCLC were downloaded from Genomic Data Com-

mons Data Portal (GDC) resources.

2.2. Quality control for DNA methylation data

DNA methylation was assessed with Illumina Infinium

HumanMethylation450 BeadChips (Illumina Inc.,

San Diego, CA, USA). Raw image data were imported

into GenomeStudio Methylation Module V1.8 (Illumina

Inc.) to calculate methylation signals and to perform

normalization, background subtraction, and quality

control (QC). Unqualified probes were excluded if meet-

ing any of these exclusion criteria: (a) failed detection

(P > 0.05) in 5% samples; (b) coefficient of variance

< 5%; (c) methylated values of CpG probes were all 0

(unmethylated) or 1 (methylated) across all samples; (d)

common single-nucleotide polymorphisms located in

probe sequence or in 10-bp flanking regions; (e) cross-

reactive probes [21]; and (f) data did not pass QC in all

centres. Methylation signals were further processed for

quantile normalization as well as types I and II probe

correction. Batch effects were adjusted according to the

best pipeline and by a comparative study [22]. Details of

the QC process are described in Fig. S1.

2.3. Study populations and quality control of

gene expression data

Gene expression data for early-stage NSCLC were

derived from the Gene Expression Omnibus (GEO)

and TCGA, and early-stage NSCLC patients profiled

by Affymetrix Human Genome U133 Plus 2.0 Array

were retrieved from GEO (GSE10245, GSE29013,

GSE31210, and GSE50081) (Table S1). Included in the

discovery phase of transcriptomic analysis were 484

patients with available overall survival time, clinical

stage, and other clinical covariates. Meanwhile, 613

early-stage NSCLC patients were downloaded from

GDC resources for validation of transcriptional G ×
G interactions. The TCGA workgroup completed the

mRNA sequencing data processing and QC. Level 3

gene quantification data were downloaded from the

TCGA data portal and were further checked for qual-

ity. Gene probes were excluded if the missing rate

> 80%, and batch effects were corrected with ComBat.

The expression value of each gene was transformed on

a log2 scale and standardized.

2.4. Study design and statistical analysis

Figure 1 depicts the workflow of the proposed three-

step analytic strategy. These three steps are detailed below.
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2.4.1. A two-phase epigenome-wide G × G interaction

study

We conducted a two-phase epigenomic study to screen

G × G interactions out of a massive number of pairs.

In the discovery phase, using the LCSERG dataset, we

applied Cox proportional hazards models, adjusted by

covariates (age, sex, smoking status, clinical stage, and

study centre) and stratified by histology (see the Model

below), to all G × G interactions one at a time, and

identified significant G × G interactions among 49 bil-

lion pairs of DNA methylation probes. Significance

was set to be at the level of 1.03 × 10−12 = 0.05/

(311 891 × 311 890/2) by adjusting for multiple tests

with the Bonferroni method. In the validation phase,

we further confirmed the selected interactions using

the TCGA cohort; only those with P ≤ 0.05 and with

the same effect directions as in the discovery phase

would be selected as the candidate G × G interactions

and passed onto the next steps.

Model : h tð Þ ¼ h0 tð Þ exp α1 � G1 þ α2 � G2 þ α3 � G1ð
�G2 þ∑βi � covariateiÞ:

2.4.2. A two-phase functional validation of G × G

interactions in transcriptomic data

We evaluated the candidate G × G interactions at the

transcriptional level, by annotating genes in the ampli-

fied regions within a 1 Mb window upstream and

downstream for each gene. We applied a two-phase

strategy, similar to that outlined in Section 2.4.1, to

screen and validate significant G × G interactions at

the transcriptional level. Selected as the final candidate

G × G interactions would be those with a PBonferroni

≤ 0.05 in the discovery phase based on the GEO data-

set, with P ≤ 0.05 in the validation phase based on the

TCGA dataset, and with the same effect directions in

these two datasets.

