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Abstract

Anthropogenic impacts on tropical and subtropical coastal environments are increasing at

an alarming rate, compromising ecosystem functions, structures and services. Understand-

ing the scale of marine population decline and diversity loss requires a long-term perspec-

tive that incorporates information from a range of sources. The Southern Atlantic Ocean

represents a major gap in our understanding of pre-industrial marine species composition.

Here we begin to fill this gap by performing an extensive review of the published data on

Middle and Late Holocene marine fish remains along the southern coast of Brazil. This

region preserves archaeological sites that are unique archives of past socio-ecological sys-

tems and pre-European biological diversity. We assessed snapshots of species composi-

tions and relative abundances spanning the last 9500 years, and modelled differences in

species’ functional traits between archaeological and modern fisheries. We found evidence

for both generalist and specialist fishing practices in pre-European times, with large body

size and body mass caught regularly over hundreds of years. Comparison with modern

catches revealed a significant decline in these functional traits, possibly associated with

overfishing and escalating human impacts in recent times.

Introduction

The rapid decline of global biodiversity is one of the most severe and escalating issues of our

time [1, 2], increasing at an alarming rate in coastal and ocean ecosystems through overexploi-

tation, habitat degradation, and pollution, among other stressors [3, 4]. Because taxonomic

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0285951 May 25, 2023 1 / 27

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Fossile T, Herbst DF, McGrath K, Toso A,

Giannini PCF, Milheira RG, et al. (2023) Bridging

archaeology and marine conservation in the

Neotropics. PLoS ONE 18(5): e0285951. https://

doi.org/10.1371/journal.pone.0285951

Editor: Vitor Hugo Rodrigues Paiva, MARE –

Marine and Environmental Sciences Centre,

PORTUGAL

Received: September 12, 2022

Accepted: May 4, 2023

Published: May 25, 2023

Copyright: © 2023 Fossile et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The data is now

available in the open repository Zenodo (https://doi.

org/10.5281/zenodo.7925975)”

Funding: ACC, TF, AT, DH, KM were funded by the

ERC Consolidator project TRADITION, which has

received funding from the European Research

Council (ERC) under the European Union’s Horizon

2020 research and innovation programme under

Grant Agreement No 817911. This work

contributes to the “ICTA-UAB Marı́a de Maeztu”

Programme for Units of Excellence of the Spanish

https://orcid.org/0000-0002-6997-4677
https://orcid.org/0000-0003-3469-1412
https://orcid.org/0000-0002-6503-8806
https://orcid.org/0000-0003-2124-2757
https://orcid.org/0000-0002-0279-6634
https://doi.org/10.1371/journal.pone.0285951
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0285951&domain=pdf&date_stamp=2023-05-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0285951&domain=pdf&date_stamp=2023-05-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0285951&domain=pdf&date_stamp=2023-05-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0285951&domain=pdf&date_stamp=2023-05-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0285951&domain=pdf&date_stamp=2023-05-25
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0285951&domain=pdf&date_stamp=2023-05-25
https://doi.org/10.1371/journal.pone.0285951
https://doi.org/10.1371/journal.pone.0285951
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.5281/zenodo.7925975
https://doi.org/10.5281/zenodo.7925975


diversity (richness and abundance of species) and ecosystem function and services (the capac-

ity of natural processes and components to provide goods and services that satisfy human

needs, directly or indirectly, [5]) are positively correlated [6], biodiversity loss (e.g. taxonomic

and functional diversity) as well as changes in species distribution, composition, and abun-

dance, have potentially dramatic consequences, altering ecosystem functions and compromis-

ing food provisions and the livelihoods of people around the world [2, 7, 8]. Scholars have

sought to measure the scale of Anthropocene defaunation through modern observations for

decades [9, 10]; questions remain, however, about conservation and restoration targets as

establishing reference baselines is complex in marine ecosystems impacted by long-term

human activities [11–13], particularly in regions with conspicuous biological knowledge short-

falls, such as Brazil [14].

Brazil is a megadiverse country [15], with the majority of its population and economic

activities concentrated along its *7,500 km coastline. In 2015, coastal and marine economies

contributed to nearly 20% of the country’s annual GDP [16]. In the south, the coastal strip of

the Atlantic Forest and Pampa biomes support large marine biodiversity [17] and numerous

ecosystem services for human populations [18]. In particular, the Atlantic Forest is a global

biodiversity hotspot [19, 20] and a priority region for efforts of ecosystem restoration and bio-

diversity adaptation to climate change [1, 21]. However, in the last decades, population growth,

increasing urbanisation, industrialisation, tourism and agricultural expansion have caused sig-

nificant impacts on coastal environments in these regions [22–24]. The southern region, com-

prising the states of Paraná, Santa Catarina, and Rio Grande do Sul, has historically been the

largest territory of fish exploitation in Brazil [25], and thus is a strategic area for marine con-

servation within the context of a sustainable blue economy and blue growth. Yet several eco-

nomically important demersal fish species are currently threatened by overfishing, bycatch

and habitat degradation [26, 27]. Recent studies revealed that some of these stressors have

been in action for over a century [28], potentially distorting perceptions about the degree to

which local organisms and environments have been altered over time [29, 30]. As a conse-

quence, a thorough understanding of the scale of marine biodiversity loss and population

decline requires knowledge of species composition, distribution and relative abundance pre-

dating the anthropogenic impacts of the past centuries [31, 32].

Although typically limited to decadal and centennial timescales, archaeological sites retain

information on past biological diversity that is becoming central in debates about long-term

anthropogenic impacts on ecosystems [33, 34]. South America, however, has received only

cursory attention. In this region, archaeological faunal remains are some of the few sources of

information on pre-European vertebrate and invertebrate diversity and relative abundance,

from single species to several taxonomic and functional groups [35]. Moreover, because Indig-

enous environmental stewardship is considered an example of sustainable resource use [36]

and key to biological conservation in tropical and subtropical regions of South America [37,

38], studies of archaeological faunal remains also offer a window into the origin and changing

nature of these longstanding practices.

Indigenous groups have exploited coastal environments in the Atlantic Forest and Pampa

biomes of southern Brazil since at least the Middle Holocene [39, 40], leaving behind thou-

sands of archaeological sites containing large amounts of fish remains [41]. Archaeological fish

remains are largely the product of economic strategies and related cultural practices, and thus

provide the most direct evidence of which species have been selectively (e.g. due to food prefer-

ences, taboos, technology) exposed to fishing pressures in the past and over long timescales.

