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Abstract 10 

Data-driven models using machine learning have been widely used in remote sensing 11 

applications such as the retrieval of biophysical variables and land cover classification. However, 12 

these models behave as a ‘black box’, meaning that the relationships between the input and 13 

predicted variables are hard to interpret. Recent regression models that downscale sun-induced 14 

fluorescence (SIF) with MODIS and weather variables are an example. The impact of weather 15 

variables on the predicted SIF in these models is unknown. The explanation of such weather-SIF 16 

relationships would aid in the understanding of climate-related constraints on photosynthesis 17 

phenology since SIF is a proxy of gross primary productivity. Here, we used SHapley Additive 18 

exPlanations (SHAP) –a novel technique based on game theory– for explaining the contribution 19 

of input variables to the individual predictions in a machine learning model. We explored the 20 

capabilities of this technique with a weather-SIF model. The regression model predicted ESA-21 

TROPOSIF measurements from ERA5-Land air temperature, shortwave radiation, and vapor-22 

pressure-deficit (VPD) data. The SHAP values of the model were estimated at the start and end 23 
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of the growing season for the entire globe. These values depicted the global constraints of the 24 

three climate variables on the photosynthetically active season and confirmed existing 25 

knowledge on the limiting factors of terrestrial photosynthesis with unprecedented spatial detail. 26 

Radiation was the limiting factor in tropical rainforest and VPD constrained the start and end of 27 

the growing season in tropical dryland ecosystems. In extra-tropical regions, temperature was 28 

the main limiting factor during the start of the growing season, but both temperature and 29 

radiation constrained photosynthesis at the end of the growing season. This technique may help 30 

future remote sensing studies that require the use of non-interpretable machine-learning 31 

regression models and explain how input variables contribute to the model prediction in a 32 

spatiotemporally explicit manner.  33 

Keywords: SHapley Additive exPlanations, explainable machine learning, local interpretation, 34 

sun-induced fluorescence, vegetation phenology, climate constraints, photosynthesis dynamics. 35 

1. INTRODUCTION 36 

The field of vegetation phenology has gained attention recently, with the number of publications 37 

on phenology quintupling in the last two decades (Fu et al., 2020). The transition between the 38 

dormant and growing season and the climate factors determining it have been explained globally 39 

by models employing climate thresholds. Jolly et al. (2005) proposed the growing season index 40 

(GSI), which is calculated with cut-off functions on three weather variables: temperature, vapor-41 

pressure-deficit (VPD), and day length. These cut-off functions represent thresholds that were 42 

subjectively defined by expert knowledge and are constant for the entire globe. The cut-off  43 
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functions converts the climate factors into a GSI value; low values of tempereature, VPD, and day 44 

length lead to low values of GSI. The GSI shows seasonal changes throughout the year and aims 45 

to replicate a spectral index (e.g., normalized difference vegetation index (NDVI) and enhanced 46 

vegetation index (EVI)) or a biophysical variable (e.g., leaf area index (LAI)).  47 

Other studies used regression models to fit climate reanalysis datasets to vegetation indices or 48 

biophysical variables. Both standard machine learning regression –such as random forests (Li and 49 

Xiao, 2019)–, and deep learning (Ahmad et al., 2020) have been used given their ability to fit non-50 

linear and non-parametric relationships between dependent and independent variables. This 51 

methodology predicts vegetation indices or biophysical variables, and the climate thresholds are, 52 

thus, defined empirically and more accurately than the cut-off functions (Jolly et al., 2005). 53 

However, an important flaw in machine learning models is the lack of interpretability. Contrarily 54 

to Jolly et al. (2005), the impact of the weather variables on the predicted outcome remains 55 

challenging in machine learning models. Recent regression models using vegetation indices and 56 

weather variables to downscale sun-induced fluorescence (weather-SIF) are an example. For 57 

instance, the GOSIF product (Li and Xiao, 2019) uses a machine learning regression model to fit 58 

SIF with weather variables and EVI. Another product is the SIFnet (Gensheimer et al., 2022), which 59 

downscales SIF measurements from TROPOspheric Monitoring Instrument (TROPOMI) using 60 

auxiliary data. 61 

Feature importance in machine learning is a technique used to determine the importance of 62 

input variables in predicting the target variable of a model. One common method is to use tree-63 

based models, such as Random Forest or Gradient Boosting, which provide a feature importance 64 
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score (i.e. Gini index) based on how much each feature contributes to reducing the impurity of 65 

the tree nodes (Breiman, 2001). These techniques provide a score that reflects the overall (or 66 

global) importance of each input variable in the model. For example, in a weather-SIF model, the 67 

