

	
Advancing	the	state	of	the	art	of	directive‐
based	programming	for	GPUs:	runtime	and	

compilation	
	

Kazuaki Matsumura

ADVERTIMENT La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents
condicions d'ús: La difusió d’aquesta tesi per mitjà del repositori institucional UPCommons
(http://upcommons.upc.edu/tesis) i el repositori cooperatiu TDX (h t t p : / / w w w . t d x . c a t /) ha
estat autoritzada pels titulars dels drets de propietat intelꞏlectual únicament per a usos privats
emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats
de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei UPCommons o TDX. No
s’autoritza la presentació del seu contingut en una finestra o marc aliè a UPCommons (framing).
Aquesta reserva de drets afecta tant al resum de presentació de la tesi com als seus continguts. En
la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora.

ADVERTENCIA La consulta de esta tesis queda condicionada a la aceptación de las siguientes
condiciones de uso: La difusión de esta tesis por medio del repositorio institucional UPCommons
(http://upcommons.upc.edu/tesis) y el repositorio cooperativo TDR (http://www.tdx.cat/?locale-
attribute=es) ha sido autorizada por los titulares de los derechos de propiedad intelectual
únicamente para usos privados enmarcados en actividades de investigación y docencia. No se
autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde un
sitio ajeno al servicio UPCommons No se autoriza la presentación de su contenido en una ventana
o marco ajeno a UPCommons (framing). Esta reserva de derechos afecta tanto al resumen de
presentación de la tesis como a sus contenidos. En la utilización o cita de partes de la tesis es
obligado indicar el nombre de la persona autora.

WARNING On having consulted this thesis you’re accepting the following use conditions: Spreading
this thesis by the institutional repository UPCommons (http://upcommons.upc.edu/tesis) and the
cooperative repository TDX (http://www.tdx.cat/?locale- attribute=en) has been authorized by the
titular of the intellectual property rights only for private uses placed in investigation and teaching
activities. Reproduction with lucrative aims is not authorized neither its spreading nor availability
from a site foreign to the UPCommons service. Introducing its content in a window or frame foreign
to the UPCommons service is not authorized (framing). These rights affect to the presentation
summary of the thesis as well as to its contents. In the using or citation of parts of the thesis it’s
obliged to indicate the name of the author.

A D VA N C I N G T H E S TAT E O F T H E A RT O F D I R E C T I V E - B A S E D
P R O G R A M M I N G F O R G P U S : R U N T I M E A N D C O M P I L AT I O N

kazuaki matsumura

Dissertation submitted in partial fulfillment of the requirements
for obtaining the academic degree

Doctor of Philosophy in Computer Architecture

Universitat Politècnica de Catalunya

February 2024

SUPERVISOR:
Dr. Antonio Jose Peña Monferrer

MENTOR:
Dr. Simon Garcia de Gonzalo

AFFILIATION:
Departament d’Arquitectura de Computadors

SUPPORT:
Barcelona Supercomputing Center

LOCATION:
Barcelona

A B S T R A C T

The rapid development in computing technology has paved the way for directive-based
programming models towards a principal role in maintaining software portability of
performance-critical applications. Efforts on such models involve a least engineering cost
for enabling computational acceleration on multiple architectures, while programmers are
only required to add meta information upon sequential code. Optimizations for obtaining
the best possible efficiency, however, are often challenging. The insertions of directives
by the programmer can lead to side-effects that limit the available compiler optimization
possible, which could result in performance degradation. This is exacerbated when tar-
geting asynchronous execution or multi-GPU systems, as pragmas do not automatically
adapt to such mechanisms, and require expensive and time-consuming code adjustment
by programmers. Moreover, directive-based programming models such as OpenACC and
OpenMP often prevent programmers from making additional optimizations to take ad-
vantage of the advanced architectural features of GPUs because the actual generated com-
putation is hidden from the application developer.

This dissertation explores new possibilities for optimizing directive-based code from
both runtime and compilation perspectives. First, we introduce a runtime framework for
OpenACC to facilitate dynamic analysis and compilation. Especially, our framework real-
izes automatic asynchronous execution and multi-GPU use based on the status of kernel
execution and data availability while taking advantage of an on-the-fly mechanism for
compilation and program optimization. We add a versatile code-translation method for
multi-device utilization by which manually-optimized applications can be distributed au-
tomatically while keeping original code structure and parallelism. Second, we implement
a novel flexible optimization technique that operates by inserting a code emulator phase
to the tail-end of the compilation pipeline. Our tool emulates the generated code using
symbolic analysis by substituting dynamic information and thus allowing for further low-
level code optimizations to be applied. We implement our tool to support both CUDA and
OpenACC directives as the frontend of the compilation pipeline, thus enabling low-level
GPU optimizations for OpenACC that were not previously possible. Third, we propose the
use of a modern optimization technique, equality saturation, to optimize sequential code
utilized in directive-based programming for GPUs. Our approach realizes less computa-
tion, less memory access, and high memory throughput simultaneously. Our fully-auto-
mated framework constructs single-assignment forms from inputs to be entirely rewritten
while keeping dependencies and extracts optimal cases. Overall, we cover runtime tech-
niques and optimization methods based on dynamic information, low-level operations,
and user-level opportunities.

We evaluate our proposals on the state-of-the-art GPUs and provide detailed analy-
sis for each technique. For multi-GPU use, we show in some cases nearly linear scaling
on the part of kernel execution with the NVIDIA V100 GPUs. While adaptively using
multi-GPUs, the resulting performance improvements amortize the latency of GPU-to-
GPU communications. Regarding low-level optimization, we demonstrate the capabili-

iii

ties of our tool by automating warp-level shuffle instructions that are difficult to use by
even advanced GPU programmers. While evaluating our tool with a benchmark suite and
complex application code, we provide a detailed study to assess the benefits of shuffle
instructions across four generations of GPU architectures. Lastly, with sequential code
optimization, we demonstrate a significant performance improvement on several compil-
ers through practical benchmarks. Then, we highlight the advantages of computational
reordering and emphasize the significance of memory-access order for modern GPUs. All
the implementations of our frameworks are publicly available and contribute new meth-
ods of acceleration to directive-based programming.

iv

C O N T E N T S

1 introduction 1

1.1 Motivation 1

1.2 Problem Statement 2

1.3 Proposal and Contributions 3

1.4 Thesis Outline 5

2 background 6

2.1 GPU Architecture 6

2.2 CUDA Programming 8

2.3 Directive-Based Programming 9

2.4 NVIDIA PTX 11

2.5 Shuffle Operations 12

3 runtime efforts 13

3.1 JACC 13

3.2 Basic Extension 14

3.2.1 Automated Asynchronous Execution 14

3.2.2 Kernel Specialization 17

3.3 Multi-GPU Utilization with Predicates 17

3.3.1 Predicate-Based Filtering 17

3.3.2 Division of Multidimensional Arrays 18

3.3.3 Adaptive Utilization 20

3.3.4 Implementation 21

3.4 Experimental Methodology 23

3.4.1 Hardware and Software 23

3.4.2 Benchmarks 23

3.5 Results 25

3.5.1 Basic Extension 25

3.5.2 GCC Custom Allocation 26

3.5.3 Multi-GPU Utilization 26

3.6 Related Work 33

4 low-level code optimization 35

4.1 PTXASW 35

4.2 Symbolic Emulator 37

4.2.1 Instruction Encoding 37

4.2.2 Execution Branching 38

4.2.3 Memory Analysis 38

4.3 Shuffle Synthesis 38

4.3.1 Detection 40

4.3.2 Code Generation 41

4.4 Experimental Methodology 42

4.5 Evaluation 44

v

4.6 Analysis 47

4.6.1 Kepler 47

4.6.2 Maxwell 47

4.6.3 Pascal 49

4.6.4 Volta 49

4.6.5 Application Example 50

4.7 Related Work 50

5 source-code optimization 53

5.1 ACC Saturator 53

5.2 Program Representation 55

5.2.1 E-Graph Creation 55

5.2.2 Code Selection 56

5.3 Optimization with Saturation 56

5.3.1 Rewriting Rules 56

5.3.2 Cost Model 57

5.4 Code Generation 57

5.4.1 Temporary-Variable Insertion 58

5.4.2 Bulk Load 59

5.5 Experimental Methodology 59

5.6 Evaluation 62

5.7 Related Work 68

6 summary and conclusion 70

6.1 Summary 70

6.2 Conclusion 71

6.3 Future Work 73

6.4 Publications 73

6.4.1 Referred Conferences 73

6.4.2 Referred Presentations 73

6.4.3 Software 73

Acknowledgements 75

Appendix 76

bibliography 79

vi

L I S T O F F I G U R E S

Figure 2.1 Performance changes of recent GPUs 6

Figure 2.2 NVIDIA Volta GV100 GPU 7

Figure 2.3 NVIDIA Volta GV100 Streaming Multiprocessor (SM) 8

Figure 3.1 Execution flow of automated asynchronous execution 15

Figure 3.2 Compilation flow with on-the-fly kernel specialization 16

Figure 3.3 Example of predicate-based filtering in C code 18

Figure 3.4 Original code and corresponding predicated code 19

Figure 3.5 Execution flow of predicate-based filtering 21

Figure 3.6 Actual case of JACC code generation in Fortran 22

Figure 3.7 Async and kernel optimization on NVIDIA Tesla V100

SXM2 26

Figure 3.8 Performance scaling of predicate-based filtering using NPB with
NVHPC/GCC 27

Figure 3.9 Performance scaling of predicate-based filtering using the Fortran
mini-apps with NVHPC 28

Figure 3.10 Scaling with the number of GPUs for the stencil kernel in the Hi-
meno benchmark 31

Figure 3.11 Comparison between predicate-based filtering with/without the
adaptive algorithm and MACC using NPB-CG 32

Figure 4.1 Overview of PTXASW 36

Figure 4.2 Performance comparison between the original code and the version
implementing automated shuffle on four GPUs 44

Figure 4.3 Speedup by PTXASW compared to Original 45

Figure 4.4 Occupancy of SMs by PTXASW 46

Figure 4.5 Stall breakdown in the order of Original/NO LOAD/NO COR-
NER/PTXASW 48

Figure 5.1 Overview of ACC Saturator 54

Figure 5.2 NPB’s speedup results on NVIDIA A100-PCIE-40GB for each vari-
ation compared to original 60

Figure 5.3 Breakdown of NPB-BT 62

Figure 5.4 Speedup results of the SPEC ACCEL benchmark suite on NVIDIA
A100-PCIE-40GB 64

Figure 5.5 NPB’s speedup results on NVIDIA A100-SXM4-80GB 66

Figure 5.6 Speedup results of the SPEC ACCEL benchmark suite on NVIDIA
A100-SXM4-80GB 67

vii

L I S T O F TA B L E S

Table 2.1 Latencies (clock cycles) 12

Table 3.1 Benchmark description 24

Table 3.2 Performance details with NVHPC in the use of four GPUs 29

Table 4.1 The KernelGen benchmark suite 43

Table 5.1 ACC Saturator’s rewriting rules 57

Table 5.2 NAS Parallel Benchmarks 60

Table 5.3 The SPEC ACCEL benchmark suite 61

Table 5.4 Top-10 kernel breakdown of NPB-BT 63

viii

L I S T I N G S

Listing 2.1 Addition kernel in CUDA 9

Listing 2.2 Matrix multiplication kernel in C and OpenACC 9

Listing 2.3 Multi-device use in OpenACC 10

Listing 2.4 Addition kernel in PTX 11

Listing 2.5 The use of shfl.sync in PTX 12

Listing 3.1 Accelerator programming in OpenACC 13

Listing 3.2 Converted code to JACC 13

Listing 3.3 Generated code for kernel launch 14

Listing 3.4 Kernel code from NPB-BT 20

Listing 4.1 Addition of bitvectors 37

Listing 4.2 Addition instruction 37

Listing 4.3 Jacobi kernel in Fortran and OpenACC 39

Listing 4.4 Global-memory trace of Jacobi kernel through the symbolic emula-
tion in order 39

Listing 4.5 Shuffle synthesis on Jacobi kernel 41

Listing 5.1 One of kernels in NPB-BT’s z_solve.c 58

Listing 5.2 Generated Code of ACC Saturator 58

Listing A.1 Pseudocode for the algorithm of PTXASW 76

ix

A C R O N Y M S

ASICs Application-Specific Integrated Circuits

CFD Computational Fluid Dynamics

CPUs Central Processing Units

CSE Common Subexpression Elimination

FFI Foreign Function Interface

FMA Fused Multiply-Adds

GPUs Graphical Processing Units

HBM2 High Bandwidth Memory 2

HPC High Performance Computing

ILP Instruction Level Parallelism

NPB NAS Parallel Benchmarks

SIMD Single Instruction Multiple Data

SMs Streaming Multiprocessors

SMT Satisfiability Modulo Theories

SSA Static Single Assignment

UM Unified Memory

x

1
I N T R O D U C T I O N

Beginning this thesis, Chapter 1 engages in discourse about supercomputing, accelerators,
and directive-based programming. Then, we argue the current issues that they face in
modern systems. Our proposal and contributions are given to indicate the direction of
our study. The thesis outline follows up to the end of the chapter.

1.1 motivation

Effectively utilizing the vast amount of computational performance available in modern
supercomputers remains a challenge to this day. Hardware, middleware, and parallel algo-
rithms should be carefully orchestrated so that ideal efficiency may be obtained for solving
large real-world problems in High Performance Computing (HPC). Compiler technologies
are developed with highly-automated program optimizations that use domain-specific
knowledge and target architecture specialization to solve a part of this puzzle. With the
end of Moore’s Law [1] approaching, the focus on supercomputing technology is shift-
ing toward even more specialized accelerators, which in turn increases their complexity.
This trend further signifies the importance of compiler technology to relieve programmers
from the burden of understanding the complex architecture of modern accelerators to be
able to efficiently optimize their applications.

The adoption of newer technologies brings newer challenges. Currently, supercomput-
ers employ various kinds of accelerators in the range from Single Instruction Multiple
Data (SIMD) units available on Central Processing Units (CPUs) to discrete devices such
as Graphical Processing Units (GPUs), Application-Specific Integrated Circuits (ASICs),
and Intel Xeon Phis [2]. Those heterogeneous systems tend to force a certain amount
of engineering efforts on application developers to establish an adequate distribution
of program execution and attain performance for practical use. Notably, GPUs are the
most widely adopted accelerator technology, and they work by speeding up applications
upon its highly parallelized yet cooperative architecture. To take advantage of GPUs, pro-
grammers must be proficient in writing complex and time-consuming GPU code in low-
level languages, which is typically the most profitable approach but involves complex
data dependencies. As a result, adapting vendor-specific languages like CUDA [3] and
OpenCL [4] requires extensive knowledge of the application and creates separate code
entities just for computation offloading, which increases programming costs.

To overcome the complexity of low-level GPU code development, current GPU acceler-
ators support programming with abstract models. OpenACC [5] and OpenMP [6] have
emerged as popular models that alleviate the difficulty of accelerator use by providing

1

code directives to existing languages. These directives allow users to specify compute-
intensive parts of the original code, which compilers may automatically translate into
accelerator code. At runtime, offloading is realized without any user intervention.

Currently, major compilers including NVIDIA’s NVHPC compiler [7], GCC [8], Intel
Compilers [9], and Clang [10] support GPU programming with directives. While some
divergences exist between language models, they share common interests and similar ob-
jectives for high-performance computing with existing software resources. Several work-
shops are dedicated to the development of those programming models [11, 12], and re-
searchers in various fields continuously publish conference papers to take advantage of
this method of computational acceleration [13]. As many research projects have already
made significant efforts on those models, directive-based code already became legacy with
multiple working applications.

1.2 problem statement

Directive-based code typically maintains a general programming style and remains unspe-
cialized until compilation. It is the responsibility of compilers to handle the computation,
the redundancy of memory accesses, and the order of those while considering the nature
of accelerators. However, code rewriting while preserving semantics may be challenging.
The insertion of directives by the programmers often results in compilation side-effects
that lead to less program-characteristics exposure for compilation [14, 15, 16]; thus, pro-
grammers aiming at better efficiency are forced to reshape their code merely for adjusting
to the environment such as compilers, software stacks and heterogeneous architectures.
Moreover, to follow the program modification, additional runtime parameters are often
introduced for each program segment. Therefore, managing rewritten code is far from
clear regardless of the complexity of transformation. Specifically, the parallelism among
kernels is rarely addressed and the multi-device utilization is basically dismissed due to
the little usability of data dependency information.

The gap between high-level languages and state-of-the-art accelerators demands com-
piler techniques to elaborate efficient execution from sequential programs and auxiliary
information. Current compilers, however, only consider lower-level codes that code gen-
erators also emit for CPU execution without specialization. In particular, user-specified
directives fix loop structures, so little work has been done on optimizing code under
directives other than relying on compiler techniques used for sequential programs [17].
Moreover, the optimization applied for each metric in order limits opportunities to utilize
source-code information for improved performance. The compilers need more complex
approaches to improve the performance of directive-based code as those programming
models lack the ability to take advantage of low-level architecture-specific optimizations.

Despite the standardized interface of directive-based code, automatic program opti-
mization typically involves the compiler implementation in depth [18, 19]. It is unlikely
that code generation techniques are shared with other compilers or frameworks. Even a
very simple peephole optimization requires a reworking of a compiler whose design is
often monolithic and forces repetitive implementation to perform similar analyses due to
the lack of cooperation. Hence, the scope of applications, target architecture, or algorithms
is restricted before finishing the development of optimizations without knowing actual im-

2

provements to be gained. Such compiler-dependent tasks do not easily succeed in catching
up with the rapid change of computational environments. Agile and autonomous code
generation assuming only one language for both the input and the output is necessary to
extend performance opportunities in various compilers and applications while preserving
and utilizing high-level source-code information.

1.3 proposal and contributions

To explore new optimization opportunities for directive-based programming, our study
delves in three parts of compiler systems: runtime, backend, and frontend. In the first part
of our study (Chapter 3), we create an OpenACC runtime framework which enables the
dynamic extension of OpenACC programs by serving as a transparent layer between the
program and the compiler. Our framework JACC provides an environment for dynamic
analysis, rescheduling and distribution of execution along with on-the-fly kernel special-
ization by wrapping up existing OpenACC compilers. Although other directive-based
programming work develops dedicated runtime systems for specific optimization [20, 21,
22], our framework integrates the compilation and runtime phases so as to utilize both as-
pects for additional efforts especially aiming at exploiting parallelism. Additionally, we
address multi-GPU work distribution, while considering the high memory latency of
GPUs. To accomplish this, we add a novel code-translation technique named predicated-
based filtering to automate multi-device use. We never split loop ranges nor introduce fine
dependency analysis, but divide data ranges to be updated on each device. This idea al-
lows to distribute highly-tuned code neither changing code structure nor parallelism. Our
contributions in the first part are as follows:

1. We create JACC, an OpenACC framework which facilitates various dynamic fea-
tures including runtime data analysis and compilation. JACC enables kernel-level
parallelization through an asynchronous mechanism.

2. We propose and describe a new multi-GPU kernel distribution method by leveraging
JACC for complex applications. Our proposed technique is successful at multi-GPU
execution on applications where previous work fails to offload to multiple devices.

3. We propose and describe an adaptive algorithm that automatically determines the
adequate kernels for multi-GPU execution. Our adaptive algorithm considers the
bandwidth of the peer-to-peer communication between GPUs when selecting ker-
nels for multi-GPU execution.

4. We evaluate all our contributions by using two different OpenACC compilers on a
NVIDIA V100 multi-GPU system. We show that using our proposed methods and
techniques available through JACC, we are able to achieve nearly linear scaling when
excluding the latency of communication. Additionally, we are able to successfully
improve the performance of a variety of manually-tuned NAS Parallel Benchmarks.

The second part of our study (Chapter 4) expands the backend for additional optimiza-
tion, which is further based on target architecture regardless of programming models. In
this part, we describe a backend environment to extend the code of the NVIDIA GPU

3

assembly PTX and enable, for the first time in the literature, automatic shuffle synthe-
sis to explore the opportunity of this operation. Our environment, PTXASW (Wrapper of
PTX optimizing ASsembler), addresses the entire computational flow of PTX, leveraging
a symbolic emulator that can symbolically extract memory-access patterns. Following the
emulating results, PTXASW detects the global-memory loads that are possible to be cov-
ered by the shuffle operation. Around those loads, additional instructions are implanted,
while supporting corner cases and circumventing overheads. We conduct the shuffle syn-
thesis on OpenACC, a directive-based programming model having no user exposure to
warp-level instructions. Our implementation functions as a plugin of the compilation tool
yielding moderate overhead. Applying our technique, we find various opportunities to
enable shuffle over the original code of an OpenACC benchmark suite. The performance
improvement achieved is up to 132% with no user intervention on the NVIDIA Maxwell
GPU. Additionally, based on the results of the experiments using several generations of
GPUs, we analyze the latency caused for the shuffle operations to provide guidelines for
shuffle usage on each GPU architecture. In summary, the contributions of the second part
are:

1. We create a symbolic emulator to analyze and optimize GPU computing code, cou-
pled with a Satisfiability Modulo Theories (SMT) solver for the comparison of sym-
bolic expressions, induction variable recognition for loops, and various optimiza-
tions to reduce overheads.

2. Through symbolic analysis, we automatically find the possible cases to utilize the
shuffle operation, which previously required in-depth domain knowledge to be ap-
plied. Then, we synthesize those to the applications, while avoiding expensive com-
putation.

3. Using a directive-based programming model (OpenACC), we generate various shuf-
fle codes on several generations of GPUs and show the cases that attain performance
improvement with no manual effort.

4. We show the latency breakdown of the optimization on each GPU architecture and
provide general guidelines for the use of shuffle operations.

The third part of our study (Chapter 5) steps forward to automate the modification
of directive-based source code. We propose the use of a modern optimization technique,
equality saturation [23], to fine-tune directive-based GPU code. Our tool, ACC Saturator,
achieves less computation, fewer memory accesses, and high throughput at the same time,
while easily integrating into the compilation of both OpenACC and OpenMP compilers.
ACC Saturator performs kernel optimization by passing programs through an e-graph, a
graph structure for equality saturation. Unlike other optimization methods, our approach
neither transforms the abstract syntax trees nor it changes directives. Despite this, we at-
tain significant performance improvements of up to 2.23x with the NVHPC compiler and
5.08x with GCC. We present a detailed performance analysis that highlights the benefits
of each optimization on the state-of-the-art GPU architecture, NVIDIA Tesla A100. Our
contributions are four-fold:

4

1. A fully automated OpenACC/OpenMP framework for equality saturation is pro-
posed.

2. Static single-assignment form is combined with e-graph to optimize directive-based
code.

3. We demonstrate that our approach provides significant performance opportunities
for GPUs.

4. We provide a detailed analysis of kernel performance and the effectiveness of opti-
mization techniques using the latest NVIDIA GPU architecture for HPC.

As each framework operates on one of the layers of compiler infrastructures, it allows
each other optimizations to pursue a thorough performance update. All our tools are
publicly available through the BSC Accelerators and Communications for HPC Group’s
software download page1.

1.4 thesis outline

The remaining chapters of this thesis are structured as follows:

• Background (Chapter 2): This chapter provides background knowledge on GPUs,
directive-based programming, and code optimization.

• Runtime Efforts (Chapter 3): In this chapter, we first propose a runtime framework
for OpenACC, and upon that, illustrate an extension for automated asynchronous
execution and dynamic kernel specialization. Moreover, we add a code-translation
method for multi-GPU utilization and distribute manually-tuned benchmarks that
hardly allow precise data-dependency analysis.

• Low-Level Code Optimization (Chapter 4): This chapter introduces a backend en-
vironment to extend the NVIDIA GPU assembly code. There, we automate shuf-
fle instructions without assuming programming models; thus, both OpenACC and
CUDA codes can be specialized for target architecture. Applying our tool to a bench-
mark suite, we assess the benefit of the shuffle instructions across four generations
of GPUs.

• Source-Code Optimization (Chapter 5): In this chapter, we explain our approach
to represent general sequential code for equality saturation and optimizations and
then describe our novel code generation technique from e-graphs towards high-
throughput GPU execution. Our evaluation modifies the source code of practical
benchmarks, shows performance benefits, and provides in-depth analysis on each
technique.

• Summary and Conclusion (Chapter 6): Finally, this chapter summarizes our work
and concludes our contribution to directive-based programming models.

1 https://www.bsc.es/discover-bsc/organisation/scientific-structure/accelerators-and-communicati

ons-hpc/team-software

5

https://www.bsc.es/discover-bsc/organisation/scientific-structure/accelerators-and-communications-hpc/team-software
https://www.bsc.es/discover-bsc/organisation/scientific-structure/accelerators-and-communications-hpc/team-software

2
B A C K G R O U N D

GPU computing is the primary target whose efficiency our study tries to improve. Chap-
ter 2 focuses on the fundamental knowledge of GPUs and programming by CUDA, direc-
tives, and PTX. We suggest several methods of optimization in relation to performance.

2.1 gpu architecture

Graphics Processing Units (GPUs) originated as graphic processors supporting massive
parallelism. In contrast to CPUs, which are used for general computations and system
management, GPUs are usually dedicated to those parts of applications featuring a high
degree of parallelism. Since GPUs can hide the latency of memory requests by overlap-
ping it with execution, the peak bandwidth of GPUs is significantly larger than that of
CPUs. Furthermore, the hierarchical memory system including multi-level caches, shared
memory and registers, allows exploiting spatial and temporal locality.

T
F

L
O

P
/s

 (
F

P
3

2
)

0
5

1
0

1
5

2
0

M

e
m

-B
W

 /
 F

L
O

P

0
0
.0

4
0
.0

8
0
.1

2
0
.1

6
HBM2 employed

M2050 K40 M40 P100 V100 A100

P
2

P
-B

W
 (

G
B

/s
)

0
1
5
0

3
0
0

4
5
0

6
0
0

P
2

P
-B

W
 /

 M
e
m

-B
W

0
0
.1

0
.2

0
.3

0
.4

2011/07 2013/10 2015/11 2016/04 2017/06 2020/05

 NVLink employed

Figure 2.1: Performance changes of recent GPUs. The bars show peak performance in TFLOP/s
(top) and peak GPU-to-GPU bidirectional bandwidth in GB/s. The ratio to the memory
bandwidth is shown by the line plot.

We show the recent performance changes of NVIDIA GPUs [24, 25, 26, 27, 28, 29] in
Fig. 2.1. Until P100, which began employing the second generation of High Bandwidth

6

Memory 2 (HBM2), the performance gap between memory bandwidth and computational
throughput has been growing larger generation after generation. Therefore, memory ac-
cesses tend to be the performance bottleneck of applications. Currently, the NVLink
interconnect [30] is enhancing peer-to-peer communication among multiple GPUs. The
NVLink bandwidth allows not only compute-intensive but memory-intensive applications
to utilize several devices. Notably, Unified Memory (UM) realizes data accesses that au-
tomatically solve data coherence in the entire system while performing peer-to-peer com-
munications. However, frequent page faults cause heavy performance degradation [31];
hence, users are basically required to avoid data sharing or perform explicit memory
copies among GPUs.

Figure 2.2: NVIDIA Volta GV100 GPU; taken from Fig. 4 in [28]

Fig. 2.2 shows the architecture of NVIDIA Volta GV100 GPU. One GPU has multiple
Streaming Multiprocessors (SMs) which share one global memory. GPU programs, which
are ordinarily created by the CUDA programming model as will be described later, divide
the execution into thread-blocks. Each thread-block consists of the GPU’s smallest unit
of parallelism called threads. A thread has its own registers, and threads in one thread-
block hold their own shared memory. NVIDIA Volta GV100 features 84 SMs and each SM
contains 32 FP64 cores along with multiple LOAD/STORE units [28].

Fig. 2.3 shows the SM architecture. Each SM executes distributed thread-blocks in
groups of 32 threads, called warps. Using inner parallel processing units, the SM takes
advantage of Instruction Level Parallelism (ILP) as well as parallelism among warps and
thread-blocks. With no speculative execution, the warp scheduler can hide the latency of
load/store by another warp’s execution. The execution of thread-blocks in one SM can
also be overlapped as long as the summation of thread-blocks’ resource requirement does
not exceed the resource limitation (the number of thread-blocks, threads and registers,

7

Figure 2.3: NVIDIA Volta GV100 Streaming Multiprocessor (SM); taken from Fig. 5 in [28]

the size of shared memory) of the SM. Although GPUs provide high memory bandwidth,
the global memory access latency is also higher than that of CPUs [32, 33, 34]. Therefore,
optimal throughput may be attained by covering memory requests with computational
execution and hiding the latency of data movement. Additionally, the order of memory
accesses is essential due to the memory hierarchy, because the distance among accesses by
neighboring threads often results in limited bandwidth [35]. While the memory-access la-
tency increases with the accesses to higher levels of the memory hierarchy and the concept
of locality is highly respected for performance, the locality optimization brings both addi-
tional synchronization and resource use to programs. Warp-level primitives (Section 2.5),
available since the NVIDIA Kepler generation of GPUs, allow for the communication
among threads within the same warp [36], avoiding accesses to either shared or global
memory.

2.2 cuda programming

Each GPU thread shares the same program code, known as GPU kernels, customarily writ-
ten in CUDA [3], an extended form of the C++ language for NVIDIA GPUs. Listing 2.1
shows an addition kernel in CUDA. CUDA decides the behavior of compute kernels in
accordance with IDs of thread and thread-block, while accepting kernel arguments, the
number of threads, and the number of thread-blocks as variables. One thread has its own
registers, threads in one thread-block hold their own shared memory, and users are re-
sponsible for setting their configurations to obtain correct results. The on-chip resource

8

1 __global__ void add(float *c, float *a, float *b, int *f) {

2 int i = threadIdx.x + blockIdx.x * blockDim.x;

3 if (f[i]) c[i] = a[i] + b[i];

4 }

Listing 2.1: Addition kernel in CUDA

use decides processor occupancy, which limits final efficiency together with ILP and syn-
chronization.

Since the host code is executed on a CPU, GPU execution can be asynchronous to CPU
execution and multiple kernels can be launched on the same GPU simultaneously. Global-
memory accesses are done by loading or storing through device pointers passed as kernel
arguments. To keep data locally, shared memory and local variables are used. Specified
local buffers are directly mapped to shared memory in a SM. Thread-private variables are
mapped to registers as long as space allows. The number of registers can be restricted
by the compile-time option --maxrregcount. However, when the CUDA compiler cannot
schedule register allocation under the restriction, register spilling occurs and degrades the
application’s performance.

For cooperative computation among threads, CUDA provides a thread-block-level syn-
chronization primitive __syncthreads() so that each thread can synchronize other threads
belonging to the same thread-block. On the recent NVIDIA GPUs, the user can also use
warp-level synchronization primitives __syncwarp().