2.4.3. Trans-omics regulation and mediation analysis

For G × G interactions with significant effects at both

the epigenetic and transcriptional levels, we evaluated

the trans-omics regulation between the DNA methyla-

tions and gene expressions via the Spearman correla-

tion. The DNA methylation probes located within

1 Mb distances upstream or downstream of its gene,

and meanwhile significantly correlated with gene

expression were defined as these having significant epi-

genetic cis-regulation of transcription. Then, G × G

interactions with significant epigenetic cis-regulation of

transcription were identified to be robust interactions.

Moreover, we performed a trans-omics mediation

analysis to evaluate whether the prognostic effect of

epigenetic G × G interactions on NSCLC survival was

mediated through affecting the corresponding tran-

scriptional G × G interactions, implementing by Van-

derWeele’s method [23].

2.4.4. Statistical analysis

Continuous variables were summarized as mean � s-

tandard deviation (SD), and categorized variables were

described by frequency (n) and proportion (%).

Kaplan–Meier survival curves illustrated the survival

differences across different risk groups. The histology-

stratified Cox proportional hazards models, adjusted

for age, sex, smoking status, clinical stage, and study

centre, were used to model the adjusted effect of each

interaction. The epigenetic score and transcriptional

score were defined as a linear combination of G × G

interactions of two omics, respectively, with coeffi-

cients as weights derived from the multivariable Cox

proportional hazards models. We applied Gene Ontol-

ogy (GO) annotation and Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathway enrichment

analyses to evaluate potential biological functions of

screened biomarkers, and used gene network analysis

to explore the relationship between screened genes and

immune checkpoints by implementing GeneMANIA

[24]. Proportions of immune cells were inferred by

using CIBERSORT [25].

Statistical analyses were performed using R version

3.6.3 (The R Foundation of Statistical Computing,

Vienna, Austria).

3. Results

3.1. Sample characteristics of the study

population

After QC, included in this study were 1230 early-stage

NSCLC patients with DNA methylation data and

1097 patients with gene expression data. The demo-

graphic and clinical information of these patients are

detailed in Table 1 and Table S2.

3.2. Two robust G × G interactions identified in

epigenome-wide G × G interaction study and

trans-omics validation in transcriptome

Using the LCSERG cohort in the discovery phase of

the epigenomic analysis, we identified a total of
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Epigenomic analysis

Discovery phase
• 614 early-stage NSCLC
• 311,891 CpG probes

175,775 significant interaction terms
• Histology-stratified cox model
• Bonferroni adjusted P ≤ 0.05

Validation phase
• 617 early-stage NSCLC
• 74,535 CpG probes

15,534 significant interaction terms
• Histology-stratified cox model
• Pinteraction ≤ 0.05
• Consistent effect

Transcriptomic analysis

Discovery phase
• 484 early-stage NSCLC
• 15,472 gene probes

378 significant interaction terms
• Histology-stratified cox model
• Bonferroni adjusted P ≤ 0.05

Validation phase
• 613 early-stage NSCLC
• 577 gene probes

25 significant interaction terms
• Histology-stratified cox model
• Pinteraction ≤ 0.05
• Consistent effect

Gene annotation
1 Mb window

gnin eerc S r ekra
moiB

cg27077312 cg08872738
cg23937960 cg14391855

Trans-omics regulation analysis 
• Correlation test
• P value ≤ 0.05

TOMM40 TUBA1B
HLA-G RELA

Tr
an

s-
s isylana sc i

mo

Trans-omics mediation pathway
• Epigenomics → Transcriptomics → NSCLC survival

sisy lana ocil is n I

Integrative score
• Discriminative ability
• Subgroup analysis

KEGG enrichment Immune cellsGO annotation Gene network

Fig. 1. Flow chart of three-step study design. In the epigenomic analysis step, we performed a two-phase strategy to screen and validate

epigenome-wide G × G interactions. In the transcriptomic analysis step, we firstly conducted a gene annotation and again performed a two-

phase study to evaluate and validate those interactions at transcriptional level. In the trans-omics analysis step, we explored the trans-omics

regulatory relationships and evaluated indirect effect of epigenetic G × G interactions on NSCLC survival mediated through transcriptional

G × G interactions, and followed by a series of in silico analyses for potential biological functions.
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175 775 epigenetic G × G interactions (PBonferroni ≤
0.05) significantly associated with NSCLC survival.