Systematic zooarchaeological studies in these regions began in the 1970s and it is now possible

to perform regional syntheses on published records for dozens of sites, obtaining snapshots of

fish landings over ca. 9500 years of pre-European occupation, prior to the 16th century AD.
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This work presents an extensive review of the published data on marine and freshwater fish

stocks exploited by Middle and Late Holocene Indigenous coastal populations in southern

Brazil (Fig 1A). We assessed species composition and relative abundances through space and

time, and compared fish functional traits (trophic level, maximum body size and maximum

body mass) between archaeological and modern catches. We show that socially and economi-

cally important species for present day small-scale and industrial fisheries were extensively tar-

geted by pre-European Indigenous groups. Narrowing our analysis to sites in Babitonga Bay,

one of the largest estuarine systems in the Southern Atlantic and the region with the largest

concentration of pre-European archaeological sites in coastal Brazil (Fig 1B), our study

revealed that species of high trophic level and large body size and body mass were commonly

exploited in the past, suggesting they were more abundant and easily encountered. Only in

recent times have fisheries moved to small-bodied and lower trophic level species. We

hypothesise that increasing fishing efforts and other coastal stressors have contributed to the

decline in abundance of some of these high trophic level and large bodied species in modern

fisheries. Our study offers a pre-market baseline to assess changes in species abundance, com-

position and function through time that is currently absent in one of the largest fish producing

regions of the South Atlantic.

Environmental and archaeological setting

The study area is located between 25˚S and 31.5˚S latitude and encompasses nearly 1000 km of

coastline between the southern Atlantic Forest and the grassland Pampa biomes. The region

includes several ecosystems supporting a great diversity of fish [17], including stocks of eco-

nomic importance to both small-scale and industrial fisheries [25–27], such as Sciaenidae (e.g.

Micropogonias furnieri, Pogonia courbina), Ariidae (Genidens sp.), Mugilidae (Mugil liza,

Mugil curema), Paralichthyidae (Paralichthys sp.) and Pomatomidae (Pomatomus saltatrix),

among others, as well as several species of sharks and rays [26, 27]. Most of these ecosystems

evolved to their modern configurations during the Late Holocene [44–47]. Currently, the

southernmost sector extends from Patos Lagoon (31.5˚S) to the Santa Marta Cape (28.6˚S)

and is characterised by a wide continental shelf (120 to 230 km), with a gentle slope. The NE

structure of the basement, subparallel to the coast, favoured the presence of continuous

beaches of hundreds of kilometres and the development of the most extensive pairs of sandy

barriers and lagoons in Brazil [48, 49]. This area includes large choked lagoons, such as Patos

Lagoon, with salt marshes occurring in most tidal flats. Moving north, the change in coastline

orientation favours coastal upwelling [50], and mangrove systems become dominant. From

the Laguna lagoonal system (Mirim, Imaruı́, and Santo Antônio lagoons) (28.1˚S) to Babitonga

Bay (26.7˚S), the coastal sector has a narrower and steeper inner shelf and a more restricted

coastal plain than neighbouring sectors, with headlands, rocky shores, pocket beaches and

small embayments [49]. The coastal sector north of Babitonga Bay and adjacent to Santos

Basin has a gentle slope, dominated by beaches over ten kilometres long with NE orientation,

mostly separated by relatively small headlands and wide estuaries, such as the bays of Laran-

jeiras, Guaratuba and Paranaguá.

Estuaries and coastal lagoons were of primary importance for Indigenous populations in

the study area before and during the earliest phases of contact with Europeans in the 16th cen-

tury AD [51]. Marine resources were also exploited in a range of coastal habitats, including

rocky shores [52] and oceanic islands [53], with considerable chronological and cultural vari-

ability. The earliest evidence of marine fish exploitation is associated with the Umbu cultural

tradition, beginning around 9000 years ago [54, 55]. Contemporary to these groups, other pop-

ulations depended largely on marine resources and raised monumental shell mounds locally
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known as sambaquis between 7000 and 500 years ago [56]. Along the Pampa biome and the La

Plata basin in southern Brazil, Uruguay, and Argentina, groups known as Cerritos exploited

fish and wetland resources between 4700 and 200 years ago [57]. From 1200 to 500 years ago,

groups who produced ceramic artefacts attributed to the Taquara-Itararé cultural tradition

also exploited fish as the main source of dietary protein in the southern Atlantic Forest coast

[58, 59]. Finally, Tupiguarani and Guarani groups who settled in these coastal areas from

around 1000 years ago until European contact [60], complemented their plant-based econo-

mies with fish from coastal environments [61].

Material and methods

Literature survey and data compilation

Faunal information was obtained from 71 reports produced between 1975 and 2022 on faunal

assemblages recovered from Middle and Late Holocene sites along the southern coast of Brazil

(S1 and S2 Tables). We limited our review to coastal sites, using a maximum distance from the

current shoreline of 100 km, following Small and Nicholls [62]. This was also motivated by the

fact that the high relative position of the sea level (ca. +3 m 5000 years ago [45, 63]) shifted the

coastline further inland in areas with gentle slopes. Faunal reports included research articles

(55%), academic dissertations and theses (38%), and book chapters (7%) available as physical

and electronic copies in institutional repositories (universities, museums, public libraries) and

publishers’ websites.

Reports were categorised according to qualitative and quantitative criteria proposed by Fos-

sile et al. [64]: Source A (qualitative-quantitative)—presented detailed taxonomic identifica-

tions, and absolute and relative abundance for all taxa (Number of Identified Specimens

Fig 1. (A) Archaeological sites with fish remains, and (B) archaeological sites with fish remains in Babitonga Bay. Maps generated using ArcGIS 10.7 ([42]), CGIAR

Consortium for Spatial Information ([43]) and NASA/JPL-Caltech (adapted from https://www.jpl.nasa.gov/images/pia03388-south-america-shaded-relief-and-colored-

height).

https://doi.org/10.1371/journal.pone.0285951.g001
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(NISP) and/or Minimum Number of Individuals (MNI)); Source B (semi-quantitative)—pre-

sented detailed taxonomic identifications, and absolute and relative abundance for selected

taxa; Source C (qualitative)—presented taxonomic identification with no quantitative informa-

tion (S1 Table). Of the 71 documents listing fish remains, Source A (qualitative-quantitative),

Source B (semi-quantitative) and Source C (qualitative) accounted for 60.6% (n = 43), 26.8%