2.3 directive-based programming

Decomposing sequential execution into parallel entities is challenging. Routine calls of-
ten create data dependencies across multiple files, hindering the extraction of compute-
intensive code. Even with extracted code, loops often possess intricate access patterns on
different structures that challenge automatic parallelization for efficiency. Directive-based
programming models, such as OpenACC [5] and OpenMP [6], alleviate the burden of
introducing additional code for hardware acceleration. Both OpenACC and OpenMP pro-
vide code directives on the de facto standard languages for scientific applications (C/C++/
Fortran) to specify offloading parts as compute kernels with the declaration of explicit par-
allelism, enabling seamless automatic accelerator use.

1 #pragma acc kernels loop independent

2 //#pragma omp target teams distribute

3 for (int i = 0; i < cy; i++) {

4 #pragma acc loop independent gang(16) vector(256)

5 //#pragma omp parallel for simd

6 for (int j = 0; j < cx; j++) {

7 double tmp = 0.f;

8 for (int l = 0; l < ax; l++)

9 tmp += a[i][l] * b[l][j];

10 r[i][j] = alpha * tmp + beta * c[i][j];

11 }}

Listing 2.2: Matrix multiplication kernel in C and OpenACC
(OpenMP equivalent commented)

9

Listing 2.2 provides an example of OpenACC code that utilizes code directives to spec-
ify the parallelism of loops. The kernels directive guards a sequence of kernels, while
the loop directive explicitly sets the parallelism of a loop. Users may also specify a sin-
gle kernel region by using the parallel directive (not shown in the listing). OpenACC’s
parallelism consists of three levels of abstraction: gang, worker and vector (in coarse to
fine order). For instance, on the NVHPC compiler [7], both the top i and the middle j

loops feature gang parallelism with the degree of the trip count cy and 16, respectively,
and these are distributed over thread-blocks on GPUs. The middle j loop exposes addi-
tional vector parallelism and launches 256 threads to execute the inner statements. The
blue comments show an equivalent form in OpenMP, which does not allow the reuse
of parallelism across nested loops. Loop parallelism and data transfers may be implicit,
and the compiler automatically solves data dependencies and sets optimal parameters.
The NVHPC compiler generates embarrassingly parallel code for GPUs from directive
code. On the other hand, GCC [8] utilizes a principal-agent model for both OpenACC
and OpenMP, and Clang [10] follows the same approach for OpenMP.

The components of OpenACC are made of kernels and routines. An OpenACC kernel
is the unit of program execution on accelerators to be launched with specified parallelism.
The environment for kernel execution, such as device, copied data from/to the host, and
synchronous behaviors, can be controlled by OpenACC routines. OpenACC directives
are provided for specifying code segments as kernels or defining data on devices along
with several options. Although data-related directives can be replaced by routine calls,
OpenACC kernels have to be embedded on original source files with directives to be
converted to device-specific code at compile time. Therefore, additional code segments
have to be put in place along with additional variables in order to be calculated from
various dynamic parameters at runtime.

Listing 2.3 shows an example of multi-device utilization in OpenACC with asyn-
chronous execution to each other devices. Additional code segments surround the kernel,
calling an OpenACC routine to switch devices (Line 2 of Listing 2.3) and setting variables
to divide the loop execution (Lines 3-4 of the same figure). In real applications, many
other factors such as runtime information and device-to-device communication are con-
cerned; hence, in-situ kernel declarations bring additional complexities to directive-based
software development. Also, OpenACC kernels are statically declared; thus, for a com-
plex dynamic application the programmer is required to prepare adjusted kernels before
compilation, regardless of whether runtime information is available.

1 for (int d = 0; d < NUM_DEVICES; d++) {

2 acc_set_device_num(d, 0);

3 int length = N/NUM_DEVICES;

4 int init = length * d; int until = length * (d + 1);

5 #pragma acc data copyout(x[init:length]) present(y) async(d)

6 #pragma acc parallel loop async(d)

7 for (int i=init; i<until; i++)

8 x[i] = y[i] * y[i];

9 }

Listing 2.3: Multi-device use in OpenACC

10

2.4 nvidia ptx

User-level code implemented manually in CUDA or OpenACC is brought to execution
on GPUs through NVIDIA PTX [37], a virtual machine and ISA for general-purpose par-
allel thread execution. PTX programs feature the syntax and sequential execution flow of
assembly language. Thread-specific variables are replicated to be run over SMs in parallel
using the same program but different parameters. Since the actual machine code (SASS)
cannot be modified from official tools [38], PTX is the closest documented and standard
GPU code layer that may be modified.

PTX code consists of kernel and function declarations. Those have parameters and in-
struction statements along with variable declarations, labels, and predicates. Listing 2.4
provides the CUDA-generated PTX kernel from Listing 2.1. Variable declarations from
several data spaces and types correspond to the usage of on-chip resources, especially
registers. Accepting options and types (e.g. .eq, .s32), PTX instructions leverage defined
registers and compute results, while some of these enable access to other resources (e.g.,
ld.global.u32). Predicates (@%p1) limit the execution of the instructions stated under
them, which may lead to branching based on the thread-specific values, such as thread
and thread-block IDs (%tid.x, %ctaid.x). Labels (e.g., $LABEL_EXIT) are branch targets
and allow backward jumps that may create loops.

1 .visible .entry add(.param .u64 c, .param .u64 a,

2 .param .u64 b, .param .u64 f) {

3 /* Variable Declarations */

4 .reg .pred %p<2>; .reg .f32 %f<4>;

5 .reg .b32 %r<6>; .reg .b64 %rd<15>;

6 /* PTX Statements */

7 ld.param.u64 %rd1, [c]; ld.param.u64 %rd2, [a];

8 ld.param.u64 %rd3, [b]; ld.param.u64 %rd4, [f];

9 cvta.to.global.u64 %rd5, %rd4;

10 mov.u32 %r2, %ntid.x; mov.u32 %r3, %ctaid.x;

11 mov.u32 %r4, %tid.x; mad.lo.s32 %r1, %r3, %r2, %r4;

12 mul.wide.s32 %rd6, %r1, 4; add.s64 %rd7, %rd5, %rd6;

13 // if (!f[i]) goto $LABEL_EXIT;

14 ld.global.u32 %r5, [%rd7]; setp.eq.s32 %p1, %r5, 0;

15 @%p1 bra $LABEL_EXIT;

16 // %f3 = a[i] + b[i]

17 cvta.to.global.u64 %rd8, %rd2; add.s64 %rd10, %rd8, %rd6;

18 cvta.to.global.u64 %rd11,%rd3; add.s64 %rd12, %rd11,%rd6;

19 ld.global.f32 %f1, [%rd12]; ld.global.f32 %f2, [%rd10];

20 add.f32 %f3, %f2, %f1;

21 // c[i] = %f3

22 cvta.to.global.u64 %rd13,%rd1; add.s64 %rd14, %rd13,%rd6;

23 st.global.f32 [%rd14], %f3;

24 $LABEL_EXIT: ret;

25 }

Listing 2.4: Addition kernel in PTX (simplified)

11

2.5 shuffle operations

In GPU architectures prior to NVIDIA Kepler, each sequential execution of a given thread
was allowed to transfer data to another thread only through non-local memories, accompa-
nied by a block-level or grid-level synchronization barrier. Modern GPU architectures now
support additional data sharing within warps. Intra-warp communication is performed
via shuffle operations. Listing 2.5 shows the shfl.sync instruction in PTX, in which data is
shifted unidirectionally (.up, .down) across the threads of the warp, swapped in a butterfly
way (.bfly), or exchanged by precise indexing (.idx).

In the unidirectional shuffle, the delta part, which has no source lane from the same
warp, will be unchanged and obtain a false value in the resultant predicate (%p1); only the
active threads (%mask) of the same control flow participate in the same shuffle. Inactive
threads or threads from divergent flows produce neither valid results nor predicates to
destination lanes. Each operation is accompanied by the warp-level synchronization, some
of which are optimized away during compilation. While shuffle instructions allow for sub-
warp granularity, our work focuses on the unidirectional instruction with 32 threads using
32-bit data, as applying sub-warp granularity to applications tends to feature corner cases
and suffers from exception handling for intricate patterns.

1 activemask.b32 %mask;

2 // val[warp_id] = %src; %dst = val[warp_id-%i]

3 shfl.sync.up.b32 %dst1|%p1, %src, %i, 0, %mask;

4 // val[warp_id] = %src; %dst = val[warp_id+%i]

5 shfl.sync.down.b32 %dst2|%p2, %src, %i, 31, %mask;

6 // val[warp_id] = %src; %dst = val[warp_id^%i]

7 shfl.sync.bfly.b32 %dst3|%p3, %src, %i, 31, %mask;

8 // val[warp_id] = %src; %dst = val[%i]

9 shfl.sync.idx.b32 %dst4|%p4, %src, %i, 31, %mask;

Listing 2.5: The use of shfl.sync in PTX

Table 2.1 shows the latencies (clock cycles) of shared memory (no-conflict) and L1 cache
as reported by [39], besides that of shuffle, from a microbenchmark based on [40]. In the
table, Kepler is NVIDIA Tesla K80, Maxwell is M60, Pascal is P100 and Volta is V100, while
Tesla K40c/TITAN X are used for the shuffle of Kepler/Maxwell. This table reveals that
shuffle brings benefits over shared memory as a communication mechanism when data
movement is not redundantly performed, so storing and synchronization are avoidable. In
particular, latencies of L1 cache on Maxwell/Pascal are higher compared to Kepler/Volta,
which integrate shared memory with L1 cache. Those allow the shuffle to be utilized as
a register cache for performance improvement, but the engineering efforts in order to
modify the fundamental parts of parallel computation are considerably high.

Table 2.1: Latencies (clock cycles) reported in [39, 40]

Name Shuffle (up) Shared-Memory Read L1 Hit

Kepler 24 26 35

Maxwell 33 23 82

Pascal 33 24 82

Volta 22 19 28

12

3
R U N T I M E E F F O RT S

Our work introduces dynamic analysis and compilation to OpenACC directive-based pro-
gramming, allowing further efforts on optimization at runtime. All the components of
OpenACC, here, are provided as runtime routines leveraging existing compilers. By trans-
forming directives into a sequence of routine calls, OpenACC compilers can enable on-
the-fly features such as kernel specialization and load-balancing.

3.1 jacc

1 #pragma acc data copyout(x[0:N]) present(y)

2 #pragma acc parallel loop

3 for(int i=0; i<N; i++) x[i] = y[i] * y[i];

Listing 3.1: Accelerator programming in OpenACC

1 /* Entry of #pragma acc data */

2 jacc_create(x, N * sizeof(float));

3

4 /* #pragma acc parallel loop */

5 jacc_kernel_push(

6 "#pragma acc parallel present(x, y)\n"

7 "#pragma acc loop\n"

8 "for(int i=0; i<N ; i ++) /* ... */",

9 /* args */, /* flags */);

10

11 /* Exit of #pragma acc data */

12 jacc_copyout(x, N * sizeof(float));

Listing 3.2: Converted code to JACC (arguments omitted)

We build JACC, a just-in-time compilation system for OpenACC, in which input direc-
tives are replaced with runtime routines. JACC hides every OpenACC feature behind a
runtime library to cushion dependency to specific compilers. Once a kernel is compiled
for the first time, its device code is cached to be reused for subsequent launches. Even
though JACC is developed upon existing compilers, it allows calling of CUDA routines
and kernels through its library. Listing 3.2 shows the converted code of Listing 3.1, which
shows an OpenACC code written in C that updates array x with the multiplication of
array y, to call runtime routines. First, combined directives (e.g. parallel loop of Line
2 of Listing 3.1) are decomposed into three basic directives of parallel, loop and data.

13

1 void kernel0(float *x,

2 float *y, size_t N) {

3 #pragma acc parallel present(x, y)

4 #pragma acc loop

5 for(int i=0; i<N; i++) x[i] = y[i] * y[i];

6 }

Listing 3.3: Generated code for kernel launch (formatted)

Then, for each directive, JACC inserts corresponding routines that are implemented in its
library, shown in Listing 3.2 (Lines 2, 5 and 12).

During program execution, JACC data-related routines that wrap OpenACC routines
(Lines 2 and 12 of Listing 3.2) assume the roles of the original directives. The routine
jacc_kernel_push launches kernel execution while accepting source code in a string with
arguments that hold runtime information (Lines 5-9 of the same figure). It should be
noted that the loop directive is used for marking parallelism; therefore, the directive is
kept in kernel strings. When the routine finds no compiled kernel for a given source code
or needs to update existing kernels, function code (Listing 3.3) is generated to emit device
code by a specified compiler and to have additional arguments for code extension. After
linked dynamically, this function is called through a Foreign Function Interface (FFI) for
passing arbitrary arguments. JACC’s library for each routine is extended to collect runtime
information and support dynamic features.

3.2 basic extension

Whereas the OpenACC APIs are added explicitly to a program as directive clauses with
a specific intent [41, 20], the intent and effect of base-language modifications to a pro-
gram are implicit. There exist a large body of work that studies the implications of base-
language modification on OpenACC compilation [42, 17, 43, 44]. JACC works as a runtime
solution for dynamic optimization for both the OpenACC APIs and base-language pro-
gram modification. Because of JACC’s ability to handle both types of optimizations, it can
automatically overlap kernel execution, and thus achieve inter-kernel parallelism. Also,
additional on-the-fly kernel specialization using runtime information extracted from pro-
filing results for better resource use and intra-kernel parallelism are possible.

3.2.1 Automated Asynchronous Execution

Since JACC automatically provides a function interface for each OpenACC kernel, addi-
tional runtime information needed for extended execution shown in lines 2-5 of Listing 2.3,
can be passed through as arguments to the JACC function interface without the need to
generate redundant code snippets. Instead of compiler-generated code, which is hard
to manage as global program information, JACC’s runtime calculates the required argu-
ments on its own runtime environment and then proceeds to call the kernel functions
using them. The benefit of this approach is that information across multiple execution
instances can be easily shared for further optimizations. Moreover, JACC provides the
ability to update kernels dynamically with additional runtime information after program

14

JACC Code JACC Runtime Dynamic Code

void kernel0(…, int async) {
#pragma acc … async(async)
for (…) {

…
}}

jacc_create(…); // Create a, b, c
jacc_kernel_push(…); // Initialize a
jacc_kernel_push(…); // Initialize b
jacc_kernel_push(…); // Update c from a, b
jacc_kernel_push(…); // Update c from b, c
jacc_copyout(…); // Copyout c; Del a, bE

x
ec

async= 0 1 2

Input Code

#pragma acc kernels create(a, b) copyout(c)
{ for (…) a[i] = i;
for (…) b[i] = i;
for (…) c[i] = a[i] + b[i];
for (…) c[i] = b[i] + c[i];

}

① ② ③

④

(Create) a b c
(Kernel0) a
(Kernel1) b
(Kernel2) c
(Kernel3) c
(Copyout) c

Sync

1 typedef enum { NONE = 0, ARRAY = 1, STATIC = 2, PRESENT = 4, REDUCTED = 8, DIST = 16, WRITTEN = 32, READ = 64

2 } Jacc_Attr;

3

4 typedef struct Jacc_Arg {

5 const char *type; /* "int" */ const char *symbol; /* "a" */ void *variable_address; /* &a */

6 void *addr; /* a */ size_t size; /* sizeof(a) */ int attr; /* STATIC | ARRAY | READ | PRESENT */

7 struct Jacc_Arg *next;

8 } Jacc_Arg;

9

10 /* jacc_create(a, 10000); */

11 void jacc_create(void *a, size_t len);

12 /* jacc_kernel_push("#pragma parallel loop\n for (..) a[i] = i;", (Jacc_Arg) { "int", ... }); */

13 void jacc_kernel_push(const char *code, Jacc_Arg *arg);

14 /* jacc_copyout(a, 10000); */

15 void jacc_copyout(void *a, size_t len);

Figure 3.1: Execution flow of automated asynchronous execution. First, the JACC code is generated from the input 1 . Following the execution, the
runtime manages data declarations and checks data dependency among asynchronous queues based on data ranges of actual kernel
arguments 2 . Dynamic code is created from kernel code to be executed on a destined queue based on the kernel argument async 3 and
synchronization is performed with the host if necessary 4 . The code below provides the prototype of each routine and the definition
of each data type with actual use in comments. The description of JACC’s routines is provided in Section 3.1.

1
5

compilation is invoked, thus, providing a straightforward mechanism for runtime exten-
sions of original kernel declaration.

For asynchronous execution, we automatically overlap kernel launches and data opera-
tions with each other as well as host execution. Each JACC routine has the ability to track
array references, and if data dependencies are encountered across two or more routines,
JACC will schedule them in the same asynchronous queue. When multiple queues are
concerned, synchronous operations are performed only among those queues that require
them, while skipping redundant synchronization on already solved dependencies. JACC
achieves this by maintaining timestamps of data accesses and the most recent synchroniza-
tion among queues. If there is no data dependency to prior execution, the least recently
used queue is selected. We guarantee original code semantics by obligatory synchroniza-
tion that is performed immediately after kernel execution that deals with array writes
to undefined data regions and explicit variable updates such as reduction. Data ranges
linked to given pointers are tracked through JACC’s runtime routines, and managed in a
red-black tree as OpenACC compilers do to accept any address of declared data [45].

Fig. 3.1 shows JACC’s automatic asynchronous code optimization and execution flow.
During execution by the JACC runtime (Step 2 of Fig. 3.1), synchronization between
queues is performed. For example, before Kernel2 execution is allowed, a synchroniza-
tion call is performed to wait for the updated arrays a and b. However, for Kernel3, the
dependency on b is already solved by the previous synchronization, thus the execution
does not wait for other queues. For the overlapping execution, during the dynamic code
generation (Step 3 of Fig. 3.1), the OpenACC clause async is set for each kernel declaration,
and asynchronous execution queues are selected.

JACC Code JACC Runtime

Profiled Dynamic Code

void kernel0(
float *x, float *y,
size_t N, float *sum_out) {
float sum;
// Kernel Code #pragma …
*sum_out = sum;

}

Args 0 1 2 …kernel(); // contains #pragma

jacc_optimize();

kernel();

(Kernel0) 0x… 0x… 1024 X
(Kernel1) … … …
(Kernel2)

...

Specialized Dynamic Code

E
x
ec

①

③

④

#define N 1024
void kernel0_opt(
float (* restrict x),
float (* restrict y),
float *sum_out) {
// The same as profiled code

}

②

1

2

3

4

5

6

7

1

2

3

4

5

6

7

Figure 3.2: Compilation flow with on-the-fly kernel specialization. To collect runtime information
about kernel arguments, mainly addresses of pointers and values of variables, profiling
execution is conducted 1 with original kernel declarations 2 . With a user-invoked
compilation event 3 , specialized code is generated based on the profile results and
thereafter used for succeeding kernel execution 4 . The sum variable in the profiled
code is exported through the sum_out pointer, thus it is kept for specialized code as
a dynamic variable (notated as "X" in the argument log of the JACC runtime). 0x..
indicates an address value obtained from an expression such as x and y (The addr

member of Jacc_Arg in Fig. 3.1).

16

3.2.2 Kernel Specialization

We attempt to refine resource use by attaching runtime information to function code so as
to enable aggressive optimization in kernel compilation. The compilation flow is shown
in Fig. 3.2. For specialization, profile execution is conducted before the optimization; then,
at an additional compilation event (jacc_optimize of JACC code in Fig. 3.2), parameters
being invariable during the execution are substituted with constants (Line 1 of specialized
code in Fig. 3.2) to lower on-chip resource use. Besides that, pointer references that never
conflict with others are declared with the restrict keyword to ensure intra-kernel paral-
lelism (Lines 3-4 of specialized code in Fig. 3.2). Even though user-invoked events can be
substituted automatically by existing just-in-time compilation techniques [46], we explic-
itly invoke the desired compilation optimizations to measure the potential performance
benefits.

3.3 multi-gpu utilization with predicates

We further improve utilization of intra-kernel parallelism by enabling multi-GPU execu-
tion with JACC. Whereas previous studies have persistently focused on loop splitting over
plural GPUs [21, 47], this work divides data regions that each GPU updates to support
real applications that usually entangle memory accesses among loop iterations.

3.3.1 Predicate-Based Filtering

Our technique, named predicate-based filtering, limits memory accesses depending on data
regions that the GPU writes to, assuming that redundant computational code and param-
eters do not degrade performance due to low computational latency and high memory
latency on GPUs. First, we introduce data ranges for each updated array so that array
writes can be filtered based on the assigned range. For instance, in C code, array write
a[i]*=2 is rewritten to (a_lb <= i && a_ub >= i) ? a[i]*=2 : a[i], where a_ub and
a_lb indicate the upper and lower bound of array a, that are specified depending on the
GPU. In Fortran, since there is no nested assignment, we use IF statement for filtering,
with subsequent ELSE statement which contains an assignment of the same expression
(a(i)=a(i)) that is later optimized away but facilitates compiler analysis. Additionally,
we develop data-flow analysis for the innermost parallel region in each kernel to detect
data dependencies between arrays. Then, we filter them to restrict accesses while solving
dependencies as shown in Fig. 3.3. This analysis converts both array and variable refer-
ences into the Static Single Assignment (SSA) form, and iteratively finds dependencies
among array accesses.

Updated data are sent to all other GPUs after each kernel execution to establish data
coherency. Device-memory allocations and host-to-GPU communications are replicated
on all the GPUs and the primary GPU is used for GPU-to-host transfers. To guarantee
the result of our analysis, we check kernel arguments so as to duplicate computation and
disable communications on data that are referred through more than two pointers which
at least one of them is read and one is written (i.e. aliased pointers, which are usually
avoided in OpenACC programs for loop independence). When several pointers share the

17

1 a[i]=x; b[i]=a[i]; x=c[j]; a[k]=x; b[k]=a[k];

1 /* a[i]=x */

2 ((a_lb<=i && a_ub>=i)||

3 (b_lb<=i && b_ub>=i)) ? a[i]=x:a[i];

4 /* b[i]=a[i] */

5 ((b_lb<=i && b_ub>=i)) ? b[i]=a[i]:b[i];

6 /* x=c[j] */

7 x=((a_lb<=k && a_ub>=k)||

8 (b_lb<=k && b_ub>=k)) ? c[j]:0;

9 /* a[k]=x */

10 ((a_lb<=k && a_ub>=k)||

11 (b_lb<=k && b_ub>=k)) ? a[k]=x:a[k];

12 /* b[k]=a[k] */

13 ((b_lb<=k && b_ub>=k)) ? b[k]=a[k]:b[k];

Figure 3.3: Example of predicate-based filtering in C code. Original (top) and filtered code (bot-
tom). References to array a have predicates for updating array b and itself (Lines 2-3
and 10-11), the references to array b have for itself (Lines 5 and 13), and the reference
to array c has for array a and b (Lines 7-8).

same array to update, we merge their access ranges to follow the widest. The necessary
computation for array-write indexing is always duplicated. Regarding reduction or vari-
able writes that are explicitly exported to host, we filter the computation based on the
range of the outermost parallel iterator.

Fig. 3.4 shows the actual cases of the transformation to predicated code. Indirect ac-
cesses are supported just by filtering dependencies which include loop ranges and ar-
ray indices (Lines 5-8 and 13-14 in Fig. 3.4 (b)). The OpenACC atomic operation is con-
verted to be predicated around the operation (Lines 28-30 in Fig. 3.4 (b)). We filter nested
structures at the shallowest array accesses of the member reference since otherwise their
ranges could be vector values that require additional array accesses during kernel execu-
tion (Lines 45-49 in Fig. 3.4 (b)). The calculation of array-write indices is always outside the
filters to be used in predicates (Lines 54-55 in Fig. 3.4 (b)). The detail of multidimensional
access is described in Section 3.3.2. Those are common patterns in OpenACC programs,
while precise data-dependency analysis such as polyhedral computation is hardly pos-
sible to treat the parallelism due to the complexity of the analysis and the limitation to
affine loops [48, 49].

3.3.2 Division of Multidimensional Arrays

While being applicable to all OpenACC kernels as far as array writes are concerned, our
filtering technique needs to duplicate execution on each GPU when references between
split ranges (such as all-to-all dependencies in Listing 3.4) are found inside the kernel. We
alleviate this restriction by leveraging dimensional information.

If multidimensional arrays are linearly split regardless of the dimensional characteristic,
the data dependency could be dispersed to the entire sections of array accesses. For ex-
ample, the write to lhsY in Listing 3.4 (Lines 7-14) would be filtered for succeeding reads;

18

#pragma acc parallel num_gangs (end)/
num_workers(4) vector_length(32)

#pragma acc loop gang
for(j = 0; j < end; j++) {
tmp1 = ((r_lb <= j) && (r_ub >= j)) ?

rowstr[j] : 0;
tmp2 = ((r_lb <= j) && (r_ub >= j)) ?

rowstr[j + 1] : 0;
sum = 0.0;
#pragma acc loop worker vector/

reduction(+:sum)
for (k = tmp1; k < tmp2; k++) {
tmp3 = ((r_lb <= j) && (r_ub >= j)) ?

colidx[k] : 0;
sum = sum +
(((r_lb <= j) && (r_ub >= j)) ?

a[k] : 0) *
(((r_lb <= j) && (r_ub >= j)) ?

p[tmp3]:0);
}
((r_lb <= j) && (r_ub >= j)) ?

(r[j] = sum) : r[j];
}

#pragma acc parallel
#pragma acc loop
for (int i = 0; i < N; i++) {
if ((h_lb <= a[i]) && (h_ub >= a[i]))
#pragma acc atomic
h[a[i]] += 1;

}

#pragma acc parallel
for (int k = 0; k < N; i++) {
((a_lb <= k*k) && (a_ub >= k*k)) ?
(a[x][k*k][y] = a[x-1][k][y]) :
a[x][k*k][y];

}

#pragma acc parallel
#pragma acc loop
for (int i = 0; i < M; i++) {
#pragma acc loop
for (int j = 0; j < N; j++) {
((a_x_lb <= j) && (a_x_ub >= j)) ?

(a.x[j].y[i].p += 1) :
a.x[j].y[i].p;

((b_lb <= j) && (b_ub >= j)) ?
(b[j].z[i] += 1) : b[j].z[i];

}}

#pragma acc parallel
for (int i = 0; i < N; i++) {
int i2 = index[i];
int i3 = out1[i2] + 1;
((out2_lb <= i3) && (out_ub >= i3)) ?

out2[i3]++ : out2[i3];
}

// Indirect Access (NPB-CG)
#pragma acc parallel/
num_gangs(end) num_workers(4)
vector_length(32)

{
#pragma acc loop gang
for (j = 0; j < end; j++) {
tmp1 = rowstr[j];
tmp2 = rowstr[j+1];
sum = 0.0;
#pragma acc loop worker/

vector reduction(+:sum)
for (k = tmp1; k < tmp2; k++) {

tmp3 = colidx[k];
sum = sum + a[k]*p[tmp3];

}
q[j] = sum;

}
}

// Atomic Operation
#pragma acc parallel loop
for (int i = 0; i < N; i++) {
#pragma acc atomic
h[a[i]] += 1

}

// Multidimentional Access
#pragma acc parallel
for (int k = 0; k < N; i++) {
a[x][k*k][y] = a[x-1][k][y];

}

// Nested Structures
#pragma acc kernels
for (int i = 0; i < M; i++) {
for (int j = 0; j < N; j++) {
a.x[j].y[i].p += 1;
b[j].z[i] += 1;

}
}

// Write-Index Calculation
#pragma acc parallel
for (int i = 0; i < N; i++) {
int i2 = index[i];
int i3 = out1[i2] + 1;
out2[i3]++;

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

(a) Original Code (b) Predicated Code

Basic Idea:
- Split Array-Writes Evenly
- Filter Access to Dependencies
- All-to-All Communication

Filter Around the Operation

Filter on Parallel Dimensions

Filter with
the Shallowest Arrays

----- --------------------------------------

----------- --------------------------------------

------------ --------------------------------------

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58 Always Calculate Write-Indices

----- --------------------------------------

Figure 3.4: Original code (left) and corresponding predicated code (right)

19

1 #pragma acc parallel loop gang

2 for (i = 1; i <= gp02; i++) {

3 #pragma acc loop worker vector

4 for (k = 1; k <= gp22; k++) {

5 for(m = 0; m < 5; m++)

6 for(n = 0; n < 5; n++) {

7 lhsY[n][m][BB][jsize][i][k] =

8 hsY[n][m][BB][jsize][i][k]

9 - lhsY[n][0][AA][jsize][i][k]

10 * lhsY[0][m][CC][jsize-1][i][k]

11 /* - lhsY[n][1..3][AA][jsize][i][k]

12 * lhsY[1..3][m][CC][jsize-1][i][k] */

13 - lhsY[n][4][AA][jsize][i][k]

14 * lhsY[4][m][CC][jsize-1][i][k];

15 }}}

Listing 3.4: Kernel code from NPB-BT. Two inner loops are un-
rolled in actual code. Linear splits cause all-to-all de-
pendencies among statements.

thus, all the computations would be duplicated on each GPU. Here, we utilize parallel
iterators (such as i and k in Listing 3.4) to locate parallel dimensions, where arrays can
be split without duplicated computation. Based on the number of iterators each dimen-
sion contains, we select the parallel dimension for each updated array to have the most
parallel iterators while containing the least sequential iterators (such as m and n). When
there are several candidates, we choose the leftmost dimension in the C language and the
rightmost dimension in Fortran to gain better performance with suitable accesses to the
memory layout (row-major and column-major order, respectively).

Each kernel execution is performed while equally dividing parallel dimensions among
GPUs and accompanied by the GPU-to-GPU communication through cudaMemcpy2DAsync.
Each array is concurrently transferred regarding other data and other GPUs. We synchro-
nize GPUs at the beginning and ending of the communication.

3.3.3 Adaptive Utilization

In order to avoid lower performance due to data distribution overheads, we enable multi-
GPU execution for each kernel in an adaptive way, while otherwise duplicating computa-
tion on all GPUs and performing no GPU-to-GPU communication.

First, we start the execution on the mode of duplication. After an initial warm-up run,
we profile the average ratio of array-write size (WriteSize) to execution time (timeKernel)
as effdup, until we observe five executions that satisfy the requirement to have the peak
performance be better than duplication:

timeKernel > timeKernel/nGPUs + WriteSize/peakP2P (3.1)

Here, peakP2P is the unidirectional bandwidth of one GPU-to-GPU connection (e.g.
25GB/s in NVIDIA DGX-1) and nGPUs is the number of GPUs used.

20

After switching to multi-GPU execution, we disable it when either one of the two fol-
lowing conditions is satisfied at least five times and the average difference of the left value
and the smaller right value goes above zero in equations (3.2-3.3).

1. The total execution time including the communication time (timeComm) becomes
longer than the kernel execution time multiplied by nGPUs:

timeKernel + timeComm > timeKernel ×nGPUs (3.2)

2. The total execution time surpasses the profiled execution time of duplication:

timeKernel + timeComm > effdup ×WriteSize (3.3)

The first condition excludes the case that the GPU-to-GPU communication has larger
latencies than expected. The second prevents performance degradation caused by kernels
that are unsuccessfully parallelized.