Among them, 15 534 interactions remained significant

(P ≤ 0.05) in the validation phase based on the TCGA

cohort (Table S3). These interactions were enriched in

the 16p13.3, 4p16.3, 6p21.33, 17q25.3, and 6p22.1

regions (Fig. 2A), and further gene annotation for

them resulted in 6 850 451 epigenetic cis-regulatory

gene pairs. By way of transcriptomic analysis, a total

of 378 transcriptional G × G interactions were found

to be significantly associated with NSCLC survival in

the discovery phase; of them, 25 interactions were suc-

cessfully validated in the validation phase (Table S4),

and the 6p21.32, 6p21.33, 6p22.1, 11q13.1, and

17q21.33 regions were identified to be the enriched

functional regions (Fig. 2B).

Among the interactions deemed significant at both

the epigenetic and transcriptional levels, we evaluated

the trans-omics cis-regulatory relationship between

DNA methylations and their mapped gene expressions,

and found that two G × G interactions had significant

trans-omics regulations (rcg14391855-RELA = −0.11, P =
6.80× 10−3, rcg23937960-HLA-G = −0.08, P = 3.86 × 10−2;

and rcg08872738-TUBA1B = 0.12, P = 4.10 × 10−3,

rcg27077312-TOMM40 = 0.15, P = 1.87 × 10−4) (Table S5).

Moreover, these G × G interactions remained signifi-

cant in the subgroup defined by histology, except for a

subgroup that have only 73 LUSC samples with gene

Table 1. Demographic and clinical descriptions for early-stage NSCLC patients with DNA methylation data in five international study centres.

LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma.

Variables

Discovery phase
Validation phase

Combined

dataset

USA-Harvard

(N = 151)

Spaina

(N = 226)

Norway

(N = 133)

Sweden

(N = 103) All (N = 613)

USA-TCGA

(N = 617)

Overall

(N = 1230)

Age (years) 67.67 � 9.92 65.67 � 10.58 65.52 � 9.34 67.54 � 9.99 66.44 � 10.08 66.51 � 9.47 66.48 � 9.78

Sex

Female 67 (44.37) 105 (46.46) 71 (53.38) 54 (52.43) 297 (48.45) 255 (41.33) 552 (44.88)

Male 84 (55.63) 121 (53.54) 62 (46.62) 49 (47.57) 316 (51.55) 362 (58.67) 678 (55.12)

Smoking status

Never 18 (11.92) 30 (13.57) 17 (12.78) 18 (17.47) 83 (13.65) 55 (9.18) 138 (11.43)

Former 81 (53.64) 120 (54.30) 74 (55.64) 54 (52.43) 329 (54.11) 376 (62.77) 705 (58.41)

Current 52 (34.44) 71 (32.13) 42 (31.58) 31 (30.10) 196 (32.24) 168 (28.05) 364 (30.16)

Unknown 0 5 0 0 5 18 23

Clinical stage

I 104 (68.87) 183 (80.97) 93 (69.92) 95 (92.23) 475 (77.49) 393 (63.70) 868 (70.57)

II 47 (31.13) 43 (19.03) 40 (30.08) 8 (7.77) 138 (22.51) 224 (36.30) 362 (29.43)

Histology

LUAD 96 (63.58) 183 (80.97) 133 (100.00) 80 (77.67) 492 (80.26) 332 (53.81) 824 (66.99)

LUSC 55 (36.42) 43 (19.03) 0 (0.00) 23 (22.33) 121 (19.74) 285 (46.19) 406 (33.01)

Chemotherapy

No 142 (94.04) 177 (90.77) 102 (76.69) 67 (90.54) 488 (88.25) 1974 (76.98) 682 (84.72)

