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Abstract
Global Navigation Satellite System (GNSS) technology is evolving at a rapid pace, necessi-
tating the use of advanced prototyping tools for researching new and innovative signals and
systems. Prototyping plays a crucial role in the design and development process as it allows
researchers to test and validate their ideas before large-scale deployment. It facilitates the ex-
ploration of concepts, enabling researchers to identify drawbacks and areas for improvement
early in the development process. Moreover, it aids in demonstrating the feasibility and poten-
tial of a concept, making it easier to attract funding and support for further research.

Prototyping with readily available GNSS receivers presents challenges. Presently, GNSS
receivers are mainly built-up in Application-Specific Integrated Circuits (ASICs), providing
low power consumption with small size and low cost, but offering limited flexibility. While
some commercial devices utilize Software-Defined Radio (SDR) techniques, they often
incorporate proprietary code, restricting reconfigurability through a predefined Application
Programming Interface (API).

Free and Open Source Software (FOSS) GNSS receivers have emerged as valuable resources in
the realm of research and development, particularly for those in the field of satellite navigation.
These software-based receivers are highly appreciated for their customization and flexibility,
allowing researchers to tailor the software to suit specific experimental requirements or to
innovate new signal processing algorithms. However, compared to their hardware-based
counterparts, these receivers are generally less power-efficient and offer lower performance.
This is because they usually operate on general-purpose processors, like those in regular
computers, which are not designed for low-power usage.

This thesis focuses on designing and developing a low-cost System on Chip (SoC) Field
Programmable Gate Array (FPGA) architecture for prototyping experimental GNSS receivers.
This architecture addresses the limitations of commercial GNSS receivers by emphasizing
customization, flexibility, and reprogrammability, and it achieves improved power efficiency
over conventional designs reliant on general-purpose processors. The core idea is to
combine the versatility and adaptability of SDR concepts with the massive parallelism and
improved power consumption of reprogrammable hardware, offering the best of both worlds.
This combination enables the development of compact, portable, multi-band, and multi-
constellation GNSS receivers, facilitating the development of embedded devices suitable for
field testing. Additionally, the core GNSS processing engine is based on a free and open-
source software receiver, enabling detailed access to the signal processing path and thorough
cross-examination of the underlying mechanisms.

This thesis also introduces a comprehensive design methodology for developing novel GNSS
signal processing algorithms and concept demonstrators, utilizing the newly proposed SoC
FPGA architecture. This methodology places significant emphasis on code reuse, which is
relevant for reducing developmental costs and time. Reusing code increases the added value
of the proposed architecture by enabling the progressive incorporation of new features into the
architecture, further enhancing its adaptability and efficiency. This facilitates the adaptation
of GNSS receivers across various research applications, thereby streamlining and economizing
the development process.

The practical applications of this architecture have been demonstrated through three develop-
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ments: a spaceborne GNSS receiver, a GNSS rebroadcaster, and a High Sensitivity (HS) GNSS
receiver.

The spaceborne receiver is a low-power, multi-frequency, multi-constellation concept demon-
strator designed for space applications, featuring a form factor suitable for CubeSats. It has
been tested using live signals, assessing the quality of the navigation solutions, and demon-
strating its capability to process GNSS signals in Low Earth Orbit (LEO) scenarios.

The GNSS rebroadcaster is a low-power, Small Form Factor (SFF) signal generator and
regenerator capable of transmitting and retransmitting GNSS signals with minimal delay. It can
modify the retransmitted navigation solutions in real-time, potentially enabling the replication
of movement dynamics in multiple scenarios. The rebroadcaster has undergone testing to
assess the quality and the latency of the regenerated signals. This design integrates advanced
capabilities for GNSS signal generation and regeneration within the proposed SoC FPGA
architecture.

The HS GNSS receiver is a portable device designed for processing weak signals. It is capable
of acquiring and tracking severely attenuated GNSS signals with a Carrier-to-Noise Density
Ratio (𝐶/𝑁0) down to 20 dB-Hz in real time. The HS GNSS receiver is ideal for developing
and testing experimental GNSS algorithms, particularly those related to positioning in weak
signal conditions. It has been evaluated for its ability to acquire and track weak signals and
obtain navigation solutions.

The novel approach presented in this thesis facilitates the development of flexible and
portable GNSS receiver and signal generator prototypes with non-standard capabilities. These
prototypes are designed for operation in battery-powered devices, making them suitable for
both laboratory experiments and field testing.
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Resum
La ràpida evolució en la tecnologia de navegació per satèl·lit (GNSS) requereix eines de
prototipatge avançades per a l’exploració de nous senyals i el desenvolupament de sistemes
innovadors. El prototipatge és essencial en el procés de disseny i desenvolupament, ja que
permet als investigadors provar i perfeccionar les seves idees abans de dur a terme una
implementació a gran escala. Els models preliminars faciliten l’exploració de conceptes
i ajuden a identificar limitacions i oportunitats de millora des de les primeres fases de
desenvolupament d’un producte. A més, contribueixen a demostrar la viabilitat i el
potencial dels dissenys, la qual cosa facilita l’obtenció de finançament i suport per a futures
investigacions.

El prototipatge utilitzant receptors GNSS comercials planteja diversos reptes. En l’actualitat,
aquests receptors es basen majoritàriament en circuits integrats d’aplicació específica (ASICs),
els quals es caracteritzen per un consum energètic reduït, dimensions compactes i un cost
baix, però ofereixen una flexibilitat limitada. Tot i que alguns dispositius comercials
incorporen tècniques de ràdio definida per programari (SDR), aquests freqüentment contenen
codi propietari que en restringeix la reconfiguració mitjançant una interfície de programació
d’aplicacions (API) establerta pel fabricant.

Els receptors GNSS basats en programari lliure i codi obert han esdevingut recursos molt
valuosos en el camp de la recerca i desenvolupament, especialment en el camp de la navegació
per satèl·lit. Aquests receptors són molt valorats per la seva adaptabilitat i flexibilitat, permetent
als investigadors adaptar el programari a necessitats experimentals específiques o desenvolupar
nous algoritmes de processament de senyal. Tanmateix, els receptors definits per programari
solen ser menys eficients energèticament en comparació amb els receptors basats en maquinari,
ja que operen en processadors de propòsit general, que no estan optimitzats per a un baix
consum energètic.

Aquesta tesi se centra en el disseny i desenvolupament d’una arquitectura de baix cost
per al prototipatge de receptors GNSS experimentals, basada en sistemes en un xip amb
matrius de portes lògiques programables in situ (SoC FPGA). Aquesta arquitectura supera les
limitacions dels receptors GNSS comercials en termes d’adaptabilitat, flexibilitat i capacitat de
reprogramació, i ofereix una eficiència energètica millorada en comparació amb els receptors
basats en programari que depenen de processadors de propòsit general. L’estratègia consisteix
a combinar la versatilitat de la ràdio definida per programari amb el paral·lelisme intensiu i
el consum energètic optimitzat del maquinari reprogramable, proporcionant el millor de tots
dos mons. Aquesta fusió permet el desenvolupament de receptors GNSS compactes, portàtils i
capaços de treballar simultàniament en diverses bandes de freqüència i amb diferents sistemes
GNSS, facilitant així el prototipatge de dispositius encastats adequats per a proves de camp.
A més, el nucli de processament GNSS es basa en una implementació de programari lliure i
obert, que proporciona un accés detallat a la cadena de processament de senyal i permet una
exploració i modificació sense restriccions dels algoritmes utilitzats.

Aquesta tesi també presenta una metodologia de disseny per al desenvolupament de nous
prototips i nous algoritmes de processament de senyal GNSS basats en l’arquitectura SoC
FPGA que es proposa. Aquesta metodologia posa especial èmfasi en la reutilització de codi,
aspecte clau per a reduir els costos i temps de desenvolupament. La reutilització de codi
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augmenta el valor afegit de l’arquitectura, permetent la incorporació progressiva de noves
funcionalitats i millorant-ne la adaptabilitat i eficiència. Això facilita l’adaptació dels receptors
GNSS a una àmplia gamma d’aplicacions de recerca, optimitzant i economitzant el procés de
desenvolupament.

Les aplicacions pràctiques d’aquesta arquitectura s’han demostrat a través de tres prototips: un
receptor GNSS per a l’espai, un retransmissor de senyals GNSS, i un receptor GNSS d’alta
sensibilitat.

El receptor per a l’espai és un receptor GNSS multifreqüència i multi-constel·lació, dissenyat
per a aplicacions espacials, de baix consum d’energia i amb un tamany adaptable per a
CubeSats. Ha estat provat amb senyals a temps real, evaluant-ne la qualitat de les solucions
de navegació, i demostrant la seva capacitat per processar senyals GNSS en escenaris d’òrbita
baixa terrestre (LEO).

El retransmissor de senyals GNSS és un generador i regenerador de senyals de baix consum i
tamany reduït, capaç de transmetre i retransmetre senyals GNSS amb un retard mínim. Aquest
regenerador pot modificar les solucions de navegació retransmeses en temps real, permetent la
simulació de dinàmiques de moviment en multiples escenaris. El retransmissor ha estat provat
per verificar-ne la qualitat dels senyals regenerats i per avaluar-ne la latència. Aquest disseny
integra funcionalitats avançades per a la generació i la regeneració eficient de senyals GNSS,
adaptades específicament a l’arquitectura SoC FPGA que es proposa en aquesta tesi.

El receptor GNSS d’alta sensibilitat és un dispositiu portàtil dissenyat per processar senyals
febles. És capaç d’adquirir i fer seguiment en temps real de senyals GNSS extremadament
atenuats amb una relació entre la potència de la portadora i la densitat espectral de soroll
(𝐶/𝑁0) tant baixa com 20 dB-Hz. Aquest receptor és ideal per al desenvolupament i prova
d’algoritmes GNSS experimentals, especialment en condicions de senyal feble. Ha estat provat
per demostrar la seva capacitat per adquirir i fer seguiment de senyals febles, i per evaluar-ne
la qualitat de les solucions de navegació.

L’enfocament innovador presentat en aquesta tesi facilita al desenvolupament de prototips
experimentals de receptors i generadors de senyals GNSS flexibles i portàtils, aptes tant per
a experiments de laboratori com per a proves de camp.
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Chapter 1

Introduction

Over recent years, Global Navigation Satellite System (GNSS) technology has significantly
grown in importance, exerting a profound influence across a diverse array of global sectors.
GNSS is a system of satellites and ground-based stations that provide signals used for
precise positioning and navigation anywhere on Earth’s surface. It consists of multiple
satellites in orbit around the Earth, which transmit signals that are received and used by
GNSS receivers and other GNSS devices to determine their precise location, velocity, and
time information. Examples of GNSS include Europe’s Galileo, the United State’s Global
Positioning System (GPS), Russia’s GLONASS and China’s BeiDou. It is widely used in
applications that require precise positioning, navigation, and timing synchronization across
various domains, including disaggregated advanced 5th Generation (5G) radio access networks.
GNSS technology is essential in transportation, enhancing safety and efficiency in vehicle,
aircraft, and maritime navigation. In agriculture, it enables precision farming, leading
to more effective resource use and improved crop management. Additionally, GNSS is
essential in emergency services for providing precise and timely responses during disasters.
Its significance also extends to scientific research, aiding in environmental monitoring and
space exploration, thus demonstrating its broad impact on various aspects of modern life and
industrial operations [1, 2].

GNSS systems are rapidly evolving due to a confluence of technological advancements,
increasing demands for precision, and global geopolitical factors. The need for more precise
and reliable positioning, navigation, and timing services grows as industries and technologies
advance. This demand drives continuous improvements in satellite technology, including more
sophisticated payloads and extended satellite lifespans, enhancing the accuracy and reliability
of GNSS services. New generations of satellites, such as those from the United States’
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GPS, Russia’s GLObalnaya NAvigatsionnaya Sputnikovaya Sistema (GLONASS), Europe’s
Galileo, and China’s BeiDou, offer improved capabilities including better signal quality,
increased accuracy, and expanded coverage areas. Enhancements often feature new capabilities
like multi-frequency signals for civilian use, providing greater accuracy and resistance to
interference. Furthermore, the addition of more satellites enhances the redundancy and
reliability of GNSS signals.

In addition, GNSS technology is increasingly being integrated with emerging technologies,
including augmented reality [3], intelligent transportation and robotics [4], Inertial Navigation
System (INS) [5], cellular networks [6], and Internet of Things (IoT) devices [7]. This
integration not only expands the capabilities and applications of GNSS but also fosters
innovation within the technology itself, leading to new and improved functionalities [1, 2].

1.1 Motivation

The swift progress in GNSS technologies necessitates prototyping tools for the exploration of
new signals and systems. Prototyping is crucial in research, serving as a bridge between ab-
stract theories and practical applications, and offering a hands-on approach to experimentation
and analysis. A key advantage of prototyping is its ability to speed up the research and devel-
opment process, enabling researchers to quickly transition from concept to application. This
contrasts with traditional research methods that often involve extensive theoretical study be-
fore any practical testing. Prototyping allows for faster testing, refining, and iteration of ideas,
leading to a deeper, intuitive understanding of a product’s potential and functionality. Fur-
thermore, prototyping plays a vital role in risk mitigation by allowing the early identification
and resolution of potential issues, thus avoiding the pursuit of unfeasible or ineffective ideas.
It also enhances communication, as a physical model provides a tangible representation of a
concept, making it easier to understand and facilitating the exchange of ideas, feedback, and
collaborative problem-solving.

Prototyping with commercial GNSS receivers in research environments often presents chal-
lenges. These difficulties stem from the inherent limitations of commercial receivers, which
are typically designed for general mass-market use rather than specialized research applica-
tions. Commercial GNSS receivers usually come with fixed, proprietary firmware and soft-
ware, which restricts the ability to modify or customize their functionality to meet specific
research needs. They often operate as black boxes, with their internal processing methods
not disclosed to the researcher. This lack of transparency can be particularly problematic in
advanced GNSS research, where specialized algorithms and processing techniques are often
required, and a deep understanding of the receiver’s signal processing chain is crucial for tasks
such as error analysis or the development of new positioning methods. Research activities
involving GNSS technology, usually require non-standard features from the receivers and de-
tailed knowledge of the signal processing tasks that are invovled in the computation of the
GNSS products. If the commercial receiver supplies the required measurements, researchers
can employ statistical characterization and fitting models in their analysis. Nevertheless, re-
searchers encounter the obstacle of constructing their own receiver in the absence of available
measurements. This can be problematic, as receiver prototyping typically falls outside their
area of expertise or field of focus [8].
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Software-Defined Radio (SDR) techniques offer a solution to the constrained adaptability of
commercial receivers. With its programmable and adaptable nature, SDR technology can be
customized precisely to fulfill the user’s specific needs. Moreover, access to inspection and
modification of the full SDR receiver’s signal processing chain can be addressed using Free
and Open Source Software (FOSS). FOSS allows users and programmers to edit, inspect, and
modify the software’s source code. The open philosophy of FOSS is well suited for education
and research, since the source code of the software is available for examination and derivative
software can be written without any copyright issues [8]. With FOSS, researchers can freely
share and reuse their work, optimizing the development process of applications and increasing
productivity in software teams. This collaborative approach is not only beneficial for advancing
the technology but also provides an educational resource for students and new researchers,
helping them to understand practical applications and gain hands-on experience. Code reuse
allows developers to focus on the implementation of new features instead of reinventing the
wheel for each project. Moreover, it encourages clean, modular, and efficient software, which
decreases the likelihood of introducing bugs or inconsistencies. The flexibility, adaptability,
and collaborative potential of FOSS GNSS software receivers, combined with their cost-
effectiveness and educational value, make them particularly suited for research environments
where deep technological understanding, innovation, and customization are key.

However, GNSS software-defined receivers have a notable drawback in terms of power con-
sumption. They typically do not match the power efficiency of hardware-based receivers,
mainly because they run on general-purpose processors found in computers. These processors
are not optimized for low-power operation, leading to excessive power consumption, particu-
larly when executing complex algorithms. The intensive computational demands of real-time
GNSS signal processing result in significant power consumption, making these systems less
suitable for scenarios that require prolonged battery operation. This aspect is relevant for field-
based GNSS applications, where power efficiency is needed. Such applications involve the
practical use of GNSS technology in outdoor or real-world environments, rather than in con-
trolled settings like laboratories.

It is thus interesting to investigate SDR architectures that can improve the trade-off between
efficiency and flexibility. The semiconductor industry historically relied on Central Processing
Unit (CPU) scaling to increase performance and reduce power consumption. This practice was
largely governed by Moore’s Law and Dennard Scaling, which together provided a predictable
roadmap for performance improvements in semiconductor devices. Moore’s Law predicted
that the number of transistors on a chip would double approximately every two years, leading
to increased performance, reduced costs, and greater energy efficiency [9]. Dennard Scaling
complemented Moore’s Law by outlining how, as transistors were made smaller, they would
consume less power, produce less heat, and operate faster, allowing for more transistors to be
packed into the same chip size without increasing overall power consumption [10].

Through these principles, the semiconductor industry was able to consistently deliver signifi-
cant performance improvements from generation to generation of integrated circuits. However,
as transistor sizes approached the atomic scale, the industry began encountering physical and
technical limitations that made continued scaling as per Moore’s Law and Dennard Scaling
more challenging [11]. Issues such as heat dissipation, quantum tunneling, and variability
increased, diminishing the returns on traditional scaling efforts.

As a result, the industry has shifted towards new strategies for performance improvement. This
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shift includes adopting increasingly parallel architectures and creating hardware that better
matches the applications, exploring heterogeneous computing and advanced chip architectures
previously limited to extreme performance segments [12, 13]. In this sense, there is a growing
focus on specialized processors designed for specific tasks, such as vector-based processing
with Digital Signal Processors (DSPs) and Graphics Processing Units (GPUs), as well as fully
parallel programmable hardware like Field Programmable Gate Arrays (FPGAs).

An FPGA is a type of digital Integrated Circuit (IC) that can be reprogrammed by the user
after manufacturing to perform a wide variety of digital functions. FPGAs are made up
of an array of programmable logic blocks, interconnects, and Input/Output (IO) blocks that
can be configured to execute complex combinational functions, implement state machines,
or even mimic the architectures of entire CPUs. FPGAs offer precise customization for
distinct computational tasks, rendering them ideal for latency-critical real-time applications.
They outperform processors in terms of computing power and energy consumption for tasks
that are highly parallelizable and require low latency and high throughput. FPGAs achieve
this due to the nature of their architecture and design. Their reconfigurable matrix of logic
blocks enables the execution of a diverse array of digital functions, including SDR algorithms.
Designed for parallel processing, FPGAs can concurrently manage multiple tasks, enhancing
their overall efficiency. This parallelism reduces the overall processing time and decreases the
power consumption compared to sequential processing by CPUs. On top of that, FPGAs do
not carry the overhead associated with managing complex instruction sets and control logic,
which is typical in CPUs. As a result, they can perform specific tasks efficiently with minimal
unnecessary operations, leading to lower power consumption.

GNSS receivers exploit parallelism to efficiently process signals from multiple satellites at
once, thereby enhancing the speed and precision of Position, Velocity and Time (PVT)
solutions. By utilizing multiple channels that operate in parallel, these receivers can
simultaneously process signals from various satellites. This approach to parallel processing is
essential for achieving accurate positioning, as data from at least four satellites are needed for
a precise three-dimensional location. The integration of FPGA technology further enhances
GNSS signal processing efficiency. FPGAs, with their intrinsic parallel architecture and
adaptability, are suitable for GNSS applications, offering an effective method for signal
management. The adaptability of FPGAs is also a key feature. As GNSS technology advances
or as processing needs change, the hardware can be adjusted to meet these new demands. This
flexibility ensures the system remains relevant and efficient, offering both cost-effectiveness
and energy efficiency.

Integrating FPGAs with embedded general-purpose processors enhances the flexibility and
power efficiency of software-defined GNSS receivers. This configuration allows for the optimal
allocation of signal processing tasks to the most appropriate processing units, ensuring the
system’s adaptability to evolving requirements. System on Chip (SoC) FPGAs and Radio
Frequency (RF) SoC FPGAs are particularly suited for developing architectures that merge
software-defined systems with specialized hardware. At the heart of an SoC FPGA is the
integration of a general-purpose processor with a reconfigurable FPGA fabric. Typically,
SoC FPGAs include high-speed interconnects, such as buses or dedicated interfaces, to ensure
efficient communication between the FPGAs and the embedded processor. These interconnects
facilitate rapid data transfer, enhancing the interaction between hardware and software
components. The integration of both an embedded processor and an FPGA into a single chip
reduces power consumption, as internal chip connections consume less power compared to the
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external links of separate processor and FPGA systems. Moreover, RF SoC FPGAs further
integrate RF Analog to Digital Converters (ADCs) and Digital-to-Analog Converters (DACs),
further improving flexibility and reducing board space and power consumption [14, 15].

Still, adopting FPGAs presents challenges. Their performance can lag behind general-purpose
processors for tasks that are inherently sequential or involve complex branching and decision-
making processes. Furthermore, FPGA development is generally more time-consuming than
traditional software development, encompassing stages like simulation, synthesis, and place-
and-route, and debugging. This process not only extends development timelines but also
demands a high level of specialized knowledge and expertise in hardware design, making
FPGA programming less accessible to those without a background in this area.

Despite these challenges, strategically partitioning software between the FPGA and CPU can
leverage their combined strengths, enhancing both power efficiency and performance. This
approach involves dividing computational tasks, with certain tasks designated for the CPU
and others offloaded to the FPGA, to achieve an optimal power-performance tradeoff in SoC
FPGAs. Meticulous design and analysis are essential for this process. Typically, tasks suited
for FPGAs require high throughput, parallel processing, and real-time execution. In contrast,
the CPU is better equipped for handling complex control logic, decision branching, and
sequential processing. Such optimal hardware-software partitioning not only improves the
power consumption-performance balance but also enables efficient GNSS signal processing.
The software-defined portion, managed by the processor, provides fast adaptability, whereas
the FPGA offers hardware-accelerated functions. This dual capability is essential for GNSS
receiver functionalities that require both adaptability and precise processing.

1.2 Objectives

The main objective of this thesis is to design and implement a scalable SoC-FPGA architecture
for prototyping experimental, portable multi-constellation and multi-frequency GNSS receivers
using Commercial Off-The-Shelf (COTS) products. The proposed architecture overcomes
the flexibility limitations of commercial receivers by enabling the implementation of GNSS
processing engines on SoC-FPGA platforms. It capitalizes on the embedded processors’
flexibility and the FPGAs’ massive parallelism and energy efficiency, facilitating the creation
of real-time, portable receivers. These receivers can be adapted to a wide range of SoC-
FPGA devices with varying FPGA and embedded processor sizes, with a focus on optimizing
for low power consumption, price-performance ratio, or catering to high-capacity and high-
performance needs based on the application.

In the proposed architecture, the SoC-FPGA embedded processor runs GNSS-SDR, a popular
and well-regarded FOSS GNSS SDR receiver that is readily available online [16, 17].
The adoption of open-source software enables thorough inspection and modification of
the receiver’s chain, fostering freedom, collaboration, and innovation, while also reducing
implementation costs. Conventionally, GNSS-SDR operates as a host-based GNSS receiver: an
Radio Frequency Front-End (RFFE) tuned to GNSS frequency bands receives satellite signals,
performs RF-to-baseband down-conversion and sampling, and then streams the samples to a
Personal Computer (PC) running GNSS-SDR. This thesis introduces a significant enhancement
by adding the capability to cross-compile GNSS-SDR for its execution on SoC-FPGA
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embedded devices. With this enhancement, GNSS-SDR can offload the most computationally
intensive tasks to the FPGA, thus realizing an SoC-FPGA-based embedded receiver. In this
configuration, the FPGA processes the incoming sample stream from the RFFE, utilizing
hardware accelerators for the most demanding algorithms, notably acquisition and tracking.
These FPGA hardware accelerators are designed as reusable Intellectual Property (IP) cores,
making them adaptable to a wide range of FPGAs.

This thesis also proposes a design methodology for implementing GNSS signal processing
algorithms and concept demonstrators based on the SoC FPGA architecture. This methodology
is based on a hardware/software design flow where FPGA and software development can
largely proceed independently. In this way, software can be implemented using a complete
FOSS toolchain, independently of the FPGA development tools. Researchers have the option
to release FPGA IP cores under either FOSS or proprietary licenses. This flexibility allows for
the monetization of research outcomes while simultaneously enhancing research impact and
reputation. The FPGA IP cores developed within the framework of this thesis are available
under proprietary terms, which restrict access to their source code. However, access to the
internal aspects of the signal processing algorithms is possible by inspecting the software
version of the FPGA hardware accelerators in GNSS-SDR, along with the documentation
provided by the developers of the FPGA IP cores. This approach facilitates code reusability,
which is essential for minimizing development time and costs.

Finally, this thesis validates the practicality of the proposed architecture and design method-
ology by implementing various real-time concept demonstrators. These include a spaceborne
receiver for processing GNSS signals in LEO scenarios, a GNSS rebroadcaster for regenerat-
ing live signals, and a High Sensitivity (HS)-GNSS receiver designed for weak signal condi-
tions. The prototypes are evaluated based on hardware resources, size, and power consumption,
highlighting the scalability of the proposed architecture. They are tested with live signals to
demonstrate their capability to fulfill the requirements.

The software-defined spaceborne GNSS Receiver offers a fully customizable platform capable
of processing GPS L1 C/A, GPS L5, Galileo E1b/c, and Galileo E5a signals. It can produce
navigation solutions and deliver GNSS products in standard formats in real time, even in
high-dynamic scenarios such as Low Earth Orbit (LEO). Designed for space applications, this
receiver features a form factor suitable for CubeSats.

The rebroadcaster integrates a closely coupled receiver and transmitter within a single device,
capable of generating, receiving, and regenerating GPS L1 C/A and Galileo E1b/c signals
with very low latency. It can regenerate the received satellite signals in real time while
simultaneously rebroadcasting a PVT solution that differs from the PVT fixes obtained by
the receiver. This device can be used to test the addition of new features in GNSS signals,
and to simulate the channel dynamics in various scenarios. The GNSS rebroadcaster features
a specialized component within the FPGA, known as the telemetry symbol link. This
link directly forwards telemetry data, estimated by the receiver’s tracking multicorrelator
hardware accelerators, to the signal generators in the FPGA, bypassing any need for processor
intervention. The telemetry symbol link can be enabled for Galileo E1b/c signals. When
enabled, the telemetry data is rebroadcasted with a latency that can be set below 30 ms. This
facilitates maintaining the consistency with other sensors, e.g., an Inertial Measurement Unit
(IMU), where available.
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The HS GNSS receiver is designed for processing weak signals. It implements two operating
modes: high-sensitivity mode, and normal-sensitivity mode. When operating in high-
sensitivity mode, the receiver is capable of acquiring and tracking Galileo E1b/c signals with
a Carrier-to-Noise Density Ratio (𝐶/𝑁0) as low as 20 dB-Hz (equivalent 𝐶/𝑁0 observed at
the post-correlation level), enabling the derivation of navigation solutions. On the other side,
when operating in normal-sensitivity mode, the receiver processes GPS L1 C/A, Galileo E1b/c,
GPS L5 and Galileo E5a signals with an acquisition sensitivity of approximately 37 dB-Hz. To
enhance the availability of satellite signals, the receiver is capable of processing Galileo E1b/c
signals in high-sensitivity mode, while simultaneously processing GPS L1 C/A, GPS L5 and
Galileo E5a signals in normal-sensitivity mode. This receiver is engineered to process severely
attenuated GNSS signals and has the potential to test novel algorithms that address common
indoor GNSS challenges, such as multipath interference [18]. However, it currently does not
incorporate these algorithms.

To sum up, the objectives of the research carried out in this dissertation are the following:

• To develop a state-of-the-art architecture that is both flexible and scalable, leveraging
SoC FPGA technology for the prototyping of multi-frequency and multi-system GNSS
receivers. This architecture seeks to improve the power efficiency typically seen in
software-defined receivers while maintaining their flexibility and offering an alternative
to the limited adaptability found in commercial devices, streamlining the exploration and
advancement of cutting-edge GNSS algorithms.

• To propose a design methodology that integrates advanced design tools, aimed at stream-
lining the development of experimental GNSS receivers by leveraging the proposed ar-
chitecture. This methodology encompasses the phases of research, conceptualization,
iteration, prototyping, and implementation, with a particular focus on incorporating un-
conventional features for research purposes.

• To demonstrate the practical applicability of the proposed architecture by developing
three innovative and groundbreaking GNSS receiver prototypes incorporating non-
standard features aimed at conducting research on current GNSS topics, including
a spaceborne GNSS receiver, a GNSS rebroadcaster, and a HS-GNSS receiver for
moderate indoor positioning.

The proposed research aims to develop a framework that streamlines the design and develop-
ment of portable and compact experimental GNSS receivers. This framework will specifically
facilitate the implementation and field testing of innovative algorithms for research purposes.

1.3 Outline of the dissertation

This section provides a summary of the content of each chapter included in this thesis.

Chapter 2 establishes the essential knowledge and context necessary for the research presented
in this thesis. It offers a background and analysis of GNSS systems and receivers. This is
further complemented with an introduction to the GNSS-SDR software receiver. The chapter
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then delves into the fundamental concepts of FPGA and SoC FPGA technology, exploring key
components such as configurable logic blocks, interconnects, programmable routing resources,
and design flows. This is followed by a discussion on design forces and Key Performance
Indicators (KPIs) relevant to GNSS technology. These KPIs facilitate the discourse on the
proposed architecture and design methodology, playing a crucial role in the evaluation of
the proposed concept demonstrators in subsequent chapters. Finally, the chapter concludes
with a review of existing GNSS receiver implementations, placing special emphasis on their
underlying processing units. This highlights the evolution and diversity of architectures
employed in GNSS receivers, showcasing advancements and variations.

Chapter 3 delivers an in-depth analysis of the proposed SoC-FPGA receiver architecture and
its design methodology. The chapter begins with a description of the proposed architecture,
explaining how the FPGA and the embedded processor work in tandem to achieve optimized
performance and efficiency. Then, it focuses on the FPGA design, emphasizing the design and
execution of the acquisition and tracking multicorrelator hardware accelerators. Subsequently,
this chapter delves into the GNSS-SDR software architecture, with a focus on how the software
is modified for execution in the SoC FPGA platform. Upon exploring the software aspect,
this chapter introduces a design methodology for creating innovative GNSS demonstrators that
utilize the proposed architecture, with a focus on code reuse. Separate development flows are
adopted for software and hardware, enabling the use of FOSS development tools and a FOSS
compiler toolchain for creating software signal processing blocks. This approach ensures their
independence from FPGA design tools. The development of new algorithms is structured
into three phases: initial software validation, FPGA implementation for computationally
demanding algorithms, and the subsequent integration of software and FPGA components
on a compact, portable, SoC-FPGA platform. Finally, this chapter discusses the proposed
receiver architecture and design methodology, addressing several design forces — scalability,
testability, portability, maintainability, reproducibility, and openness — and KPIs, all of which
were introduced in Chapter 2. These aspects are crucial for understanding how the architecture
aligns with the KPIs and meets overall design objectives.

Chapter 4 reports on the design, proof-of-concept implementation, and preliminary perfor-
mance evaluation of a low-cost, software-defined, multi-band, multi-system spaceborne GNSS
receiver. This chapter outlines the specific objectives pursued through the implementation of
the spaceborne receiver and provides a detailed description of the system’s design, highlight-
ing its key components and the rationale behind its architecture. Following this, the chapter
presents test results evaluating the receiver’s performance against various KPIs. These include
accuracy, availability, efficiency, flexibility, interoperability, reliability, and precision. Finally,
the chapter concludes with a comprehensive summary and discussion of the findings. It of-
fers insights into the implications for future GNSS receiver technology and outlines potential
research directions.

Chapter 5 details the design, proof-of-concept implementation, and preliminary performance
assessment of the GNSS rebroadcaster. This chapter describes the rebroadcaster, with an
emphasis on its detailed design, particularly focusing on signal regeneration and the telemetry
symbol link. It then presents the test results of the rebroadcaster, evaluating the latency and the
quality of the rebroadcasted signals. The chapter concludes with a discussion of the findings.

Chapter 6 presents the architecture, prototype development, and initial performance analysis
of the HS GNSS receiver. This chapter delves into the receiver’s features and operating modes,
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offering a comprehensive examination of its implementation. Special emphasis is placed
on innovative features tailored to process severely attenuated signals, including significant
enhancements to the software and FPGA components of the architecture. The chapter proceeds
by presenting test results that assess the receiver’s ability to process weak signals, focusing on
several KPIs, including availability, flexibility, interoperability, reliability, and the precision of
navigation solutions derived. It culminates in a detailed discussion of these results, highlighting
their implications for receiver performance.

Finally, Chapter 7 presents the conclusions and directions for future work.

1.4 Research contributions

The research contributions of this Dissertation are pointed out in the summary available at the
end of each chapter. The full list of publications is provided hereafter.

1.4.1 Journal papers

• [19] M. Majoral, J. Arribas, and C. Fernández-Prades, “Implementation of a High-
Sensitivity Global Navigation Satellite System Receiver on a System-on-Chip Field-
Programmable Gate Array Platform,” Sensors, vol. 24, no. 5, 2024, Art. no. 1416. doi:
10.3390/s24051416

• [20] M. Majoral, C. Fernández-Prades, and J. Arribas, “A Flexible System-on-Chip
Field-Programmable Gate Array Architecture for Prototyping Experimental Global
Navigation Satellite System Receivers,” Sensors, vol. 23, no. 23, 2023, Art. no. 9483.
doi: 10.3390/s23239483

1.4.2 Peer-Reviewed International Conferences

• [21] M. Majoral, J. Arribas, and C. Fernández-Prades, “Implementation of a GNSS Re-
broadcaster in an All-Programmable System-On-Chip Platform,” in 2022 10th Workshop
on Satellite Navigation Technology (NAVITEC), Noordwijk, Netherlands, April 2022, pp.
1–9. doi: 10.1109/NAVITEC53682.2022.9847537

• [22] C. Fernández-Prades, J. Arribas, M. Majoral, A. Ramos, J. Vilá-Valls, and
P. Giordano, “A Software-Defined Spaceborne GNSS Receiver,” in 2018 9th ESA
Workshop on Satellite Navigation Technologies and European Workshop on GNSS
Signals and Signal Processing (NAVITEC), Noordwijk, Netherlands, December 2018,
pp. 1–9. doi: 10.1109/NAVITEC.2018.8642697

1.4.3 International Conferences (Non-Peer Reviewed)

• [23] M. Majoral, C. Fernández-Prades, and J. Arribas, “Implementation of GNSS
Receiver Hardware Accelerators in All-programmable System-On-Chip Platforms,” in
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Proceedings of the 31st International Technical Meeting of the Satellite Division of The
Institute of Navigation (ION GNSS+ 2018), Miami, FL, USA, September 2018, pp.
4215–4230. doi: 10.33012/2018.16082

1.4.4 Open-Source GNSS Receiver Contributions

• Developer of the GNSS-SDR software-defined receiver [24] between 2018 and 2024.
Designed and implemented an FPGA offloading strategy for executing GNSS-SDR in
embedded SoC FPGAs. Additionally, enhanced the acquisition, tracking, and telemetry
decoding blocks to process weak signals in SoC FPGAs.
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Chapter 2

Background and State of the Art

This chapter provides a comprehensive context for the research conducted in this thesis, delving
into the fundamentals of GNSS technology, the intricacies of FPGA and SoC FPGA design,
and reviewing existing implementations of software-defined GNSS receivers. Additionally,
it introduces and details KPIs critical to GNSS systems. These KPIs will be instrumental in
subsequent chapters, guiding our discussion on the proposed architecture and the assessment
of the receiver prototypes developed in this study.

The chapter begins with an exploration of GNSS positioning principles, detailing the signal
structure and frequency bands of GNSS satellites, with particular focus on the GPS and Galileo
systems. This focus is due to their relevance to our concept demonstrators, specifically designed
for processing signals like GPS L1 C/A, GPS L5, Galileo E1b/c, and Galileo E5a.

Subsequently, the architecture of a typical GNSS receiver is outlined, highlighting its core
components. Following this, the software-defined GNSS-SDR receiver is introduced, which
plays a key role in our proposed architecture. This introduction underscores the flexibility and
programmability that GNSS-SDR offers, setting it apart from traditional GNSS receivers.

The discussion then transitions to FPGA and SoC FPGA technologies, elucidating their
architecture, design methodologies, and the challenges associated with using FOSS FPGA
design tools. It delves into FPGA IP cores, which are reusable units of logic, commonly
integrated into FPGAs.

After that, this chapter provides a detailed examination of the critical elements that influence
the architecture and performance of GNSS technologies. The discussion is twofold, initially
focusing on the concept of design forces. These encompass a range of factors, including
technological constraints and user requirements, which play a significant role in shaping the
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development and implementation of GNSS technologies. Secondly, the chapter explores KPIs
pertinent to GNSS. KPIs serve as quantifiable measures that offer a way to assess the efficiency,
accuracy, reliability, and overall performance of GNSS technologies.

In conclusion, this chapter includes a review of state-of-the-art software-defined GNSS receiver
implementations, with an emphasis on the underlying processing units.

2.1 Basics of GNSS Positioning

GNSS positioning is based on trilateration, a geometric method that determines the position
of an object by measuring its distance from multiple known locations. This process involves
calculating the distances to satellites orbiting the Earth. The signals transmitted by GNSS
satellites carry very precise and accurate time stamps to synchronize the receiver on Earth
and determine the exact location of the user. This accurate timekeeping is achieved by the
atomic clocks on board the GNSS satellites, ensuring synchronized timekeeping across the
system. Each GNSS System adheres to its own time reference, which includes GPS System
Time (GPST) for GPS, Galileo System Time (GST) for Galileo, Glonass Time (GLONASST)
for Glonass, and Beidou Time (BDT) for Beidou. These time references are essential for
maintaining the accuracy of the GNSS positioning.

GNSS receivers use Time of Arrival (ToA) ranging for position determination: they estimate
the time when a satellite signal is received and compute the Time of Flight (ToF) (the
propagation time from the satellite to the receiver) by subtracting the ToA from the Time of
Transmission (ToT):

ToF = ToT − ToA . (2.1)

This time, multiplied by the speed of light, gives the distance to the satellite. Navigational
messages embedded in the satellite signals provide data on the satellites’ orbits, allowing the
receiver to calculate the satellite coordinates.

The ToT and the ToA are determined using two non-synchronized clocks: the satellite clock
and the receiver clock respectively. The receiver clock will generally have a bias error from
system time. Because of this error, the range measurements are called pseudoranges. The
pseudorange measurements contain errors including the time difference between the GNSS
system time and the user clock, the difference between the system time and the satellite clock.
Considering that 𝑇𝑠 is the system time when the satellite transmitted the signal, 𝑇𝑢 is the system
time when the signal reached the receiver,𝛿𝑡 is the offset of the satellite clock from system time,
𝑡𝑢 is the offset of the receiver clock from system time, 𝑇𝑠 + 𝛿𝑡 is the satellite clock reading when
the satellite transmitted the signal, 𝑇𝑢 + 𝑡𝑢 is the user receiver clock reading the signal reached
the receiver, and 𝑐 is the speed of light, then the geometric range 𝑟 is determined as

𝑟 = 𝑐(𝑇𝑢 − 𝑇𝑠) = 𝑐Δ𝑡 , (2.2)

and the pseudorange measurement 𝜌 is given by
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𝜌 = 𝑐[(𝑇𝑢 + 𝑡𝑢) − (𝑇𝑠 + 𝛿𝑡)] = 𝑐(𝑇𝑢 − 𝑇𝑠) + 𝑐(𝑡𝑢 − 𝛿𝑡) = 𝑟 + 𝑐(𝑡𝑢 − 𝛿𝑡) . (2.3)

The GNSS ground monitoring network determines corrections for the satellite clock offset 𝛿𝑡
and the GNSS satellites broadcasts this clock correction data such that the receivers can apply
this data. For this reason, the satellite clock offset can be considered very small compared to
the user clock offset.

GNSS mainly operates using the Earth-Centered, Earth-Fixed (ECEF) coordinate system.
ECEF is a coordinate system which represents positions as 𝑋 , 𝑌 , and 𝑍 coordinates. In this
system, the origin (0, 0, 0) is at the center of the Earth, the X-axis extends from the Earth’s
center to the intersection of the equator and the prime meridian, the Y-axis is perpendicular
to the X-axis and lies in the plane of the equator, and the Z-axis coincides with the mean
Earth rotational axis, pointing towards the North Pole. The ECEF system is advantageous for
terrestrial navigation because it remains fixed relative to the Earth’s surface, making it directly
applicable for most location-based applications.

Figure 2.1 illustrates the positions of the receiver and a GNSS satellite relative to Earth’s center
of mass. To determine the user position, the receiver needs to compute vector u. Vector s is the
known satellite position, which has coordinates 𝑥𝑠, 𝑦𝑠, 𝑧𝑠 in ECEF coordinates.

Earth
u

s r

GNSS Receiver

Satellite

Figure 2.1 Vector representation of the receiver position [25].

Vector r is the satellite position with respect to the user. Considering (2.3), and not considering
the satellite clock offset with respect to system time, the satellite to user vector is determined
by

𝑟 = 𝑠 − 𝑢 = 𝜌 − 𝑐𝑡𝑢 , (2.4)

where 𝑡𝑢 is the receiver clock offset [25, 26]. The user’s position can be determined by
performing pseudorange measurements with at least four visible satellites. This process results
in a system of four equations with four unknowns—namely, the user’s three-dimensional
coordinates (𝑥𝑢, 𝑦𝑢, 𝑧𝑢) and the receiver’s clock offset (𝑡𝑢), as detailed in:
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𝜌1 =

√︃
(𝑥1 − 𝑥𝑢)2 + (𝑦1 − 𝑦𝑢)2 + (𝑧1 − 𝑧𝑢)2 + 𝑐𝑡𝑢

𝜌2 =

√︃
(𝑥2 − 𝑥𝑢)2 + (𝑦2 − 𝑦𝑢)2 + (𝑧2 − 𝑧𝑢)2 + 𝑐𝑡𝑢

𝜌3 =

√︃
(𝑥3 − 𝑥𝑢)2 + (𝑦3 − 𝑦𝑢)2 + (𝑧3 − 𝑧𝑢)2 + 𝑐𝑡𝑢

𝜌4 =

√︃
(𝑥4 − 𝑥𝑢)2 + (𝑦4 − 𝑦𝑢)2 + (𝑧4 − 𝑧𝑢)2 + 𝑐𝑡𝑢 .

(2.5)

In these equations, 𝜌1, 𝜌2, 𝜌3, 𝜌4 represent the pseudoranges measured by the receiver with
respect to satellites 1, 2, 3, and 4 respectively, while (𝑥1, 𝑦1, 𝑧1), (𝑥2, 𝑦2, 𝑧2), (𝑥3, 𝑦3, 𝑧3), and
(𝑥4, 𝑦4, 𝑧4) are the coordinates of these satellites [25].

Each pseudorange corresponds to a sphere, with the satellite at its center and the pseudorange as
the radius. The receiver’s position is located at the intersection of the satellite-ranging spheres.

In practice, GNSS receivers compute navigation solutions using more than four satellites.
These solutions are initially refined through iterative techniques based on linearization and
further enhanced by applying Kalman filtering and least-squares estimation algorithms. [25,
26].

2.2 GNSS Satellite Signals

GNSS satellites transmit information using radio signals. The transmission of signals from both
Galileo and GPS satellites employs Direct Sequence Spread Spectrum (DSSS) modulation [25].
DSSS is a method that extends a signal over a bandwidth wider than what is essential for
transmitting information. This expansion is achieved by modulating the message symbols with
a spreading sequence, also referred to as a Pseudo Random Noise (PRN) sequence. Each
element of this sequence is known as a chip, which has a shorter duration than the original
message symbols. Through this modulation process, the message symbols are scrambled and
dispersed across the spectrum. Consequently, the bandwidth of the overall signal matches that
of the spreading sequence, effectively broadening its spectral footprint and reducing its power
spectral density. This spreading process enhances the system’s resistance to interference and
multipath fading, key advantages in satellite communication.

2.2.1 Frequency Bands

The satellites from both the Galileo and GPS systems broadcast their signals within the
L frequency band, using Right-Handed Circular Polarization (RHCP), and utilizing the
range of frequencies shown in Figure 2.2 [27–29]. GNSS signals are categorized under
Radio Navigation Satellite Service (RNSS), because they fundamentally provide radio-based
navigation and positioning services using satellites. Furthermore, some GNSS signals are
included in Aeronautical Radio Navigation Service (ARNS), due to their critical role in aviation
navigation and safety. Using multiple frequencies offers several advantages over their single-
frequency counterparts. One of the key benefits is improved accuracy. By accessing more than
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one frequency, these receivers can more effectively correct errors caused by the ionosphere, a
major source of GPS signal delays and inaccuracies. The ionosphere affects signals at different
frequencies in different ways, so by comparing the delay across multiple frequencies, the
receiver can accurately calculate and compensate for these errors [25]. Another advantage
of multi-frequency receivers is better resistance to interference and jamming. Since receivers
can access multiple frequencies, they are less likely to lose all satellite connections due to
interference on a single frequency.