Gini index would rank the weather variables by their overall importance in the model. This overall 68 

importance, however, would neglect how relevant each weather variable is in a specific 69 

observation (i.e. the importance of the weather variables in a particular pixel and moment of the 70 

time series). In this context, local feature importance provides a more comprehensive and 71 

interpretable way of measuring feature importance. By calculating local feature importance, one 72 

can gain a better understanding of which weather variables are most important for those single 73 

predictions. 74 

A state-of-the-art local interpretation method for model explainability is SHapley Additive 75 

exPlanations (SHAP) (Lundberg and Lee, 2017). SHAP has been used for understanding the risk of 76 

hypoxemia during anaesthesia (Lundberg et al., 2018), interpret the features that make an online 77 

product review helpful (Meng et al., 2020), understanding the pollutant removal mechanisms in 78 

wastewater treatment plants (Wang et al., 2022), or analysing large-scale biobank data for 79 

potential gene–gene and gene–environment interactions (Johnsen et al., 2021). This technique 80 

is, however, novel in remote sensing studies and it only started recently to be employed to 81 

improve understanding of spatial and temporal relationships of geospatial data modeling (Li et 82 

al., 2022; Zhan et al., 2022). In a weather-SIF model, the use of a technique such as SHAP for local 83 

feature importance could potentially provide insights into the weather factors that are 84 

constraining photosynthetic phenology. By explaining the contribution of input variables to the 85 

individual predictions in a machine learning model, SHAP has the potential to elucidate how the 86 
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weather variables specifically influence the individual prediction of SIF in a spatiotemporally 87 

explicit manner. 88 

The aim of this study was to demonstrate the capability of SHAP to explain the correlation 89 

between geospatial gridded data and model predictions in a machine learning model. We used 90 

the case of weather-SIF models (Li and Xiao, 2019) to determine the global constraints of weather 91 

variables on vegetation activity. To achieve the objective of the study, we sampled SIF 92 

measurements and temperature, shortwave radiation, and VPD in specific sites at the global 93 

scale. Then, we trained a machine learning model that predicted SIF from weather variables and 94 

applied the model for the entire globe. We estimated two phenological metrics, the start of 95 

season (SoS) and end of season (EoS), from the predicted SIF time series. The SHAP technique 96 

was used to describe the effect of weather variables on SIF at the timing of the SoS and the EoS 97 

and, thus, determine the climate constraints on vegetation phenology at the global scale. Finally, 98 

we discussed and validated the model interpretation with SHAP compared with the current 99 

understanding on photosynthesis dynamics. 100 

2. DATA 101 

2.1. TROPOSIF global sun-induced fluorescence dataset 102 

We used the TROPOSIF L2B product (Guanter et al., 2021), which provides non-gridded SIF 103 

measurements derived from observations in the 743–758 nm and 665–785 nm part of the 104 

spectrum from the TROPOspheric Monitoring Instrument (TROPOMI) sensor. TROPOSIF provides 105 

SIF measurements for the entire land area of the globe at a spatial resolution of 3.5 km × 5.5 km 106 

at nadir. The observations were made by the TROPOMI sensor onboard Sentinel-5. The 107 
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methodology that generates SIF uses a retrieval method that fits the top-of-atmosphere 108 

radiances with SIF training sets (Guanter et al., 2015). We used the data for all the product time 109 

coverage, which spans from May 2018 to April 2021. We used the SIF_745_corr, which represents 110 

SIF in the 743–758 nm window. SIF observations that presented a cloud cover greater than 50% 111 

were rejected. The TROPOSIF L2B product already masks observations with cloud cover greater 112 

than 80%, a view zenith angle greater than 60°, and a solar zenith angle greater than 70° since 113 

the SIF retrievals at these conditions are affected by directional effects (including shadow 114 

influence) and are not reliable (Joiner et al., 2020). 115 

2.2. ERA5-Land hourly data 116 

We used gridded climatic data from the European Centre for Medium-Range Weather Forecasts 117 

(ECMWF) Re-Analysis data version 5 (ERA5-Land) hourly dataset (Muñoz-Sabater et al., 2021). 118 

The ERA5-Land is a reanalysis dataset that covers a period from 1950 to present. The data were 119 

produced by a combination of modelled data with observations collected across the globe and 120 

improves upon the ERA-5 since it has higher spatial resolution (about 9 km) at the same temporal 121 

resolution (1 hour). We used the near-surface air temperature (2m temperature) and the surface 122 

solar radiation downwards –the solar shortwave radiation that reaches the surface of the Earth. 123 

We also estimated VPD –atmospheric demand for evapotranspiration– using the ERA5 near-124 

surface air temperature and dew point temperature (2m dew point temperature) as described 125 

by Barkhordarian et al. (2019).  126 

We chose air temperature, radiation, and VPD for two reasons. First, air temperature, shortwave 127 

radiation, and vapor-pressure deficit are important environmental factors that affect vegetation 128 



 

7 
 

photosynthesis. Air temperature influences the rate of photosynthesis by affecting enzyme 129 

activity, the solubility of carbon dioxide in water, and the diffusion rate of gasses through plant 130 

tissues. Shortwave radiation, particularly photosynthetically active radiation (PAR), provides the 131 

energy required for photosynthesis. Vapor-pressure deficit affects the rate of transpiration, and 132 

therefore, the availability of water for photosynthesis. Second, we wanted to replicate the 133 

weather SIF-model used in a prior study (Li and Xiao, 2019), which also used air temperature, 134 

radiation, and VPD as input variables, and explain spatially and temporally the importance of 135 

these variables in the SIF predictions. These three variables were also used in the growing season 136 

index (Jolly et al., 2005). The growing season index is the result of a parametric model that also 137 

assessed the significance of air temperature, photoperiod as a proxy for radiation, and VPD as 138 

factors that explain global leaf phenology.  139 

3. METHODS 140 

3.1. Extraction of training pairs (TROPOSIF - ERA5) in BELMANIP2 sites 141 

We collected pairs of TROPOSIF measurements and ERA5 observations as training data. These 142 

data were used to train a machine learning model that predicted SIF from temperature, 143 

shortwave radiation, and VPD. We extracted the TROPOSIF and ERA5 data from the BEnchmark 144 