(n = 19) and 12.6% (n = 9), respectively. Data in sources A and B were used to calculate and

compare relative taxonomic abundances within and among faunal collections, while data in

sources A, B and C were used to derive species richness and their relative frequency distribu-

tion among sites. Whenever possible, taxonomic information was recorded to the species level,

but for most sites only genus, and often classes, orders, and/or families were available. The

nomenclature and ecological attributions follow WoRMS [65] and Eschmeyer’s Catalog of

Fishes [66] (S3 and S4 Tables). Species richness (SR) was calculated using the Minimal Level of

Taxonomic Identification, considering only the minimum hierarchical level for particular

taxa. The conservation status of species was compiled from the IUCN Red List of Threatened

Species [67] and the updated Red List of Threatened Species of the Chico Mendes Institute for

Biodiversity Conservation (Instituto Chico Mendes de Conservação da Biodiversidade—ICM-

Bio) [68]. The socioeconomic importance of species was compiled from the National Action

Plan for the Conservation of Endangered Species and of Socioeconomic Importance in the

Mangrove Ecosystem—PAN Mangrove [69].

We used NISP values and, in a few cases, MNI (Espinheiros II, RS-LS-11 and Itapoã; S4

Table) to express the absolute and relative abundances of taxa. NISP was reported in 77.4% of

the analysed sites with fish remains, while MNI (with no corresponding NISP data) was

reported in 5.7% of the sites. For sites where faunal assemblages were analysed for distinct

areas, the absolute abundance of each taxa was aggregated. In the case of faunal assemblages

that were published more than once, the most detailed study in both taxonomic and quantita-

tive terms was considered. Total NISP values include all identified remains regardless of their

taxonomic levels (from class to species). However, relative abundance of taxa was performed

using NISP values after removing the number of remains generically identified as Actinoptery-

gii (bony fish) and Elasmobranchii (cartilaginous fish). Trophic levels of exploited organisms

(excluding class level and above) were attributed according to FishBase [70]. For order, family

and genus we used the average values of species present in archaeological records in the region,

or the average values of the species reported in the Brazilian Biodiversity Information System

(SiBBr) [71]. One-way Analysis of Variance (ANOVA) followed by Tukey’s HSD tests (stats

package in R) was used for comparing NISP and SR according to excavation mesh size (95%

family-wise confidence interval). A Pearson correlation coefficient (stats package in R) was

employed for measuring linear correlations between SR and NISP.

Cultural and chronological assignments of pre-European fish assemblages

Faunal assemblages were compiled by archaeological sites taking into account their cultural

phases and radiocarbon dates (calibrated years before present, cal BP). Cultural phases consist of

well-established “traditions” based on site typology (e.g. shell mounds, earth mounds), the pres-

ence and type of key artefacts (e.g. stone tools, ceramics), and their “absolute” chronology based

on radiocarbon dates. The latter allows the general assignment of cultural phases to the formal

subdivisions of the Holocene based on natural climatic/environmental events (Early, Middle and

Late) [72]. For example, faunal assemblages from Enseada I were separated by two distinct cul-

tural phases including a Sambaqui (4050 cal BP) phase and a Taquara-Itararé (1050 cal BP)

phase, both dated to the Late Holocene [73]. Fauna from the site of Sangão, instead, were com-

puted separately for Early (8950 cal BP) and Late (4650 cal BP) Holocene occupations [54].
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Radiocarbon dates for the analysed sites were obtained from the Brazilian Radiocarbon

Database [74], on dates generated from a range of archaeological materials (marine shells,

human and faunal bones, charcoal). Conventional radiocarbon dates were calibrated and

modelled using OxCal v. 4.4 [75]. For sites with multiple dates (e.g. Forte Marechal Luz,

Cubatão I, Jabuticabeira II, RS-PSG-07), the conventional dates were summed (Sum function)

according to main cultural attributes, for example by grouping dates obtained from Sambaqui

occupations, or from layers with ceramic artefacts of Taquara-Itararé tradition. In doing so,

we estimated the median age of a particular “cultural” occupation (group median). Terrestrial

samples were calibrated using the 100% atmospheric calibration curve for the southern hemi-

sphere, SHCal20 [76]. Marine organisms were calibrated using the 100% Marine20 curve [77],

applying an estimated average local marine radiocarbon reservoir correction value (ΔR) of

-126 ± 29 for the coasts of São Paulo, Paraná, Santa Catarina and Rio Grande do Sul, generated

from eight reference points between latitudes 32.0˚S and 23.7˚S [78–80], according to the

Marine Reservoir Correction database. Given the high contribution of marine carbon to bone

collagen of human individuals in this region, the radiocarbon dates on human bone collagen

were modelled using a mixed curve (SHCal20 and Local Marine curve) adopting the same ΔR

value reported above. We considered the average relative contribution of marine carbon to

collagen of 52 ± 9%, which is the average estimated contribution recently obtained from doz-

ens of human individuals from archaeological sites in Babitonga Bay [40]. Calibrated and

modelled radiocarbon dates were rounded to 50 years (S5 Table).

Comparing fish traits across time periods in Babitonga Bay

Fish data were compiled for three distinct chronological periods (and cultural phases) in Babi-

tonga Bay: 4500–1150 cal BP (Sambaqui), 1050–600 cal BP (Taquara-Itararé), and AD 1994–

2015 (modern fisheries). Fish assemblages dated to 4500–1150 cal BP were recovered from the

Sambaqui phases of the sites Cubatão, Espinheiros II, Ilha dos Espinheiros II, Forte Marechal

Luz, Enseada I, Bupeva II and Itacoara; fish assemblages dated to 1050–600 cal BP included the

Taquara-Itararé phases documented in the sites of Forte Marechal Luz, Enseada I, Bupeva II

and Itacoara (Fig 1B); modern fish assemblage composition (241 species) were obtained from

surveys conducted in Babitonga Bay from AD 1994 to 2015 [81, 82] (S6 and S7 Tables). A total

of 124 species were documented as fisheries targets for Babitonga Bay across the three studied

periods. Of these, 62 species were recorded for the Sambaqui cultural phase, 34 for the

Taquara-Itararé cultural phase [41, 73, 83–86], and 94 for the modern period (Projeto de Moni-
toramento da Atividade Pesqueira em Santa Catarina—PMAP/SC, available at: http://pmap-sc.

acad.univali.br/index.html) (S6 and S8 Tables).