Figure 2.2 GPS and Galileo frequency bands (source: [29]) .

The carrier frequencies, bandwidths, and the minimum received signal power on the Earth’s
surface for the GPS L1 C/A, GPS L5, Galileo E1b/c, and Galileo E5a signals are detailed in
Table 2.1 [30].

Table 2.1 GNSS signal characteristics.

Signal GPS L1 C/A Galileo E1b/c GPS L5 Galileo E5a

Carrier
Frequency

(MHz)

1575.42 1575.42 1176.45 1176.45

Frequency
Band

L1/E1 L1/E1 L5/E5a L5/E5a

Bandwidth
(MHz)

2.046 20.46 14.322 20.46

Minimum
Received

Power (dBW)

−158.5 −157.9 −157.25 −155.25
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2.2.2 Spreading Codes

Each GNSS system and each specific signal within these systems uses unique spreading codes
that are orthogonal to one another. This orthogonality ensures that the codes do not interfere
with each other, allowing GNSS receivers to accurately distinguish and lock onto signals from
different satellites. Some GNSS signals use long spreading codes generated by a tiered code
construction, whereby a secondary code sequence is used to modify successive repetitions of a
primary code. Tiered codes enhance GNSS performance through improved receiver sensitivity,
superior cross-correlation properties compared to other GNSS signals, increased resistance to
narrow-band jamming, and faster bit synchronization. [31].

In tiered codes, the secondary code modulates the primary PRN code by altering its polarity:
each bit of the secondary code determines whether a corresponding period of the PRN
code remains unchanged or is inverted. The tiered code generation process is illustrated in
Figure 2.3, where the primary code sequence has a length of 𝑁 chips, and the secondary code
sequence has a length of 𝑁𝑠 chips. This results in a tiered code with a total length of 𝑁 · 𝑁𝑠
chips.

Epoch i Epoch i+1 Epoch i+Ns

1st chip 2nd chip Chip no. Ns

XOR XOR

Primary Code

Secondary Code

Tiered Code Epoch i Epoch i+1 Epoch i+Ns

XOR

N Chips N Chips N Chips

Figure 2.3 Tiered codes generation.

GNSS satellites employ unique PRN codes for the data and pilot components of the transmitted
signals. These codes are orthogonal, ensuring they are unique to each satellite, and they serve
to identify both the satellite itself and the separate data and pilot components of the signal.

2.2.3 Signal Structure

The mathematical model of GNSS signals encompasses carrier waves, code modulation, and
navigation data. A pilot signal is transmitted within the Galileo signals, including Galileo
E1b/c and E5a, as well as in modernized GPS signals, such as GPS L5. This enhances the
signal acquisition and tracking capabilities [27–29]. In this section, we summarize the structure
of satellite navigation signals, including GPS L1 C/A, Galileo E1b/c, GPS L5, and Galileo
E5a, highlighting various aspects such as modulation type, sub-carrier usage, and frequencies
where applicable. This summary also covers the composition of the pilot and data components,
detailing the length of the primary PRN code, its chipping rate, and the lengths of secondary
PRN codes for both data and pilot signals.
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2.2.3.1 GPS L1 C/A

The legacy civil signal, GPS L1 C/A signals, use Binary Phase Shift Keying (BPSK)
modulation. BPSK is a phase modulation technique where each symbol to be transmitted
represents one of two possible phase shifts of a carrier wave, typically 0 degrees (for the binary
"0") or 180 degrees (for the binary "1"). The GPS L1 C/A, transmitted by the 𝑘-th satellite, can
be modeled as

𝑠𝑘 (𝑡) =
√

2𝑃𝑐𝑘 (𝑡)𝑑𝑘 (𝑡) cos(2𝜋 𝑓𝑐𝑡) . (2.6)

In this equation, 𝑠𝑘 (𝑡) denotes the signal transmitted, 𝑃 signifies the transmitted signal power,
𝑐𝑘 (𝑡) and 𝑑𝑘 (𝑡) represent the PRN code and the data symbols transmitted by the 𝑘-th satellite,
respectively, and 𝑓𝑐 is the carrier frequency for GPS L1 C/A.

Table 2.2 summarizes the most relevant characteristics of the GPS L1 C/A signals [27].

Table 2.2 GPS L1 C/A signal characteristics.

GPS L1 C/A

Modulation BPSK

PRN code chipping rate 1.023 Mchips/s

PRN code length 1023 chips

Data Rate 50 bps

2.2.3.2 GPS L5 and Galileo E5a

The GPS L5 and Galileo E5a signals, which comprise both data and pilot components, are
transmitted both in-phase and in quadrature. The main properties of these signals are captured
by the following equation:

𝑠𝑘 (𝑡) =
√

2𝑃[𝑐𝑖,𝑘 (𝑡)𝑑𝑘 (𝑡) cos(2𝜋 𝑓𝑐𝑡) + 𝑐𝑞,𝑘 (𝑡) sin(2𝜋 𝑓𝑐𝑡)] . (2.7)

Here, 𝑠𝑘 (𝑡) denotes the signal from the 𝑘-th satellite, with 𝑃 indicating the transmitted signal
power for both phase and quadrature components. 𝑐𝑖,𝑘 (𝑡) and 𝑐𝑞,𝑘 (𝑡) represent the PRN codes
for the phase and quadrature components, respectively, transmitted by the 𝑘-th satellite. The
data transmitted by the same satellite is 𝑑𝑘 (𝑡), and 𝑓𝑐 is the carrier frequency.

The data and pilot PRN codes are composed of combinations of primary and secondary codes,
as detailed in

𝑐𝑖,𝑘 (𝑡) = 𝑐𝑖𝑝 ,𝑘 (𝑡)𝑐𝑖𝑠 (𝑡)
𝑐𝑞,𝑘 (𝑡) = 𝑐𝑞𝑝 ,𝑘 (𝑡)𝑐𝑞𝑠 (𝑡) .

(2.8)
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Specifically, 𝑐𝑖𝑝 ,𝑘 (𝑡) and 𝑐𝑞𝑝 ,𝑘 (𝑡) represent the primary PRN codes for the in-phase and
quadrature components, respectively, of the 𝑘-th satellite’s signal. Similarly, 𝑐𝑖𝑠 (𝑡) and 𝑐𝑞𝑠 (𝑡)
represent the secondary PRN codes.

The GPS L5 signal uses BPSK modulation, whereas the Galileo E5a signal uses Alternative
Binary Offset Carrier (AltBOC) modulation. An explanation of the AltBOC modulation can
be found in [32].

Table 2.3 and Table 2.4 summarize the most relevant characteristics of the GPS L5 and Galileo
E5a signals [28, 29].

Table 2.3 GPS L5 signal characteristics.

GPS L5

Signal component Data Pilot

Modulation BPSK BPSK

Primary PRN code
chipping rate

10.23 Mchips/s 10.23 Mchips/s

Primary PRN code length 10230 chips 10230 chips

Secondary PRN code
length

10 bits 20 bits

Data Rate 100 bps -

Table 2.4 Galileo E5a signal characteristics.

Galileo E5a

Signal component Data Pilot

Modulation AltBOC AltBOC

Subcarrier frequency 15.345 MHz 15.345 MHz

Primary PRN code
chipping rate

10.23 Mchips/s 10.23 Mchips/s

Primary PRN code length 10230 chips 10230 chips

Secondary PRN code
length

20 bits 100 bits

Data Rate 50 bps -

2.2.3.3 Galileo E1b/c

The Galileo E1b/c signals comprise both a data component and a pilot component, which are
transmitted in-phase and anti-phase, respectively. The Galileo E1b/c signals use the Composite
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Binary Offset Carrier (CBOC) modulation. An explanation of the CBOC modulation can be
found in [33]. The composite signal of Galileo E1b/c can be written as

𝑠𝑘 (𝑡) =
1
√

2
=
[
𝑒𝐸1−𝐵𝑘

(𝑡) (𝛼𝑠𝑐𝐸1−𝐵,𝑎 (𝑡) + 𝛽𝑠𝑐𝐸1−𝐵,𝑏 (𝑡))

−𝑒𝐸1−𝐶𝑘
(𝑡) (𝛼𝑠𝑐𝐸1−𝐶,𝑎 (𝑡) − 𝛽𝑠𝑐𝐸1−𝐶,𝑏 (𝑡))

]
,

(2.9)

where 𝑠𝑘 (𝑡) denotes the signal transmitted by the 𝑘-th satellite. Here, 𝑒𝐸1−𝐵𝑘
(𝑡) represents

the data component, modulated by subcarriers 𝑠𝑐𝐸1−𝐵,𝑎 (𝑡) and 𝑠𝑐𝐸1−𝐵,𝑏 (𝑡), and 𝑒𝐸1−𝐶𝑘
(𝑡)

represents the pilot component, modulated by subcarriers 𝑠𝑐𝐸1−𝐶,𝑎 (𝑡) and 𝑠𝑐𝐸1−𝐶,𝑏 (𝑡).

The 𝛼 and 𝛽 parameters are set to 𝛼 =

√︃
10
11 and 𝛽 =

√︃
1
11 respectively. The shape of the binary

subcarriers 𝑠𝑐𝑥 (𝑡) may be formulated as

𝑠𝑐𝑥 (𝑡) = 𝑠𝑔𝑛(sin(2𝜋𝑅𝑠,𝑥𝑡)) , (2.10)

Where 𝑠𝑔𝑛() is the sign function. The parameter 𝑅𝑠,𝑥 shown in (2.10) is determined by
Table 2.5.

Table 2.5 E1 Composite Binary Offset Carrier (CBOC) sub-carrier rates.

Component
(Parameter Y) Sub-carrier Type Sub-carrier Rate

RS,E1−Y,a (MHz) RS,E1−Y,b (MHz)

B CBOC, in-phase 1.023 6.138
C CBOC, anti-phase 1.023 6.138

Table 2.6 summarizes the most relevant characteristics of the Galileo E1b/c signals [29].

Table 2.6 Galileo E1 signal characteristics.

Galileo E1b/c

Signal component Data Pilot

Modulation CBOC CBOC

Subcarrier frequency 1.023 MHz and 6.138 MHz
(2 subcarriers)

1.023 MHz and 6.138 MHz
(2 subcarriers)

Primary PRN code
chipping rate

1.023 Mchips/s 1.023 Mchips/s

Primary PRN code length 4092 chips 4092 chips

Secondary PRN code
length

- 25 bits

Data Rate 250 bps -
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2.2.4 Doppler frequency

GNSS receivers experience Doppler shift due to the relative motion between the satellites,
which are the source of the signals, and the receivers, which are observing these signals. The
satellites in the GNSS systems are in a Medium Earth Orbit (MEO) and move at high speeds.
This high velocity causes the frequency of the signals they emit to be altered by the time they
reach the receiver. In addition, the movement of the GNSS receiver itself, whether in a vehicle,
aircraft, or in a person’s hand, further modifies the frequency of the incoming signal.

For a static receiver on the Earth’s surface, the Doppler frequency shift arises from the
component of the satellite’s velocity directed towards the user. The maximum Doppler shift
occurs when the satellite is at the horizon. Specifically, when receiving signals from GPS
satellites, the maximum velocity component directed towards a static receiver is approximately
929 m/s, as detailed in [26]. Consequently, the maximum Doppler shift experienced by a GNSS
receiver, 𝑓𝑑𝐿1,max, can be computed as

𝑓𝑑𝐿1,max =
𝑓𝑐𝐿1𝑣𝑑

𝑐
=

1575.42 · 106 · 929
3 · 108 ≈ 4.9 kHz . (2.11)

In this equation, 𝑓𝑑𝐿1,max represents the maximum Doppler shift, 𝑓𝑐𝐿1 is the L1 carrier
frequency, 𝑣𝑑 is the maximum velocity component directed towards the user, and 𝑐 denotes
the speed of light [26].

The maximum rate of change of the Doppler frequency at the L1 carrier frequency, known as
the Doppler rate, can be estimated to be 𝛿 𝑓𝑑 |𝑚𝑎𝑥 ≈ 1 Hz/s [26].

Similarly, the Doppler frequency shift experienced by the receiver at the L5 carrier frequency
can be calculated as

𝑓𝑑𝐿5,max =
𝑓𝑐𝐿5𝑣𝑑

𝑐
=

1176.45 · 106 · 929
3 · 108 ≈ 3.7 kHz , (2.12)

in accordance with the procedure described above. Here, 𝑓𝑑𝐿5,max represents the maximum
Doppler shift, and 𝑓𝑐𝐿5 denotes the L5 carrier frequency.

2.2.5 Navigation Data

GNSS satellites are continuously broadcasting data to enable GNSS receivers to determine
their location and time. This data is transmitted in the form of coded signals and includes the
following key components:

• Ephemeris Data: This is precise orbital and clock correction data for each satellite. The
Ephemeris data allows a GNSS receiver to calculate the precise position of the satellite
at any given time. This data is usually valid for only a few hours.

• Almanac Data: This includes information about the status of satellites in the GNSS
constellation, their current and predicted orbits for several days, and general system
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health. The Almanac data is not precise enough for calculating the receiver position,
but it helps the receiver to know which satellites to listen for and aids in quicker signal
acquisition.

• Time Information: Each satellite transmits its own precise time, generated by an onboard
atomic clock. This timing information is crucial for calculating distances based on the
time it takes for the signal to travel from the satellite to the receiver.

• Satellite Health and Status Information: This includes information about the operational
status of the satellite (whether it’s functioning properly or not).

• Ionospheric Data: Some signals include information about the ionosphere, which can
affect the speed of the GNSS signals as they pass through the Earth’s atmosphere, and
thus impact positioning accuracy.

GNSS receivers process this data to determine their exact position (latitude, longitude, and
altitude), speed, and time. The system is designed so that this information is constantly updated
and globally available.

2.3 Fundamentals of GNSS Receivers

GNSS receivers use signals from satellites to determine their geographic location. The basic
architecture of a GNSS receiver typically includes an antenna, a RFFE, and several signal
processing blocks, as shown in Figure 2.4 [34].

RFFE Acquisition

Tracking
Telemetry 
Decoding

Observables PVT

Channel 1

Tracking
Telemetry 
Decoding

Channel 2

Tracking
Telemetry 
Decoding

Channel N

Antenna

Figure 2.4 GNSS receiver block diagram.

The processing of GNSS signals starts with the antenna, designed to capture signals from the
satellites. This antenna is tuned to the GNSS-specific frequencies, and its quality and type
significantly influences the receiver’s accuracy and sensitivity.
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Following the antenna, the RFFE amplifies the received signals and converts them from their
high-frequency state to a lower intermediate frequency or directly to baseband for simpler
processing. This stage encompasses filtering, initial signal conditioning, and ADCs.

At the core of the GNSS receiver is the baseband signal processing chain. An acquisition
block detects the signals received from visible satellites, and the receiver implements several
channels, each capable of tracking and demodulating the telemetry messages from one of
those signals. An observables block performs the basic GNSS measurements, including
pseudoranges, carrier phase, and Doppler shift. Finally, the PVT Engine computes the
receiver’s position, velocity, and time. It employs algorithms to solve navigation equations
using data such as satellite positions and the basic GNSS measurements.

2.3.1 GNSS Antennas

Antennas used in GNSS systems are generally omnidirectional, enabling them to capture a
wide array of satellite signals effectively. In applications where the antenna remains stationary,
the antenna design typically focuses on receiving signals primarily from the upper hemisphere.
This approach helps to exclude signals arriving from below the horizon, which are often prone
to interference or jamming, particularly those coming from lower elevation angles. In contrast,
for dynamic environments, antennas are designed to maintain a uniform gain pattern extending
below the horizon. This feature is essential to counteract the effects of vehicle movements,
such as rolling and pitching [34].

As mentioned in subsection 2.2.1, GNSS signals are transmitted using RHCP. However,
upon reflection off surfaces such as buildings or the ground, these signals can change their
polarization from RHCP to Left-Handed Circular Polarization (LHCP). Such reflected signals
can degrade the quality of signal reception. To mitigate this issue, GNSS antennas are often
engineered to have lower gain for LHCP signals. This design minimizes the impact of multipath
effects, where reflected signals interfere with direct GNSS signals, thereby ensuring more
accurate and reliable signal reception [26, 34].

Active antennas incorporate a Low-Noise Amplifier (LNA) to compensate for potential signal
loss when a long cable is used to connect the antenna to the receiver.

The thermal noise power at the receiver antenna is given by

𝑁 = 𝑘𝑇𝑎𝐵 , [W] (2.13)

where 𝑘 is the Boltzmann’s constant (1.38 · 10−23 J/°K), 𝐵 is the bandwidth of the receiver in
𝐻𝑧, and 𝑇𝑎 is the antenna noise temperature. The antenna noise temperature is a measure of
the noise being produced by an antenna in a given environment. It refers to the temperature of
a resistor that would produce the same thermal noise as the antenna. This temperature depends
of the gain, radiation pattern and the noise that the antenna picks up from the surrounding
environment.

For GNSS, the signals received at the antenna include a small amount of noise from the
satellite and additional background radiation from other sources, resulting in an effective noise
temperature (𝑇𝑎) of typically about 130 K [35]

22



2.3. Fundamentals of GNSS Receivers

As shown in section 2.2.1, the minimum received power level of the GNSS signals is around
−160 dBW. Considering a bandwidth of 𝐵 = 10 MHz, and an antenna noise temperature of 130
K, the Signal-to-Noise Ratio (SNR) at the receiver antenna can be computed as

𝑆𝑁𝑅 = 10𝑙𝑜𝑔10(
𝑃

𝑁
) = 10𝑙𝑜𝑔10(𝑃) − 10𝑙𝑜𝑔10(𝑘𝑇𝑎𝐵)

= 10𝑙𝑜𝑔10(160) − 10𝑙𝑜𝑔10((1.38 · 10−23) · 130 · 10 · 106)
= −22.5 dB .

(2.14)

In this equation, 𝑃 is the power of the received signal, and 𝑁 is the noise power at the antenna.

Negative SNRs in GNSS are a common occurrence due to the nature of satellite communication
and the calculation of SNR. The GNSS receiver acquisition and tracking algorithms are
designed to process these weak signals, extracting the required signal from the noise. In GNSS,
the received signal power is commonly expressed in terms of the 𝐶/𝑁0, which is the ratio of
carrier power 𝐶 to noise power density 𝑁0, and denotes the strength of the power of carrier
wave relative to the noise. The 𝐶/𝑁0 does not depend on the receiver bandwidth. The 𝐶/𝑁0 is
related to the SNR as described by the following relationship:

𝐶/𝑁0 = 𝑆𝑁𝑅 [dB] + 10𝑙𝑜𝑔10(𝐵) . [dB − Hz] (2.15)

Standard outdoor working conditions are typically characterized by nominal 𝐶/𝑁0 values of
typically ≥ 44 dB-Hz [18].

2.3.2 Radio Frequency Front-End (RFFE)

The RFFE handles the initial processing of the signals received from GNSS satellites. RFFEs
perform low noise amplification, filtering, downconversion, and Automatic Gain Control
(AGC). The first stages of the front-end are a band pass filter and a LNA. The LNA amplifies the
received signals while adding as little additional noise as possible, a crucial step in preserving
signal integrity. After amplification, the signals are passed through filters. These filters are
designed to remove unwanted noise and interference from frequencies not used by the GNSS
signals, thus ensuring that only the relevant signal frequencies are processed further. In addition
to the filtering process, the signals undergo a frequency downconversion: a mixer in the front-
end performs frequency shifting to an Intermediate Frequency (IF) or directly to baseband,
making the GNSS more manageable for the subsequent stages. Finally, an AGC automatically
regulates the gain in the RFFE, ensuring a steady output level and minimizing quantization
losses in the ADC.

A simplified block diagram of a GNSS receiver’s analog front-end is depicted in Figure 2.5. In
this diagram, each component is characterized by its gain and noise figure. The noise figure
represents the degradation of the SNR caused by the components within the signal chain. It is
defined as the ratio of the SNR at the component’s input to the SNR at its output. For a more
comprehensive depiction, refer to [35].
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Figure 2.5 Example Block Diagram of a GNSS receiver’s RFFE.

The entire RFFE can be characterized by its front-end noise figure and the effective noise
temperature, 𝑇𝑒 𝑓 𝑓 , according to the Friis formulas for noise [35]. The effective noise
temperature represents the temperature of a passive element that would generate the same
amount of thermal noise power as all the components in the analog front-end combined. The
front-end noise figure 𝐹 is given by

𝐹 = 𝐹1 +
(𝐹2 − 1)
𝐺1

+ (𝐹3 − 1)
𝐺1𝐺2

+ (𝐹4 − 1)
𝐺1𝐺2𝐺3

. (2.16)

The front-end effective noise temperature 𝑇𝑒 𝑓 𝑓 can be calculated as

𝑇𝑒 𝑓 𝑓 = 𝑇𝑎 + (𝐹1 − 1)𝑇0 +
(𝐹2 − 1)𝑇0

𝐺1
+ (𝐹3 − 1)𝑇0

𝐺1𝐺2
+ (𝐹4 − 1)𝑇0
𝐺1𝐺2𝐺3

. (2.17)

Moreover, the noise power density can be determined as

𝑁0 = 𝑘𝑇𝑒 𝑓 𝑓 . [W/Hz] (2.18)

Finally, the noise power at the output of the AGC in Figure 2.5 can be derived as

𝑃 = 𝑘 · 𝑇𝑒 𝑓 𝑓 · 𝐵 . [W] (2.19)

Note that Figure 2.5 assumes a passive band-pass filter is placed after the antenna; conse-
quently, 𝐹1 = 1

𝐺1
.

2.3.3 Analog to Digital Converter (ADC)

The ADC converts the analog signals to a digital format. A way to express the quantization
losses in the ADC is to measure the degradation of the SNR caused at the correlator outputs
[36]. In GNSS receivers, where the power of the received signals is weaker than the
surrounding thermal noise, the AGC primarily responds to the ambient noise. For this reason,
given a specific number of quantization bits in the ADC, the quantization losses mostly depend
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on the ratio between the maximum quantization threshold 𝐿 and the input noise standard
deviation 𝜎. This quantization loss is not influenced by the received GNSS signals, as the
levels of these signals are considerably low and insignificant compared to the noise floor at the
input of the ADC [36]. When the optimal ratio is used, the signal degradation is about 1.96 dB
when using 1-bit quantization, 0.54 dB when using 2-bit quantization, and further decreases
for higher bit quantization. Consequently, the dynamic range required for the ADC is not
excessively high. This is why many commercial GPS receivers employ ADCs with just 1 or 2
bits [36]. The only exception to that occurs when GNSS receivers are built with antijamming
capacity [26].

2.3.4 Signal Acquisition

The acquisition process detects the presence or absence of GNSS signals, each signal
distinguished by unique PRN codes. When a positive detection occurs, the acquisition process
yields a rough estimate of the PRN code phase and the Doppler shift, with sufficient accuracy
to initiate the tracking loops. The code phase represents the relative timing offset between a
local replica of the PRN code generated internally in the receiver and the PRN code in the
signal received from a satellite. Achieving accurate timing synchronization, or aligning the
code phase, is crucial for the receiver to correctly begin the tracking process.

The acquisition involves a two-dimensional search across various trial Doppler frequencies
and code phases. The receiver adjusts the timing of the local replica of the PRN code to match
the incoming signal, modifies the residual frequency shift of the local replica to compensate
for the Doppler frequency of the received signal, and performs a cross-correlation between
the received signal and the local replica. The duration over which the receiver sums or
integrates the signal in a coherent manner when performing the cross-correlation is referred
to as Coherent Integration (CI) time. GNSS satellites use orthogonal PRN codes, which
exhibit high autocorrelation only at zero lag. Therefore, the receiver achieves maximum cross-
correlation when the received signal and the local replica are perfectly aligned, and the Doppler
frequency of the received signal is effectively wiped-off.

A way to perform this two-dimensional search is to perform a serial search, systematically
testing different combinations of frequency offsets and code phases one after the other.
However, this results in a long acquisition time as each potential combination must be checked
sequentially, making the process time-consuming, especially in scenarios with weak signal
conditions or high levels of interference. As an example of this, GPS L1 C/A signals have
PRN codes with a duration of 1 ms, and a length of 1023 chips, therefore the receiver has to
search through 1023 possible code phases. On top of that, as explained in subsection 2.2.4,
a static GNSS receiver on the earth surface may experience a Doppler frequency of ≈ ±5
kHz. A typical value of the search step of the Doppler frequency used in the local replica is
𝑓𝑠𝑡𝑒𝑝 = 1

2𝑇𝐶𝐼
[37], and a typical value for 𝑇𝐶𝐼 is the duration of the PRN code, 1 ms in this

case, or a multiple of it, resulting in 𝑇𝐶𝐼 = 500 Hz. If, for instance, a sampling frequency of 4
Mega samples per second (Msps) is employed, and a code phase search with a granularity of
one sample is conducted, this results in a very large number of combinations:

(1ms) · (4Msps)) (25000 (max Doppler Hz)
500 (Doppler step Hz)

+ 1) = 40000 combinations . (2.20)

25



Chapter 2. Background and State of the Art

In practice, to improve the speed and efficiency of signal acquisition, techniques are used to
parallelize the search across one of the parameters: the code phase or the Doppler frequency.
The Parallel Code Phase Search (PCPS) algorithm is usually more efficient in scenarios with
stable signal conditions [38].

The PCPS algorithm performs a circular correlation between the incoming signal and the
local replica of the PRN code in the frequency domain. The computation of the circular
cross-correlation is performed as follows: the discrete Fourier transforms of the finite length
sequences 𝑥(𝑛) and 𝑦(𝑛), both of length 𝑁 , may be formulated as

𝑋 (𝑘) =
𝑁−1∑︁
𝑛=0

𝑥(𝑛)𝑒−
𝑗2𝜋𝑘𝑛
𝑁 , (2.21)

and

𝑌 (𝑘) =
𝑁−1∑︁
𝑛=0

𝑦(𝑛)𝑒−
𝑗2𝜋𝑘𝑛
𝑁 , (2.22)

respectively. Multiplying 𝑋 (𝑘) and𝑌 (𝑘) yields the circular cross-correlation of 𝑋 (𝑘) and𝑌 (𝑘)
in the frequency domain. This relationship can be expressed as

𝑍 (𝐾) = 𝑋∗(𝐾)𝑌 (𝐾) =
𝑁−1∑︁
𝑚=0

𝑥(𝑚)𝑒−
𝑗2𝜋𝑘𝑚

𝑁

𝑁−1∑︁
𝑛=0

𝑦(𝑚 + 𝑛)𝑒−
2𝜋𝑘 (𝑚+𝑛)

𝑁

=

𝑁−1∑︁
𝑛=0

𝑁−1∑︁
𝑚=0

𝑥(−𝑚)𝑦(𝑚 − 𝑛)𝑒− 2𝜋𝑘𝑛
𝑁 .

(2.23)

Performing the inverse Fourier transform on 𝑍 (𝐾) produces the circular cross-correlation
sequence between two finite length sequences 𝑥(𝑛) and 𝑦(𝑛) both with length 𝑁 and with
periodic repetition:

𝑧(𝑛) = 1
𝑁

𝑁−1∑︁
𝑛=0

𝑥(−𝑚)𝑦(𝑚 − 𝑛) =
𝑁−1∑︁
𝑚=0

𝑥(𝑚)𝑦(𝑚 + 𝑛) . (2.24)

Figure 2.6 shows a block diagram of the PCPS algorithm [38].
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Figure 2.6 Parallel Code Phase Search (PCPS) algorithm [38].

The receiver correlates the received signal with the local replica across all trial Doppler
frequencies to obtain the Cross-ambiguity function (CAF). The CAF is a two-dimensional
function correlating the received signal with the local replica by varying both time delay and
Doppler shift. A peak in the correlation output indicates the precise timing of the received code
and its Doppler frequency. After acquisition, the receiver transitions to the tracking phase,
where it continuously adjusts the timing and frequency of its local code replica to maintain
alignment with the satellite signal, as both the satellite and receiver are in motion.

More in-depth analysis of the acquisition algorithm can be found in [25, 26, 34, 38].

2.3.5 Signal Tracking

The primary purpose of tracking is to closely follow the evolution of the signal synchronization
parameters of a satellite signal and to demodulate the navigation data contained within it. These
synchronization parameters are specific elements of the received signal that enable the receiver
to maintain a stable lock on the signal, including for instance the code phase, Doppler shift and
carrier phase.

The tracking process executes the tracking loops, which are feedback systems that continuously
adjust the receiver’s internal code, frequency, and phase to match those of the incoming satellite
signals. Two tracking loops are needed to track the received signals: one loop is used to track
the Doppler shift and is referred to as the carrier loop. The other one is used to track the
PRN code and is referred to as the code loop. Typical GNSS receivers rely on scalar tracking
techniques employing Delay-Locked Loop (DLL) and Phase-Locked Loop (PLL) architectures
(i.e., first- or second-order DLLs and second- or third-order PLLs), for code and carrier phase
tracking, respectively.

A typical GNSS receiver implements coupled code and carrier tracking loops. Figure 2.7
depicts a block diagram of the tracking loops. The code tracking loop comprises the generation
of the PRN code replica, the code discriminator, and the code filter, while the carrier tracking
loop encompasses the Numerically Controlled Oscillator (NCO), the carrier discriminator, and
the carrier filter.
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Figure 2.7 Tracking Loop.

The receiver performs Doppler wipeoff by adjusting the frequency and phase of the NCO to
match the Doppler shift. The digitized complex input baseband signal, comprising the In-Phase
(I) and In-Quadrature (Q) components, is multiplied by The output of the NCO.

The receiver generates three replica codes: Early (E), Prompt (P), and Late (L), with typically
half-chip phase differences between them. The Doppler-corrected I and Q components are
correlated with these three replica codes by undergoing multiplication with the E, P, and L
codes, followed by coherent integration through the Integrate and Dump (I&D) block.

The correlation outputs are subsequently processed by both a code discriminator and a
carrier discriminator. These discriminators compare the integrators’ outputs to estimate
code phase, and carrier phase (or frequency) errors, respectively. Various techniques are
available for acquiring code phase differences and carrier phase differences, each with differing
computational loads and accuracy levels. Code phase discriminators include noncoherent early
minus late power, quasi-coherent dot product power and coherent dot product [25]. Carrier
phase discriminators include PLLs and Costas Loops. PLLs are sensitive to data bit transitions,
whereas Costas Loops are designed to be insensitive to such transitions. Both PLLs and Costas
loop discriminators produce phase error estimates at their respective outputs [25].

A Frequency-Locked Loop (FLL) discriminator can also be employed for GNSS tracking. FLL
discriminators generate a frequency error estimate. While the PLL and the Costas loop are
known for their high accuracy, they are more susceptible to dynamic stress, which encompasses
changes in carrier phase and Doppler shift resulting from motion and acceleration. In practice,
tracking loops are typically initiated using short coherent integration times in conjunction
with an FLL and a wideband carrier loop filter. Subsequently, these tracking loops smoothly
transition into a Costas loop when data modulation is present on the carrier signal or a PLL
when tracking dataless pilot signals. This transition process involves gradual adjustments: the
coherent integration time is gradually aligned with the period of data transitions, and the carrier
tracking loop bandwidth narrows down to the extent allowed by the anticipated dynamics [25].

Code and carrier filters are applied to the discriminators’ outputs to reduce noise. Subsequently,
the filtered code phase and carrier phase errors are used to drive the generation of the PRN
code replica and the NCO, facilitating the refinement of the alignment between the PRN code
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replicas and Doppler compensation. Various types of filters are discussed in more detail in [25].

The number of PRN code replicas used in GNSS receivers is optimized for the best tracking
performance of the received signals. For GPS L1 C/A signals, three replicas – E, P, and L –
are typically employed. When tracking GNSS signals with pilot components, such as GPS L5
and Galileo E5a signals, four replicas are used: E, P, and L for the pilot component, plus an
additional Prompt P for the data component and navigation data demodulation. For Galileo
E1 signals, the use of the CBOC(6,1, 11) modulation introduces correlation ambiguities. To
mitigate the risk of tracking a local maximum instead of the global maximum, discriminators
incorporating two additional samples of the cost function, named Very Early (VE) and Very
Late (VL) can be employed [39].

More in-depth analysis of the tracking loops can be found in [25, 26, 34, 38, 40].

2.3.6 Telemetry Decoder

The telemetry decoder processes the data produced by the tracking loops, extracting and de-
coding the data bits from the navigation messages broadcast by GNSS satellites, and obtaining
the satellite ephemeris data, almanac data, time information, satellite status information and
the broadcasted ionospheric data.

To synchronize with the navigation messages, the telemetry decoder initially locates the
telemetry preambles. These preambles consist of known bit patterns transmitted within the
navigation messages. They facilitate the identification of the beginning of new frames or
subframes, and help the receiver identify and align with the specific navigation message of
a satellite.

2.3.7 Observables

The Observables block gathers synchronization data from all the active processing channels and
calculates the fundamental GNSS measurements based on this data. These key measurements
include pseudorange, carrier phase (or its equivalent in phase-range form), and Doppler shift
(alternatively expressed as the pseudorange rate).

2.3.8 Position, Velocity, and Time (PVT) computation

The PVT block computes the user’s position, velocity, and time based on the GNSS basic
measurements. It processes these measurements to calculate navigation solutions, providing
this information in formats suitable for further processing or representation.

The primary function of the GNSS PVT system is to ascertain the geographic location of the
receiver. This determination involves calculating the receiver’s coordinates (latitude, longitude,
and altitude) using signals from at least four GNSS satellites. The process, detailed in section
2.1, utilizes trilateration based on pseudoranges, which are the distances measured by the time
it takes for signals to travel from the satellites to the receiver.
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Furthermore, the PVT system derives the receiver’s velocity (both speed and direction)
by analyzing the Doppler shift of GNSS signals. This accurate velocity information is
indispensable for applications like vehicle navigation and tracking.

GNSS systems provide not only precise location and velocity data but also essential timing
information. This timing information is crucial for synchronizing operations across various
sectors, including telecommunications and power distribution networks. The accuracy of this
timing information stems from the synchronization of satellite signals with onboard atomic
clocks. Thus, GNSS PVT systems are foundational, offering comprehensive solutions for
location, movement, and time synchronization across a wide range of applications, from
personal navigation to critical infrastructure management.

2.4 GNSS-SDR Software Receiver

GNSS-SDR is a widely recognized open-source GNSS software receiver, freely accessible
online and released under the GNU General Public License (GPL) license [16,17]. It processes
raw signal samples collected through an RFFE, computes GNSS basic measurements, such
as pseudoranges, pseudorange rates, phase ranges, signal strengths, and obtains navigation
solutions. GNSS-SDR integrates with GNU Radio, a widely used platform for signal
processing and software-defined radio projects [41]. This integration gives GNSS-SDR access
to an extensive library of signal processing blocks and a robust runtime environment. In the SoC
FPGA receiver architecture proposed in this thesis, GNSS-SDR serves as the core baseband
processing engine, enhanced by the capability to offload computationally intensive tasks to the
FPGA, optimizing performance and efficiency.

The source code of GNSS-SDR is written in C++ and released under the GNU GPL. The
software receiver can be built using popular and freely available compilers. As a result, the
source code can be freely inspected and modified.

2.4.1 Receiver Configuration

GNSS-SDR is highly configurable, allowing users to tailor the software to meet a wide variety
of needs and applications. This flexibility stems from its architecture, which is designed to
be modular and arbitrarily extensible. Users can adjust parameters related to signal processing
algorithms, tracking loops, and data output formats, among others. This configurability enables
the adaptation of GNSS-SDR to different GNSS signals, receiver hardware, and processing
environments, from low-cost, resource-constrained systems to high-performance computing
platforms. Users can specify the satellite systems and signal types they wish to process
through configuration files, allowing for a high degree of customization for specific projects
or experiments.

The receiver’s settings and operational parameters are determined through a configuration
text file. This file allows users to define the behavior of the receiver without modifying the
source code, making it a user-friendly way to adapt the software to different requirements and
scenarios.
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2.4.2 Receiver Architecture

The GNSS-SDR software receiver is designed around the principle of task parallelization,
where execution threads are distributed across multiple computing nodes to execute concur-
rently, handling different threads or processes on the same or varied data sets. This design aims
to spread out processing tasks across several threads, a strategy critical for avoiding processing
or memory access bottlenecks that could impede the entire processing chain from achieving
real-time operation.

The software’s architectural approach draws inspiration from Kahn’s formal representation
of process networks and his work on defining a programming language that simplifies the
structuring of dynamically evolving networks of processes [41, 42]. In this model, processes
within a network communicate exclusively through channels, sending and receiving data
elements or tokens. A process waits when attempting to fetch data from an empty channel,
ensuring that the network’s behavior remains deterministic. In this way, the sequence of tokens
produced does not depend on the processes’ execution order. With the correct scheduling
policy, it’s possible to create software-defined radio networks that are non-terminating and
strictly bounded, meaning they can run indefinitely without deadlock situations and maintain a
bounded number of data elements in communication channels, regardless of execution order.

This concept is encapsulated in the idea that software-defined radios can be conceptualized as
a flow graph comprising nodes (representing signal processing blocks) and links (representing
data flows). This flow graph is essentially an acyclic directional graph with no closed cycles,
featuring source blocks to introduce samples, sink blocks to terminate or export samples, and
various signal processing blocks in between. This structure underpins the GNSS-SDR’s design,
ensuring efficient and reliable processing of satellite navigation signals.

GNSS-SDR is composed of two main components: a control plane, responsible for overseeing
the receiver’s operations, interfacing with the operating system, external applications, and user-
machine interactions; and a signal processing plane, dedicated to deriving information from raw
signal samples [16].

The Control plane creates a flow graph in which a sample stream goes through a network of
connected signal processing blocks up to the position fix. The flow graph is created according
to the GNSS-SDR configuration file mentioned in Section 2.4.1. The configuration file allows
users to define the flow graph (type of signal source, number of channels, algorithms to be used
for each channel and each module, strategies for satellite selection, type of output format, etc.)

The signal processing plane is the collection of blocks that implement digital signal processing
algorithms . Integrating with the GNU Radio framework [41], GNSS-SDR leverages a modular
design where each component in a flow graph is designed to handle data and asynchronous
messages through multiple input and output connections. This architecture enables the software
to efficiently process digital signals by dynamically scheduling tasks across its components.
Specifically, a sophisticated runtime scheduler ensures that data units are effectively passed
from data sources to destinations. Here, individual processing blocks operate independently
in separate threads, working diligently to process incoming data from their buffers as swiftly
as possible, without being constrained by the rate of incoming data. Every block operates
with its own distinct scheduler, alongside an asynchronous messaging system that facilitates
communication with both upstream and downstream blocks. The underlying scheduler
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orchestrates the movement of data across the graph, from sources to sinks, optimizing the
flow to maintain high throughput. This method allows GNU Radio-based software receivers
to operate at peak efficiency, leveraging the full potential of the processing hardware, data
flow, and available buffer capacity to handle the input signal at the highest possible processing
speed [16].

Figure 2.8 shows a diagram of the modules that form the GNSS software receiver. GNSS-SDR
implements the baseband signal processing chain, from sample capture up to the computation
of the PVT solution and the generation of GNSS products in standard formats, enabling
interoperability and integration with other systems. The flowgraph contains several processing
blocks: signal source, signal conditioner, acquisition, tracking, navigation message decoder,
observables, and PVT, enabling easy addition, modification, and replacement of GNSS receiver
algorithms. A Control Thread reads the GNSS-SDR configuration file and operates in parallel
with the flow graph, receiving notifications and triggering changes in the receiver’s state. A
channel Finite State Machine (FSM) controls the interaction of the various channel blocks. The
receiver uses GNU radio’s streaming data flow model and messaging system to pass data and
asynchronously communicate events between blocks. The signal source, signal conditioner,
acquisition, tracking, telemetry decoder, observables and PVT blocks are regular GNU radio
signal processing blocks.

Figure 2.8 Software architecture of the GNSS-SDR software receiver (source: [17]).
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2.4.3 Supported Output Formats

The proposed receiver produces GNSS signal products in standard open formats, including
Geographic Information Systems (GIS)-oriented, standard, and application-specific messages,
as well as observation and navigation data files. These formats include Receiver Independent
Exchange Format (RINEX) Files, Radio Technical Commission for Maritime Services (RTCM)
messages with configurable rates, GPS Exchange Format (GPX), Keyhole Markup Language
(KML), GeoJSON, and National Marine Electronics Association (NMEA)-0183 messages for
sensor integration. PVT solutions are generated at a configurable rate in World Geodetic
System (WGS)-84 based on Least Squares or Kalman filtering. For each visible satellite,
the receiver provides time-tagged measurements of pseudorange (in m), carrier phase (in
cycles) or phase range (in m), Doppler shift (in Hz) or pseudorange rate (in m/s), received signal
strength (in dB-Hz), Dilution of Precision (DOP), raw navigation data, tracking correlators’
output, GPS Time, Galileo Time, and Coordinated Universal Time (UTC) time. This facilitates
integration with other positioning technologies.

Table 2.7 lists some of the most relevant output formats.

Table 2.7 Support of output formats

Type of output format Output format

GIS-oriented
• KML [43]

• GeoJSON [44]

Standard and
application-specific

messages

• NMEA 0183 [45]

• GPX [46]

• RTCM-104 v3.2 [47]

Observation and navigation
data files

• RINEX v3.02 [48]

2.4.4 Cross-compiling GNSS-SDR

GNSS-SDR can be cross-compiled across multiple architectures, including but not limited to
Intel x86-64 [49] and ARM [50].

Embedded GNU/Linux systems suitable for operating GNSS-SDR can be created using the
Yocto project. The Yocto project is an open-source building framework for the creation
of customized embedded GNU/Linux systems, providing tools, processes, templates, and
methods to rapidly create and deploy embedded platforms [51]. The Yocto Extensible Software
Development Kit (eSDK) is a component of the Yocto Project, designed to streamline the
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addition and modification of packages in an embedded Operating System (OS), as well as
facilitating the rebuilding of the final OS image. It provides a comprehensive and configurable
Yocto Project environment, allowing for a more flexible and efficient development workflow.

The Yocto Project uses the OpenEmbedded build system [51]. The core of this system is
the BitBake tool, along with a set of metadata known as OpenEmbedded-Core (OE-Core). The
Yocto Project and OpenEmbedded share OE-Core, which is a collection of recipes, classes, and
associated files used to build various software packages and images for embedded devices. This
build system facilitates the organization of metadata into multiple layers. These layers serve to
segregate various customizations applicable to different applications and system components.
Each layer is a repository containing a related set of instructions that guide the build system’s
actions. This layered approach not only allows for the integration of hardware and software
components but also supports collaboration and customization.

An OpenEmbedded layer named meta-gnss-sdr is available to facilitate the development and
installation of GNSS-SDR across various embedded platforms [52]. Furthermore, a repository
named oe-gnss-sdr-manifest [53] provides repo manifests for setting up the OpenEmbedded
build system specifically for building systems based on the meta-gnss-sdr layer. Repo is a tool
that enables the management of many repositories given a single manifest file [54].

Finally, a customized GNU/Linux distribution named Geniux (GNSS-SDR for Embedded
GNU/Linux) supports the development and operation of GNSS-SDR on embedded de-
vices [55]. Based on the Yocto Project, this distribution includes a carefully selected set of
tools, libraries, and drivers optimized for a broad spectrum of SDR applications, thus facilitat-
ing their advancement to production readiness. The foundation of Geniux is the meta-gnss-sdr
layer, which specifies the distribution’s packages and provides the recipes for downloading and
building these components.

In addition to this, configurations and instructions for creating Docker images are available
online, specifically designed for FPGA and GNU/Linux design tools [56]. These Docker
images facilitate the setup of the design tools required for designing embedded systems based
on GNSS-SDR.

2.5 Introduction to FPGAs

FPGAs are a type of digital integrated circuit that can be reconfigured and reprogrammed
after manufacturing, which gives them their unique field-programmable attribute. These
programmable semiconductor devices are based on a matrix of Configurable Logic Blocks
(CLBs), connected through programmable interconnects. This design allows them to perform
a wide range of logical functions, ranging from simple logic gates to complex combinational
functions and state machines. The interconnects facilitate various configurations of these
blocks, making them similar to a digital breadboard in their flexibility and reusability. FPGAs
also feature specialized configurable hardware accelerators for specific operations, such as DSP
slices for fast complex addition and multiplication, Random-Access Memory (RAM) blocks
for data storage, and Clock Management Tiles (CMTs) for clock generation, clock distribution,
and clock manipulation.

FPGAs are highly valued for their reprogrammability, making them suitable for a variety of
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applications such as rapid prototyping, product development, and systems that require frequent
updates. Although FPGAs are fully manufactured devices, their architecture remains design-
independent, providing exceptional flexibility for implementing a wide range of designs. This
versatility allows them to adapt to evolving technological needs and project specifications

The flexibility and rapid processing capabilities of FPGAs are their main advantages. FPGAs
achieve parallelism by executing various tasks concurrently through the utilization of diverse
configurable logic blocks, leading to improved system performance and reduced processing
time.