3.3.4 Implementation

We integrate predicated-based filtering into JACC, which translator is implemented as
an XcodeML [50] converter. The execution flow of predicate-based filtering is shown in
Fig. 3.5. From OpenACC code in C or Fortran, our implementation generates JACC code,
in which kernel code is embedded as strings. Although the kernel code can be translated
at runtime, we apply predicated-based filtering beforehand for our experiments; thus,
the embedded kernel code already has the predicates. JACC’s runtime code generator is
utilized for setting array ranges and constructing multi-GPU reduction code based on the
arguments of runtime routines. Runtime overheads of JIT dynamic compilation are well

x=c[j]; a[k]=x; b[k]=a[k];

Dep Dep

①

②

Input Code

③

Data Management
- Array Mapping
- GPU-to-GPU or
CPU-to/from-GPU
Communication

Kernel Execution
- Code Gen/Compile
- Parameter Calculation
- Switching GPUs
- Adaptive Running

④

⑤

JACC Code

JACC Runtime Dynamic Code
void kernel0(…)
{ //Declarations
//Kernel Code
//Reduction

}

#pragma acc kernels ..

jacc_kernel_push(..);

Dependency

b[k] needs c[j] to be updated

Iterative Dataflow Analysis

Figure 3.5: Execution flow of predicate-based filtering. Having the results of iterative dataflow anal-
ysis 1 , JACC code is generated from the input 2 . On the execution 3 , dynamic code is
created from kernel code, extended declarations and reduction code in accordance with
runtime information 4 . Once the dynamic code is compiled with a specified compiler,
the kernel execution is conducted with dynamic parameters while switching GPUs and
reflecting results to the host and each other devices 5 . In the example of the figure of
iterative dataflow analysis, updating b[k] needs the updated value of a[k] as well as
c[j] to update a[k]. Both the read from c[j] and the write to a[k] are predicated with
the range of write access to a[k] and b[k].

21

known, and itself a target of research [46]; however, it is outside the scope of this work and
left as a possible future area for optimization. Thus, we evaluate the performance without
dynamic compilation overheads (Section 3.2.2), which is on average about 2 seconds per
kernel for the initial compilation.

For simultaneous execution of multiple GPUs, we use OpenMP rather than OpenACC’s
asynchronous mechanism that holds some non-negligible latencies [51, 52]. OpenMP’s
pragmas are put only inside JACC’s library. Whereas GCC does not allow the mix of
OpenACC and OpenMP, our separated-compilation strategy realizes a combinatory use
for both NVHPC and GCC. The OpenMP use is not inherent here and our techniques
introduced in this work are general enough to support other compilers and other pro-
gramming models.

Fig. 3.6 shows actual JACC code in Fortran. The kernel arguments are built with static
and runtime parameters to create dynamic code correctly and the kernel code is set with
line information for debugging purposes (Lines 3-8 and Line 14 in JACC code of Fig. 3.6,
respectively). For predicate-based filtering, JACC’s runtime automatically launches the
dynamic code on each GPU and performs GPU-to-GPU communications based on those
passed arguments.

!$ACC KERNELS
! …
!$ACC LOOP INDEPENDENT REDUCTION(min:dt_min_val) GANG(128)
DO k=y_min,y_max

!$ACC LOOP INDEPENDENT REDUCTION(min:dt_min_val)
DO j=x_min,x_max
IF(dt_min(j,k).LT.dt_min_val) dt_min_val=dt_min(j,k)

ENDDO
ENDDO

!$ACC END KERNELS

BLOCK
INTEGER(KIND=8) :: arg = 0
CALL jacc_arg_build(&
&"real\0", "dt_min\0“, &! Type, Symbol
& c_loc(dt_min), sizeof(dt_min), &! Address, Size
& …, &! Analysis Info (e.g. WRITE, PRESENT, REDUCTED)
& lbound(dt_min), ubound(dt_min), &! Boundary
& arg)

CALL jack_arg_build(…)
…
CALL jacc_kernel_push(&
&& ! Kernel Code
" !$ACC PARALLEL PRESENT(dt_min) NUM_GANGS(128)\n &
& # 139 "calc_dt_kernel.f90"\n &
& … !$ACC END PARALLEL\0“, arg)

END BLOCK

Input Code CloverLeaf calc_dt_kernel.f90

JACC Code

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

3

4

5

6

7

8

9

10

Figure 3.6: Actual case of JACC code generation in Fortran from the input (top). The arguments
and kernel code are partially shown in JACC code (bottom).

22

3.4 experimental methodology

3.4.1 Hardware and Software

We measure the performance changes of our proposed techniques using the NVIDIA
Tesla V100 SXM2 GPUs (16GB Memory) on NVIDIA DGX-1. DGX-1 contains eight GPUs,
where each four GPUs are interconnected with NVLink in an all-to-all fashion. Addition-
ally, each GPU has one NVLink connection to one of the other four GPUs, while the
remaining GPUs and CPUs are connected with PCI Express Gen3 x16. We use only the
tightly coupled four GPUs to perform our experiments where each link offers a unidirec-
tional bandwidth of 25GB/s, while GPU0 ↔ GPU3 and GPU1 ↔ GPU2 are dually linked.
Tesla V100 has a peak single-precision performance of 15.7 TFLOP/s and a peak memory
throughput of 900GB/s. DGX-1 uses dual 20-core Intel Xeon processors.

For the compilation, we use the NVHPC compiler 20.9 and GCC 10.2.0 with CUDA
11.0. We compile OpenACC kernels and our runtime library using the following sets
of compiler arguments: "-O2 -acc -mp -ta=tesla:cc70 -Mcuda" for NVHPC and "-O2

-f(openacc|openmp) -foffload=nvptx-none -foffload=-lm -fno-strict-aliasing" for
GCC. Currently, the Fortran translation is tested only for predicate-based filtering with
NVHPC. The experiments with GCC are conducted while omitting the worker parallelism
so as not to exceed the maximum number of threads allowed in GCC per thread-block.

3.4.2 Benchmarks

For the evaluation, we use a manually-tuned OpenACC version of NAS Parallel Bench-
marks (NPB) written in C [53] and three Fortran mini-apps: CloverLeaf [54], CCS-
QCD [55] and the Himeno benchmark [56]. Each benchmark of NPB, briefly described in
Table 3.1, is executed with the largest problem size for the target GPUs (Class C) except EP,
where we choose Class D for longer execution. Moreover, to prolong the execution time
of CG and MG, we multiply the number of iterations by 50. With regard to CloverLeaf,
we select the same input as the SPEC ACCEL benchmark suite [57], while maximizing the
GPU memory utilization of the other two mini-apps.

EP is the only application to be compute-bound for arithmetic operations of random-
number generation involving fewer array accesses, while other benchmarks become mem-
ory bound on state-of-the-art accelerators. There is no data dependency among parallel
threads in EP.

BT/LU/SP deal with three-dimensional Computational Fluid Dynamics (CFD) with
different solvers. BT updates multidimensional arrays from 3D to 6D, especially 4D to 6D
have the leftmost 1D to 3D dimensions for loop-independent indices as shown in Fig. 3.4
(Lines 7-14), respectively. LU/SP use 3D to 4D arrays in a similar fashion to BT. LU has
relatively quicker execution for each kernel compared to BT/SP and the latency of BT
mainly consists of the execution of several time-consuming kernels.

FT conducts 3D fast Fourier transform (FFT) incurring all-to-all accesses, and MG is the
benchmark of multigrid computation which requires long and short communications. CG
calculates a minimum eigenvalue of a sparse symmetric positive matrix with the conjugate
gradient method, causing irregular accesses to an updated 1D array.

23

Table 3.1: Benchmark description

Name Description Dependency Problem Size Memory Num Kernels

BT CFD with Block Tri-Diagonal Solver Halo (3D) Class C: 162x162x162 (FP64), iter=200 4.915 GB 46

CG Minimum-Eigenvalue Calculation Irregular Class C: size=150000 (FP64), iter=3750 0.747 GB 16

EP Random-Number Generation in Parallel None Class D: size=137438953472 (FP64) 2.305 GB 4

FT Discrete 3D Fast Fourier Transform All-to-All Class C: 512x512x512 (FP64), iter=20 9.317 GB 12

LU CFD with Lower-Upper Gauss-Seidel Solver Halo (3D) Class C: 162x162x162 (FP64), iter=250 1.471 GB 59

MG Multigrid Discrete Poisson Equation Long & Short Class C: 512x512x512 (FP64), iter=1000 6.114 GB 16

SP CFD with Scalar Penta-Diagonal Solver Halo (3D) Class C: 162x162x162 (FP64), iter=400 1.700 GB 65

CloverLeaf 2D Euler Equations Solver Halo (2D) 3840x1920 (FP64), step=1800 1.749 GB 114

CCS-QCD Lattice QCD Simulation Halo (3D) 32x32x32x128 (FP64), iter=1000 for BiCGStab 15.255 GB 27

Himeno 19-point Jacobian Stencil Computation Halo (3D) Size XL:1024x512x512 (FP32), iter=1000 14.409 GB 2

2
4

CloverLeaf is a hydrodynamics mini-application consisting of 100+ kernels, which suf-
ficiently demonstrates the workflow of real-world applications. Based on Euler’s method,
2D stencil grids are updated by each kernel having minimum control logics and halo
accesses through double buffers for avoiding dependencies among loop iterations.

CCS-QCD simulates lattice quantum chromodynamics (QCD) with a linear-equation
solver for a large sparse matrix in 3D. The execution is mainly composed of the bicon-
jugate gradient stabilized method (BiCGStab) along with neighboring transfers and all-
to-one reduction. The reduction accumulates slight errors upon each execution, which
affect the total number of iterations when the computational order is changed due to
multi-GPUs. Therefore, we fix the number of iterations for BiCGStab to 1,000.

Himeno iteratively updates a 19-point stencil grid according to Jacobi’s method. The
code structure is far simpler than the other two mini-apps. The kernels are constructed
from three nested loops where each iteration corresponds to the grid’s dimension and no
dependence exists among them. Optimally, 3D halo accesses solve inter-kernel dependen-
cies, and computational errors are reduced after kernel execution.

We report performance after an initial warm-up run that causes runtime compilation
and profiling for adaptive utilization. The benchmark-reported data is quoted for the
result of NPB and the total execution times for the Fortran mini-applications.

3.5 results

3.5.1 Basic Extension

Fig. 3.7 shows the performance changes with JACC’s basic extension for both the NVHPC
compiler and GCC using NPB. The JIT w/ (NVHPC/GCC) bars indicate the performance
of converted code without any optimization. Here, only one asynchronous queue is used
with +Async, whereas 16 queues are used with +Overlap. Along with that, the +Var Opt

execution adds kernel optimization with constant parameters transformation discussed
in Section 3.2.2. Furthermore, +Restrict adds restrict to pointers. Since GCC produces
incorrect results with the original code of CG/LU/MG, they are omitted from results.

First, performance degradation is observed for converted code compared to original
code in the case of BT/LU with NVHPC, where generated code fails to leverage static
array sizes for some optimization at compile time because static arrays are separately de-
clared. However, improvements are observed in the case of MG with NVHPC and EP with
GCC. Otherwise, original performances are mostly kept. On average, asynchronous exe-
cution with single queue achieves better performance by 3.43% with NVHPC and 22.08%
with GCC, respectively. However, the time-consuming kernels in each benchmark prevent
overlapping execution; thus, +Overlap does not improve the performance from +Async.
With +Restrict, we achieve better performance up to 23.39% in the case of BT/LU with
NVHPC and 5.59% less performance in EP with GCC. The performance difference be-
tween NVHPC and GCC is primarily caused by the latency of memory allocation; NVHPC
owns memory pools for device memory, while GCC does not.

The +Var Opt version has no performance change in most cases and rather worsen ef-
ficiencies in the case of EP/SP with GCC. Further exploration showed that some cases
of +Var Opt suffer from limited arithmetic unit utilization caused by ineffective threads

25

BT CG EP FT LU MG SP

E
x
e
cu

ti
o

n
 T

im
e
 (

se
c
)

0
5
0

1
0
0

1
5
0

2
0
0 NVHPC

JIT w/ NVHPC

+Async

+Overlap

+Var Opt

+Restrict

GCC

JIT w/ GCC

+Async

+Overlap

+Var Opt

+Restrict

}
GCC
Failed

GCC

}

Failed
GCC

}

Failed

275.09

Figure 3.7: Async and kernel optimization on NVIDIA Tesla V100 SXM2

which are created due to reduced register use. On the other hand, performance improve-
ments of +Restrict are achieved by parallelized memory accesses which require addi-
tional registers.

3.5.2 GCC Custom Allocation

Since the original version of GCC suffers the performance degradation by GPU-memory
allocation, we integrate memory pools into GCC’s runtime library libgomp for our multi-
GPU experiments to show explicitly the performance improvements by kernel paralleliza-
tion. We prepare two pools: one is for user-invoked memory allocation such as through
pragmas and runtime routines. The other is for runtime-managed allocation of variables
and stacks, which naturally tends to be much smaller than the former. We manage those
pools to keep unused memory segments and reuse them for new allocation by selecting
the smallest but capable segment on the device.

With the memory-pool integration, GCC’s efficiency becomes competitive to NVHPC
while having -7.83% ∼ 5.05% better throughputs for the plain JACC code except the case
of EP, where the kernel execution poses a 38.31% overhead due to GCC’s device-code
efficiency, as shown in Fig. 3.8.

3.5.3 Multi-GPU Utilization

3.5.3.1 Total Improvements & Kernel Speedups

We show the overall performance and kernel speedups with predicate-based filtering
in Fig. 3.8 and Fig. 3.9. When compared to single-GPU execution, the total execution
time with our proposed technique is better in five among 10 evaluated benchmarks,
from 4.05% up to 43.43% when enabling four GPUs. Especially, when only the kernel

26

BT CG EP FT LU MG SP

E
x
e
cu

ti
o

n
 T

im
e
 (

se
c
)

0
2

5
5

0
7

5
1

0
0

S
p

e
e
d

u
p

 (
%

)

0
5

0
1

0
0

1
5

0
2

0
0JACC w/NVHPC +Predicate

 1~4 GPUs
JACC w/GCC
 +MemPool

+Predicate
 1~4 GPUs

}

GCC
Failed

GCC

}

Failed
GCC

}

Failed

BT CG EP FT LU MG SP

K
e
r
n

e
l

T
im

e
 (

se
c
)

0
2

5
5

0
7

5
1

0
0

K
e
r
n

e
l

R
a

ti
o

 (
%

)

0
2

5
5

0
7

5
1

0
0

}

GCC
Failed

}

GCC
Failed

}

GCC
Failed

Figure 3.8: Performance scaling of predicate-based filtering using NPB with NVHPC/GCC. The
top figure provides the execution times with bars and the speedups with lines com-
pared to the plain JACC code. The bottom figure shows the kernel time when we
enable multi-GPU execution with no adaptive algorithm; the kernel ratio to the total
time (the total kernel execution time divided by the application execution time) is given
by the line.

27

CloverLeaf CCS-QCD Himeno

E
x
e
cu

ti
o

n
 T

im
e
 (

se
c
)

0
3

0
6

0

S
p

e
e
d

u
p

 (
%

)

0
5

0
1

0
0

1
5

0
2

0
0

JACC w/NVHPC +Predicate

 1~4 GPUs

CloverLeaf CCS-QCD Himeno

K
e
r
n

e
l

T
im

e
 (

se
c
)

0
1

5
3

0
4

5
6

0

K
e
r
n

e
l

R
a

ti
o

 (
%

)

0
2

5
5

0
7

5
1

0
0

3
7
.9

3
1
.0

2
7
.8

1
3
.9

1
1
.4

8
.1

1
5
.6

1
1
.9

1
0
.4

Figure 3.9: Performance scaling of predicate-based filtering using the Fortran mini-apps with
NVHPC. The top figure provides the execution times with bars and the speedups with
lines compared to the plain JACC code. The bottom figure shows the kernel time when
we enable multi-GPU execution with no adaptive algorithm; the kernel ratio to the to-
tal time (the total kernel execution time divided by the application execution time) is
given by the line.

28

Table 3.2: Performance details with NVHPC in the use of four GPUs. The result of duplicated execution on all the GPUs is used for the Kernel
Dup column only; Other columns use the results of adaptive execution. The Kernel Adapted column shows the kernel execution time
for multi-GPU adapted kernels with the average. The bold values indicate performance improvements from the duplicated execution.

Name
Num

Kernels
Kernel

Dup [ms]
Num

Adapted
Comm +

Kernel [ms]
Kernel Total

(Average) [ms]
Kernel Adapted
(Average) [ms]

Comm
(Average) [ms]

Average
WriteSize

GPU-to-GPU
Bandwidth

BT 46 88,715 3 63,856 46,639 (0.44) 14,940 (24.75) 17,217 (28.52) 684.10 MB 23.99 GB/s

CG 16 75,178 7 44,137 38,720 (0.08) 34,365 (0.12) 5,417 (0.02) 0.10 MB 5.40 GB/s

EP 4 37,485 3 37,787 37,710 (24.55) 37,710 (24.55) 77 (0.05) 0.03 MB 0.54 GB/s

FT 12 8,472 4 8,757 6,096 (47.29) 4,983 (62.37) 2,661 (33.31) 806.92 MB 24.23 GB/s

LU 59 76,325 7 71,614 64,342 (0.09) 3,886 (0.03) 7,272 (0.06) 0.39 MB 6.28 GB/s

MG 16 83,586 3 83,654 83,654 (0.47) 5,604 (0.35) 0 (0.00) 0.00 MB 0.00 GB/s

SP 65 27,809 3 19,609 16,648 (0.64) 1,969 (1.64) 2,961 (2.47) 58.24 MB 23.60 GB/s

CloverLeaf 114 55,017 3 55,272 54,079 (0.22) 10,980 (4.27) 1,193 (0.46) 5.46 MB 11.76 GB/s

CCS-QCD 27 26,517 11 24,641 13,031 (0.97) 5,811 (1.91) 11,610 (3.82) 91.67 MB 24.02 GB/s

Himeno 2 33,726 1 23,149 11,894 (5.93) 8,318 (8.30) 11,255 (11.23) 271.47 MB 24.18 GB/s

2
9

execution and GPU-to-GPU transfers are concerned, six benchmarks (BT/CG/LU/SP/
CCS-QCD/Himeno) improve the execution time by 23.9% on average as shown in Ta-
ble 3.2. Other benchmarks still remain unchanged with some slight degradation up to
3.36% while having several kernels enabled for multi-GPU execution. The noticeable slow-
downs we observe in the total execution time of LU/MG are caused due to other factors
necessary for multi-GPUs such as memory allocation and synchronization. As an opposite
fashion to +Var Opt, the predicate-appended code mostly holds the performance of the
plain JACC code with single-GPU use.

Profiling the kernel speedups with no adaptive execution showed that predicate-
based filtering parallelizes many kernels. Using the memory-intensive benchmarks BT/SP,
NVHPC achieves 2.83x and 3.59x improvements on four GPUs and GCC does 4.13x and
3.85x, respectively. For LU, however, the shorter than 1ms running time of each kernel
execution limits acceleration to 1.40x, involving overheads for duplicating program struc-
tures on all the GPUs. EP does not have any improvement due to its compute-bound
nature. Comparing adaptive and non-adaptive execution, CG has almost the same im-
provement, whereas other benchmarks are prevented from full parallelization due to the
high communication-kernel ratios. For example, in Table 3.2, around 20% of the execution
of CloverLeaf is distributed over multi-GPUs, but those kernels are not well enhanced,
while the remaining execution is duplicated because of the excessive communication la-
tencies, hence, resulting in no speedup.

3.5.3.2 Data-Size Scaling

Fig. 3.10 shows the performance scaling with Himeno using different program sizes. Since
we equally split array ranges for each GPU, the transfer size per GPU-to-GPU connection
becomes smaller and the proportion of communication decreases when the number of
GPUs is increased. From two to four-GPU use, we see different scaling of total GPU-to-
GPU transfers: 1.70x speedup with size M, 1.95x with L and 1.99x with XL. In regard to
kernel performance scaling from single to four GPUs, we achieve 1.53x, 2.19x and 3.64x
improvements for size M, L and XL, respectively. For size M, multi-GPU execution suffers
the overheads of both kernel and communication. Better scaling can be obtained with
longer kernel execution and larger transfers as in the case of BT, which is successfully
parallelized with communications of a six-dimensional array decomposed per GPU in 75

segments of 8MB size, having original kernel execution longer than 10ms.
Our technique further reduces the GPU-to-GPU communication latency as more GPUs

are used. As future architectures move to having many accelerators with all-to-all inter-
connects, applications could benefit further from predicate-based filtering.

3.5.3.3 Comparison

Related work MACC [21] successfully parallelizes only two of those applications over
multi-GPUs based on code-level access-range analysis: CG and Himeno, whose perfor-
mance bottlenecks have non-overlapping linear writes for each loop iteration. Other multi-
GPU work based on memory coherence mechanisms [47, 58, 59] is also unable to support
the remaining benchmarks without user effort.

30

GPU=1 GPU=2 GPU=3 GPU=4

E
x
e
c
u

ti
o
n

 T
im

e
 (

m
s)

0
0
.1

0
.2

0
.3

0
.4

0
2
5

5
0

7
5

1
0
0

0
.0

0

M=17MB

GPU=1 GPU=2 GPU=3 GPU=4

0
1

2
3

4

0
2
5

5
0

7
5

1
0
0

Manual

Kernel Comm
0
.0

0
L=134MB

GPU=1 GPU=2 GPU=3 GPU=4

0
1
0

2
0

3
0

4
0

C
o
m

m
-K

e
r
 R

a
ti

o
 (

%
)

0
2

5
5

0
7

5
1

0
0

0
.0

XL=1,074MB

Figure 3.10: Scaling with the number of GPUs for the stencil kernel in the Himeno benchmark.
The grey bar shows the average execution time of a manually-tuned loop-splitting
version which includes the communication time and the kernel time. The kernel and
communication latencies by our technique are shown by the green and orange bars.
The line plots the communication-to-kernel latency ratio. Since the kernel requires
only 3D halo accesses, the optimized transfer finishes within 30µs, 50µs, and 110µs
for the size M, L, and XL, respectively, regardless of the number of GPUs used. The
displayed data size equals the total grid proportions that all the GPUs update.

We compare our technique to loop splitting. Fig. 3.10 includes the scaling of the manual
code which uses the same algorithm as MACC. We notice that the loop-splitting code has
better scaling for kernel execution: from single to four GPUs, it achieves 2.08x, 3.57x and
5.26x improvements for size M, L and XL, respectively. Moreover, the optimized communi-
cation for the stencil application significantly reduces the latencies. Those domain-specific
approaches can be automated as long as compiler analysis allows; thus, we consider inte-
grating them into our work for future refinement.

31

GPU=1 GPU=2 GPU=3 GPU=4

E
x
ec

u
ti

o
n

 T
im

e
(s

ec
)

0
2

5
5

0
7

5
1

0
0

0
2
5

5
0

7
5

1
0
0

0
.0 4

.4

4
.5

5
.4

Adaptive

GPU=1 GPU=2 GPU=3 GPU=4

0
2
5

5
0

7
5

1
0
0

0
2

5
5

0
7

5
1

0
0

Total

Kernel Comm

0
.0

1
6
.4

1
8
.9

2
1
.2

No Adaptive

GPU=1 GPU=2 GPU=3 GPU=4

0
2

5
5

0
7

5
1

0
0

C
o
m

m
-K

e
r
 R

a
ti

o
 (

%
)

0
2

5
5

0
7

5
1

0
0

0
.0 4
.1 7

.7

6
.9

MACC

Figure 3.11: Comparison between predicate-based filtering with/without the adaptive algorithm
and MACC using NPB-CG. The total execution, kernel execution and GPU-to-GPU
transfer times are shown by the grey, green and orange bars, respectively. The latency
ratio of communication to kernel is depicted by the line.

Fig. 3.11 shows the comparison between our technique and MACC using CG. MACC
automates loop splitting of all the kernels in CG but employs no adaptive algorithm.
From two to four-GPU utilization, our technique achieves better efficiency up to 3.50%
by disabling multi-GPU execution for lower-latency kernels. Besides that, the adaptive
execution has smaller kernel latencies than non-adaptive execution due to the same rea-
son, with 44.09% better total efficiency. We note that predicate-based filtering successfully
parallelizes a sparse-matrix vector multiplication (SpMV), where the memory accesses are
data dependent as seen in Fig. 3.4, by sending out updated segments to each other GPUs.

32

3.6 related work

Several studies conduct optimization upon the source code of directive-based program-
ming models. In [43], Tian et al. perform scalar replacement on OpenACC code, that
substitutes redundant array accesses with scalar references until the compiler reports
that all available registers are utilized or all reused references are replaced. Barua et
al. [17] optimally unroll OpenACC loops while estimating memory throughputs based
on ILP. OptACC [20] finds a better OpenACC parallelism with either grid or direct search.
Hoshino et al. [42] propose OpenACC directives for array transformation. JACC eases the
implementation of those extensional work in a portable fashion to the user’s environment
while utilizing dynamic information.

There is some work addressing automated multi-GPU utilization with OpenACC.
MACC [21] provides dynamic access-range analysis to distribute execution with GPU-to-
GPU communication. Although MACC achieves better performance than a UM system,
its analysis is only applicable to affine loops. Komada et al.’s compiler [47] keeps data
coherence by tracking array writes in a similar way to UM but incurring additional ar-
ray writes for it and performing data transfers after each kernel execution. Both previous
works divide loop execution equally for each GPU and principally do not allow any in-
tersection of array updates among devices, thus, those cannot support many applications
that our work parallelize.

Distributed-memory systems including multi-GPUs are also discussed regardless of
programming models. Loop models such as polyhedral have been widely employed to
detect data dependency among compute nodes [48, 60, 49, 61]. However, the input is typ-
ically restricted to affine or almost-affine loops and those works fix workloads on each
node before computing dependency, which involves intricate communication patterns or
imposes loop transformations beforehand. Some libraries and frameworks are dedicated
to multi-GPU execution through an abstraction which entails GPU-to-GPU communica-
tion [62, 63, 64, 65]. Software-level memory managements that maintain data coherency
are also capable of accommodating program distribution with little user intervention, but
manual efforts are required to adequately partition updated arrays while not overlapping
them or otherwise introducing overheads [66, 67, 59, 58]. The Myrias parallel do model
had a computational mechanism similar to our algorithm for scheduling tasks [68]. Our
predicate-based filtering provides a new way to parallelize many kernels based on source-
code level transformation and dynamic information.

Dynamic compilation brings additional opportunities for performance improvement to
the runtime system. NVIDIA’s jitifiy [69] is a library that simplifies the use of CUDA
Runtime Compilation (NVRTC). KernelGen [70] is a Fortran/C compiler that automates
GPU code generation with polyhedral loop analysis of LLVM IR. Those works present
dynamic features such as runtime alias analysis and parameter tuning alongside kernel
specialization. On the other hand, JACC wraps OpenACC compilers and holds C/Fortran
code for optimization.

A few projects aim to assist code generation with directive-based programming. Jug-
gler [22] compiles OpenMP task code into a unified GPU program in order to alleviate
the latency of global synchronizations. It requires profiling execution to inspect dynamic
information and restricts data transfers to be outside task regions. In Juggler, worker

33

thread-blocks retrieve tasks from queues while managing the execution with a depen-
dence matrix. Andión et al. [71] perform program analysis to coalesce data accesses while
maximizing register and shared-memory use of directives. DawnCC [72] automates an-
notating OpenMP/OpenACC directives based on static analysis of LLVM IR while co-
alescing data movements. CLACC [73] is an OpenACC compiler that converts input
into OpenMP. CCAMP [41] is an interoperable framework for OpenACC and OpenMP,
equipped with device-specific optimization. Our dynamic approach complements other
work to maximize their scope.

34

4
L O W- L E V E L C O D E O P T I M I Z AT I O N

Rather than peephole optimizations attempted in the previous chapter having perfor-
mance fluctuate, we need different computational mechanisms or orders to achieve faster
execution. The following two chapters are devoted to fundamental changes in directive-
based programs. Chapter 4 introduces a new method to enable optimizations at the back-
end of the code generator. After the overview of our tool, the detailed algorithms of
symbolic emulation and code generation are given. We demonstrate the use case of a
GPU-specific mechanism, shuffle, by experiments on several generations of GPUs.

4.1 ptxasw

To expand the backend of GPU code generation, we introduce a tool named PTXASW
that can substitute the original PTX assembler, which accepts input code from arbitrary
sources. We do not rely on specific information of any certain language or any certain
generation of GPU architecture.

Fig. 4.1 provides a high-level overview of PTXASW’s execution flow. PTXASW primarily
aims at shuffle synthesis on PTX code. The input is produced by user-level code compilers,
while directive-based programming models (OpenACC/OpenMP) do not expose control
over warp-level operations, and CUDA prevents code extension due to its code complex-
ities. Once PTXASW inserts shuffles, the resultant code is assembled to GPU binary by
the original PTX assembler. We note that, as seen in Section 2.5, shuffle operations are
the mechanism to communicate across threads. PTXASW allows user programs to per-
form shuffles automatically to obtain the results of memory access found in neighboring
threads.

PTXASW emulates the PTX execution based on the input. Since runtime information
is not provided, we employ symbolic evaluation for each operation. First, 1 register dec-
larations are processed to be mapped in a symbolic register environment (described in
Section 4.2.1). Second, 2A for each statement of PTX instructions, a corresponding op-
eration is performed to update registers (Section 4.2.1). While continuing the execution,
2B PTXASW gathers branch conditions for avoiding unrealizable paths (Section 4.2.2)
and creates memory traces (Section 4.2.3). When the entire emulation is finished, 3 we
discover shuffle opportunities from memory traces (Section 4.3.1). Finally, 4 we insert
shuffle operations to the input code (Section 4.3.2); then, the generated code is consumed
by the original PTX assembler.

35

NVHPC

User Program

OpenACC/OpenMP

NVCC

CUDA PTX Code

PTXAS

Execution BinaryCompiling Assembling

PTXAS

PTXASW

1 Allocate symbolic

registers

2A Update registers through the PTX execution

2B Gather branch conditions & memory accesses

3 Detect shuffle

opportunities

4 Synthesize

shuffles

𝑁 = ? 𝑁 =

Figure 4.1: Overview of PTXASW. NVCC is the compiler of CUDA, which compiles CUDA kernels such as Listing 2.1 into PTX. NVHPC compiles
OpenACC/OpenMP code such as Listing 2.2 generating PTX code. An example of PTX code is provided in Listing 2.4. PTXAS is the
PTX assembler and outputs binary files containing SASS code that GPUs recognize. PTXASW rewrites PTX code and creates optimized
binary files using PTXAS.