Yes 9 (5.96) 18 (9.23) 31 (23.31) 7 (9.46) 64 (11.75) 58 (23.02) 123 (15.28)

Unknown 0 31 0 29 60 365 425

Radiotherapy

No 132 (87.42) 184 (94.36) 132 (99.25) 74 (100.00) 522 (94.39) 239 (94.84) 761 (94.53)

Yes 19 (12.58) 11 (5.64) 1 (0.75) 0 (0.00) 31 (5.61) 13 (5.16) 44 (5.47)

Unknown 0 31 0 29 60 365 425

Adjuvant therapyb

No 127 (84.11) 168 (86.15) 101 (75.94) 67 (90.54) 463 (83.73) 187 (74.21) 650 (80.75)

Yes 24 (15.89) 27 (13.85) 32 (24.06) 7 (9.46) 90 (16.27) 65 (25.79) 155 (19.25)

Unknown 0 31 0 29 60 365 425

Survival year

Median

survival

6.66 (5.41, 7.87) 7.12 (5.06,

9.63)

7.36 (6.77,

7.95)c
7.39 (4.98,

9.12)

7.39 (6.50,

8.23)

4.54 (3.68, 5.41) 6.60 (5.84,

7.35)

Died (%) 122 (80.79) 101 (44.69) 42 (31.58) 58 (56.31) 323 (52.69) 142 (23.01) 465 (37.80)

a

The Spanish centre is a collaborative study centre with samples recruited from Spain, Italy, UK, France, and the USA.
b

Including chemotherapy or radiotherapy.
c

The restricted mean survival time was given since the median is not available.
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expression, which might be due to a very limited sam-

ple size. Nevertheless, heterogeneity test suggested no

significant heterogenous effect was observed between

LUAD and LUSC (Fig. S2). Therefore, cg14391855 ×
cg23937960 (mapped to RELA × HLA-G) as well as

cg08872738 × cg27077312 (mapped to TUBA1B ×
TOMM40) were viewed as the robust interactions,

which were passed onto subsequent analyses.

3.3. Interaction patterns and effect modifications

of two G × G interactions on NSCLC survival

Significant synergistic interactions were observed

between cg14391855 and cg23937960 (βinteraction = 0.018,

95% CI: 0.013–0.023, P = 1.87 × 10−12) (Fig. 3A),

which were mapped to RELA × HLA-G (βinteraction
= 0.218, 95% CI: 0.152–0.283, P = 8.82 × 10−11)

(Fig. 3B). In contrast, as the methylation level of

cg27077312 increased, the effect of cg08872738

decreased (βinteraction = −0.010, 95% CI: −0.013 to

−0.007, P = 1.16 × 10−11) (Fig. 3C). Moreover, the

antagonistic interaction between their mapped genes,

TOMM40 × TUBA1B, was identified (βinteraction =
−0.250, 95% CI: −0.329 to −0.172, P = 3.83 × 10−10)

(Fig. 3D).

To explore the effect modifications, we evaluated the

effects of cg14391855 among patients with low and

high levels of cg23937960. We observed a harmful

effect of cg14391855 in patients with high methylation

level of cg23937960 (βH vs L = 0.519, 95% CI: 0.148–
0.884, P = 5.50 × 10−3), but did not note any signifi-

cant effects of cg14391855 among those with low

methylation level of cg23937960 (βH vs L = −0.261,
95% CI: −0.562 to 0.039, P = 0.087), indicating a sig-

nificant heterogeneity of the effects of cg14391855

(I2 = 91.47%, P = 7.17 × 10−3); see Fig. 4A. We also

observed heterogenous effects of RELA across patients

with low and high expression levels of HLA-G

(I2 = 78.36%, P = 3.16 × 10−2). Specifically, high

RELA expression was associated with high mortality

among patients with high HLA-G gene expression

(βH vs L = 0.928, 95% CI: 0.464–1.391, P = 8.99 × 10−5),

but not so among those with low HLA-G gene expres-

sion (βH vs L = 0.148, 95% CI: −0.462 to 0.761,

P = 0.64) (Fig. 4B). Additionally, heterogeneity tests

suggested significantly differential effects of

cg08872738 across patients with different levels of

cg27077312 (βH vs L = 0.693, 95% CI: 0.239–1.151,
P = 2.72 × 10−3 for low cg27077312 patients; βH vs