Programming an FPGA typically involves using a Hardware Description Language (HDL) such
as Very High Speed Integrated Circuit Hardware Description Language (VHDL) or Verilog.
These languages enable designers to describe the desired logic and circuitry in a textual format.
Designing with FPGAs can be challenging, requiring significant expertise in both hardware
design and programming. Their effective use demands a deep understanding of digital circuit
design and specialized programming languages.

FPGAs are extensively used in various areas, including the prototyping of integrated circuits,
digital signal processing, telecommunications, and safety-critical domains such as the auto-
motive and aerospace industries. FPGAs are more cost-effective than Application-Specific
Integrated Circuits (ASICs) for low-volume production. Unlike ASICs, which are custom-built
for specific tasks, FPGAs offer adaptability but are less efficient for high-volume production
due to their general-purpose nature.

2.5.1 Basic Building Blocks of an FPGA

The main elements of an FPGAs are the CLBs, the programmable interconnect, the In-
put/Output (I/O) blocks, and specialized hardware units, including DSP blocks, RAM blocks
and CMT blocks. Additional specialized hardware units include high-speed trasnceivers for
high-speed serial communication, supporting a wide range of communication protocols.

A CLB is a fundamental component in FPGAs, serving as the primary unit for implementing a
variety of logical functions. Each CLB consists of programmable logic gates, Lookup Tables
(LUTs), and flip-flops. The LUTs in a CLB can be configured to perform a broad spectrum of
combinatorial logic circuits, ranging from simple logic gates to complex multi-bit arithmetic
functions. Flip-flops are used for storing states or the results of logic operations, facilitating
the creation of sequential logic circuits. Additionally, CLBs are instrumental in implementing
distributed RAM within FPGAs. This type of RAM is a distributed form of memory, composed
of individual memory elements. Each element is essentially a flip-flop capable of storing a
single bit of data. These elements are strategically dispersed throughout the FPGA, enabling
tight integration with the programmable logic elements, which is crucial for efficient processing
in various applications.

The I/O blocks are programmable units in FPGAs that manage the interface between the
FPGA’s internal logic and external circuits. These blocks enable the FPGA to interact with
other devices and systems, receiving input signals from and sending output signals to them. The
I/O blocks in an FPGA are organized into groups, with each group capable of independently
supporting different I/O standards. Through software configuration, these blocks can be
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adapted to various electrical standards and physical I/O characteristics, such as adjusting drive
current size and modifying resistance during signal transitions. Additionally, many FPGAs are
equipped to support Double Data Rate (DDR) register technology, which allows for faster data
transfer by processing data on both the rising and falling edges of the clock signal.

The DSP blocks facilitate the implementation of complex algorithms for filtering, modulation,
demodulation, Fourier transforms, and other signal-processing functions. The RAM blocks
facilitate fast data access, buffering, and storage. Both DSP and RAM blocks are typically
organized into columns on the FPGA device. [15].

FPGAs are intricately designed as a two-dimensional grid of configurable elements, as shown
in Figure 2.9. The specialized hardware elements, including DSP and RAM blocks, are not
depicted in this figure.
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Figure 2.9 Simplified FPGA block diagram (DSP blocks, RAM blocks and other specialized
hardware blocks not shown).

The programmable interconnect consists of electrically programmable interconnections, which
include horizontal and vertical routing tracks, switch matrices, and multiplexers. These
components collectively provide the routing paths for the FPGA’s programmable logic blocks.
The routing paths themselves are made up of wire segments of various lengths, which can be
interconnected through programmable switches. The configurability of these paths is achieved
by manipulating these switches, enabling them to open or close connections between different
lines. The operation of these switches is controlled by the configuration data loaded into the
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FPGA, allowing for the customization of the FPGA’s internal circuitry according to specific
needs [57].

2.5.2 FPGA Intellectual Property (IP) Cores

IP cores are pre-designed and pre-verified functional blocks or modules that can be integrated
into FPGAs. These cores add specific functionalities or features to FPGA designs without the
need to develop these functions from scratch. Provided by FPGA manufacturers, third-party
vendors, or created in-house, IP cores streamline the development process by offering pre-built,
tested, and optimized components. They are particularly useful for commonly used functions
like communication interfaces, processors, or signal processing blocks, saving significant time
and effort in the design process. Furthermore, the modularity of IP cores enhances the ease
of maintenance and updates within a design. Many IP cores can be customized or configured
to meet specific project requirements, offering scalability and adaptability. By utilizing these
pre-existing cores for standard functionalities, developers can focus more on the unique aspects
of their projects. This approach promotes innovation and distinctiveness in the final product,
enabling developers to create advanced systems efficiently without reinventing the wheel.

Each FPGA vendor offers a distinct selection of IP cores, which can be categorized as hard,
firm, and soft. Users have the capability to implement and package their own soft or firm IP
cores for code reuse. Soft IP cores offer the greatest flexibility, while hard IP cores provide
maximum efficiency and performance. The distinctions between these types are elaborated in
the following subsections [57].

2.5.2.1 Soft IPs

Soft IP cores are provided as synthesizable Register Transfer Level (RTL) models. RTL is
a level of abstraction in digital circuit design that describes the movement of data between
registers and the logical operations performed on this data. This abstraction is typically
implemented using HDLs, such as VHDL or Verilog. Synthesizable code, written in an HDL,
refers to a specific type of code used in the design of digital circuits that can be implemented in
FPGAs. It possesses unique characteristics that enable it to be directly converted into a physical
hardware design. Synthesizable code is written in a way that unambiguously describes the
circuit’s behavior. This means the code is clear and deterministic in terms of how data flows
and how operations are performed within the circuit. While synthesizable code describes the
logic and structure of the circuit, it also can include timing constraints. These constraints guide
the synthesis tool in optimizing the design for the desired performance characteristics.

Soft IPs offer several advantages in the design and development of FPGAs, including enhanced
flexibility for customization, reduced development time and costs, ease of integration, and the
ability to be easily modified and optimized for specific applications. Since they are not tied to
a specific process technology, soft IP cores can be reused across multiple projects and different
types of semiconductor fabrication processes. This reusability reduces the need for redesigning
the IP for each new project.

Soft IP cores can be packaged using the standard IP-XACT format. IP-XACT is an Extensible
Markup Language (XML) schema that provides a uniform method to define and describe these
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IPs, facilitating their integration into larger integrated circuit designs [58]. This format is
essential for ensuring that IPs from different sources can be effectively combined, enabling
code reuse and streamlining the design process in electronic circuit development.

The SoC FPGA receiver architecture proposed in this thesis employs soft FPGA IP cores to
implement algorithms with the highest computational demands, notably those associated with
acquisition and tracking multicorrelators. These FPGA IP cores are packaged using the IP-
XACT format, facilitating the reuse of the hardware accelerators across multiple SoC FPGA
devices of the same manufacturer. This is described in more detail in Chapter 3.

2.5.2.2 Firm IPs

Firm IP cores are gate-level netlists that offer the flexibility to place modules within the FPGA
based on usage, with minimal user-configurable options. A gate-level netlist is a representation
of a digital electronic circuit at a very low level of abstraction. It describes the circuit in terms
of individual logic gates and the connections (nets) between them. Each logic gate in the netlist
corresponds to a specific digital function, such as AND, OR, NOT, or others. Firm cores offer
a balance between flexibility and performance. They provide some level of customization but
may not offer the same level of flexibility as soft cores.

2.5.2.3 Hard IPs

Hard IP cores are physically instantiated in the silicon. This means they are actual, tangible
layouts embedded into the chip. They are highly optimized for Power, Performance and
Area (PPA). Because they are physically part of the chip, they can be fine-tuned to achieve
maximum efficiency in terms of speed, energy consumption, and space usage on the silicon.
For this reason, using hard IP cores result in a more efficient design than using soft IP cores.
Using dedicated hard IP blocks results in lower power consumption compared to implementing
the same operations in general-purpose logic using CLB blocks, especially for power-critical
applications.

However, the core functionality of hard IP cores is fixed, thereby limiting their flexibility and
degree of configurability compared to soft IP cores. Because they are physically part of the
chip, hard IP cores are typically tied to a specific fabrication process, and they are not as
portable as soft IP cores.

Common examples of hard IP cores include the specialized hardware blocks mentioned in
Section 2.5.1, including, DSP units, complex I/O interfaces, and specific memory types like
Static Random Access Memory (SRAM). Hard IP cores are typically used in applications
where high performance is crucial and where the volume of production is sufficient to offset
the higher costs of design and manufacturing.

Memory elements like Block Random Access Memorys (BRAMs) and DSP units are method-
ically placed in rows or columns within the FPGA. This strategic placement ensures their even
distribution and accessibility from CLBs, enhancing data storage, retrieval, and processing ef-
ficiency.
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2.5.3 FPGA Design Flows

The FPGA design flow is a process that transforms a conceptual design into a hardware
implementation in the FPGA [59, 60]. This process begins with the conceptualization of
the system’s functional requirements, followed by the design entry phase where the design
is described using a HDL such as VHDL or Verilog. High-Level Synthesis (HLS) tools may
also be employed to describe the design using higher abstraction level languages like C or C++.

Following design entry, the synthesis phase takes place. During synthesis, the HDL code
is translated into a gate-level representation, known as a netlist, which is specific to the
FPGA architecture being targeted. This netlist is then optimized to meet specified constraints
including area, power, and performance objectives.

To ensure the design behaves as intended, simulation is conducted at various stages. Pre-
synthesis simulation helps identify and correct logical errors in the HDL code, while post-
synthesis simulation verifies that the synthesis process has not introduced any errors and that
the design meets its intended functionality with real FPGA constraints applied.

The implementation phase is next, where the synthesized netlist is further processed to fit
onto the physical FPGA device. This involves mapping the netlist to the specific resources
available on the FPGA, and then placing and routing these mapped elements within the FPGA’s
architecture. Placement assigns each logic element a specific location on the FPGA, and routing
establishes the interconnections between these elements. This step is crucial for meeting
performance constraints such as timing. In addition, post-placement and routing simulation
may be carried out to verify the implemented design. This stage of simulation is typically very
time-consuming.

Timing analysis is conducted to ensure the design meets all timing requirements. This analysis
is critical for verifying the performance of the design before it is programmed onto the FPGA.

Once the design is verified to meet the necessary constraints and performance requirements, a
configuration file or bitstream is generated. This bitstream contains the data needed to program
the FPGA with the specific design. The FPGA is then programmed using this bitstream
through a hardware programmer, configuring its logic blocks and interconnects to implement
the desired functionality.

The final stage involves verification and testing of the programmed FPGA in the target system
to ensure it functions correctly in real-world conditions. Functional testing and in-system
verification are conducted to monitor performance and identify any issues that need to be
addressed.
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Figure 2.10 Simplified FPGA design flow.

Throughout the FPGA design flow, designers may iterate back to earlier stages to refine
the design based on testing outcomes or to meet additional constraints. This iterative
process, supported by effective use of simulation and timing analysis tools, is key to reducing
development time and ensuring the quality of the final FPGA implementation.

2.5.4 FPGA Design Tools

FPGA development often relies on proprietary tools rather than pure software development
tools. This preference is due to the complexity of FPGA architectures, limited availability of
open documentation, and the necessity for IP protection. Major FPGA manufacturers such as
Advanced Micro Devices (AMD), Intel, Microsemi, and Lattice Semiconductor each provide
specialized software tools tailored to their hardware. These tools encompass synthesis, place
and route, simulation, bitstream generation, and debugging.

Porting an FPGA design to an FPGA device of another manufacturer is a complex task due to
several factors. These include not only the above mentioned unique vendor-specific toolchains,
but also differences in FPGA architectures, variations in IP core compatibility, variations in
clocking and timing constraints, resource utilization disparities, distinct I/O interfaces, and the
presence of vendor-specific features. Each vendor has its strengths and weaknesses, therefore
a careful selection of an FPGA vendor is essential.
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2.6 SoC FPGAs

A SoC FPGA is a semiconductor device that contains a Programmable Logic (PL) and
a Processing System (PS) within a single encapsulation. The PL consists of an FPGA,
enabling flexible hardware implementations. The PS comprises an embedded processor,
typically including memory controllers and various peripheral interfaces for communication
with external components. Figure 2.11 illustrates this architecture. This design merges
the programming ease of a processor with the flexibility and performance advantages of
programmable logic fabric. Consequently, they provide a comprehensive processing system
and programmable logic on a single chip, supporting a broad range of applications.

The programming logic is a standard FPGA, providing CLBs, memory blocks, DSPs blocks,
and I/Os blocks. It is used for custom hardware acceleration, interfacing, and real-time
processing.

SoC FPGA
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Interface
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Figure 2.11 Simplified SoC FPGA block diagram.

Some SoC FPGAs feature additional processing units, such as GPUs, and specialized hardware
units like Artificial Intelligence (AI) engines and video codecs. A specific category of SoC
FPGAs, known as RF SoC FPGAs, also includes configurable RF ADCs and DACs.

Comparatively, SoC FPGAs offer several advantages over traditional FPGAs and microcon-
trollers. They combine the high-speed, adaptable hardware capabilities of an FPGA with the
software-driven functionality of a microcontroller, thereby offering enhanced versatility. The
PS and PL in an SoC FPGA are tightly coupled through various signals and interfaces, includ-
ing on-chip communication bus protocols like the Advanced Microcontroller Bus Architecture
(AMBA) Advanced eXtensible Interface (AXI) [61], I/O routing connections for directly con-
necting peripherals in the processing system to the FPGA, and interrupt lines. This arrangement
enables efficient communication and seamless integration of functionality. Such integration
facilitates faster data exchange between the processor and programmable logic, significantly
reducing latency. Moreover, integrating both components on a single chip often leads to more
efficient power usage.

Combining SDR techniques with FPGA technology allows the creation of adaptable signal
processing systems. SDR techniques facilitate the processing of radio signals through software
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algorithms, and FPGAs deliver the essential hardware acceleration to execute these algorithms
in real time. The flexibility and reprogrammability of FPGAs enables rapid reconfiguration of
the SDR algorithms. Tasks or processes that are computationally intensive or time-critical can
be offloaded to the FPGA fabric, where they can be executed faster than in a general-purpose
CPU.

A detailed description of SoC-FPGAs, providing more details on the elements shown in
Figure 2.11, can be found in [14, 15, 62, 63].

2.6.1 SoC FPGA Design Flows

The prototyping of SoC-FPGA-based systems encompasses both hardware and software design
components. The hardware design is intricately mapped onto the physical resources available
on the SoC device. Concurrently, the software is executed on one or more of the processors
within the system.

The focus of hardware design is on creating custom hardware circuits. These are specifically
mapped to the FPGA’s reconfigurable array of logic blocks and routing resources. This
approach allows designers to develop hardware accelerators, interfaces, and other logic
elements that are precisely tailored to meet the needs of various applications. It has an impact
on power management: FPGAs, tend to be more power-efficient than CPUs for algorithms that
are highly parallelizable and require low latency and high throughput.

Software design involves the development of application software running on the system’s
processor cores. This software is responsible for the overall functionality of the system,
including the management of the FPGA operations and handling intricate signal processing
tasks. The software design also involves the development of drivers and firmware. This
software facilitates communication, control, and data exchange between the CPU and the
FPGA’s custom hardware components.

Several design methods are available for the development of hardware and software, with the
main approaches to designing SoC-FPGA-based systems being the separate hardware/software
design flow and the software-oriented hardware/software co-design [15]:

• Hardware/software design flow: The system is divided into hardware and software
sections that are designed independently, using dedicated tools for each. The designer
searches for an optimal partitioning and assignment of tasks between the software
running in the embedded processor and the hardware implemented in the FPGA, with
the objectives of minimizing power consumption. Figure 2.12 illustrates a simplified
workflow for this approach, where hardware and software development can largely
proceed in parallel. Following their individual conclusion, Software and hardware
development are followed by integration testing, where the FPGA and the software
components are combined and tested to confirm that they interact according to their
requirements [15]. This method allows each component to be developed independently,
without waiting for the other’s completion.

• Software-oriented, hardware/software co-design flow: the functionality of the whole
system is described at a high level of abstraction using software code or block-based
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design techniques, using advanced tools. The tools can then quickly partition hardware
and software elements in the SoC-FPGA in different ways according to the designer’s
commands, and all the communication interfaces between the FPGA and the software are
automatically managed by the tools [15]. The software functionality is then strategically
distributed between the hardware and software components of the System on Chip (SoC),
considering the available resource capabilities and guided by the designer’s decisions.
This approach can be markedly quicker, as the tools are capable of rapidly generating
various configurations based on the designer’s optimization preferences. Additionally,
the integration of software and hardware elements is managed by the tools, simplifying
the overall design process. Presently, there’s considerable focus in research on design
space exploration, the systematic process of hardware-software partitioning to optimize
heterogeneous systems like SoC FPGAs for specific performance goals, using Machine
Learning (ML) heuristics to decide which tasks should run on the software and which on
the hardware portion of the chip.

Requirements

System 
Specification

Hardware 
Development 
and Testing

System Design

System 
Integration and 

Testing

Software 
Development 
and Testing

Figure 2.12 A simple hardware/software design methodology [15].

The advantage of the hardware/software co-design approach is its ability to allow designers
to test hardware and software components together early in the design cycle. This early
integration facilitates the identification and swift resolution of issues or bottlenecks, contrasting
with traditional hardware design where changes might be more time-consuming and costly.

Conversely, traditional separate design approaches provide the benefit of utilizing distinct,
specialized tools for hardware and software. This offers flexibility, particularly advantageous
for those who prefer employing a complete FOSS toolchain for software development,
independent of hardware design tools.

The design methodology proposed in this thesis embraces a separate hardware/software design
flow. This choice is motivated by the flexibility it offers, enabling the use of a FOSS toolchain

43



Chapter 2. Background and State of the Art

for software development that is independent of the FPGA design tools. This approach not
only offers flexibility but also potentially simplifies the development process by allowing for
the independent evolution and optimization of software components.

More detailed explanations of the hardware/software design flow and the hardware/software
co-design methodologies are provided in Chapter 3.

2.7 Design Forces and Key Performance Indicators (KPIs)

2.7.1 Design Forces

The GNSS receiver architecture and design methodology, alongside the concept demonstrators
presented in this thesis, have been designed considering a range of design forces. These forces
encompass factors, requirements, constraints, and considerations aimed at enhancing the per-
formance of the proposed GNSS receiver prototypes. The design forces considered, as outlined
in [64], include scalability, testability, portability, maintainability, reproducibility, openness,
accuracy, precision, availability, efficiency, flexibility, interoperability, and reliability. These
design forces are explained below:

• Scalability refers to the proposed architecture’s ability to incorporate new features and
process new satellite signals.

• Testability refers to the extent to which the proposed architecture supports testing.

• Portability refers to the ability of the proposed architecture to operate across various
hardware systems, ensuring usability regardless of the underlying platform.

• Maintainability is defined by the ease with which the implemented receivers can be
maintained, encompassing both error resolution and the implementation of new features.

• Reproducibility concerns the ability to achieve reproducible builds.

• Openness measures the degree to which the proposed architecture allows access for
viewing, modifying, and using it, promoting transparency and collaboration.

• Accuracy refers to how close the measured or calculated position of a receiver is to the
true or actual position.

• precision is related to the consistency of repeated measurements, indicating the spread
around the average value.

• Availability measures the proportion of time the receiver is operational and capable of
providing navigation solutions.

• Efficiency encompasses the receiver’s ability to process multiple signals in parallel while
optimizing power consumption.

• Flexibility denotes the receiver’s adaptability to various scenarios and user requirements.
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• Interoperability describes the capability of a GNSS receiver to utilize signals from
multiple satellite constellations and to exchange raw GNSS data effectively.

• Reliability assesses the dependability of the navigation solutions provided by the
receiver.

2.7.2 Key Performance Indicators (KPIs)

In the context of GNSS, KPIs are essential metrics for evaluating the performance and
effectiveness of GNSS services and devices. They provide a quantifiable and measurable
gauge of a product’s progress towards achieving its objectives. These KPIs are designed to
assess receiver performance, taking into account a range of design forces—both technical and
operational challenges—that the proposed GNSS receivers must effectively address [64].

The design forces listed in Section 2.7.1 shape the context and objectives of the design process,
while KPIs offer ways to measure success in meeting those objectives. Below is an examination
of the KPIs considered for each design force. These KPIs are sourced from [64].

Table 2.8 outlines the KPIs considered for evaluating the architectural and design methodology
in Chapter 3, alongside the design forces. Although these KPIs are not measured, they form
the foundation of our discussion.

Table 2.8 KPIs for architectural and design methodology evaluation [64]

Design force KPIs

Scalability

Quasi-linear acceleration with the number of processors available in
the computing platform.
Arbitrarily scalable architecture: unlimited addition of new GNSS
signals and algorithms.
Arbitrarily scalable configuration system.

Testability
Availability of a testing framework.
Availability of an application-level logging system.
Availability of a flexible configuration mechanism.

Portability
Supported processor and SoC-FPGA architectures.
Supported operating systems.

Maintainability
Change Request Response Time
Time to Fix Defects

Reproducibility
Availability of a software development process that ensures that a
given source code will always produce the same binary or output (e.g.,
executable file, package, or any other form of software product)

Openness
Use of free and open source licenses and/or availability of a technical
description of the algorithms implemented in the receiver

Table 2.9 illustrates the KPIs considered for the the concept demonstrator’s evaluation, along
with the design forces.
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Table 2.9 KPIs for concept demonstrator evaluation [64]

Design force KPIs

Availability

Acquisition sensitivity for each targeted GNSS signal, in 𝐶/𝑁0:
minimum signal strength required for the receiver to perform
acquisition and achieve a position fix.
Tracking sensitivity for each targeted GNSS signal, in 𝐶/𝑁0:
minimum signal strength required for the receiver to perform tracking
and achieve a position fix.
Time to First Fix (TTFF), in seconds: time required for a receiver to
determine its PVT after being turned on.

Efficiency

Number of parallel channels that the software receiver can sustain in
real time, given the targeted signals (GPS L1 C/A, Galileo E1b/c, GPS
L5, Galileo E5a.
Power consumption (in Watts)

Flexibility

Possibility to process signals either in real time or in post-processing
time
Possibility to easily define and interchange implementations and
parameters for each processing block
Availability of operation modes, as combinations of single and
multiple frequency bands, and single or multiple constellations

Interoperability

Number of GNSS signals, defined as combinations of frequency band
and channel or code, from which GNSS observables can be generated
Sampling frequency
Sample bit length and interpretation

Reliability
Availability of Receiver Autonomous Integrity Monitoring (RAIM)
mechanisms

Precision Stand-alone receiver’s positioning precision.
Accuracy Stand-alone dynamic position accuracy

The design forces and KPIs mentioned above are relevant for the continuous improvement and
innovation within the field of satellite navigation. Further elaboration on the TTFF, as well as
the precision and accuracy of the navigation solutions, can be found in the subsections below.

2.7.3 Time to First Fix (TTFF)

The TTFF indicates how quickly the device can start providing accurate location data after
being powered up or after losing its previous lock on satellite signals. It can be specified in the
following scenarios [64]:

• Cold start: This is when the GNSS receiver has no prior knowledge of its time, location,
or the satellites’ positions. It might occur when the device is turned on for the first time
or has been inactive for a long time.

• Warm start: The receiver has access to the current time and the almanac, which provides
the schedule and rough orbital information of the satellites. Additionally, it has a coarse
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estimation of its position, accurate to within 100 km. However, it lacks the current
ephemeris data, which is essential for precise satellite positioning.

• Hot start: The receiver has almost all the current information it needs, including the
current time and almanac, a coarse estimation of its position, accurate to within 100 km,
and the current ephemeris data.

2.7.4 Precision of the Navigation Solutions

The quality of the navigation solutions produced by the GNSS concept demonstrators
developed in this thesis is assessed using standard positioning precision measurements and
corresponding static confidence regions. Precision, which indicates how closely a solution
aligns with the mean of all obtained solutions, reflects repeatability or the spread of the
measurement. Key confidence measurements include Distance Root Mean Square (DRMS) and
Circular Error Probability (CEP) for 2D positioning, as well as Spherical Accuracy Standard
(SAS), Mean Radial Spherical Error (MRSE), and Spherical Error Probable (SEP) for 3D
positioning. Formulas for 2D and 3D position confidence regions are provided in Tables 2.10
and 2.11, respectively [65, 66].

Table 2.10 Most common 2D precision measures.

Measure Formula Confidence region
probability

2DRMS 2
√︃
𝜎2
𝐸
+ 𝜎2

𝑁
95 %

DRMS
√︃
𝜎2
𝐸
+ 𝜎2

𝑁
65 %

CEP
0.62𝜎𝑁 + 0.56𝜎𝐸

(accurate if 𝜎𝑁

𝜎𝐸
> 0.3)

50 %

Table 2.11 Most common 3D precision measures.

Measure Formula Confidence region
probability

99 % SAS 1.122(𝜎𝐸 + 𝜎𝑁 + 𝜎𝑈) 99 %
90 % SAS 0.833(𝜎𝐸 + 𝜎𝑁 + 𝜎𝑈) 90 %

MRSE
√︃
𝜎2
𝐸
+ 𝜎2

𝑁
+ 𝜎2

𝑈
61 %

SEP 0.51(𝜎𝐸 + 𝜎𝑁 + 𝜎𝑈) 50 %

These measurements involve converting the receiver’s latitude, longitude, and height coordi-
nates into a local East-North–Up (ENU) coordinate system, with the WGS-84 reference el-
lipsoid as the reference [67]. Standard deviations for the East (E), North (N), and Up (U)
coordinates are computed. The standard deviation for East coordinates, denoted as 𝐸 [𝑛], using
the mean value 𝐸 of the East coordinates and the number of position fixes, 𝐿, can be computed
as
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𝜎
(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)
𝐸

=

√√√
1

𝐿 − 1

𝐿∑︁
𝑙=1

(𝐸 [𝑛] − 𝐸)2 . [m] (2.25)

The mean value of the East coordinates is calculated as

𝐸 =
1
𝐿

𝐿∑︁
𝑙=1

𝐸𝑙 . (2.26)

The standard deviation calculations for North (N) and Up (U) coordinates followed the same
procedure as (2.25) and (2.26) for East coordinates.

2.7.5 Accuracy of the Navigation Solutions

Accuracy refers to how close the measured or calculated position of a GNSS receiver is to
the true or actual position. Its measurement requires a reference position in the case of static
positioning and a controlled mobile platform in the case of dynamic positioning [64]. The most
common accuracy measurements are shown in tables 2.12 and 2.13. They are computed in a
similar way as the 2D and 3D precision measurements shown in section 2.7.4, however the
standard deviations are computed with respect to a reference location, as shown in

𝜎
(𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦)
𝐸

=

√√√
1

𝐿 − 1

𝐿∑︁
𝑙=1

(𝐸 [𝑛] − 𝐸𝑟𝑒 𝑓 )2 , [m] (2.27)

for the East coordinates 𝐸 (𝑛), where 𝐸𝑟𝑒 𝑓 is the reference point, and 𝐿 is the number of position
fixes [65, 66].

Table 2.12 Most common 2D accuracy measures.

Measure Formula Confidence region
probability

2DRMS 2
√︃
𝜎2
𝐸
+ 𝜎2

𝑁
95 %

DRMS
√︃
𝜎2
𝐸
+ 𝜎2

𝑁
65 %

CEP
0.62𝜎𝑁 + 0.56𝜎𝐸

(accurate if 𝜎𝑁

𝜎𝐸
> 0.3)

50 %
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Table 2.13 Most common 3D accuracy measures.

Measure Formula Confidence region
probability

99 % SAS 1.122(𝜎𝐸 + 𝜎𝑁 + 𝜎𝑈) 99 %
90 % SAS 0.833(𝜎𝐸 + 𝜎𝑁 + 𝜎𝑈) 90 %

MRSE
√︃
𝜎2
𝐸
+ 𝜎2

𝑁
+ 𝜎2

𝑈
61 %

SEP 0.51(𝜎𝐸 + 𝜎𝑁 + 𝜎𝑈) 50 %

2.8 Review of Software-Defined GNSS Receivers

Advancements in software and hardware technology have significantly accelerated the develop-
ment of software-defined GNSS receivers, as evidenced by an increasing volume of textbooks
and publications on the topic. Textbook [68] focuses on GPS receiver theory and practice,
while [26, 38] discuss the benefits of the SDR approach, providing Matlab implementations
for a complete GPS receiver. More recently, ref. [69] introduces the Beidou and GPS dual-
system software receiver algorithms, and ref. [70] details the construction and operation of
multi-GNSS and multi-frequency software receivers using advanced techniques. Tutorials and
detailed discussions on software GNSS receiver architectures are available in several publica-
tions [71–73]. Ref. [74] reviews the history of GNSS SDR development over the last decade.
It highlights key public SDR implementations and contributions to the field, discusses the stan-
dardization of intermediate-frequency sample data and metadata, and suggests updates to the
SDR Standard by the Institute of Navigation (ION).

Numerous publications have documented the design, implementation, and preliminary perfor-
mance evaluation of software-defined GNSS receivers. These systems vary in both their in-
tended use and the underlying technology. Many are implemented entirely in software, without
any programmable logic, and operate on PCs or other computing devices [16,75–80]. Alterna-
tively, some software receivers leverage the parallel computing capabilities of GPUs to enhance
performance, as demonstrated by [81, 82]. Additionally, software libraries facilitating the de-
velopment of software-defined GNSS receivers have been introduced by [83]. While these
systems are highly flexible and scalable, purely software-based implementations are usually
not energy efficient. GNSS receivers implementing computationally expensive algorithms may
not be suited for battery-powered embedded devices.

Some research focuses on developing FPGA-based platforms for rapid prototyping of GNSS
receiver algorithms, as seen in [84–88], or on platforms that combine FPGAs with DSPs [89].
While these platforms offer significant flexibility, they often require large, power-intensive
devices that lack portability. Conversely, other studies introduce FPGA-based solutions tai-
lored for specific uses, such as GNSS applications in space [90, 91]), safety-of-life GNSS
receivers [92], multi-antenna GNSS receivers [93], and ASIC designs [94]. These imple-
mentations are highly optimized for their respective applications, offering less versatility as
general-purpose platforms for experimenting with a wide range of GNSS receiver algorithms.

Some publications address the trade-off between efficiency and flexibility by leveraging multi-
core parallelism, aiming to reduce power consumption. Ref. [95] proposes a multi-core GNSS
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baseband processing architecture that features numerous processor cores operating at lower
clock frequencies. Similarly, [96] introduces a multi-core architecture with FPGA support,
where the processing cores are implemented within FPGA logic. This approach of using
processor cores embedded in FPGA logic, known as soft processor cores, offers the benefit
of full customizability and inclusion of only essential features. However, compared to hard
processor cores fabricated directly into silicon—like those in SoC FPGAs—soft processor
cores tend to be slower and less power-efficient. Additionally, an Open Computing Language
(OpenCL)-based implementation suggested by [97] seeks to find a middle ground between
flexibility and efficiency, by distributing various signal processing tasks across different
hardware resources (PC, GPU, FPGA).

More recently, a variety of publications have introduced SoC-FPGA-based designs tailored
for specific GNSS applications. These designs leverage the extensive parallelism and energy
efficiency of FPGAs alongside the versatility of embedded processors. For instance, [98]
demonstrates a SoC-FPGA-based receiver’s capability to acquire and track GPS L1 C/A
satellites using recorded signals. Ref. [99] advances this approach with a dual-frequency
receiver designed to support the GPS L2 and L5 bands, enhancing tracking capabilities
following the acquisition of L1 C/A signals. Furthermore, [100] explores a receiver designed
for reflectometry applications, showcasing the adaptability of SoC-FPGA-based systems to
specialized GNSS tasks. In these implementations, the FPGA component primarily handles the
most computationally intensive operations, allowing the SoC processor to focus on calculating
basic GNSS measurements and navigation solutions.

The materials referenced span a variety of platforms, including CPUs, GPUs, FPGAs, DSPs,
and SoC-FPGAs, utilized either individually or in combination to achieve optimal performance.
CPU-based systems often run on PCs or embedded processors, showcasing the versatility
of CPU applications. There are also devices that integrate CPUs with FPGAs, functioning
on both PCs and embedded processors, some of which utilize soft processors implemented
within FPGA logic for enhanced customization. Table 2.14 organizes these references by
processing units and publication dates, compiled from a basic search targeting the most
relevant publications. Initially, software-based implementations predominantly relied on CPUs.
However, there seems to be a tendency towards heterogeneous platforms, like SoC-FPGAs,
which combine various processors and co-processors within a single system. This trend
underscores a strategic move to optimize system performance by delegating specific tasks to
the most appropriate processing units, thereby enhancing efficiency and adaptability.
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Table 2.14 Table comparing related work based on publication date and underlying processing
units .

Year CPU CPU,
GPU

FPGA,
DSP

FPGA CPU,
FPGA

CPU,
FPGA,
GPU

SoC
FPGA

1997 [75]
2003 [76]
2004 [83] [84]
2006 [89]
2008 [81]
2009 [77]
2010 [78] [82] [90]
2011 [16] [91, 94,

95]
2012 [92, 93]
2013 [96]
2014 [85, 86]
2015 [79]
2018 [80]
2019 [87] [98]
2020 [97]
2021 [99]
2022 [88] [100]

The research articulated in this dissertation is distinguished by a unique combination of features
not previously brought together in this field:

• A flexible SoC-FPGA-based GNSS receiver architecture aiming to enhance the balance
between flexibility and energy efficiency.

• A generic design methodology for the development of portable, experimental GNSS
receivers, intended for research purposes that demand non-standard features. The
proposed methodology facilitates code reuse and allows for the development of GNSS
receivers across a range of research applications.

• The integration of a SoC FPGA architecture with GNSS-SDR, a popular FOSS-
based software-defined receiver. This approach facilitates code reuse and simplifies
the implementation of modifications within the signal processing path. In this way,
researchers can save time by avoiding repetitive problem-solving and focus immediately
on developing the specific features they require. The software running in the embedded
processor is portable to various processor architectures, including the Intel x86-64 [49]
and the ARM architectures [50]. Therefore, novel algorithms can be first tested in
software, followed by an implementation in an ARM-based SoC FPGA.

• Flexibility in the licensing types for FPGA hardware accelerators: In the proposed
designs, FPGA IP cores are not restricted to FOSS licenses, providing opportunities to
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monetize research while enhancing research impact and reputation. While the FPGA IP
cores developed in this thesis are under proprietary licenses—limiting public access to
their HDL source code—the underlying signal processing algorithms remain accessible.
They can be examined through their software implementation in GNSS-SDR and detailed
in the documentation of the cores.

2.9 Summary

This chapter established the foundational context for this thesis, providing the essential
knowledge crucial to the work presented. It introduced GNSS systems and the fundamentals
of GNSS receivers, including an overview of the widely recognized and publicly available
FOSS GNSS-SDR software receiver. This software is a critical component of the proposed
SoC FPGA receiver architecture.

Additionally, the chapter delved into FPGA and SoC FPGA technology, highlighting their
main features and design flows, thus setting the stage for their application within this research.
FPGAs enhance the power efficiency of software-defined GNSS receivers by enabling parallel
processing of receiver channels within the FPGA. Additionally, they enable the development of
a flexible architecture, allowing for updates and modifications without the need for hardware
redesign. However, FPGA design presents challenges due to the complexity of design tools
and the necessity of using HDL languages, which demand a thorough understanding of parallel
computing, timing, and hardware behavior. These factors contribute to longer development
times.

After exploring GNSS and FPGA technologies, this chapter introduced the design forces and
KPIs that are pivotal in subsequent chapters for discussing the proposed receiver architecture
and methodology, as well as for evaluating the concept demonstrators.

Finally, the state of the art of existing software-defined GNSS receiver implementations is
reviewed, showing a trend towards the use of heterogeneous platforms that combine different
types of processing units to optimize performance and assign signal processing tasks to the
most suitable units.

The literature review presented in this chapter has been published in:

• [20] M. Majoral, C. Fernández-Prades, and J. Arribas, “A Flexible System-on-Chip
Field-Programmable Gate Array Architecture for Prototyping Experimental Global
Navigation Satellite System Receivers,” Sensors, vol. 23, no. 23, 2023, Art. no. 9483.
doi: 10.3390/s23239483
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System Design and Methodology

This chapter elaborates on the proposed GNSS receiver architecture and design methodology,
beginning with a design overview that highlights the architecture’s components, including
the RFFE, SoC FPGA, and communication interfaces. The discussion narrows down to
the FPGA architecture, detailing how it processes digitized signals from the RFFE through
sample conditioning, buffering, and hardware accelerators for the acquisition and tracking
multicorrelator algorithms. Additionally, the software architecture is examined, particularly
how the GNSS-SDR software receiver delegates resource-intensive tasks to the FPGA.

Next, the design methodology is outlined. The prototyping of SoC-FPGAs-based systems
incorporates both software and hardware design aspects. This process entails programming
the GNSS-SDR signal processing blocks (software design) and developing FPGA hardware
accelerators (hardware design). A separate software and hardware design flow is adopted
to enable the concurrent development of the software receiver and the FPGA hardware
accelerators. Additionally, this approach facilitates the development of the software receiver
using a FOSS toolchain, which operates independently of the FPGA design tools.

The proposed design methodology incorporates several key components introduced in Sec-
tion 2.4.4: the Yocto Project framework and the OpenEmbedded build system [51], along with
various tools including the Geniux GNU/Linux customization [55], the meta-gnss-sdr Yocto
layer [52], the oe-gnss-sdr-manifest [53], and the Docker images [56]. While the design and
development of the SoC FPGA architecture and methodology are central to this thesis, the
development of the aforementioned tools — specifically, the Geniux customization, the meta-
gnss-sdr layer, the repo manifest, and the Docker images — falls outside its scope.

Finally, the proposed architecture is discussed in terms of several design forces, including
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scalability, testability, portability, maintainability, reproducibility, and openness.

3.1 Proposed GNSS receiver architecture

The proposed architecture is based on SoC FPGAs, strategically distributing the signal
processing tasks between the FPGA and the SoC’s integrated processor. This distribution
is carefully planned, considering the processing units’ capabilities, the specific demands
of computing tasks, and the algorithms’ frequent update requirements. By doing so, the
architecture effectively leverages the distinct advantages of both FPGAs and embedded
processors, creating a synergistic effect that enhances overall performance. Additionally, it
streamlines the implementation process, ensuring a more efficient development timeline.

To optimize performance and minimize power usage, it’s essential to allocate tasks judiciously
according to their inherent characteristics. Tasks that leverage parallel processing, requiring
high throughput and minimal latency, are ideally assigned to the FPGA. In contrast, tasks
requiring less throughput, and characterized by complex, sequential processing and decision-
making branches, which challenge parallelization, are more aptly handled by the embedded
processor. Simultaneously, from the perspective of minimizing development time, tasks that
undergo frequent changes and require experimentation are more suitably implemented on the
embedded processor. Conversely, specialized tasks that do not need frequent updates are ideally
placed on the FPGA.

In this two-dimensional scenario, tasks that do not clearly fall into the established categories
should be assigned to either the FPGA or the embedded processor, after carefully weighing
their respective advantages and disadvantages. This decision is taken at design time. The
GNSS-SDR software receiver can be utilized to profile these tasks and determine the optimal
hardware-software partitioning.

In GNSS receivers, the tasks that demand the most computational effort are those involved
in processing the received signals at the baseband sampling rate. Primarily, these tasks occur
during the initial stages of the software-defined signal processing chain, namely, the acquisition
and tracking of multi-correlator processes. These critical tasks are focused on the relentless
correlation of the incoming signals with the local copies of the PRN codes, essential for the
accurate detection and tracking of signals. Unlike other stages, these initial tasks do not involve
complex decision-making processes, highlighting their specialized, computationally intensive
nature without the need for intricate branching decisions.

The remaining parts of the signal processing chain (the control of the tracking loops, the
telemetry decoding, the computation of the observables, and the PVT) typically process the
received signals at the symbol rate or a lower rate. These tasks are also the most complex ones
in terms of decision branching and on top of that they require frequent updates, when testing
new algorithms for research purposes.

Considering these facts, the FPGA is tasked with sample conditioning and buffering, as
well as with the acquisition and tracking multicorrelator processes, capitalizing on its ability
for massive parallel processing and energy efficiency. Conversely, the embedded processor
manages the control of tracking loops, telemetry decoding, computation of the observables, and
PVT calculations, taking advantage of its quicker development cycles and simpler architecture,
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which are crucial for facilitating research and development of new GNSS receiver algorithms.

3.1.1 SoC FPGA Architecture

As outlined in Chapter 2, a SoC FPGA combines programmable logic with a processing system,
which includes various peripheral interfaces. This is depicted in Figure 3.1. The peripheral
interfaces include Universal Asynchronous Receiver / Transmitter (UART) and Ethernet ports
for connecting external devices. This setup enables the implementation of an embedded
receiver that can disseminate GNSS data to remote devices using universally recognized
formats like RINEX, RTCM (with adjustable rates), and NMEA-0183 messages, ensuring
compatibility and ease of integration with other systems. The support for these output formats
is detailed in Table 2.7 in Chapter 2. Both Ethernet and UART interfaces offer versatile
communication options, with Ethernet providing the added advantages of enabling receiver
remote control and the transmission of signal snapshots to an off-site computer for further
analysis. Signal snapshots are discrete segments of the received GNSS signals captured at
specific points in time.

SoC FPGA

Processing System

Peripherals

Embedded Processor

Programmable Logic (FPGA)

Ethernet Interface

UART Interface

Receiver Control

GNSS output Products 
in Standard Formats

Figure 3.1 SoC-FPGA Receiver block diagram.

Figure 3.2 shows a block diagram of the GNSS receiver architecture. The diagram highlights
the main components of the GNSS receiver: the RFFE and the SoC-FPGA. The illustration
also depicts the FPGA logic and the Embedded Processor, alongside the primary functional
blocks of the GNSS receiver within both components.
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Figure 3.2 Receiver architecture.

The RFFE in Figure 3.2 is tuned to the desired GNSS frequency bands, performs direct RF
to baseband conversion, and digitizes the received signals. Utilizing multi-frequency RFFEs
enables the implementation of GNSS receivers that support multiple frequencies.

The FPGA Logic comprises four functional blocks, as illustrated in Figure 3.2: sample
conditioning and buffering, acquisition and tracking, Direct Memory Access (DMA), and
PS/PL interface. These blocks are briefly explained below:

1. Sample Conditioning and Buffering: The sample conditioning and buffering block
receives the samples coming from the RFFE and implements sample buffering and
clock conversion between the front-end interface and the FPGA hardware accelerators.
The sample conditioning and buffering block also implements a bit selector, used to
dynamically requantize the GNSS signals to map the dynamic range of the incoming
samples to the dynamic range of the acquisition and tracking hardware multicorrelators.
The bit selector dynamically selects the most significant bits of the digitized signal based
on the received signal power, as explained in more detail in Section 3.1.3.

2. Acquisition and Tracking: The FPGA incorporates hardware accelerators for the algo-
rithms with the highest computational cost: the acquisition and tracking multicorrela-
tors [101]. The most computationally expensive algorithms are the signal processing
stages that process the digitized signals at the sampling rate. However, it is also pos-
sible to offload any other processor-intensive algorithms to the FPGA. The acquisition
and tracking hardware multicorrelators are explained in more detail in Sections 3.1.4
and 3.1.5 respectively.

3. DMA: the FPGA implements a bi-directional direct memory access. The DMA can be
used to run the receiver in post-processing mode using recorded GNSS files, to record
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the received GNSS signals into files, to capture snapshots, or to send the received GNSS
signals to an external device in real-time.

4. PS/PL Interface: Interface between the FPGA and the processing system. This interface
is implemented using the AMBA Advanced eXtensible Interface 4th generation (AXI4)
memory-mapped bus. The GNSS baseband engine controls the execution of the
acquisition and tracking multicorrelators using a set of memory-mapped registers, and
a set of interrupts going from the FPGA to the processing system.

The processor shown in Figure 3.2 runs GNSS-SDR on a customized GNU/Linux OS.
The processor cores are configured for Symmetric Multi-Processing (SMP). GNSS-SDR
implements the baseband GNSS processing engine. GNSS-SDR has an option to offload the
most computationally demanding tasks to the FPGA. This option can be used when cross-
compiled for execution in embedded processors, enabling the execution of the GNSS-SDR in
real-time using portable devices.

When working in post-processing mode, the receiver processes recorded GNSS signals. The
recorded GNSS signals are usually stored in a non-volatile device such as Secure Digital
(SD) card. The embedded processor transfers the recorded signals from the SD card to the
system’s DDR memory, and programs the DMA in the FPGA to simultaneously transfer the
signals from memory to the hardware accelerators in the FPGA. Transferring the recorded
signals directly from the SD card to the hardware accelerators using only the FPGA would
increase efficiency. However, this approach would lead to a more complex implementation,
necessitating the development of a dedicated controller within the FPGA. The OS running in
the embedded processor has proper drivers to enable easy access to external system components
such as the SD card, facilitating the use of the embedded processor for transferring the samples
from the SD card to the system’s memory. For this reason, the current implementation uses
both the DMA and the embedded processor to read the recorded signals. The involvement of
the PS in both reading samples from the recorded signals and in the GNSS signal processing
algorithms hinders real-time processing speeds of the recorded signals. However, that is not a
problem, as real-time operation is usually not required when processing recorded signals, and
the processing speed adapts to the system capabilities.