3
6

4.2 symbolic emulator

Analysis of high-level code has posed questions about its applicability to abstract program
structures or other user-level languages. While high-level code analysis may process intact
code information, enormous engineering efforts are required just for specific forms within
one language [74, 75]. Therefore, virtual machines are utilized for providing a cushion
between real architectures and user codes. In particular, analysis and optimization of the
virtual-machine code tend to be reusable without the restriction of input types [76, 77, 78].

Our work uses PTX as the virtual machine layer and performs general analysis through
code emulation. We introduce symbolic emulation to encapsulate the runtime information
in symbol expressions and compute concolic (concrete + symbolic) values for each register.
Although a number of previous works have been conducted on symbolic emulation for the
purpose of software testing [79], our work (PTXASW) especially aims at code optimization
of memory access on GPUs, since it is often regarded as one of the bottlenecks of GPU
computing [80]. Those computed values are utilized for code generation as described in
Section 4.3.

4.2.1 Instruction Encoding

Since the subsequent PTX assembler, while generating SASS code, will eliminate redun-
dant operations and resources, we may abundantly use registers while not causing regis-
ter pressure by unnecessary data movement outside of the static single assignment form
(SSA). First, PTXASW recognizes variable declarations and prepares a symbolic bitvector
of the corresponding size for each register. Since arithmetic calculation and bitwise oper-
ations are supported on the combination of concrete and symbolic bitvectors, we encode
each PTX instruction as the computation over vectors. For example, addition for 16-bit
vectors is encoded as in the pseudocode of Listing 4.1.

1 a = [a_0, a_1, .., a_15]; //a_N is a 1-bit element

2 b = [b_0, b_1, .., b_15];

3 c = a + b

4 = [a_0 + b_0, a_1 + b_1, .., a_15 + b_15]; // Carries must be considered

Listing 4.1: Addition of bitvectors (The addition of carries is omitted)
With the add instruction corresponding to the above calculation, we detect the instruc-

tion type and source registers (%a, %b) and compute the result as Listing 4.2.

1 add.u16 %c, %a, %b; // dst: %c; src: %a, %b

Listing 4.2: Addition instruction
Then, having the binding with the name of the destination register (%c), we keep the

computed value in the register environment. PTXASW defines each instruction to up-
date the destination registers according to the instruction options and types, and those
registers may be fully concrete with the movement or computation from constant values.
Also, to support floating-point instructions, we insert the conversion by uninterpreted
functions at loading and storing bitvectors to and from floating-point data. Regarding
casting operands among integer types and binary types, truncating or extending is per-
formed based on the PTX specification. The computational instructions under predicates

37

issue conditional values in registers. Since registers are not used before initialization, these
always have evaluated values, except for special registers, such as thread IDs and uninter-
preted functions of loops and memory loads, which are described in following sections.

4.2.2 Execution Branching

Branching is caused by jumping to labels under binary predicates that are computed by
preceding instructions. Since inputs and several parameters are unknown at compilation
time, unsolvable values of predicates are often observed leading to undetermined execu-
tion flows where computation is boundless. Thus, we abstract the repeated instructions
in the same execution flow. At the entry point to the iterative code block, we modify
each iterator of the block to have uninterpreted functions with unique identities and per-
form operations only once upon those uninterpreted functions. Since those uninterpreted
functions produce incomparable values, we clip the initial values out and add them to
registers containing uninterpreted functions at the block entry, for better accuracy in the
case of incremental iterators to be found by induction variable recognition [81, 82].

We continue each branching while duplicating the register environment for succeed-
ing flows. All the flows finish at re-entry to iterative blocks or at the end of instructions,
completing their own results. The symbolic expressions in predicates used at the prior di-
vergence are recorded as assumptions while updating those predicates, to have constant
booleans in the register environment, based on whether it is assumed as true. Conflict-
ing values in assumptions are removed according to an SMT solver (Z3 [83]) when new
expressions are added. If the destination of a new branch can be determined providing as-
sumptions to the solver, unrealizable paths are pruned for faster emulation. Also, we skip
redundant code-block entry bringing the same register environment as other execution
flows by memoization, to force new results at each entry.

4.2.3 Memory Analysis

We collect memory loads forwardly through the emulation and express them by unin-
terpreted functions accepting addresses and returning data of corresponding sizes. The
trace of memory loads is intervened by memory stores, and both loads and assumptions
are invalidated by stores that possibly overwrite them, using the same mechanism for
conflicting assumptions mentioned in Section 4.2.2.

Listing 4.3 shows a Jacobian kernel implemented in Fortran for GPUs using OpenACC.
Its memory trace is obtained as in Listing 4.4 by PTXASW emulating the PTX code gen-
erated by NVHPC compiler 22.3. The address of each load is symbolically calculated as
register values, thus containing uninterpreted functions and special registers. In the case
of divergence, branched flows maintain such traces while sharing the common parts of
the original flow.

4.3 shuffle synthesis

Mapping programs over thread-level parallelism, while pursuing the performance of mod-
ern complex architectures and ensuring correctness, is a far–from–easy task. Most likely,

38

1 !$acc kernels loop independent gang(65535) present(w0(1:nx,1:ny), w1(1:nx,1:ny))

2 do j = 2, ny-1

3 !$acc loop independent vector(512)

4 do i = 2, nx-1

5 w1(i,j) = c0*w0(i,j) +&

6 c1*(w0(i-1,j)+w0(i,j-1)+w0(i+1,j)+w0(i,j+1)) +&

7 c2*(w0(i-1,j-1)+w0(i-1,j+1)+w0(i+1,j-1)+w0(i+1,j+1))

8 enddo

9 enddo

Listing 4.3: Jacobi kernel in Fortran and OpenACC

1 LD: 0xc + (load(param2) + ((((0x1 + %ctaid.x) * load(param6) // w0(i-1, j+1)

2 + ((%tid.x + %ctaid.y << 0x9) + (- load(param5)))) + loop(0, 14)) + loop(0, 53)) << 0x2)

3 LD: 0xc + (load(param2) + (((load(param6) * (0x3 + %ctaid.x) // w0(i+1, j+1)

4 + ((%tid.x + %ctaid.y << 0x9) + (- load(param5)))) + loop(0, 13)) + loop(0, 52)) << 0x2)

5 LD: 0x4 + (load(param2) + ((((0x1 + %ctaid.x) * load(param6) // w0(i-1, j-1)

6 + ((%tid.x + %ctaid.y << 0x9) + (- load(param5)))) + loop(0, 14)) + loop(0, 53)) << 0x2)

7 /* LD: w0(i+1, j-1), w0(i , j+1), w0(i+1, j), w0(i , j-1), w0(i-1, j), w0(i , j) */

8 ST: 0x8 + (load(param3) + (((%tid.x + %ctaid.y << 0x9) // w1(i , j)

9 + loop(0, 57)) + ((- load(param5)) + load(param6) * ((0x2 + %ctaid.x) + loop(0, 21)))) << 0x2)

Listing 4.4: Global-memory trace of Jacobi kernel through the symbolic emulation in order. Sign extensions are
omitted. Numerical numbers, shown in hexadecimal, are originally in bitvectors. load/loop are unin-
terpreted functions for parameter loads having addresses and loop iterators having unique identities,
respectively.

3
9

existing GPU programs are already optimized in terms of resource use and scheduling,
which does not smoothly allow for further optimization, especially at the low-level code.
The shuffle operation performs at its best when the communication is fully utilized [84],
but such cases are not common in compiler-optimized code or even manually-tuned code
in HPC. The big trouble is corner cases. Not only halo, but fractional threads emerged
from rounding up dynamic input sizes, demand exceptional cases to be operated on
GPUs. While the generality and applicability of GPU shuffle instructions for all types
of applications or computational patterns are yet unknown, the level of difficulty in man-
ually applying shuffle instructions in different cases adds further hardness to the already
complex task of understanding the true nature of the performance of shuffle operations.

Hence, we implement automatic shuffle synthesis through PTXASW to drive the lower-
latency operations seen in Section 2.5, while supporting corner cases and covering global-
memory loads with warp-level communication. PTXASW is accordingly extended to seek
shuffle candidates among loads, and embed shuffle instructions into code while alleviat-
ing register pressure.

4.3.1 Detection

Warps are comprised of neighboring threads. We do not consider adjacent threads in non-
leading dimensions, since those tend to generate non-sequential access patterns. Upon
finding a global-memory load, PTXAS compares its load address to those of previous
loads found through the same execution flow and not invalidated by any store. If for
all threads in a warp the load is overlapped with existing loads, those instructions are
recorded as possible shuffle sources. To utilize a load with an address represented as
A(%tid.x) for another having the address B(%tid.x), there must exist an integer N such
that A(%tid.x+N) = B(%tid.x) and −31 6 N 6 31 to be within the same warp, which
consists of 32 threads. For example, when N = 0, the load can be fully utilized in the
same thread. When N = 1, we can adapt the shfl.sync.down instruction to convey ex-
isting register values to next threads while issuing the original load for the edge case
(%warp_id= 31). In the case of the memory trace in Listing 4.4, the load accesses of w0(i-1,
j+1) and w0(i-1, j-1) are uniformly aligned with the close addresses to each other, so
we can search the variable N, which satisfies the above condition, by supplying N along
with those addresses to the solver and find N=−2.

We make sure that each shuffle candidate has the sameN as a shuffle delta in all the exe-
cution flows. This delta must be constant regardless of runtime parameters. Since the steps
of loop iterators in PTX code could be any size (e.g. NVHPC Compiler uses the thread-
block size), shuffles are detected only in straight-line flows, whereas live variable analysis
is employed to exclude the case in which source values possibly reflect a different iteration
from the destination. For faster analysis, we construct control-flow graphs before shuffle
detection, while pruning unrelated instructions to memory operations and branches, and
at the use of the SMT solver, uninterpreted functions are converted to unique variables.

40

4.3.2 Code Generation

Warp divergence may be caused by various reasons, including the dynamic nature of
the program execution, which is inconvenient to optimization, where the uniformity of
threads matters for collaboration. Not only inactive threads, but an insufficient number of
threads to constitute complete warps, raises corner cases in which original computation
should be retained. Our shuffle synthesis handles both situations by adding dynamic
checkers for uniformity.

Listing 4.5 presents an example of the synthesis by PTXASW. Once all the emulation is
finished, the results are collected and filtered to satisfy all the above-mentioned conditions.
Then, PTXASW selects the possible shuffle for each load with the smallest shuffle delta (N)
and allows only the least corner cases. At the code generation, each source load instruc-
tion is extended to be accompanied by the mov instruction to prepare the source register
(%source). The destination load is covered with the shuffle operation and a corner-case
checker. First, we check if the thread has no source from the same warp (%out_of_range).
Second, the incompleteness of the warp (%incomplete) is confirmed with a warp-level
querying instruction. In any case, the shuffle operation is performed at the position of the
original load, shifting the value of the source register with the distance of the extracted
shuffle delta. Finally, only the threads participating in an incomplete warp or assuming no
source lane execute the original load under the predicate (%pred). When N < 0, the shfl

instruction takes the .up option and when N > 0, the .down option is selected. If N = 0,
just the mov instruction is inserted instead of all the synthesized code. In actual code, the
calculation of %warp_id is shared among shuffles and set at the beginning of the execution
to reduce the computational latency.

To preserve the original program characteristics, such as the register use, uniformity,
and ILP, following ways of generation are avoided. We can produce the correct results
even if shfl is predicated by %incomplete, but it often imperils the basic efficiency with
an additional branch, which limits ILP. On the other hand, our code introduces only
one predicate to each shuffle and does not leave any new branch in the resultant SASS
code. Also, we do not use a select instruction for merging the results between shuffles

1 ld.global.nc.f32 %f4, [%rd31+12];// w0(i-1, j+1)

2 /* ... */

3 ld.global.nc.f32 %f7, [%rd31+4]; // w0(i-1, j-1)

4

5 ld.global.nc.f32 %f4, [%rd31+12];

6 mov.f32 %source, %f4; /* ... */

7 mov.u32 %wid, %tid.x; rem.u32 %wid, %wid, 32;

8 activemask.b32 %m; setp.ne.s32 %incomplete, %m, -1;

9 setp.lt.u32 %out_of_range, %wid, 2;

10 or.pred %pred, %incomplete, %out_of_range;

11 shfl.sync.up.b32 %f7, %source, 2, 0, %mask;

12 @%pred ld.global.nc.f32 %f7, [%rd31+4];

Listing 4.5: Shuffle synthesis on Jacobi kernel. Upper is original
and lower is synthesized code; variable declarations
are omitted and the naming is simplified.

PTXASW

41

and corner cases, because it would aggravate register pressure. The output predicate by
shuffle poses execution dependency and provides the invalid status of inactive threads;
thus, it is ignored. Moreover, we only create shuffles from direct global-memory loads
and do not implement shuffles over shuffled elements for better ILP.

4.4 experimental methodology

We build PTXASW using Rosette [85], a symbolic-evaluation system upon the Racket
language. PTXASW is equipped with a PTX parser and runs the emulation of the parsed
code while expressing runtime parameters as symbolic bitvectors provided by Rosette.
Our shuffle synthesis is caused at code generation, which prints the assembler-readable
code. We evaluate our shuffle mechanism with the NVHPC compiler [7] by hooking the
assembler invocation and overwriting the PTX code before it is assembled. The NVHPC
compiler accepts the directive-based programming models OpenACC and OpenMP to
generate GPU code, which have no control over warp-level instructions. The emulation
is also tested for GCC with OpenACC/OpenMP code and LLVM with OpenMP code,
but these use a master-worker model to distribute computation across thread-blocks [86]
and do not directly refer to the thread ID in each thread, so mainly ineffective results
are obtained. Our synthesis is not limited to global-memory loads and works on shared
memory (such as Halide [87]), but the performance is not improved due to the similar
latency of shared-memory loads and shuffles. The NVHPC compiler utilizes the same
style to translate both OpenACC and OpenMP codes written in C/C++/Fortran to PTX,
hence supporting any combinations.

For the evaluation, we use the KernelGen benchmark suite for OpenACC [88], shown
in Table 4.1. Each benchmark applies the operator indicated in the benchmark name, to
single or multiple arrays and updates different arrays. The benchmarks gameoflife, gauss-
blur, jacobi, matmul, matvec and whispering are two-dimensional, whereas others are
three-dimensional, both having a parallel loop for each dimension, in which other loops
might exist inside—except matvec, which features only one parallel loop. The thread-
level parallelism is assigned to the innermost parallel loop and the thread-block level
parallelism to the outermost. We show the total time of running the shuffle-synthesized
kernel ten times on Kepler (NVIDIA Tesla K40c with Intel i7-5930K CPU), Maxwell (TI-
TAN X with Intel i7-5930K), Pascal (Tesla P100 PCIE with Intel Xeon E5-2640 v3), and
Volta (Tesla V100 SXM2 with IBM POWER9 8335-GTH). We use NVHPC compiler 22.3
with CUDA 11.6 at compilation, but due to environmental restrictions, run the programs
using CUDA driver 11.4/11.4/10.0/10.2 for Kepler/Maxwell/Pascal/Volta, respectively.
The compiler options in NVHPC are "-O3 -acc -ta=nvidia:cc(35|50|60|70),cuda11.6

,loadcache:L1". To fully utilize computation, 2D benchmarks select 32768x32768 as their
dynamic problem sizes and 3D compute 512x1024x1024 grids, except uxx1, which lever-
ages 512x512x1024 datasets and whispering, where more buffers are allocated, computing
over 8192x16384 data elements. To assess a performance breakdown, we prepare two other
versions of PTXASW: NO LOAD and NO CORNER. The former eliminates loads that are
covered by shuffles, whereas the latter only executes shuffles instead of original loads,
without the support of corner cases.

42

Table 4.1: The KernelGen benchmark suite. Lang indicates the programming language used (C or
Fortran). Shuffle/Load shows the number of shuffles generated among the total number
of global-memory loads. Delta is the average shuffle delta. Analysis is the execution time
of PTXASW on Intel Core i7-5930K.

Name Lang Shuffle/Load Delta Analysis

divergence C 1 / 6 2.00 4.281s

gameoflife C 6 / 9 1.50 3.470s

gaussblur C 20 / 25 2.50 7.938s

gradient C 1 / 6 2.00 4.668s

jacobi F 6 / 9 1.50 4.119s

lapgsrb C 12 / 25 1.83 14.296s

laplacian C 2 / 7 1.50 4.816s

matmul F 0 / 8 - 13.971s

matvec C 0 / 7 - 4.929s

sincos F 0 / 2 - 1m41.424s

tricubic C 48 / 67 2.00 1m39.476s

tricubic2 C 48 / 67 2.00 1m41.855s

uxx1 C 3 / 17 2.00 7.466s

vecadd C 0 / 2 - 3.281s

wave13pt C 4 / 14 2.50 6.967s

whispering C 6 / 19 0.83 6.288s

To alleviate the overheads of PTXASW, we run both the comparison between load ad-
dresses and iterator analysis of loops in parallel, as well as the emulation of each kernel.
Also, we set the timeout for one solver execution to one minute. As Table 4.1 shows, most
benchmarks cause moderate latency. In sincos, the mathematical functions sin and cos
leave multiple nested loops in the analyzed code; hence, the execution spends much time
on iterator analysis. In tricubic, triple-nested loops of size 4x4x4 are unrolled manually,
while in tricubic2 these are sequential loops to be unfolded by the compiler. Therefore,
we see 67 loads on both, which also require substantial analysis time. While our cur-
rent implementation uses the solver to detect inductive variables in a similar way to the
shuffle detection, it may be refined by classical methods [81, 82]. Appendix provides the
pseudocode of PTXASW.

The shuffle synthesis fails on four benchmarks. In matmul and matvec, the innermost
sequential loop contains loads, but these do not have neighboring accesses along the
dimension of the thread ID. The benchmarks sincos and vecadd do not have several loads
sharing the same input array. We note that PTXASW does not attempt to replace data-
dependent memory access in order to alleviate runtime overheads. Yet, as seen in Table 4.1,
standard applications provide shuffle opportunities for PTXASW with straightforward
memory access.

43

4.5 evaluation

Fig. 4.2 shows the execution time of benchmarks on each GPU with original code and
PTXASW-generated code. The performance improvement on Kepler/Maxwell/Pascal/-
Volta is confirmed with 7/6/9/4 benchmarks showing up to 16.9%/132.3%/9.1%/14.7%
performance improvement, respectively. We see performance degradation with Volta in
the case where more than ten shuffles are generated. Other GPUs mostly gain better
performance with such cases. With increased shuffle deltas, more corner cases are ex-
pected. Volta shows optimal efficiency when N 6 1.5, while other GPUs benefit from
the case of N = 2.5. For example, Maxwell attains the best performance with gaussblur

0.00
0.50
1.00
1.50
2.00
2.50

R
un

ti
m

e
(s

)

Kepler

0.00
0.50
1.00
1.50
2.00 Maxwell

0.00
0.25
0.50
0.75
1.00 Pascal

0.00
0.10
0.20
0.30
0.40
0.50 Volta

divergence

gameoflif
e

gaussb
lur

gradient
jacobi

lapgsrb

laplacia
n
tric

ubic

tric
ubic2 uxx1

wave13pt

whisp
ering

0.00

−0.05
0.00
0.05Original PTXASW

Figure 4.2: Performance comparison between the original code and the version implementing au-
tomated shuffle on four GPUs.

44

0.00
1.00
2.00
3.00
4.00

Sp
ee

du
p Kepler

0.00
1.00
2.00
3.00
4.00 Maxwell

0.00
0.50
1.00
1.50
2.00 Pascal

0.00

0.50

1.00

1.50 Volta

divergence

gameoflif
e

gaussb
lur

gradient
jacobi

lapgsrb

laplacia
n
tric

ubic

tric
ubic2 uxx1

wave13pt

whisp
ering

0.00

−0.05
0.00
0.05Original NO LOAD NO CORNER PTXASW

Figure 4.3: Speedup compared to Original. NO LOAD/NO CORNER produce invalid results

(N = 2.5), although Volta’s performance drops by half for the same case. The average im-
provement across all GPU generations is -3.3%/10.9%/1.8%/-15.2% for Kepler/Maxwell/
Pascal/Volta, respectively.

The speedup graphs for PTXASW, along with the NO LOAD and NO CORNER ver-
sions discussed in Section 4.4, are provided in Fig. 4.3. NO LOAD eliminates the need
for memory loads and attains better performance with memory-bound applications such
as gaussblur (except on Volta). Fig. 4.4 presents the SM occupancy of each benchmark.
Since there is no resource change other than the register use from the original execution,
the occupancy rate is directly affected by the number of registers. With NO LOAD, the
performance of gaussblur on Volta and whispering on Maxwell/Pascal degenerate. Since
the number of active registers is fewer, compared to the original, more thread blocks may

45

0.00
0.25
0.50
0.75
1.00

O
cc

up
an

cy

0
32
64
96
128

#
of

R
eg

is
te

rsKepler

0.00
0.25
0.50
0.75
1.00

0
32
64
96
128Maxwell

0.00
0.25
0.50
0.75
1.00

0
32
64
96
128Pascal

0.00
0.25
0.50
0.75
1.00

0
32
64
96
128Volta

divergence

gameoflif
e

gaussb
lur

gradient
jacobi

lapgsrb

laplacia
n

tric
ubic

tric
ubic2uxx1

wave13pt

whisp
ering

0.00

−0.05
0.00
0.05Original NO LOAD NO CORNER PTXASW

Figure 4.4: Occupancy of SMs. Line plots show the number of registers used per thread

be scheduled on the SMs, causing demand conflicts on the registers and internal units.
NO CORNER replaces the original loads and attains competitive performance compared
with NO LOAD on Kepler/Maxwell/Pascal. On Volta, the occupancy drop by NO COR-
NER is explicit, which causes performance improvements over NO LOAD at gameoflife.
With gausslur on Volta, NO CORNER maintains similar occupancy compared to the orig-
inal, yet achieves 15.0% better efficiency. The benchmark gaussblur on Pascal/Volta de-
creases occupancy from NO LOAD to NO CORNER, which generates 56.2%/29.7% bet-
ter throughputs. Basically, NO CORNER imposes one shuffle latency at the location of
original memory loads, which is observed as performance degradation in tricubic. Ac-
cordingly, PTXASW increases the execution time of these, compared to NO CORNER,
while some benchmarks such as jacobi on Pascal and gradient on Volta are refined due

46

to the lower occupancy. On Kepler and Maxwell, which have high computational latency
compared to the other two GPUs, the occupancy drop harms the efficiency. The bench-
mark jacobi experiences poor performance with PTXASW, where the number of registers
is increased from 40 to 45 on Kepler and from 38 to 42 on Maxwell, compared to the
original.

Overall, the performance improvement by PTXASW is found when NO LOAD and
NO CORNER have sufficiently better performance compared to the original and when
the occupancy typically rises on Kepler/Maxwell and drops on Pascal/Volta. The average
number of additional registers with NO LOAD/NO CORNER/PTXASW compared to the
original is -6.4/-5.2/2.7 on Kepler, -6.6/-5.9/4.2 on Maxwell, -7.0/-5.9/3.8 on Pascal, and
-6.4/6.8/9.2 on Volta.

4.6 analysis

This section provides the performance detail of our shuffle synthesis on each GPU. Fig. 4.5
shows the ratio of stall reasons sampled by the profiler for all the benchmarks. Those char-
acteristics of computation appear as the results of the program modification (e.g. register
use, shuffle delta) and the architecture difference (e.g. computational efficiency, cache la-
tency).

4.6.1 Kepler

The Kepler GPU has long stalls on computational operations with each benchmark. The
average execution dependency is 24.7% and pipeline busyness is 7.5% with the original.
When we look at the memory-bound benchmarks such as gameoflife, gaussblur, and
tricubic, NO LOAD significantly reduces memory-related stalls. Especially, tricubic has
56.0 percentage points below memory throttles from the original to NO LOAD, yielding
2.53x performance. From NO LOAD to NO CORNER, the execution dependency increases
by 4.0 percentage points and the pipeline busyness decreases by 1.6 percentage points on
average. The performance degradation at NO CORNER with the memory-bound bench-
marks is observed with the latency of the pipelines and the wait for the SM scheduler.
PTXASW suffers from memory throttling and additional computation for the corner cases,
which limit the improvement up to 16.9%.

The memory throttling and the additional computation bottlenecks suffered by
PTXASW may be hidden if the shuffle operations reduce the original computation and
communication into just one transfer among threads, functioning as a warp-level cache.
Otherwise, there is a need to face a trade-off between the redundancy of operations and
the efficiency on the architecture. On Kepler, both heavy computation and memory re-
quests are imposed by the corner case. Therefore, in the general use of shuffles, the uni-
formity of calculation is crucial and it requires domain-specific knowledge.

4.6.2 Maxwell

There are two obvious compute-bound benchmarks: gameoflife and tricubic. For these,
no improvement is perceived with NO LOAD, and there are no particular changes in occu-

47

0
25
50
75

100

St
al

l(
%

)

Kepler

0
25
50
75

100

Maxwell

0
25
50
75

100

Pascal

0
25
50
75

100

Volta

divergence

gameoflif
e

gaussb
lur

gradient
jacobi

lapgsrb

laplacia
n
tric

ubic

tric
ubic2 uxx1

wave13pt

whisp
ering

0.00

−0.05
0.00
0.05

Mem Dep
Inst Fetch

Mem Thro�le
Not Selected

Exec Dep
Texture

Pipe Busy
Other

Figure 4.5: Stall breakdown in the order of Original/NO LOAD/NO CORNER/PTXASW from left
to right for each benchmark. Mem Dep: waiting for the completion of memory access; Mem
Throttle: no available memory unit; Exec Dep: waiting for the results of the preceding
computation; Pipe Busy: no available computational unit; Inst Fetch: latency of fetch-
ing operations; Not Selected: the warp is not scheduled; Texture: utilization of the
texture memory; Other: reasons unspecified by the profiler.

pancy or stalls throughout the four different versions. In summary, gameoflife experiences
-0.1%/5.7%/6.2% lower performance and tricubic shows -1.6%/7.7%/15.4% lower per-
formance with NO LOAD/NO CORNER/PTXASW, respectively, compared to the orig-
inal version. In other cases, memory dependency is dominant. However, the merit of

48

NO LOAD is limited to gaussblur and lapgsrb, which experience large texture-memory
latency of read-only cache loads, successfully replaced with shuffles by PTXASW. The
texture stall was reduced from 47.5% to 5.3% in gaussblur and from 23.0% to 0.1% in
lapgsrb from the original to PTXASW, attaining 132.2% and 36.9% higher throughput.
Other benchmarks do not feature stalls that allow for clear performance improvement by
NO LOAD. As it can be observed in Fig. 4.5, the memory dependency stalls are main-
tained for most benchmarks, except for tricubic2, which shows 32.9 percentage points
lower memory dependency and only 14.3% overall improvement with NO LOAD. Those
values are mostly absorbed by the corner cases.

On the Maxwell GPU, only the texture stalls are improvable for efficiency in the tested
cases. Since we observe a moderate overhead of the corner cases, our synthesis tool may
enhance the overall performance. The memory-dependency stalls work as a good indica-
tor of the memory utilization. If, in addition, a high execution dependency would exist,
it would provide the warp-level shuffle optimization the opportunity to be beneficial to
speed up the computation.

4.6.3 Pascal

Even more than in Maxwell, texture stalls are found in most benchmarks and those
produce higher throughput with NO LOAD. Especially, gameoflife and tricubic, the
compute-bound kernels on Maxwell, become memory intensive on Pascal and the per-
formance increases by 5.9% and 5.4% with PTXASW. The unspecific latency ("Other") fills
many parts of computation on Pascal. Further investigation shows that this mainly con-
sists of the latency from register bank conflicts and the instructions after branching. With
the optimization adding a predicate to check the activeness of the warp (@!incomplete)
before the shuffle and generating a uniform branch, the ratio of this latency improves
from 34.4% to 8.6% with PTXASW at gameoflife, obtaining 150.8% efficiency compared
to the original. However, as mentioned in Section 4.3.2, it decreases the average relative
execution time to 0.88x slowdown.

Since the latency of the L1 cache is higher than that of one shuffle operation, the compu-
tation may be hidden by data transfers. Once the memory-dependency stall ratio increases
due to replacing the texture stalls, Pascal may maintain the efficiency with the corner
cases, resulting in speed-up in nine benchmarks. For shuffle instructions to be beneficial,
the execution should be less divergent and careful register allocation is recommended to
maximize the thread utilization.

4.6.4 Volta

On Volta, most benchmarks become memory-bound and memory-intensive applications
become sensitive to memory throttles. Nevertheless, the speed-up by NO LOAD is limited
to up to 1.35x (gameoflife), due to the highly efficient cache mechanism. As argued in
Section 4.5, some of the benchmarks attain higher performance with NO CORNER than in
the case of NO LOAD for the lower occupancy. Other than that, we observe performance
degradation due to increased execution dependency for lapgsrb and tricubic with NO
CORNER. Those further reduce the efficiency with PTXASW while featuring stalls for

49

instruction fetching. Also, the memory dependency of tricubic develops a large latency
for memory accesses with PTXASW even though the corner cases experience fewer loads.
This leads to unstable speed-ups between 0.315x and 1.15x.

The calculation through shuffles is expected to be effective depending on the utilization
of communication, and the nonentity of warp divergence. Especially, as Volta shows mini-
mal latency at each operation, the penalty of non-aligned computation becomes apparent
and must be avoided by the algorithm.

4.6.5 Application Example

We also apply PTXASW for the compilation of CUDA benchmarks extracted from ap-
plications. We select three benchmarks that appeared as complex 3D stencil operations
in [89]: hypterm, rhs4th3fort, and derivative, to run on the Pascal GPU. hypterm is a
routine from a compressible Navier-Stokes mini-app [90]. rhs4th3fort and derivative are
stencils from geodynamics seismic wave SW4 application code [91]. Each thread in the
benchmarks accesses 152/179/166 elements over 13/7/10 arrays, respectively. In order
to satisfy the requirement of our shuffle generation algorithm, We modify the execution
parameters to execute at least 32 threads along the leading thread-block dimension and
use the float data type. Since we saw in the prior section the overhead of long-distance
shuffles, which generate many corner cases, we limited the shuffle synthesis to be |N| 6 1

and found shuffles only with |N|= 1.
hypterms contains three kernels that work along different dimensions. In the kernel for

the leading dimension, 12 shuffles are generated over 48 loads, producing 0.48% improve-
ment. rhs4th3fort and derivative feature a single kernel each. rhs4th3fort experiences
2.49% higher throughput by PTXASW while placing 44 shuffles among 179 loads. For
derivative, having 52 shuffles from 166 loads, PTXASW attains 3.79% speed-up compared
to the original execution.

4.7 related work

Ever since warp-shuffle instructions were introduced during the Kepler generation of
GPUs, these have been the subject of various lines of research. Early work described their
manual use for specific computational patterns such as reduction operations [92] and ma-
trix transposition [93]. Other research described the use of warp-shuffle instructions in
the context of domain-specific optimizations such as employing them as a register cache
for stencil operations [94], or to replace memory access for Finite Binary Field applica-
tions [94].