Land Multisite ANalysis and Intercomparison of Products version 2 (BELMANIP2) sites for the 145 

period going from May 2018 to April 2021. The BELMANIP2 consists of a collection of 445 sites 146 

of homogeneous areas that include the most representative land covers of the world (Weiss et 147 

al., 2014). BELMANIP2 sites have been used to validate global satellite datasets, such as 148 

reflectance products (Franch et al., 2017), biophysical variables (Verger et al., 2014), or 149 
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phenology metrics (Kandasamy and Fernandes, 2015). We excluded bare soil, cropland, and 150 

other non-natural or non-vegetated land covers, which resulted in 233 sites (see location map of 151 

the BELMANIP2 points in Fig. S1) including the following land covers: evergreen needleleaf 152 

forests (ENF), deciduous needleleaf forests (DNF), deciduous broadleaf forests (DBF), mixed 153 

forests (MX), closed shrublands (CSH), open shrublands (OSH), woody savannah (WSA), savannah 154 

(SAV), and grasslands (GRA). The land cover types were determined for each BELMANIP2 site 155 

with the ‘LC_Type1’ layer of the MCD12Q1v6 product derived from MODIS. The ERA5 data were 156 

extracted at hourly temporal resolution, and then aggregated daily. The TROPOSIF dataset 157 

provides daily non-gridded SIF measurements. We, thus, extracted the daily SIF observations that 158 

were located the closest to a BELMANIP2 site. SIF observations more than 5 km away from a 159 

BELMANIP2 site were rejected. A total of 140,969 pairs of data were generated from the 233 160 

sites for the May 2018 - April 2021 period. 161 

3.2. Weather – SIF model 162 

We used Gradient Boosting regression (Friedman, 2001) to fit ERA5 data (air temperature, 163 

shortwave radiation, and VPD) to TROPOSIF observations. Gradient Boosting is an ensemble 164 

model that uses decision trees as weak learners, where decision trees are trained sequentially by 165 

correcting the errors of a previously trained decision tree. The performance of the decision trees 166 

is improved using a loss function. A loss function is a function that measures the difference 167 

between the predicted output and the actual output in a machine learning algorithm. The loss 168 

function is used to optimize the model by updating its parameters in a way that minimizes the 169 

loss. We used Gradient Boosting because it is a common machine learning model used by the 170 
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research community, it can easily capture non-linear and non-parametric relationships, and has 171 

very fast training and deployment times (Bentéjac et al., 2021). We trained the Gradient Boosting 172 

model with 75% of the data and kept the remaining 25% for validation. The accuracy metrics that 173 

we reported are the mean error (ME: difference between predicted minus observed), root-mean-174 

squared error (RMSE), and the coefficient of determination (R2).  175 

We performed hyperparameter tuning to find the optimal parameters of the Gradient Boosting 176 

regression model. Hyperparameters are parameters that are set before the training and control 177 

the learning process of the machine learning model (Yang and Shami, 2020). The hyperparameter 178 

tuning consisted of a random search for different combinations of hyperparameter values. The 179 

range of hyperparameters is depicted in Table S1. For each combination of parameters, the RMSE 180 

of the model was evaluated with a 4-fold partition (75% training and 25% validation). The 181 

accuracy of the Gradient Boosting model was tested using 100 different hyperparameter 182 

combinations, and the model with the lowest root-mean-squared error (RMSE) was selected. 183 

3.3. Local interpretation with SHAP 184 

The local interpretation of the Gradient Boosting was done with SHapley Additive exPlanations 185 

(SHAP) (Lundberg and Lee, 2017). SHAP is a state-of-the-art technique for machine learning 186 

explainability; it aims to explain the correlations between input and output variables in any 187 

machine learning model, in both regression and classification algorithms. SHAP is based on the 188 

Shapley values (Shapley, 1953) of game theory and is categorized as a local interpretation 189 

technique  –it explains the contribution of the input variables to individual model predictions. 190 
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SHAP values represent the marginal effect of the input variables on the prior expectation of the 191 

model output. A negative SHAP value for a given input variable implies that the input variable 192 

has a decreasing effect on the model output, and vice versa; a positive SHAP value means that 193 

the input variable increases the model output. The greater the absolute value of SHAP, the 194 

greater the impact of the input variable on the predicted value. The model prediction is the prior 195 

expectation of the model plus the summatory of the SHAP values of all input variables. The 196 

mathematical formulation for SHAP is described in (Lundberg and Lee, 2017). In this study, we 197 

used the SHAP package in Python and used the approximation method for tree-based machine 198 

learning models (Lundberg et al., 2020). In the weather-SIF model, SHAP can potentially evaluate 199 

the importance of the weather observations on individual SIF predictions for any given date and 200 

location. 201 

3.4. Land Surface Phenology metric estimation 202 

Phenological metrics were extracted from the predicted SIF time series. To achieve this, we first 203 

predicted SIF at the global scale using the Gradient Boosting model. Then, we estimated two 204 

phenological metrics, the start of season (SoS) and end of season (EoS), from the predicted SIF 205 

time series. The SoS and EoS were extracted using the Maximum Separation (MS) method 206 