The process of capturing snapshots also involves the use of DMA and the embedded
processor. The utilization of the embedded processor leverages the OS Transmission Control
Protocol/Internet Protocol Transmission Control Protocol/Internet Protocol (TCP/IP) software
stack, facilitating the utilization of the Ethernet interface for sending the captured snapshots
from the system’s memory to a remote computer (Snapshot Capturing in Figure 3.2). The
sample transfer fully occupies the processor, rendering simultaneous real-time operation with
GNSS-SDR unfeasible during the transfer.

The proposed architecture has been implemented and tested using the AMD’s Zynq 7000
All Programmable SoC [102] and the Zynq Ultrascale+ Multi Processor System-on-Chip
(MPSoC) [63] families, demonstrating the flexibility and the scalability of the design. Various
types of GNSS receivers can be implemented on a wide range of SoC-FPGAs, starting from
a Zynq 7000 SoCs featuring a single-core Cortex A9 ARM processor, 23 k logic cells and
66 DSP slices [103], and up to a Zynq Ultrascale+ MPSoC with quad-core ARM Cortex-
A53 processors, 1143 k logic cells and 2520 DSP slices [104]. The scalability of the
Zynq 7000 and the Zynq Ultrascale+ devices enables the implementation of a wide range
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of GNSS receivers, starting from low-power and small form-factor single-frequency and
single-constellation devices and up to multi-frequency, multi-constellation, high-performance
receivers implementing highly complex algorithms.

The subsections below provide a more detailed description of the FPGA architecture, the
acquisition and tracking multicorrelator hardware accelerators, and the software design.

3.1.2 FPGA Architecture

Figure 3.3 shows a schematic representation of the FPGA design, providing a comprehensive
view of the functional blocks outlined in Figure 3.2: the sample conditioning and buffering, the
acquisition and tracking, the PS/PL interface, and the DMA. The block diagram in Figure 3.3
showcases the implementation of a multi-frequency multi-constellation GNSS receiver capable
of processing GPS L1 C/A, Galileo E1b/c, GPS L5 and Galileo E5a signals.

In Figure 3.3, a dual-channel RFFE is tuned to the L1/E1 and L5/E5a frequency bands. The
RFFE performs RF to baseband conversion, implements AGC, digitizes the received signal
using ADCs, and forwards the digital samples to the FPGA. The FPGA performs signal
conditioning and buffering of the received samples. A separate sample buffer is used for each
frequency band (labeled as L1/E1 Buffer, and L5/E5a Buffer). The sample buffers are followed
by several multicorrelator hardware accelerators. Each tracking multicorrelator is preceeded
by a small sample buffer (labeled as Channel Buffer). In this example, the GNSS receiver
implements 24 multicorrelator hardware accelerators for each frequency band, and therefore
the receiver can potentially track up to 48 GNSS signals simultaneously.
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Figure 3.3 Detailed FPGA design.

The L1/E1 and the L5/E5a buffers also deliver the received samples to the acquisition hardware
accelerator. The input of the acquisition hardware accelerator in the L1/E1 band is preceded
by a downsampling filter. By placing the downsampling filter in front of the acquisition, the
receiver employs a reduced sampling frequency for the acquisition of the GNSS signals in the
E1/L1 frequency band, and subsequently, a higher sampling frequency for tracking the same
signals. This arrangement aligns with the fact that the signal detection is not significantly
benefited from operating within a bandwidth exceeding that necessary to capture the main lobe
of the received signals, which is approximately 2 MHz for GPS L1 C/A signals and 4 MHz
for Galileo E1b/c signals, due to the increased noise in the captured signal [105]. However,
using a large bandwidth for tracking GNSS signals facilitates a more precise determination of
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the carrier and code phases of the received signals. Using a reduced sampling frequency for
the acquisition of GNSS signals in the E1/L1 frequency band also speeds up the acquisition
process.

The FPGA also implements the bi-directional DMA engine. The DMA engine can be used
to transfer recorded GNSS signals from the processing system memory to the L1/E1 and the
L5/E5a buffers and in this way run the receiver in post-processing mode. The DMA can also be
used to capture snapshots from the RFFE and transfer them to the processing system’s memory.

The PS/PL interface in Figure 3.3 implements an efficient mechanism to enable, disable,
configure, and exchange information between the processing system and the hardware
accelerators in the FPGA. Each hardware accelerator presents a series of accessible read/write
registers via an AXI4 bus connection with the processing system. In order to reduce the
computational load, individual interrupt signals are directed from each hardware accelerator
to the processing system. The interrupts trigger acquisition and tracking channels callbacks in
the processing system to read the results and to reload the acquisition and tracking parameters
for processing the next batch of samples. The processing system controls the tracking loops,
cycling through the following steps:

1. The software running in the processing system configures the multicorrelator hardware
accelerators with updated parameters: coherent integration time, Doppler frequency
correction, etc.

2. The multicorrelator hardware accelerator captures a new batch of samples and processes
the samples on the fly.

3. The multicorrelator hardware accelerator finishes processing the received samples.

4. The multicorrelator hardware accelerator interrupts the processing system and waits for
the multicorrelation results to be read. The software running in the processing system
reads those results and operates the tracking loop.

The sample buffers are essential for temporarily storing incoming samples while the multicor-
relator hardware accelerators are awaiting the processing system’s response. This necessity
arises due to the embedded OS’s response time to hardware interrupts. The processing system
runs GNU/Linux. In this way, GNSS-SDR can be easily cross-compiled and used in the em-
bedded platform. However, GNU/Linux is not a real-time operating system. For this reason,
the processing system may not immediately react to the interrupts coming from the tracking
multicorrelators. When the processing system does not promptly respond to the interrupts, the
multicorrelators that are in a waiting state block the flow of samples, exerting back pressure
on the channel buffers. During normal operation, when processing GNSS signals in real-time,
the channel buffers are never completely filled in. However, should a temporary CPU overload
occur and result in channel buffer overflow, the L1/E1 and the L5/E5a buffers will store the
incoming samples, reducing the probability of sample loss. The L1/E1 buffer and the L5/E5a
buffer are identical. Having a separate buffer for each frequency band reduces the probabil-
ity of sample loss when a temporary channel buffer overflow occurs, as the channel buffer
temporarily obstructs the flow of samples in one frequency band only.

The FPGA hardware accelerators are implemented as soft IP cores enabling portability across
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many AMD Zynq 7000 All Programmable SoC and Zynq Ultrascale+ MPSoC variants [63,
102].

The subsections below explain the dynamic bit selection process, and the acquisition and
tracking multicorrelator hardware accelerators in more detail.

3.1.3 Dynamic Bit Selection

The dynamic bit selector selects the most significant bits in the digitized signal based on the
incoming signal’s power. Its necessity stems from the mismatch between the number of bits per
sample provided by most commercial ADCs and the quantization depth required for processing
GNSS signals in the acquisition and tracking multicorrelator hardware accelerators.

Most commercial ADCs not specifically designed for GNSS receivers typically utilize a large
number of bits per sample. For instance, the AD9361 transceiver—used in the concept
demonstrators presented in Chapters 4, 5, and 6—uses 12 bits per sample [106]. However, as
detailed in Section 2.3.3, GNSS receivers without antijamming capabilities do not significantly
benefit from a high bit depth. In line with this, the acquisition and tracking multicorrelator
hardware accelerators process GNSS signals using a selectable small bit quantization depth (2
or 4 bits per sample), as determined by the user.

Even with the RFFE implementing AGC, a fixed selection of bits from the samples delivered by
the ADC may not lead to optimal bit usage, due to the discrepancy between the ADC’s output
bit depth and the bit depth utilized by the acquisition and tracking hardware accelerators.

The dynamic bit selection process in the FPGA dynamically maps the input of the acquisition
and tracking hardware accelerators to the most significant bits of the samples coming from the
ADC, minimizing quantization loss.

3.1.4 Acquisition Hardware Accelerator

The purpose of the acquisition hardware accelerator is to detect GNSS signals coming from the
visible satellites and to estimate the code phase and the carrier frequency of received signals.
The acquisition implements the PCPS algorithm, which is detailed in Section 2.3.4. The
PCPS algorithm performs a step-by-step search for the Doppler frequency, while concurrently
parallelizing the code phase search, resulting in reduced signal acquisition time and enhanced
GNSS receiver performance. Table 3.1 serves as a guide for the notation and definitions utilized
in describing the FPGA implementation of the PCPS acquisition algorithm.
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Table 3.1 Notation table for the acquisition algorithm description.

Variable Definition

𝑓𝑚𝑖𝑛 Minimum tested Doppler frequency

𝑓𝑚𝑎𝑥 Maximum tested Doppler frequency

[ 𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥] Doppler frequency span

𝑓𝑑𝑡𝑒𝑠𝑡 Tested Doppler frequency

𝑓𝑠𝑡𝑒𝑝 Doppler search step

𝑥𝐼𝑁 [𝑛] Received GNSS signal input sample stream

𝑇𝑠 Sampling period

𝐷 [𝐾] FFT of the PRN code

|𝑅𝑥𝑑 ( 𝑓 , 𝜏) | Cross Ambiguity Function (CAF)

𝑓𝑑 Estimated Doppler frequency

𝜏 Estimated code phase

The implementation of the PCPS algorithm in the FPGA is described in Algorithm 1 and shown
in Figure 3.4. The first step of the acquisition algorithm is to buffer the received samples. Then,
for each tested Doppler frequency, the acquisition performs the Doppler wipe-off using a local
carrier generated with an NCO and computes the magnitude of the circular cross-correlation
between the received signal and a local replica of the satellite’s PRN code. The circular cross-
correlation is computed in the frequency domain. At the end of this process, the acquisition
obtains the CAF, a two-dimensional function of the code delay and Doppler frequency. The
presence of a signal results in a significant peak detected in the CAF. The acquisition uses a first
peak vs. second peak statistic to assert the presence or absence of a satellite signal, searching
for the second peak value in the same frequency bin of the highest peak, as proposed in [38].
Comparison against a predefined Probability of False Alarm (PFA) is not implemented.

The acquisition hardware accelerator runs the complete acquisition algorithm (Algorithm 1)
with no processor intervention. The FPGA uses a power-of-two Fast Fourier Transform (FFT),
with a configurable FFT size. The acquisition hardware accelerator performs zero padding
when the combination of sampling frequency and length of the PRN codes results in the
need to compute a FFT that is not a power of two. The result is equivalent to using an
arbitrary length Discrete Fourier Transform (DFT), but using a more efficient calculation. The
CAF computation is carried out in parallel to the search for the peak value. The acquisition
hardware accelerator detects GPS L1 C/A, Galileo E1b+c, GPS L5, and Galileo E5a signals,
and it can acquire either the data or the pilot components of the GNSS signals. The current
implementation of the acquisition can be configured to use two or four bits per sample.
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Algorithm 1 Acquisition hardware accelerator
1: Buffer the received samples 𝑥𝐼𝑁 [𝑛]
2: for 𝑓𝑑𝑡𝑒𝑠𝑡 = 𝑓𝑚𝑖𝑛 to 𝑓𝑑𝑡𝑒𝑠𝑡 = 𝑓𝑚𝑎𝑥 in 𝑓𝑠𝑡𝑒𝑝
3: Perform Doppler wipe-off: 𝑥 [𝑛] = 𝑥𝐼𝑁 [𝑛] · 𝑒− 𝑗2𝜋 𝑓𝑑𝑡𝑒𝑠𝑡 𝑛𝑇𝑠 , for 𝑛 = 0, . . . , 𝑁 − 1
4: Compute 𝑋 [𝐾] = 𝐹𝐹𝑇𝑁 (𝑥 [𝑛])
5: Compute 𝑌 [𝐾] = 𝑋 [𝐾] · 𝐷 [𝐾], for 𝑘 = 0, . . . , 𝑁 − 1
6: Compute 𝑅𝑥𝑑 ( 𝑓𝑑𝑡𝑒𝑠𝑡 , 𝜏) = 1

𝑁2 𝐼𝐹𝐹𝑇𝑁 (𝑌 [𝑘])
7: end for
8: Search the peak value and its indices in the search grid: {𝑆𝑚𝑎𝑥 , 𝑓𝑖, 𝜏𝑗 } = 𝑚𝑎𝑥 𝑓 ,𝜏 |𝑅𝑥𝑑 ( 𝑓 , 𝜏) |2

9: Search the second peak value 𝑆𝑚𝑎𝑥2 in the same frequency bin of the highest peak
|𝑅𝑥𝑑 ( 𝑓𝑖, 𝜏) |2, for 𝜏 = 0, . . . , 𝑁 − 1

10: Compute test statistic Γ =
𝑆𝑚𝑎𝑥

𝑆𝑚𝑎𝑥2
11: Compare with threshold value: If Γ > 𝛾
12: Declare positive acquisition and provide 𝑓𝑑 = 𝑓𝑖 and 𝜏 = 𝜏𝑗
13: else
14: Declare negative acquisition
15: end if
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Figure 3.4 FPGA acquisition hardware accelerator.

3.1.5 Tracking Multicorrelator Hardware Accelerators

The tracking multicorrelator hardware accelerator computes the correlation of the incoming
signal with various local replicas of the satellite’s PRN code, 𝑅𝑥𝑑 (𝜏). The FPGA also wipes
off the PRN secondary code. The tracking multicorrelator hardware accelerator implements
the NCO, the generation of the PRN code replica, and the I&D blocks shown in Figure 2.7 in
Chapter 2.

The software implements the tracking loop, which uses the correlation results obtained in
the FPGA to synchronize the local replicas of the PRN code to the incoming signal and

63



Chapter 3. System Design and Methodology

to follow the evolution of the signal synchronization parameters as accurately as possible.
Table 3.2 serves as a guide for the notation and definitions utilized in describing the FPGA
implementation of the tracking multicorrelator algorithm.

Table 3.2 Notation table for the tracking multicorrelator algorithm description.

Variable Definition

𝑁 Number of samples indicating coherent
integration time.

𝑓𝑑 Estimated Doppler frequency
𝑥𝐼𝑁 [𝑛] Received GNSS signal input sample stream
𝑇𝑠 Sampling period
𝑐[𝑛] PRN code
𝑠[𝑛] Secondary code
𝑅𝑥𝑑 (𝜏) Correlation of the incoming signal with the

PRN code
𝐶𝑉𝐸 Very Early correlator output
𝐶𝐸 Early correlator output
𝐶𝑃 Prompt correlator output
𝐶𝐿 Late correlator output
𝐶𝑉𝐿 Very Late correlator output

The implementation of the tracking multicorrelator algorithm is shown in Figure 3.5 and
described in Algorithm 2. The FPGA performs the Doppler wipe-off using a local carrier
generated by an NCO, and multiplies the incoming signal with various code replicas having
configurable spacing between them. As explained in Section 2.3.5, these code replicas are
named VE, E, P, L, and VL [39]. The tracking multicorrelator algorithm implements complex
correlators, separately integrating and dumping the I and Q components of the multiplication
of the incoming signal with the code replicas.

The tracking loops use the multicorrelation results to estimate the derivative 𝑑𝑅𝑥𝑑 (𝜏 )
𝑑𝜏

zero-
crossing, which is used as a timing error detector [25].
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Figure 3.5 FPGA tracking multicorrelator hardware accelerator.

Algorithm 2 Tracking multicorrelator hardware accelerator
1: Initialize the Pilot correlator outputs: 𝐶𝑉𝐸𝑃𝑖𝑙𝑜𝑡

= 0, 𝐶𝐸𝑃𝑖𝑙𝑜𝑡
= 0, 𝐶𝑃𝑃𝑖𝑙𝑜𝑡

= 0, 𝐶𝐿𝑃𝑖𝑙𝑜𝑡
= 0, and

𝐶𝑉𝐿𝑃𝑖𝑙𝑜𝑡
= 0

2: Initialize the Data correlator output: 𝑃𝐷𝑎𝑡𝑎 = 0
3: for 𝑛 = 0 to 𝑛 = 𝑁 − 1
4: Perform Doppler wipe-off: 𝑥 [𝑛] = 𝑥𝐼𝑁 [𝑛] · 𝑒− 𝑗2𝜋 𝑓𝑑𝑛𝑇𝑠
5: For each pilot correlator, determine the following data point of the pilot’s PRN sequence:

𝑐[𝑛]𝑉𝐸
𝑃𝑖𝑙𝑜𝑡

, 𝑐[𝑛]𝐸
𝑃𝑖𝑙𝑜𝑡

, 𝑐[𝑛]𝑃
𝑃𝑖𝑙𝑜𝑡

, 𝑐[𝑛]𝐿
𝑃𝑖𝑙𝑜𝑡

, 𝑐[𝑛]𝑉𝐿
𝑃𝑖𝑙𝑜𝑡

6: For each pilot correlator, determine the following data point of the pilot’s secondary
code sequence: 𝑠[𝑛]𝑉𝐸

𝑃𝑖𝑙𝑜𝑡
, 𝑠[𝑛]𝐸

𝑃𝑖𝑙𝑜𝑡
, 𝑠[𝑛]𝑃

𝑃𝑖𝑙𝑜𝑡
, 𝑠[𝑛]𝐿

𝑃𝑖𝑙𝑜𝑡
, 𝑠[𝑛]𝑉𝐿

𝑃𝑖𝑙𝑜𝑡

7: Determine the following data point of the data’s PRN sequence: 𝑐[𝑛]𝑃
𝐷𝑎𝑡𝑎

8: Determine the following data point of the data’s secondary code sequence: 𝑠[𝑛]𝑃
𝐷𝑎𝑡𝑎

9: Accumulate the pilot’s correlator outputs:
10: 𝐶𝑉𝐸𝑃𝑖𝑙𝑜𝑡

= 𝐶𝑉𝐸𝑃𝑖𝑙𝑜𝑡
+ 𝑥 [𝑛]𝑐[𝑛]𝑉𝐸

𝑃𝑖𝑙𝑜𝑡
𝑠[𝑛]𝑉𝐸

𝑃𝑖𝑙𝑜𝑡

11: 𝐶𝐸𝑃𝑖𝑙𝑜𝑡
= 𝐶𝐸𝑃𝑖𝑙𝑜𝑡

+ 𝑥 [𝑛]𝑐[𝑛]𝐸
𝑃𝑖𝑙𝑜𝑡

𝑠[𝑛]𝐸
𝑃𝑖𝑙𝑜𝑡

12: 𝐶𝑃𝑃𝑖𝑙𝑜𝑡
= 𝐶𝑃𝑃𝑖𝑙𝑜𝑡

+ 𝑥 [𝑛]𝑐[𝑛]𝑃
𝑃𝑖𝑙𝑜𝑡

𝑠[𝑛]𝑃
𝑃𝑖𝑙𝑜𝑡

13: 𝐶𝐿𝑃𝑖𝑙𝑜𝑡
= 𝐶𝐿𝑃𝑖𝑙𝑜𝑡

+ 𝑥 [𝑛]𝑐[𝑛]𝐿
𝑃𝑖𝑙𝑜𝑡

𝑠[𝑛]𝐿
𝑃𝑖𝑙𝑜𝑡

14: 𝐶𝑉𝐿𝑃𝑖𝑙𝑜𝑡
= 𝐶𝑉𝐿𝑃𝑖𝑙𝑜𝑡

+ 𝑥 [𝑛]𝑐[𝑛]𝐿
𝑃𝑖𝑙𝑜𝑡

𝑠[𝑛]𝐿
𝑃𝑖𝑙𝑜𝑡

15: Accumulate the data correlator output:
16: 𝐶𝑃𝐷𝑎𝑡𝑎

= 𝐶𝑃𝐷𝑎𝑡𝑎
+ 𝑥 [𝑛]𝑐[𝑛]𝑃

𝐷𝑎𝑡𝑎
𝑠[𝑛]𝑃

𝐷𝑎𝑡𝑎

17: end for

The computations of the multicorrelator algorithm are concurrently executed in the FPGA. The
coherent integration time can be extended up to the duration of one data symbol without any
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processor intervention. When using a coherent integration time larger than one data symbol
duration, the correlation results have to be further accumulated in software.

The tracking multicorrelators can be configured to use a variable number of code replicas to
track the pilot and data components of the GNSS signals. The configuration shown in Table 3.3
is used. The current implementation of the tracking multicorrelator can be configured to use
two or four bits per input sample.

Table 3.3 Tracking multicorrelator configuration.

Signal Configuration

GPS L1 C/A E, P, L

Galileo E1b/c VE, E, P, L, VL (Pilot Component)
P (Data Component)

GPS L5 E, P, L (Pilot Component)
P (Data Component)

Galileo E5a E, P, L (Pilot Component)
P (Data Component)

3.1.6 Software Architecture

The baseband processing engine is based on the GNSS-SDR software-defined receiver released
under the GNU GPL [16, 17]. As explained in section 2.4, GNSS-SDR implements the
baseband signal processing chain, from sample capture up to the computation of the PVT
solution and the generation of GNSS products in standard formats, enabling interoperability
and integration with other systems. It consists of a modular design with several processing
blocks: signal source, signal conditioner, acquisition, tracking, navigation message decoder,
observables, and PVT, enabling easy addition, modification, and replacement of GNSS receiver
algorithms.

The use of embedded devices requires the implementation of hardware accelerators in
the FPGA for the computationally expensive tasks: the acquisition and the tracking pro-
cesses [101]. The FPGA receives and processes the signals coming from the RFFE, replacing
the GNSS-SDR’s signal sources, and the flow graph structure is changed as shown in Fig-
ure 3.6. The software signal source blocks are removed, the acquisition block becomes a func-
tion that is called when GNSS-SDR proceeds to detect the presence or absence of a satellite
signal, and the tracking blocks act as software signal sources, providing the FPGA multicorre-
lator’s outputs to the telemetry decoder blocks. The acquisition and the tracking multicorrelator
algorithms are performed in the FPGA with no processor intervention, but the PLL and DLL
are managed in the software tracking blocks. GNSS-SDR configures and controls the execu-
tion of the acquisition and tracking FPGA hardware accelerators by writing and reading data
to/from their memory-mapped registers. The acquisition and tracking accelerators issue an
interruption to the processing system when they are ready with new data.
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Figure 3.6 Interface between the FPGA IPs and the GNSS-SDR software receiver.

3.2 Proposed Design Methodology

To accelerate development and facilitate quicker iterations in the concept testing phase, a two-
stage design process is proposed, as detailed in Table 3.4.

The first stage involves implementing, testing, and validating the GNSS algorithms in software,
incorporating the novel algorithms in GNSS-SDR. The receiver can be tested by executing
GNSS-SDR on a general-purpose processor, such as a laptop computer. The second stage
includes cross-compiling GNSS-SDR for the SoC-FPGA platform.

If the embedded processor has sufficient computing power to execute the newly implemented
algorithms in real-time, then it is not necessary to implement hardware accelerators for these
algorithms. If a previous implementation of a SoC-FPGA GNSS receiver is already available,
researchers can use the newly cross-compiled GNSS-SDR software receiver with the existing
platform, and proceed to test and validate the algorithms using the SoC-FPGA platform.

However, if the algorithms being tested require high throughput and low latency, FPGA
hardware accelerators may be implemented. These accelerators are integrated with an option
in GNSS-SDR to offload the processing tasks to the FPGA. This integration phase includes
comprehensive system testing of both GNSS-SDR and the FPGA hardware accelerators. The
final step is field validation of the algorithms using the portable GNSS platform.

Many of these design steps can be partially automated using FOSS tools. The proposed method
enables faster validation and refinement of algorithms in software before they are further
optimized or integrated into a complex system like a SoC FPGA.
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Table 3.4 SoC FPGA-based GNSS receiver design flow.

Design Stage Design tasks

Stage 1: Software
Design

• Implement and validate novel GNSS algorithms in software,
using GNSS-SDR

Stage 2:
SoC-FPGA

Design

• Implement FPGA hardware accelerators.

• Cross-compile the GNU/Linux OS for the embedded processor
on the SoC-FPGA platform.

• Cross-compile a Software Development Kit (SDK) for the em-
bedded processor.

• Modify the GNSS-SDR source code to use the hardware acceler-
ators when the option to use an FPGA is enabled.

• Cross-compile GNSS-SDR for the SoC-FPGA platform using
the SDK

• Integrate the embedded OS, the software and the FPGA compo-
nents and test the complete system in a SoC-FPGA platform.

A design methodology based on separate software and hardware design flows is adopted. This
approach facilitates the development of GNSS-SDR software signal processing blocks using a
FOSS compiler toolchain that is independent of the FPGA development tools. As explained in
Section 2.5, FPGA development often requires a deep understanding of hardware design and is
generally done using hardware description languages like VHDL or Verilog. This requirement
for specialized knowledge can steepen the learning curve and extend the development time
frame for the FPGA-based components. Conversely, programming for CPUs typically involves
high-level languages, which are easier to learn and can lead to faster development times for
complex algorithms.

Code reuse is a fundamental aspect of the proposed design methodology. Implementing the
first prototype can be a lengthy process involving FPGA development and the configuration
and cross-compilation of an embedded GNU/Linux system for the targeted hardware. However,
once the first prototype is implemented, adding new features or porting the existing architecture
to other SoC-FPGA variants becomes a much quicker process, facilitating research on novel
and experimental algorithms.

The proof-of-concept prototypes presented in this thesis were developed using AMD’s SoC
FPGAs, formerly Xilinx. Consequently, the development process utilized AMD’s suite of
development tools. This choice was based on our prior experience with these tools and
motivated by the comprehensive support provided by these tools for both FPGA development
and embedded system development, including support for creating and building embedded
GNU/Linux systems.
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The following subsections explain the proposed design methodology and the design tools used
in more detail.

3.2.1 Stage 1: Software Design Process

Researchers may implement experimental receiver algorithms in the form of GNSS-SDR
software blocks [16,17], creating new software blocks or modifying the existing ones. The new
software blocks can be easily integrated into GNSS-SDR. By default, GNSS-SDR implements
a host-based receiver architecture as shown in Figure 3.7, where a general-purpose processor,
usually a PC, implements the baseband signal processing chain. An external RF tuner featuring
a LNA, an AGC, and an ADC can be used to receive live GNSS signals. GNSS-SDR can
process GNSS signals in real-time, provided that the processor has sufficient computing power.
Thus, researchers can test new signals and algorithms using a PC and an analog front-end.
If the complexity of the implementation prevents real-time processing, researchers may use
GNSS-SDR in post-processing mode using recorded signals.

GNSS-SDR can be compiled using a FOSS toolchain, including the two most popular open-
source compilers, GCC and LLVM/CLang [8]. A GNSS-SDR website is available on the
internet [17], containing tutorials, instructions, and examples of how to download, compile,
use, and contribute to GNSS-SDR. Researchers are encouraged to contribute to GNSS-SDR
and push the newly implemented changes to the GNSS-SDR repository. In this way, novel
algorithms are available to the research community, allowing for review, code inspection, and
further modification.
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Figure 3.7 Host-based GNSS-SDR receiver.
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3.2.2 Stage 2: SoC-FPGA Design Process

After validating experimental GNSS receiver algorithms in software, researchers in need of a
battery-powered, compact, and portable device for field validation can utilize an SoC-FPGA-
based receiver to meet these requirements.

A design based on an SoC-FPGA implements the receiver depicted in Figure 3.8. Often, the
RFFE and the SoC-FPGA device can be combined on the same board, yielding a design that is
both compact and efficient, thereby minimizing the system’s physical footprint. The complete
software receiver, encompassing all signal processing stages, operates within the SoC-FPGA.
A PC is employed for remote control of the receiver via an Ethernet TCP/IP interface, serial
port interface, or a similar communication interface. The SoC-FPGA computes GNSS products
in standard formats and transmits them to the remote PC.
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Figure 3.8 SoC-FPGA GNSS receiver.

As explained in Section 2.4.4, a customized GNU/Linux distribution named Geniux (GNSS-
SDR for Embedded GNU/Linux) supports the development and operation of GNSS-SDR on
embedded devices [55]. This distribution is based on the Yocto Project. It includes a carefully
seleted set of tools, libraries, and drivers optimized for a broad spectrum of SDR applications,
thus facilitating their advancement to production readiness.
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The generation of Geniux images and Software Development Kits (SDKs) can be automated
for specific versions, timestamps, and machines within a virtualized environment through the
Yocto Geniux repository [55]. However, in its default setup, the Yocto-Geniux repository
does not include any FPGA firmware images. Therefore, using this repository to create
Geniux images in the standard configuration does not immediately enable the use of hardware
accelerators in the FPGA.

For this reason, we use the PetaLinux tools [107] to configure and build a Geniux embedded
system and to build a SDK for the target SoC-FPGA platform. PetaLinux is a platform
for embedded GNU/Linux development that streamlines the process of customizing and
building GNU/Linux systems. Using the PetaLinux tools, a Geniux OS can be compiled that
incorporates the FPGA image needed to operate the FPGA hardware accelerators.

The PetaLinux tools, based on the Yocto Project [51] and incorporating the Yocto eSDK, offer
a suite of high-level commands that are integrated with the Yocto Linux distribution. These
tools ease the customization, building, and deployment of embedded GNU/Linux systems
for a variety of AMD SoC-FPGA variants, including the Zynq-7000 and Zynq Ultrascale+
families [63, 102]. They support the incorporation of FPGA images with dedicated FPGA
code, streamlining the process of embedding custom logic directly into the FPGA fabric.

An embedded system that incorporates the FPGA image with hardware accelerators can be
created utilizing the Petalinux tools and the oe-gnss-sdr-manifest repository [53] introduced in
Section 2.4.4. This repository is used to configure the OpenEmbedded build system, tailoring
it to the meta-gnss-sdr layer. This approach effectively implements a Geniux customization,
integrating the FPGA image with the hardware accelerators seamlessly.

The researcher can effectively implement a Geniux-based platform incorporating hardware
acceleration by setting up a PetaLinux project that contains the essential GNU/Linux kernel
and filesystem. This involves importing the FPGA firmware image and deploying the required
layers, libraries, and dependencies provided by the oe-gnss-sdr-manifest repository mentioned
above.

To facilitate the development process, a GitHub repository is also available for generating a
Docker image specifically tailored for AMD Xilinx PetaLinux and Vivado/Vitis FPGA design
Tools, using Ubuntu 18.04 as the base image [56]. It is named docker-petalinux2, and supports
the creation of a Docker environment capable of handling PetaLinux and, optionally, Vivado
and Vitis software. This tool requires Docker [108] to be installed on the user’s machine and
an AMD user ID for downloading the necessary installers. The repository provides detailed
instructions for downloading and preparing the PetaLinux and Vivado/Vitis installers, and
for building the Docker image, which can significantly simplify the development process
with PetaLinux on various systems. The AMD Vivado and Vitis are design tools for FPGA
development [109, 110]. They can be used to develop code for the SoC FPGA devices used in
this thesis, including the AMD Zynq-7000 and Zynq UltraScale+ families [63, 102].

The steps involved in the SoC FPGA design process are detailed in the subsections below.
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3.2.2.1 Implementation of the FPGA hardware accelerators

When developing novel GNSS receiver algorithms, researchers need to assess the feasibility
and advantages of integrating new FPGA-based hardware accelerators. This evaluation should
consider factors such as performance enhancement and cost-effectiveness. The performance
enhancement usually depends on two factors: the algorithm’s computational load and whether
the algorithm directly processes the samples coming from the analog front-end. Algorithms
on the left side of the flow graph shown in Figure 2.8 in Chapter 2, directly processing the
samples coming from the analog front-end, or requiring a high computational load, cannot run
in the embedded processor when the baseband processing engine is running in real-time. As
opposed to this, signal processing blocks on the right side of the flow graph shown in Figure 2.8,
between the tracking multicorrelators and the computation of the PVT solution, can usually be
implemented in software.

The design of the FPGA hardware accelerators requires the use of specialized development
tools. The proof-of-concept SoC-FPGA GNSS receivers were implemented in VHDL using the
AMD Zynq-7000 and the Zynq Ultrascale+ families of SoC-FPGAs. Hence, the FPGA design
process requires the use of the AMD Vivado FPGA Design Suite [109]. FPGAs can also be
programmed using a higher level of abstraction, using software code. A process named HLS,
briefly described in Section 2.5.3, converts software specifications into RTL models. Users
wishing to implement FPGA hardware accelerators using HLS may use the AMD Vitis Unified
Software Platform [111]. The FPGA design tools are not distributed using FOSS licenses.
However, the academic and research community, which includes educators, researchers, and
students, may be eligible for the resources provided by existing university programs [110].

The FPGA design process is devoted to the implementation of the architecture shown in
Figure 3.3. The design of the FPGA architecture takes place in three steps:

• The initial step involves the implementation of FPGA acquisition and tracking hardware
accelerators. These accelerators are implemented as separate FPGA projects and are
encapsulated in the form of FPGA IP cores. In cases where existing acquisition and
tracking hardware accelerators are available from a previous project, they can be reused,
eliminating the need for new implementations. The developer must also design and
integrate hardware accelerators for any newly developed algorithms that necessitate
hardware acceleration.

• The second step is the creation of auxiliary FPGA projects implementing the sample
conditioning, buffer monitors, and other cores that may be used for monitoring the
internal status of the FPGA. These auxiliary IP cores are also implemented as separate
FPGA cores. Again, the cores that are already available from other projects can be reused
and they do not need to be implemented again.

• The third step entails creating an FPGA project that instantiates the acquisition,
tracking, and auxiliary IP cores, alongside the PS/PL interface blocks and the sample
buffers depicted in Figure 3.3. This project should also incorporate any additional
FPGA IP cores required for hardware acceleration or essential for interfacing with the
RFFE. The designer is tasked with importing the necessary IP cores into the FPGA
project, establishing connections and configuring each core to align with the project’s
specifications, ensuring system-wide interoperability
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Some manufacturers provide FPGA example designs implementing RFFE interfaces and DMA
blocks. For instance, Analog Devices, provides FPGA example designs, libraries, and projects
under FOSS licenses for various FPGA architectures [112]. These designs can be reused,
reducing time and effort.

3.2.2.2 Cross-Compiling GNU/Linux for the SoC-FPGA Platform

The initial step in creating an embedded GNU/Linux OS is to install the PetaLinux tools on a
PC and then create a PetaLinux project for the targeted SoC-FPGA platform [107].

Next, the FPGA design is integrated into the PetaLinux project using PetaLinux commands.
This step automatically configures the embedded OS image to align with the FPGA’s hardware
design, including physical addresses of hardware accelerators and interrupt lines.

The subsequent step entails integrating additional layers—drivers, libraries, and applica-
tions—into the PetaLinux project, with a focus on those not included by default. To stream-
line this process, the oe-gnss-sdr-manifest repository [53] should be imported. Utilizing the
Repo tool [54], the developer then synchronizes essential repositories for the integration of
GNSS-SDR and its dependencies at their correct revisions, including the meta-gnss-sdr Open-
Embedded layer [52]. This process effectively creates a Geniux GNU/Linux customization
with FPGA support.

The final step involves building the complete system and generating boot images for the target
SoC-FPGA platform.

3.2.2.3 Cross-compiling an SDK for software development

Cross-compiling an SDK is essential for software development, as it enables the subsequent
cross-compilation of GNSS-SDR on a PC for the target platform. Direct compilation of
GNSS-SDR on the target platform would eliminate the need for an SDK, but this approach
is impractical due to the extended duration it would take—often hours. This inefficiency stems
from the SoC FPGAs’ low-power embedded processors, which lack the computing power of
typical PC processors.

Once the PetaLinux project is configured as explained in subsection 3.2.2.2, the SDK can be
created using the PetaLinux command tools [107].

3.2.2.4 Creating GNSS-SDR processing blocks for FPGA offloading

When FPGA hardware accelerators are implemented, GNSS-SDR needs to establish commu-
nication with these accelerators to delegate signal processing tasks to the FPGA. As explained
in Section 3.1.2, the hardware accelerators provide a set of memory-mapped registers accessi-
ble from the embedded processor and have the capability to generate interrupt requests for the
embedded processor.

The memory-mapped registers are implemented using the AMBA AXI4 interface, as most SoC
FPGAs support this interface for the communication between the FPGA and the embedded
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processors.

GNSS-SDR cannot directly access the memory-mapped registers in the FPGA hardware
accelerators because the GNSS-SDR software receiver operates atop the Geniux OS , which
enforces memory protection. Memory protection controls access rights to a computer’s
memory, ensuring the software in user space manages only virtual memory addresses. A
specialized hardware unit within the embedded processor, the Memory Management Unit
(MMU), examines all memory access requests. It translates these requests—from virtual
memory addresses to physical addresses in the main memory. Consequently, a mechanism
is required to map the actual memory addresses of these registers (the physical addresses) to a
range of virtual addresses accessible by the software.

Linux offers a standard User Input/Output (UIO) framework for the development of user-space
device drivers. This framework defines a small component in the operating system’s kernel
space that performs the following tasks [113]:

• Mapping the physical addresses of memory-mapped registers in the hardware accelera-
tors to virtual memory addresses accessible by user-space applications.

• Registering FPGA interrupts and delivering interrupt notifications to user space.

To utilize the hardware accelerators, it is necessary to integrate GNSS-SDR blocks that employ
the UIO framework. This approach enables direct access to the memory-mapped registers of
the hardware accelerators and the management of interrupt requests. Consequently, researchers
can adapt GNSS-SDR to delegate signal processing tasks to the FPGA, enhancing efficiency.

The latest GNSS-SDR release includes blocks to offload acquisition and tracking multicor-
relator algorithms to the FPGA and to manage auxiliary FPGA IPs, such as the dynamic bit
selector [24].

3.2.2.5 Cross-compiling GNSS-SDR for the SoC-FPGA platform using the SDK

After cross-compiling the SDK, as detailed in Section 3.2.2.3, and integrating GNSS-SDR
blocks for FPGA offloading, as explained in Section 3.2.2.4, GNSS-SDR is ready for cross-
compilation for the SoC-FPGA platform using the SDK on the PC.

3.2.2.6 Integrating the embedded OS, the software, and the FPGA components

The final step in the SoC-FPGA design process is the integration and testing of the complete
system, which includes the FPGA hardware accelerators and the GNSS-SDR software receiver.

After building GNSS-SDR and the Geniux system, the next step involves copying the
embedded OS, FPGA firmware image, and the cross-compiled GNSS-SDR software receiver
onto a non-volatile storage medium, such as an SD card. This SD card is then to be inserted
into the SoC-FPGA platform, which is capable of booting from SD cards. Upon booting the
device, users can remotely access the system to execute GNSS-SDR.
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The final assessment phase involves evaluating the performance of the hardware accelerators
and testing the SoC-FPGA platform using live signals to ensure that the project requirements
have been met.

3.3 Analyzing Design Force and KPIs in the Proposed Ar-
chitecture

In this section, the proposed architecture is discussed in terms of several design forces,
including scalability, testability, portability, maintainability, reproducibility, and openness,
alongside KPIs related to these aspects.

3.3.1 Scalability

Scalability refers to the proposed architecture’s ability to efficiently manage growing workloads
and its capacity for expansion to accommodate future growth. Various KPIs gauge scalability,
such as the system’s ability to achieve nearly linear performance improvements in line with
increases in the number of computing resources. Other indicators include the system’s
capability to seamlessly integrate new GNSS signals and algorithms, as well as the flexibility
of its configuration system to scale without limits. These KPIs are analyzed below.

GNSS receivers can simultaneously and independently process multiple satellite signals or
satellite measurements [114]. This capability allows for the replication of channel processing
architectural units within the FPGA, resulting in a linear increase in the number of available
channels based on the FPGA’s resources and the maximum number of threads in the embedded
processor. However, the observables and navigation solutions are computed using data obtained
from all channels. Therefore, these algorithms do not scale linearly with the hardware
resources.

In addition, the combination of a scalable configuration system and the flexibility of the FPGA
allows for the unlimited addition of new GNSS signals and algorithms to the architecture. Each
GNSS receiver implemented using this architecture may process a subset of these signals and
algorithms based on the resources available within the FPGA and the energy budget.

Finally, the proposed receiver architecture capitalizes on the GNSS-SDR configuration method.
This method involves using a configuration file to set operational parameters and settings for
the GNSS-SDR system. The configuration file specifies all signal processing parameters for the
receiver, including the choice of signal sources (e.g., recorded GNSS signals or the RFFE) and
the GNSS signals to be processed. This scalable configuration system facilitates the integration
of new FPGA hardware accelerators, enhancing support for additional GNSS signals. With the
introduction of new hardware accelerators, the configuration file can be updated to include
corresponding acquisition and tracking signal processing modules, thereby accommodating
these advancements.
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3.3.2 Testability

Testability refers to the ease with which the proposed receiver prototypes can be tested to
ensure they function correctly and meet their design specifications. This important quality
attribute affects the simplicity of designing and conducting tests, diagnosing problems, and
validating system requirements, thereby impacting the effort, time, and resources required for
testing activities. Testability is measured through several KPIs, such as the presence of a testing
framework, application-level logging, and a flexible configuration mechanism.

In this context, the proposed receiver architecture utilizes GNSS-SDR’s testing capabilities,
which are built on the Google C++ testing framework, GoogleTest [16, 115]. This specialized
library is employed for unit testing purposes. Tests are divided into two categories: unit tests
and system tests. Unit tests are used for checking of certain functions and areas of the source
code. System tests are performed on the complete, integrated receiver signal processing chain,
to evaluate the system’s compliance with its specified requirements.

Using this framework, developers can add new tests to verify the FPGA hardware accelerators,
evaluate any aspect of the SoC FPGA receiver architecture, or test any newly implemented
features. The main requirement for the FPGA hardware accelerators is that all required
variables and status information must be accessible from the embedded processor. The test
execution can be automated, in a way that any subset of tests can be performed, enabling the
testing of multiple conditions within the same run. To implement tests, developers write test
cases that execute specific checks, known as assertions. These assertions verify whether a
condition is true and result in either success or failure. Test cases are sets of actions performed
on the receiver to determine if it is functioning correctly. If a test case has a failed assertion,
then it fails. Otherwise, it succeeds [17].

The proposed receiver architecture also leverages GNSS-SDR’s logging mechanism. Logging
is handled by the Google logging library known as google-glog, which implements application-
level logging [16, 116].

In addition, GNSS-SDR’s software receiver offers various flags enabling users to monitor and
record internal receiver variables at different points in the signal path. Users can activate
these flags through GNSS-SDR’s flexible configuration mechanism, making them useful for
overseeing the performance of signal processing blocks, especially those utilizing FPGA
hardware accelerators. To demonstrate this capability, the spaceborne GNSS receiver presented
in Chapter 4 was configured to capture the status of the GPS L1 C/A tracking loops in a static
scenario. The results are depicted in Figure 3.9 and include the following information:

• The demodulated bits of the navigation message.

• A polar scatter plot of the I and Q signals. This plot is useful to check that the Doppler
wipe–off is done correctly.

• The results of the E, P and L correlators. We can see that the P correlator has the highest
values, which means that the receiver is correctly synchronized.

• Various plots showing the behavior of the PLL and the DLL, the estimated Doppler
frequency, the carrier to noise density ratio, and the estimated code frequency of the
received signal.
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3.3.3 Portability

Portability refers to the ease with which a software application or system can be transferred
from one environment or platform to another. KPIs measuring the portability of the proposed
architecture include the range of supported SoC-FPGA architectures and supported OSs.

Even though GNSS-SDR supports a wide range of computing platforms [17], the proposed
architecture’s adaptability across different platforms is primarily constrained by the FPGA’s
inherent portability limitations. As explained in section 2.5.4, FPGA design tools are often
proprietary, with major FPGA vendors offering their own suites of development software.
These proprietary tools are designed to support the specific features and architectures of their
respective FPGA models, providing integrated environments for design, synthesis, simulation,
placement, routing, and bitstream generation.

The design methodology proposed in this thesis can be applied to a large number of models
of SoC FPGAs from the same manufacturer. This compatibility enables the implementation
of a wide range of concept prototypes, accommodating devices that prioritize low power
consumption as well as those designed for high performance. However, transferring an
FPGA design to an FPGA device from a different manufacturer presents a challenging task
due to various factors. These challenges include the vendor-specific toolchains mentioned
above and the reliance of the existing code on FPGA IP cores exclusive to the original
manufacturer. Therefore, the proposed architecture is not easily portable to SoC FPGAs of
another manufacturer.

The proposed architecture is designed specifically for the embedded GNU/Linux OS. However,
the inherent advantages of the GNU/Linux OS—its free availability and extensive customiz-
ability across a broad spectrum of computing platforms—provide a solid foundation for future
adaptations.

3.3.4 Maintainability

Maintainability refers to the ease with which a software application can be modified to correct
faults, improve performance, or adapt the product to a changed environment. It is a key
aspect of software quality, encompassing the effort required to make updates, enhancements,
or adjustments post-deployment. High maintainability is essential for extending the lifespan of
software, ensuring it can evolve in response to new requirements, technologies, and user needs
without excessive costs or complexity. KPIs measuring maintainability include change request
response times, and time to fix defects.