Research on the automatic generation of warp-shuffle instructions has been explored.
Swizzle Inventor [84] helps programmers implement swizzle optimizations that map a
high-level "program sketch" to low-level resources such as shuffle operations. The authors
meticulously design the abstraction of shuffles, synthesize actual code roughly based on
algorithms found in previous literature, and attain enhanced performance while reducing
the amounts of computation. Tangram, a high-level kernel synthesis framework, has also
shown the ability to automatically generate warp-level primitives [74]. Unlike PTXASW,
both of the above-mentioned efforts leverage domain-specific information to map com-

50

putational patterns such as stencil, matrix transposition, and reductions to shuffle opera-
tions. Thus, Swizzle Inventor and Tangram are not able to benefit from low-level shuffle
instructions for general cases that fall outside their scope. In addition, both require the
programmer to first write a high-level program that is compatible with their tool.

Other systematic efforts with shuffle operations have been established as a way for
optimization. Software systolic arrays [80] improve data locality by assigning global data
to each thread. These compute results by propagating and accumulating partial results
through warp-level shuffles across overlapped blocks rather than using shared memory.
Wang et al. [95] introduce shuffles to OpenMP programs and experience strictly higher
throughputs compared to the use of shared memory. While those models may reduce
the number of memory accesses, the applicability is restricted to summation and a deep
understanding of applications is required for the implementation.

Recent code-generation techniques allow for obtaining optimal SIMD code generation.
Cowan et al. [96] generate program sketches for execution on ARM processors, by synthe-
sizing additional instructions, as well as input/output registers, to implement the shortest
possible SIMD code of reduction. Unlike PTXASW, which uses an SMT solver to find the
optimal shuffle deltas, this work runs a comprehensive search of multiple possible code
versions; thus, the search space is exponential to the number of instructions. VanHat-
tum et al. [97] attain faster execution on digital signal processors while employing equality
saturation [23], a modern way of optimization that generates possible code as much as pos-
sible from a basic program according to the rules of term rewriting. They derive shuffles
along with vector I/O and computation from sequential C code. Their intermediate code
contains instructions in one nested expression and the shuffle operation only works for
memory loads that appear as arguments of the same vector operation. Therefore, the code
rewriting for shuffles assumes a top-down style where outer expressions have to be vec-
torized first, in order to vectorize inner expressions containing shuffled loads. While their
technique may provide a powerful method to the implementation of libraries, irregular
patterns such as corner cases usually found in HPC applications are out of scope. Partial
control-flow linearization [98] applies SIMD operations to irregular data-parallel loops by
masking inactive lanes out while holding non-divergent branching. Vector folding [99]
changes the data layout of multi-dimensional stencils for SIMD computation. The ideas
used for SIMD may be beneficial to GPUs due to the architectural resemblance between
SIMD and SIMT.

Reductions in OpenACC/OpenMP are often mapped to warp-level shuffles for acceler-
ation [100, 101]. The shared-memory clause introduced to OpenACC shows poor perfor-
mance [102], as we experienced in our tested benchmarks, and thus requires a substantial
effort to gain efficiency.

Several symbolic analyzers [103, 104] have been proposed for GPU computing to check
memory access, synchronization, data races, correctness, and performance. Analysis and
optimization of low-level GPU code are explored for GPU-specific problems such as lo-
cality, divergence, and register use [105, 106, 107]. GPU simulators [108, 109] may provide
characteristic details of performance in relation to the design of GPU architectures. Un-
official SASS assemblers [38, 110] are provided for multiple GPUs to reveal the depth of
GPU programming.

51

To our knowledge, PTXASW is the first tool that enables automatic generation of shuffle
instructions for all cases, without additional domain information, and is immediately
compatible with all PTX generating languages and tools, without any further programmer
intervention to application codes.

52

5
S O U R C E - C O D E O P T I M I Z AT I O N

The previous chapter worked on an extension of the GPU code assembler to allow funda-
mental changes in the execution system of directive-based programs. For more aggressive
optimizations, Chapter 5 deals with the frontend. We first provide the overview of our tool
and then describe the details of our source-code optimization algorithms, such as equality
saturation and bulk load. Using state-of-the-art GPUs, we show significant performance
improvements.

5.1 acc saturator

Compiler techniques have been critical for the last half-century in utilizing the best re-
sources available for program execution on the target architecture [111, 112]. Various
features of hardware, including registers, cache systems, pipelines, and parallelization,
rely on the compiler’s efforts for performance, enabling target-specific optimization un-
der resource constraints. However, compilers tend to miss a holistic view of performance
opportunities and require additional discrete efforts for each discrete optimization mech-
anism [89]. Equality saturation, a state-of-the-art technique for compilers [23], defines a set
of rewriting rules over the accumulation of equal expressions of target code. The rewrit-
ing continues until the expression gets saturated, finding no other forms, or hits a time or
size limitation, attaining optimal codes based on a cost model that considers the entire
computation.

A dedicated graph structure called e-graph accepts the accumulation of equal expres-
sions, while sharing redundant code blocks over expressions. The graph structure consists
of e-classes, groups of equal e-nodes. One e-node may point to e-classes as its subexpres-
sions, and the accumulation works by extending or merging e-classes in accordance with
rewriting rules, while preserving the relationship between parental e-nodes and child e-
classes [113, 114]. To extract optimal solutions, each e-class selects one contained e-node
with a minimum cost, while optionally counting common expressions only once and com-
pleting Common Subexpression Elimination (CSE).

ACC Saturator is the implementation of our proposal of equality saturation for directive-
based code. We provide a convenient command-line tool that wraps normal C-compiler
invocation and replaces the original inputs with saturated codes.

Fig. 5.1 provides an overview of our work. ACC Saturator optimizes the sequential
parts of parallel loops by packing and unpacking e-graphs for extracted expressions while
preserving original code structures. Array references, branching, loops, function calls, and
member references are supported under a dataflow abstraction. Once e-graphs have the

53

#pragma acc/omp …
for (…) {
 t0=…; …; …; …;
 for (…) {
 A = t5;
 …; …; B = t8;
}}

Input (OpenACC/OpenMP)

#pragma acc/omp …
for (…) {
 for (…) {
 if (…) {
}}}

% accsat nvc/gcc/clang …

Create E-Graphs (CSE)1

if (b == 0) { b = a; }
→ b1 = Φ(b0 == 0, b0, a)

for (i = 1; …) { x = x*i; }
→ x1 = Φ(for-cond,for-x,x0)* Φi

A[i] = A[i]+1;
→ A1 = ST(A0, i, LD(A0, i) + 1)

A1 ST

A0 i

+

LD 1

Equality Saturation (SAT)2 Bulk Load (BULK) 3

b1 Φ

== b0 a 0

E-Graphs can work for Common
Subexpression Elimination (CSE)

Statements are in SSA form: A = A; → A1 = A0

Φ

for-cond for-x x0

* x1

Φi

… …

B * C + A → A + B * C → FMA(A, B, C)
B = D + E && C = E + D → B = C

First, put
sorted loads

+ +

* A

FMA

B C

I. Apply
rewriting
rules until
saturation A

FMA

B

II. Extract optimal
solutions based on
linear programming

Cost:10

Cost:320

Cost:210

*

FMA

+

LD0 LD3 + LD2

LD1 LD4

t0 = LD0
t1 = LD1
t2 = LD2
t3 = LD3
t4 = LD4
t5 = t0*t3
A = t5
t6 = t1+t4
t7 = t6+t2… Then, insert into

original statements

Figure 5.1: Overview of ACC Saturator

5
4

inputs, we run equality saturation with an arbitrary set of rewriting rules and succeed-
ingly select optimal solutions featuring minimal total costs according to our model. With
new expressions, we update user code while arranging the order of computation and con-
tinue to the compiler invocation, since generated code is compatible with NVHPC, GCC,
and Clang.

The e-graph operation by ACC Saturator consists of three phases. First, 1 we build
a static single-assignment form (SSA) from the input code to create initial e-graphs (Sec-
tion 5.2). E-graphs accept our SSA representation holding dependencies, conditions, and
iterations over C-style operations. Second, 2 we define rewriting rules and a cost model
for performance improvement (Section 5.3). Our tool runs equality saturation and extracts
optimal solutions under time and size limitations. Last, 3 we generate output code (Sec-
tion 5.4). As a result, user kernels are reduced to minimum computation with a new order.

5.2 program representation

During compiler optimizations, the program semantics and behavior are preserved while
improving its performance. Maintaining the order of data accesses is especially important
to ensure reproducibility of results. To express clear dependencies among statements, pro-
gram analysis often relies on static single-assignment form (SSA), which allows only one
definition per variable [115]. Early work on equality saturation [23] used an SSA-based
graph structure to represent and rewrite an entire program. For directive-based code,
however, user-specified parallelism significantly affects performance [116], so compilers
are limited to respect users’ decisions.

Our proposed methodology optimizes OpenACC/OpenMP code while preserving a
connection between e-graphs and original code. We track optimal expressions in e-graphs
using SSA variables and insert optimized code into programs with the same structures
and directives as input. The rest of this section covers the conversion process from direc-
tive-based code to e-graphs and explains the solution finding process based on SSA. By
doing so, we are able to improve the performance of parallel code without changing its
semantics or behavior.

5.2.1 E-Graph Creation

Both OpenACC and OpenMP contain sequential parts within the innermost parallel loops
that may be executed independently across multiple threads and thus optimized for more
efficient execution or reduced computation. To attain this, we create an e-graph for each
innermost parallel loop as follows: First, we introduce conditional φ nodes [117] to repre-
sent control structures such as if and for, while merging data flows. Second, we assign
an ID to each variable/array assignment or φ. Third, we update each variable/array load
to refer to the latest ID along its data flow. Last, for each assignment or φ, we assign both
the ID and the expression to the same e-class.

Examples of e-graphs for store/load, if, and for operations are illustrated in 1 at
Fig. 5.1, with some IDs omitted for simplicity. The e-nodes are depicted as white blocks,
and the e-classes as dotted boxes, while the black arrows represent parent-child relation-
ships among them. As shown in each example, multiple references to the same variables

55

are now directed toward common e-classes, thereby reducing redundancy. For each up-
dated variable, φ is created within if and for structures with conditions that may be
concrete or abstract. Our tool supports C-style operations, such as function calls, point-
ers, and member references, within the same SSA framework. To optimize the code, ACC
Saturator leverages our e-graph representation with rewriting rules and cost models, as
detailed in Section 5.3.

5.2.2 Code Selection

To select optimal codes in the e-graph, we aim to find an equal expression that corre-
sponds to a set of all assignments. We extract the lowest-cost expression that contains all
the e-classes of assignments based on a sequence of IDs. The total cost is calculated as the
sum of the cost of each e-class, with common e-classes being counted only once. To attain
this, we use linear programming techniques [118].

Each assignment is updated based on its ID and the extracted expression. To enable
reuse across assignments, the values of common expressions are stored in temporary
variables. ACC Saturator allows for customizing the generation order of these temporary
variables (Section 5.4).

5.3 optimization with saturation

In this section, we present our approach to rewriting OpenACC/OpenMP code using
equality saturation. Our strategy involves a carefully crafted set of rewriting rules and a
cost model that aims to minimize both computation and memory access.

5.3.1 Rewriting Rules

Reordering computations allows programs to explore different optimization possibilities.
Rather than selecting a single alternative, compilers aim to choose the most profitable can-
didate according to their objective. Equality saturation defers this decision and instead
accumulates equal expressions using multiple rewriting rules. With this approach, ACC
Saturator can derive efficient operations and facilitate the reuse of expressions simultane-
ously, as shown in 2 at Fig. 5.1.

We apply two sets of rewriting rules to our equality saturation process. The first set
introduces Fused Multiply-Adds (FMA) operations, which can improve code generation
and resource utilization on GPUs [89]. Table 5.1 lists the minimum set of rules we use.
When we encounter expressions that match the FMA pattern, we add the corresponding
operations to the e-classes of matched expressions. The second set of rules benefits from
the commutative and associative properties of the plus and multiply operators to reorder
computation. This can enable common subexpression elimination and produce new FMA
operations. We also incorporate constant folding of arithmetic operations with integer
and floating-point numbers. Generating FMA operations is a simple expansion to the
expression A + B * C. We note that, as Rawat et al. [89] argue, explicitly creating FMA
forms often benefits code generation as practical compilers go through many optimization
phases sequentially, losing other optimization opportunities.

56

While ACC Saturator can rewrite subtraction, division, memory access order, condi-
tional expressions, and iterations, these rules can increase the size of e-graphs and lead to
slow extraction of optimal solutions in real-time. Therefore, we restrict the tool to only use
the set of rules mentioned earlier for efficient performance. Our rewriting rules are legal
with both C and Fortran, except for floating-point accuracy. ACC Saturator can easily turn
off the rules that could change floating-point results.

Table 5.1: ACC Saturator’s rewriting rules

Name Pattern Result

FMA1 A + B * C → FMA(A, B, C)

FMA2 A - B * C → FMA(A, -B, C)

FMA3 B * C - A → FMA(-A, B, C)

COMM-ADD A + B → B + A

COMM-MUL A * B → B * A

ASSOC-ADD1 A + (B + C) → (A + B) + C

ASSOC-ADD2 (A + B) + C → A + (B + C)

ASSOC-MUL1 A * (B * C) → (A * B) * C

ASSOC-MUL2 (A * B) * C → A * (B * C)

5.3.2 Cost Model

GPUs are complex systems that require careful analysis to accurately predict their effi-
ciency [109, 119]. While applications running on GPUs often face memory-bound limita-
tions [120], it is not just the number of memory accesses that affects overall bandwidth.
Factors such as on-chip resource utilization, processor occupancy, thread/grid-level par-
allelism across multiple memory layers, and instruction-level parallelism (ILP) all play a
role, and improving one metric often comes at the expense of another. In ACC Saturator,
our focus is on reducing memory access and computation by utilizing registers for com-
mon expressions, while maintaining ILP as described in Section 5.4.

Our cost model is simple: constant numbers pose no cost, each input variable or φ
counts as 1, all computational operations except division and modular arithmetic count
as 10, and each memory access, division, modular arithmetic, or function call counts as
100. The assigned costs are based on empirical testing and aim to reflect the relative cost
of different operations. We acknowledge that future research could refine the cost values.

5.4 code generation

To implement the extracted solutions from e-graphs in the input code, we introduce tem-
porary variables. During the generation step, ACC Saturator leverages a novel technique
called bulk load that prioritizes high memory pressure by reordering computations.

57

1 #pragma acc parallel loop gang num_gangs(ksize-1)\

2 num_workers(4) vector_length(32)

3 for (k = 1; k <= ksize-1; k++) {

4 #pragma acc loop worker

5 for (i = 1; i <= gp02; i++) {

6 #pragma acc loop vector

7 for (j = 1; j <= gp12; j++) {

8 temp1 = dt * tz1; temp2 = dt * tz2;

9 lhsZ[0][0][AA][k][i][j] =

10 - temp2 * fjacZ[0][0][k-1][i][j]

11 - temp1 * njacZ[0][0][k-1][i][j] - temp1 * dz1;

12 // ... Similar 74 statements continue

13 }}}

Listing 5.1: One of kernels in NPB-BT’s z_solve.c

1 #pragma acc parallel loop gang num_gangs(ksize-1)\

2 num_workers(4) vector_length(32)

3 for (k = 1; k <= ksize-1; k++) {

4 #pragma acc loop worker

5 for (i = 1; i <= gp02; i++) {

6 #pragma acc loop vector

7 for (j = 1; j <= gp12; j++) {

8 double _v277, _v274, _v3 /* ... */;

9 _v277 = njacZ[0][0][k][i][j];

10 _v274 = njacZ[0][1][k][i][j];

11 // ... Addr calculation + 123 loads continue

12 temp1 = _v3;

13 {double _v25; _v25 = dt * tz2; temp2 = _v25;

14 {double _v435, _v434, _v283, _v433, _v436;

15 _v283 = (- _v25); _v433 = _v3 * _v432;

16 _v434 = (- _v433);

17 _v435 = _v434 + (_v283 * _v431);

18 _v436 = _v435 - (dz1 * _v3);

19 lhsZ[0][0][0][k][i][j] = _v436;

20 {/* ... 74 stores */}}}

21 }}}

Listing 5.2: Generated Code of ACC Saturator (formatted)

5.4.1 Temporary-Variable Insertion

3 at Fig. 5.1 depicts the extracted expression in a directed graph. For each selected
e-node, ACC Saturator generates a temporary variable to store the computational result,
placing it immediately before the corresponding use. In cases where multiple statements
reference an e-node, we select the innermost scope to declare a variable for those state-
ments. Every assignment modifies the right-hand expression to include the variable of the
corresponding e-node.

The compilers of directive-based code can optimize the redundant use of registers. Our
code-generation style reduces duplicate computation and leverages optimal instructions,
such as FMA, while preserving ILP.

58

5.4.2 Bulk Load

Since GPUs suffer high memory-access latency, reducing only memory accesses or compu-
tation may not lead to improved performance. ACC Saturator follows a different approach
by reordering statements to increase memory pressure first and then minimizing memory
operations for the remaining execution.

We address the high memory-access latency on GPUs by utilizing our proposed tech-
nique, bulk load. This technique relocates every memory load to the first place where its
dependencies are resolved. When multiple loads share one location, we sort these based
on their static indices. We prioritize increasing memory pressure at the beginning of the
execution and then avoiding memory operations for the rest of the execution. To illustrate
the effectiveness of this technique, we compare the performance of a time-consuming
kernel in the OpenACC version of NAS Parallel Benchmarks’ BT (NPB-BT) before and
after optimization by ACC Saturator. Listings 5.1 and 5.2 show the original and optimized
code, respectively. Despite featuring the same directives and code structure, the optimized
code performs all the loads before the first assignment (temp1), and each subsequent store
refers to local variables, leading to minimum number of operations while utilizing FMA.

5.5 experimental methodology

We implement ACC Saturator in Racket [121] using XcodeML [50] to parse and gen-
erate OpenACC/OpenMP source codes in C. We use the egg library [113] to per-
form equality saturation. ACC Saturator integrates with NVHPC [7] and GCC [8]
for OpenACC/OpenMP compilation, and with Clang [10] for OpenMP compilation.
For evaluation, we use NVHPC 22.9 with options "-O3 -gpu=fastmath -Msafeptr

-(acc|mp)=gpu", GCC 12.2.0 with "-O3 -ffast-math -f(openacc|openmp)" and Clang
15.0.3 with "-O3 -ffast-math -fopenmp". Our experiments run on an NVIDIA A100-
PCIE-40GB GPU with an Intel Xeon Silver 4114 CPU.

We evaluate the kernel-execution performance of ACC Saturator on two benchmark
suites: NAS Parallel Benchmarks in OpenACC/C (NPB) [122] and the SPEC ACCEL
benchmark suite in both OpenACC/C and OpenMP/C (SPEC) [57]. Tables 5.2 and 5.3
provide the detail of NPB and SPEC, respectively. To ensure adequate memory usage,
we select CLASS C as the problem sizes of all NPB benchmarks (the largest size within
standard test problems), SPEC uses the referential sizes (Ref) except for GCC’s OpenACC
cases of ep, sp, and bt, for which we select the testing sizes (Test) due to high execu-
tion latency. NPB’s BT, CG, EP, and SP feature the same computation as SPEC’s bt, cg,
ep, and csp, but the implementation of NPB is based on OpenACC’s parallel directive,
while that of SPEC’s OpenACC benchmarks is on the kernels directive. We report the best
kernel performance of three executions. To avoid producing incorrect results, we remove
the user-specific parallelism in NPB’s CG for GCC, disable the device-side reduction of
GCC’s OpenACC in NPB’s LU and MG, and omit the degree specification of the worker
parallelism from GCC’s NPB cases, since it surpasses GCC’s thread limit.

On average, ACC Saturator spends 91.8 ms (σ = 253.3; 1.4 ∼ 1885.0 ms) to construct SSA
and generate code for each kernel. Equality saturation is executed within a limit of 10,000

e-nodes, 10 seconds of saturation time, 10 rewriting iterations, and a 30-second extraction

59

time limit. The results of the benchmarks show that each kernel requires an average of
0.63 sec (σ = 3.37; 0.00 ∼ 31.2 sec) for equality saturation.

Table 5.2: NAS Parallel Benchmarks [122]

Name Compute Access
Num. Original Time

Kernels NVHPC GCC

BT CFD Halo (3D) 46 14.85s 28.04s
CG Eigenvalue Irregular 16 1.27s 26.17s
EP Random Num Parallel 4 2.65s 3.35s
FT FFT All-to-All 12 3.06s 3.10s
LU CFD Halo (3D) 59 15.36s 24.86s
MG Poisson Eq Long & Short 16 0.79s 0.79s
SP CFD Halo (3D) 65 10.00s 12.00s

BT CG EP FT LU MG SP
0

1

2

Sp
ee

du
p

1.01x 0.94x 0.99x 1.00x 0.94x 1.01x 1.00x1.11x 1.00x 1.00x 0.95x
1.13x 0.99x 0.99x

BT CG EP FT LU MG SP
0

1

2

Sp
ee

du
p

1.01x 1.00x 1.02x 1.00x 0.93x 0.99x 1.00x1.12x 1.00x 1.00x 0.95x
1.13x 1.00x 0.99x

BT CG EP FT LU MG SP
0

1

2

Sp
ee

du
p

1.18x
0.94x 0.99x 1.03x 1.21x

1.02x 1.17x

2.19x

1.00x 0.99x 0.99x

1.60x

1.00x
1.22x

BT CG EP FT LU MG SP
0

1

2

Sp
ee

du
p

1.21x
1.00x 1.02x 1.03x 1.20x 1.04x 1.17x

2.20x

1.00x 1.00x 1.00x

1.60x

1.04x 1.22x

CSE

CSE+SAT

CSE+BULK

ACCSAT

Figure 5.2: NPB’s speedup results on NVIDIA A100-PCIE-40GB for each variation compared to
original. NVHPC, GCC.

60

Table 5.3: The SPEC ACCEL benchmark suite [57]

Name Compute Access Num. Size Original Time (ACC) Original Time (OMP)
kernels NVHPC GCC NVHPC GCC Clang

ostencil Jacobi Halo (3D) 1 Ref 3.87s 10.28s 7.75s 107.54s 34.60s
olbm CFD Halo (3D) 3 Ref 7.11s 13.32s 7.11s 13.47s 5.91s
omriq MRI Structure-of-arrays 2 Ref 16.02s 16.18s 5.99s 18.54s 11.87s

ep Random Num Parallel 5 Ref / Test (CLASS D / W) 45.33s 69.91s 62.42s 90.35s 71.32s
cg Eigenvalue Irregular 16 Ref (> CLASS C) 4.28s 662.58s 5.06s 19.03s 18.42s
csp CFD Halo (3D) 68 Ref / Test (CLASS C / S) 7.71s 27.26s 111.79s 589.87s 105.75s
bt CFD Halo (3D) 50 Ref / Test (CLASS B / W) 3.24s 130.43s 555.44s 60.45s 562.83s

6
1

5.6 evaluation

Fig. 5.2 presents the speedup results of NPB using four generated code versions. CSE is
a version that eliminates redundant loads without performing equality saturation or bulk
load. CSE+SAT and CSE+BULK are CSE with equality saturation and bulk load, respec-
tively. ACCSAT is a default generated code of ACC Saturator, which includes both equal-
ity saturation and bulk load. With ACCSAT, NVHPC attains up to 1.21x improvement,
while GCC attains up to 2.20x speedup. The CSE version maintains the performance of
both compilers, varying the execution efficiency by 0.98x with NVHPC and by 1.03x with
GCC on average. CSE+SAT provides NVHPC with an average speedup of 0.86% and im-
proves GCC’s performance by only 0.01%. However, CSE+BULK significantly accelerates
memory-intensive applications such as BT, LU, and SP, while most other benchmarks
maintain their performance. ACCSAT does not degrade the original performance and
attains 2.00% and 0.66% better throughputs than CSE+BULK on NVHPC and GCC, re-
spectively. In total, ACCSAT attains average speedups of 1.10x on NVHPC and 1.29x on
GCC.

Table 5.4 breaks down the top 10 kernels in NPB’s BT, and Fig. 5.3 shows the speedup
of each kernel in each version. The speedups of CSE+BULK and ACCSAT are similar
to those of CSE and CSE+SAT, respectively. ACCSAT attains up to 2.23x and 5.08x im-
provements on NVHPC and GCC, respectively, resulting in up to 2.08x and 3.19x mem-
ory bandwidth. The top three kernels on NVHPC suffer performance degradation from
CSE+BULK to ACCSAT, because ACCSAT spills more registers to global memory, facil-
itating the reuse of computation. The next three kernels execute 8.3% fewer instructions

0

25

50

75

100
R

at
io

(%
)

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Sp
ee

du
p

0

25

50

75

100

R
at

io
(%

)

2.00

3.00

4.00

5.00

Sp
ee

du
p

0.75
1.00

NVHPC

GCC

Figure 5.3: Breakdown of NPB-BT; The background color depicts the cumulative ratio of the execu-
tion time along the speedup points for each kernel. CSE, CSE+SAT, CSE+BULK,

ACCSAT (CSE+SAT+BULK).

62

Table 5.4: Top-10 kernel breakdown of NPB-BT
NVHPC (14.85 sec) + CSE (14.77 sec) + CSE+SAT (14.75 sec) + CSE+BULK (12.59 sec) + ACCSAT (12.23 sec)

% ¿ * & Ñ ¿ * & Ñ ¿ * & Ñ ¿ * & Ñ ¿ * & Ñ

13.6% 10.08 78.0 34.50% 152 0.19 10.05 100% +0.68% -2 +0.00 10.04 99% +0.22% +10 +0.00 6.40 106% +38.00% +103 -0.06 6.57 104% +37.26% +103 -0.06

13.6% 10.07 78.0 34.58% 152 0.19 10.06 100% -0.74% -2 +0.00 10.05 99% +0.12% +10 +0.00 6.40 106% +38.02% +103 -0.06 6.56 104% +37.26% +103 -0.06

13.5% 9.98 78.0 35.86% 152 0.12 9.96 100% -0.09% -2 +0.00 9.97 99% -0.07% +10 +0.00 6.69 106% +32.68% +103 +0.00 6.72 104% +32.33% +103 +0.00

8.8% 6.48 116.3 54.06% 176 0.12 6.42 100% +0.02% +0 +0.00 6.43 100% +0.01% +2 +0.00 6.85 108% -2.02% +78 +0.00 6.28 99% +2.02% +79 +0.00

8.1% 6.01 116.3 57.11% 176 0.12 6.05 100% -0.14% +2 +0.00 6.06 100% -0.40% +2 +0.00 7.14 108% -6.69% +78 +0.00 6.39 99% -0.01% +79 +0.00

8.0% 5.92 116.3 57.32% 176 0.12 5.96 100% -0.25% +2 +0.00 5.98 100% -0.57% +2 +0.00 7.08 108% -5.92% +78 +0.00 6.33 99% +0.11% +79 +0.00

5.1% 0.023 0.1 39.62% 47 0.62 0.024 103% -1.04% +0 +0.00 0.024 103% -0.03% +0 +0.00 0.018 99% +5.53% +39 -0.31 0.018 99% +6.86% +39 -0.31

5.0% 3.66 35.6 52.23% 96 0.25 3.63 97% +1.37% -2 +0.00 3.61 99% +1.28% -4 +0.00 3.38 97% +2.74% +0 +0.00 3.38 99% +3.43% +12 +0.00

4.6% 3.39 34.9 52.50% 90 0.25 3.06 96% -0.70% +23 +0.00 3.07 98% -0.77% +27 +0.00 3.03 96% +0.61% +23 +0.00 3.00 98% +0.21% +27 +0.00

4.0% 0.018 0.1 44.22% 47 0.62 0.019 103% +0.54% +0 +0.00 0.018 103% +0.01% +0 +0.00 0.016 99% +2.83% +39 -0.31 0.016 99% +4.37% +39 -0.31

GCC (28.04 sec) + CSE (25.16 sec) + CSE+SAT (25.13 sec) + CSE+BULK (12.79 sec) + ACCSAT (12.74 sec)
% ¿ * & Ñ ¿ * & Ñ ¿ * & Ñ ¿ * & Ñ ¿ * & Ñ

20.1% 28.01 226.2 21.66% 134 0.19 24.29 89% +2.40% +0 +0.00 24.26 89% +2.43% +0 +0.00 5.53 50% +41.55% +121 -0.06 5.51 50% +41.09% +121 -0.06

20.1% 28.06 226.2 19.81% 130 0.19 23.80 89% +2.98% +0 +0.00 23.67 89% +3.00% +0 +0.00 5.59 50% +43.07% +125 -0.06 5.58 50% +43.41% +125 -0.06

20.0% 27.93 226.2 20.95% 134 0.19 24.20 89% +2.44% +2 +0.00 24.16 89% +2.42% +0 +0.00 5.46 50% +42.48% +121 -0.06 5.50 50% +42.16% +121 -0.06

5.4% 7.54 97.5 56.38% 98 0.25 7.54 100% +0.06% +0 +0.00 7.55 99% +0.49% +0 +0.00 6.74 101% +12.70% +157 -0.12 6.78 100% +12.17% +157 -0.12

5.4% 7.53 97.5 56.42% 98 0.25 7.53 100% -0.04% +0 +0.00 7.54 99% -0.02% +0 +0.00 6.74 100% +12.35% +157 -0.12 6.77 100% +12.29% +157 -0.12

5.4% 7.54 97.5 56.77% 98 0.25 7.54 100% -0.76% +0 +0.00 7.54 99% -0.47% +0 +0.00 6.76 100% +11.93% +157 -0.12 6.82 100% +12.10% +157 -0.12

3.9% 0.034 0.3 43.50% 56 0.56 0.034 100% -0.35% +0 +0.00 0.034 100% -0.44% +0 +0.00 0.025 92% -9.16% +48 -0.31 0.025 92% -8.73% +48 -0.31

3.4% 4.71 37.8 48.48% 96 0.31 3.58 87% -1.79% +0 +0.00 3.60 86% -3.22% +0 +0.00 3.58 87% -2.30% +0 +0.00 3.43 85% +0.24% +26 -0.06

3.3% 4.64 39.9 41.44% 96 0.31 4.03 87% +8.93% +8 -0.06 4.03 87% +8.43% +10 -0.06 3.88 87% +8.11% +12 -0.06 3.88 87% +7.09% +10 -0.06

3.2% 4.50 39.1 49.96% 96 0.31 3.56 88% -3.55% +0 +0.00 3.54 86% -4.09% +0 +0.00 3.58 89% -4.06% +0 +0.00 3.43 87% -1.04% +14 -0.06

¿ indicates the average execution time per launch (ms), * the number of executed instructions (x106), & the memory utilization, Ñ the number
of registers per thread, and the SM occupancy. In the columns of optimization, the last four use relative numbers comparing to the original. The
most reduced/utilized numbers are shown bold.