For each species recorded, we compiled trophic level, trophic group, maximum body size

(cm) and maximum body mass (g). Fish trophic level was taken from FishBase (see above) and

ranged between 2.0 to 4.9. Trophic group categories were compiled from Quimbayo et al. [87]

and complemented with information from other literature [88–107]. The categories were

invertivores, herbivores, macrocarnivores, omnivores, piscivores and planktivores. Maximum

body size and body mass were also obtained from Quimbayo et al. [87] and from other litera-

ture [70, 108–111]. Fish species were categorised into body size classes based on their maxi-

mum body sizes. These categories were:<7 cm, 7–15.0 cm, 15.1–30.0 cm, 30.1–50.0 cm, 50.1–

80.0 cm, and>80 cm. Body size categories and trophic groups were combined for each species

to define fish functional entities (FEs).

Differences in fish species’ trophic levels, maximum body sizes, and maximum body masses

were assessed using a null model approach, under which the observed traits in each period

(4500–1150 cal BP, 1050–600 cal BP and AD 1994–2015) were contrasted against null values
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obtained from randomly sampling the total species pool [112]. The total species pool corre-

sponds to all fish taxa caught across the different study periods (n = 124) combined with those

that were not targeted but compose the regional fish assemblages (n = 241). This total pool

(n = 365) is, therefore, equivalent to the total species richness and trait variability in the region,

regardless of the time period. For each trait and time period, we contrasted the distribution of

observed values with the distribution of 1000 random samples of the total pool. The observed

trait values were compared to those of random assemblages (null values) for each time period

using two-sided t-tests. Box plots and violin plots were used to explore the distribution and dif-

ferences between observed and null values. To test for differences in fish traits caught across

time periods we used One-way Analysis of Variance (ANOVA) followed by Tukey’s HSD

tests. Fish maximum body size and maximum body mass were positively and significantly cor-

related (r2 = 0.67; p< 0.005), and log-transformed before analysis. We opted to maintain both

traits in our analysis to explore differences across periods (S1 Text).

We further explored differences in the proportion of fish species belonging to body size cate-

gories, trophic group categories, as well as functional entities (FEs) across time periods. These

would indicate whether certain body sizes, fish trophic groups and functional groups corre-

sponded to a greater proportion of fisheries targets in particular time periods. Also, such analy-

sis can reveal changes and fisheries characteristics across time. To test the statistical significance

in the proportions of fish body sizes and trophic categories across time periods we used a two-

tailed Binomial test (p< 0.05). All analyses were conducted in R Studio Software [113].

Finally, the data presented is part of the Brazilian Zooarch Database (ZooarchBR) and is

stored at the Brazilian Biodiversity Information System (Sistema de Informação sobre a Biodi-
versidade Brasileira—SiBBr) [71]. SiBBr consists of a set of data and information on Brazilian

biodiversity and ecosystems linked with the Global Biodiversity Information Facility (GBIF),

providing subsidies for government management related to conservation and sustainable use

[71]. This platform is developed by the Brazilian Ministry of Science, Technology and Innova-

tion (Ministério da Ciência, Tecnologia e Inovações—MCTI), with technical support from

ONU Environment (UNEP) and financial support from the Global Environment Facility

(GEF). The data presented here is registered in the SiBBr in the category Occurrence Records

(inventories and/or research projects) through the TRADITION Project, following the Darwin

Core (DwC), an international standard recognized by the scientific community for metadata.

The data is also available in https://doi.org/10.5281/zenodo.7925975.

Results

Quantitative and qualitative data assessment

Faunal information (marine, freshwater and terrestrial animals) was compiled for 374 archaeo-

logical sites (71 reports) distributed along the southern Atlantic Forest (89%) and the Pampa

(11%) biomes, from publications produced over the last 47 years (Fig 1 and S1 and S2 Tables).

Fish remains were reported in 53 sites (14.4%, sources A, B and C) (S3 Table). Of these, 44 sites

(83%, sources A and B) contained information on the absolute and relative abundance of taxa

(S4 Table). Recovery and analytical techniques differed considerably among sites. For example,

of the 44 sites with the absolute and relative abundance of taxa, fish remains were retrieved

through sieving sediments in 73% (n = 32), but using distinct mesh sizes: 2 mm (31.2%, n = 10

sites), 3 mm (31.2%, n = 10 sites), 4 mm (9.4%, n = 3 sites) and 5 mm (28.1%, n = 9 sites). The

volume of sediment was reported, or could be estimated from excavated areas, for 84% of the

sites with fish remains (n = 37), and ranged from 0.06 to 13.8 m3. In the majority of sites (98%,

n = 43) both bones and otoliths were used for specimen quantification (NISP), while in 80% of

sites (n = 35) otoliths and bones were used for taxonomic identification (S4 Table).
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Archaeological assemblages in sources A and B were dominated by bony fish (total

NISP = 876,622; 98.8% of total remains), followed by cartilaginous fish (total NISP = 10,603;

1.2%). Among bony fish, 17% of the remains could be identified beyond the class level (Acti-

nopterygii), while for cartilaginous fish 56.7% were identified beyond the Elasmobranchii

class. These proportions remained substantially comparable across the sites, regardless of their

geographic location and chronology. When considering the Minimum Level of Taxonomic

Identification in sources A, B and C, 109 taxa were reported, of which 79 belonged to bony fish

and 30 to cartilaginous fish (S3 Table). Differences in recovery and analytical methods (some-

times referred to as second-order changes [114]) can dramatically affect fundamental and

derived measurements of faunal remains such as the taxonomic abundance (NISP) and rich-

ness (SR) [114–116]. Here we explored the effect of sieving with distinct mesh sizes (2–3 mm,

4 mm and 5 mm) on both total NISP and SR (Fig 2A and 2B). For this purpose we combined

data from 2 and 3 mm (2–3 mm) mesh because both are considered adequate for the recovery

of fish remains [117, 118]. NISP was normalised for the volume of sediment (NISP/m3) to

account for additional size-effect. SR was also normalised for contextual total NISP values (SR/

NISP). Surprisingly, the results reveal no significant statistical differences between NISP/m3

produced by using 2–3 and 4 mm mesh (p = 0.2936), nor between 2–3 and 5 mm mesh

(p = 0.6817), or 4 and 5 mm mesh (p = 0.6032). Similarly, derived SR/NISP were statistically

indistinguishable between 2–3 and 4 mm mesh (p = 0.6902), and between 2–3 and 5 mm mesh

(p = 0.5218). Again, SR produced through the use of 4 and 5 mm mesh were statistically com-

parable (p = 0.9796).