(Descals et al., 2020b). MS is a threshold-based method that can effectively estimate 207 

phenological metrics without the need of time series pre-processing prior to the phenology 208 

extraction. These types of time series pre-processing include smoothing and interpolation 209 

techniques that are applied to improve the robustness of the phenology estimates. However, 210 

these pre-processing steps may produce a time series that differs from the original, resulting in 211 
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biases in the phenology estimates. The Maximum Separation method can be applied directly to 212 

the original time series. 213 

As any threshold-based method, the MS required a threshold value to calculate the SoS and EoS 214 

from the SIF time series. For each pixel, we defined a dynamic threshold, which represented 20% 215 

of the amplitude plus the minimum SIF value in the time series. The MS runs a moving window 216 

that calculates the proportion of observations that are above the threshold before and after the 217 

central day of the moving window. We determined a moving window size of 120 days (including 218 

the days before and after the central day). The moving window is applied for every day of the 219 

time series. SoS and EoS are defined as the days of the year when the difference in proportions 220 

(before minus after) reaches the minimum and maximum during the year. The implementation 221 

of the MS method is available in Python and in Google Earth Engine (Descals et al., 2020b).  222 

4. RESULTS 223 

The combination of hyperparameters that lead to the lowest RMSE in the validation dataset is 224 

shown in Table S1. For these hyperparameters, RMSE was 0.21 mW m-2 sr-1 nm-1, ME was -0.00 225 

mW m-2 sr-1 nm-1, and R2 was 0.38. The accuracy metrics differed slightly depending on the land 226 

cover type (Fig. S2). The lowest accuracy was found in DBF (ME = 0.14 mW m-2 sr-1 nm-1, RMSE = 227 

0.35 mW m-2 sr-1 nm-1), while the accuracy of the other land covers was close to the overall 228 

accuracy, with a minimal ME (ranging from -0.04 mW m-2 sr-1 nm-1 in OSH to 0.06 mW m-2 sr-1 nm-229 

1 in MX) and similar RMSE (ranging from 0.15 mW m-2 sr-1 nm-1 in CSH to 0.23 mW m-2 sr-1 nm-1 in 230 

MX). The model saturated the predicted values to 0.5 mW m-2 sr-1 nm-1 in observations with high 231 
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SIF. Some observations above that value were underestimated, particularly in DBF and MX, but 232 

also in GRA and SAV. Overall, the model fitted the data without substantial biases for SIF 233 

observations below 0.5 mW m-2 sr-1 nm-1, which were the bulk of SIF observations. The cross-site 234 

validation did not differ substantially from the overall statistics except for the mean error. RMSE 235 

was 0.21 mW m-2 sr-1 nm-1, ME was -7.22 mW m-2 sr-1 nm-1, and R2 was 0.37. Cross-site validation 236 

consisted of a data partition in which the sites were partitioned in 4 folds. The accuracy metrics 237 

were evaluated using 3 folds (75% of sites) for training and 1 fold (25% of sites) for testing. Time 238 

series for two BELMANIP2 sites exemplify the predicted SIF compared to the TROPOSIF 239 

measurements (Fig. 1), and show that the model replicates the seasonality of the observed SIF, 240 

as also shown in the comparison between phenology metrics estimated with observed and 241 

predicted SIF (Fig. S3 and Fig. S4).  242 

 243 
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Figure 1. Time series of observed and predicted sun-induced fluorescence (SIF), air temperature, 244 

shortwave radiation, and vapor-pressure-deficit (VPD) in one grassland (GRA) and one mixed forest (MX) 245 

sites of the BELMANIP2 network. Vertical green lines depict the start of the growing season and blue lines 246 

represent the end of the growing season derived from predicted SIF time series. The observed SIF was 247 

extracted from the TROPOSIF dataset, while the predicted SIF was estimated with three climate variables 248 

using a machine learning regression model. Colours in the air temperature, shortwave radiation, and VPD 249 

time series depict the SHAP values. SHAP values indicate the impact of the input variables on the model 250 

mean SIF. Negative SHAP values mean that the input variable decreases the predicted SIF.  251 

The time series of SHAP values represented the impact of the input climate variables on the 252 

predicted SIF. For instance, both low temperature and low shortwave radiation during winter 253 

were the most limiting factors in the BELMANIP2 site 393 (Fig. 1), located mid-latitude in a 254 

temperate climate. In BELMANIP2 site 189 –a site in a dryland ecosystem– the SHAP values 255 

indicate that seasonal changes in VPD determined the SIF seasonality, with the growing season 256 

occurring when VPD values decrease to their annual minimum. These SHAP time series show the 257 

seasonal climate constraints throughout the year, and the constraints can be extracted at the 258 

start and end of the growing season. For example, in the site covering a dryland ecosystem (site 259 