6
3

ostencil olbm omriq ep cg csp bt
0

1

2
Sp

ee
du

p
1.00x

1.37x
1.01x 1.00x 1.00x 1.00x 1.02x1.00x

1.32x
0.99x

1.83x

1.00x 1.00x 1.00x

postencil polbm pomriq pep pcg pcsp pbt

1.
01

x 1.
33

x

1.
00

x

1.
00

x

1.
01

x

1.
00

x

1.
11

x

1.
01

x

1.
01

x

1.
00

x

0.
99

x

1.
00

x

1.
01

x

1.
00

x

1.
04

x

1.
23

x

1.
25

x

1.
00

x

1.
00

x

1.
01

x

1.
11

x

ostencil olbm omriq ep cg csp bt
0

1

2

Sp
ee

du
p

0.94x
1.35x

1.00x 1.00x 1.00x 1.00x 1.02x1.00x
1.33x

0.98x

1.82x

1.00x 1.00x 1.00x

postencil polbm pomriq pep pcg pcsp pbt

1.
00

x 1.
31

x

1.
00

x

1.
00

x

1.
01

x

1.
00

x

1.
11

x

1.
01

x

1.
01

x

1.
00

x

0.
99

x

1.
00

x

1.
01

x

1.
00

x

1.
05

x

1.
24

x

1.
00

x

1.
01

x

1.
00

x

1.
01

x

1.
11

x

ostencil olbm omriq ep cg csp bt
0

1

2

Sp
ee

du
p

1.00x
1.37x

1.00x 1.00x 0.99x 1.11x 1.13x1.00x
1.32x

0.98x

1.90x

1.16x

1.99x 2.00x

postencil polbm pomriq pep pcg pcsp pbt

1.
01

x 1.
33

x

0.
99

x

1.
00

x

1.
01

x 1.
38

x

2.88x

1.
00

x

1.
01

x

0.
94

x

1.
00

x

1.
01

x

1.
09

x 1.
39

x

1.
04

x

1.
23

x

1.
26

x

1.
00

x

1.
00

x 1.
47

x

4.84x

ostencil olbm omriq ep cg csp bt
0

1

2

Sp
ee

du
p

0.94x
1.35x

1.00x 1.00x 1.00x 1.11x 1.18x
1.00x

1.33x
0.98x

1.89x

1.16x

1.99x 1.99x

postencil polbm pomriq pep pcg pcsp pbt
1.

01
x 1.
31

x

1.
02

x

1.
00

x

1.
01

x 1.
38

x

3.53x

1.
01

x

1.
01

x

0.
93

x

1.
00

x

1.
00

x

1.
09

x 1.
38

x

1.
05

x

1.
24

x

1.
00

x

1.
01

x

1.
00

x 1.
47

x

4.85x

CSE

CSE+SAT

CSE+BULK

ACCSAT

Figure 5.4: Speedup results of the SPEC ACCEL benchmark suite on NVIDIA A100-PCIE-40GB. NVHPC, GCC, Clang.

6
4

and achieve around a 1.11x speedup compared to CSE+BULK, since our optimized code
clarifies dependencies and reduces both computation and stores. We gain a total speedup
of 1.22x when equality saturation is disabled when registers spill.

On NVHPC, CSE increases the latency of CG, resulting in less SM occupancy due to
increased register use. However, CSE+SAT and ACCSAT alleviate this register pressure
by utilizing FMA. Equality saturation enables EP to become faster by executing 10.53%
more FMA operations and 1.67% fewer total operations than CSE. Although other parts
of MG suffer from register pressure, one part of the benchmark obtains a 1.14x speedup
from CSE+BULK to ACCSAT by increasing the L1 cache hit ratio. Furthermore, FT, LU,
and SP benchmarks attain improved memory throughputs and refined total performance
with bulk load.

Fig. 5.4 depicts the speedups of SPEC benchmarks for both OpenACC and OpenMP
versions. Benchmarks with names starting with "p-" indicate the OpenMP versions. On
average, with OpenACC, CSE, CSE+SAT, CSE+BULK, and ACCSAT attain 1.06x, 1.04x,
1.08x, and 1.08x speedups, respectively on NVHPC, while with OpenMP, these attain
1.07x, 1.06x, 1.37x, and 1.47x speedups, respectively. OpenACC’s ostencil sees a 16.7% re-
duction in SM occupancy due to equality saturation, leading to decreased performance.
CSE reduces memory loads by around 50% for olbm and polbm, resulting in improved
performance. Bulk load significantly boosts the performance of memory-intensive bench-
marks such as csp, bt, pcsp, and pbt, just as in NPB. ACCSAT attains 3.62x speedup
in one part of pbt, which executes only one thread-block over nested loops, by eliminat-
ing 77.2% memory loads and 50.9% stores. Our optimization decreases operations and
reorders memory accesses, being effective for both parallel and sequential iterations.

GCC attains average speedups of 1.16x, 1.16x, 1.48x, and 1.48x for OpenACC using CSE,
CSE+SAT, CSE+BULK, and ACCSAT, respectively, and 1.00x, 1.00x, 1.06x, and 1.06x for
OpenMP. The original versions of OpenMP result in high register pressure, which limits
the benefits of bulk load. Conversely, the initial versions of OpenACC use fewer registers
while setting inadequate parallelism, likely due to the immature support of OpenACC’s
kernels directive. CSE reduces memory loads by 54.8% in olbm, yielding a 1.32x speedup.
For ep, CSE minimizes operations, and bulk load enhances overall memory throughput.
Bulk load also benefits cg, csp, bt, pscp, and pbt by mitigating global-memory latency.
However, pomriq’s SM occupancy decreases with bulk load and equality saturation, lead-
ing to reduced efficiency.

Clang attains average speedups of 1.06x, 1.06x, 1.69x, and 1.66x for OpenMP using CSE,
CSE+SAT, CSE+BULK, and ACCSAT, respectively. CSE+SAT refines the performance
of postencil, polbm, and pep compared to CSE. ACCSAT further improves pbt over
CSE+BULK, while reducing pomriq’s ILP due to decreased register usage. CSE+BULK
attains a maximum speedup of 4.84x through optimized memory accesses.

For comparison, Fig. 5.5 provides the speedups of NPB on an NVIDIA A100-SXM4-
80GB, which features 1.31x higher memory bandwidth than the A100-PCIE-40GB. The
original performance is improved by 5.79% with NVHPC and 4.65% with GCC on aver-
age, while most benchmarks preserve the performance changes on the other GPU. We
confirm that BT gains further 1.25x and 2.31x speedups by ACCSAT on NVHPC and
GCC, respectively. Using the same GPU, CSE+BULK improves the execution by 1.21x
and 2.30x, and ACCSAT improves both computation and memory throughputs in BT

65

BT CG EP FT LU MG SP
0

1

2

Sp
ee

du
p

1.00x 0.94x 0.99x 1.00x 0.94x 1.02x 1.00x1.11x 1.00x 1.00x 0.94x
1.15x

0.98x 0.99x

BT CG EP FT LU MG SP
0

1

2

Sp
ee

du
p

1.01x 1.02x 1.02x 1.00x 0.93x 0.99x 1.00x1.11x 1.00x 0.99x 0.94x
1.14x 0.99x 0.99x

BT CG EP FT LU MG SP
0

1

2

Sp
ee

du
p

1.21x
0.93x 0.99x 1.04x 1.21x

1.03x 1.21x

2.30x

1.00x 0.99x 0.99x

1.64x

1.00x
1.27x

BT CG EP FT LU MG SP
0

1

2

Sp
ee

du
p

1.25x
1.01x 1.02x 1.04x 1.21x 1.05x 1.21x

2.31x

1.00x 0.99x 1.00x

1.64x

1.01x
1.26x

CSE

CSE+SAT

CSE+BULK

ACCSAT

Figure 5.5: NPB’s speedup results on NVIDIA A100-SXM4-80GB. NVHPC, GCC.

more for faster memory systems as the latency of computation becomes distinct. With
ACCSAT, NVHPC and GCC attain average speedups of 1.11x and 1.31x, respectively. Our
technique mitigates the memory latency that results from GCC’s inadequate thread uti-
lization for the kernels directive, resulting in superior performance gains compared to
NVHPC.

Fig. 5.6 shows the speedups of SPEC benchmarks on NVIDIA A100-SXM4-80GB. With
OpenACC, NVHPC increases the original performance by 7.42% and GCC increases by
3.11% using the GPU on average, while the original performance with OpenMP is in-
creased by 3.33% on NVHPC, -13.3% on GCC, and 1.04% on Clang. Especially, pcg on
GCC suffers from the latency of memory barriers, which decreases the original perfor-
mance by 59.3% and degenerates the execution of optimized codes. CSE+SAT causes a
lower L1 cache hit ratio for pep on NVHPC. Overall, ACCSAT obtains average speedups
of 1.09x on NVHPC and 1.47x on GCC with OpenACC and average speedups of 1.45x on
NVHPC, 1.02x on GCC, and 1.66x on Clang with OpenMP.

66

ostencil olbm omriq ep cg csp bt
0

1

2
Sp

ee
du

p

1.00x
1.38x

1.00x 1.00x 1.00x 1.00x 1.03x1.00x
1.32x

0.99x

1.82x

1.00x 1.00x 1.00x

postencil polbm pomriq pep pcg pcsp pbt

1.
01

x 1.
34

x

1.
03

x

1.
00

x

1.
01

x

1.
00

x

1.
11

x

1.
00

x

1.
00

x

1.
00

x

0.
98

x

0.
84

x

1.
01

x

1.
00

x

1.
04

x

1.
23

x

1.
23

x

1.
00

x

1.
00

x

1.
01

x

1.
11

x

ostencil olbm omriq ep cg csp bt
0

1

2

Sp
ee

du
p

0.93x

1.36x
1.00x 1.00x 1.00x 1.00x 1.03x1.00x

1.33x
0.99x

1.81x

1.00x 1.00x 1.00x

postencil polbm pomriq pep pcg pcsp pbt

1.
00

x 1.
32

x

1.
00

x

0.
95

x

1.
01

x

1.
00

x

1.
11

x

1.
01

x

1.
00

x

1.
00

x

0.
98

x

0.
84

x

1.
01

x

1.
00

x

1.
05

x

1.
24

x

1.
00

x

1.
01

x

1.
00

x

1.
01

x

1.
11

x

ostencil olbm omriq ep cg csp bt
0

1

2

Sp
ee

du
p

1.00x
1.38x

1.00x 1.00x 0.98x 1.12x 1.13x1.00x
1.32x

0.98x

1.87x

1.17x

2.00x 1.97x

postencil polbm pomriq pep pcg pcsp pbt

1.
01

x 1.
33

x

1.
01

x

1.
00

x

1.
01

x 1.
37

x

2.85x

1.
00

x

1.
00

x

0.
93

x

0.
98

x

0.
84

x

1.
10

x

1.
31

x

1.
04

x

1.
23

x

1.
23

x

1.
00

x

1.
00

x 1.
46

x

4.80x

ostencil olbm omriq ep cg csp bt
0

1

2

Sp
ee

du
p

0.93x

1.36x
1.00x 1.00x 1.00x 1.12x 1.19x

1.00x
1.33x

0.98x

1.88x

1.17x

2.00x 1.95x

postencil polbm pomriq pep pcg pcsp pbt
1.

00
x 1.
32

x

1.
02

x

0.
95

x

1.
01

x 1.
37

x

3.50x

1.
01

x

1.
00

x

0.
92

x

0.
98

x

0.
84

x

1.
10

x

1.
31

x

1.
07

x

1.
24

x

1.
00

x

1.
01

x

1.
00

x 1.
46

x

4.80x

CSE

CSE+SAT

CSE+BULK

ACCSAT

Figure 5.6: Speedup results of the SPEC ACCEL benchmark suite on NVIDIA A100-SXM4-80GB. NVHPC, GCC, Clang.

6
7

5.7 related work

Maximizing architectural utilization is a significant challenge in HPC, requiring applica-
tion code optimization. Compilers play a crucial role for enhancing performance by ap-
plying various code-generation techniques, enabling both generic and architecture-specific
optimizations. Numerous programming models and state-of-the-art techniques, especially
for GPUs, have been introduced to adapt codes to parallel architectures [87, 3, 123, 124,
125]. Directive-based programming models [5, 6] extend sequential languages, allowing
complex scientific applications to offload loop iterations to accelerators while maintain-
ing their structures. However, such compilers often rely on the basis of sequential code
generation, thus limiting optimization opportunities to general computation [17].

Several projects have explored domain-specific or architecture-specific approaches for
directive-based code. The CLAW DSL [126] provides directives for grid-based algo-
rithms, enabling target-specific optimizations such as spatial blocking while support-
ing OpenACC/OpenMP code generation. Our work JACC is an OpenACC runtime
framework offering just-in-time kernel compilation with dynamic constant expansion.
OptACC [116] performs runtime parameter searches to optimize OpenACC parallelism.
CCAMP [127] interchanges OpenACC and OpenMP, optimizing parallelization for each
combination of models and architecture. Barua et al. [17] develop an automated OpenACC-
kernel optimizer for maximizing ILP through loop unfolding. SAFARA [128] fully utilizes
register resources to facilitate array reference reuse in OpenACC kernels.

Our ACC Saturator differs in three aspects: (1) automation of optimization through
rewriting rules and a cost model-based optimal code selection, (2) integration of bulk
load optimization technique for significant GPU memory throughput improvement, and
(3) preservation of original code structures while being applicable to both OpenACC and
OpenMP without requiring domain-specific information.

Since the introduction of the equality-saturation library egg [113], numerous studies
have leveraged it, particularly in the context of GPU computing, for accelerating deep
learning applications [129, 130, 131, 132]. These works employ rewriting rules for arith-
metic expressions, abstract operations, or tensor graphs to optimize convolutions, sparse
tensor algebra, or whole tensor operations. Diospyros [97] synthesizes efficient DSP op-
erations from C code using equality saturation, while Gowda et al. [133] implement a
symbolic algebra system with egg for automatic parallelism assignment.

Although the initial work of equality saturation was demonstrated as a Java bytecode
optimizer [23], recent works using egg focus on program synthesis and code optimization
without control statements. Our work is the first to bridge the gap between user code
and equality saturation by automatically extracting computation and constructing SSA
information for data dependencies. This approach enables novel equality-saturation opti-
mizations for directive-based programming, as detailed in this chapter, without requiring
further programmer intervention.

Several works propose innovative code optimization approaches. Ben-Nun et al. [134,
135] develop data-centric flow graphs to focus on data-oriented optimizations, such as
dead memory elimination. Their representation supports collective operations and macro-
scopic parallelization, enabling optimizations irrespective of calculation. The MLIR frame-
work [136] utilizes multi-level IRs for cooperative domain-specific optimizations. Gins-

68

bach et al. [137] define code patterns for performance opportunities, replacing matched
code with library or DSL implementations. Additionally, machine learning is gaining
popularity for automatic compiler-optimization tuning [138, 139, 140]. Our tool employs
e-graph operations to identify optimal solutions without source code analysis or abstract
syntax tree transformations.

Numerous optimization techniques have been developed for GPU computing [141].
Rawat et al. [89] reorder stencil computation using heuristic algorithms to alleviate reg-
ister pressure and increase SM occupancy. Software systolic arrays [80] assign global
data to GPU threads, computing results by propagating and accumulating partial results
through warp-level shuffles across overlapped blocks, improving data locality without
shared memory usage. Hong et al. [142] utilize lightweight kernel emulation to provide
auto-tuners with performance bottleneck feedback. In contrast, ACC Saturator adopts
a straightforward rewriting mechanism, enabling its application to complex programs.
Moreover, our method is complementary to other code optimizations.

ACC Saturator is a more practical compiler optimization framework than previous
work [23] because it maintains code structures, is capable of restoring the original state,
and is applicable to standard languages such as C and Fortran. ACC Saturator allows
equality saturation over directive-based code, upholding the importance of structure infor-
mation which previous work disregarded. Reusing the code style that the input provides,
ACC Saturator can support the user’s intended target architecture by rewriting rules that
lead to a new order of computation. Each rule is simple, but by combining many rules, we
discover better solutions and attain speedups over the state-of-the-art industry compilers.

69

6
S U M M A RY A N D C O N C L U S I O N

Closing this thesis, Chapter 6 summarizes our study and concludes the work.

6.1 summary

Computation is necessary for understanding humankind’s situations. With the best knowl-
edge of science and technology, the amount of calculations required for societies has
grown enormously every day, so computers play principal roles in maintaining human ac-
tivities and assisting their wills. Computer programming was originally indivisible from
computer design. But, nowadays, multiple layers are put between the code and hardware
to pursue easy integration of new ideas. Thus, programming styles are respected and
create a trade-off between time and efficiency before the arrival of newer architectures.

Accelerator programming is based on the idea that offloading time-consuming tasks
to a specialized device is sufficient to gain target performance improvements. Therefore,
compilers do not take the entire programming execution into account for the offload
and only consider part of applications. The vendor-specific programming models such
as CUDA and OpenCL cover computational information by introducing different coding
styles, which force additional engineering efforts. In contrast, directive-based program-
ming models are harmonious extensions of standard languages. The directives are mere
annotations, and the compilers are liable for generating the device code with the runtime
that manages the total execution.

The compilation of directive-based code typically follows the CPU code generation,
since offloaded kernels are found among CPU codes. Specializing the device code is sup-
plemental to existing compiler work. The runtime and the device code generator are the
places that can enhance accelerator use. Yet, limited insights available on execution en-
vironments prevent applications from achieving performance comparable to manually-
written device code. While facing difficulties with its implementation to arrange compiler
groundwork, substantial work has been proposed for the optimization of directive-based
programming models. However, there is much work left to be done in the runtime, the
backend, and the frontend.

In this thesis, we have presented JACC, an OpenACC framework that facilitates run-
time extension. Organizing data mappings and kernel arguments as runtime information,
JACC creates dynamic code from original kernels and compiles it with a specified com-
piler in order to support on-the-fly code extension automatically. Due to the memory-
bound nature of GPUs, we proposed predicate-based filtering, a novel code-translation
technique of multi-GPU utilization, for distributing highly-tuned applications without ad-

70

ditional user effort. JACC employs an adaptive algorithm for switching distribution based
on the overhead of GPU-to-GPU communication. Having many kernels parallelized on
a multi-GPU environment, we showed the performance improvements of several tested
benchmarks where precise data-dependency analysis is always restrained.

This thesis also introduced symbolic emulation to compiling GPU code in order to dis-
cover hidden opportunities for optimization. We employed several languages, enabling
OpenACC directives such as in C and Fortran, for the frontend to generate GPU assembly
code. Then, our tool emulated the code upon symbols that substituted dynamic informa-
tion. While pruning control flows to reduce the emulation time, we automatically found
possible warp-level shuffles that may be synthesized to assembly code to bypass global-
memory accesses. We applied this technique to a benchmark suite and complex applica-
tion code showing results that improved multiple benchmarks on several generations of
GPUs. We also provided the latency analysis across multiple GPUs to identify the use
case of shuffles.

Lastly, this thesis presented ACC Saturator, an equality-saturation framework for di-
rective-based programming models that optimizes code using rewriting rules and a cost
model. It is the first framework to bridge the gap between user code and equality satu-
ration optimizations while preserving original code structures and data dependencies.
We introduced a novel technique, bulk load, which we enabled through our frame-
work, to generate code with intentional high memory pressure. We demonstrated the
effectiveness of ACC Saturator on various practical benchmarks using multiple compil-
ers for both OpenACC and OpenMP on a state-of-the-art GPU architecture. Our analy-
sis highlighted the significance of memory-access order and computational reordering,
which ACC Saturator enables, for achieving significant performance improvements and
increased memory throughput.

6.2 conclusion

Exploring new directions for optimizing directive-based code, we found multiple methods
to improve high-performance computing. Most of our techniques are automated because
directive-based programming should be intended to accelerate legacy code bases with
little effort. We designed each tool as open-source software available online to process one
level of source code. By avoiding the use of compiler infrastructures, those tools became
agile in terms of development and utilization. Our experimental results were shown using
different generations of GPUs, different environments, and different compilers. Overall,
we have implemented and explored various methods in the course of the study that had
been never done with directive-based programming or GPUs. The following is a summary
of the results we achieved through the course our study took:

• Our OpenACC framework opened a way to manipulate the runtime system of
directive-based programming by wrapping up existing compilers, managing data
movement, and extending both the compilation and the execution.

• The just-in-time compilation feature allowed kernel specialization based on the run-
time information. We also attempted dynamic loop unrolling and kernel fusion.
However, the performance of generated kernels fluctuated because of both reduced

71

and increased register uses. We reckoned the necessity of program optimization that
changes execution mechanisms or computational orders while not updating code
structures.

• The data-management feature automated asynchronous execution by solving data
dependency among kernel launches. The latency of memory allocation was the only
improved metric because the time-consuming kernels prevented overlapping execu-
tion. Therefore, we needed to gain more intra-kernel parallelism. Also, we made the
performance of GCC comparable to NVHPC by adding a memory pool.

• We integrated predicate-based filtering, which exploits further intra-kernel paral-
lelism by duplicating the same kernels over multi-GPU. With this algorithm, we
never split loop ranges but computed only the part that updates assigned data seg-
ments according to the runtime information. On an NVLINK system, our framework
successfully distributed applications whose data dependency never allows loop par-
allelization. Also, we tried to adopt Unified Memory to avoid unnecessary commu-
nications among GPUs. However, at the moment of our experiment, switching the
Unified Memory mode caused memory thrashing. Thus, we let GPUs transfer the
updated memory data to each other and obtained performance improvements.

• In order to introduce other execution mechanisms, we extended the GPU code as-
sembler and enabled an intermediate emulator that collects register data in symbolic
expressions. The assembly code became adaptable to the environment based on the
emulation results and the set of rules that our tool implemented. We attempted peep-
hole optimizations such as rewriting volatile operations and obtained speedups by
higher memory throughputs.

• To promote more GPU-specific execution in directive-based programming, our as-
sembler tool automated the generation of shuffle instructions. The shuffle instruc-
tions successfully replaced redundant global-memory loads while achieving perfor-
mance improvement of up to 132%. By experimenting with various types of execu-
tion, we illustrated the use case of shuffles.

• The lessons on the importance of user-specified directives were seen through pre-
vious experiments. Modifying parallelism or loop structures highly affects the uti-
lization of computational resources. The insertion of directives makes legacy code
efficient, but at least we should respect such user specifications. Thus, our source-
code optimizer was designed to reorder computational statements of directive-based
programming models while maintaining the original code structures, resource use,
and directives.

• We implemented equality saturation to synthesize the code with minimum costs. By
simplifying the cost calculation, we could exhaustively search optimal codes from a
colossal amount of candidates.

• We integrated a memory access optimization named bulk load. Our experimental
results with practical benchmarks showed performance improvements by reordering
and concentrating global memory loads, expecting further speedups on newer GPUs

72

as they broaden the gap between memory bandwidth and memory latency. On the
whole, the synthesized code could discover hidden opportunities for speedups.

6.3 future work

We might want to know what computers are really doing. Given the complexity of mod-
ern hardware, it is necessary to profile performance characteristics automatically. We also
expect the automation of hardware design and programming in the near future. Conse-
quently, the aspect of optimization should change. Existing codebases are the heritage
that benefits us to know the world better. Future computers would not compile original
source code, but instead learn the code to import its idea based on the nature of architec-
ture. Hence, automating program construction can be the direction of future work. We can
challenge approximate computing while approaching both theoretical performance limits
and scientific knowledge with some corrections. Directives for program approximation
should become one step toward automation.

6.4 publications

6.4.1 Referred Conferences

• Kazuaki Matsumura, Simon Garcia De Gonzalo, Antonio J. Peña. JACC: An
OpenACC runtime framework with kernel-level and multi-GPU parallelization.
International Conference on High Performance Computing, Data, and Analytics
(HiPC), 2021.

• Kazuaki Matsumura, Simon Garcia De Gonzalo, Antonio J. Peña. A symbolic em-
ulator for shuffle synthesis on the NVIDIA PTX code. International Conference on
Compiler Construction (CC), 2023.

• Kazuaki Matsumura, Simon Garcia De Gonzalo, Antonio J. Peña. ACC Saturator:
Automatic kernel optimization for directive-based GPU code. Preprint: https://ar
xiv.org/abs/2306.13002 (Under submission to an international conference)

6.4.2 Referred Presentations

• Kazuaki Matsumura, Simon Garcia De Gonzalo, Antonio J. Peña. Wrapping up
existing OpenACC compilers for runtime extension. Poster at ISC High Performance
2021.

• Kazuaki Matsumura, Simon Garcia De Gonzalo, Antonio J. Peña. JACC: Automati-
cally retargeting OpenACC kernels for multi-GPUs. Talk at NVIDIA GTC, 2022.

6.4.3 Software

• JACC: https://github.com/epeec/JACC

73

https://arxiv.org/abs/2306.13002
https://arxiv.org/abs/2306.13002
https://github.com/epeec/JACC

• PTXASW: https://github.com/khaki3/ptxas-wrapper

• ACC Saturator: https://github.com/khaki3/acc-saturator
(To be published after the paper acceptance.)

74

https://github.com/khaki3/ptxas-wrapper
https://github.com/khaki3/acc-saturator

A C K N O W L E D G E M E N T S

Our work has been funded by the EPEEC project from the European Union’s Horizon
2020 research and innovation program under grant agreement No. 801051, the Min-
isterio de Ciencia e Innovación—Agencia Estatal de Investigación (PID2019-107255GB-
C21/AEI/10.13039/501100011033), and Departament de Recerca i Universitats from the
Generalitat de Catalunya as the Research Group AccMem (Code: 2021 SGR 00807). We
partially carried out our experiments on the ACME cluster that is owned by CIEMAT and
funded by the Spanish Ministry of Economy and Competitiveness project CODEC-OSE
(RTI2018-096006-B-I00). We gratefully acknowledge the support of the NVIDIA Solutions
Lab who provided us the remote access to their GPU environment. We would like to ac-
knowledge the NVIDIA AI Technology Center (NVAITC) Europe for their valuable help.

75

A P P E N D I X

Listing A.1 shows, in a Python-like pseudocode, our algorithm used for implementing
PTXASW. The function emulate performs symbolic emulation and returns memory traces.
extract_shuffles finds shuffle opportunities whose correctness is guaranteed by compar-
ison among all the branches. replace_loads inserts shuffles and register-save code. solve/
verify call an SMT solver internally.

Listing A.1: Pseudocode for the algorithm of PTXASW

1 def ptxasw(input_string):

2 kernels = parse_ptx(input_string) # String to Object

3

4 # Optimize each kernel

5 updated_kernels = [optimize(k) for k in kernels]

6

7 output_string = to_string(update_kernels) # Object to String

8

9 run_original_ptxas(output_string) # Assemble

10

11 def optimize(kernel):

12 memory_traces = emulate(kernel) # Run symbolic emulation

13

14 shuffle_pairs = extract_shuffles(memory_traces) # Find shuffles

15

16 return replace_loads(kernel, shuffle_pairs) # Shuffle synthesis

17

18 # memory_traces contains relative positions between loads for each

19 # branch: [[(hash(dst_load), hash(src_load), distance) ...] ...]

20 def extract_shuffles(memory_traces):

21 # Get a unique list of dst_load

22 all_dst = unique([b[0] for a in memory_traces for b in a])

23

24 pairs = []

25

26 for d in all_dst:

27 # Find src_load that has the same distance in all the branches

28 const_src = find_consistent_src(d, memory_traces)

29

30 if len(const_src) > 0:

31 # Select the src_load that has the shortest distance

32 (src, dist) = find_closest_src(d, const_src, memory_traces)

33

34 pairs.append((d, src, dist))

35

36 return pairs

37

38 def replace_loads(kernel, shuffle_pairs):

39 updated_kernel = []

76

40

41 for instruction in kernel:

42 r = extract_destination_operand(instruction)

43

44 # Find the instruction in shuffle_pairs

45 d = [t for t in shuffle_pairs if t[0] == hash(instruction)]

46 s = [t for t in shuffle_pairs if t[1] == hash(instruction)]

47

48 if len(d) == 1:

49 (_, src, dist) = d[0]

50 # Add the shuffle code of Listing 6

51 updated_kernel.append(

52 create_shuffle_code(r, src, dist, instruction))

53 else:

54 # Add the original instruction

55 updated_kernel.append(instruction)

56

57 if len(s) >= 1:

58 # Hold ’%source’ of Listing 6 ("mov %hash(instruction), %r")

59 updated_kernel.append(

60 create_register_save_code(hash(instruction), r))

61

62 return updated_kernel

63

64 def emulate(kernel):

65 # Get instructions which involve in I/O addr and the control

66 kernel = eliminate_unnecessary_instructions(kernel)

67

68 env = make_register_environment(kernel) # [(reg, value) ...]

69

70 return run(env, kernel, [], [], [])

71

72 def run(env, kernel, memory_trace, instruction_trace, bra_conds):

73 if len(kernel) == 0: # End of the execution

74 return [memory_trace]

75

76 inst = kernel[0]

77

78 # Finish once the execution enters the same code block again

79 if hash(inst) in instruction_trace:

80 return [memory_trace]

81

82 instruction_trace = instruction_trace + [hash(inst)]

83

84 if inst.is_loop_header:

85 # [(reg, value) ...] -> [(reg, wrap(value)) ...] (Sec 4.2)

86 env = update_iterators(env, inst)

87

88 if inst.is_branch:

89 # Get a symbolic value of a register for the branch condition

90 cond = dict(env)[inst.cond_reg]

91

Listing A.1 (Cont.): Pseudocode for the algorithm of PTXASW

77

92 # Determine the destination based on previous conds (Sec 4.2)

93 if verify(assume=bra_conds, equation=(cond == True)):

94 # (1) Jump

95 return run(env, inst.branch_destination, memory_trace+[],

96 instruction_trace, bra_conds + [(cond == True)])

97 elif verify(assume=bra_conds, equation=(cond == False)):

98 # (2) Ignore branching

99 return run(env, kernel[1:], memory_trace+[],

100 instruction_trace, bra_conds + [(cond == False)])

101 else: # Cause divergence

102 return (run(...) + run(...)) # (1) + (2)

103

104 env = execute_instruction(env, inst) # Sec 4.1

105 addr = calc_addr(inst, env) # Get a symbolc value of I/O addr

106

107 if inst.is_store:

108 # Leave the I/O address in the trace (Sec 4.3)

109 memory_trace += [(hash(inst), hash(inst), STORE_CONST, addr)]

110 elif inst.is_load:

111 memory_trace += [(hash(inst), hash(inst), LOAD_CONST, addr)]

112

113 for (src, src_addr) in extract_valid_loads(memory_trace):

114 # Replace %tid.x with %tid+N (Sec 5.1)

115 symbol_N = gensym(); sa = replace_tid(src_addr, symbol_N)

116

117 # Find N that satisfies addr(%tid)==src_addr(%tid+N)

118 n = solve(assume=(symbol_N<=31 and symbol_N>=-31),

119 equation=(addr==sa), find=symbol_N)

120

121 if n and verify(assume=(symbol_N==n), equation=(addr==sa)):

122 memory_trace += [(hash(inst), src, n)]

123

124 return run(env, kernel[1:],

125 memory_trace+[], instruction_trace, bra_conds)

Listing A.1 (Cont.): Pseudocode for the algorithm of PTXASW

78

B I B L I O G R A P H Y

[1] G. E. Moore. 1998. Cramming more components onto integrated circuits. Proceed-
ings of the IEEE, 86, 1, 82–85. issn: 0018-9219. doi: 10.1109/JPROC.1998.658762.