We also assessed the sample size-effect by comparing SR with NISP/m3 [115, 116], under

the theoretical proposition that, all things being equal, SR positively correlates with NISP/m3.

The results revealed no significant correlations (p = 0.9033, r = -0.02, n = 28) between SR and

NISP/m3 for the entire dataset (sources A and B) including distinct recovery (all mesh sizes)

and identification (otoliths and/or bones) methods (Fig 3A). By contrast, when selecting data

associated with 2–3 mm mesh size and identified using both bones and otoliths, a significant

positive correlation (p = 0.0008, r = 0.75, n = 14) emerged between SR and NISP/m3 (Fig 3B).

This correlation, however, depended on a single endmember with the highest SR and NISP/m3

(site of Rio do Meio), which when removed dissolved the positive correlation (p = 0.9165,

r = 0.03, n = 13) (Fig 3C). In conclusion, although distinct recovery techniques may have

affected the quality of the data in terms of SR and taxonomic abundances, the magnitude of

these second-order changes remains unclear.

Pre-European fish compositions

Sites with fish remains had median calibrated dates mostly concentrated between 5402 and 200

cal BP. The only exceptions are the Early Holocene deposits of Sangão, which had two modelled

median radiocarbon dates of 8150 and 9750 cal BP (S5 Table). Among bony fish species belong-

ing to Sciaenidae (e.g. Micropogonias furnieri, Umbrina sp., Pogonias courbina) and Ariidae (e.g.

Genidens barbus, Bagre bagre, Notarius grandicassis) accounted for ca. 50% and 23% of the iden-

tified remains, respectively (Fig 4A). They were also widely distributed in the archaeological

record, with remains of Ariidae reported in 92% (n = 49) of the sites, and Sciaenidae in 79%

(n = 42) (Fig 4B). At the species level, the marine-brackish, demersal and oceanodromous

Micropogonias furnieri (whitemouth croaker) emerged as the most abundant and broadly cap-

tured species, representing 33% (NISP = 50,327) of the identified remains, and occurring in

70% (n = 37) of the archaeological sites (Fig 5A). Its capture appears to have increased signifi-

cantly with time, most notably from ca. 2000 cal BP (Fig 5B) around Patos Lagoon (ca. 31˚S), a

key reproductive and feeding ground for this species in southern Brazil [26].
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In terms of relative frequency, Micropogonias furnieri was followed by Pogonias courbina in

ca. 64% of sites (n = 34), and unidentified Ariidae species (57%), Mugil sp. (32%), Rhamdia sp.

(30%) and Genidens sp. (28%). With the exception of Rhamdia sp. (freshwater catfish), the

taxa reported above are commonly distributed in near-shore coastal waters, including estuar-

ies, tidal flats and mangrove systems [82]. Freshwater fish contributed to 0.6% of the remains,

and were represented by Rhamdia sp., Hoplias malabaricus, Hypostomus sp., and Synbranchus
marmoratus (S4 Table). Cartilaginous fish were mostly represented by remains of Sphyrna sp.

(28.3%) and Rhizoprionodon sp. (18.5%), followed by Carcharias taurus (9.5%), Carcharhinus
sp. (9.3%), Pseudobatos sp. (8.9%), Myliobatidae (5.6%) and others (Fig 6A). Overall, sharks

Fig 2. Boxplot showing the distribution of A) NISP/m3 versus mesh size and B) SR/NISP versus mesh size.

https://doi.org/10.1371/journal.pone.0285951.g002

Fig 3. Correlation between SR and NISP/m3 for A) the entire dataset (sources A and B), B) faunal remains recovered with 2–3 mm mesh size and identified using both

bones and otoliths, and C) the same data in B after removing a single outlier (site of Rio do Meio) with the highest SR and NISP/m3.

https://doi.org/10.1371/journal.pone.0285951.g003
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and rays occurred in 53% (n = 28) of the sites with fish remains. Of these, Myliobatidae (rays)

and Carcharias taurus were reported in 19% (n = 10) of the sites, followed by unidentified rays

(infraclass Batoidea and order Rajiformes) and sharks (Selachii) in 11.3% and 9.4%, respec-

tively, and finally by several species including Carcharhinus sp., Galeocerdo cuvier, Carcharo-
don carcharias, Rhinoptera sp., and Negaprion brevirostris (Fig 6B). Currently, these species are

Fig 4. (A) Relative abundance of bony fish taxa above 1% in pre-European assemblages, and (B) relative frequency of bony fish taxa above 10%.

https://doi.org/10.1371/journal.pone.0285951.g004

Fig 5. Relative abundance of Micropogonias furnieri as a function of (A) the median radiocarbon age of sites (modelled cal BP), and (B) latitude in pre-European

assemblages. Green band represents the 95% confidence interval.

https://doi.org/10.1371/journal.pone.0285951.g005
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reported along the southern coast of South America (e.g. Carcharias taurus, Notorynchus cepe-
dianus, Lamna nasus), while others, such as Negaprion brevirostris, Sphyrna mokarran and

Carcharhinus porosus, are not found or are less frequent in southern Brazil [119–121].

Bony and cartilaginous fish diversity significantly decreased southwards (Fig 7A), but

remained stable over time (Fig 7B). The latitudinal gradient in species diversity is consistent

with studies showing a similar pattern in modern fish communities in the southwestern Atlan-

tic Ocean [122–124]. By contrast, the weighted average trophic level (WATL) of fish assem-

blages did not correlate with latitude (Fig 7C) nor with site chronology (Fig 7D). Interestingly,

sharks and rays increased in sites postdating 2200 cal BP (Fig 7F), particularly in areas located

between Babitonga Bay (26˚S; Bupeva II, Forte Marechal Luz) and Santa Catarina Island

(27˚S; Rio do Meio) (Fig 7E). Even though their relative abundance was not significantly corre-

lated with age or latitude, the results are consistent with stable isotope analyses of human bone

collagen indicating that from ca. 2200 years ago groups in Babitonga Bay and north of Santa

Catarina Island secured most of their dietary proteins from high trophic level fish species [40].