To expedite the design process, the proposed methodology places a strong emphasis on the
reuse of code. The main limitation of the proposed methodology remains the intricate design
and the time needed for development. Creating the initial prototype can be a time-consuming
task that may require specialized knowledge of hardware design, HDL, synthesis and place-
and-route tools, as well as setting up an embedded GNU/Linux system for the targeted
hardware. Nevertheless, once the first prototype is available, the addition of new features and
the porting of the existing architecture to other SoC-FPGA variants of the same manufacturer
becomes a more practical process, thanks to code reusability, facilitating research on novel
algorithms.

78



3.3. Analyzing Design Force and KPIs in the Proposed Architecture

The time required to fix errors can vary significantly, influenced by the problem’s nature and
the ease of its localization. However, diagnosing and resolving issues within an FPGA typically
demands more time than addressing software-related problems. This increased complexity is
attributable to several factors:

• As explained in Section 2.5, FPGA designs are typically more complex and specialized
than general software, requiring deep knowledge of hardware description languages
(HDLs) like VHDL or Verilog, as well as an understanding of the underlying hardware
architecture. This can make diagnosing and fixing issues more time-consuming.

• Once the FPGA source code is modified to fix the bug, the modified design usually
undergoes simulation to ensure that it behaves as expected. This simulation process can
be time-consuming, lasting for tens of minutes or potentially more, especially for large
and complex FPGA hardware accelerators.

• After the fixed code is validated in simulation, and before the design can be tested in the
SoC FPGA, the design must be re-synthesized and implemented as explained in section
2.5.3, a process that can take from minutes to hours depending on the complexity of the
design and the performance of the synthesis tools.

As opposed to this, software is generally more flexible than hardware. Bugs can often be fixed
by changing code and reloading the software into the SoC FPGA nonvolatile memory. This
process can be done very quickly, once the source of the problem is found and the code is
fixed.

While the GNSS-SDR repository incorporates a continuous integration system featuring an
automated build process and automated testing, this is not the case for the FPGA. A possible
approach to improve maintainability is to implement a similar continuous integration system
for the FPGA code. This system would reduce the time spent on manual testing of receiver
prototypes, leading to increased productivity and shorter response times for implementation
and change requests.

3.3.5 Reproducibility

Reproducibility in science refers to the ability to obtain consistent results using the same data
and methods as were used in the original study. It’s a cornerstone of the scientific method,
ensuring that findings are reliable and can be trusted by other researchers and the wider
community. A key KPI measuring reproducibility in software-based systems is the presence of
a software development process that guarantees identical binaries or outputs, such as executable
files, packages, or other software products, from the same source code across different builds
or environments.

Reproducible builds in the context of FPGAs mean that the same source code or HDL files will
produce the exact same binary configuration file (e.g., a FPGA firmware image) every time
they are compiled or synthesized, regardless of the environment or the tools’ version.

Achieving reproducible builds with FPGAs is challenging due to the inherent pseudo-
randomness of modern FPGA design tools, making them less predictable compared to software
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development. Some steps in the FPGA build process, especially placement and routing, can
involve heuristic algorithms that do not guarantee the same result on every run, even with the
same input.

FPGA design tools implement a combination of different verification and validation techniques
to ensure that the compiled FPGA file is compliant with the original design entry, including
timing analysis, which ensures that the design meets all timing requirements, including setup
and hold times, which are critical for the proper functioning of the FPGA in its target
environment. Although the results are guaranteed to meet the tolerance ranges defined by
the designer, the nature of FPGA design and development processes poses an extra challenge
to reproducibility for FPGA firmwares defined by their VHDL model [117].

3.3.6 Openness

Openness refers to the degree to which a software project or platform is accessible, transparent,
and inclusive to users, developers, and other stakeholders. A relevant KPI to measure openness
is the use of open licenses and/or the availability of a technical description of the algorithms
implemented in the receiver.

In this sense, as explained in Section 2.4, the proposed architecture utilizes the popular
open-source GNSS-SDR software-defined receiver as the core GNSS engine, which is freely
accessible online and released under the GNU GPL license [16, 17].

The FPGA hardware accelerators, however, are not necessarily required to be released under
FOSS licenses. Researchers have the option to release FPGA IP HDL code under open-source
licenses or proprietary licenses, which can serve as a means to monetize research while also
enhancing research impact and reputation. For this reason, inspection of any internal aspect
of the FPGA hardware accelerators relies on the availability of the software version of the
algorithms within GNSS-SDR, alongside the documentation offered by the FPGA IP core
developers. As explained in section 3.2.1, the software version of the algorithms is usually
implemented in GNSS-SDR in the first stage of the design process.

3.4 Summary

This chapter introduced the proposed SoC FPGA receiver architecture and the design method-
ology for prototyping experimental GNSS receivers. both the FPGA and the software archi-
tecture were presented, with a specific emphasis on the FPGA architecture, describing how the
FPGA processes the samples received from the analog front-end, implements sample condition-
ing and buffering, and executes acquisition and tracking hardware accelerators for processing
the received signals. Then, the implementation of the acquisition and tracking hardware ac-
celerators was described in detail, providing details on the acquisition and tracking algorithms
implemented in the FPGA. Subsequently, the modifications made to the GNSS-SDR software
receiver were described. These modifications enable the offloading of the most computation-
ally demanding tasks to the FPGA. To enable communication between the embedded processor
and the FPGA, the FPGA hardware accelerators expose a set of memory-mapped registers ac-
cessible from the embedded processor, which are used by the embedded processor to exchange
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data with or send commands to the FPGA. In addition, the FPGA implements interrupt lines
from the hardware accelerators to the processing system. The hardware accelerators issue in-
terrupt requests to the embedded processor to synchronize both the FPGA and the embedded
processor operations.

The design methodology was also elucidated in this chapter. A separate hardware/software
design flow was adopted, where both FPGA design and software design can be carried out
concurrently, enabling the use of a complete FPGA toolchain for software development.

In the proposed design methodology, the implementation of novel algorithms can be performed
in two stages. In the first stage, these algorithms are implemented in the GNSS-SDR software
receiver, enabling rapid implementation, testing and validation of the experimental algorithms
in a laboratory environment. In the second stage, GNSS-SDR is cross-compiled for the
embedded platform, and FPGA hardware accelerators are implemented if the computational
load required for the algorithms prevents their execution in the embedded processor. The
implementation in the embedded platform enables deployment for portable and mobile test
campaigns where power efficiency and size are relevant considerations.

In the concluding segment of this chapter, the proposed architecture is discussed in terms of sev-
eral design forces, including scalability, testability, portability, maintainability, reproducibility,
and openness, alongside KPIs related to these aspects.

The architecture is designed to be scalable, accommodating the integration of new signals and
algorithms, albeit constrained by the availability of FPGA resources and computing power in
the embedded processor. Notable features include a comprehensive testing framework, robust
application-level logging, and a flexible configuration mechanism.

Despite its versatility, porting the architecture to other manufacturers’ FPGA devices presents
significant challenges due to factors such as proprietary FPGA tools, vendor-specific features
inherent to FPGA platforms, and compatibility issues with IP cores.

Furthermore, while code reuse shortens development time, implementing new features or
fixing defects in the FPGA takes longer than in software due to the nature of the FPGA
design and implementation process. One potential solution to improve maintainability is
the implementation of a continuous integration system for the FPGA code, incorporating
build automation and automated testing. However, reproducible builds remain a challenge
in FPGA development, primarily due to the use of non-deterministic processes in some steps
and toolchain variability.

Lastly, regarding openness, although FPGA hardware accelerators may not be covered by
FOSS licenses, accessibility to the signal processing details can be facilitated through the
implementation of equivalent algorithms in GNSS-SDR and the documentation of FPGA IP
cores. This approach promotes a thorough understanding of signal processing and offers
insights into optimizing algorithms to meet specific requirements.

Future work may include exploring the use of the fully preemptible real-time Linux kernel
(using the PREEMPT_RT patch) to provide enhanced system reliability. Experimental results
demonstrate improved real-time support and significantly reduced kernel latencies, as shown
in [118].
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Chapter 4

Spaceborne GNSS Receiver

This chapter outlines the design, proof-of-concept implementation, and preliminary evaluation
of a low-cost, software-defined spaceborne GNSS receiver developed with COTS products,
following the design principles and methodology described in Chapter 3. This study aims to
evaluate the feasibility of employing an SoC FPGA platform for space GNSS receivers.

This receiver is specifically designed to process GNSS signals and deliver navigation solutions
under LEO conditions. Utilizing the GNSS receiver architecture proposed in this thesis,
it integrates the versatility of the GNSS-SDR open-source software-defined receiver with
the computational efficiency of FPGAs. Adopting an open-source software receiver not
only fosters collaborative development of innovative algorithms but also enables a thorough
examination of baseband processing techniques. Moreover, it creates a transparent and easily
reproducible framework for scientific experimentation.

The development of the spaceborne receiver prototype was carried out within the framework of
this thesis. This work involved implementing the FPGA architecture, porting the GNSS-SDR
receiver with high-dynamic tracking loops to the SoC FPGA, and integrating an FPGA signal
source block into GNSS-SDR. Additionally, it included conducting unit and system tests on
the prototype in LEO scenarios. However, the implementation of high-dynamic tracking loops
in GNSS-SDR fell outside the scope of this thesis.

The proposed design targets two distinct boards: Analog Devices’ ADRV9361-Z7035 and
AMD’s ZCU102. The ADRV9361-Z7035 was selected for its high level of integration,
featuring a full RFFE and an integrated SoC-FPGA within a single platform, with an
Small Form Factor (SFF), measuring 10 cm × 6.2 cm. In contrast, the ZCU102 offers
significant flexibility through its advanced platform, which includes a more powerful SoC-
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FPGA combination, suitable for more demanding computational tasks. The ZCU102 does
not integrate any RFFE. For this reason, Analog Devices’ AD-FMCOMMS5-EBZ [119]
was utilized in conjunction with the ZCU102. Compared to the ADRV9361-Z7035, both
the ZCU102 and the AD-FMCOMMS5-EBZ are significantly larger; the ZCU102 measures
243.84× 237.49× 2.64 mm, while the AD-FMCOMMS5-EBZ is approximately 140× 90 mm.

Both implementations, one based on the ADRV9361-Z7035 System on Module (SoM) and the
other on the ZCU102 development board, were tested, with this chapter detailing the outcomes.
Measurements were conducted separately on each platform, utilizing the ADRV9361-Z7035
for certain tests and the ZCU102 development board for others.

This chapter is organized as follows: Section 4.1 provides an introduction. Section 4.2
presents the objectives of the spaceborne GNSS receiver design. This is followed by a detailed
discussion on the implementation in Section 4.3, covering the RFFE, the FPGA architecture, as
well as the implementation of the PLL and the DLL for tracking high dynamic GNSS scenarios.
Section 4.4 covers the test results, and Section 4.5 concludes with a summary of the results
obtained. Additionally, Appendices 4.A and 4.B present the receiver configurations used for
static and LEO scenarios, respectively.

4.1 Introduction

Space-qualified GNSS receivers must deliver the exceptional measurement quality necessary
for Precise Orbit Determination (POD). The AGGA-family is a notable example of such
receivers [120–122]. However, these receivers are associated with high costs and a lack of
reconfigurability.

To meet the requirements of low-cost space missions, such as CubeSats and MicroSats, it
is essential to not only reduce the cost of space GNSS receivers but also enhance their
configurability and flexibility. Such improvements would facilitate easy adaptation and
updates for new missions, applications, platforms, and future GNSS signals [123]. In this
context, software-defined GNSS receivers powered by consumer-grade, high-performance SoC
technologies, present a promising alternative to traditional ASIC-based solutions.

Hybrid systems combining CPUs and FPGAs offer enhanced performance with an acceptable
increase in size, power consumption, and cost, which is particularly essential for CubeSat
missions. Additionally, these systems enable the possibility of in-flight reconfiguration [124].
FPGA technology has been widely utilized in space applications, and the practicality of using
System on Chip SoC FPGA chips in space has been successfully demonstrated [125].

Modern FPGAs are highly suitable for the space environment, enabling reliable data pro-
cessing and significant computational capabilities [126]. Recently, there has been noticeable
growth in the availability of FPGAs and memory components specifically designed for space
applications. Noteworthy examples include AMD’s Virtex-5QV [127] and Kintex UltraScale
XQRKU060 FPGAs [128], along with Microchip’s Radiation-Tolerant FPGAs [129]. These
products mark significant advancements in space-grade programmable logic devices, offering
enhanced capabilities for space missions. Furthermore, European initiatives to boost competi-
tiveness in the space services sector are propelling the research and development of advanced
solutions, including radiation-hardened (rad-hard) FPGAs and SoCs FPGAs [124, 130].
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Several FPGA-based space GNSS receivers for POD have been proposed in the literature,
and some of them are accessible in the commercial market. Examples of this are referenced
in [91, 131–133]. In addition, Ref. [134] proposes a SoC-FPGA based GNSS receiver.

As explained in Section 2.2.4, a static GNSS receiver experiences Doppler frequencies up to
±4.9 Hz and a Doppler rate up to 1 Hz/s [26]. The situation changes for a LEO space-borne
GNSS receiver. LEO space-borne GNSS receivers move at high speeds, thereby increasing
the experienced Doppler frequency and Doppler rates in the received signals. According to
Newton’s law of gravitation, the velocity of a LEO space-borne GNSS receiver increases as
the orbital altitude decreases. Ref. [135] simulates several LEO orbit altitudes between 400
km and 2000 km. According to [135], a LEO space-borne GNSS receiver at a relatively low
orbital altitude of 400 km experiences a maximum Doppler frequency shift of ±45.5 kHz and
a maximum Doppler rate of ±80 Hz/s.

4.2 Objectives

The primary objective of implementing the spaceborne receiver was to validate the SDR
approach in high-dynamic environments. Additionally, it aimed to demonstrate the feasibility
of a low-power SFF SoC FPGA receiver, capable of processing GNSS signals in LEO
scenarios. This design is based on the architecture and methodology proposed in Chapter 3.

To achieve accurate GNSS positioning, the system in focus features a dual-band GNSS receiver,
operating at central frequencies of 1176.45 MHz and 1575.42 MHz, engineered to process
GPS L1 C/A, Galileo E1b/c, GPS L5, and Galileo E5a signals. This dual-frequency capability
is crucial for achieving accurate GNSS positioning, as it effectively counters the ionosphere’s
impact. The ionosphere, an atmospheric layer ionized by solar and cosmic radiation extending
from approximately 60 km to 1000 km above Earth [136], significantly influences radio signal
propagation. The mitigation of this ionospheric influence on GNSS positioning through dual-
frequency signal processing, which exploits the frequency-dependent nature of ionospheric
delays, is indispensable for precision applications. This strategy enables a substantial reduction
in ionospheric delay effects, thereby enhancing the accuracy of navigation and positioning.
LEO includes spacecraft orbital altitudes between 400 km and 1600 km [135]. POD for LEO
satellites, utilizing GNSS, can be affected by ionospheric conditions [137]. For this reason, the
proposed receiver applies, if applicable, double-frequency-based ionospheric corrections using
the satellite-broadcasted ionospheric data when operating in double-frequency mode.

The receiver is designed to offer maximum flexibility and to enable comprehensive perfor-
mance investigations under various operating conditions. It supports multiple operation modes,
selectable across single and dual frequencies, including GPS-only, Galileo-only, or multi-
constellation configurations that can encompass any combination of GNSS signals. Further-
more, the receiver accommodates up to 12 channels per signal, facilitating support for poten-
tially up to 48 channels in a dual-frequency E1/L1 and L5/E5a configuration for both GPS
and Galileo. The goal is to enable the receiver to simultaneously process signals from multi-
ple satellites, thereby substantially improving the positioning data’s robustness and reliability.
Adding to its versatility, the receiver provides the option to track either the Galileo or GPS pilot
or data signal components, with the choice being user-configurable.
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Additionally, the receiver implements a narrow-correlator tracking architecture in order to
minimise the noise and multipath impact. The severity of multipath effects decreases with
altitude due to the geometry of signal reception. LEO satellites are less affected by multipath
errors compared to ground-based receivers, but the effect is not entirely negligible [138].

The navigation solutions can be computed without any external aiding. Two types of PVT
solution can be used: Least Squares (LS)-based and Kalman-filter-based.

To facilitate testing, the receiver is designed to operate in both real-time and post-processing
modes. In real-time mode, GNSS signals are acquired directly from an antenna or a
signal generator. In contrast, in post-processing mode, the receiver processes GNSS signals
previously recorded and stored in files. Moreover, while in real-time mode, the receiver offers
the capability to save the baseband I and Q samples, captured post-ADC, to external storage.
This feature aids in debugging and facilitates further post-processing analysis. The receiver can
also store the demodulated telemetry data in files for subsequent examination.

To facilitate interoperability with other devices and systems, the proposed concept demonstra-
tor produces GNSS signal products using the standard output formats detailed in Section 2.4.3.
The supported output formats include RINEX, RTCM, GPX, KML, GeoJSON, and NMEA, al-
lowing for flexible integration with various applications. The receiver generates PVT solutions
via Least Squares or Kalman filtering in WGS-84 at customizable rates. For every satellite
in view, it provides comprehensive measurements such as pseudorange, carrier phase or phase
range, Doppler shift or pseudorange rate, and signal strength, along with DOP, navigation data,
correlators’ output, and position and velocity in WGS-84. Additionally, it offers timing data
including GPS Time, Galileo Time, and UTC time.

The receiver can be remotely controlled using Telecommands (TCs). The design utilizing
the ADRV9361-Z7035, demonstrates the feasibility of developing an SoC-FPGA based GNSS
receiver with a form factor suitable for CubeSats. These are small satellites consisting of units
each measuring 10 cm on a side. CubeSats, primarily utilized for space research, are built in
multiples of these cubic units. A typical CubeSat unit is limited to a weight of no more than
1.33 kg. Moreover, CubeSats often make use of commercially available, standard components
for both their electronic systems and structural elements.

For the presented proof-of-concept, the targeted sampling rates were 12.5 MSps for L1/E1 and
12.5 MSps for L5/E5a signals, which provides sufficient capability to track GNSS signals in
both the L1/E1 and L5/E5a bands [139].

4.3 System Design

This section details the spaceborne receiver design. Both the ADRV9361-Z7035 and the
ZCU102 board-based implementations are presented.

4.3.1 Implementation on the ADRV9361-Z7035 Board

The receiver demonstrator based on the ADRV9361-Z7035 SoM development board is
illustrated in Figure 4.1. This board integrates the AD9361 RF Transceiver [106] and the
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AMD Zynq-7000 XC7Z035-L2FBG676I SoC FPGA [103], featuring a form factor of 100 mm
x 62 mm. The AD9361 is a dual-channel 70 MHz to 6 GHz front-end IC with integrated
12-bit ADCs and DACs. The XC7Z035 is internally divided into the PL and the PS. The PL
contains a Kintex-7 FPGA equipped with 275 k logic cells and 900 DSP slices. The PS houses
a dual-core ARM Cortex-A9 processor running at 800 MHz, along with several peripheral
interfaces, including Local Area Network (LAN) interface via a non-standard connector, which
is used to remotely control the receiver. The system implements the architecture proposed in
Section 3.1.1.
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Figure 4.1 Spaceborne GNSS receiver block diagram using the ADRV9361-Z7035 development
board

A splitter divides the GNSS signals received from the antenna into two outputs: output 1 and
output 2, as illustrated in Figure 4.1. Both outputs are connected to the AD9361 RF transceiver.
Together with an external mixer, this configuration allows for tuning to the L1/E1 frequency
band in output 1, while output 2 is tuned to the E5a/L5 frequency band. This arrangement is
elaborated upon in Section 4.3.1.1.

Subsequently, the baseband signals are forwarded to the FPGA, which implements sample
conditioning and buffering, acquisition, tracking multicorrelator FPGA IP cores, and a PS/PL
interface, as detailed in Section 3.1.1. Finally, the GNSS-SDR software-defined receiver
processes the GNSS baseband signals, obtaining the PVT.

The system features 1 GB of Double Data Rate 3 (DDR3) RAM, utilized for the memory
requirements of the embedded OS and to operate the GNSS-SDR baseband processing engine.
Additionally, the ADRV9361-Z7035 SoM includes an SD card reader and 256 Mb of Quad
Serial Peripheral Interface (QSPI) flash memory. This setup enables non-volatile storage for
boot code, the OS, FPGA firmware, application code, and data. The SD card reader primarily
serves prototyping needs, while the QSPI memory offers a more permanent storage solution.

The ADRV9361-Z7035 forms a direct connection between the AD9361 RF Agile Transceiver
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and the AMD Zynq-7000 Z7035 SoC FPGA using specialized high-speed data ports and
clocks, along with an Serial Peripheral Interface (SPI) control interface and various other
control and framing signals. The digital interface of the AD9361 includes dual parallel
data ports, accompanied by several clocks, synchronization, and control signals for sample
transfer between the AD9361 and the Zynq SoC. These signals can be configured either as
single-ended Complementary Metal-Oxide-Semiconductor (CMOS) signals, or Low Voltage
Differential Signaling (LVDS) for systems demanding rapid, low-noise data transmission. In
its LVDS mode, the interface functions in a DDR configuration, enabling 12-bit samples from
the AD9361 to be transmitted over two 6-bit lanes using differential pairs. The highest transfer
rate achievable across this interface is constrained by the AD9361’s peak data rate, which is
122.88 MSps.

To enhance the development, debugging, and testing processes of the GNSS receiver, the
prototype utilizes the Analog Devices ADRV1CRR-BOB breakout carrier board [140]. This
board is equipped with standard connectors for essential functions such as power supply,
Ethernet, and Universal Serial Bus (USB) connections, as well as Joint Test Action Group
(JTAG) programming interfaces. It also includes various features to aid in debugging.
Furthermore, the carrier board offers numerous access points for supplying external I/O
bank voltages and for measuring the power consumption of the SoM, thereby facilitating
comprehensive monitoring and testing of the system.

The proposed design utilizes the SoM’s LAN interface, accessed through an RJ45 connector on
the ADRV1CRR-BOB board, for remote control of the receiver and delivering GNSS products.
The LAN interface ensures connectivity to the embedded GNSS receiver. Additionally, the
SoM includes a USB On-The-Go (OTG) interface, accessible via a USB connector on the
ADRV1CRR-BOB board, offering an alternative connection method. Moreover, custom serial
interfaces can be developed using the board’s General Purpose Input/Output (GPIO) expansion
bus. All connections for the PS/PL and the power supply are efficiently consolidated into JX
Micro Headers.

The clock reference for the front-end PLLs and the sample clock for the Analog-to-Digital
Converters ADCs in the ADRV9361-Z7035 can be sourced from either an internal local
oscillator or an external clock. The standard onboard clock has a stability of 25 parts per million
(ppm), which is insufficient for GNSS signal processing. To address this issue, the original
oscillator was substituted with a high-precision, temperature-compensated crystal oscillator
from TXC Crystal, specifically the model TXC 7Q series designed for GPS applications [141].
This oscillator operates at 40 MHz and offers improved frequency stability of 0.5 ppm. There
are also other alternatives available for enhancing clock stability.

The GNSS receiver prototype, including all its components, was assembled into a plastic
enclosure for convenient handling and transport. This enclosure, shown in Figure 4.2 was
specifically designed for this purpose and produced using a 3D printer, ensuring a custom fit
for all the included components.
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Figure 4.2 Laboratory prototype.

4.3.1.1 Radio Frequency Front-End

The RFFE is implemented using an Analog Devices AD9361 RF Agile Transceiver [106]. The
AD9361 is a highly integrated dual-channel RF transceiver covering a wide frequency range
from 70 MHz to 6 GHz, and supports tunable channel bandwidths from 200 kHz to 56 MHz. It
features two independent direct conversion receiver channels, each with state-of-the-art noise
figure and linearity. Each channel incorporates its own AGC, direct current offset correction,
quadrature correction, and digital filtering, significantly reducing the need for these functions
in the digital baseband. Additionally, two high dynamic range ADCs per channel digitize the
received I and Q signals, which are then processed through configurable decimation filters and
128-tap finite impulse response filters to produce a 12-bit output signal at the desired sample
rate.

The AD9361 RF Agile Transceiver [106] does not support tuning each channel to a different
frequency band. This limitation comes from the fact that the AD9361 was originally designed
for use in 3G and 4G base station applications. However, dual-band reception is needed to
process GNSS signals both in the L1/E1 and in the L5/E5a frequency bands.

To enable dual-band reception, one of the AD9361’s transmission channels is set to generate
a Continuous Wave (CW) signal tuned at the difference between L1/E1 and L5/E5a center
frequencies (that is, 398.97 MHz), and this signal is used to shift the L1/E1 band down to the
L5/E5a center frequency using an external mixer. Hence, both AD9361 transmission channels
can work at the same center frequency (that is, 𝑓𝐿5 = 1176.45 MHz), while the whole system is
still acting as a dual-band RF front-end. This is shown in Figure 4.3. The sampling frequency,
configurable and consistent across both frequency bands, can be adjusted as needed.
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Figure 4.3 Making the AD9361 a dual frequency receiver.

4.3.1.2 FPGA Architecture

The FPGA implements the design as proposed in Section 3.1.1, following the outlined
specifications and methodologies. It incorporates signal conditioning and buffering, an
acquisition hardware accelerator, and 48 tracking multicorrelator hardware accelerators. These
accelerators are distributed among 12 for GPS L1 C/A, 12 for Galileo E1b/c, 12 for GPS L5,
and 12 for Galileo E5a, facilitating simultaneous tracking of up to 48 signals, in alignment with
the specified design objectives.

In order to reduce the computational load and synchronize operations between the FPGA
and the embedded processor, a dedicated interrupt request signal is routed from each FPGA
hardware accelerator to the PS. The PS incorporates a PL390 Generic Interrupt Controller
(GIC), as detailed in [102], capable of managing up to 16 interrupt signals from the PL. Given
the need for more than 16 satellite channels, the capacity of the GIC is expanded by integrating
two instances of AMD’s Interrupt Controller IP core [142] within the FPGA, each configured
with 32 interrupt request lines. This augmentation adds 64 interrupt lines in total, ensuring
adequate support for all necessary Acquisition and Tracking blocks.

Figure 4.4 illustrates this setup, showing two AXI Interrupt Controllers that extend the PS’s
interrupt capacity by connecting to the PL’s interrupt lines. The tracking multicorrelator
hardware accelerator Interrupt Request (IRQ) lines are linked to the AXI Interrupt Controllers.
Meanwhile, certain FPGA blocks, such as the acquisition block also depicted in Figure 4.4,
are directly connected to the PL390 GIC in the PS. For the software running on the embedded
processor, the connection method to the hardware accelerators—whether through the FPGA’s
AXI interrupt controllers or directly to the PL390 GIC in the PS—is transparent. Interrupt
requests trigger callbacks within the software-implemented acquisition and tracking channels.
These channels are responsible for reading the results and updating the parameters for the
upcoming batch of samples, ensuring a seamless operation.
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Figure 4.4 Expansion of interrupt capacity through Multiple FPGA interrupt controllers

As explained in Sections 3.1.4 and 3.1.5, the acquisition and tracking multicorrelator hardware
accelerators can be configured to use either 2 or 4 bits per sample.

Additionally, as discussed in Section 3.1.2, the tracking multicorrelators are preceded by
sample buffers. Using a smaller bit depth in the tracking multicorrelators enables the storage
of a larger number of samples in the FPGA sample buffers. For this reason, in the spaceborne
GNSS receiver, the tracking multicorrelators are configured to use 2 bits per sample. This
enables the storage of a larger number of samples in the FPGA buffers, whose size is limited
by the FPGA memory resources. Specifically, as Section 2.3.3 describes, when the optimal
quantization threshold values are used, the theoretical impact on signal degradation is limited
to about 0.54 dB in the SNR at the correlator outputs. The acquisition does not require an
extensive buffering at its input since it does not exert back pressure on the FPGA buffers.
Therefore, quantization at the acquisition’s input stage has less impact on the FPGA internal
memory usage. For this reason, the acquisition is configured to use 4 bits per sample.
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4.3.2 Implementation on the ZCU102 Board

A block diagram of the proposed ZCU102 board-based implementation is shown in Figure 4.5.
The ZCU102 features the UltraScale+ XCZU9EG All-Programmable MPSoC, equipped with a
quad-core ARM Cortex-A53 processor running at 1200 MHz, and an FPGA with a significant
number of resources, comprising 600𝑘 logic cells and 2520 DSP slices [104]. A connection
is provided for an antenna or a GNSS signal generator. A splitter optionally injects DC power
to the active antenna and splits the signal in two. An Analog Devices AD-FMCOMMS5-EBZ
RFFE receives the signals coming from the splitter. The AD-FMCOMMS5-EBZ , features
two Analog Devices AD9361 RF Agile Transceivers [106]. One RF transceiver is tuned to the
L1/E1 frequency band, and the other transceiver is tuned to the L5/E5a frequency band.

The SoC FPGA handles sample conditioning, acquisition, and tracking multicorrelators, in
addition to providing an interface to the PS. The embedded processor executes GNSS-SDR,
thereby effectively implementing the base-band signal processing system. This approach
follows the guidelines of the proposed architecture as presented in Chapter 3, ensuring the
delivery of GNSS products in standard formats via the LAN interface.
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Figure 4.5 Spaceborne GNSS receiver block diagram using the ZCU102 development board
and the AD-FMCOMMS5-EBZ Radio Frequency Front-End (RFFE).

The AD-FMCOMMS5-EBZ board is equipped with a Rakon RXO3225M IC crystal oscilla-
tor operating at 40 MHz and a frequency stability of 25 ppm. However, this level of stability
is insufficient for GNSS signal processing requirements. Consequently, an external Abracon
AST3TQ-50 Temperature-Compensated Crystal Oscillator (TCXO) was utilized as a reference
clock, offering a frequency stability of ±50 parts per billion (ppb) across a wide operating tem-
perature range from −40◦C to +85◦C [143], making it highly suitable for GNSS applications.
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Both AD9361 RF transceivers were controlled by the reference clock. However, the relative
timing of the sampling, controlled by the reference clock, was not calibrated.

Similarly to the ADRV9361-Z7035-based implementation, to alleviate the computational
burden and synchronize operations between the FPGA and the embedded processor, a dedicated
interrupt request signal is dispatched from each FPGA hardware accelerator to the PS. The
Zynq UltraScale+ ZU9EG on the ZCU102 board incorporates a GIC-400 GIC. The PL is
capable of asynchronously asserting up to 16 peripheral interrupts to the GIC as detailed in [63].
To enhance this capability, the FPGA integrates two instances of AMD’s Interrupt Controller
IP core [142], each equipped with 32 interrupt request lines. This configuration mirrors the
setup described in Section 4.3.1.2.

The ZCU102 development board was chosen because it features a high-performance SoC
FPGA with many peripherals and interfaces, enabling development and experimentation for a
wide range of GNSS applications. However, utilizing the ZCU102 and AD-FMCOMMS5-EBZ
development boards leads to a considerable design footprint. Approximately, the dimensions
of the ZCU102 board are 23.8 cm by 24.4 cm, whereas the analog front-end spans 14 cm by 9
cm.

4.3.3 Tracking GNSS Signals in High-Dynamic Environments

The proposed spaceborne GNSS receiver implements standard scalar tracking loops using
DLL, PLL, and FLL architectures for code and carrier phase tracking, as described in
Section 2.3.5. During the tracking process, the receiver replicates the PRN code signal, applies
Doppler correction, and estimates the signal synchronization parameters. It continuously
adjusts the replica code delay and Doppler correction phase, utilizing these synchronization
parameters to ensure synchronization with the incoming signal.

The receiver initiates tracking of detected signals without synchronization to the pilot’s
secondary code or the telemetry preambles. The synchronization parameters estimated by the
acquisition process are used to initialize the tracking loops. The tracking process commences
with a CI time equivalent to the duration of the PRN primary code. Once synchronization
with the pilot’s secondary code or the telemetry preambles is achieved, the tracking process
dynamically increases the CI time based on user configuration.

Simultaneously, the receiver uses a dynamic Costas loop/PLL/DLL tracking method, where a
Costas loop discriminator with a larger noise bandwidth is used before the pilot’s or secondary
code synchronization, to account for a potential parameter estimation error in acquisition. After
synchronization, a narrower bandwidth is used to decrease the tracking jitter, dynamically
replacing the Costas loop by a PLL when tracking pilot signals with known secondary code
transitions. A FLL assisting the Costas loop can be enabled during the pull-in time to cope
with the high-dynamic conditions.

This approach treats signal tracking as an estimation problem focusing on the signal synchro-
nization parameters. These parameters are presumed to change slowly, remaining constant
during an observation interval 𝑡𝑝 (defined by the time range 𝑡𝑝 ≤ 𝑡 < 𝑡𝑝 + 𝑇) and potentially
changing in the subsequent observation interval 𝑝 + 1. Each tracking loop performs a new es-
timation of these synchronization parameters that are considered to remain constant during the
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tracking coherent integration time.

Similar to static receivers, the code loop replicates the PRN code considering the initial code
phase and the chipping rate. However, to address the high dynamics in the received signals,
the carrier loop not only takes into account the initial phase and the Doppler shift but also
incorporates the Doppler rate, implementing a second-order NCO. The second-order NCO
implementation is explained below.

The signal received from a GNSS satellite is modeled as

𝑟 (𝑡) = 𝑎0(𝑡)𝑒 𝑗𝜙(𝑡) + 𝑤(𝑡) = 𝑎0 [𝑝]𝑒 𝑗
∑𝑀

𝑚=0 𝑏𝑚 [𝑝]𝑡𝑚 + 𝑤(𝑡) . 𝑡𝑝 ≤ 𝑡 < 𝑡𝑝 + 𝑇 (4.1)

In this equation, 𝑎0 [𝑝] represents the unknown constant amplitude within the time interval 𝑝,
𝑏𝑚 [𝑝] for 𝑚 = {0, .., 𝑀} denotes the phase coefficients to be estimated for that period, and
𝑤(𝑡) is additive white Gaussian noise. This model represents the received signal in terms of
the parameters 𝑎0 [𝑝] and 𝑏𝑚 [𝑝], dictating the evolution of signal amplitude and carrier phase.

Based on this model, the polynomial phase term 𝜙(𝑡) can be approximated by its Taylor series
expansion around the time instant 𝑡𝑛. This Taylor expansion can be expressed as

𝜙(𝑡) =
𝑀∑︁
𝑚=0

𝑏𝑚 [𝑝]𝑡𝑚 ≈
𝑀∑︁
𝑚=0

1
𝑚!
𝜕𝑚𝜙(𝑡𝑛)
𝜕𝑡𝑚

(𝑡 − 𝑡𝑛)𝑚 , 𝑡𝑝 ≤ 𝑡 < 𝑡𝑝 + 𝑇 (4.2)

where 𝜕𝑚𝜙(𝑡𝑛)
𝜕𝑡𝑚

represents the 𝑚-th order partial derivative of the function 𝜙(𝑡) with respect to
time, evaluated at 𝑡𝑛.

As mentioned above, the creation of the carrier phase replica 𝜙(𝑡) incorporates the initial phase,
the Doppler shift and the Doppler rate. These correspond to the first three terms of the Taylor
expansion. Setting 𝑀 = 2 and evaluating 𝜙(𝑡) at 𝑡 = 𝑡𝑝, 𝜙(𝑡) the evolution of the carrier phase
can be approximated as

𝜙(𝑡) ≈ 𝜙(𝑡𝑝) +
𝜕𝜙(𝑡𝑝)
𝜕𝑡

(𝑡 − 𝑡𝑝) +
1
2
𝜕2𝜙(𝑡𝑝)
𝜕𝑡2

(𝑡 − 𝑡𝑝)2 . (4.3)

By defining the sampling time as 𝑡𝑛 = 𝑡 − 𝑡𝑝 = 𝑛𝑇𝑠, we can express the phase term 𝜙(𝑡) in the
following form:

𝜙(𝑡𝑝 + 𝑛𝑇𝑠) = 𝜙[𝑛] ≈ 𝜙(𝑡𝑝) +
𝜕𝜙(𝑡𝑝)
𝜕𝑡

𝑛𝑇𝑠 +
1
2
𝜕2𝜙(𝑡𝑝)
𝜕𝑡2

𝑛2𝑇2
𝑠 . (4.4)

The initial phase, Doppler shift and Doppler rate synchronization parameters 𝜙0 [𝑝], 𝜔𝑑 [𝑝],
and 𝛼[𝑝], can be defined as

𝜙(𝑡𝑝) ≜ 𝜙0 [𝑝] Initial phase at interval 𝑝, in rad, (4.5)

𝜕𝜙(𝑡𝑝)
𝜕𝑡

≜ 𝜔𝑑 [𝑝] Average Doppler shift during interval 𝑝, in rad/s, (4.6)
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and

𝜕2𝜙(𝑡𝑝)
𝜕𝑡2

≜ 𝛼[𝑝] Average Doppler rate during interval 𝑝, in rad/s2. (4.7)

The Doppler correction signal, locally generated within the receiver via the second-order NCO,
is given by

𝑣(𝑡) = 𝑒− 𝑗𝜙(𝑡) , (4.8)

where 𝜙(𝑡) is the estimation of the phase evolution 𝜙(𝑡). The discrete time domain version of
(4.8) using a sample period 𝑇𝑠, and a time origin 𝑡𝑝 as a reference, can be represented as

𝑣 [𝑛] = 𝑣(𝑡𝑝 + 𝑛𝑇𝑠) = 𝑒− 𝑗𝜙(𝑡𝑝+𝑛𝑇𝑠) . (4.9)

Upon integrating (4.4) into (4.9), we derive

𝑣 [𝑛] = 𝑒− 𝑗 (𝜙0 [𝑝]+�̂�𝑑 [𝑝]𝑛𝑇𝑠+ 1
2 �̂�[𝑝]𝑛

2𝑇2
𝑠 ) , (4.10)

where 𝜙0 [𝑝], 𝜔𝑑 [𝑝] and �̂�[𝑝] are the estimators of the corresponding true values in the
interval 𝑝. These estimators are addressed in [144] and [145].

By generating the replica Doppler correction signal in this manner, the receiver is enabled to
accurately track GNSS signals within high-dynamic environments, encompassing scenarios in
LEO orbits.

4.3.4 Telemetry and Telecontrol Interfaces

The SoC FPGA is equipped with multiple communication interfaces to enable remote con-
trol of the receiver and retrieval of GNSS products. These interfaces include Ethernet (LAN)
and UART. The embedded processor runs on the Geniux OS, which is a customization of
GNU/Linux (see Section 3.2.2). This customization facilitates the implementation of standard-
ized interfaces for reporting the receiver’s status, accessing internal data, and controlling all
receiver features through the LAN interface. Table 4.1 outlines the protocols and data avail-
able for interfacing the receiver for telecommand purposes, enhancing communication from
the ground station to the satellite
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Table 4.1 Telecommand (ground station to satellite)

Type of communication Protocol and available data

Secure Shell (SSH)

• Secure File Transfer Protocol (SFTP) to upload up-
dated/new receiver configuration files.

• SFTP to upload acquisition assistance files

– Cusotm XML files for satellite ephemeris.

– Custom XML files for initial satellite position,
velocity and time.

• Receiver start/stop control

• Remote firmware update (including FPGA Read Only
Memory (ROM))

• Board reboot control

Table 4.2 displays the protocols and data available for Telemetry communication (satellite to
ground station).

Table 4.2 Telemetry (satellite to ground station)

Type of communication Protocol and available data

NMEA over Transmission
Control Protocol (TCP) port

• Position

• Position

• Velocity

• Time

• Satellite visibility (Az, El)

• Satellite 𝐶/𝑁0

RTCM/Network Transport
of RTCM via Internet

Protocol (NTRIP) over TCP
port

• raw observables (code, pseudoranges, carrier phase,
cycle slips, 𝐶/𝑁0)

• Satellite ephemeris

• Receiver time
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Table 4.3 shows the protocols and data available for data logging, enabling the reporting of the
internal status of the receiver’s signal processing path.

Table 4.3 Embedded Data logger)

Type of communication Protocol and available data

SSH

• Local log data files (.BIN and .MAT)

– Acquisition log file

– Tracking log file

– Telemetry decoder log file

– Observables log file

– RTKLIB solver log file

• NMEA log file

• RTCM/NTRIP raw log file

• KML Google Earth position file

4.4 Test Results

As detailed in Section 4.3, the proposed spaceborne GNSS receiver was implemented and
tested on the ADRV9361-Z7035 and ZCU102 development boards. To ensure a comprehensive
evaluation, some tests conducted initially with the ADRV9361-Z7035 were replicated on the
ZCU102 board.

Several tests were conducted to thoroughly evaluate the receiver’s capabilities and performance.
These tests included its ability to capture GNSS signals and transfer the digitized signals to a
remote PC in real-time, and the ability to operate in multi-frequency and multi-constellation
modes in real-time. The acquisition and tracking sensitivity was also measured. Furthermore,
assessments were made on the quality of observables. Finally, the power consumption was
estimated, both when using the ADRV9361-Z7035 and ZCU102 development boards. The
FPGA resource usage is also reported.

This section documents the testing procedures and outcomes for both boards. To streamline
the discussion and focus on significant differences, only the results from the ZCU102 board are
reported for tests that yielded more accurate data than those conducted with the ADRV9361-
Z7035, except where power consumption and real-time performance are concerned. The
receiver was tested using the GESTALT test-bed facility available at Centre Tecnològic de
Telecomunicacions de Catalunya (CTTC) premises [146]. The GESTALT test-bed boasts an
array of high-end equipment. This includes broadband GNSS antennas and GNSS signal
generators designed for conducting controlled experiments. It is also outfitted with advanced
radio-frequency front-ends, supporting simultaneous operation in three GNSS frequency bands,
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and featuring adjustable bandwidth, as well as options for frequency downshifting and filtering.

4.4.1 Test Results using the ADRV9361-Z7035 platform

This section summarizes the test results obtained when using the ADRV9361-Z7035 platform.

4.4.1.1 Raw Sample Storage

The raw sample storage test was conducted to verify the receiver’s ability to capture I and
Q samples post-ADC conversion and transfer them to a PC in real time. The receiver
was connected to a signal generator, which reproduced live GNSS signals from replay files,
simulating a static scenario. The receiver was also configured to capture both L1/E1 and L5/E5a
signals in real time, transmitting them to a PC via TCP/IP, utilizing the LAN interfaces. The
sampling rate was set to 12.5 Msps. The PC captured and stored these signals into files. The
signals were recorded during 5 minutes.

GNSS Receiver 
(ADRV9361-Z7035 System-On-

Module)GNSS 
Signal

Ethernet 
Interface

PC

Ethernet 
Interface

RAM 
Disk

GNSS Signal Generator

Signal 
Input

Signal 
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TCP/IP connetion 
(signal capture and 

control)

Analog Signal 
Output

Figure 4.6 Sample capture

To confirm the correct capture of the signals, the files stored on the PC were post-processed
using GNSS-SDR. GNSS-SDR effectively processed the recorded GNSS signals. It managed
to simultaneously use up to 12 GPS L1 C/A channels, 12 Galileo E1 channels, 10 GPS L5
channels, and 11 Galileo E5a channels, successfully obtaining navigation solutions.

To transmit received signals in real-time and store them as files, a direct Ethernet connection
between the receiver and the PC was necessary, along with the use of a RAM disk. This
direct Ethernet connection was crucial to prevent signal transmission delays caused by LAN
congestion. Additionally, the RAM disk was utilized to ensure fast I/O performance and
prevent potential buffer overflow on the PC.

The signal capture capability is valuable for debugging and performance verification of
the analog front-end. Although the need for fast throughput may complicate the real-time
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transmission of received signal samples to a remote location, this capability can in any case be
effectively used to remotely capture brief snapshots of the received signal.

4.4.1.2 Multi-Frequency and Multi-Constellation Operating Mode

This test was conducted to assess the receiver’s capability to process various satellite signals
in real-time when using the ADRV9361-Z7035 platform. The receiver was connected to the
rooftop antenna of the GESTALT test-bed facility [146] to enhance satellite visibility, utilizing
a static scenario configuration. It was set to track GPS L1 C/A, Galileo E1b/c, GPS L5, and
Galileo E5a signals simultaneously. The receiver was configured according to Appendix 4.A. In
addition, it was configured to simultaneously track the same signals across multiple channels,
ensuring that each channel was allocated to a satellite signal. The testing duration lasted for
an hour. The largest number of channels that the receiver was able to process in real-time is
shown in table 4.4.

Table 4.4 GNSS signal combinations tested in real-time using the ADRV9361-Z7035 platform

GNSS Signals Total Number of
Channels

6 GPS L1 C/A + 6 Galileo E1b/c + 6 GPS L5 + 6 Galileo E5a 24

This test was repeated using a LEO scenario generated by playing recorded files. The receiver
successfully acquired and tracked up to 24 GNSS signals, delivering navigation solutions in
real-time. In this case, however, the test duration was constrained to the length of the replay
files (5 minutes). In any case this test demonstrates the receiver’s capability to acquire and
track GNSS signals in LEO orbits under real-time operations.