[2] TOP500.org. 2022. November 2022 | TOP500. (November 2022). https : / / www .

top500.org/lists/top500/2022/11/.

[3] NVIDIA Corporation. 2022. Programming guide :: CUDA toolkit documentation.
(March 2022). https://docs.nvidia.com/cuda/cuda- c- programming- guide/
index.html.

[4] The Khronos Group Inc. 2023. OpenCL overview - The Khronos Group Inc. (Jan-
uary 2023). https://www.khronos.org/api/opencl.

[5] The OpenACC Organization. 2011. OpenACC. (2011). https://www.openacc.org/.

[6] The OpenMP ARB. 1997. OpenMP. (1997). https://www.openmp.org/.

[7] NVIDIA Corporation. 2022. High performance computing (HPC) SDK
| NVIDIA. (April 2022). https://developer.nvidia.com/hpc-sdk.

[8] Free Software Foundation, Inc. 2023. GCC, the GNU compiler collection - GNU
Project. (June 2023). https://gcc.gnu.org/.

[9] Intel Corporation. 2023. Compile cross-architecture: Intel® oneAPI DPC++/C++
Compiler. (June 2023). https://www.intel.com/content/www/us/en/developer/
tools/oneapi/dpc-compiler.html.

[10] The LLVM Project. 2023. Clang C language family frontend for LLVM. (June 2023).
https://clang.llvm.org/.

[11] WACCPD 2023. 2023. WACCPD 2023 – Tenth workshop on accelerator program-
ming and directives. (June 2023). https://waccpd.org/.

[12] IWOMP. 2023. IWOMP 2022 - The 18th int’l. workshop on OpenMP. (June 2023).
https://www.iwomp.org/.

[13] John Russell. 2017. OpenACC shines in global climate/weather codes - HPCwire.
(November 2017). https://www.hpcwire.com/2017/11/14/openacc- shines-
global-climateweather-codes/.

[14] Tetsuya Hoshino, Naoya Maruyama, Satoshi Matsuoka, and Ryoji Takaki. 2013.
CUDA vs OpenACC: Performance case studies with kernel benchmarks and a
memory-bound CFD application. In Proceedings of the 13th IEEE/ACM International
Symposium on Cluster, Cloud, and Grid Computing (CCGRID ’13). IEEE Press, Delft,
Netherlands, 136–143. isbn: 9780768549965. doi: 10.1109/CCGrid.2013.12. https:
//doi.org/10.1109/CCGrid.2013.12.

79

https://doi.org/10.1109/JPROC.1998.658762
https://www.top500.org/lists/top500/2022/11/
https://www.top500.org/lists/top500/2022/11/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://www.khronos.org/api/opencl
https://www.openacc.org/
https://www.openmp.org/
https://developer.nvidia.com/hpc-sdk
https://gcc.gnu.org/
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler.html
https://clang.llvm.org/
https://waccpd.org/
https://www.iwomp.org/
https://www.hpcwire.com/2017/11/14/openacc-shines-global-climateweather-codes/
https://www.hpcwire.com/2017/11/14/openacc-shines-global-climateweather-codes/
https://doi.org/10.1109/CCGrid.2013.12
https://doi.org/10.1109/CCGrid.2013.12
https://doi.org/10.1109/CCGrid.2013.12

[15] Suejb Memeti, Lu Li, Sabri Pllana, Joanna Kołodziej, and Christoph Kessler. 2017.
Benchmarking OpenCL, OpenACC, OpenMP, and CUDA: Programming produc-
tivity, performance, and energy consumption. In Proceedings of the 2017 Workshop
on Adaptive Resource Management and Scheduling for Cloud Computing (ARMS-CC
’17). Association for Computing Machinery, Washington, DC, USA, 1–6. isbn:
978145035-1164. doi: 10.1145/3110355.3110356. https://doi.org/10.1145/
3110355.3110356.

[16] Mikhail Khalilov and Alexey Timoveev. 2021. Performance analysis of CUDA,
OpenACC and OpenMP programming models on TESLA V100 GPU. In Journal
of Physics: Conference Series number 1. Volume 1740. IOP Publishing, 012056. doi:
10.1088/1742-6596/1740/1/012056. https://doi.org/10.1088/1742-6596/1740/
1/012056.

[17] Prithayan Barua, Jun Shirako, and Vivek Sarkar. 2018. Cost-driven thread coars-
ening for GPU kernels. In Proceedings of the 27th International Conference on Parallel
Architectures and Compilation Techniques (PACT). Association for Computing Ma-
chinery, Limassol, Cyprus. isbn: 9781450359863. doi: 10.1145/3243176.3243196.
https://doi.org/10.1145/3243176.3243196.

[18] Güray Özen, Simone Atzeni, Michael Wolfe, Annemarie Southwell, and Gary
Klimowicz. 2018. OpenMP GPU offload in Flang and LLVM. In 2018 IEEE/ACM
5th Workshop on the LLVM Compiler Infrastructure in HPC (LLVM-HPC), 1–9. doi:
10.1109/LLVM-HPC.2018.8639434.

[19] Shilei Tian, Joseph Huber, John Tramm, Barbara Chapman, and Johannes Doerfert.
2022. Just-in-time compilation and link-time optimization for OpenMP target of-
floading. In OpenMP in a Modern World: From Multi-device Support to Meta Program-
ming. Michael Klemm, Bronis R. de Supinski, Jannis Klinkenberg, and Brandon
Neth, (Eds.) Springer International Publishing, Cham, 145–158. isbn: 978-3-031-
15922-0.

[20] Calvin Montgomery, Jeffrey L. Overbey, and Xuechao Li. 2015. Autotuning
OpenACC work distribution via direct search. In Proceedings of the 2015 XSEDE
Conference: Scientific Advancements Enabled by Enhanced Cyberinfrastructure (XSEDE).
Association for Computing Machinery, St. Louis, Missouri. isbn: 9781450337205.
doi: 10.1145/2792745.2792783. https://doi.org/10.1145/2792745.2792783.

[21] Kazuaki Matsumura, Mitsuhisa Sato, Taisuke Boku, Artur Podobas, and Satoshi
Matsuoka. 2018. MACC: An OpenACC transpiler for automatic multi-GPU use.
In Supercomputing Frontiers. Rio Yokota and Weigang Wu, (Eds.) Springer Interna-
tional Publishing, Cham, 109–127. doi: 10.1007/978-3-319-69953-0_7.

[22] Mehmet E. Belviranli, Seyong Lee, Jeffrey S. Vetter, and Laxmi N. Bhuyan. 2018.
Juggler: A dependence-aware task-based execution framework for GPUs. In Pro-
ceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Paral-
lel Programming (PPoPP). Association for Computing Machinery, Vienna, Austria,
54–67. isbn: 9781450349826. doi: 10.1145/3178487.3178492. https://doi.org/10.
1145/3178487.3178492.

80

https://doi.org/10.1145/3110355.3110356
https://doi.org/10.1145/3110355.3110356
https://doi.org/10.1145/3110355.3110356
https://doi.org/10.1088/1742-6596/1740/1/012056
https://doi.org/10.1088/1742-6596/1740/1/012056
https://doi.org/10.1088/1742-6596/1740/1/012056
https://doi.org/10.1145/3243176.3243196
https://doi.org/10.1145/3243176.3243196
https://doi.org/10.1109/LLVM-HPC.2018.8639434
https://doi.org/10.1145/2792745.2792783
https://doi.org/10.1145/2792745.2792783
https://doi.org/10.1007/978-3-319-69953-0_7
https://doi.org/10.1145/3178487.3178492
https://doi.org/10.1145/3178487.3178492
https://doi.org/10.1145/3178487.3178492

[23] Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. 2009. Equality
saturation: A new approach to optimization. In Proceedings of the 36th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL
’09). Association for Computing Machinery, Savannah, GA, USA, 264–276. isbn:
9781605-583792. doi: 10.1145/1480881.1480915. https://doi.org/10.1145/
1480881.1480915.

[24] NVIDIA Corporation. 2010. NVIDIA Tesla | datasheet | apr10. (April 2010). https:
//www.nvidia.com/docs/IO/43395/NV_DS_Tesla_M2050_M2070_Apr10_LowRes.pdf.

[25] NVIDIA Corporation. 2014. NVIDIA Tesla GPU accelerators. (October 2014). htt
ps://www.nvidia.com/content/dam/en- zz/Solutions/Data- Center/tesla-

product-literature/TeslaK80-datasheet.pdf.

[26] NVIDIA Corporation. 2015. Accelerating hyperscale data center applications with
Tesla GPUs. (November 2015). https://devblogs.nvidia.com/accelerating-
hyperscale-datacenter-applications-tesla-gpus/.

[27] NVIDIA Corporation. 2016. NVIDIA Tesla P100. (May 2016). https://images.
nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.

pdf.

[28] NVIDIA Corporation. 2017. NVIDIA Tesla V100 GPU architecture. (August 2017).
https://images.nvidia.com/content/volta-architecture/pdf/volta-architec

ture-whitepaper.pdf.

[29] NVIDIA Corporation. 2020. NVIDIA A100 tensor core GPU architecture. (May
2020). https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/
nvidia-ampere-architecture-whitepaper.pdf.

[30] NVIDIA Corporation. 2020. NVLink & NVSwitch: Advanced multi-GPU systems
| NVIDIA. (2020). https://www.nvidia.com/en-us/data-center/nvlink/.

[31] Lingda Li and Barbara Chapman. 2019. Compiler assisted hybrid implicit and ex-
plicit GPU memory management under unified address space. In Proceedings of
the International Conference for High Performance Computing, Networking, Storage and
Analysis (SC ’19). Association for Computing Machinery, Denver, Colorado. isbn:
9781450362290. doi: 10.1145/3295500.3356141. https://doi.org/10.1145/
3295500.3356141.

[32] Zhe Jia, Marco Maggioni, Benjamin Staiger, and Daniele Paolo Scarpazza. 2018.
Dissecting the NVIDIA Volta GPU architecture via microbenchmarking. CoRR,
abs/1804.06826. arXiv: 1804.06826. http://arxiv.org/abs/1804.06826.

[33] Zhe Jia, Marco Maggioni, Jeffrey Smith, and Daniele Paolo Scarpazza. 2019. Dis-
secting the NVIDIA Turing T4 GPU via microbenchmarking. (2019). doi: 10.48550/
ARXIV.1903.07486. https://arxiv.org/abs/1903.07486.

[34] Markus Velten, Robert Schöne, Thomas Ilsche, and Daniel Hackenberg. 2022. Mem-
ory performance of AMD EPYC Rome and Intel Cascade Lake SP server processors.
In Proceedings of the 2022 ACM/SPEC on International Conference on Performance Engi-
neering (ICPE ’22). Association for Computing Machinery, Beijing, China, 165–175.
isbn: 9781450391436. doi: 10.1145/3489525.3511689. https://doi.org/10.1145/
3489525.3511689.

81

https://doi.org/10.1145/1480881.1480915
https://doi.org/10.1145/1480881.1480915
https://doi.org/10.1145/1480881.1480915
https://www.nvidia.com/docs/IO/43395/NV_DS_Tesla_M2050_M2070_Apr10_LowRes.pdf
https://www.nvidia.com/docs/IO/43395/NV_DS_Tesla_M2050_M2070_Apr10_LowRes.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-product-literature/TeslaK80-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-product-literature/TeslaK80-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-product-literature/TeslaK80-datasheet.pdf
https://devblogs.nvidia.com/accelerating-hyperscale-datacenter-applications-tesla-gpus/
https://devblogs.nvidia.com/accelerating-hyperscale-datacenter-applications-tesla-gpus/
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/en-us/data-center/nvlink/
https://doi.org/10.1145/3295500.3356141
https://doi.org/10.1145/3295500.3356141
https://doi.org/10.1145/3295500.3356141
https://arxiv.org/abs/1804.06826
http://arxiv.org/abs/1804.06826
https://doi.org/10.48550/ARXIV.1903.07486
https://doi.org/10.48550/ARXIV.1903.07486
https://arxiv.org/abs/1903.07486
https://doi.org/10.1145/3489525.3511689
https://doi.org/10.1145/3489525.3511689
https://doi.org/10.1145/3489525.3511689

[35] Hamid Reza Zohouri and Satoshi Matsuoka. 2019. The memory controller wall:
Benchmarking the Intel FPGA SDK for OpenCL memory interface. In 2019
IEEE/ACM International Workshop on Heterogeneous High-performance Reconfigurable
Computing (H2RC), 11–18. doi: 10.1109/H2RC49586.2019.00007.

[36] NVIDIA Corporation. 2022. Kepler tuning guide :: CUDA toolkit documentation.
(March 2022). https://docs.nvidia.com/cuda/archive/11.4.4/kepler-tuning-
guide/index.html.

[37] NVIDIA Corporation. 2022. PTX ISA :: CUDA toolkit documentation. (March 2022).
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html.

[38] Da Yan, Wei Wang, and Xiaowen Chu. 2020. Optimizing batched winograd convo-
lution on GPUs. In Proceedings of the 25th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming. Association for Computing Machinery, New
York, NY, USA, 32–44. isbn: 9781450368186. https://doi.org/10.1145/3332466.
3374520.

[39] Zhe Jia, Marco Maggioni, Benjamin Staiger, and Daniele P. Scarpazza. 2018. Dis-
secting the NVIDIA Volta GPU architecture via microbenchmarking. (2018). doi:
10.48550/ARXIV.1804.06826. https://arxiv.org/abs/1804.06826.

[40] Henry Wong, Misel-Myrto Papadopoulou, Maryam Sadooghi-Alvandi, and An-
dreas Moshovos. 2010. Demystifying GPU microarchitecture through microbench-
marking. In 2010 IEEE International Symposium on Performance Analysis of Systems
Software (ISPASS), 235–246. doi: 10.1109/ISPASS.2010.5452013.

[41] Jacob Lambert, Seyong Lee, Jeffrey S. Vetter, and Allen D. Malony. 2020. CCAMP:
An integrated translation and optimization framework for OpenACC and OpenMP.
In Proceedings of the International Conference for High Performance Computing, Network-
ing, Storage and Analysis (SC). IEEE Press, Atlanta, Georgia. isbn: 9781728199986.

[42] T. Hoshino, N. Maruyama, and S. Matsuoka. 2016. A directive-based data layout
abstraction for performance portability of OpenACC applications. In 2016 IEEE
18th International Conference on High Performance Computing and Communications;
IEEE 14th International Conference on Smart City; IEEE 2nd International Conference
on Data Science and Systems (HPCC/SmartCity/DSS), 1147–1154. doi: 10.1109/HPCC-
SmartCity-DSS.2016.0161.

[43] X. Tian, D. Khaldi, D. Eachempati, R. Xu, and B. Chapman. 2016. Optimizing GPU
register usage: Extensions to OpenACC and compiler optimizations. In 2016 45th
International Conference on Parallel Processing (ICPP), 572–581. doi: 10.1109/ICPP.
2016.72.

[44] A. Lashgar, E. Atoofian, and A. Baniasadi. 2018. Loop perforation in OpenACC.
In 2018 IEEE Intl Conf on Parallel Distributed Processing with Applications, Ubiquitous
Computing Communications, Big Data Cloud Computing, Social Computing Networking,
Sustainable Computing Communications (ISPA/IUCC/BDCloud/SocialCom/SustainCom),
163–170. doi: 10.1109/BDCloud.2018.00036.

82

https://doi.org/10.1109/H2RC49586.2019.00007
https://docs.nvidia.com/cuda/archive/11.4.4/kepler-tuning-guide/index.html
https://docs.nvidia.com/cuda/archive/11.4.4/kepler-tuning-guide/index.html
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html
https://doi.org/10.1145/3332466.3374520
https://doi.org/10.1145/3332466.3374520
https://doi.org/10.48550/ARXIV.1804.06826
https://arxiv.org/abs/1804.06826
https://doi.org/10.1109/ISPASS.2010.5452013
https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0161
https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0161
https://doi.org/10.1109/ICPP.2016.72
https://doi.org/10.1109/ICPP.2016.72
https://doi.org/10.1109/BDCloud.2018.00036

[45] Michael Wolfe, Seyong Lee, Jungwon Kim, Xiaonan Tian, Rengan Xu, Barbara
Chapman, and Sunita Chandrasekaran. 2018. The OpenACC data model: Prelim-
inary study on its major challenges and implementations. Parallel Computing, 78,
15–27. doi: 10.1016/j.parco.2018.07.003.

[46] Prasad A. Kulkarni. 2011. JIT compilation policy for modern machines. In Proceed-
ings of the 2011 ACM International Conference on Object Oriented Programming Sys-
tems Languages and Applications (OOPSLA ’11). Association for Computing Machin-
ery, Portland, Oregon, USA, 773–788. isbn: 9781450309400. doi: 10.1145/2048066.
2048126. https://doi.org/10.1145/2048066.2048126.

[47] Toshiya Komoda, Shinobu Miwa, Hiroshi Nakamura, and Naoya Maruyama. 2013.
Integrating multi-GPU execution in an OpenACC compiler. In 2013 42nd Interna-
tional Conference on Parallel Processing (ICPP). IEEE, 260–269. doi: 10.1109/ICPP.
2013.35.

[48] M. Classen and M. Griebl. 2006. Automatic code generation for distributed mem-
ory architectures in the polytope model. In Proceedings 20th IEEE International Par-
allel Distributed Processing Symposium (IPDPS), 7 pp.–. doi: 10.1109/IPDPS.2006.
1639500.

[49] Thejas Ramashekar and Uday Bondhugula. 2013. Automatic data allocation and
buffer management for multi-GPU machines. ACM Trans. Archit. Code Optim., 10,
4, (December 2013). issn: 1544-3566. doi: 10.1145/2544100. https://doi.org/10.
1145/2544100.

[50] Omni Compiler Project (RIKEN CCS). 2009. XcodeML. (2009). https://omni-comp
iler.org/xcodeml.html.

[51] S. Ghosh, T. Liao, H. Calandra, and B. M. Chapman. 2012. Experiences with
OpenMP, PGI, HMPP and OpenACC directives on ISO/TTI kernels. In 2012 SC
Companion: High Performance Computing, Networking Storage and Analysis, 691–700.
doi: 10.1109/SC.Companion.2012.95.

[52] Jonas Hahnfeld, Christian Terboven, James Price, Hans Joachim Pflug, and
Matthias S. Müller. 2018. Evaluation of asynchronous offloading capabilities of
accelerator programming models for multiple devices. In Fourth Workshop on Accel-
erator Programming Using Directives (WACCP). Sunita Chandrasekaran and Guido
Juckeland, (Eds.) Springer International Publishing, Cham, 160–182. doi: 10.1007/
978-3-319-74896-2_9.

[53] Rengan Xu, Xiaonan Tian, Sunita Chandrasekaran, Yonghong Yan, and Barbara
Chapman. 2014. NAS parallel benchmarks for GPGPUs using a directive-based
programming model. In International Workshop on Languages and Compilers for Paral-
lel Computing. Springer, 67–81. doi: 10.1007/978-3-319-17473-0_5.

[54] J. A. Herdman, W. P. Gaudin, S. McIntosh-Smith, M. Boulton, D. A. Beckingsale,
A. C. Mallinson, and S. A. Jarvis. 2012. Accelerating hydrocodes with OpenACC,
OpenCL and CUDA. In 2012 SC Companion: High Performance Computing, Network-
ing Storage and Analysis, 465–471. doi: 10.1109/SC.Companion.2012.66.

[55] RIKEN CCS. 2014. Fiber. (2014). http://fiber-miniapp.github.io/.

83

https://doi.org/10.1016/j.parco.2018.07.003
https://doi.org/10.1145/2048066.2048126
https://doi.org/10.1145/2048066.2048126
https://doi.org/10.1145/2048066.2048126
https://doi.org/10.1109/ICPP.2013.35
https://doi.org/10.1109/ICPP.2013.35
https://doi.org/10.1109/IPDPS.2006.1639500
https://doi.org/10.1109/IPDPS.2006.1639500
https://doi.org/10.1145/2544100
https://doi.org/10.1145/2544100
https://doi.org/10.1145/2544100
https://omni-compiler.org/xcodeml.html
https://omni-compiler.org/xcodeml.html
https://doi.org/10.1109/SC.Companion.2012.95
https://doi.org/10.1007/978-3-319-74896-2_9
https://doi.org/10.1007/978-3-319-74896-2_9
https://doi.org/10.1007/978-3-319-17473-0_5
https://doi.org/10.1109/SC.Companion.2012.66
http://fiber-miniapp.github.io/

[56] RIKEN CCS. 2001. Himeno benchmark. (2001). https://i.riken.jp/en/supercom/
documents/himenobmt/.

[57] Standard Performance Evaluation Corporation. 2014. SPEC ACCEL®. (2014). http
s://www.spec.org/accel/.

[58] T. Diop, S. Gurfinkel, J. Anderson, and N. E. Jerger. 2013. DistCL: A framework
for the distributed execution of OpenCL kernels. In 2013 IEEE 21st International
Symposium on Modelling, Analysis and Simulation of Computer and Telecommunication
Systems, 556–566. doi: 10.1109/MASCOTS.2013.77.

[59] Jungwon Kim, Sangmin Seo, Jun Lee, Jeongho Nah, Gangwon Jo, and Jaejin Lee.
2012. SnuCL: An OpenCL framework for heterogeneous CPU/GPU clusters. In
Proceedings of the 26th ACM International Conference on Supercomputing (ICS). Asso-
ciation for Computing Machinery, San Servolo Island, Venice, Italy, 341–352. isbn:
9781450313162. doi: 10.1145/2304576.2304623. https://doi.org/10.1145/
2304576.2304623.

[60] U. Bondhugula. 2013. Compiling affine loop nests for distributed-memory paral-
lel architectures. In Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis (SC). Association for Computing Ma-
chinery, Denver, Colorado. isbn: 9781450323789. doi: 10.1145/2503210.2503289.
https://doi.org/10.1145/2503210.2503289.

[61] Alexander Matz, Johannes Doerfert, and Holger Fröning. 2020. Automated parti-
tioning of data-parallel kernels using polyhedral compilation. In 49th International
Conference on Parallel Processing Workshops (ICPP Workshops). Association for Com-
puting Machinery, Edmonton, AB, Canada. isbn: 9781450388689. doi: 10.1145/
3409390.3409403. https://doi.org/10.1145/3409390.3409403.

[62] Sebastian Schaetz and Martin Uecker. 2012. A multi-GPU programming library for
real-time applications. In International Conference on Algorithms and Architectures for
Parallel Processing. Springer, 114–128. doi: 10.1007/978-3-642-33078-0_9.

[63] Tal Ben-Nun, Michael Sutton, Sreepathi Pai, and Keshav Pingali. 2017. Groute: An
asynchronous multi-GPU programming model for irregular computations. In Pro-
ceedings of the 22nd ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP). Association for Computing Machinery, Austin, Texas, USA,
235–248. isbn: 9781450344937. doi: 10.1145/3018743.3018756. https://doi.org/
10.1145/3018743.3018756.

[64] Tal Ben-Nun, Ely Levy, Amnon Barak, and Eri Rubin. 2015. Memory access pat-
terns: The missing piece of the multi-GPU puzzle. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis (SC).
Association for Computing Machinery, Austin, Texas. isbn: 9781450337236. doi:
10.1145/2807591.2807611. https://doi.org/10.1145/2807591.2807611.

[65] S. Potluri, A. Goswami, D. Rossetti, C. J. Newburn, M. G. Venkata, and N. Imam.
2017. GPU-centric communication on NVIDIA GPU clusters with InfiniBand: A
case study with OpenSHMEM. In 2017 IEEE 24th International Conference on High
Performance Computing (HiPC), 253–262. doi: 10.1109/HiPC.2017.00037.

84

https://i.riken.jp/en/supercom/documents/himenobmt/
https://i.riken.jp/en/supercom/documents/himenobmt/
https://www.spec.org/accel/
https://www.spec.org/accel/
https://doi.org/10.1109/MASCOTS.2013.77
https://doi.org/10.1145/2304576.2304623
https://doi.org/10.1145/2304576.2304623
https://doi.org/10.1145/2304576.2304623
https://doi.org/10.1145/2503210.2503289
https://doi.org/10.1145/2503210.2503289
https://doi.org/10.1145/3409390.3409403
https://doi.org/10.1145/3409390.3409403
https://doi.org/10.1145/3409390.3409403
https://doi.org/10.1007/978-3-642-33078-0_9
https://doi.org/10.1145/3018743.3018756
https://doi.org/10.1145/3018743.3018756
https://doi.org/10.1145/3018743.3018756
https://doi.org/10.1145/2807591.2807611
https://doi.org/10.1145/2807591.2807611
https://doi.org/10.1109/HiPC.2017.00037

[66] Prasanna Pandit and R. Govindarajan. 2014. Fluidic kernels: Cooperative execution
of OpenCL programs on multiple heterogeneous devices. In Proceedings of Annual
IEEE/ACM International Symposium on Code Generation and Optimization (CGO). As-
sociation for Computing Machinery, Orlando, FL, USA, 273–283. isbn: 978145032-
6704. doi: 10 . 1145 / 2581122 . 2544163. https : / / doi . org / 10 . 1145 / 2581122 .

2544163.

[67] Janghaeng Lee, Mehrzad Samadi, Yongjun Park, and Scott Mahlke. 2015. SKMD:
Single kernel on multiple devices for transparent CPU-GPU collaboration. ACM
Trans. Comput. Syst., 33, 3, (August 2015). issn: 0734-2071. doi: 10.1145/2798725.
https://doi.org/10.1145/2798725.

[68] Monica Beltrametti, Kenneth Bobey, and John R. Zorbas. 1988. The control mecha-
nism for the myrias parallel computer system. SIGARCH Comput. Archit. News, 16,
4, 21–30. issn: 0163-5964. doi: 10.1145/54331.54333. https://doi.org/10.1145/
54331.54333.

[69] NVIDIA Corporation. 2017. GitHub - NVIDIA/jitify. (2017). https://github.com/
NVIDIA/jitify.

[70] D. Mikushin, N. Likhogrud, E. Z. Zhang, and C. Bergström. 2014. KernelGen – The
design and implementation of a next generation compiler platform for accelerating
numerical models on GPUs. In 2014 IEEE International Parallel Distributed Processing
Symposium Workshops, 1011–1020. doi: 10.1109/IPDPSW.2014.115.

[71] José M. Andión, Manuel Arenaz, François Bodin, Gabriel Rodríguez, and
Juan Touriño. 2016. Locality-aware automatic parallelization for GPGPU with
OpenHMPP directives. Int. J. Parallel Program., 44, 3, (June 2016), 620–643. issn:
0885-7458. doi: 10.1007/s10766-015-0362-9. https://doi.org/10.1007/s10766-
015-0362-9.

[72] Gleison Mendonça, Breno Guimarães, Péricles Alves, Márcio Pereira, Guido
Araújo, and Fernando Magno Quintão Pereira. 2017. DawnCC: Automatic annota-
tion for data parallelism and offloading. ACM Trans. Archit. Code Optim., 14, 2, (May
2017). issn: 1544-3566. doi: 10.1145/3084540. https://doi.org/10.1145/3084540.

[73] J. E. Denny, S. Lee, and J. S. Vetter. 2018. CLACC: Translating OpenACC to
OpenMP in Clang. In 2018 IEEE/ACM 5th Workshop on the LLVM Compiler Infras-
tructure in HPC (LLVM-HPC), 18–29. doi: 10.1109/LLVM-HPC.2018.8639349.

[74] Simon Garcia De Gonzalo, Sitao Huang, Juan Gómez-Luna, Simon Hammond,
Onur Mutlu, and Wen-mei Hwu. 2019. Automatic generation of warp-level primi-
tives and atomic instructions for fast and portable parallel reduction on GPUs. In
2019 IEEE/ACM International Symposium on Code Generation and Optimization (CGO),
73–84. doi: 10.1109/CGO.2019.8661187.

[75] Sven Verdoolaege and Tobias Grosser. 2012. Polyhedral extraction tool. In Second
International Workshop on Polyhedral Compilation Techniques (IMPACT). Paris, France.
http://impact.gforge.inria.fr/impact2012/.

85

https://doi.org/10.1145/2581122.2544163
https://doi.org/10.1145/2581122.2544163
https://doi.org/10.1145/2581122.2544163
https://doi.org/10.1145/2798725
https://doi.org/10.1145/2798725
https://doi.org/10.1145/54331.54333
https://doi.org/10.1145/54331.54333
https://doi.org/10.1145/54331.54333
https://github.com/NVIDIA/jitify
https://github.com/NVIDIA/jitify
https://doi.org/10.1109/IPDPSW.2014.115
https://doi.org/10.1007/s10766-015-0362-9
https://doi.org/10.1007/s10766-015-0362-9
https://doi.org/10.1007/s10766-015-0362-9
https://doi.org/10.1145/3084540
https://doi.org/10.1145/3084540
https://doi.org/10.1109/LLVM-HPC.2018.8639349
https://doi.org/10.1109/CGO.2019.8661187
http://impact.gforge.inria.fr/impact2012/

[76] Tobias Grosser, Armin Groesslinger, and Christian Lengauer. 2012. Polly — per-
forming polyhedral optimizations on a low-level intermediate representation. Par-
allel Processing Letters, 22, 04, 1250010. doi: 10.1142/S0129626412500107. eprint:
https://doi.org/10.1142/S0129626412500107. https://doi.org/10.1142/
S0129626412500107.

[77] Philip Ginsbach, Toomas Remmelg, Michel Steuwer, Bruno Bodin, Christophe Du-
bach, and Michael F. P. O’Boyle. 2018. Automatic matching of legacy code to het-
erogeneous APIs: An idiomatic approach. In Proceedings of the Twenty-Third Inter-
national Conference on Architectural Support for Programming Languages and Operating
Systems. Association for Computing Machinery, New York, NY, USA, 139–153. isbn:
9781450349116. https://doi.org/10.1145/3173162.3173182.

[78] Xiaolong Xie, Yun Liang, Xiuhong Li, Yudong Wu, Guangyu Sun, Tao Wang, and
Dongrui Fan. 2015. Enabling coordinated register allocation and thread-level par-
allelism optimization for GPUs. In 2015 48th Annual IEEE/ACM International Sym-
posium on Microarchitecture (MICRO), 395–406. doi: 10.1145/2830772.2830813.

[79] Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu, and Irene
Finocchi. 2018. A survey of symbolic execution techniques. ACM Comput. Surv., 51,
3. issn: 0360-0300. doi: 10.1145/3182657. https://doi.org/10.1145/3182657.