Cartilaginous fish also accounted for more than 60% of the fish remains at the sites of Rua 13

and Sambaqui do Papagaio, both located in the aforementioned region, but lacking absolute

chronology. The presence of adult, juvenile and neonate specimens [58, 125] suggests that

humans were exploiting sharks and rays in a range of habitats, including nursery areas such as

mangrove systems [126], as documented in other areas further north [127]. While it is plausi-

ble that some shark teeth could indicate trading networks, it is important to note that they are

consistently found alongside a significant quantity of shark vertebrae and other fish remains.

This suggests that the presence of shark teeth in most sites reflects local fishing activities.

Together, these results suggest that captures along the Pampa (31.5˚S) and southern Atlantic

Forest coasts (28˚S) were generally less diverse compared to more northern sites (27 to 26˚S),

as in the northern Santa Catarina coast (Fig 8). However, as discussed above, the diversity and

abundance of the catches must have been higher than reflected in the collected data. High fish

diversity, incomplete reference collections and disparity in recovery techniques, elevated frag-

mentation and lack of diagnostic features in archaeological bones are some of the common

challenges that prevent the successful identification and adequate quantitative representation

of fish remains in the regional archaeological record.

Trait variation of fish caught in Babitonga Bay across time periods

Babitonga Bay has the largest concentration of pre-European archaeological sites in coastal

Brazil. Previous studies have indicated that high trophic level and large-bodied fish species

were commonly targeted by Sambaqui (4500–1150 cal BP) and Taquara-Itararé (1050–600 cal

BP) groups in pre-European times [40], which contrasts with modern catches reported by the

Projeto de Monitoramento da Atividade Pesqueira em Santa Catarina ([81, 82] in the region.

We tested this hypothesis by comparing fish functional traits for three distinct time periods

(4500–1150 cal BP, 1050–600 cal BP and AD 1994–2015). We assessed differences in fish spe-

cies trophic levels, maximum body sizes, and maximum body masses using a null model

approach, under which the observed traits in each period were contrasted against null values

obtained from randomly sampling the total species pool [112].

Our results suggest that catches in the periods of 4500–1150 cal BP and 1050–600 cal BP

were composed of individuals of larger body size and body mass relative to modern fish

catches (Fig 9A–9C). Between time periods, there were no significant differences in the trophic

level of fish caught, but a slight decrease was detected in the minimum trophic level of fish spe-

cies reported for the modern period (AD 1994–2015; MinTL = 2.9) compared to 1050–600 cal

BP (MinTL = 3.3). Significant differences were instead only observed for the maximum body
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size and body mass of catches between 1050–600 cal BP and the modern period (p< 0.005 for

both). Catches from 4500–1150 cal BP and 1050–600 cal BP were statistically indistinguishable

for maximum body size and maximum body mass.

Within time periods, the maximum body sizes of fish in pre-European catches (time peri-

ods of 4500–1150 cal BP and 1050–600 cal BP) differed significantly from randomly generated

assemblages (t-tests, p = 0.0007, samples from the total species pool), while modern catch (AD

1994–2015) body sizes were within those predicted at random (t-test, p = 0.52). The trophic

levels of fish caught in periods 4500–1150 cal BP and 1050–600 cal BP were greater than that

from the random assemblages (p = 0.00052 and 0.018 respectively); while the trophic level of

species in modern catches did not differ from the random expectations (p = 0.69). For body

mass, there were no significant differences from observed to null trait values (Fig 9A–9C).

Overall, the composition of captured species was dominated by large-bodied fish (> 50 cm)

throughout the studied periods (4500–1150 cal BP *90%; 1050–600 cal BP *76% and mod-

ern *58% of species). Modern populations included species with a broader range of body size

categories, varying from fish< 15 cm in total length to large bodied species> 80 cm (Fig

10A). Fish maximum body sizes ranging from 15.1 to 30 cm corresponded to 14% of the spe-

cies in modern catches, which was significantly different (p< 0.001) to catches in the period

4500–1150 cal BP, with only 3.2% of species identified (Cathorops spixii and Isopisthus

Fig 6. A) Relative abundance and B) relative frequency of cartilaginous fish taxa in pre-European assemblages.

https://doi.org/10.1371/journal.pone.0285951.g006

PLOS ONE Archaeology and marine conservation in the Neotropics

PLOS ONE | https://doi.org/10.1371/journal.pone.0285951 May 25, 2023 12 / 27

https://doi.org/10.1371/journal.pone.0285951.g006
https://doi.org/10.1371/journal.pone.0285951


parvipinnis) within this body size category. Medium and small-bodied fish species corre-

sponded to a minor proportion of catches in pre-European times (3–20% for species up to 50

cm total length). Species with total length > 80 cm accounted for 45.7% of modern species

composition, while they represented 59.6% and 73.5% of catches dated to 4500–1150 cal BP

and 1050–600 cal BP, respectively (e.g. Trichiurus lepturus, Caranx latus).

Fig 7. Species Richness as a function of A) the latitude and B) the median radiocarbon dates of the sites; C) weighted average trophic level per latitude and D) chronology;

E) relative abundance of Elasmobranchii remains in relation to latitude and F) chronology of the sites. The bands represent the 95% confidence interval.

https://doi.org/10.1371/journal.pone.0285951.g007

PLOS ONE Archaeology and marine conservation in the Neotropics

PLOS ONE | https://doi.org/10.1371/journal.pone.0285951 May 25, 2023 13 / 27

https://doi.org/10.1371/journal.pone.0285951.g007
https://doi.org/10.1371/journal.pone.0285951


Compared to modern assemblages, pre-European catches were characterised by a greater

contribution of piscivore and omnivore species (Fig 10B). Piscivores accounted for 8.1% to

11.7% of species in fish remains from periods 4500–1150 cal BP and 1050–600 cal BP,

Fig 8. Latitudinal changes in species richness. Maps generated using ArcGIS 10.7 ([42]) and CGIAR Consortium for

Spatial Information ([43]).

https://doi.org/10.1371/journal.pone.0285951.g008
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respectively (e.g. Bagre bagre, Pomatomus saltatrix, Trichiurus lepturus), compared to 4.2% in

modern assemblages. The proportion of macrocarnivores was similar across all periods

(*35% of species). The contribution of invertivore fish slightly increased across periods,

accounting for 40.3% and 32.3% in catches from periods 4500–1150 cal BP and 1050–600 cal

BP (e.g. Genidens barbus, Lagocephalus laevigatus, Micropogonias furnieri), respectively, and

reaching up to 44.6% in the modern period (AD 1994–2015). Planktivores were only docu-

mented in modern assemblages (4.2%). Finally, the proportion of fish functional entities

reveals that it is the addition of fish within larger body size classes that greatly characterises

pre-European catches (Fig 10C). Modern assemblages have a much greater contribution of