The number of signals the receiver could simultaneously track was restricted by the computa-
tional capabilities of the embedded processor. While the FPGA handled acquisition and track-
ing multi-correlations, the embedded processor managed the tracking loops, with the FPGA
generating interrupt requests for this purpose. The rate of interrupt requests was directly re-
lated to the number of tracked channels, and an excessive number of interrupts could potentially
overwhelm the embedded processor.

The ability to process up to 24 GNSS signals in real-time is contingent upon the computational
load demanded by the PVT algorithms. This load varies depending on the satellites’ geometry
and the quality of the measurements. To enable stable real-time processing of up to 24 channels,
the GNSS-SDR source code was temporarily modified. A software throttle was introduced to
the PVT module, providing the embedded processor with additional processing time to handle
pending interrupts from the hardware accelerators (FPGA). While this adjustment allowed for
improved handling of processing demands, it also led to an increased duration for computing
navigation solutions

Enhancing receiver performance could be achieved by adjusting the multicorrelator tracking
hardware accelerators in the FPGA. By extending the coherent integration time within the
FPGA beyond the duration of a single data symbol, the frequency of interrupt requests could
be reduced. This is particularly beneficial when tracking Galileo E1b/c signals, which have
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a brief data symbol duration of 4 ms. Such an implementation would, as a result, enable the
receiver to simultaneously track a greater number of GNSS signals.

4.4.1.3 Acquisition Sensitivity

Acquisition sensitivity determines the minimum signal power threshold that allows the receiver
to successfully perform a cold start TTFF within a specified time frame [64].

To estimate the acquisition sensitivity, the receiver was connected to a signal generator. The
signal generator played recorded GNSS signals. The receiver was configured to run in real-time
and was set in cold start mode. We decreased the signal power and recorded the lowest 𝐶/𝑁0
for which the receiver could at some point in time successfully acquire and track any of the
generated GNSS signals. The 𝐶/𝑁0 reported by the receiver was recorded when the receiver
went from acquisition to tracking mode.

These measurements were repeated using both a static scenario and a high dynamic (LEO
orbit) scenario. The results are shown in Table 4.5. The receiver was configured according
to Appendix 4.A when using the static scenario, and Appendix 4.B when using the dynamic
scenario.

Table 4.5 Acquisition sensitivity.

GNSS System Acquisition Sensitivity (dB-Hz)

GPS L1 C/A (high-dynamic scenario) 38
GPS L1 C/A (static scenario) 37

Galileo E1b/c (high-dynamic scenario) 38
Galileo E1b/c (static scenario) 39

GPS L5 (high-dynamic scenario) 37
GPS L5 (static scenario) 38

Galileo E5a (high-dynamic scenario) 38
Galileo E5a (static scenario) 38

To provide context for these measurements, GNSS satellites in LEO orbits can experience
𝐶/𝑁0 values ranging from approximately 15 dB-Hz to 35 dB-Hz at negative elevation angles
down to −30◦, 20 dB-Hz to 45 dB-Hz at 0◦ elevation, and up to between 45 dB-Hz and 50 dB-
Hz at the zenith for GPS L1 and L2 signals. [147]. In contrast, Geosynchronous Earth Orbit
(GEO) applications using GPS and Galileo signals may require a sensitivity of about 29 dB-Hz
to maintain nearly full-time GNSS POD availability (at least 4 satellites visible) [148]. The
proposed receiver is suitable for use in LEO orbits; however, its current acquisition sensitivity
is somewhat elevated. As a result, it requires additional time to acquire satellite signals with
a 𝐶/𝑁0 below 40 dB-Hz that originate from low elevation angles. This issue stems from the
CI time utilized by the current version of the spaceborne receiver’s FPGA-based acquisition
hardware accelerator. Specifically, this version performs integration over a single PRN code
period and does not support extended coherent or non-coherent integration. It is important
to note that the acquisition hardware accelerator utilized in the spaceborne receiver described
in this chapter differs from the high-sensitivity acquisition hardware accelerator discussed in
Chapter 6.
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Nevertheless, additional tests using the GESTALT test-bed facility’s rooftop GNSS an-
tenna [146] showed that the receiver could acquire most of the visible GNSS satellites in line
of sight.

The sensitivity can be improved by implementing extended coherent and/or noncoherent
integration in the spaceborne receiver acquisition hardware accelerator in the FPGA.

4.4.1.4 Tracking Sensitivity

Tracking sensitivity refers to the minimum signal level that allows the receiver to maintain the
tracking process in lock. The sensitivity was measured as follows: the receiver was connected
to a signal generator. The signal generator was playing recorded GNSS signals. The receiver
was configured to run in real-time, and it successfully acquired and tracked various satellite
signals present in the playback. When the satellite signals had been acquired, the signal power
was slowly decreased. The lowest 𝐶/𝑁0 for which the receiver could keep lock on the tracked
signals was recorded. The recorded 𝐶/𝑁0 was reported by the receiver.

These measurements were repeated using both a static and a high dynamic (LEO orbit)
scenario. The results are shown in Table 4.5. The receiver was configured according to
Appendix 4.A when using the static scenario, and Appendix 4.B when using the dynamic
scenario.

Table 4.6 Tracking sensitivity.

GNSS System Tracking Sensitivity (dB-Hz)

GPS L1 C/A (high-dynamic scenario) 26
GPS L1 C/A (static scenario) 26

Galileo E1b/c (high-dynamic scenario) 27
Galileo E1b/c (static scenario) 28

GPS L5 (high-dynamic scenario) 29
GPS L5 (static scenario) 26

Galileo E5a (high-dynamic scenario) 29
Galileo E5a (static scenario) 27

The receiver currently exhibits adequate tracking sensitivity, enabling it to consistently track
all visible GNSS satellites across the entire spectrum of elevation angles within its line of sight.

4.4.1.5 FPGA Resource Utilization

Table 4.7 details the FPGA resource utilization for the spaceborne receiver developed with
the XC7Z035-2L device. This table reports the resource usage of the GNSS receiver features,
including channel conditioning, buffering, and acquisition and tracking hardware accelerators,
along with their AXI4 memory-mapped registers. The FPGA resource usage is categorized by
LUTs, Lookup Table Random-Access Memorys (LUTRAMs), Flip-Flops (FFs), BRAMs, and
DSP slices.
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The BRAM blocks show the most significant usage. These blocks are mostly used for
the implementation of the signal sample buffers, and for the temporary storage of the
FFT and Inverse Fast Fourier Transform (IFFT) calculations in the acquisition hardware
accelerator. The use of LUTs and FFs could be reduced by optimizing the HDL code, and
by potentially reducing the internal quantization in the acquisition and tracking multicorrelator
hardware accelerators. Currently the tracking multicorrelators use 32-bit accumulators, and
the acquisition uses 16-bit FFTs, while the spaceborne design quantizes the GNSS signals
with 4 bits per sample at the acquisition, and 2 bits/sample in the tracking multicorrelators.
The FPGA-based GNSS receiver logic operates at a clock frequency of 100 MHz. This clock
frequency is sufficient to operate the spaceborne receiver at the target sampling rate, but there
is potential for increasing the clock frequency.

Table 4.7 FPGA resource utilization in the spaceborne receiver implemented on the XC7Z035
device.

Resource Utilization Resources available Utilization %

LUT 141361 171900 82

LUTRAM 7662 70400 10

FF 141799 343800 41

BRAM 472 500 94

DSP 312 900 34

4.4.1.6 Power Consumption

The power consumption of the XC7Z035-2L FBG676I SoC FPGA when implementing the
GNSS receiver was estimated to be 6.5 W, based on calculations from FPGA design tools.
This estimate is based on an assumed average processor load of 75%, which is typical when
handling a substantial number of GNSS signals, such as 24 signals. This results in a power
consumption of approximately (6.5W)/(24 channels) = 0.27 W/channel.

To provide context, GNSS-SDR was tested operating in real-time, multi-band, multi-
constellation mode on an 11th generation 28 W Intel Core i7-1185G7 processor clocked at 3
GHz. Processing 26 signals simultaneously resulted in a processor load ranging between 50%
and 75%, leading to a power consumption of approximately (28W × 50%)/(26 channels) =

0.53 W/channel.

This outcome suggests a higher power consumption per channel for the processor setup
compared to the SoC FPGA, indicating differences in power efficiency. Based on these
estimations, the SoC FPGA exhibits an improvement in power consumption efficiency of
approximately 49% (0.27 W/channel in the SoC FPGA vs 0.53 W/channel in the general-
purpose processor). However, this figure does not account for the fact that processing up to 24
channels in real-time on the XC7Z035 SoC FPGA required throttling the computation of the
PVT solution and reducing the rate at which the PVT solutions are computed from the default
value of 500 ms down to 1 s. Therefore, the actual improvement in efficiency could be slightly
lower than indicated.
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To evaluate the average processor load during the processing of multiple signals, we connected
the receivers to the rooftop GNSS antenna facility of the GESTALT testbed [146]. The receivers
were configured to simultaneously track the same signals across multiple channels, ensuring
that every channel tracked at least one satellite signal. We then estimated the average processor
load using the operating system resource managers of the receivers.

4.4.2 Test Results using the ZCU102 platform

This section summarizes the test results obtained when using the ZCU102 platform and the
Analog Devices’ AD-FMCOMMS5-EBZ RFFE.

4.4.2.1 Multi-Frequency and Multi-Constellation Operating Modes

This test was conducted to assess the receiver’s capability to process various satellite signals in
real-time when using the ZCU102 platform, including GPS L1 C/A, Galileo E1b/c, GPS L5,
and Galileo E5a. The receiver operated in selectable modes, accommodating single or dual
frequencies, as well as single or dual constellations, with a potential of up to 12 channels
per signal. This test was conducted with the GESTALT test-bed rooftop GNSS antenna
facility [146] to enhance satellite visibility, thereby allowing the test to extend over a longer
period compared to using recorded signals.

The receiver was allowed to simultaneously track the same signals across multiple channels,
ensuring that each channel was allocated to a satellite signal. The testing duration lasted for
an hour. The largest number of channels that the receiver was able to process in real-time is
shown in table 4.4.

The receiver was configured according to a static scenario (Appendix 4.A). The sampling
frequency was set to 16 Msps.

Table 4.8 GNSS signal combinations tested using the ZCU102 platform

GNSS Signals Total Number of
Channels

12 GPS L1 C/A 12
12 Galileo E1b/c 12

12 GPS L5 12
12 Galileo E5a 12

12 GPS L1 C/A + 12 Galileo E1b/c 24
12 GPS L5 + 12 Galileo E5a 24
12 GPS L1 C/A + 12 GPS L5 24

12 Galileo E1b/c + 12 Galileo E5a 24
10 GPS L1 C/A + 10 Galileo E1b/c + 10 GPS L5 + 10 Galileo E5a 40

Similar to the ADRV9361-Z7035 platform, the number of signals that the receiver could
track simultaneously on the ZCU102 platform was limited by the computational capabilities
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of the embedded processor. However, the ZCU102 platform boasts a more powerful Zynq
UltraScale+ ZU9EG SoC-FPGA, which includes a quad-core ARM Cortex-A53 processor
running at 1200 MHz. This is a significant upgrade from the dual-core ARM Cortex-A9
processor at 800 MHz found in the Xilinx Zynq-7000 XC7Z035 SoC-FPGA of the ADRV9361-
Z7035 platform.

The more powerful processor is the reason why the spaceborne GNSS receiver implemented
on the ZCU102 board can simultaneously track up to 40 GNSS signals and obtain navigation
solutions in real-time, while the same receiver implemented on the ADRV9361-Z7035 platform
can only track up to 24 channels. The temporary software throttle in the PVT that was used
when testing the ADRV9361-Z7035 platform was not required on the ZCU102.

4.4.2.2 Observables Quality

This test involved measuring the Root Mean Square Error (RMSE) of both the receiver’s
carrier phase estimation and its code phase estimation, and then comparing these measurements
against the theoretical variances of the carrier and code phase estimates.

A software GNSS simulator available online under the GPL v3 license [149] was used for this
test.

The RMSE of the receiver carrier phase estimation and the RMSE of the receiver code phase
estimation were measured as follows: We produced synthetic GPS L1 C/A signals at various
SNRs using the software simulator mentioned above. The satellite signals were generated in
pairs, using identical ephemeris information and satellite locations but different PRN numbers
for each pair of satellites. The synthetic signals were generated in baseband and stored in files
(no RF was used). The GNSS receiver processed these files and produced the basic observable
measurements (pseudorange, carrier phase, and Doppler shift). The observables were stored
in RINEX files. Then, the between-satellites single difference was computed for each satellite
pair. In this way, the code delay errors and the code phase estimation errors were obtained.
The RMSE of the carrier phase estimations and the RMSE of the code phase estimations
were computed out of the estimation errors. Finally, the RMSE measurements were compared
against the theoretical variance of the carrier phase and code phase estimates.

The theoretical variance of the carrier phase delay estimates was computed as

𝜎𝑃𝐿𝐿 =
𝜆𝐿1
2𝜋

√︄
𝐵𝑊𝑃𝐿𝐿

𝐶/𝑁0
(1 + 1

2𝑇𝐶𝐼𝐶/𝑁0
) . [m] (4.11)

This equation can be used to compute the thermal noise carrier tracking jitter when using an
arctangent PLL discriminator [25].

Conversely, the theoretical variance of the code phase delay estimates was derived as
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The thermal noise code tracking jitter can be determined using this equation when employing
a noncoherent early-late power DLL discriminator. This formula is specifically applicable to
DSSS signals generated using BPSK signaling with rectangular chips, such as the GPS L1 C/A
code [25].

In all cases, thermal noise is considered the exclusive source of error.

The parameters in (4.11) and (4.12) are the following: 𝜆𝐿1 is the GPS L1 carrier wavelength
in m, 𝑐 is the speed of light in vacuum, 𝐶/𝑁0 is the carrier to noise density ratio, 𝑇𝐶𝐼 is the
pre-detection integration time in s, 𝛿 is the early-to-late correlator spacing in chips, 𝐵𝑊𝐷𝐿𝐿 is
the PLL bandwidth in Hz, 𝐵𝑊𝐷𝐿𝐿 is the DLL bandwidth in Hz, 𝐵 𝑓 𝑒 is the front-end bandwidth
in Hz (which in our case it is the same as the sampling frequency), and 𝑇𝑐 is the chip period in
seconds = 1/𝑅𝑐, where 𝑅𝑐 is the chipping rate.

The theoretical variance of the code phase estimation was also computed as

𝜎𝐷𝐿𝐿 = 𝑐𝑇𝑐

√︄
𝐵𝑊𝐷𝐿𝐿

2𝐶/𝑁0
𝛿(1 + 1

𝑇𝐶𝐼𝐶/𝑁0
) . [m] (4.13)

This equation offers a simplified calculation applicable when 𝐵𝑊𝐷𝐿𝐿𝑇𝐶𝐼 ≪ 1 [150]. The
GNSS receiver was configured with 𝐷𝐿𝐿𝐵𝑊 = 5 Hz and 𝑇𝐶𝐼 = 20 ms. Therefore, since
𝐷𝐿𝐿𝐵𝑊𝑇𝑖 ≪ 1, (4.13) is applicable.

The receiver was configured according to Appendix 4.A, but only GPS L1 C/A channels
were enabled. In this test, the receiver was configured with 16 GPS L1 C/A channels
to facilitate between-satellite single-difference measurements, utilizing some of the tracking
multicorrelator hardware accelerators typically assigned to Galileo E1b/c signals for GPS. The
sampling frequency was set to 12.5 Msps, which is sufficient to process GPS L1 C/A signals.

The RMSE measurements were conducted using both the SoC FPGA receiver and the
GNSS-SDR receiver operating on a Personal Computer (PC) in pure software mode, without
the involvement of any hardware accelerators. The FPGA hardware accelerators perform
calculations using fixed-point arithmetic, whereas the computations on PCs and embedded
processors are carried out using floating-point arithmetic. The employment of fixed point
arithmetic in the FPGA can lead to reduced performance, owing to signal and variable
quantization. The results obtained using the SoC FPGA receiver and using GNSS-SDR in
pure software mode were compared to estimate possible implementation losses caused by the
fixed point arithmetic in the FPGA.

The accuracy of the GNSS simulator used for this test has not been verified with measurements.
One method to assess it would be conducting a comparative test with a commercial receiver,
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although this approach might be impractical due to the limited flexibility of commercial
receivers. Alternatively, the simulator’s accuracy could be verified by processing the generated
signals, using known carrier and code phase timings, and analyzing these signals in Matlab.

The results are explained in the subsections below.

4.4.2.2.1 RMSE of the Carrier Phase Estimation

Figure 4.7 illustrates the RMSE measured for the carrier phase, alongside the theoretical
variance of the carrier phase estimates. The RMSE measured using the FPGA-SoC receiver
is shown in circles. The RMSE measured when using GNSS-SDR running in software mode
(no hardware accelerators involved) is shown in stars.
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Figure 4.7 Receiver carrier phase RMSE (1-sigma) when using the FPGA-SoC (stars) and when
using GNSS-SDR in software mode (circles).

Figure 4.7 indicates an implementation loss between 0.3 dB and 0.5 dB when employing the
FPGA hardware accelerators with respect to GNSS-SDR running in pure software mode. This
phenomenon may be attributed to the fixed point arithmetic within the FPGA or the action of
the FPGA’s dynamic bit selector. The tracking hardware accelerators employ two-bit signal
quantization. The FPGA’s dynamic bit selector dynamically adjusts the quantization of the
recorded GNSS signals to match the dynamic range of the acquisition and tracking hardware
multicorrelators. The aim is to achieve the most efficient quantization possible. The theoretical
variance of the carrier phase estimates shown in Figure 4.7 only considers the presence of
thermal noise. However, the difference between the measured values and the theoretical
variance suggests that enhancements could be made to refine the estimator’s variance.
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4.4.2.2.2 RMSE of the Code Phase Estimation

Figure 4.8 illustrates the RMSE measured for the code phase estimation, alongside the
theoretical variance of the code phase estimates. The RMSE measured using the FPGA-
SoC receiver is shown in circles. The RMSE measured when using GNSS-SDR running in
software mode (no hardware accelerators involved) is shown in stars. The theoretical variance
of the code phase estimates was computed using (4.12). The simplified form (4.13) was also
employed for comparative analysis.
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Figure 4.8 Receiver code phase RMSE (1-sigma) when using the FPGA-SoC (stars) and when
using GNSS-SDR in software mode (circles).

Figure 4.8 suggests a reduction in performance by approximately 0.5 dB and 1 dB when
utilizing the FPGA hardware accelerators compared to GNSS-SDR running in pure software
mode. The loss may be explained by the quantization of the signals and variables that take place
in the FPGA hardware accelerators. The theoretical variance of the code phase estimation
shown in Figure 4.8 only considers the presence of thermal noise. However, the difference
between the measured values and the theoretical variance suggests that enhancements could be
made to refine the estimator’s variance.

4.4.2.3 Precision of Navigation Solutions in Real-Time Mode Using a Static Scenario

This test involved measuring the precision of the navigation solutions provided by the receiver
in real-time mode and using a static scenario. In this context, precision refers to the proximity
of a solution to the mean of all obtained solutions, which indicates repeatability and the
spread of the measurement. The precision of these navigation solutions was assessed using the
standard positioning precision measurements detailed in Section 2.7.4 and their corresponding
static confidence regions. These measurements included DRMS and CEP for 2D positioning,
as well as SAS, MRSE, and SEP for 3D positioning. The DRMS and CEP measurements are
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detailed in Table 2.10, whereas the SAS, MRSE, and SEP measurements are detailed in Table
2.11, in Chapter 2.

The latitude, longitude, and height coordinates obtained by the receiver were converted to a
local ENU coordinate system. The ENU system was anchored to a selected reference point in
proximity to the receiver’s antenna, employing a WGS-84 reference ellipsoid. The means and
standard deviations were computed as detailed in section 2.7.4.

The measurements were performed using the GESTALT test-bed rooftop antenna [146]. The
receiver was configured to process the incoming signals in real-time in multi-frequency and
multi-constellation mode, using GPS L1 C/A, Galileo E1b+c, GPS L5, and Galileo E5a signals.
The receiver was configured according to Appendix 4.A and was set to dump the PVT solutions
onto a file. The sampling frequency was set to 16 Msps.

The PVT block was configured to use single-point positioning mode. During the first 15
seconds, the navigation solutions were excluded from consideration to allow the receiver to
reach a steady state. Two tests were carried out, each one lasting for 10 minutes. The 2D
precision results are shown in Table 4.9, and the 3D precision results are shown in Table 4.10.

Table 4.9 2D precision results.

Measure Results (test 1) [m] Results (test 2) [m] Confidence Region
Probability

2DRMS 6.9 4.9 95 %
DRMS 3.4 2.4 65 %
CEP 2.8 2.0 50 %

Table 4.10 3D precision results.

Measure Results (test 1) [m] Results (test 2) [m] Confidence Region
Probability

99 % SAS 9.6 8.6 99 %
90 % SAS 7.1 6.4 90 %

MRSE 5.1 4.9 61 %
SEP 4.3 3.9 50 %

The 2D precision measurements are more precise than the 3D precision measurements. This
is expected, as GNSS performs better in the horizontal plane than in the vertical plane. This
discrepancy arises from the angle between the line of sight to different GPS satellites and the
ground. More accurate results may be obtained by conducting extended measurements.

4.4.2.4 Accuracy of Navigation Solutions in Post-Processing Mode Using a LEO Sce-
nario

This test involved measuring the accuracy of the navigation solutions provided by the receiver
in post-processing mode and using a LEO scenario. The accuracy of these navigation solutions
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was assessed using the standard positioning accuracy measurements detailed in Section 2.7.5
and their corresponding static confidence regions. These measurements included DRMS
and CEP for 2D positioning, as well as SAS, MRSE, and SEP for 3D positioning. The
DRMS and CEP measurements are detailed in Table 2.12, whereas the SAS, MRSE, and SEP
measurements are detailed in Table 2.13, in Chapter 2.

A signal generator produced a synthetic LEO scenario and a reference motion file. The
reference motion file contained the reference positions and timings of the LEO scenario. The
receiver was configured to work in high dynamics scenarios. Appendix 4.B shows the receiver
configuration for the LEO scenario. The sampling frequency was set to 12.5 MSps. The
receiver processed the LEO synthetic scenario in post-processing mode, using recorded files
containing the GNSS signals. The recorded files had a duration of five minutes.

The PVT solutions produced by the receiver were recorded in files. These PVT solutions were
compared against the solutions stored in the reference motion file. The RMSE of the PVT
solutions was computed using the ECEF coordinate system, along with the mean error and the
standard deviation. The results are shown in Table 4.11.

Table 4.11 PVT accuracy using a LEO scenario.

Measure Result

3D Position RMSE 1.2 m
3D Position mean error 1.1 m

3D Position standard deviation 0.5 m
3D Velocity RMSE 0.2 m/s

3D Velocity mean error 0.2 m/s
3D Velocity standard deviation 0.1 m/s

The navigation solutions appear to be remarkably precise. The obtained 3D position RMSE
was 1.2 m and the 3D Velocity RMSE was within 0.2 m/s. These results are better than the
results obtained when testing the receiver in a static scenario with live signals using the rooftop
GESTALT antenna (see subsection 4.4.2.3). The main reason why this might be the case is that
the RFFE was not used when testing the accuracy of the LEO scenario. The AD-FMCOMMS5-
EBZ RFFE contains two independent RF transceivers, each one tuned to a different frequency
band (L1/E1 and L5/E5a). The RF transceivers were not calibrated for the tests using live
signals in a static scenario. Thus, a minor time delay between the L1/E1 and the L5/E5a
signals might be degrading the quality of the PVT solutions when using live signals.

The accuracy measurements were conducted using recorded files that lasted for 5 minutes.
More accurate measurements could be obtained by conducting longer tests.

4.4.2.5 FPGA Resource Utilization

Table 4.12 details the FPGA resource utilization for the spaceborne receiver developed with
the XCZU9EG device. This table reports the resource usage of the GNSS receiver features,
including channel conditioning, buffering, and acquisition and tracking hardware accelerators,
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along with their AXI4 memory-mapped registers. The FPGA resource usage is categorized by
LUTs, LUTRAMs, FFs, BRAMs, and DSP slices.

The XCZU9EG device is larger than the XC7Z035, leading to a lower FPGA occupancy
percentage. Compared to the resource utilization of the XC7Z035-based design shown in
Section 4.4.1.5, the XCZU9EG-based design uses slightly less LUTs, but almost twice the
number of DSP slices. The reason for this is that the XCZU9EG-based design uses a less-
optimized acquisition hardware accelerator, which uses a larger number of DSP slices for
computations that can be done using the more abundant LUTs. The XCZU9EG belongs to
a more advanced SoC FPGA family than the XCZU9EG device. This can also influence
variations in the utilization report.

Equally to the XC7Z035-based design, as explained in Section 4.4.1.5, the use of LUTs and
FFs could be reduced by optimizing the HDL code, and by potentially reducing the internal
quantization in the acquisition and tracking multicorrelator hardware accelerators. The FPGA-
based GNSS receiver logic operates at a clock frequency of 150 MHz. This clock frequency is
sufficient to operate the spaceborne receiver at the target sampling rate, but there is potential
for increasing the clock frequency.

Table 4.12 FPGA resource utilization in the spaceborne receiver implemented on the XCZU9EG
device.

Resource Utilization Resources available Utilization %

LUT 126270 274080 46

LUTRAM 6637 144000 5

FF 166510 548160 30

BRAM 477.5 912 52

DSP 732 2520 29

4.4.2.6 Power Consumption

The power consumption of the Zynq UltraScale+ XCZU9EG-FFVB1156-2-e SoC FPGA when
implementing the spaceborne GNSS receiver is estimated to be 8 W using the FPGA design
tools. This estimation assumes an average processor load of 75%, which is typical when
handling a substantial number of GNSS signals, such as 40 signals. This results in an estimated
power consumption of approximately (8 W)/(40 channels) = 0.2 W/channel.

As discussed in Section 4.4.1.6, tests conducted with an 11th-generation 28 W Intel Core
i7-1185G7 processor operating at 3 GHz estimated an energy efficiency of approximately
0.53 W/channel. Based on these estimations, the SoC FPGA exhibits an increase in power
consumption efficiency of approximately 62% (0.27 W/channel in the SoC FPGA vs 0.53
W/channel in the general-purpose processor).

Compared to the results detailed in Section 4.4.1.6 for the Zynq-7000 XC7Z035 device, the
estimated power consumption efficiency of the Zynq UltraScale+ XCZU9EG is consistent
with the expectation that Zynq UltraScale+ devices generally exhibit lower power consumption
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compared to Zynq-7000 devices with similar performance levels. This alignment is attributed
to the more advanced process technology utilized in the Zynq UltraScale+ series.

4.5 Conclusions

This chapter has detailed the design, proof-of-concept implementation, and performance
assessment of a cost-effective, software-defined spaceborne GNSS receiver. It offers practical
details into the construction and functionality of a working prototype.

This design highlights the efficacy of SDR techniques for high-dynamic scenarios, underscor-
ing the practicality of the proposed architecture and design methodology detailed in Chapter 3,
which utilizes SoC FPGA technology. This approach not only proves the suitability of SDR in
demanding conditions but also showcases the strategic use of SoC FPGA to create a low-power
and highly customizable receiver. Capable of processing GNSS signals in real time and suited
for space-like environments, this receiver serves as a pertinent application for the proposed ar-
chitecture. Furthermore, the adoption of a FOSS GNSS baseband processing engine introduces
a collaborative and transparent development environment, accelerating innovation and allow-
ing a diverse range of contributors to enhance the technology. This combination of low-cost
design, advanced processing capabilities, and an open-source development model represents a
significant novelty in the field, opening new possibilities for satellite navigation systems.

The receiver was tested in both static and LEO scenarios, demonstrating its capability to
operate in real-time dual-frequency, dual-constellation mode. It successfully acquires and
tracks GNSS signals under LEO conditions, delivering highly accurate navigation solutions
based on processed recorded signals in these scenarios.

Utilizing the ADRV9361-Z7035 development board, which measures 10 cm by 6.2 cm, serves
as a proof of concept for the feasibility of designing receivers compact enough for integration
into CubeSats. Given that CubeSats typically consist of multiples of 10 × 10 × 10 cm cubic
units, the compact design of this board illustrates the potential for creating such receivers that
meet CubeSat size constraints.

The implementation using the ZCU102 development board and the AD-FMCOMMS5-EBZ
RFFE leads to a significantly larger design, with the ZCU102 approximately measuring
23.8 cm by 24.4 cm, and the RFFE about 14 cm by 9 cm. However, the ZCU102 board
encompasses various components not required for the spaceborne receiver’s functionality.
Thus, there’s potential to minimize the receiver’s overall size through the development of a
specialized Printed Circuit Board (PCB). The ZCU102-based implementation showcases the
design portability of the proposed architecture across various SoC-FPGA variants with different
capabilities.

Potential improvements for the current prototypes are related to their acquisition sensitivity
and the timing calibration of the AD-FMCOMMS5-EBZ dual RF front-end. Additionally, the
receiver employing the ADRV9361-Z7035 board faces limitations in its capability to track a
significant number of channels simultaneously during real-time operations.

Currently, the acquisition sensitivity of the spaceborne receiver ranges between 37 and 38
dB-Hz, varying with the specific signal acquired. This limitation stems from the use of a
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standard-sensitivity acquisition hardware accelerator in the spaceborne receiver, implemented
as described in Section 3.1.4, which lacks the implementation of coherent integration and Post-
Detection Integration (PDI) techniques. Future efforts will focus on upgrading this hardware
accelerator to incorporate coherent integration and PDI techniques, aiming to enhance the
acquisition sensitivity to levels below the current range.

In addition, although both RF transceivers on the AD-FMCOMMS5-EBZ board are synchro-
nized with the reference clock, their sampling’s relative timing has not been calibrated. Con-
sequently, a slight time delay between the L1/E1 and L5/E5a signals could affect the PVT
solutions’ quality when operating in dual-frequency mode. Future work also involves imple-
menting a calibration routine for dual-frequency mode.

Finally, when using the ADRV9361-Z7035 development board, the embedded processor’s
computational capacity limits the receiver’s ability to simultaneously track more than 24
signals. Still, this performance was achieved by temporarily implementing a throttle in the
GNSS-SDR’s PVT block, specifically designed to lower the embedded processor’s average
computational load during the PVT module’s operation. This was not the case when using the
ZCU102 board, which was capable of tracking up to 40 signals simultaneously. This limitation
in the ADRV9361-Z7035 board mainly arises from the embedded processor’s limited ability to
manage a large volume of interrupts originating from several tracking multicorrelator hardware
accelerators at the same time. It is possible to enhance receiver performance by making
adjustments to the multicorrelator tracking hardware accelerators in the FPGA. Extending
the coherent integration time within the FPGA beyond that of a single data symbol would
lead to a reduction in the frequency of interrupt requests, especially when tracking Galileo
E1b/c signals, known for their brief data symbol duration of 4 ms. Optimizing the embedded
processor software might also lead to improved performance. Implementing these strategies
would enable the receiver to track more GNSS signals simultaneously.

These aspects delineate critical areas for future research and optimization to enhance the
receiver’s overall performance and utility.

Nevertheless, the receiver showcases the practicality of developing affordable GNSS receivers
using SoC FPGAs for processing GNSS signals within LEO orbits.

The results presented in this chapter were partially published in:

• [20] M. Majoral, C. Fernández-Prades, and J. Arribas, “A Flexible System-on-Chip
Field-Programmable Gate Array Architecture for Prototyping Experimental Global
Navigation Satellite System Receivers,” Sensors, vol. 23, no. 23, 2023, Art. no. 9483.
doi: 10.3390/s23239483

• [22] C. Fernández-Prades, J. Arribas, M. Majoral, A. Ramos, J. Vilá-Valls, and
P. Giordano, “A Software-Defined Spaceborne GNSS Receiver,” in 2018 9th ESA
Workshop on Satellite Navigation Technologies and European Workshop on GNSS
Signals and Signal Processing (NAVITEC), Noordwijk, Netherlands, December 2018,
pp. 1–9. doi: 10.1109/NAVITEC.2018.8642697
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Appendix 4.A Receiver Configuration for Static Scenarios

This section describes the receiver configuration used to achieve the experimental results in
static scenarios. Table 4.13 shows the configuration of the acquisition block. Table 4.14
and Table 4.15 show the configuration of the Tracking blocks. Finally, Table 4.16 shows the
configuration of the PVT block. By default, the sampling frequency is set to 12.5 Msps.

Table 4.13 outlines the receiver acquisition parameters. It includes the Doppler max,
representing the highest Doppler frequency in the search space, and the Doppler step,
which refers to the increment between frequencies within the search grid. Self-assistance to
acquisition from primary to secondary band is enabled. Therefore, once the primary band
is successfully acquired, the receiver predicts the Doppler frequency in the secondary band.
Subsequently, it performs acquisition in the secondary band with a reduced Doppler search grid.
The threshold parameter in Table 4.13, denoted as Γ in Algorithm 1 in Chapter 3, represents
the decision threshold above which a signal is considered present. A downsampling filter is
used in the L1/E1 band to reduce the acquisition latency. The downsampling filter is only used
in the acquisition.

Table 4.13 Spaceborne receiver acquisition configuration for static scenarios.

Parameter type Parameter Value

Acquisition GPS L1 C/A Doppler Max 5000 Hz
Doppler Step 500 Hz

Threshold 2.5
Downsampling Factor 4

Acquisition GPS L5 Doppler Max 500 Hz
Doppler Step 250 Hz

Threshold 2.5
Assistance to acquisition from

primary to secondary band
Enabled

Acquisition Galileo E1b/c Doppler Max 5000 Hz
Doppler Step 250 Hz

Threshold 2.5
Downsampling Factor 4

Acquisition Galileo E5a Doppler Max 500 Hz
Doppler Step 125 Hz

Threshold 2.5
Assistance to acquisition from

primary to secondary band
Enabled

Table 4.14 and Table 4.15 display the receiver tracking configuration parameters for the GPS
and Galileo signals, respectively. The coherent integration time is set to 20 ms to increase the
apparent signal-to-noise ratio. The early-late space chips is the spacing between the Early and
Prompt, and between the Prompt and Late correlators, normalized by the chip period. The
early-late narrow space chips is the spacing between the Early and Prompt, and between the

114



4.A. Receiver Configuration for Static Scenarios

Prompt and Late correlators, normalized by the chip period, after bit synchronization. The
very early-late space chips is the spacing between the Very Early and Prompt and between the
Prompt and Very Late correlators, normalized by the chip period The very early late space
narrow chips is the spacing between the Very Early and Prompt, and between the Prompt
and Very Late correlators after removal of the secondary code and extension of the coherent
integration time, normalized by the chip period. The PLL filter bandwidth is the bandwidth
of the PLL low-pass filter. The PLL filter bandwidth with narrow correlator configuration is
the bandwidth of the PLL low-pass filter after removal of the secondary code. The DLL filter
bandwidth is the bandwidth of the DLL low pass filter. Finally, the DLL filter bandwidth with
narrow correlator configuration is the bandwidth of the DLL low-pass filter after the removal
of the secondary code.

Table 4.14 Spaceborne receiver GPS tracking configuration for static scenarios.

Parameter type Parameter Value

Tracking GPS L1 C/A coherent integration time 20 ms
Early-Late space chips 0.5 chips

Early-Late space narrow chips 0.1 chips
PLL filter bandwidth 35 Hz

PLL filter bandwidth (narrow
correlator configuration)

7.5 Hz

DLL filter bandwidth 2 Hz
DLL filter bandwidth (narrow

correlator configuration)
0.5 Hz

Tracking GPS L5 coherent integration time 20 ms
Early-Late space chips 0.5 chips

Early-Late space narrow chips 0.1 chips
PLL filter bandwidth 20 Hz

PLL filter bandwidth (narrow
correlator configuration)

7.5 Hz

DLL filter bandwidth 1.5 Hz
DLL filter bandwidth (narrow

correlator configuration)
0.5 Hz

115



Chapter 4. Spaceborne GNSS Receiver

Table 4.15 Spaceborne receiver Galileo tracking configuration for static scenarios.

Parameter type Parameter Value

Tracking Galileo E1b/c coherent integration time 20 ms
Early-Late space chips 0.25 chips

Very Early-Late space chips 0.5 chips
Early-Late space narrow chips 0.15 chips

Very Early-Late space narrow chips 0.5 chips
PLL filter bandwidth 15 Hz

PLL filter bandwidth (narrow
correlator configuration)

7.5 Hz

DLL filter bandwidth 0.75 Hz
DLL filter bandwidth (narrow

correlator configuration)
0.5 Hz

Tracking Galileo E5a coherent integration time 20 ms
Early-Late space chips 0.5 chips

Early-Late space narrow chips 0.1 chips
PLL filter bandwidth 20 Hz

PLL filter bandwidth (narrow
correlator configuration)

7.5 Hz

DLL filter bandwidth 1.5 Hz
DLL filter bandwidth (narrow

correlator configuration)
0.5 Hz

Table 4.16 shows the receiver PVT configuration parameters: the positioning mode is set
to single-point positioning. The Receiver Autonomous Integrity Monitoring (RAIM) Fault
Detection and Exclusion (FDE) is enabled. The ionospheric correction is performed according
to the broadcasted ionospheric model. A Saastamoninen tropospheric model is used [151].
The PVT output rate is set to 1 s, and the satellites marked as unhealthy are not used for the
computation of the PVT solutions. On top of that, a PVT Kalman filter is used.
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Table 4.16 Spaceborne receiver PVT configuration for static scenarios.

Parameter type Parameter Value

General Positioning Mode Single
Receiver Autonomous Integrity

Monitoring (RAIM) Fault Detection
and Exclusion (FDE)

Enabled

Iono Model Broadcast
Trop Model Saastamoinen

PVT Output Rate 1 s
Use unhealthy sats Disabled

PVT Kalman Filter
Standard deviation of the position

estimations
1 m

Standard deviation of the velocity
estimations

0.1 m/s

Standard deviation of the dynamic
system model for position

2.0 m

Standard deviation of the dynamic
system model for velocity

0.5 m/s

More information regarding the GNSS-SDR configurable parameters can be found in [17].
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Appendix 4.B Receiver Configuration for Low Earth Orbit
(LEO) scenarios

This section provides the receiver configuration that was employed to obtain the experimental
results using the LEO scenario. Table 4.17 shows the configuration of the acquisition block.
Self-assistance to acquisition from primary to secondary band is enabled. Therefore, once
the primary band is successfully acquired, the receiver predicts the Doppler frequency in
the secondary band and performs acquisition in the secondary band with a reduced Doppler
frequency space. The acquisition parameters shown in Table 4.17 have been explained in
Appendix 4.A. The Doppler Max parameter is set to 50 kHz to accommodate the range of
Doppler shifts encountered in Low Earth Orbit (LEO) conditions.

Table 4.17 Spaceborne receiver acquisition configuration for LEO scenarios.

Parameter type Parameter Value

Acquisition GPS L1 C/A Doppler Max 50000 Hz
Doppler Step 250 Hz

Threshold 2.5
Downsampling Factor 4

Acquisition GPS L5 Doppler Max 5000 Hz
Doppler Step 250 Hz

Threshold 2.5
Assistance to acquisition from

primary to secondary band
Enabled

Acquisition Galileo E1b/c Doppler Max 50000 Hz
Doppler Step 250 Hz

Threshold 2.5
Downsampling Factor 4

Acquisition Galileo E5a Doppler Max 5000 Hz
Doppler Step 250 Hz

Threshold 2.5
Assistance to acquisition from

primary to secondary band
Enabled

Tables 4.18 and 4.19 show the configuration of the Tracking blocks for the GPS and Galileo
signals, respectively. In addition to the parameters explained in Appendix 4.A, a FLL is enabled
during the pull-in time. The High Dynamics flag, as shown in Tables 4.18 and 4.19, enables
the operation of the high-dynamic tracking loops. These are described in Section 4.3.3 and
utilize the code phase, Doppler shift, and Doppler rate for tracking. This setup is designed for
enhanced performance under high-dynamic conditions.
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Table 4.18 Spaceborne receiver GPS tracking configuration for LEO scenarios.

Parameter type Parameter Value

Tracking GPS L1 C/A coherent integration time 20 ms
Early-Late space chips 0.5

Early-Late space narrow chips 0.5
PLL filter bandwidth 35 Hz

PLL filter bandwidth (narrow
correlator configuration)

5.0 Hz

DLL filter bandwidth 2 Hz
DLL filter bandwidth (narrow

correlator configuration)
0.5 Hz

Enable FLL pull-in true
FLL filter bandwidth 10 Hz

High Dynamics true

Tracking GPS L5 coherent integration time 5 ms
Early-Late space chips 0.5

Early-Late space narrow chips 0.5
PLL filter bandwidth 50 Hz

PLL filter bandwidth (narrow
correlator configuration)

30 Hz

DLL filter bandwidth 4 Hz
DLL filter bandwidth (narrow

correlator configuration)
2 Hz

Enable FLL pull-in true
FLL filter bandwidth 2.5 Hz

High Dynamics true
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Table 4.19 Spaceborne receiver Galileo tracking configuration for LEO scenarios.

Parameter type Parameter Value

Tracking Galileo E1b/c coherent integration time 20 ms
Early-Late space chips 0.15

Very Early-Late space chips 0.5
Early-Late space narrow chips 0.15

Very Early-Late space narrow chips 0.5
PLL filter bandwidth 15 Hz

PLL filter bandwidth (narrow
correlator configuration)

5.0 Hz

DLL filter bandwidth 0.75 Hz
DLL filter bandwidth (narrow

correlator configuration)
0.5 Hz

Enable FLL pull-in true
FLL filter bandwidth 10 Hz

High Dynamics true

Tracking Galileo E5a coherent integration time 5 ms
Early-Late space chips 0.5

Early-Late space narrow chips 0.5
PLL filter bandwidth 50 Hz

PLL filter bandwidth (narrow
correlator configuration)

30 Hz

DLL filter bandwidth 4.0 Hz
DLL filter bandwidth (narrow

correlator configuration)
2.0 Hz

Enable FLL pull-in true
FLL filter bandwidth 2.5 Hz

High Dynamics true

Finally, Table 4.20 shows the configuration of the PVT block. The navigation solutions were
computed using the least squares method.

Table 4.20 Spaceborne receiver PVT configuration for LEO scenarios.

Parameter type Parameter Value

General Positioning Mode Single
Receiver Autonomous Integrity

Monitoring (RAIM) Fault Detection
and Exclusion (FDE)

Enabled

Iono Model Broadcast
Trop Model Off

PVT Output Rate 20 ms
Use unhealthy sats Disabled
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GNSS Rebroadcaster

This chapter details the design, prototype development, and initial assessment of an econom-
ical, software-defined GNSS rebroadcaster, constructed using COTS components. This work
adheres to the design principles and methodologies outlined in Chapter 3.

This design enhances the capabilities of the proposed architecture for generating GNSS signals,
potentially enabling the simulation of diverse GNSS scenarios. Additionally, it showcases the
architecture’s flexibility for supporting research activities in the design, testing, and validation
of non-standard GNSS features operating in real time, such as the rebroadcasting of GNSS
signals.

The proposed rebroadcaster can generate, or receive and regenerate, GNSS signals with very
low latency. It can generate and regenerate up to eight GPS L1 C/A and Galileo E1 b/c
signals simultaneously. The presented rebroadcaster features a special module named telemetry
symbol link. When the telemetry symbol link is enabled, the rebroadcaster can regenerate the
received telemetry symbols with a latency below 30 ms. This also allows maintaining the
consistency with other sensors, e.g. IMU, where available.

The underlying architecture of the proposed rebroadcaster builds upon the SoC FPGA receiver
framework detailed in Chapter 3. It introduces additional FPGA hardware accelerators for
GNSS signal generation and incorporates GNSS-SDR-SIM, a software-defined GNSS signal
generator. This enhancement significantly enriches the system’s capabilities.

The implementation of the rebroadcaster is based on the software-defined GNSS simulator
referenced in [149], which is capable of generating GNSS signals in post-processing mode. In
this thesis, the software was adapted to operate on an SoC-FPGA device, supporting both real-
time and post-processing modes. This adaptation included the ability to generate and regenerate
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GNSS signals in real time, including the regeneration of unpredictable telemetry symbols with
minimal latency. Hardware accelerators were developed within the FPGA, leveraging IP cores
from the spaceborne receiver discussed in Chapter 4 and creating new cores for the transmitter.
The device underwent extensive testing and verification to ensure its functionality.

This chapter is organized as follows: Section 5.1 provides an introduction. Section 5.2
summarizes the objectives of the rebroadcaster implementation. Next, Section 5.3 describes the
rebroadcaster architecture. This is followed by Section 5.4, which focuses on the transmitter
part of the rebroadcaster and provides a detailed description of its design. Section 5.5 presents
the preliminary performance assessment and experimental results, and finally, Section 5.6
wraps up some conclusions.