[80] Peng Chen, Mohamed Wahib, Shinichiro Takizawa, Ryousei Takano, and Satoshi
Matsuoka. 2019. A versatile software systolic execution model for GPU memory-
bound kernels. In Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis (SC ’19). Association for Computing Ma-
chinery, Denver, Colorado. isbn: 9781450362290. doi: 10.1145/3295500.3356162.
https://doi.org/10.1145/3295500.3356162.

[81] Robert van Engelen. 2001. Efficients symbolic analysis for optimizing compilers.
In Proceedings of the 10th International Conference on Compiler Construction (CC ’01).
Springer-Verlag, Berlin, Heidelberg, 118–132. isbn: 354041861X.

[82] Robert van Engelen. 2000. Symbolic evaluation of chains of recurrences for loop
optimization. Technical report TR-000102. Computer Science Dept., Florida State
University.

[83] Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In
Tools and Algorithms for the Construction and Analysis of Systems. Springer Berlin
Heidelberg, Berlin, Heidelberg, 337–340. isbn: 978-3-540-78800-3.

[84] Phitchaya Mangpo Phothilimthana, Archibald Samuel Elliott, An Wang, Abhinav
Jangda, Bastian Hagedorn, Henrik Barthels, Samuel J. Kaufman, Vinod Grover,
Emina Torlak, and Rastislav Bodik. 2019. Swizzle Inventor: Data movement syn-
thesis for GPU kernels. In Proceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages and Operating Systems (ASP-
LOS ’19). Association for Computing Machinery, Providence, RI, USA, 65–78. isbn:
9781450362405. doi: 10.1145/3297858.3304059. https://doi.org/10.1145/
3297858.3304059.

86

https://doi.org/10.1142/S0129626412500107
https://doi.org/10.1142/S0129626412500107
https://doi.org/10.1142/S0129626412500107
https://doi.org/10.1142/S0129626412500107
https://doi.org/10.1145/3173162.3173182
https://doi.org/10.1145/2830772.2830813
https://doi.org/10.1145/3182657
https://doi.org/10.1145/3182657
https://doi.org/10.1145/3295500.3356162
https://doi.org/10.1145/3295500.3356162
https://doi.org/10.1145/3297858.3304059
https://doi.org/10.1145/3297858.3304059
https://doi.org/10.1145/3297858.3304059

[85] Emina Torlak and Rastislav Bodik. 2013. Growing solver-aided languages with
Rosette. In Proceedings of the 2013 ACM International Symposium on New Ideas, New
Paradigms, and Reflections on Programming & Software (Onward! 2013). Association
for Computing Machinery, Indianapolis, Indiana, USA, 135–152. isbn: 978145032-
4724. doi: 10 . 1145 / 2509578 . 2509586. https : / / doi . org / 10 . 1145 / 2509578 .

2509586.

[86] Arpith Chacko Jacob et al. 2017. Efficient fork-join on GPUs through warp special-
ization. In 2017 IEEE 24th International Conference on High Performance Computing
(HiPC), 358–367. doi: 10.1109/HiPC.2017.00048.

[87] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo
Durand, and Saman Amarasinghe. 2013. Halide: A language and compiler for op-
timizing parallelism, locality, and recomputation in image processing pipelines.
In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language De-
sign and Implementation (PLDI ’13). Association for Computing Machinery, Seattle,
Washington, USA, 519–530. isbn: 9781450320146. doi: 10.1145/2491956.2462176.
https://doi.org/10.1145/2491956.2462176.

[88] Dmitry Mikushin, Nikolay Likhogrud, Eddy Z. Zhang, and Christopher Bergström.
2014. KernelGen – The design and implementation of a next generation compiler
platform for accelerating numerical models on GPUs. In 2014 IEEE International Par-
allel Distributed Processing Symposium Workshops, 1011–1020. doi: 10.1109/IPDPSW.
2014.115.

[89] Prashant Singh Rawat, Fabrice Rastello, Aravind Sukumaran-Rajam, Louis-Noël
Pouchet, Atanas Rountev, and P. Sadayappan. 2018. Register optimizations for sten-
cils on GPUs. In Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP ’18). Association for Computing Machinery,
Vienna, Austria, 168–182. isbn: 9781450349826. doi: 10.1145/3178487.3178500.
https://doi.org/10.1145/3178487.3178500.

[90] ExaCT 2013. 2013. ExaCT: Center for exascale simulation of combustion in turbu-
lence: Proxy App Software. (2013). http://www.exactcodesign.org/proxy-app-
software/.

[91] SW4 2014. 2014. Seismic wave modelling (SW4) - Computational infrastructure for
geodynamics. (2014). https://geodynamics.org/resources/sw4.

[92] Justin Luitjens. 2014. Faster parallel reductions on kepler. (February 2014). https:
//developer.nvidia.com/blog/faster-parallel-reductions-kepler/.

[93] Bryan Catanzaro, Alexander Keller, and Michael Garland. 2014. A decomposition
for in-place matrix transposition. In Proceedings of the 19th ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming (PPoPP ’14). Association for
Computing Machinery, Orlando, Florida, USA, 193–206. isbn: 9781450326568. doi:
10.1145/2555243.2555253. https://doi.org/10.1145/2555243.2555253.

[94] Eli Ben-Sasson, Matan Hamilis, Mark Silberstein, and Eran Tromer. 2016. Fast mul-
tiplication in binary fields on GPUs via register cache. In Proceedings of the 2016
International Conference on Supercomputing (ICS ’16). Association for Computing Ma-

87

https://doi.org/10.1145/2509578.2509586
https://doi.org/10.1145/2509578.2509586
https://doi.org/10.1145/2509578.2509586
https://doi.org/10.1109/HiPC.2017.00048
https://doi.org/10.1145/2491956.2462176
https://doi.org/10.1145/2491956.2462176
https://doi.org/10.1109/IPDPSW.2014.115
https://doi.org/10.1109/IPDPSW.2014.115
https://doi.org/10.1145/3178487.3178500
https://doi.org/10.1145/3178487.3178500
http://www.exactcodesign.org/proxy-app-software/
http://www.exactcodesign.org/proxy-app-software/
https://geodynamics.org/resources/sw4
https://developer.nvidia.com/blog/faster-parallel-reductions-kepler/
https://developer.nvidia.com/blog/faster-parallel-reductions-kepler/
https://doi.org/10.1145/2555243.2555253
https://doi.org/10.1145/2555243.2555253

chinery, Istanbul, Turkey. isbn: 9781450343619. doi: 10.1145/2925426.2926259.
https://doi.org/10.1145/2925426.2926259.

[95] Anjia Wang, Xinyao Yi, and Yonghong Yan. 2020. Supporting data shuffle between
threads in OpenMP. In OpenMP: Portable Multi-Level Parallelism on Modern Systems.
Springer International Publishing, Cham, 98–112. isbn: 978-3-030-58144-2.

[96] Meghan Cowan, Thierry Moreau, Tianqi Chen, James Bornholt, and Luis Ceze.
2020. Automatic generation of high-performance quantized machine learning ker-
nels. In Proceedings of the 18th ACM/IEEE International Symposium on Code Genera-
tion and Optimization. Association for Computing Machinery, New York, NY, USA,
305–316. isbn: 9781450370479. https://doi.org/10.1145/3368826.3377912.

[97] Alexa VanHattum, Rachit Nigam, Vincent T. Lee, James Bornholt, and Adrian
Sampson. 2021. Vectorization for digital signal processors via equality saturation.
In (ASPLOS 2021). Association for Computing Machinery, Virtual, USA, 874–886.
isbn: 9781450383172. doi: 10.1145/3445814.3446707. https://doi.org/10.1145/
3445814.3446707.

[98] Simon Moll and Sebastian Hack. 2018. Partial control-flow linearization. In Pro-
ceedings of the 39th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI 2018). Association for Computing Machinery, Philadelphia,
PA, USA, 543–556. isbn: 9781450356985. doi: 10.1145/3192366.3192413. https:
//doi.org/10.1145/3192366.3192413.

[99] Charles Yount. 2015. Vector Folding: Improving stencil performance via multi-
dimen-sional SIMD-vector representation. In 2015 IEEE 17th International Conference
on High Performance Computing and Communications, 2015 IEEE 7th International Sym-
posium on Cyberspace Safety and Security, and 2015 IEEE 12th International Conference
on Embedded Software and Systems, 865–870. doi: 10.1109/HPCC-CSS-ICESS.2015.27.

[100] Verónica G Vergara Larrea, Wael R Elwasif, Oscar Hernandez, Cesar Philippidis,
and Randy Allen. 2017. An in-depth evaluation of GCC’s OpenACC implementa-
tion on Cray systems.

[101] Joshua Hoke Davis, Christopher Daley, Swaroop Pophale, Thomas Huber, Sunita
Chandrasekaran, and Nicholas J. Wright. 2021. Performance assessment of
OpenMP compilers targeting NVIDIA V100 GPUs. In Accelerator Programming
Using Directives. Springer International Publishing, Cham, 25–44. isbn: 978-3-030-
74224-9.

[102] Ahmad Lashgar and Amirali Baniasadi. 2016. OpenACC cache directive: Opportu-
nities and optimizations. In 2016 Third Workshop on Accelerator Programming Using
Directives (WACCPD), 46–56. doi: 10.1109/WACCPD.2016.009.

[103] Guodong Li, Peng Li, Geof Sawaya, Ganesh Gopalakrishnan, Indradeep Ghosh,
and Sreeranga P. Rajan. 2012. GKLEE: Concolic verification and test generation for
gpus. In Proceedings of the 17th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming (PPoPP ’12). Association for Computing Machinery, New
Orleans, Louisiana, USA, 215–224. isbn: 9781450311601. doi: 10.1145/2145816.
2145844. https://doi.org/10.1145/2145816.2145844.

88

https://doi.org/10.1145/2925426.2926259
https://doi.org/10.1145/2925426.2926259
https://doi.org/10.1145/3368826.3377912
https://doi.org/10.1145/3445814.3446707
https://doi.org/10.1145/3445814.3446707
https://doi.org/10.1145/3445814.3446707
https://doi.org/10.1145/3192366.3192413
https://doi.org/10.1145/3192366.3192413
https://doi.org/10.1145/3192366.3192413
https://doi.org/10.1109/HPCC-CSS-ICESS.2015.27
https://doi.org/10.1109/WACCPD.2016.009
https://doi.org/10.1145/2145816.2145844
https://doi.org/10.1145/2145816.2145844
https://doi.org/10.1145/2145816.2145844

[104] Peng Li, Guodong Li, and Ganesh Gopalakrishnan. 2014. Practical symbolic race
checking of GPU programs. In SC ’14: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis, 179–190. doi: 10.
1109/SC.2014.20.

[105] Devashree Tripathy, AmirAli Abdolrashidi, Quan Fan, Daniel Wong, and Manoran-
jan Satpathy. 2021. LocalityGuru: A PTX analyzer for extracting thread block-level
locality in GPGPUs. In 2021 IEEE International Conference on Networking, Architecture
and Storage (NAS), 1–8. doi: 10.1109/NAS51552.2021.9605411.

[106] Charitha Saumya, Kirshanthan Sundararajah, and Milind Kulkarni. 2022. DARM:
Control-flow melding for SIMT thread divergence reduction. In 2022 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO), 1–13. doi: 10.
1109/CGO53902.2022.9741285.

[107] Putt Sakdhnagool, Amit Sabne, and Rudolf Eigenmann. 2019. RegDem: increasing
GPU performance via shared memory register spilling. (2019). doi: 10.48550/
ARXIV.1907.02894. https://arxiv.org/abs/1907.02894.

[108] Ali Bakhoda, George L. Yuan, Wilson W. L. Fung, Henry Wong, and Tor M.
Aamodt. 2009. Analyzing CUDA workloads using a detailed GPU simulator. In
2009 IEEE International Symposium on Performance Analysis of Systems and Software,
163–174. doi: 10.1109/ISPASS.2009.4919648.

[109] Mahmoud Khairy, Zhesheng Shen, Tor M. Aamodt, and Timothy G. Rogers.
2020. Accel-Sim: An extensible simulation framework for validated GPU modeling.
In 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture
(ISCA), 473–486. doi: 10.1109/ISCA45697.2020.00047.

[110] Xiuxia Zhang, Guangming Tan, Shuangbai Xue, Jiajia Li, Keren Zhou, and Mingyu
Chen. 2017. Understanding the GPU microarchitecture to achieve bare-metal per-
formance tuning. In (PPoPP ’17). Association for Computing Machinery, Austin,
Texas, USA, 31–43. isbn: 9781450344937. doi: 10.1145/3018743.3018755. https:
//doi.org/10.1145/3018743.3018755.

[111] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. 2006. Compilers:
Principles, Techniques, and Tools (2nd Edition). Addison-Wesley Longman Publishing
Co., Inc., USA. isbn: 0321486811.

[112] Michael Joseph Wolfe, Carter Shanklin, and Leda Ortega. 1995. High performance
compilers for parallel computing. Addison-Wesley Longman Publishing Co., Inc.,
USA. isbn: 0805327304.

[113] Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock,
and Pavel Panchekha. 2021. Egg: Fast and extensible equality saturation. Proc. ACM
Program. Lang., 5, POPL, (January 2021). doi: 10.1145/3434304. https://doi.org/
10.1145/3434304.

[114] Leonardo de Moura and Nikolaj Bjørner. 2007. Efficient e-matching for SMT
solvers. In Automated Deduction – CADE-21. Frank Pfenning, (Ed.) Springer Berlin
Heidelberg, Berlin, Heidelberg, 183–198. isbn: 978-3-540-73595-3.

[115] 1997. Static single-assignment form. Modern Compiler Implementation in ML. Cam-
bridge University Press, 427–467. doi: 10.1017/CBO9780511811449.020.

89

https://doi.org/10.1109/SC.2014.20
https://doi.org/10.1109/SC.2014.20
https://doi.org/10.1109/NAS51552.2021.9605411
https://doi.org/10.1109/CGO53902.2022.9741285
https://doi.org/10.1109/CGO53902.2022.9741285
https://doi.org/10.48550/ARXIV.1907.02894
https://doi.org/10.48550/ARXIV.1907.02894
https://arxiv.org/abs/1907.02894
https://doi.org/10.1109/ISPASS.2009.4919648
https://doi.org/10.1109/ISCA45697.2020.00047
https://doi.org/10.1145/3018743.3018755
https://doi.org/10.1145/3018743.3018755
https://doi.org/10.1145/3018743.3018755
https://doi.org/10.1145/3434304
https://doi.org/10.1145/3434304
https://doi.org/10.1145/3434304
https://doi.org/10.1017/CBO9780511811449.020

[116] Calvin Montgomery, Jeffrey L. Overbey, and Xuechao Li. 2015. Autotuning
OpenACC work distribution via direct search. In Proceedings of the 2015 XSEDE
Conference: Scientific Advancements Enabled by Enhanced Cyberinfrastructure (XSEDE).
Association for Computing Machinery, St. Louis, Missouri. isbn: 9781450337205.
doi: 10.1145/2792745.2792783. https://doi.org/10.1145/2792745.2792783.

[117] Paul Havlak. 1994. Construction of thinned gated single-assignment form. In Lan-
guages and Compilers for Parallel Computing. Utpal Banerjee, David Gelernter, Alex
Nicolau, and David Padua, (Eds.) Springer Berlin Heidelberg, Berlin, Heidelberg,
477–499. isbn: 978-3-540-48308-3.

[118] John Forrest and Robin Lougee-Heimer. 2005. CBC user guide. (2005). doi: 10.
1287/educ.1053.0020. eprint: https://pubsonline.informs.org/doi/pdf/10.
1287/educ.1053.0020. https://pubsonline.informs.org/doi/abs/10.1287/educ.
1053.0020.

[119] Gene Wu, Joseph L. Greathouse, Alexander Lyashevsky, Nuwan Jayasena, and
Derek Chiou. 2015. GPGPU performance and power estimation using machine
learning. In 2015 IEEE 21st International Symposium on High Performance Computer
Architecture (HPCA), 564–576. doi: 10.1109/HPCA.2015.7056063.

[120] Nandita Vijaykumar, Gennady Pekhimenko, Adwait Jog, Abhishek Bhowmick, Ra-
chata Ausavarungnirun, Chita Das, Mahmut Kandemir, Todd C. Mowry, and Onur
Mutlu. 2015. A case for core-assisted bottleneck acceleration in GPUs: Enabling
flexible data compression with assist warps. In Proceedings of the 42nd Annual Inter-
national Symposium on Computer Architecture (ISCA ’15). Association for Computing
Machinery, Portland, Oregon, 41–53. isbn: 9781450334020. doi: 10.1145/2749469.
2750399. https://doi.org/10.1145/2749469.2750399.

[121] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram Krishnamurthi,
Eli Barzilay, Jay McCarthy, and Sam Tobin-Hochstadt. 2015. The Racket manifesto.
In 1st Summit on Advances in Programming Languages (SNAPL 2015). Schloss Dag-
stuhl-Leibniz-Zentrum fuer Informatik.

[122] Rengan Xu, Xiaonan Tian, Sunita Chandrasekaran, Yonghong Yan, and Barbara
Chapman. 2014. NAS parallel benchmarks for GPGPUs using a directive-based
programming model. In International Workshop on Languages and Compilers for Paral-
lel Computing. Springer, 67–81. doi: 10.1007/978-3-319-17473-0_5.

[123] Miko M. Stulajter, Ronald M. Caplan, and Jon A. Linker. 2022. Can Fortran’s ‘do
concurrent’ replace directives for accelerated computing? In Accelerator Program-
ming Using Directives. Sridutt Bhalachandra, Christopher Daley, and Verónica Me-
lesse Vergara, (Eds.) Springer International Publishing, Cham, 3–21. isbn: 978-3-
030-97759-7.

[124] Adam Paszke et al. 2019. PyTorch: An imperative style, high-performance deep
learning library. In Proceedings of the 33rd International Conference on Neural Informa-
tion Processing Systems. Curran Associates Inc., Red Hook, NY, USA.

90

https://doi.org/10.1145/2792745.2792783
https://doi.org/10.1145/2792745.2792783
https://doi.org/10.1287/educ.1053.0020
https://doi.org/10.1287/educ.1053.0020
https://pubsonline.informs.org/doi/pdf/10.1287/educ.1053.0020
https://pubsonline.informs.org/doi/pdf/10.1287/educ.1053.0020
https://pubsonline.informs.org/doi/abs/10.1287/educ.1053.0020
https://pubsonline.informs.org/doi/abs/10.1287/educ.1053.0020
https://doi.org/10.1109/HPCA.2015.7056063
https://doi.org/10.1145/2749469.2750399
https://doi.org/10.1145/2749469.2750399
https://doi.org/10.1145/2749469.2750399
https://doi.org/10.1007/978-3-319-17473-0_5

[125] H. Carter Edwards and Daniel Sunderland. 2012. Kokkos array performance-por-
table manycore programming model. In Proceedings of the 2012 International Work-
shop on Programming Models and Applications for Multicores and Manycores (PMAM
’12). Association for Computing Machinery, New Orleans, Louisiana, 1–10. isbn:
978145031-2110. doi: 10.1145/2141702.2141703. https://doi.org/10.1145/
2141702.2141703.

[126] Valentin Clement, Sylvaine Ferrachat, Oliver Fuhrer, Xavier Lapillonne, Carlos E.
Osuna, Robert Pincus, Jon Rood, and William Sawyer. 2018. The CLAW DSL: Ab-
stractions for performance portable weather and climate models. In Proceedings
of the Platform for Advanced Scientific Computing Conference (PASC ’18). Association
for Computing Machinery, Basel, Switzerland. isbn: 9781450358910. doi: 10.1145/
3218176.3218226. https://doi.org/10.1145/3218176.3218226.

[127] Jacob Lambert, Seyong Lee, Jeffrey S. Vetter, and Allen D. Malony. 2020. CCAMP:
An integrated translation and optimization framework for OpenACC and OpenMP.
In Proceedings of the International Conference for High Performance Computing, Network-
ing, Storage and Analysis (SC). IEEE Press, Atlanta, Georgia. isbn: 9781728199986.

[128] Xiaonan Tian, Dounia Khaldi, Deepak Eachempati, Rengan Xu, and Barbara Chap-
man. 2016. Optimizing GPU register usage: Extensions to OpenACC and compiler
optimizations. In (August 2016), 572–581. doi: 10.1109/ICPP.2016.72.

[129] Yichen Yang, Phitchaya Phothilimthana, Yisu Wang, Max Willsey, Sudip Roy, and
Jacques Pienaar. 2021. Equality saturation for tensor graph superoptimization. In
Proceedings of Machine Learning and Systems. A. Smola, A. Dimakis, and I. Stoica,
(Eds.) Volume 3, 255–268. https://proceedings.mlsys.org/paper_files/paper/
2021/file/65ded5353c5ee48d0b7d48c591b8f430-Paper.pdf.

[130] Cheng Fu, Hanxian Huang, Bram Wasti, Chris Cummins, Riyadh Baghdadi, Kim
Hazelwood, Yuandong Tian, Jishen Zhao, and Hugh Leather. 2023. Q-Gym: An
equality saturation framework for dnn inference exploiting weight repetition. In
Proceedings of the International Conference on Parallel Architectures and Compilation
Techniques (PACT ’22). Association for Computing Machinery, Chicago, Illinois,
291–303. isbn: 9781450398688. doi: 10.1145/3559009.3569673. https://doi.org/
10.1145/3559009.3569673.

[131] Yisu Remy Wang, Shana Hutchison, Jonathan Leang, Bill Howe, and Dan Suciu.
2020. SPORES: Sum-product optimization via relational equality saturation for
large scale linear algebra. Proc. VLDB Endow., 13, 12, (July 2020), 1919–1932. issn:
2150-8097. doi: 10.14778/3407790.3407799. https://doi.org/10.14778/3407790.
3407799.

[132] Gus Henry Smith, Andrew Liu, Steven Lyubomirsky, Scott Davidson, Joseph Mc-
Mahan, Michael Taylor, Luis Ceze, and Zachary Tatlock. 2021. Pure tensor program
rewriting via access patterns (representation pearl). In Proceedings of the 5th ACM
SIGPLAN International Symposium on Machine Programming (MAPS 2021). Associa-
tion for Computing Machinery, Virtual, Canada, 21–31. isbn: 9781450384674. doi:
10.1145/3460945.3464953. https://doi.org/10.1145/3460945.3464953.

91

https://doi.org/10.1145/2141702.2141703
https://doi.org/10.1145/2141702.2141703
https://doi.org/10.1145/2141702.2141703
https://doi.org/10.1145/3218176.3218226
https://doi.org/10.1145/3218176.3218226
https://doi.org/10.1145/3218176.3218226
https://doi.org/10.1109/ICPP.2016.72
https://proceedings.mlsys.org/paper_files/paper/2021/file/65ded5353c5ee48d0b7d48c591b8f430-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2021/file/65ded5353c5ee48d0b7d48c591b8f430-Paper.pdf
https://doi.org/10.1145/3559009.3569673
https://doi.org/10.1145/3559009.3569673
https://doi.org/10.1145/3559009.3569673
https://doi.org/10.14778/3407790.3407799
https://doi.org/10.14778/3407790.3407799
https://doi.org/10.14778/3407790.3407799
https://doi.org/10.1145/3460945.3464953
https://doi.org/10.1145/3460945.3464953

[133] Shashi Gowda, Yingbo Ma, Alessandro Cheli, Maja Gwóźzdź, Viral B. Shah, Alan
Edelman, and Christopher Rackauckas. 2022. High-performance symbolic-nume-
rics via multiple dispatch. ACM Commun. Comput. Algebra, 55, 3, (January 2022),
92–96. issn: 1932-2240. doi: 10.1145/3511528.3511535. https://doi.org/10.
1145/3511528.3511535.

[134] Tal Ben-Nun, Johannes de Fine Licht, Alexandros N. Ziogas, Timo Schneider, and
Torsten Hoefler. 2019. Stateful dataflow multigraphs: A data-centric model for per-
formance portability on heterogeneous architectures. In Proceedings of the Interna-
tional Conference for High Performance Computing, Networking, Storage and Analysis
(SC ’19). Association for Computing Machinery, Denver, Colorado. isbn: 978145036-
2290. doi: 10 . 1145 / 3295500 . 3356173. https : / / doi . org / 10 . 1145 / 3295500 .

3356173.

[135] Tal Ben-Nun, Berke Ates, Alexandru Calotoiu, and Torsten Hoefler. 2023. Bridging
control-centric and data-centric optimization. In Proceedings of the 21st ACM/IEEE
International Symposium on Code Generation and Optimization (CGO 2023), 173–185.

[136] Lorenzo Chelini, Andi Drebes, Oleksandr Zinenko, Albert Cohen, Nicolas Vasi-
lache, Tobias Grosser, and Henk Corporaal. 2021. Progressive raising in multi-level
ir. In 2021 IEEE/ACM International Symposium on Code Generation and Optimization
(CGO), 15–26. doi: 10.1109/CGO51591.2021.9370332.

[137] Philip Ginsbach, Toomas Remmelg, Michel Steuwer, Bruno Bodin, Christophe Du-
bach, and Michael F. P. O’Boyle. 2018. Automatic matching of legacy code to het-
erogeneous APIs: An idiomatic approach. SIGPLAN Not., 53, 2, (March 2018), 139–
153. issn: 0362-1340. doi: 10.1145/3296957.3173182. https://doi.org/10.1145/
3296957.3173182.

[138] Sunghyun Park, Salar Latifi, Yongjun Park, Armand Behroozi, Byungsoo Jeon, and
Scott Mahlke. 2022. SRTuner: Effective compiler optimization customization by ex-
posing synergistic relations. In Proceedings of the 20th IEEE/ACM International Sym-
posium on Code Generation and Optimization (CGO ’22). IEEE Press, Virtual Event,
Republic of Korea, 118–130. isbn: 9781665405843. doi: 10.1109/CGO53902.2022.
9741263. https://doi.org/10.1109/CGO53902.2022.9741263.

[139] Mircea Trofin, Yundi Qian, Eugene Brevdo, Zinan Lin, Krzysztof Choromanski,
and David Li. 2021. MLGO: A machine learning guided compiler optimizations
framework. (2021). arXiv: 2101.04808 [cs.PL].

[140] Ameer Haj-Ali, Nesreen K. Ahmed, Ted Willke, Yakun Sophia Shao, Krste
Asanovic, and Ion Stoica. 2020. NeuroVectorizer: End-to-end vectorization with
deep reinforcement learning. In Proceedings of the 18th ACM/IEEE International Sym-
posium on Code Generation and Optimization (CGO 2020). Association for Comput-
ing Machinery, San Diego, CA, USA, 242–255. isbn: 9781450370479. doi: 10.1145/
3368826.3377928. https://doi.org/10.1145/3368826.3377928.

[141] Pieter Hijma, Stijn Heldens, Alessio Sclocco, Ben van Werkhoven, and Henri E. Bal.
2023. Optimization techniques for GPU programming. ACM Comput. Surv., 55, 11,
(March 2023). issn: 0360-0300. doi: 10.1145/3570638. https://doi.org/10.1145/
3570638.

92

https://doi.org/10.1145/3511528.3511535
https://doi.org/10.1145/3511528.3511535
https://doi.org/10.1145/3511528.3511535
https://doi.org/10.1145/3295500.3356173
https://doi.org/10.1145/3295500.3356173
https://doi.org/10.1145/3295500.3356173
https://doi.org/10.1109/CGO51591.2021.9370332
https://doi.org/10.1145/3296957.3173182
https://doi.org/10.1145/3296957.3173182
https://doi.org/10.1145/3296957.3173182
https://doi.org/10.1109/CGO53902.2022.9741263
https://doi.org/10.1109/CGO53902.2022.9741263
https://doi.org/10.1109/CGO53902.2022.9741263
https://arxiv.org/abs/2101.04808
https://doi.org/10.1145/3368826.3377928
https://doi.org/10.1145/3368826.3377928
https://doi.org/10.1145/3368826.3377928
https://doi.org/10.1145/3570638
https://doi.org/10.1145/3570638
https://doi.org/10.1145/3570638

[142] Changwan Hong, Aravind Sukumaran-Rajam, Jinsung Kim, Prashant Singh Rawat,
Sriram Krishnamoorthy, Louis-Noël Pouchet, Fabrice Rastello, and P. Sadayappan.
2018. GPU code optimization using abstract kernel emulation and sensitivity anal-
ysis. SIGPLAN Not., 53, 4, (June 2018), 736–751. issn: 0362-1340. doi: 10.1145/
3296979.3192397. https://doi.org/10.1145/3296979.3192397.

93

https://doi.org/10.1145/3296979.3192397
https://doi.org/10.1145/3296979.3192397
https://doi.org/10.1145/3296979.3192397

	Abstract
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 Proposal and Contributions
	1.4 Thesis Outline

	2 Background
	2.1 GPU Architecture
	2.2 CUDA Programming
	2.3 Directive-Based Programming
	2.4 NVIDIA PTX
	2.5 Shuffle Operations

	3 Runtime Efforts
	3.1 JACC
	3.2 Basic Extension
	3.2.1 Automated Asynchronous Execution
	3.2.2 Kernel Specialization

	3.3 Multi-GPU Utilization with Predicates
	3.3.1 Predicate-Based Filtering
	3.3.2 Division of Multidimensional Arrays
	3.3.3 Adaptive Utilization
	3.3.4 Implementation

	3.4 Experimental Methodology
	3.4.1 Hardware and Software
	3.4.2 Benchmarks

	3.5 Results
	3.5.1 Basic Extension
	3.5.2 GCC Custom Allocation
	3.5.3 Multi-GPU Utilization

	3.6 Related Work

	4 Low-Level Code Optimization
	4.1 PTXASW
	4.2 Symbolic Emulator
	4.2.1 Instruction Encoding
	4.2.2 Execution Branching
	4.2.3 Memory Analysis

	4.3 Shuffle Synthesis
	4.3.1 Detection
	4.3.2 Code Generation

	4.4 Experimental Methodology
	4.5 Evaluation
	4.6 Analysis
	4.6.1 Kepler
	4.6.2 Maxwell
	4.6.3 Pascal
	4.6.4 Volta
	4.6.5 Application Example

	4.7 Related Work

	5 Source-Code Optimization
	5.1 ACC Saturator
	5.2 Program Representation
	5.2.1 E-Graph Creation
	5.2.2 Code Selection

	5.3 Optimization with Saturation
	5.3.1 Rewriting Rules
	5.3.2 Cost Model

	5.4 Code Generation
	5.4.1 Temporary-Variable Insertion
	5.4.2 Bulk Load

	5.5 Experimental Methodology
	5.6 Evaluation
	5.7 Related Work

	6 Summary and Conclusion
	6.1 Summary
	6.2 Conclusion
	6.3 Future Work
	6.4 Publications
	6.4.1 Referred Conferences
	6.4.2 Referred Presentations
	6.4.3 Software

	Acknowledgements
	Appendix
	Bibliography