Fig 9. Fish traits exploited between 4500–1150 cal BP, 1050–600 cal BP and the modern period (1994–2015) for A) maximum body sizes, B) maximum body masses and

C) trophic levels. Box plots represent observed values from fisheries catches across 4500–1150 cal BP, 1050–600 cal BP and the modern period (AD 1994–2015). Vertical

black line denotes the median observed values, and black points are data outliers. Grey violin plots on the back represent the density distribution of null model values from

random samples of the total species pool. P-values for pairwise comparisons of observed traits versus randomised data are shown below the boxes. Asterisks mark

significant differences between time periods as indicated by Tukey HSD.

https://doi.org/10.1371/journal.pone.0285951.g009

Fig 10. Fish traits and functional groups across time periods. A) The proportion of fish species within different body size categories, B) trophic groups, and C)

functional entities between pre-European (4500–1150 cal BP and 1050–600 cal BP) and modern (AD 1994–2015) periods. In C, functional entities represent the

combination of fish trophic groups and body size classes, and darker tones represent larger body size categories within the same trophic group. Two-tailed Binomial tests

reveal significant (p< 0.05) differences in the proportions of 15.1–30 cm species between the 4500–1150 cal BP and modern (AD 1994–2015) periods.

https://doi.org/10.1371/journal.pone.0285951.g010
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small and medium-sized invertivores, as well as a lower contribution of large bodied (> 80

cm) piscivore species. While in catches from the period 4500–1150 cal BP, macrocarnivores

were mostly large bodied (50.1–80 cm and> 80 cm), in catches from 1050–600 cal BP and in

modern assemblages (AD 1994–2015) there is an increase of smaller macrocarnivore species

(15.1–30 cm and 30.1–50 cm).

Discussion

Variations in pre-European fish compositions

Our review of the literature shows that several species of high social and economic value today

were exploited by coastal societies in southern Brazil over the last 9500 years [128–130]. We

acknowledge that the discrepancies in recovery and analytical techniques among reports com-

plicate attempts to interpret data across distinct sites, and over spatial and temporal scales.

Moreover, the faunal record presented here reflects dietary preferences, food processing, site

function (e.g. cemeteries, residences), symbolic and ritual practices, and taphonomic factors

that may have varied in time and space. Nevertheless, archaeology remains one of the few

sources of information available to elucidate species distribution and relative abundance in the

past, and particularly in data-deficient countries such as Brazil. Even though the relative abun-

dance and distribution of species in archaeological contexts may be distorted due to the com-

bination of first-order and second-order changes to the archaeological record (see [114]), the

zooarchaeological data produced over the last 47 years in Brazil offer a unique approximation

of which species were targeted in this region over time scales surpassing those of modern

observations. Integrating methodologies such as geometric morphometrics, stable isotopes,

archaeogenomics, and proteomics in neotropical zooarchaeology studies can significantly

enhance its relevance to marine conservation.

The diversity of the catches are similar to those reported for modern small-scale commer-

cial landings in the region [131–133], even though only 8% (n = 13) of the species accounted

for the majority of the identified fish remains (NISP > 1%). Of these, a few demersal and estu-

arine-dependent species belonging to Sciaenidae (e.g. Micropogonias furnieri, Umbrina sp.,

Pogonias courbina) and Ariidae (e.g. Genidens barbus, Bagre bagre, Notarius grandicassis) were

predominantly targeted in the past. They possibly formed large populations in coastal lagoons

and estuaries, providing humans with an abundant and reliable supply of marine proteins

year-round [39, 40].

Several lines of evidence indicate that pre-European coastal communities were able to

extract volumes of fish comparable to or greater than subsistence catches in recent times [41].

Stable isotopes analyses also revealed that fish consumption per capita (contribution of marine

protein to individual diet) was higher among pre-European communities [40] compared to

local modern populations in coastal Brazil [134–136]. Nevertheless, the archaeological faunal

record does not provide evidence for measurable human impacts on coastal organisms in this

region. While most of these groups exploited crucial habitats for species reproduction and

conservation (mangroves, salt marshes [126]), and targeted juvenile individuals in nursery

grounds (e.g. sharks [137]), compelling evidence for ecological impacts are still lacking. If such

detrimental impacts occurred, they were likely limited or localised, possibly permitting stock

recovery over relatively short periods of time. For example, Micropogonias furnieri dominated

fish assemblages in Patos Lagoon, with catches increasing in the last 2000 years in relation to

human population growth [138] and stabilisation of environmental conditions, notably sea

level, in the region [47]. Yet, there is no evidence that this species was affected by overfishing,

such as could be indicated by a declining number in catches [139, 140]. By contrast, the target-

ing of M. furnieri by small-scale and industrial fisheries in recent times have led to a decrease
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in abundance to the point that it is now considered overexploited [25, 26]. However, further

studies are required for conclusive interpretations to be drawn.

It is particularly striking that Mugil sp., despite occurring in 32% of sites with fish remains,

represented only 0.7% of combined NISP values (excluding remains generically identified as

Actinopterygii and Elasmobranchii). At least one species of Mugilidae (Mugil liza) is abun-

dantly captured by communities along the southeastern coast of southern Brazil during austral

autumn and winter, from May to July, and constitutes a cultural seasonal keystone seafood in

this region [141]. The artisanal catches are obtained through the use of distinct fishing gear,

but large catches are mostly secured by means of beach seine [142]. It could be argued that the

relatively low abundance of Mugil sp. in pre-European catches reflect a lack of mass-capture

fishing technology, such as large nets. Archaeological evidence for the use of fishing nets has

been found in this region, such as stone sinkers and weights [143], as well as plant-based cord-

age and other artefacts [144], but their effectiveness for capturing large schools of Mugilidae

remains a matter of debate. Significantly, Indigenous culinary practices described in some

16th century European chronicles provide some insight into the complexity of the taphonomic

processes potentially affecting fish assemblages in this region. For example, Hans Staden in the

first half of the 16th century reported that Guarani groups of the southern coast of Brazil pro-

cessed fish (possibly Mugilidae) to make flour [145]. Although the origin and details of such

practices are unknown, fish drying and grinding would imply that some species may have

undergone selective taphonomic processes that conditioned their recovery and identification

in the archaeological record [146].