L = −0.062, 95% CI: −0.400 to 0.285, P = 0.73 for

high cg27077312 patients; and I2 = 83.98%,

P = 1.25 × 10−2), and significantly differential effects

of TUBA1B across patients with low and high

TOMM40 expression levels (βH vs L = 0.829, 95% CI:

0.351–1.308, P = 6.68 × 10−4 for low TOMM40

patients; βH vs L = 0.020, 95% CI: −0.329 to 0.365,

P = 0.92 for high TOMM40 patients; and

I2 = 86.15%, P = 7.29 × 10−3).
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Fig. 2. The circos plot for visualization of G × G interactions. Results of G × G interactions were given at epigenetic level (A) and

transcriptional level (B), respectively. The chords represent interactions exists between two linked chromosome segments, and the chords

of the top five enriched regions are highlighted in red.
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3.4. Trans-omics analysis of two G × G

interactions

A significant trans-omics regulation was observed

between the epigenetic score and transcriptional score

(β = 0.16, 95% CI: 0.04–0.27, P = 0.009). Further,

mediation analysis for the trans-omics pathway

revealed that 20.3% of the effect of the epigenetic

score on NSCLC survival were mediated via the tran-

scriptional score (HRindirect = 1.15, 95% CI: 1.01–1.31,
P = 0.034) (Fig. 5).

We constructed an integrative score by linearly com-

bining the epigenetic and transcriptional scores, with

coefficients as weights derived from a multivariable

Cox regression model, and found it robustly associated

with NSCLC survival in patient subgroups defined by

various covariates (Fig. 6A). To demonstrate the dis-

criminative ability of this integrative score, we catego-

rized patients into three subgroups based on the

tertiles of the score and detected a dose–response asso-

ciation; higher-percentile groups were associated with

higher mortality (HRM vs L = 2.18, 95% CI: 1.29–3.66,
P = 3.36 × 10−3; HRH vs L = 3.28, 95% CI: 1.99–5.42,
P = 3.03 × 10−6) (Fig. 6B,C). Moreover, we noted that

the discriminative ability of integrative score outper-

forms the clinical factors (Fig. S3).

3.5. In silico analyses for potential biological

functions

To explore the potential biological functions, we

scanned the transcriptome-wide gene expression probes

0
0.

05
0.

1
0.

15
0.

2
0.

25

0 1 2 4 6 8

0
1

2

1

0.
0

0.
1

0.
2

0.
3

75 80 85 90 92.9 95 100

0
1

2

0 0.8

 
 

 

P  × 10-12

P  × 10-11

P  × 10-11

P  × 10-10

 

-0.1  
HLA-G

(A) (B)

(C) (D)

Fig. 3. Interaction patterns of the screened G × G interactions. Interactions of cg14391855 × cg23937960 (A), which mapped to

RELA × HLA-G (B); as well as cg08872738 × cg27077312 (C), which mapped to TUBA1B × TOMM40 (D) were displayed as the effects of

one gene (y axis) varied by the different level of another gene (x axis). Coefficients, 95% CIs, and P values were derived from histology-

stratified Cox proportional hazards models adjusted for age, sex, smoking status, clinical stage, and study centre. The shaded area repre-

sents 95% confidence interval. The horizontal dashed line indicates the zero correlation. The vertical dashed line represents the intersection

of the lower bound of the 95% CI and the zero correlation.
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Fig. 4. Kaplan–Meier survival curves for effect modifications. Survival differences of cg14391855 stratified by cg23937960 (NLow = 615,