189), the SHAP values at the end of the growing season 2019 were 0.18 mW m-2 sr-1 nm-1 for air 260 

temperature, 0.03 mW m-2 sr-1 nm-1 for shortwave radiation and -0.26 mW m-2 sr-1 nm-1 for VPD. 261 

The low SHAP value for VPD means that this variable had a negative contribution on the prior 262 

expectation of the SIF model (0.13 mW m-2 sr-1 nm-1), indicating that VPD was constraining 263 

vegetation activity at that moment of the year. The predicted SIF at the end of season was 0.08 264 
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mW m-2 sr-1 nm-1, which is the result of adding the SHAP values (0.18 + 0.03 – 0.26 mW m-2 sr-1 265 

nm-1) to the prior expectation of the model (0.13 mW m-2 sr-1 nm-1) (Fig. S5). 266 

SHAP values for the BELMANIP2 sites showed that high temperature and shortwave radiation 267 

had an overall positive impact on modelled SIF, while higher VPD had a negative impact (Fig. 2). 268 

VPD was the variable with the highest overall importance followed by temperature and 269 

shortwave radiation. The most extreme VPD values had an effect of approximately -0.3 and 0.3 270 

mW m-2 sr-1 nm-1, while the lowest and highest shortwave radiation had a lower effect, 271 

approximately -0.1 and 0.15 mW m-2 sr-1 nm-1.  272 

 273 

Figure 2. SHAP values of three input variables (air temperature (TA), shortwave radiation (SW), and vapor-274 

pressure-deficit (VPD)) in a machine learning model that predicts sun-induced fluorescence (SIF). The 275 

SHAP values were estimated for 35,242 site-year observations of the BELMANIP2 network (25% of the 276 

total observations were kept for model validation). SHAP values indicate the contribution of the input 277 

climate variables on the mean SIF. Negative SHAP values mean that the input variable decreases the 278 
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predicted SIF and vice versa. The higher the absolute SHAP value, the higher the impact on predicted SIF. 279 

Color bars indicate the range of values (minimum to maximum) for each climate variable. 280 

The impact of temperature, shortwave radiation, and VPD on predicted SIF differed spatially 281 

during the SoS and EoS. The maps of SHAP values at the SoS and EoS show that it was mostly in 282 

extratropical areas that temperature constrained SIF (Fig. 3 and Fig. S6). However, VPD was the 283 

highest constraint in tropical dryland ecosystems, while radiation was the limiting factor in 284 

tropical rainforests. The impact of temperature, shortwave radiation and VPD differed in some 285 

regions depending on whether it was the start or the end of the season. The most prominent 286 

difference was observed in extratropical regions. Temperature was the only factor that 287 

constrained SIF during the SoS in the Northern Hemisphere but both temperature and 288 

secondarily radiation constrained SIF in extratropical regions during the EoS. 289 
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 290 

Figure 3. Maps of the climate constraints on photosynthesis at the start and end of the growing season. 291 

The maps represent an RGB composite of SHAP values. SHAP values were estimated from a machine 292 

learning model that fitted sun-induced fluorescence (SIF) with three climate variables: air temperature, 293 

shortwave radiation, and vapor-pressure-deficit. The SoS and EoS were estimated from daily averaged 294 

predicted SIF time series for the 2012-2021 period. The three climate variables were extracted from the 295 

ERA5-Land dataset and daily averaged for the 2012-2021 period. Low SHAP values indicate that the input 296 

variable decreases the average modelled SIF, suggesting the climate variable constrains photosynthesis. 297 



 

17 
 

The maps depict the inverse of the SHAP values for illustration purposes (higher values indicate a greater 298 

SIF constraint). 299 

5. DISCUSSION 300 

The results demonstrated the capabilities of SHAP in a case study that made use of geospatial 301 

climate data as input variables of a machine learning model. A weather-SIF model was trained on 302 

BELMANIP2 sites using ERA5-Land and TROPOSIF measurements. SHAP values showed the spatial 303 

and temporal impacts of the three climate variables –air temperature, shortwave radiation, and 304 

VPD–  on SIF, indicating climate constraints on the photosynthesis dynamics.  305 

The model showed good performance for replicating the vegetation seasonality even though it 306 

only considered weather variables as input. The model had a minimal bias, but an 307 

underestimation of high SIF values (SIF >0.5 mW m-2 sr-1 nm-1) was apparent in DBF (Fig. S2). 308 

Despite this, the underestimation of high SIF values did not affect the phenology estimation, 309 

which was the purpose of this work. The underestimated SIF would be potentially corrected if a 310 

proxy for the fraction of Absorbed Photosynthetically Active Radiation (fAPAR) was included in 311 

the model. Proxies for fAPAR are the NDVI and EVI. Should a spectral index be used, the model 312 

would have similar input variables as the GOSIF product (Li and Xiao, 2019), which includes a 313 

spectral index (EVI) and weather variables (air temperature, VPD, and photosynthetically active 314 

radiation (PAR)). If we included a spectral index, however, the model would be less explainable 315 

because part of the predicted SIF would be attributed to changes in NDVI, which would conceal 316 

the marginal contributions of weather variables on the predicted SIF. Besides that, our model 317 
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explanation aimed to understand the impact on SIF purely attributed to climate variables and, 318 

thus, providing accurate SIF predictions were less important than reproducing the SIF seasonality.  319 