The evolution of local fishing technology also played a role in species variation through

time and among sites. For example, increased remains of pelagic species in sites containing

ceramic artefacts of the Taquara-Itararé tradition coincided with the appearance and spread of

single-piece baited fishing hooks manufactured from mammal bones from 1200 years ago

[40]. Groups producing/using ceramic artefacts attributed to Taquara-Itararé tradition also

had the technology to colonise oceanic islands in southern Brazil, such as Arvoredo Island

located more than 10 km off the mainland [147, 148]. This evidence supports the emerging

consensus that some coastal populations intensified fishing in the Late Holocene [40, 127],

and pursued offshore resources. In addition to fishing technology, the evolution of coastal eco-

systems in southern Brazil over the last 5000 years (a period covering 98% of the analysed

data) potentially affected species distribution and local relative abundances, and hence subsis-

tence models through time. As recently discussed by Toso et al. [40], the decrease in relative

sea level and the silting of some estuarine-lagoonal water bodies in southern Brazil in the Late

Holocene may have disrupted access to key lagoonal resources in the Atlantic Forest coast,

forcing some human populations (e.g. Taquara-Itararé groups) to intensify the capture of

open sea and pelagic species in more recent times.

Fishing up marine food web in pre-European times?

Top marine predators (sharks and rays) were particularly targeted in southern Brazil from ca.

2200 years ago. Our null model approach based on the frequency of species in Babitonga Bay

also revealed that pre-European fisheries predominantly captured species of relatively higher

trophic position, in addition to larger body size and body mass, compared to modern fish

catches and to local fish assemblages. The results thus suggest that past coastal environments

supported more complex food webs than currently exist in the region. High trophic level and

large-bodied species were possibly more abundant in the past, allowing for their periodic

exploitation by Indigenous populations with relatively simple fishing technology for thousands

of years [40].
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Compared to pre-European assemblages, modern fish catches in Babitonga Bay have a

smaller contribution of key functional groups such as top predators (large-bodied piscivores

and macrocarnivores) and a higher abundance of lower trophic level and small-bodied species.

Notably, it is only in modern catches that we see planktivores being exploited, as well as the

increasing contribution of small-bodied species to catch composition. Although there were no

significant differences in trophic levels across periods to suggest the occurrence of fishing

down the marine food web (gradual decrease in the mean trophic level of fish in fisheries

catches due to preferential removal of top predators, [149]), the identified pattern reveals a sig-

nificant decrease in the encounter rate with large-bodied and high trophic level species in

modern catches. The causes are possibly attributed to overfishing, bycatch and other detrimen-

tal impacts on top predators, even though the effects of taphonomic processes and recovery

techniques on modelled outputs remain unclear.

Implications for marine biological conservation

Significantly, Brazil is one of the world’s largest elasmobranch fishing industries, with over

90% of the catches in Brazil obtained by fisheries in Santa Catarina and Rio Grande do Sul

[150]. Until the last three decades, southern Brazil’s continental shelf supported a high diver-

sity and large populations of coastal elasmobranchs that were exploited by subsistence, recrea-

tional and commercial fisheries [151–153]; however, many of these species are now considered

endangered [154]. Other environmental stressors, such as industrial and urban activities [155],

including the closure of the Linguado channel in the 1930’s and its impact on migratory spe-

cies [156, 157], have aggravated local ecological conditions.

Similarly, several species of demersal and pelagic sharks and rays reported in the archaeo-

logical record [86, 158–160], have seen reductions in population sizes over the last decades

[161, 162], and are currently listed in the Vulnerable (VU), Endangered (EN), Critically

Endangered (CR) and/or Regionally Extinct (RE) categories [68]. Long-living species of Sciae-

nidae and Ariidae are currently considered overexploited with risks of significant catch reduc-

tion in the near future, while others have collapsed [26, 163]. A large number of species

reported in the archaeological record are currently categorised as Data Deficient (DD) in

terms of their distribution and abundance [67, 68] (cartilaginous fish—Rhinoptera bonasus,
Carcharhinus altimus, Carcharhinus brachyurus, Isurus paucus, Lamna nasus; bony fish—Sar-
dinella brasiliensis, Trachinotus cayennensis, Anisotremus surinamensis, Menticirrhus ameri-
canus, Menticirrhus littoralis, and Pagrus pagrus). Given their socio-economic importance,

notably for the food security and livelihood of local coastal communities (PAN Mangrove

[69]), an understanding of species and population responses to long-term fishing pressure is

critical for their sustainable management.

Coastal and ocean ecosystems have fuelled subsistence fisheries for thousands of years

along the Brazilian coasts. As a result, hundreds of archaeological sites preserve information of

past biological diversity of potential interest for fisheries management and conservation

debates. Here, we have directed our analyses towards bony and cartilaginous fish, as they rep-

resent some of the most commonly occurring and abundant faunal remains in the archaeolog-

ical sites under examination. Other organisms such as molluscs, echinoderms and crustaceans

are also untapped sources of information on long-term human-coastal interaction in this

region. Future studies that combine these proxies may enhance our understanding of past

Indigenous coastal adaptation.

Our study revealed that demersal species contributed to most of the catches and thus played

an important role in past Indigenous food security. Compared to present day fish catches, our

study indicates that past encounter rates were possibly greater for species of high trophic level,
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large body size and body mass to enable their persistent capture and consumption, which

invites us to rethink the antiquity of the human footprint on ocean ecosystems in the region.

Some of these species are currently threatened by overfishing and habitat degradation, while

others are surrounded by uncertainties regarding their modern distribution and abundance.

The results presented here provide the most direct evidence of what species have been sub-

jected to long-term fishing efforts, and offer benchmarks of species relative abundances and

distributions prior to fish commoditization in the Southwestern Atlantic Ocean.
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PLOS ONE Archaeology and marine conservation in the Neotropics

PLOS ONE | https://doi.org/10.1371/journal.pone.0285951 May 25, 2023 19 / 27

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0285951.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0285951.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0285951.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0285951.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0285951.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0285951.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0285951.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0285951.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0285951.s009
https://doi.org/10.1371/journal.pone.0285951


Funding acquisition: Thiago Fossile, André Carlo Colonese.
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tana (Regan, 1917) in two different Brazilian coastal lagoons. Braz Arch Biol Technol. 2003; 46: 215–

222.
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do Sul. 2011. Available: http://tede2.pucrs.br/tede2/bitstream/tede/204/1/430797.pdf
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