NHigh = 616) (A), RELA stratified by HLA-G (NLow = 548, NHigh = 549) (B), cg08872738 stratified by cg27077312 (NLow = 615, NHigh = 616)

(C), and TUBA1B stratified by TOMM40 (NLow = 548, NHigh = 549) (D), respectively. The coefficients, 95% CIs, and P values for each strata

were derived from histology-stratified Cox proportional hazards models adjusted for age, sex, smoking status, clinical stage and study cen-

tre. Heterogeneity tests were used to evaluate effect modifications.
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Fig. 5. Mediation analysis for trans-omics regulatory pathway. VanderWeele causal mediation analysis was conducted to evaluate the indi-

rect effect, 95% CI, and P value of epigenetic G × G interactions on overall survival of NSCLC patients via transcriptional G × G interactions.
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to find those correlated with the genes included in the

integrative score. As a result, we identified a total of

4588 co-expressed genes, which were significantly

enriched in 16 KEGG pathways, suggesting functions

in cancer prognosis (Fig. 7A). Additionally, GO anno-

tation analysis identified 491 biological process path-

ways, 78 molecular function pathways, and 141

cellular component pathways, which comprised the

main activity of the major histocompatibility complex

(MHC) (Fig. 7B–D). The gene network revealed the

potential functional connections between the four

genes with interactions and immune checkpoint genes

(Fig. 7E). Therefore, we further inferred the propor-

tions of immune cells using CIBERSORT and

observed significant and positive correlations between

the integrative score and five immune cells (e.g., with

macrophages M0, r = 0.23, P = 8.42 × 10−9), as well

as significant and negative correlations with 6 immune

cells (e.g., with mast cells resting, r = −0.22,
P = 6.29 × 10−8) (Fig. 7F). Additionally, numerous

drugs targeting these interactions are documented in

the DrugBank database (Table S6).

4. Discussion

Wide heterogeneity exists in the outcome of NSCLC

patients, especially among the early-stage NSCLC

patients, and highlights the importance of personalized

treatment [26], which refers to select specific treatment

for patients based on their specific molecular biomark-

ers, to maximize the benefit from the treatments [27].

Gene–gene (G × G) interactions, in particular, at the

epigenome level, play important roles in cancer pro-

gression and is an essential component of personalized
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treatment [26]. However, computational intensiveness

and lack of reproducibility in G × G interaction analy-

ses, in particular on the whole epigenome-wide scale,

impede their wide applications and hinder our ability

to identify novel biomarkers at both the epigenome

and transcriptome level. Our study addressed the seri-

ous challenges by using high performance computing

clusters and proposing a 3-step analytical strategy to

identify epigenome-wide G × G interactions, followed

by a trans-omics validation in transcriptome, and in

silico analyses for exploring the biological functions,

which might be a general schema that could be applied

to other cancers.

To our knowledge, our work was the first attempt

to identify epigenome-wide G × G interactions and

perform functional validation in transcriptome. Our

study identified 16p13.3, 4p16.3, 6p21.33, 17q25.3, and

6p22.1 as the top five functional regions with largest

number of epigenetic interactions. Among them,

6p21.33 and 6p22.1 were validated as functional

enrichment regions in the transcriptomic interaction

analysis. These two are well known regions, which

house major histocompatibility complex (MHC) genes,

including HLA-B, HLA-C, etc. in 6p21.33 and

HLA-A, HLA-E, HLA-F, HLA-G, etc. in 6p22.1,

respectively [28]. MHC molecules play essential roles

in the immune system, antigen presentation [29]. Much

evidence has linked MHC to the development, pro-

gression and prognosis of tumours [30], including

NSCLC [31].