Another potential limitation of our experiment is that we only used concurrent SIF and weather 320 

variables, neglecting the forcing requirements involved during the pre-season. However, the 321 

forcing requirements are minimal in non-deciduous vegetation types (Descals et al., 2022, 322 

2020a), and have negligible effect on other ecosystems of the temperate and cold biomes of the 323 

Northern Hemisphere. Non-deciduous vegetation in the temperate and cold biomes of the 324 

Northern Hemisphere includes temperate and boreal evergreen forests, and tundra shrublands 325 

and grasslands.  326 

We used air temperature, shortwave radiation, and vapor-pressure deficit because these 327 

variables are key environmental factors that affect vegetation photosynthesis. However, 328 

vegetation photosynthesis is a complex process influenced by additional factors, such as soil 329 

water availability, carbon dioxide concentration, or nutrient availability. Thus, although air 330 

temperature, shortwave radiation, and vapor-pressure deficit are surrogates for predicting SIF, 331 

they do not capture the full complexity of photosynthesis. Moreover, the primary objective of 332 

the study was to demonstrate the potential of local interpretation models in remote sensing, 333 

utilizing a previously reported model that predicts SIF based on weather data at the global scale 334 

(Li and Xiao, 2019).  335 

SHAP values confirmed previous finding on the spatial and temporal climate constraints on the 336 

vegetation activity. SHAP maps showed that VPD, which reflects atmospheric dryness, was the 337 

main factor limiting SIF in tropical dryland ecosystems at the start and end of the growing season. 338 
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Tropical dry land ecosystems include tropical desert, tropical monsoon, and tropical savannah 339 

climates. The growing season in these areas is sensitive to precipitation (Zhang et al., 2022), and 340 

high evaporative demand induces vegetation –mostly grasslands and sparse woody vegetation– 341 

into dormancy in the form of deep roots (Zhou et al., 2020). In tropical rainforests, however, both 342 

temperature and water are adequate for plants, and radiation was the only factor found to 343 

constrain SIF. This differs from the maps produced by Jolly et al. (2005), which depicted tropical 344 

rainforests (Amazon and Central Africa) without any climate limitations, potentially because a 345 

uniform threshold was used all over the Earth. However, previous studies do suggest that 346 

radiation is a limiting factor in this biome (Aguilos et al., 2018; Weber et al., 2009), which supports 347 

our finding. In extratropical areas, temperature was the main constraint at the start and end of 348 

the growing season, which is supported by extensive literature (Fu et al., 2020; Peñuelas et al., 349 

2009; Piao et al., 2019). Moreover, although cold temperatures drive vegetation into dormancy, 350 

we also found a divergent constraint in terms of radiation. Overall, radiation was not limiting SIF 351 

during the SoS, but it did during the EoS. This is consistent with recent findings with point out at 352 

an increasing constraint of radiation on photosynthesis during the EoS (Descals et al., 2022; Zhang 353 

et al., 2020), which show that due to radiation constraints, rising temperatures will not increase 354 

autumn greening. Thus, the results obtained with SHAP are overall in line with the current 355 

understanding of global photosynthesis dynamics. However, it is worth mentioning that the 356 

resolution of the weather dataset (ERA5-Land) limits the detail and interpretability of the results 357 

in localized regions with a high diversity of climates. To depict regions with such diversity of 358 

climates a finer resolution dataset and a more nuanced selection of input variables would be 359 

required. 360 
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SHAP proved to be a useful technique for explaining the correlations between SIF and climate 361 

factors that were captured by the machine learning model. The explainability of the ML models 362 

with SHAP, on the other hand, must be considered with caution. SHAP values show researchers 363 

which correlations machine learning has found, but these correlations do not necessarily imply a 364 

causality between input and output variables (Heskes et al., 2020). Expert knowledge is required 365 

to determine whether the correlations are coherent with the reality of the problem, and further 366 

research is required to determine whether causality exists. In our case study, we validated our 367 

findings with literature that supported the results revealed by SHAP maps. The capability of SHAP 368 

to explain spatially and temporally the predictions from geospatial gridded time series might 369 

assist future remote sensing applications. 370 

6. Author contributions 371 

AD and JP conceived the research idea. AD and JP designed the study. AD performed the analyses 372 

and wrote the first version of the manuscript. AD, AV, GY, IF, and JP contributed to the 373 

interpretation of the results and to revisions of the manuscript. 374 

7. Funding sources 375 

This work represents a contribution to CSIC Thematic Interdisciplinary Platform TELEDETECT. This 376 

research was supported by the Spanish Government grant PID2019-110521GB-I00, the 377 

Fundación Ramón Areces grant ELEMENTAL-CLIMATE, and the Catalan Government grant 378 

SGR2017-1005. 379 



 

21 
 

8. Data availability statement 380 

The data that support the findings of the study are openly available from TROPOSIF L2B dataset 381 

[https://doi.org/10.5270/esa-s5p_innovation-sif-20180501_20210320-v2.1-202104], ERA5-Land 382 