5.1 Introduction

SDR techniques facilitate the implementation of GNSS signal generators and regenerators for
research purposes. A significant number of GNSS signal generators are discussed in academic
and technical publications.

The most basic type of GNSS signal generator functions by replaying either synthetically
created or previously recorded GNSS signals. The synthetic GNSS signals can be created
in post-processing mode prior to their transmission. Refs. [152, 153] exemplify this type of
signal generator. More complex devices can generate GNSS signals on the fly, eliminating the
need for pre-processing a large volume of data. For instance, Ref. [154] describes a real-time
signal generator that operates on GPUs.

Signal regenerators used for testing GNSS threat mitigation techniques operate on similar
principles. The regeneration of GNSS signals can be performed in three steps: initially
recording the received signals, then regenerating the signals in post-processing mode, and
finally, replaying the regenerated signals in real-time mode. More sophisticated systems
can perform real-time regeneration of GNSS signals, receiving and regenerating the signals
simultaneously. As an example, Ref. [155] is a large and sophisticated test-bed for testing
GNSS position and timing authentication methods. The regeneration of GNSS signals
can employ data bit prediction to promptly retransmit the signals with accurate timing,
thus minimizing the latency typically associated with symbol estimation and retransmission.
However, this prevents the retransmission of any unpredictable data that might be embedded
in the navigation messages. Ref. [156] introduces a test-bed with a receiver-spoofer capable
of regenerating up to 14 GPS signals in real time in this manner. This receiver-spoofer is
an enhanced version of the DSP-based receiver-spoofer introduced in [157]. Conversely,
by utilizing improved real-time capabilities, signal regenerators can estimate and retransmit
received secure codes or data symbols with low latency, albeit not zero latency, due to the time
needed to estimate the received symbols. The rebroadcaster proposed in this thesis incorporates
sophisticated real-time capabilities to rebroadcast the received navigation data symbols with
low latency.

Practical utilities of GNSS signal regeneration include the simulation of diverse GNSS
scenarios and, for instance, providing indoor GNSS positioning: Ref. [158] describes the
use of multiple GNSS signal regenerators, synchronized wirelessly with a computer server, to
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broadcast GNSS signals received by outdoor antennas into indoor environments where GNSS
signals are otherwise unavailable.

5.2 Objectives

The aim of this development is to highlight the versatility of the SoC FPGA architecture
proposed in this thesis, showcasing the generation and regeneration of GNSS signals in real
time. This capability could potentially enable the emulation of a wide range of GNSS scenarios.
Additionally, this development aims to demonstrate the architecture’s adequacy for supporting
the design, testing, and real-time validation of non-standard GNSS features. The telemetry
symbol link implemented in the rebroadcaster examplifies this capability, serving as a concrete
instance of how the system can facilitate the exploration and integration of advanced GNSS
functionalities.

The telemetry symbol link implements a fast path between the receiver tracking multicorrela-
tors and the transmitter channels in the FPGA, enabling the fast retransmission of the telemetry
symbols estimated at the receiver. This approach aims to offer greater flexibility than existing
COTS signal generators, potentially enabling the real-time simulation of various scenarios with
GNSS signals received from space.

The target system includes a rebroadcaster capable of operating in both real-time and post-
processing modes, serving dual functions as a signal generator and a signal regenerator. The
system can generate or regenerate up to 8 GPS L1 C/A and Galileo E1b/c signals in any
combination. The telemetry symbol link can only be activated when regenerating Galileo E1b/c
signals. Figure 5.1 shows the target system.

Antenna

Switch
GNSS Rebroadcaster

Functionalities:
Downconversion (RF to BB), 

Acquisition, Tracking, 
Signal Regeneration, 

Upconversion (BB to RF) or 
BB samples storage on disk

GNSS 
Simulator

Professional/
Commercial/

Mass-market RX

HD SDRHD

RF

BB

RF

BB

Figure 5.1 GNSS Signal Rebroadcaster

When operating in real-time mode as a signal regenerator, the rebroadcaster receives signals
from a GNSS simulator or an antenna, and it rebroadcasts the signals to an external GNSS
receiver. A GNSS signal simulator is a device designed to generate signals that mimic
those produced by GNSS satellites. The external receiver, either physical or based on
software-defined radio, may incorporate advanced processing techniques, such as innovative
tracking loops, digital signal processing, advanced navigation message processing, or receiver
protection algorithms.

The rebroadcaster can also operate in real-time mode as a signal generator. In this case, the
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antenna is not connected. Instead, the rebroadcaster generates GNSS signals internally, which
are processed by the external GNSS Receiver.

When operating in post-processing mode as a signal regenerator, the rebroadcaster processes
GNSS signals recorded on a Hard Disk (HD), regenerates these signals, and stores them back
onto the HD.

Finally, when working in post-processing mode as a signal generator, the rebroadcaster
generates GNSS signals internally and stores these signals in the HD.

In the initial concept demonstrator, the target retransmission delay is set to 1 s for both the
retransmitted PVT solutions and the regenerated symbols. By default, the telemetry data
is regenerated out of the received ephemeris data. Therefore any unpredictable data in the
navigation messages is not retransmitted.

However, when the telemetry symbol link is used, the target latency for the estimation and
retransmission of the received telemetry data is set to 30 milliseconds. Although the FPGA is
capable of achieving lower latencies, this threshold has been chosen to expedite the initial
implementation. Moreover, the telemetry symbol link regenerates any unpredictable data
present in the navigation messages.

In addition, the rebroadcaster can regenerate the received satellite signals in real-time while
simultaneously rebroadcasting a PVT solution that differs from the PVT fixes obtained by the
receiver. In this case, a sufficient number of satellites shall be visible from the rebroadcasted
position such that an external GNSS receiver can successfully obtain PVT fixes using the
regenerated signals.

The software version of the regenerator (with the option not to use the FPGA hardware
accelerators) can be executed in a PC. In this case, the FPGA hardware accelerator modules are
replaced by software modules, which perform the equivalent functionality in software mode.
When running on a PC, the signal regenerator is limited to post-processing mode.

In the current implementation, the rebroadcaster does not simulate any atmospheric effects on
the regenerated signal.

5.3 System Design

The rebroadcaster features a software-defined receiver and a software-defined transmitter for
proper operation. The receiver utilizes the FPGA hardware accelerators presented in Chapter 3
for real-time processing of GNSS signals. The transmitter utilizes additional FPGA hardware
accelerators for the generation of the transmitted signals. The transmitter hardware accelerators
were specifically developed for the design of the rebroadcaster.

To regenerate the received GNSS signals, the rebroadcaster’s receiver first processes these
signals to obtain PVT solutions. Subsequently, the transmitter uses the receiver’s estimated
signal parameters to regenerate the GNSS signals accordingly. The transmitter utilizes the
receiver’s ephemeris data and the rebroadcasted PVT to compute the observables corresponding
to the transmitted signal. These observables include pseudoranges, carrier phase, carrier
Doppler shift frequency, carrier Doppler rate, code phase, and code Doppler shift frequency.
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To rebroadcast a PVT solution that differs from the receiver PVT, the transmitter recalculates
the observables from the satellites that the receiver is tracking, referencing both the desired
rebroadcasted PVT and the satellites’ real-time positions. These observables are then used
by the transmitter to determine the shape and timing of the rebroadcasted signal, which is then
communicated to the FPGA. This communication between the software-defined transmitter and
the FPGA occurs in the form of timed commands. The software-defined transmitter generates
timed commands specifying the shape of the rebroadcasted signals. Simultaneously with the
reception of the timed commands, the FPGA generates the GNSS signals. All these calculations
occur in real time.

Without loss of generality, in the following we will assume that the rebroadcasted PVT is
always set to the receiver PVT. The receiver PVT is rebroadcasted with a delay of 1 s due to
the processing time required mainly for the PVT calculation in the receiver. By default, the
telemetry data is also rebroadcasted with a delay of 1 s, because the telemetry data follows the
same path as the PVT (from the software-defined receiver to the software-defined transmitter).
Also by default, the transmitter pre-computes the transmitted telemetry on the fly, out of the
ephemeris data obtained in the receiver. The FPGA then generates the signal sample stream
for the DAC. Any secondary pilot symbols, if present in the GNSS signals, are automatically
generated in the FPGA.

When the telemetry symbol link is enabled — providing a fast path within the FPGA for
quickly retransmitting received telemetry data — the transmitter can rebroadcast the telemetry
symbols with a latency of less than 30 ms. This low latency results from the FPGA’s direct path
that channels the estimated telemetry symbols from the receiver hardware accelerators to the
transmitter hardware accelerators, bypassing the PS. The transmitter directly rebroadcasts the
telemetry symbols obtained at the receiver, but aligns their timing with the rebroadcasted PVT
instead of the receiver’s signal timing. Rebroadcasting the receiver PVT still incurs a delay of
1 second, due to the time required for the receiver to estimate the PVT.

The telemetry symbol link also enables the rebroadcasting of any unpredictable symbols in the
navigation data, since the telemetry symbols are estimated at the receiver and rebroadcasted at
the transmitter.

5.3.1 Hardware Implementation

Similar to the spaceborne receiver discussed in Chapter 4, the proposed architecture utilizes
the Analog Devices’ ADRV9361-Z7035 board [159]. As described in Section 4.3.1, this
board integrates the AD9361 RF Agile Transceiver [106] and the AMD Zynq XC7Z035-L2
FBG676I All-Programmable SoC [103], with a size of 100 × 62 mm. This platform facilitates
the GNSS rebroadcaster’s comprehensive functionality, encompassing receiver and transmitter
operations from the RF output of an antenna (or signal generator), through the generation of
navigation products, to the real-time regeneration of GNSS signals. The design ensures that
the rebroadcaster is compact, transportable, and fully upgradeable, capable of providing end-
to-end solutions on a single board.

In order to facilitate the development, debugging and testing of the GNSS receiver, the
prototype makes use of a ADRV1CRR-BOB breakout carrier board, which implements suitable
standard connectors for power supply, Ethernet communications, USB and JTAG programming
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interfaces, among other debugging features [140]

5.3.2 Signal Model

The GPS L1 C/A signals transmitted by GNSS satellites can be described by (2.6) in Chapter
2. Similarly, the GPS L1 C/A signals received at the rebroadcaster’s RF front-end can be
represented as

𝑟 (𝑡) =
𝑁∑︁
𝑘=0

𝐴𝑘𝑐𝑘 (𝑡 − 𝜏𝑘 (𝑡))𝑑𝑘 (𝑡 − 𝜏𝑘 (𝑡)) cos(2𝜋( 𝑓𝑐 + 𝑓𝑑,𝑘 )𝑡 − 𝜓𝑘 (𝑡)) + 𝑤(𝑡) , (5.1)

where 𝑁 represents the number of visible satellites; 𝐴𝑘 , the signal amplitude; 𝑐𝑘 (𝑡), the
spreading code; 𝑑𝑘 (𝑡), the data bit stream; 𝜏𝑘 (𝑡), the code phase; 𝑓𝑐, the L1 carrier frequency;
𝑓𝑑,𝑘 , the Doppler frequency; 𝜓𝑘 (𝑡), the carrier phase; and 𝑤(𝑡), the additive noise at the RF
input, which is assumed to be white and Gaussian. Similarly to (2.6) in Chapter 2, the subindex
𝑘 indicates that the parameter corresponds to the signal transmitted by the 𝑘-th satellite.

The regenerated GNSS signal can be represented as

𝑠(𝑡) =
𝑁∑︁
𝑘=0

𝐴𝑠,𝑘𝑐𝑘 (𝑡 − 𝜏𝑠,𝑘 (𝑡))𝑑𝑘 (𝑡 − 𝜏𝑠,𝑘 (𝑡)) cos(2𝜋( 𝑓𝑐 + 𝑓𝑑,𝑘 )𝑡 − 𝜓𝑠,𝑘 (𝑡)) + 𝑤𝑠 (𝑡) (5.2)

where 𝐴𝑠,𝑘 represents the generated carrier amplitude; 𝑑𝑘 , the estimated and regenerated
telemetry symbols; 𝑓𝑐, the carrier frequency; 𝑓𝑑,𝑘 , the estimated and regenerated Doppler
frequency; 𝜏𝑠,𝑘 (𝑡), the estimated and regenerated code phase; 𝜓𝑠,𝑘 (𝑡), the transmitted carrier
phase; and 𝑤𝑠 (𝑡), the noise at the RF output. The generated carrier amplitude is fixed, and
the transmitted carrier phase, 𝜓𝑠,𝑘 (𝑡), is initialized to zero at the start of rebroadcasting. This
initialization also occurs during operation, when a satellite is detected, and the rebroadcaster
begins its retransmission. Similar to (5.1), the subindex 𝑘 indicates that the parameter
corresponds to the signal transmitted by the 𝑘-th satellite.

When operating in post-processing mode and on a PC in software mode (without involving
an FPGA), the rebroadcaster is capable of generating noise, 𝑤𝑠 (𝑡), along with the output
signal, based on a user-specified 𝐶/𝑁0. However, this option is unavailable when the system
operates in real time on a SoC FPGA platform. The reason for this is that the signal generator
produces noise simulating the normal distribution with floating-point calculations, which is not
straightforward to implement in the FPGA using fixed-point arithmetic.

For Galileo E1b/c signals, the rebroadcaster functions in a manner akin to its processing of
GPS L1 C/A signals. The Galileo E1b/c signals comprise two components: the pilot and
the data signals, as outlined in Equation 2.9 in Chapter 2 [29]. When rebroadcasting Galileo
signals both the pilot and the data components are regenerated in real time. By default, the
data symbols are pre-computed out of the ephemeris data obtained by the receiver, and then the
pre-computed values are transmitted. All this process occurs in real time. When the telemetry
symbol link is enabled, the data symbols are estimated and directly retransmitted with minimal
latency. The pilot’s secondary code is automatically generated in the FPGA.
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As shown in Equation 2.9 in Chapter 2, the Galileo E1 b/c signal uses a CBOC modulation,
where both pilot and data signals are modulated using two square-waveform sub-carriers:
𝑠𝑐𝐸1−𝐵,𝑎 (𝑡), 𝑠𝑐𝐸1−𝐵,𝑏 (𝑡), 𝑠𝑐𝐸1−𝐶,𝑎 (𝑡), and 𝑠𝑐𝐸1−𝐶,𝑏 (𝑡) [29]. The rebroadcaster regenerates
the 𝑠𝑐𝐸1−𝐵,𝑎 (𝑡) and 𝑠𝑐𝐸1−𝐶,𝑎 (𝑡) subcarriers, but it does not regenerate 𝑠𝑐𝐸1−𝐵,𝑏 and 𝑠𝑐𝐸1−𝐶,𝑏,
leading to BOC(1,1) modulation being used instead of CBOC. This allows for a more efficient
hardware implementation. In [160], simulations show that acquiring CBOC-modulated signals
with a BOC(1,1)-modulated reference code in narrow-bandwidth receivers leads to only
minimal performance loss in detection probability, compared to processing these signals with
CBOC-modulated reference codes. This finding suggests that regenerating Galileo signals with
BOC(1,1) modulation is similarly likely to result in small performance losses, even in narrow-
bandwidth receivers. However, the specific impact was not accurately measured.

5.3.3 Rebroadcaster Architecture

Figure 5.2 shows the block diagram of the GNSS signal regenerator. It contains two main
parts: the AD9361 RF transceiver, which implements the RFFE, and the Zynq-7000 XC7035
SoC FPGA.

The RFFE performs two main sets of operations on GNSS signals: first, it converts the received
RF signals to baseband and then digitizes them through analog-to-digital conversion; second,
it performs digital-to-analog conversion on the rebroadcasted GNSS signals and converts them
from baseband back to RF.

The SoC FPGA features a software receiver and a software transmitter within the PS. Con-
versely, the PL is responsible for implementing receiver and transmitter hardware accelerators,
as well as the telemetry symbol link.

The SoC FPGA instantiates the following GNSS Receiver modules, in line with the architecture
proposed in Chapter 3:

• FPGA receiver hardware accelerator IPs: The FPGA implements the acquisition,
tracking multicorrelators, dynamic bit selection, and other auxiliary receiver modules,
following the design explained in Chapter 3. When the GNSS signal regeneration is
enabled, the FPGA receives the GNSS signals from the analog front-end and executes
the acquisition and the tracking multicorrelators to process the received signals.

• GNSS-SDR software-defined receiver: This software implements the baseband GNSS
receiver engine. When the GNSS signal regeneration is enabled, GNSS-SDR performs
the telemetry decoding, obtains observables, and computes PVT. Then, it communicates
the PVT data and the ephemeris data to the software transmitter. This information is used
by the transmitter to rebroadcast the GNSS signals promptly. When the telemetry symbol
link is enabled, GNSS-SDR also sends the receiver’s internal status data to the transmitter
in real-time. The contents of the receiver status data is explained in Section 5.3.4.
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Figure 5.2 GNSS Signal Regenerator block diagram

In addition to the receiver modules mentioned above, the SoC FPGA also instantiates the
following GNSS transmitter modules:

• GNSS-SDR-SIM software-defined transmitter: This software computes the parame-
ters of the transmitted signals in real time, according to the desired PVT solution. When
working as a signal generator, GNSS-SDR-SIM obtains the ephemeris data and the PVT
data from user input files. When working as a signal regenerator, GNSS-SDR-SIM ob-
tains the ephemeris data and the PVT from the software receiver. It then computes the
observables for the rebroadcasted satellites that are visible from the rebroadcasted PVT.
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After that, it computes the shape and timing of the regenerated signal, including code
phase, code phase rate, carrier phase, carrier phase rate, and Doppler frequencies, based
on these observables. At the end of this process, GNSS-SDR-SIM embeds this infor-
mation in the timed commands and sends the timed commands to the FPGA. When the
telemetry symbol link is enabled, GNSS-SDR-SIM also uses the receiver’s internal status
data to assemble the timed commands. The contents of the receiver internal status data is
explained in Section 5.3.4, and its role in generating the transmitted signal is explained
in Section 5.4.

• FPGA transmitter hardware accelerator IPs: The FPGA contains hardware accelera-
tor IPs that generate the transmitted GNSS signals in real time. When working as a signal
generator, and when working as a signal regenerator with the telemetry symbol link be-
ing disabled, the FPGA generates/regenerates the signals out of the timed commands that
GNSS-SDR-SIM sends to the FPGA. When functioning as a signal regenerator with the
telemetry symbol link enabled, the FPGA regenerates signals using timed commands and
the receiver’s estimated telemetry symbols. These symbols, estimated at the receiver’s
tracking multicorrelators, are made available to the transmitter through the telemetry
symbol link.

Finally, the SoC FPGA instantiates the telemetry symbol link, comprising various modules
that facilitate a fast path for communicating the estimated telemetry symbols from the receiver
to the transmitter. The telemetry symbol link includes a state machine and various First In,
First Out (FIFO) queues. These queues connect the receiver’s FPGA multicorrelator IPs to the
transmitter’s signal generator channels within the FPGA on a per-channel basis. The telemetry
symbol link facilitates the retransmission of any unpredictable data embedded in the navigation
messages.

When the telemetry symbol link is disabled, GNSS-SDR-SIM pre-computes the rebroadcasted
telemetry symbols out of the receiver telemetry data. Thus, disabling the telemetry symbol
link renders the system incapable of retransmitting any unpredictable data embedded within
the navigation messages.

The PS runs on the Geniux-customized GNU/Linux OS. The methodology for configuring
the embedded OS is explained in Section 3.2. Both GNSS-SDR and GNSS-SDR-SIM are
compatible with Geniux and can also run on a GNU/Linux-based PC. However, when operated
on a PC, they are limited to functioning in post-processing mode.

5.3.4 Receiver Internal Status

The receiver contains a sample counter that is reset when signal reception is initiated. This
sample counter counts the number of samples received. Each received telemetry symbol is
associated with a sample counter value and the Time of Week (TOW) corresponding to the
time when the satellite sent that symbol. In addition, each symbol is associated with a ToA,
indicating the time when the receiver received that symbol. As time progresses, the relationship
between the received sample counter value, the TOW, and the ToA in a receiver channel
changes due to the relative movement between the receiver and the satellite being tracked.
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The receiver internal status data includes several parameters that are relevant for the telemetry
symbol link. These parameters are the satellite channel allocation, the equivalence between
the TOW values, the ToA values and the receiver sample counter values for each channel, and
a flag that indicates whether the receiver PLLs are locked in 180◦. When the receiver’s PLL
locks with a 180◦ phase difference, the PLL output signal is in phase opposition to the received
carrier signal. This results in the inversion of demodulated data bits.

When the telemetry symbol link is enabled, GNSS-SDR-SIM uses the receiver internal status
data to compute the receiver sample counter corresponding to the telemetry symbols to be
rebroadcasted. GNSS-SDR-SIM also uses the receiver internal status data to determine the
transmitter channel allocation. Then, GNSS-SDR-SIM embeds the sample counter values and
the receiver PLL lock status (0 degrees or 180 degrees) into the timed commands. In this
way, the FPGA can use the sample counter to locate the telemetry symbols to be rebroadcasted
within the FIFO of the telemetry symbol link. In addition, the FPGA uses the PLL lock status
to generate the symbols using the correct polarity.

Section 5.4 explains in more detail how the transmitter uses the receiver’s internal status to
rebroadcast the estimated telemetry symbols achieving very low latency.

5.4 Transmitter Design

5.4.1 Software Transmitter

Fig. 5.3 shows a block diagram of GNSS-SDR-SIM. It includes the following components:

• User PVT / trajectory: These are the PVT solutions to be rebroadcasted. When working
as a signal generator, GNSS-SDR-SIM obtains the PVT data from user input files. A
dynamic PVT can be specified using NMEA files or Comma-Separated Values (CSV)
files containing time and positions. A dynamic PVT is automatically interpolated in the
transmitter. A static PVT can be specified by setting a fixed position. Conversely, when
working as a signal regenerator, GNSS-SDR-SIM obtains the PVT data from the receiver.

• Ephemeris data: This is the ephemeris data of the satellites to be rebroadcasted. When
working as a signal generator, GNSS-SDR-SIM obtains the ephemeris data from RINEX
files. When working as a signal regenerator, it obtains the ephemeris data from the
receiver.

• Receiver internal status: This includes the receiver sample counter, Time of Week
(TOW), Time of Arrival (ToA), and Phase-Locked Loop (PLL) lock status for each
channel, all associated with the receiver’s telemetry symbols (see Section 5.3.4). When
working as a signal regenerator, and when the telemetry symbol link is enabled, GNSS-
SDR sends its internal status data to the GNSS-SDR-SIM every 20 ms.

• Orbit Engine: The orbit engine utilizes the ephemeris data to compute the positions of
rebroadcasted satellites and employs the PVT data to identify which satellites are visible
from the rebroadcasted location. It then delivers the positions and velocities of these
visible satellites to the observables engine.
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• Observables Engine: The observables engine computes the observables corresponding
to the transmitted signals, using the satellites’positions and velocities, and the PVT.
Then, it uses the computed observables and the satellite ephemeris data to generate the
timed commands. If the telemetry symbol link is enabled, it also uses the receiver’s
internal status to compute the timed commands. Finally, it sends the timed commands to
the signal generator engine.

• Signal Generator Engine: The signal generator engine interprets and executes the
timed commands, and generates the rebroadcasted signal. The signal generator engine is
implemented in the FPGA. However, when GNSS-SDR-SIM runs on a PC, this FPGA
implementation is replaced with an equivalent software implementation that operates in
post-processing mode.

When the rebroadcaster is operating as a signal regenerator with the telemetry symbol link
disabled, the observables engine sets a delay of 1 s in both the regenerated PVT solutions and
the regenerated telemetry symbols, to account for the latency of the PVT compuation in the
receiver.

Conversely, when the telemetry symbol link is enabled, the observables engine sets a delay of
1 s in the regenerated PVT solutions, but a maximum latency of only 30 ms for the regenerated
telemetry symbols. This reduction in the latency of the regenerated telemetry symbols is
facilitated by the telemetry symbol link. The 30-ms latency is set to account for the time it
takes for the FPGA to estimate the telemetry symbols, plus the time to go through the telemetry
symbol link FIFO, and to account for all temporary delays that can occur in the generation of
the timed commands in the software.

In addition to the functionality mentioned above, GNSS-SDR-SIM computes the telemetry
data, navigation messages, and channel coding. Since GNSS-SDR-SIM is implemented in
software, doing research and testing new navigation messages or new channel coding schemes
would not require an update of the FPGA code.
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Figure 5.3 Software transmitter block diagram

5.4.2 Timed Commands

Timed commands are instructions that define the characteristics and timing of rebroadcasted
signals, issued in real-time at regular intervals. The timed commands were implemented to
facilitate real-time exchange of information between the software and the FPGA regarding
the generation of rebroadcasted signals. The chosen timed command parameters enable
the generation and regeneration of GNSS signals with sufficient accuracy for the emulation
of diverse GNSS scenarios in real time. The timed commands also enable the intentional
modification of the signal parameters in real time for research purposes. They include the
parameters shown in Table 5.1.
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Table 5.1 Timed command parameters

Parameter Description

enable channel
This parameter can have the values ’true’ or ’false’ to enable or
disable the channel specified by channel ID.

channel ID Transmitter channel number.

satellite ID
This paremeter denotes the space vehicle number being rebroadcasted
in channel channel ID.

system ID Satellite System: GPS, or Galileo.

code phase
phase shift of the PRN code, at the sample stamp time instant,
measured in samples, including decimal and fractional parts.

code phase rate
Rate at which the code phase is shifted per sample, measured in
shifted samples per transmitted sample

carrier phase
phase of the carrier wave, at the sample stamp time instant, measured
in radians.

carrier phase rate Rate at which the carrier phase is adjusted, measured in radian/sample

carrier phase jerk
Rate at which the carrier phase rate is adjusted per sample, measured
in radian/sample2

telemetry symbol
data telemetry symbol to be transmitted (+1 or −1), corresponding to a
phase shift of 0 or 180◦ in the modulated signal (only applicable when
the telemetry symbol link is disabled)

symbol search
sample stamp

Sample counter associated to the telemetry symbol that is to be
rebroadcasted (only applicable when the telemetry symbol link is
enabled).

PLL 180◦ PLL lock status at the receiver. It can take the values of 0◦ or 180◦
(only applicable when the telemetry symbol link is enabled).

ibit Telemetry symbol number within the current subframe.

sample stamp Transmitter sample counter at which the timed command is executed.

GNSS-SDR-SIM sends timed commands to the signal generator engine within the FPGA
in real-time. The signal generator engine interprets the timed commands and generates the
transmitted signals. To generate the rebroadcasted signals in a timely manner, the signal
generator engine has a sample counter. The FPGA executes the timed commands when
the sample counter reaches the value specified by the sample stamp parameter in the timed
commands. At that moment, the carrier phases, PRN code phases, and the respective phase
rates are updated according to the timed command parameters. The transmitted telemetry
symbols, and PRN secondary code symbols are updated ensuring consistency with the code
phases.

GNSS-SDR-SIM sets the enable channel parameter to ’true’ to enable the transmitter channel
determined by channel ID in the same timed command. To disable the channel, it generates a
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timed command with this parameter set to ’false’.

Channel ID is the channel number that executes the timed command. satellite ID is the
satellite PRN number assigned to Channel ID. The parameter system ID specifies whether
the regenerated satellite signal is GPS L1 C/A or Galileo E1 b/c.

The shift in the code and carrier, as well as the Doppler frequency and their temporal evolution
within rebroadcasted GNSS signals, are collectively determined by the code and carrier phases,
their phase rates, and the carrier phase jerk.

The telemetry symbol parameter contains the telemetry symbol to be transmitted after the
execution of the current timed command in the FPGA. The telemetry symbol is not immediately
broadcasted, but only after the current symbol is completely transmitted, in line with the code
phase parameter.

When the telemetry symbol link is enabled, the telemetry symbol parameter is not used. Instead,
the FPGA uses the symbol search sample stamp. The symbol search sample stamp is the value
of the receiver sample counter associated with the telemetry symbol that is to be rebroadcasted.
The FPGA uses this parameter to locate the estimated value of the telemetry symbol in the
FIFO within the telemetry symbol link.

Similarly, the PLL 180◦ parameter is only used when the telemetry symbol link is enabled. It
indicates whether the receiver PLL is locked at 0◦ or 180◦ for the channel specified by Channel
ID. If the PLL locks at 180◦, the FPGA automatically inverts the estimated data symbols to
maintain the correct polarity of the transmitted signal.

The ibit is the telemetry symbol number within the current telemetry frame. The FPGA uses
this parameter when rebroadcasting Galileo E1 b/c signals, to automatically generate the PRN
secondary code and align this code with the telemetry data.

5.4.3 FPGA Transmitter

The FPGA transmitter implements the signal generator channels. The FPGA has eight signal
generator channels, each one receiving timed commands from the software-defined transmitter
in real-time and generating the signal corresponding to one satellite (Fig. 5.4). Each signal
generator channel can be assigned to a GPS L1 C/A or a Galileo E1 b/c satellite.

The signal combiner aggregates the signals from various transmitter channels. Depending on
the operational mode, a switch then routes the aggregated signal either to the RFFE interface
for real-time processing or to a DMA in the FPGA for storage in a file during post-processing.
The switch is controlled by software.
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Figure 5.4 FPGA Transmitter block diagram

Each signal generator channels stores a copy of the modulated ranging codes. The software
writes these codes to the FPGA when a satellite is assigned to a signal generator channel.

Modifying the characteristics of the ranging code necessitates only a software update and, if
necessary, additional memory allocation in the FPGA. Thus, this architecture can potentially
facilitate the testing of new ranging signals. In the current implementation, the FPGA quantizes
the ranging codes using one bit per sample.

5.4.4 Telemetry Symbol Link

The telemetry symbol link comprises a set of FPGA modules that establish a connection going
from each receiver multicorrelator hardware accelerator to its corresponding signal generator
channel in the transmitter, on a per-channel basis. A block diagram of the telemetry symbol
link is depicted in Fig. 5.5.
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Figure 5.5 FPGA Telemetry Symbol Link block diagram

When using the telemetry symbol link, the receiver multicorrelator hardware accelerators push
the demodulated data symbols into the telemetry symbol link FIFO, together with the receiver
sample counter. The receiver sample counter is associated to a transmitted TOW and a ToA for
each particular channel.

As explained in Section 5.3.4, the receiver communicates the relationship between the receiver
sample counter, the TOW and the ToA to the software transmitter via the receiver internal
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status data. The software transmitter then uses uses this information to configure the timed
command parameter symbol search sample stamp (see Table 5.1) with the receiver sample
counter corresponding to the telemetry symbols to be regenerated.

A command interpreter in the signal generator channels within the FPGA interprets and
executes the timed commands. When the command interpreter executes the timed commands,
the telemetry symbol link module searches for the telemetry symbols whose associated receiver
sample counter corresponds to the timed command symbol search sample stamp, in the FIFO
within the telemetry symbol link. When found, the FPGA pops the symbol out of the FIFO.

The telemetry symbol link module uses the PLL 180𝑜 lock indicator in the timed commands to
disambiguate the telemetry symbol data phase.

Then, using the data symbol and the signal parameters specified in the timed commands, the
signal generator engine automatically computes the transmitted PRN secondary code symbols
with the correct alignment. It then regenerates and rebroadcasts the received signals.

This scheme relies on precise synchronization between the receiver and transmitter sample
counters, enabling accurate control of transmission timings in the regenerated signals and
resulting in very low latency for the regenerated telemetry symbols.

In the current implementation, the telemetry symbol link is limited to rebroadcasting Galileo
E1 b/c signals. However, it can be adapted for use with other GNSS signals

5.5 Results

We evaluated the proposed GNSS rebroadcaster’s performance across several metrics: raw
sample generation, precision of the rebroadcasted GNSS signals, rebroadcaster latency,
accuracy of the rebroadcasted signals, power consumption, and FPGA resource usage. The
signals generated or rebroadcasted in real time were verified using commercial U-blox NEO-
M8T receivers [161]. The GESTALT GNSS testbed facility [146], located at the CTTC
premises, was utilized for the tests.

5.5.1 GNSS Signal Raw Sample Generator Validation

To verify the correct generation of GNSS signals, the rebroadcaster was configured to generate
GPS L1 C/A and Galileo E1 b/c signals, both separately and in combination, with a duration
of 10 minutes, in post-processing mode.

The rebroadcaster was set to generate the signals using a fixed static position. GNSS-SDR was
set to post-process the generated signals and dump the computed PVT to a file every 20 ms.
The atmospheric corrections were deactivated in GNSS-SDR because the rebroadcaster does
not simulate the atmospheric effects. The RMSE of the estimated position was then computed.
The RMSE was measured in two ways:

In the first measurement, GNSS-SDR was executed in the PC, using the software version of the
signal generator engine (see Fig. 5.6).
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In the second measurement, the software transmitter was executed in the rebroadcaster
hardware, using the FPGA signal generator (see Fig. 5.7). The purpose of this test was to
verify the correctness of the generated signals, and to verify that the results obtained using the
software version and the FPGA version of the signal generator engine were equivalent.

Figure 5.6 GNSS signal raw sample generator validation.

Figure 5.7 GNSS signal raw sample generator validation using the FPGA.

Both results were highly similar, and the synthetic signals were extremely accurate, confirming
the correctness of the generated signals, as demonstrated in Table 5.2.

Table 5.2 Measured RMSE of position fixes

SW/FPGA Signals RMSE [m]
SW GPS L1 C/A 0.16

FPGA GPS L1 C/A 0.21
SW Galileo E1 b/c 0.30

FPGA Galileo E1 b/c 0.30
SW GPS L1 C/A and Galileo E1 b/c 0.60

FPGA GPS L1 C/A and Galileo E1 b/c 0.48

In another test, the rebroadcaster was set to generate the signal combinations shown in Table 5.2
in real-time mode, using the same static position. The rebroadcaster generated GPS L1 C/A
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signals and Galileo E1 b/c signals, both separately and in combination. Each combination
of signals was generated for a time duration of 10 minutes The RF output was connected to
a commercial receiver. The commercial receiver plotted the deviation maps for the whole
duration of the generated signals.

In all cases, the PVT solution computed by the commercial receiver was stable and within 10
meters of the true solution, demonstrating the real-time signal generation capabilities of the
rebroadcaster.

5.5.2 GNSS Signal Rebroadcasting

This test evaluated the accuracy of signals rebroadcasted in real-time mode by comparing how
closely the rebroadcasted PVT solution aligns with the received PVT solution. The accuracy
assessment was conducted in a somewhat approximate manner, utilizing graphical deviation
maps generated from data collected by two commercial receivers.

The test setup, as illustrated in Figure 5.8, involved connecting the rooftop antenna of the
GESTALT testbed to a splitter. This splitter then connected to the input of the rebroadcaster,
with the rebroadcaster’s output linked to commercial receiver 1. Additionally, the splitter pro-
vided a connection to a second commercial receiver (commercial receiver 2). Commercial
receiver 1 was tasked with measuring the rebroadcasted Galileo E1b/c signals, while simulta-
neously, commercial receiver 2 measured the received Galileo E1 b/c signals.

The rebroadcaster was configured to regenerate up to 8 Galileo E1b/c signals in real time,
utilizing the telemetry symbol link, over the course of one hour. The receiver part of the
rebroadcaster was configured as specified in Appendix 5.A.

The commercial receivers generated deviation maps comparing the received signals with the
rebroadcasted signals for the entire duration of the test. The deviation maps obtained with both
commercial receivers were compared. The average PVT obtained by the commercial receiver
connected to the splitter was considered to be the true PVT.

LNA Splitter

Commercial 
Receiver 2

Attenuator
Commercial 
Receiver 1

Rooftop 
Antenna

GNSS 
Rebroadcaster

Figure 5.8 Galileo E1 b/c signal rebroadcasting: Deviation Map Test

Figure 5.9 shows the deviation map obtained with the Galileo E1 b/c signals received at the
rooftop antenna. Figure 5.10 shows the deviation map obtained with the rebroadcasted Galileo
E1b/c signals. This deviation map is centered at the exact coordinates corresponding to the
average position obtained with the received Galileo signals in Figure 5.9 for comparison. These
deviation maps were recorded over a period of 60 minutes.
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Figure 5.9 Deviation map of the received signal at the rooftop antenna.

Figure 5.10 Deviation map of the rebroadcasted signal, centered on the average position derived
from the received signal at the rooftop antenna, for comparison.

The figures above show that in all cases, the PVT solution obtained with the rebroadcasted
signals was stable and within a radius of 5 meters of the PVT solution obtained with the
received signals. An offset of approximately 3 meters was observed between both solutions.
These results demonstrate the accuracy of the regenerated signals in rebroadcasting a static
scenario.
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5.5.3 Latency

The test setup, as shown in Figure 5.8, was utilized to measure the latency of the rebroadcasted
signal. The latency was verified by comparing the time difference between the 1 Pulse Per
Second (PPS) output from commercial receiver 1, which was connected to the regenerator’s
output, and the 1 PPS output from commercial receiver 2, connected to the rooftop antenna
via a splitter. The rebroadcaster was configured to regenerate up to 8 Galileo E1 b/c signals
in real time using the telemetry symbol link. The measured latency was approximately 16.7
milliseconds, as detailed in Figure 5.11, demonstrating the ability to rebroadcast the received
telemetry symbols with minimal delay, thereby surpassing the target latency.

Figure 5.11 Telemetry Symbol Link latency.

5.5.4 Correctness of the Rebrodcasted Navigation Message

The correctness of the rebroadcasted navigation message was verified using the test setup
illustrated in Figure 5.8. However, the commercial receivers were replaced with GNSS-SDR-
based receivers for this verification.

The rebroadcaster was configured to regenerate up to 8 Galileo E1 b/c signals in real time using
the telemetry symbol link.

The correctness of the rebroadcasted signal was verified by measuring the telemetry Cyclic
Redundancy Check (CRC) success rate, both in the signal received at the rooftop antenna and
in the rebroadcasted signal, and by comparing the results. The CRC statistics were measured
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over a period of 30 min.

Table 5.3 displays the CRC success rate for each satellite that was tracked by GNSS-SDR in
the signal received at the rooftop antenna.

Table 5.3 CRC Statistics of the Rooftop Antenna Signal

Num CRC Tests Successful Tests Success Rate Sat ID
1300 1299 0.99 E31
1826 1825 0.99 E09
1823 1821 0.99 E24
955 953 0.99 E03

1799 1797 0.99 E25
1731 1729 0.99 E05

Table 5.4 displays the CRC success rate for each satellite that was tracked by GNSS-SDR in
the rebroadcasted signal.

Table 5.4 CRC Statistics of the Rebroadcasted Signal

Num CRC Tests Successful Tests Success Rate Sat ID
1076 1075 0.99 E31
1628 1627 0.99 E09
1432 1431 0.99 E24
906 905 0.99 E03
774 773 0.99 E25

1624 1623 0.99 E05

The rebroadcasted signal undergoes fewer CRC tests than the received signal because the
rebroadcaster begins transmitting GNSS signals only after achieving PVT lock on the received
signal. Consequently, the receiver processing the rebroadcasted signal started its measurements
later than the receiver connected to the rooftop antenna.

Also, the number of CRC tests differs between satellite numbers because some satellites were
acquired earlier than others.

The CRC statistics obtained on the antenna signals are comparable with the CRC statistics
obtained on the rebroadcasted signals. The success rate is always above 99%. The CRCs that
GNSS-SDR failed to decode corresponded to the first received CRCs when transitioning from
acquisition to tracking. The reason for it is that it takes a brief moment for the tracking loops
in GNSS-SDR to stabilize when transitioning from acquisition to tracking. During that short
period of time, the receiver may fail to validate the CRC due to bit errors in the demodulated
messages.
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The CRC success rate demonstrates that the rebroadcaster preserves the correctness of the
GNSS signals.

5.5.5 FPGA Resource Utilization

Table 5.5 details the FPGA resource utilization for the rebroadcaster developed with the
XC7Z035 device. This table reports the resource usage of the GNSS receiver and transmitter
features, including channel conditioning, buffering, acquisition and tracking hardware accel-
erators, signal generators, along with their AXI4 memory-mapped registers, and the telemetry
symbol link. The FPGA resource usage is categorized by LUTs, LUTRAMs, FFs, BRAMs,
and DSP slices.

The FPGA occupancy is lower than that of the spaceborne receiver reported in Section 4.4.1.5.
This is because the rebroadcaster, despite implementing both a receiver and a transmitter in the
FPGA, is limited to 8 channels for each component.

Table 5.5 FPGA resource utilization in the rebroadcaster implemented on the XC7Z035 device.

Resource Utilization Resources available Utilization %

LUT 61671 171900 36

LUTRAM 7936 70400 11

FF 77308 343800 22

BRAM 236 500 47

DSP 246 900 27

5.5.6 Power Consumption

The power consumption of the Zynq-7000 XC7Z035-2L FBG676I SoC FPGA, implementing
the GNSS rebroadcaster, is estimated to be 5.2 W using FPGA design tools. This estimation
assumes an average processor load of approximately 50%, which occurs when the rebroad-
caster is receiving and regenerating 8 satellite signals simultaneously. This average processor
load was estimated using the embedded GNU/Linux OS operating system resource manager.

The live generation and regeneration of GNSS signals has not been implemented in pure
software. For this reason this result is not compared against the power consumption of a
general-purpose processor. However, this result is consistent with the power consumption
estimates for the spaceborne receiver utilizing the same SoC FPGA, which is approximately
6.5 W (refer to Section 4.4.1.6). Unlike the spaceborne receiver, which processes up to 24
channels, the rebroadcaster operates with only 8 channels. However, it integrates both receiver
and transmitter functionalities within the same SoC FPGA. As a result, it consumes more power
than the spaceborne receiver for an equivalent number of channels.
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5.6 Conclusions

This chapter presented the design, proof-of-concept implementation and preliminary perfor-
mance assessment of a low-cost, real-time, portable, low power, and small form factor GNSS
rebroadcaster, providing practical details of a working prototype.

This design highlights the efficacy of SDR techniques for generating and rebroadcasting
GNSS signals in real time, with the potential to modify the rebroadcasted PVT solutions with
reduced latency, and simulate various GNSS scenarios. The proposed rebroadcaster enables the
regeneration of any unpredictable data embedded in the navigation messages. The integration
of these custom processing capabilities in a low-cost SoC FPGA design, and an open-source
software-defined GNSS receiver development model constitutes a significant novelty in the
field.

After detailing the system architecture, this chapter assessed the rebroadcaster’s performance
across various KPIs. These included the number of parallel channels processed in real time,
the correct functioning of the various available operating modes and GNSS signal types, power
consumption, and accuracy, referring to how close the rebroadcasted navigation solutions were
to the received navigation solutions. The quality of the rebroadcasted PVT solutions was
assessed by comparing them to the PVT solutions derived from live signals. Both navigation
solutions were estimated using commercial receivers. The results demonstrated the correctness
of the rebroadcasted signals. The rebroadcaster was tested in real time using a static scenario,
demonstrating that the regenerated navigation solutions achieve an accuracy within 5 m of the
received PVT.

Possible improvements considered for future work includes adding compatibility with GPS L5
and Galileo E5a signals, enabling the rebroadcasting of GNSS signals in dual-frequency mode.
Also, the use of the telemetry symbol link for GPS signals would enable the fast estimation and
retransmission of not only Galileo but also GPS navigation messages with a reduced latency,
enabling the testing with live signals, for instance in a vehicular test campaign replicating
the correct dynamic and channel impairments. Furthermore, the tests indicate potential for
reducing the rebroadcasted latency. This is anticipated, as the estimation of the Galileo E1b/c
telemetry symbols requires only 4 ms. Finally, the rebroadcaster has been validated using
static scenarios that last one hour. Future efforts will focus on assessing its performance with
a wider range of dynamic GNSS scenarios over extended periods. This includes enhancing
the rebroadcaster’s capability to update the ephemeris data in the retransmitted satellite signals
not only at the point of acquisition but also whenever this data is updated by the satellites
themselves.

The results presented in this chapter were partially published in:

• [21] M. Majoral, J. Arribas, and C. Fernández-Prades, “Implementation of a GNSS Re-
broadcaster in an All-Programmable System-On-Chip Platform,” in 2022 10th Workshop
on Satellite Navigation Technology (NAVITEC), Noordwijk, Netherlands, April 2022, pp.
1–9. doi: 10.1109/NAVITEC53682.2022.9847537
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The work presented in this chapter was supported by the following funding sources and
collaborators:

• Contract AO/2-1647/17/NL/CRS with the European Space Agency.

• Grant RTI2018-099722-B-I00, funded by the Spanish Ministry of Science and Innova-
tion
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Appendix 5.A Receiver Configuration for Rebroadcasting
Galileo E1b/c Signals

This section describes the receiver configuration used to rebroadcast Galileo E1b/c signals
using the telemetry symbol link. Table 5.6 shows the configuration of the acquisition block.
Table 5.7 shows the configuration of the Tracking block. Finally, Table 5.8 shows the
configuration of the PVT block. The sampling frequency is set to 12.5 Msps.