RELA, an encoder of the essential subunit of

nuclear factor-κB (NF-κB), is involved in inflamma-

tion, immunity, tumourigenesis, and apoptosis, all of

which are related to the progress and prognosis of

tumour [32,33]. NF-κB can promote tumour survival

via modifying apoptosis, cause inflammatory microen-

vironment by interacting with interleukins, and affect

NSCLC survival [34]. Meanwhile, HLA-G, a member

of the MHC class I, is a well-established immune

checkpoint that plays an important regulatory role in

tumour immune response [35,36]. HLA-G can inhibit

the functions of NK and T cells, suppress the immune

response, help tumour cells escape immune surveil-

lance, and lead to poor prognosis of NSCLC patients

[37]. Notably, the immune escape would further deteri-

orate inflammatory response [38], and increase the

mortality risk from NF-κB, leading to a synergistic

effect [39]. Moreover, the protein product of TUBA1B

is the main component of microtubules, which is

involved in cell movement and intracellular trafficking,

and affects cancer prognosis [40,41]. Microtubules are

involved in the mitochondrial motility under the

hypoxic tumour microenvironment, promoting the

perinuclear aggregation of mitochondria and produc-

tion of reactive oxygen species (ROS) [42], and leading

to cell damage, inflammation storm, and poor progno-

sis [43]. Additionally, TOMM40, which encodes a

channel-forming subunit of the translocase of the

mitochondrial outer membrane, is an essential media-

tor of mitochondrial functions [44], and highly

expressed TOMM40 inhibits the generation of ROS

[45,46], causing an antagonistic interaction.

Another major contribution of our work is the pro-

posed three-step, multicohort analytic strategy with

rigorous validation using independent cohorts and

trans-omics data. The alterations of DNA methylation

regulate gene expression, thereby affecting the develop-

ment, progress, and prognosis of diseases [47]. We

integrated trans-omics data for selecting G × G that

were significant at both the epigenetic and transcrip-

tional levels. Additionally, we developed an integrative

score based on these interactions, which enabled us to

identify patients with high mortality risk. Furthermore,

the score was found associated with proportions of

immune cell types, including mast cells, monocytes, B

cells, T cells CD4, dendritic cells, NK cells and macro-

phages. The gene network analysis also indicated

potential functional connections between the identified

G × G interactions and the known immune checkpoint

genes. The results, which may hint at the drug targets,

have values in clinical immunotherapy and provide

hypotheses for clinical trials.

Our study has several strengths. First, we addressed

the computational burden and provided a computa-

tionally feasible landscape of analysing epigenetic

interactions on NSCLC survival. Second, we used a

strict strategy to control the false positives, which

required G × G interactions to have a Bonferroni-

adjusted P value ≤ 0.05 in the discovery phase, retain

significance (P ≤ 0.05) in the validation phase, and

have the same effect directions in the two phases.

Third, for reproducibility, we explored trans-omics val-

idation and regulatory relationships, which enhanced

robustness. Finally, for clinical usage, we constructed

an integrative score which can identify patients with

high mortality risk, and the in silico analyses indicated

the potential roles of the score in the immune

response.

We acknowledge limitations. First, the majority of

study subjects were Caucasian, which may limit the

generalization of our results to the other ethnicity pop-

ulations. Second, we only focused on cis-regulatory

genes within 1 Mb windows of CpGs in the trans-

omics validation stage, because cis-regulations were

considered to be causally and biologically inter-

pretable [48,49]. However, trans-regulatory genes may
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also play important roles in the causal paths. Third,

we used histology-stratified Cox proportional hazards

models to identify G × G interactions, which guaran-

teed the statistical power and also accounted for the

heterogeneity between LUAD and LUSC. However,

such pooled analysis may lose some histology-specific

signals. Finally, though our results were validated

using various trans-omics data, more biological experi-

ments are warranted.

5. Conclusion

We identified two G × G interactions, cg14391855 ×
cg23937960 (mapped to RELA × HLA-G) as well as

cg08872738 × cg27077312 (mapped to TUBA1B ×
TOMM40), which were significantly and robustly asso-

ciated with NSCLC survival at both the epigenetic and

transcriptional levels. Our findings have implications

of precision treatment by providing therapeutic targets

for early-stage NSCLC patients.
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