Hourly - ECMWF Climate Reanalysis [https://doi.org/10.24381/cds.e2161bac], and MODIS Land 383 

Cover Type MCD12Q1 at [https://doi.org/10.24381/cds.e2161bac]. 384 

9. Code availability statement 385 

Code for training the SIF-weather model and explaining the model with SHAP is available at 386 

https://github.com/adriadescals/SHAP_PHENO_SIF  387 

10. REFERENCES 388 

Aguilos, M., Hérault, B., Burban, B., Wagner, F., Bonal, D., 2018. What drives long-term variations in 389 
carbon flux and balance in a tropical rainforest in French Guiana? Agricultural and Forest 390 
Meteorology 253, 114–123. 391 

Ahmad, R., Yang, B., Ettlin, G., Berger, A., Rodríguez-Bocca, P., 2020. A machine-learning based 392 
ConvLSTM architecture for NDVI forecasting. International Transactions in Operational Research. 393 

Bentéjac, C., Csörg\Ho, A., Martínez-Muñoz, G., 2021. A comparative analysis of gradient boosting 394 
algorithms. Artificial Intelligence Review 54, 1937–1967. 395 

Breiman, L., 2001. Random forests. Machine learning 45, 5–32. 396 
Descals, A., Verger, A., Filella, I., Baldocchi, D., Janssens, I.A., Fu, Y.H., Piao, S., Peaucelle, M., Ciais, 397 

P., Peñuelas, J., 2020a. Soil thawing regulates the spring growth onset in tundra and alpine 398 
biomes. Science of the Total Environment 742, 140637. 399 

Descals, A., Verger, A., Yin, G., Filella, I., Fu, Y.H., Piao, S., Janssens, I.A., Peñuelas, J., 2022. 400 
Radiation-constrained boundaries cause nonuniform responses of the carbon uptake phenology 401 
to climatic warming in the Northern Hemisphere. Global Change Biology. 402 

Descals, A., Verger, A., Yin, G., Peñuelas, J., 2020b. A Threshold Method for Robust and Fast Estimation 403 
of Land-Surface Phenology Using Google Earth Engine. IEEE Journal of Selected Topics in 404 
Applied Earth Observations and Remote Sensing 14, 601–606. 405 

Franch, B., Vermote, E.F., Roger, J.-C., Murphy, E., Becker-Reshef, I., Justice, C., Claverie, M., Nagol, 406 
J., Csiszar, I., Meyer, D., others, 2017. A 30+ year AVHRR land surface reflectance climate data 407 
record and its application to wheat yield monitoring. Remote Sensing 9, 296. 408 

Friedman, J.H., 2001. Greedy function approximation: a gradient boosting machine. Annals of statistics 409 
1189–1232. 410 

Fu, Y., Li, X., Zhou, X., Geng, X., Guo, Y., Zhang, Y., 2020. Progress in plant phenology modeling under 411 
global climate change. Science China Earth Sciences 63, 1237–1247. 412 

https://github.com/adriadescals/SHAP_PHENO_SIF


 

22 
 

Gensheimer, J., Turner, A.J., Köhler, P., Frankenberg, C., Chen, J., 2022. A convolutional neural network 413 
for spatial downscaling of satellite-based solar-induced chlorophyll fluorescence (SIFnet). 414 
Biogeosciences 19, 1777–1793. 415 

Guanter, L., Aben, I., Tol, P., Krijger, J., Hollstein, A., Köhler, P., Damm, A., Joiner, J., Frankenberg, C., 416 
Landgraf, J., 2015. Potential of the TROPOspheric Monitoring Instrument (TROPOMI) onboard 417 
the Sentinel-5 Precursor for the monitoring of terrestrial chlorophyll fluorescence. Atmospheric 418 
Measurement Techniques 8, 1337–1352. 419 

Guanter, L., Bacour, C., Schneider, A., Aben, I., van Kempen, T.A., Maignan, F., Retscher, C., Köhler, P., 420 
Frankenberg, C., Joiner, J., others, 2021. The TROPOSIF global sun-induced fluorescence 421 
dataset from the Sentinel-5P TROPOMI mission. Earth System Science Data 13, 5423–5440. 422 

Heskes, T., Sijben, E., Bucur, I.G., Claassen, T., 2020. Causal shapley values: Exploiting causal 423 
knowledge to explain individual predictions of complex models. Advances in neural information 424 
processing systems 33, 4778–4789. 425 

Johnsen, P.V., Riemer-Sørensen, S., DeWan, A.T., Cahill, M.E., Langaas, M., 2021. A new method for 426 
exploring gene–gene and gene–environment interactions in GWAS with tree ensemble methods 427 
and SHAP values. BMC bioinformatics 22, 1–29. 428 

Joiner, J., Yoshida, Y., Köehler, P., Campbell, P., Frankenberg, C., van der Tol, C., Yang, P., Parazoo, 429 
N., Guanter, L., Sun, Y., 2020. Systematic orbital geometry-dependent variations in satellite solar-430 
induced fluorescence (SIF) retrievals. Remote sensing 12, 2346. 431 

Jolly, W.M., Nemani, R., Running, S.W., 2005. A generalized, bioclimatic index to predict foliar phenology 432 
in response to climate. Global Change Biology 11, 619–632. 433 

Kandasamy, S., Fernandes, R., 2015. An approach for evaluating the impact of gaps and measurement 434 
errors on satellite land surface phenology algorithms: Application to 20 year NOAA AVHRR data 435 
over Canada. Remote Sensing of Environment 164, 114–129. 436 

Li, W., Migliavacca, M., Forkel, M., Denissen, J., Reichstein, M., Yang, H., Duveiller, G., Weber, U., Orth, 437 
R., 2022. Widespread increasing vegetation sensitivity to soil moisture. Nature Communications 438 
13, 1–9. 439 

Li, X., Xiao, J., 2019. A global, 0.05-degree product of solar-induced chlorophyll fluorescence derived 440 
from OCO-2, MODIS, and reanalysis data. Remote Sensing 11, 517. 441 

Lundberg, S.M., Erion, G., Chen, H., DeGrave, A., Prutkin, J.M., Nair, B., Katz, R., Himmelfarb, J., 442 
Bansal, N., Lee, S.-I., 2020. From local explanations to global understanding with explainable AI 443 
for trees. Nature machine intelligence 2, 56–67. 444 

Lundberg, S.M., Lee, S.-I., 2017. A unified approach to interpreting model predictions. Advances in neural 445 
information processing systems 30. 446 

Lundberg, S.M., Nair, B., Vavilala, M.S., Horibe, M., Eisses, M.J., Adams, T., Liston, D.E., Low, D.K.-W., 447 
Newman, S.-F., Kim, J., others, 2018. Explainable machine-learning predictions for the 448 
prevention of hypoxaemia during surgery. Nature biomedical engineering 2, 749–760. 449 

Meng, Y., Yang, N., Qian, Z., Zhang, G., 2020. What makes an online review more helpful: an 450 
interpretation framework using XGBoost and SHAP values. Journal of Theoretical and Applied 451 
Electronic Commerce Research 16, 466–490. 452 

Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., 453 
Choulga, M., Harrigan, S., Hersbach, H., others, 2021. ERA5-Land: A state-of-the-art global 454 
reanalysis dataset for land applications. Earth System Science Data Discussions 1–50. 455 

Peñuelas, J., Rutishauser, T., Filella, I., 2009. Phenology feedbacks on climate change. Science 324, 456 
887–888. 457 

Piao, S., Liu, Q., Chen, A., Janssens, I.A., Fu, Y., Dai, J., Liu, L., Lian, X., Shen, M., Zhu, X., 2019. Plant 458 
phenology and global climate change: Current progresses and challenges. Global change biology 459 
25, 1922–1940. 460 

Shapley, L.S., 1953. Stochastic games. Proceedings of the national academy of sciences 39, 1095–1100. 461 
Verger, A., Baret, F., Weiss, M., 2014. Near real-time vegetation monitoring at global scale. IEEE Journal 462 

of Selected Topics in Applied Earth Observations and Remote Sensing 7, 3473–3481. 463 
Wang, D., Thunéll, S., Lindberg, U., Jiang, L., Trygg, J., Tysklind, M., 2022. Towards better process 464 

management in wastewater treatment plants: Process analytics based on SHAP values for tree-465 
based machine learning methods. Journal of Environmental Management 301, 113941. 466 



 

23 
 

Weber, U., Jung, M., Reichstein, M., Beer, C., Braakhekke, M., Lehsten, V., Ghent, D., Kaduk, J., Viovy, 467 
N., Ciais, P., others, 2009. The interannual variability of Africa’s ecosystem productivity: a multi-468 
model analysis. Biogeosciences 6, 285–295. 469 

Weiss, M., Baret, F., Verger, A., 2014. BELMANIP2: Enhancement of the CEOS-BELMANIP ensemble of 470 
sites used for the validation of land products from medium resolution sensors., in: Fourth 471 
International Symposium on Recent Advances in Quantitative Remote Sensing. 472 

Yang, L., Shami, A., 2020. On hyperparameter optimization of machine learning algorithms: Theory and 473 
practice. Neurocomputing 415, 295–316. 474 

Zhan, C., Orth, R., Migliavacca, M., Zaehle, S., Reichstein, M., Engel, J., Rammig, A., Winkler, A.J., 2022. 475 
Emergence of the physiological effects of elevated CO2 on land–atmosphere exchange of carbon 476 
and water. Global Change Biology 28, 7313–7326. 477 

Zhang, Y., Commane, R., Zhou, S., Williams, A.P., Gentine, P., 2020. Light limitation regulates the 478 
response of autumn terrestrial carbon uptake to warming. Nature Climate Change 10, 739–743. 479 

Zhang, Y., Gentine, P., Luo, X., Lian, X., Liu, Y., Zhou, S., Michalak, A.M., Sun, W., Fisher, J.B., Piao, S., 480 
others, 2022. Increasing sensitivity of dryland vegetation greenness to precipitation due to rising 481 
atmospheric CO2. Nature communications 13, 4875. 482 

Zhou, Y., Wigley, B.J., Case, M.F., Coetsee, C., Staver, A.C., 2020. Rooting depth as a key woody 483 
functional trait in savannas. New Phytologist 227, 1350–1361. 484 

 485 