Table 5.6 outlines the receiver acquisition parameters. It includes the Doppler max parameter,
representing the highest Doppler frequency in the search space, and the Doppler step parameter,
which refers to the increment between frequencies within the search grid. The threshold
parameter in Table 4.13, denoted as Γ in Algorithm 1 in Chapter 3, represents the decision
threshold above which a signal is considered present. A downsampling filter is used in the
L1/E1 band to reduce the acquisition latency. The downsampling filter is only used during
acquisition.

Table 5.6 Rebroadcaster acquisition configuration.

Parameter type Parameter Value

Acquisition Galileo E1b/c Doppler Max 5000 Hz
Doppler Step 125 Hz

Threshold 2.0
Downsampling Factor 4

Table 5.7 displays the receiver tracking configuration parameters for Galileo signals. The
coherent integration time is set to 20 ms to increase the apparent signal-to-noise ratio. The
early-late space chips is the spacing between the Early and Prompt, and between the Prompt
and Late correlators, normalized by the chip period. The early-late narrow space chips is
the spacing between the Early and Prompt, and between the Prompt and Late correlators,
normalized by the chip period, after bit synchronization. The very early-late space chips is the
spacing between the Very Early and Prompt and between the Prompt and Very Late correlators,
normalized by the chip period The very early late space narrow chips is the spacing between
the Very Early and Prompt, and between the Prompt and Very Late correlators after removal
of the secondary code and extension of the coherent integration time, normalized by the chip
period. The PLL filter bandwidth is the bandwidth of the PLL low-pass filter. The PLL filter
bandwidth with narrow correlator configuration is the bandwidth of the PLL low-pass filter
after removal of the secondary code. The DLL filter bandwidth is the bandwidth of the DLL
low pass filter. Finally, the DLL filter bandwidth with narrow correlator configuration is the
bandwidth of the DLL low-pass filter after the removal of the secondary code.
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Table 5.7 Rebroadcaster tracking configuration.

Parameter type Parameter Value

Tracking Galileo E1b/c coherent integration time 20 ms
Early-Late space chips 0.25 chips

Very Early-Late space chips 0.5 chips
Early-Late space narrow chips 0.15 chips

Very Early-Late space narrow chips 0.5 chips
PLL filter bandwidth 15 Hz

PLL filter bandwidth (narrow
correlator configuration)

5 Hz

DLL filter bandwidth 0.75 Hz
DLL filter bandwidth (narrow

correlator configuration)
0.2 Hz

FLL during pull-in time Enabled
FLL bandwidth 10 Hz

Table 5.8 shows the receiver PVT configuration parameters: the positioning mode is set to
single-point positioning. The RAIM FDE is enabled. The ionospheric correction is performed
according to the broadcasted ionospheric model. A Saastamoninen tropospheric model is
used [151]. The PVT output rate is set to 100 ms, and the satellites marked as unhealthy
are not used for the computation of the PVT solutions. The Kalman filter was not used.

Table 5.8 Rebroadcaster PVT configuration.

Parameter type Parameter Value

General Positioning Mode Single
Receiver Autonomous Integrity

Monitoring (RAIM) Fault Detection
and Exclusion (FDE)

Enabled

Iono Model Broadcast
Trop Model Saastamoinen

PVT Output Rate 100 ms
Use unhealthy sats Disabled

More information regarding the GNSS-SDR configurable parameters can be found in [17].
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Chapter 6

High-Sensitivity GNSS Receiver

This Chapter presents the design, proof-of-concept implementation, and preliminary perfor-
mance assessment of an affordable real-time HS-GNSS receiver implemented using the
architecture and design methodology presented in Chapter 3.

Specifically tailored to capture and track weak Galileo E1b/c signals, this receiver aims
to support research endeavors focused on advancing GNSS signal processing algorithms,
particularly in scenarios characterized by pronounced signal attenuation. Leveraging SoC-
FPGA technology, this design merges the adaptability of SDR concepts with the robust
hardware processing capabilities of FPGAs.

This innovative approach enhances power efficiency compared to conventional designs relying
on general-purpose processors, thereby facilitating the development of embedded software-
defined receivers. Furthermore, the FPGA massive parallelism, facilitates the execution of the
computationally intensive algorithms required for the acquisition of weak GNSS signals in real
time.

The proposed receiver’s underlying architecture implements a modular GNSS baseband
processing engine, offering a versatile platform for the integration of novel algorithms. The
receiver undergoes testing with live signals, showcasing its capability to process GNSS signals
even in challenging scenarios with a 𝐶/𝑁0 as low as 20 dB-Hz, while delivering navigation
solutions. This work contributes to the advancement of low-cost, high-sensitivity GNSS
receivers, providing a valuable tool for researchers engaged in the development, testing, and
validation of experimental GNSS signal processing techniques.

The complete design and implementation of the HS-GNSS receiver was carried out in the
framework of this thesis. This included developing a high-sensitivity mode for GNSS-SDR,
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creating a high-sensitivity acquisition hardware accelerator, and conducting verification tests.

This chapter is organized as follows: Section 6.1 provides an introduction. Section 6.2
reviews previous work investigating ways to increase the sensitivity of GNSS receivers
using a combination of CI and Non-Coherent Integration (NCI), employing PDI techniques.
Additionally, it discusses previous work investigating ways to implement these techniques in
receivers based on FPGAs. Section 6.3 summarizes the objectives of the proposed HS-GNSS
receiver. Next, Section 6.4 describes the design of the proposed receiver. This is followed by
Section 6.5, which reports the performance test results, and finally, Section 6.6 presents the
conclusion and directions for future work.

6.1 Introduction

GNSS technology allows us to accurately know our location in real-time and in open-sky
environments. Due to the success achieved by this technology, there is an increasing demand
for navigation in signal-challenged environments such as foliage canopy, urban canyons, and
indoor scenarios [162]. However, these environments present great difficulties for GNSS
receivers, as the received signals are severely degraded due to the presence of obstacles in
the propagation path between the satellites and the receiver. Real-world usage of a GNSS
receiver in indoor scenarios presents various operational challenges. The standard outdoor
working conditions, under open sky, are characterized by nominal 𝐶/𝑁0 values of typically
≥ 44 dB-Hz. These conditions vary when the receiver is situated under trees or within a foliage
canopy, and differ significantly from indoor environments, where signal levels decrease after
penetrating roofs, walls, and windows [18,35]. Indoor scenarios lead to inferior signal detection
and degrade the quality of measurements due to higher noise and multipath effects. The major
degradation that the indoor receivers have to cope with is high signal attenuation [163].
The signal reception is influenced by building materials and the receiver’s location, resulting
in attenuation losses of approximately 10 to 20 dB in soft-indoor scenarios, 20 to 35 dB in
indoor scenarios, and exceeding 35 dB in deep indoor scenarios [18]. The terms soft indoor,
indoor, and deep indoor describe varying degrees of GNSS satellite signal obstruction caused
by construction materials or vegetation. Soft indoor scenarios occur when GNSS signals
are weakened by partial blockages, reflections, and diffractions as they navigate through or
around buildings and other obstacles. These scenarios still provide some level of GNSS
signal availability. Indoor and deep indoor scenarios involve more significant signal blockage,
resulting in greatly reduced signal strength [18, 164].

GNSS-based applications are increasingly expanding their reach to encompass more demand-
ing scenarios, including urban and light-indoor environments. In areas with weak or com-
promised signals, they improve the availability of satellite signals [162, 163]. This capability
enhances the overall reliability and performance of GNSS receivers in diverse settings. This is
significant for various applications, including location-based services (LBSs) and emergency
response [165]. Operating effectively in conditions where traditional receivers may struggle,
HS-GNSS receivers provide extended coverage in marginal signal conditions. The heightened
need for navigation in challenging signal environments has led to a growing focus on handling
faint signals [162]. This shift is motivating the development of receivers that operate in these
challenging scenarios [1].
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As a response to this challenge, HS techniques have been developed for GNSS receivers [1].
HS-GNSS receivers enable improved acquisition and tracking capabilities in degraded signal
environments, albeit at the cost of increased complexity in terms of computational load [37].
Existing solutions that provide high accuracy and sensitivity are often constrained by their
elevated energy consumption [1]. Methods to alleviate power usage encompass snapshot
solutions, cloud-based receivers, and Assisted Global Navigation Satellite System (A-GNSS)
receivers [1, 35].

Snapshot receivers obtain the navigation solutions by analyzing a brief segment of the received
satellite signal. This involves sampling times on the order of a few milliseconds. The distinctive
feature of a snapshot receiver lies in its capacity to function effectively within these brief signal
sampling intervals. This characteristic makes it well-suited for a diverse range of positioning
applications where the constraint of energy usage poses a significant challenge in embracing
traditional GNSS solutions [166].

Cloud-based GNSS receivers leverage shared computational resources. Computational tasks
typically carried out on-chip are migrated to a cloud server with the objective of enhancing
the sensor’s battery lifetime without compromising the performance [167, 168]. The cloud-
based receiver can be set up in a manner where solely the signal capture circuitry is employed
to temporarily store the digital samples. Signal processing can be deferred until the digital
samples can be transmitted, without impacting the device’s battery life (e.g., during battery
recharge), to a distant cloud server [1].

A-GNSS solutions enhance the performance of standard receivers by delivering information,
using an alternate communication pathway, that the receiver would typically acquire directly
from the satellites. Assistance reduces the time and information dependency on satellites
for obtaining navigation solutions. Consequently, the A-GNSS receiver can swiftly make
measurements from the satellites, even with weaker signals, surpassing the capabilities of an
unassisted receiver [35].

HS techniques are primarily developed to capture faint signals. This is usually achieved by
coherently accumulating signal samples over an extended period, performing extended CI [1].
However, several critical factors impose constraints on the maximum CI time, including the
presence of unknown data bit transitions, residual frequency errors in the received signal,
and the existence of phase noise due to receiver oscillator instabilities [18].

Sign reversals within the CI window may occur due to unknown data bit transitions in the
received signal, potentially causing partial or complete cancellation of correlation power. The
impact of these unknown bit transitions can be mitigated by using pilot signals [1]. A pilot
signal is transmitted within the Galileo signals (E1, E5a, E5b, E6) and modernized GPS signals
(L1C, L2C, L5) to improve the signal acquisition and tracking [18]. Both the data and the pilot
signals are modulated with a unique code to distinguish them from other signals. This code is a
pseudo-random noise (PRN) sequence known as a spreading code. Several GNSS signals build
a long spreading sequence in a tiered manner whereby a secondary code sequence is used to
modify successive repetitions of a primary code.

Residual frequency errors impact the received signal after Doppler wipe-off, potentially
leading to signal cancellation if the CI exceeds a certain time duration. A smaller residual
frequency shift allows for an extended CI before the SNR gain diminishes due to phase
wrapping. This phenomenon introduces a trade-off between SNR gain and computational
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load, as minimizing the residual frequency shift necessitates a finer Doppler search, demanding
increased computational operations [18].

The quality of the user receiver clock also limits the CI time. At present, TCXOs and Oven-
Controlled Crystal Oscillators (OCXOs) are the most commonly utilized types of clocks.
As per the simulations outlined in [37, 169, 170], the TCXO restricts the CI interval to
approximately 100 ms, whereas the OCXO enables the utilization of CI times extending up
to 1 s. The sensitivity of the receiver is influenced by this fact. Consumer-grade receivers
commonly utilize TCXO clocks, while OCXO clocks are typically reserved for professional
applications. The higher cost of OCXO clocks, as opposed to TCXO clocks, restricts their
widespread adoption in mass-market GNSS receivers [1].

For practical considerations, the CI time cannot be indefinitely extended due to the reasons
mentioned above. Consequently, the only recourse is to employ a combination of coherent and
non-coherent integration to prolong the overall integration time and enhance receiver sensitiv-
ity [18, 37]. More specifically, the acquisition begins with coherent correlation, followed by
non-coherent accumulation of outputs from multiple coherent correlations through nonlinear
operations. Non-coherent accumulation is commonly achieved through the application of PDI
techniques. These techniques address the constraints associated with coherent accumulation
and enable the receiver to capture satellites even in conditions of extremely low 𝐶/𝑁0 [37].
However, the NCI time cannot be increased without bounds either, due to limited Doppler
estimation accuracy, receiver clock drift instabilities, and the relative movement between the
satellites and the receiver [18].

Any errors in determining the Doppler frequency can affect the baseband signal, akin to a
mismatch between the chip duration of the received signal and the local code replica. If this
mismatch extends over a significant integration interval, it causes blurring in the overall
correlation, introducing bias in the final estimation of the code phase. The duration of the
NCI also remains limited due to local clock drift instabilities, unless methods to estimate the
clock dynamics are implemented. In addition, processing the received signal over the total
integration time yields a single Doppler frequency and code phase estimation for each satellite.
However, the accuracy of this time-delay estimation is limited by the dynamic motion of both
the satellites and the receiver during the correlation time [18].

6.2 Background

Acquiring weak GNSS signals requires significant computational effort due to the need for
extended integration. The most time-consuming operation during the acquisition phase is
correlating the input signal with a locally generated replica. This process, explained in
Section 2.3.4, involves multiplying thousands of samples every millisecond for each tested
code phase, Doppler frequency, and satellite [18]. Consequently, developing a GNSS receiver
with high sensitivity that works in real time presents a major challenge. Several strategies have
been explored to reduce the computational demands of GNSS signal acquisition algorithms.

Several publications explore the application of CI and PDI techniques to increase the
sensitivity of GNSS receivers. Ref. [169] investigates and assesses the performance of several
PDI techniques, including Non-Coherent Post Detection Integration (NPDI), Differential
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Post-Detection Integration (DPDI), Post-Detection Integration Truncated (GPDIT), squaring
detector, and Post-Detection Integration Truncated with Squaring Detector (GPDITSD),
which employs the GPDIT strategy and the squaring detector. The evaluation of these
techniques involves the use of three types of clocks: a TCXO, a Chip Scale Atomic
Clock (CSAC), and an OCXO. In [171], an analysis is performed to identify the most
effective PDI technique in the presence of various impairments like data bit transitions and
frequency offset. Additionally, [170] conducts a comprehensive investigation into current PDI
techniques, specifically addressing the impact of phase noise originating from two different
clocks: a TCXO and an OCXO. Ultimately, the PhD thesis referenced in [37] consolidates
comprehensive insights and benchmarks the most relevant PDI techniques for acquiring GNSS
signals under the challenging conditions mentioned above (phase noise, frequency offset, and
the presence of data bits). According to the simulation results presented in [37], a receiver
equipped with a TCXO can reliably acquire GNSS signals at a 𝐶/𝑁0 as low as 20 dB-Hz.
This achievement is possible by employing the GPDIT strategy, using a CI time of 100 ms,
and allowing for a maximum of seven non-coherent combinations. These conditions result in a
total integration time of 700 ms. The GPDIT strategy is not robust against data bit transitions,
necessitating that the receiver either eliminates the modulated data or utilizes pilot signals. This
approach is implementable in the FPGA and facilitates the acquisition of GNSS signals in soft
indoor scenarios and in outdoor scenarios with signal impairments. For this reason, the HS-
GNSS receiver prototype introduced in this thesis adopts the GPDIT strategy and acquires the
pilot signals.

The proposed receiver employs the PCPS algorithm to achieve CI by performing circular
cross-correlation in the frequency domain between the received signal and a locally generated
replica of the satellite’s PRN code [38]. The PhD thesis referenced in [172] explores methods
to optimize the implementation of the PCPS algorithm for HS-GNSS receivers, aiming for
reduced complexity without incurring implementation losses. The detection of weak signals
demands extended CI times. Consequently, the computation of the circular cross-correlations
accounts for the presence of both primary and secondary codes in the pilot signals and requires
the use of large FFTs and IFFTs. The thesis being referenced to investigates the implementation
of this algorithm in FPGAs, utilizing typical vendor-specific FFT and IFFT IP cores. These
cores typically have limitations on transform lengths, requiring them to be powers of two. As a
result, the optimization of the PCPS algorithm is driven by the need to efficiently compute
large FFTs using small power-of-two length FFTs and the need to minimize resource usage
and algorithm latency.

Minimizing latency is crucial because excessive delays negatively affect the accuracy of
parameters estimated during the acquisition process, such as PRN code phase and Doppler
frequency. This degradation primarily arises from receiver clock drift and the variable nature
of Doppler frequency in the received signals. This is explained in detail in Section 6.4.5.
Ref. [172] also shows ways to compute an 𝑁-point FFT using a combination of two FFTs,
each of 𝑁

2 points. One way to do it is by separating the input samples by parity and the output
samples by section. This method can be generalized to compute an 𝑁-point FFT using 𝑃 FFTs,
each of 𝑁

𝑃
points. The same method is applicable to the computation of IFFTs. The receiver

presented in this paper adopts this approach. This method enables the efficient implementation
of the CI in the FPGA using a multi-channel FFT, with an optimized pipeline scheme that
minimizes latency, albeit with a small increase in mathematical operations compared to the
computation of a single large FFT. This algorithm does not require complex branch decisions,
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as it relies on a streamlined and efficient process, resulting in faster execution.

Ref. [172] also illustrates that selecting the optimal implementation of an algorithm for an
FPGA entails several trade-offs, including the balance between speed and FPGA resource
utilization, managing power consumption while optimizing performance, and algorithm
complexity versus available FPGA resources.

6.3 Objectives

The development of HS-GNSS receiver technology requires the implementation of non-
standard features and a comprehensive description of the signal processing path from the
antenna to the computation of the desired GNSS products. However, developing prototypes
using off-the-shelf GNSS receivers poses difficulties. Researchers must contend with the
increasing complexity and integration level of GNSS integrated circuits [8,117]. These systems
do not offer an exact model of how the desired measurements are obtained, and they have
limited reprogrammability.

In light of these challenges, this chapter aims to demonstrate the effectiveness of the SoC FPGA
architecture and design methodology outlined in Chapter 3. The objective is to show how
these approaches enable the creation of a programmable, adaptable, and portable HS-GNSS
receiver prototype, designed specifically to advance research on experimental algorithms suited
for weak signal conditions.

The proposed receiver implements two operating modes: high-sensitivity mode and normal-
sensitivity mode. When operating in high-sensitivity mode, the receiver is capable of acquiring
and tracking Galileo E1b/c signals with a 𝐶/𝑁0 down to 20 dB-Hz (equivalent 𝐶/𝑁0 observed
at the post-correlation level), enabling the derivation of navigation solutions. On the other
side, when operating in normal-sensitivity mode, the receiver processes GPS L1 C/A, Galileo
E1b/c, GPS L5, and Galileo E5a signals with an acquisition sensitivity of approximately 37
dB-Hz. While the ideal scenario involves acquiring and tracking both GPS and Galileo signals
in high-sensitivity mode, the initial concept demonstrator presented in this paper is designed to
showcase high-sensitivity mode only for Galileo E1b/c signals.

To enhance the availability of satellite signals, the receiver is capable of processing Galileo E1
b/c signals in high-sensitivity mode, while simultaneously processing GPS L1 C/A, GPS L5,
and Galileo E5a signals in normal-sensitivity mode. This approach implements a dual-band,
multi-GNSS receiver centered at 1176.45 MHz and 1575.42 MHz.

When operating in high-sensitivity mode, the receiver uses assistance to speed up the acquisi-
tion of weak Galileo E1b/c signals and ultimately to decrease the time-to-first-fix (TTFF).

154



6.4. System Design

6.4 System Design

6.4.1 High Sensitivity GNSS Receiver Architecture

The proposed HS-GNSS receiver prototype is based on AMD’s ZCU102 development board
[173], featuring an AMD Zynq UltraScale+ XCZU9EG-2FFVB1156 All-Programmable Multi-
Processor SoC (MPSoC) [63]. A block diagram of the concept demonstrator is shown in
Figure 6.1. As explained in Chapter 4, the XCZU9EG MPSoC features PL equipped with 600k
logic cells and 2520 DSP slices and a PS that houses a Quad ARM Cortex-A53 MultiProcessor
Core (MPCore) running at 1.3 GHz. It also includes several peripheral interfaces, such as a
LAN interface, enabling the remote control of the receiver. The receiver incorporates an
Analog Devices AD-FMCOMMS5-EBZ analog front-end [119], connected to the ZCU102
evaluation board. The AD-FMCOMMS5-EBZ includes two AD9361 Radio Frequency (RF)
transceivers ( [106]) covering the full 6 GHz range. Specifically, one RF transceiver is tuned to
the E1/L1 frequency band, and the other is tuned to the E5a/L5 frequency band. This platform
enables the implementation of a Dual-Band GNSS receiver, offering end-to-end functionality
from the RF output of the antenna to real-time generation of navigation products on a portable
board. The receiver uses a Tallysman TW8825 antenna ( [174]), which provides dual-band
GPS L1/L5, GLONASS G1, Galileo E1/E5a, and BeiDou B1 coverage.
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Figure 6.1 High-sensitivity GNSS receiver block diagram.

The local oscillator included with the AD-FMCOMMS5-EBZ board, an RXO3225M IC crystal
by Rakon clocked at 40 MHz, has a stability of ±25 ppm, which is insufficient for GNSS signal
processing. Therefore, an external oscillator is needed. The proposed receiver implementation
was tested using two external oscillators: a TCXO and an OCXO. The selected TCXO was
the AST3TQ-50 by Abracon, in its 40 MHz version [143]. This device features a frequency
stability of ±50 ppb over a temperature range of −40 ◦C to +85 ◦C, making it well-suited
for GNSS applications. The chosen OCXO was an ECOC-2522 by ECS [175], operating at
40 MHz, with a frequency stability of ±10 ppb.
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The SoC FPGA implements the architecture detailed in Chapter 3, with Figure 6.2 depicting
its various FPGA components. As explained in Section 3.1.1, the FPGA incorporates
sample conditioning and buffering, as well as the high-sensitivity acquisition and tracking
multicorrelator hardware accelerators. Additionally, it features an interface to the processing
system (PS/PL interface).
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The sample conditioning and buffering incorporates dynamic bit selection in each frequency
band. This process dynamically selects the most significant bits from the incoming signal
samples, mapping their dynamic range to the sample quantization in the hardware accelerators.

Also, as explained in Section 3.1.1, the FPGA features a downsampling filter in the L1/E1
band, in front of the acquisition hardware accelerator. In this way, the receiver utilizes a
lower sampling frequency during the initial signal acquisition phase and a higher frequency for
subsequent tracking. Such a design is optimized based on the fact that signal detection gains
little from a bandwidth larger than needed to cover the main signal lobes—about 2 MHz for
GPS L1 C/A and 4 MHz for Galileo E1b/c signals—since broader bandwidths introduce more
noise [105]. Nonetheless, a wider bandwidth during the tracking phase enables more accurate
carrier and code phase identification. Moreover, the initial reduction in sampling frequency
streamlines the acquisition process, making it more efficient.

The hardware accelerators are implemented in the form of reusable IP cores, which can be
targeted at many variants of FPGAs. The PS/PL interface uses the Advanced Microcontroller
Bus Architecture (AMBA) Advanced eXtensible Interface (AXI4) protocol specification [61].

To add high-sensitivity functionality, we made significant modifications to the SoC-FPGA
receiver architecture. These enhancements include the introduction of a new acquisition
hardware accelerator in the FPGA and updates to the GNSS-SDR software receiver.

The new acquisition hardware accelerator, named the high-sensitivity acquisition hardware
accelerator as illustrated in Figure 6.2, is designed to perform extended CI, enabling real-
time detection of weak signals. This allows the receiver to operate in both normal and high-
sensitivity modes. In contrast, the standard acquisition hardware accelerator, described in
Section 3.1.4, is limited to normal sensitivity mode.

The high-sensitivity acquisition hardware accelerator necessitates temporary storage of re-
ceived signal samples to compute the CI. To facilitate this, the acquisition is directly connected
to a Double Data Rate 4 (DDR4) memory controller implemented in the FPGA. The memory
controller, in turn, is connected to a DDR4 memory component on the ZCU102 board, which is
located outside the SoC FPGA, but directly accessible by the FPGA itself. This memory com-
ponent is called PL memory in Figure 6.2, because it is directly connected to the Programmable
Logic (the FPGA). By utilizing this external memory, the acquisition hardware accelerator can
efficiently store received signals temporarily and compute the CI, bypassing the PS. The PL
memory is also accessible from the embedded processor, allowing the processor to read the
results of the CI performed by the hardware accelerator. The PS is also connected to another
DDR4 memory component supporting the embedded OS and used for program execution in
the embedded processor. The memory component connected to the processing system is not
illustrated in Figure 6.2.

To implement the high-sensitivity capabilities, the following modifications were applied to the
GNSS-SDR software receiver: a new acquisition block was created in GNSS-SDR. This block
processes the results computed by the new high-sensitivity acquisition hardware accelerator
and conducts part of the acquisition algorithm in the embedded processor. GNSS-SDR
was also modified to utilize assistance data for performing Doppler prediction, narrowing
down the Doppler search space during acquisition. Moreover, GNSS-SDR was updated for
tracking severely attenuated signals. Finally, GNSS-SDR was extended to use assistance
data for obtaining navigation solutions in situations where the navigation message of weak
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GNSS signals cannot be reliably demodulated due to the presence of noise. With all these
enhancements, the proposed HS-GNSS receiver produces PVT solutions in the presence of
weak signals and in real-time. These features are elaborated further in this chapter.

Figure 6.3 shows a picture of the HS-GNSS Receiver prototype. The receiver has been
fully constructed with COTS components. Incorporating the ZCU102 and AD-FMCOMMS5-
EBZ development boards results in a sizable design. Approximately, the ZCU102 board
measures 23.8 cm × 24.4 cm, and the analog front-end measures 14 cm × 9 cm. Despite these
dimensions, the receiver remains portable. For instance, it can be placed in backpacks to
facilitate testing in soft indoor environments and in outdoor scenarios with signal impairments.
The ZCU102 includes several components that are unnecessary for the implementation of the
HS-GNSS receiver. Therefore, the size of the receiver could be potentially reduced by using a
custom-designed PCB.

Figure 6.3 Picture of the high-sensitivity GNSS receiver prototype.

6.4.2 Receiver Operating Modes

The proposed concept demonstrator implements two operating modes: high-sensitivity mode
and normal-sensitivity mode. High-sensitivity mode enables the processing of weak Galileo
E1b/c signals with a 𝐶/𝑁0 down to 20 dB-Hz. Normal-sensitivity mode enables the processing
of both Galileo signals and GPS signals received at nominal 𝐶/𝑁0 levels. The default
configuration of the receiver is set to operate in high-sensitivity mode for Galileo E1b/c signals,
and concurrently in normal-sensitivity mode for Galileo E5a, GPS L1 C/A, and GPS L5 signals,
as illustrated in Table 6.1. This dual-mode setup is designed to enhance receiver availability
whenever possible, given that high-sensitivity mode is currently only supported for Galileo
E1b/c signals.
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Table 6.1 Default receiver operating modes.

Signal Operating Mode Receiver Sensitivity

Galileo E1b/c High-Sensitivity mode 20 dB-Hz

GPS L1 C/A
GPS L5

Galileo E5a

Normal-sensitivity mode approx. 37 dB-Hz

6.4.3 Assistance Data

The proposed demonstrator utilizes GNSS assistance data to process weak Galileo E1b/c
signals. This assistance data is provided in various forms, including a reference date and
time, a reference user location, Galileo ephemeris data, Galileo ionospheric data, and the
Galileo UTC model, as detailed in Table 6.2. The receiver obtains the current date and
time from the embedded GNU/Linux OS clock, retrieves the reference user location from
the GNSS-SDR configuration file, and accesses the Galileo ephemeris data, ionospheric data,
and UTC model from XML files. These XML files, which contain data about the visible
satellites, can be generated by the receiver itself by placing it outdoors and operating it in
normal-sensitivity mode.

Table 6.2 Assistance data.

Assistance Data Source

Reference date and time Receiver embedded OS clock

Reference user location GNSS-SDR configuration file

Galileo ephemeris data
Galileo ionospheric data

Galileo UTC model

XML files

Table 6.3 outlines the purpose of the assistance data and specifies the data that is utilized
for each designated task. The receiver uses the reference date and time, the reference user
location, and the assistance ephemeris data to estimate the Doppler frequency of the received
signals and reduce the Doppler search space during acquisition. The reference date and time
are also utilized to estimate the transmitted TOW in the navigation messages. This estimation
is needed because the TOW is essential for performing GNSS basic measurements. However,
when tracking severely attenuated signals, the receiver may struggle to reliably demodulate the
TOW field of Galileo E1b/c navigation messages due to noise-induced bit errors [176, 177].
Additionally, the assistance ephemeris data, ionospheric data and UTC model are utilized to
compute the PVT when the receiver cannot reliably demodulate the navigation messages due
to the presence of bit errors.
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Table 6.3 Purpose of the assistance data.

Objective Assistance Data Used

Doppler frequency estimation Reference date and time, reference user
location, Galileo ephemeris data

TOW estimation Reference date and time

Computation of the navigation solutions Galileo ephemeris data, ionospheric data,
and UTC model

The Doppler prediction, the TOW estimation, and the computation of the navigation solutions
are explained in more detail in Sections 6.4.5, 6.4.8, and 6.4.9, respectively.

6.4.4 Acquisition in High-Sensitivity Mode

6.4.4.1 Theory of Operation

The high-sensitivity acquisition process makes it possible to identify faint GNSS signals.
Upon detecting a signal, the acquisition offers an estimation of both the code delay and Doppler
frequency sufficiently accurate to initiate the tracking loops. As explained in Section 2.3.4,
the acquisition process is a two-dimensional operation, involving the correlation of the received
signal 𝑥𝐼𝑁 [𝑛] with a local replica of the transmitted signal 𝑐[𝑛] across various trial values of
Doppler frequency 𝑓𝑑 and time delay 𝜏. The circular correlation between 𝑥𝐼𝑁 [𝑛] and 𝑦[𝑛]
yields the CAF. If we assume the absence of bit transitions in the received signal, the CAF can
be expressed as

𝑅𝑥𝑑 (𝜏, 𝑓𝑑) =
1
𝑁

𝑁−1∑︁
𝑛=0

𝑥𝐼𝑁 [𝑛]𝑐[𝑛𝑇𝑠 − 𝜏]𝑒− 𝑗2𝜋 𝑓𝑑𝑛𝑇𝑠 , (6.1)

where 𝑁 represents the number of samples integrated coherently, and 𝑇𝑠 denotes the sam-
pling period.

PDI techniques can be employed to overcome the limitation of extending CI indefinitely.
These techniques involve combining multiple consecutive CAFs through a non-linear function,
as depicted in

𝑍X = 𝑓 (
𝑁𝑛𝑐∑︁
𝑘=1

𝑅𝑘 (𝜏, 𝑓𝑑)) . (6.2)

In (6.2), 𝑍X is the result of the NCI obtained using PDI techniques, 𝑅𝑘 represents the 𝑘-th
consecutive CAF, 𝑁𝑛𝑐 denotes the number of non-coherent combinations, 𝑓𝑑 is the Doppler
frequency, and 𝜏 is the time delay [37].

When operating in high-sensitivity mode, the receiver described in this paper employs the
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GPDIT strategy [37] to acquire highly attenuated GNSS signals in real-time. The GPDIT
strategy can be expressed as

𝑍GPDIT =

𝑁𝑛𝑐∑︁
𝑘=1

|𝑅𝑘 (𝜏, 𝑓𝑑) |2 + 2|
𝑁𝑛𝑐∑︁
𝑘=2

𝑅𝑘 (𝜏, 𝑓𝑑)𝑅∗
𝑘−1(𝜏, 𝑓𝑑) | . (6.3)

The GPDIT strategy involves determining 𝑍GPDIT as the outcome of the NCI, and it is chosen
for its effectiveness, as highlighted in [37]. This technique is deemed the most suitable in
the presence of a frequency offset and demonstrates reasonable performance even in the face
of phase noise resulting from the use of a TCXO. According to the findings in [37], GNSS
signals with a 𝐶/𝑁0 as low as 20 dB-Hz can be acquired, while maintaining a probability of
false alarm 𝑃 𝑓 𝑎 < 0.01 and a probability of correct detection 𝑃𝑑 ∼ 0.8. This is achieved
through CI over a time span of 100 ms and employing GPDIT with up to 𝑁𝑛𝑐 = 7 non-coherent
combinations. These parameters ensure a reliable acquisition of weak GNSS signals. While
the GPDIT technique experiences significant degradation in the presence of data bits in the
received signals [37], it proves effective when applied to pilot signals devoid of data and
featuring predictable pilot codes. For this reason, the proposed high-sensitivity acquisition
process acquires the Galileo pilot signals.

For a stationary GNSS receiver the maximum Doppler frequency shift in the E1/L1 frequency
band is around ±5 kHz. The acquisition Doppler search step is chosen considering a trade-off
between computational load at the receiver and accuracy in the estimation of the received
Doppler frequency. As explained in Section 2.3.4, a typical value for the Doppler search
step is 𝑓𝑠𝑡𝑒𝑝 = 1

2𝑇𝐶𝐼
, where 𝑇𝐶𝐼 is the CI time [37]. When 𝑇𝐶𝐼 is set to 100 ms, this formula

yields a Doppler search step of 5 Hz. As a result, the acquisition must conduct a frequency
sweep across all potential carrier frequencies within a ±5 kHz range, in 5 Hz increments. This
process involves a vast number of combinations, leading to a significant computational burden.
In practice, the use of assistance data and Doppler prediction reduces the acquisition Doppler
search space and consequently the acquisition latency.

6.4.4.2 Computation of Large FFTs in the FPGA

When working in high-sensitivity mode, the acquisition hardware accelerator computes the
circular cross-correlation between the received signals and a local replica of the Galileo tiered
codes over a time span of 100 ms. The circular cross-correlation is computed in the frequency
domain, enabling efficient implementation within parallel processing architectures. This
approach is particularly advantageous for applications requiring real-time signal processing.
Many HS-GNSS receivers compute the CAF in the frequency domain using FFT-based
techniques for their computational efficiency [37].

Performing circular correlations over a duration of 100 ms requires the use of very large FFTs,
with sizes on the order of at least several hundred thousand samples. However, FPGA FFT
IP cores are limited in length, requiring the FFT length to be a power of two. For this reason,
the proposed FPGA implementation computes large FFTs by combining multiple smaller FFTs
with complex exponentials. This approach is extended to IFFTs, following a similar procedure.
To elaborate, this approach can be explained as follows: a large 𝑁-point DFT can be computed
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by utilizing two smaller DFTs, each of 𝑁
2 points [172]. This is achieved by separating the input

sequence into even samples (𝑥2𝑛) and odd samples (𝑥2𝑛+1), as illustrated in

𝑋𝑘 =

𝑁−1∑︁
𝑛=0

𝑥𝑛𝑒
− 2𝜋𝑘𝑛

𝑁

=

𝑁
2 −1∑︁
𝑛=0

𝑥2𝑛𝑒
− 𝑗2𝜋𝑘 (2𝑛)

𝑁 +
𝑁
2 −1∑︁
𝑛=0

𝑥2𝑛+1𝑒
− 𝑗2𝜋𝑘 (2𝑛+1)

𝑁

=

𝑁
2 −1∑︁
𝑛=0

𝑥2𝑛𝑒
− 𝑗2𝜋𝑘𝑛

𝑁/2 + 𝑒−
𝑗2𝜋𝑘
𝑁

𝑁
2 −1∑︁
𝑛=0

𝑥2𝑛+1𝑒
− 𝑗2𝜋𝑘𝑛

𝑁/2 .

(6.4)

In this computation, the 𝑁-point DFT is conceptually divided into two halves. The first half of
the DFT corresponds to samples 𝑘 = 0 to 𝑘 = 𝑁

2 − 1 and is computed as the addition of two
DFTs, each of 𝑁

2 points, combined with complex exponentials, as shown in (6.4). The second
half of the DFT corresponds to samples 𝑘 = 𝑁

2 to 𝑘 = 𝑁−1 and is also computed as the addition
of the same two 𝑁

2 -point DFTs, but combined with different complex exponentials [172]. This
is illustrated in

𝑋𝑘 = 𝑋𝑁/2+𝑡 =

𝑁
2 −1∑︁
𝑛=0

𝑥2𝑛𝑒
− 𝑗2𝜋 (𝑁/2+𝑡 )𝑛

𝑁/2 + 𝑒−
𝑗2𝜋 (𝑁/2+𝑡 )

𝑁

𝑁
2 −1∑︁
𝑛=0

𝑥2𝑛+1𝑒
− 𝑗2𝜋 (𝑁/2+𝑡 )𝑛

𝑁/2

=

𝑁
2 −1∑︁
𝑛=0

𝑥2𝑛𝑒
− 𝑗2𝜋𝑡𝑛

𝑁/2 − 𝑒−
𝑗2𝜋𝑡
𝑁

𝑁
2 −1∑︁
𝑛=0

𝑥2𝑛+1𝑒
− 𝑗2𝜋𝑡𝑛

𝑁/2 ,

(6.5)

where 𝑘 = 𝑁
2 + 𝑡, 0 ≤ 𝑡 < 𝑁

2 .

In a generalization of this approach, the computation of an 𝑁-point DFT involves combining 𝑃
DFTs, each of 𝑁

𝑃
points, as illustrated in

𝑋𝑘 =

𝑃−1∑︁
𝑝=0

©«𝑒−
𝑗2𝜋𝑘𝑝
𝑁

𝑁
𝑃
−1∑︁

𝑛=0
𝑥(𝑃𝑛+𝑝)𝑒

− 𝑗2𝜋𝑘𝑛
(𝑁/𝑃) ª®¬ . (6.6)

This method conceptualizes the computation of the 𝑁-point DFT in 𝑃 sections: from samples
𝑘 = 0 to 𝑘 = 𝑁

𝑃
− 1, then from samples 𝑘 = 𝑁

𝑃
to 𝑘 = 2𝑁

𝑃
− 1, and so forth, up to the section

comprising samples 𝑘 = (𝑃 − 1) 𝑁
𝑃

to 𝑘 = 𝑁 − 1. Each section is computed as the summation
of 𝑃 identical DFTs of 𝑁

𝑃
points, combined with different complex exponentials. This is shown

by the fact that if 𝑘 = 𝑠 𝑁
𝑃
+ 𝑡, where 0 ≤ 𝑡 < 𝑁/𝑃 and 0 ≤ 𝑠 < 𝑃 (the 𝑘-th sample is in the 𝑠-th

section), then (6.6) can be expressed as
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𝑋𝑘 = 𝑋𝑠𝑁/𝑃+𝑡 =
𝑃−1∑︁
𝑝=0

©«𝑒−
𝑗2𝜋 ( 𝑁

𝑃
𝑠+𝑡 ) 𝑝

𝑁

𝑁
𝑃
−1∑︁

𝑛=0
𝑥(𝑃𝑛+𝑝)𝑒

− 𝑗2𝜋 (𝑠 𝑁
𝑃
+𝑡 )𝑛

(𝑁/𝑃) ª®¬
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𝑝=0

©«𝑒−
𝑗2𝜋 ( 𝑁

𝑃
𝑠+𝑡 ) 𝑝
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𝑁
𝑃
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𝑛=0
𝑥(𝑃𝑛+𝑝)𝑒

− 𝑗2𝜋𝑡𝑛
𝑁/𝑃 ª®¬ .

(6.7)

The proposed FPGA acquisition hardware accelerator uses this approach to compute large
FFTs. As explained above, the FPGA computes an 𝑁-point FFT by adding the results of 𝑃
FFTs, each of 𝑁

𝑃
points, combined with different complex exponentials. This is shown in

Figure 6.4. This method is subject to the restriction that 𝑁
𝑃

must be a power of two. Each
FFT of 𝑁

𝑃
points is applied to one subset of the input samples 𝑥(𝑃𝑛) , 𝑥(𝑃𝑛+1) , 𝑥(𝑃𝑛+2) , . . . ,

𝑥(𝑃𝑛+𝑃−1) according to (6.6). In Figure 6.4, 𝑋1
𝑘′ is the output of 𝐹𝐹𝑇𝑁

𝑃
(𝑥𝑃𝑛), 𝑋2

𝑘′ is the output
of 𝐹𝐹𝑇𝑁

𝑃
(𝑥𝑃𝑛+1), etc., and 𝑋𝑃

𝑘′ is the output of 𝐹𝐹𝑇𝑁
𝑃
(𝑥𝑃𝑛+𝑃−1), where 0 ≤ 𝑘′ < 𝑁

𝑃
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Figure 6.4 Computation of an 𝑁-point FFT as a combination of 𝑃 FFTs, each of 𝑁/𝑃 points.

A state machine in the FPGA combines each set of samples produced by the 𝑁
𝑃

-point
FFTs {𝑋1

𝑘′, 𝑋
2
𝑘′, . . . , 𝑋

𝑃
𝑘′}, with complex exponentials, adding the results to produce 𝑃 output

samples of the 𝑁-point FFT. More specifically, the state machine utilizes input samples
{𝑋1

𝑘′, 𝑋
2
𝑘′, . . . , 𝑋

𝑃
𝑘′} to compute the 𝑁-point FFT output samples {𝑋𝑘′, 𝑋 𝑁

𝑃
+𝑘′, . . . , 𝑋(𝑃−1) 𝑁

𝑃
+𝑘′}).

A sample register is used to hold the values {𝑋 𝑖
𝑘′}, 0 ≤ 𝑖 < 𝑃, while the FPGA is computing

the long FFT output samples {𝑋𝑘′, 𝑋 𝑁
𝑃
+𝑘′, 𝑋2 𝑁

𝑃
+𝑘′, . . . , 𝑋(𝑃−1) 𝑁

𝑃
+𝑘′}. Because of the method

employed, the 𝑁-point FFT output samples 𝑋𝑘 are computed out-of-order.

The number of FFTs (𝑃), and the length of each FFT (𝑁/𝑃) are determined as follows:
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• The sampling frequency is chosen so that the number of samples 𝑁 representing 100 ms
is a multiple, 𝑃, of a power of two. 𝑁/𝑃 is constrained to be a power of two to
ensure compatibility with FFT IP cores provided by FPGA manufacturers. We don’t use
zero padding because it would require a larger FFT size to accommodate the additional
zero-valued samples, resulting in increased computational demands. This increase in
FFT size, in turn, would increase acquisition latency and FPGA resource consumption.
However, zero padding remains a potential option.

• To minimize the computation overhead in the proposed implementation, 𝑁/𝑃 is set to
its maximum feasible value. This value is determined by either the maximum transform
length supported by the FFT IP cores from FPGA manufacturers or a value that ensures
the sampling frequency is as close as possible to the desired value.

The details regarding the selection of the sampling frequency, the number of FFTs (𝑃), and the
length of each FFT (𝑁/𝑃) for the receiver presented in this paper are elaborated further in
Section 6.4.4.3.

6.4.4.3 Implementation

The acquisition process, when operating in high-sensitivity mode, incorporates both the PCPS
algorithm [38] and the GPDIT PDI strategy [37]. The acquisition algorithm computes the
CAF using a CI time of 100 ms. The CAF is computed as the circular correlation between
the received signal and a local replica of the Galileo pilot codes, using various trial Doppler
frequencies. The circular nature of the correlation is ensured by the fact that the Galileo tiered
codes have a duration of 100 ms. The outcome of up to 7 consecutive CAFs are merged using
the GPDIT technique shown in Equation (6.3), resulting in a maximum total integration time of
700 ms. The acquisition uses a Constant False Alarm Rate (CFAR) detector. Table 6.4 shows
the input parameters of the acquisition algorithm.

Table 6.4 Input parameters of the high-sensitivity acquisition.

Input Parameter Definition

𝑓𝑚𝑖𝑛 Minimum tested Doppler frequency

𝑓𝑚𝑎𝑥 Maximum tested Doppler frequency

𝑓𝑠𝑡𝑒𝑝 Doppler search step

𝐶 [𝑘] FFT of the Galileo pilot signal to be
detected, with a tiered code duration of

100 ms

Table 6.5 shows the output parameters of the acquisition algorithm for cases where a positive
acquisition is obtained.
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Table 6.5 Output parameters of the high-sensitivity acquisition.

Output Parameter Definition

𝑓𝑑𝑎𝑐𝑞 Estimated Doppler frequency of the
received signal

𝜏𝑎𝑐𝑞 Estimated code phase

Table 6.6 shows the variables introduced in the description of the high-sensitivity algorithm.

Table 6.6 Variables introduced in the description of the high-sensitivity algorithm.

Variable Definition

𝑥𝐼𝑁 [𝑛] Received GNSS signal input sample stream

�̂�𝐼𝑁 Input signal power estimation

𝑛𝑛𝑐 Current non-coherent combination number

𝑁𝑛𝑐 Maximum number of non-coherent
combinations. This value is set to 7

𝑁 Number of samples used for the coherent
integration, representing 100 ms

𝑓𝑑 Tested Doppler frequency

𝑇𝑠 Sampling period

𝑅𝑘 (𝜏, 𝑓𝑑) 𝑘-th successive Cross-ambiguity function
(CAF)

𝑍GPDIT(𝜏, 𝑓𝑑) Result of the NCI using the GPDIT strategy
as shown in Equation (6.3) [37]

ΓGLRT Generalized Likelihood Ratio Test (GLRT)
function with normalized variance

The proposed acquisition process is detailed in Algorithm 3. In the initial step, the acquisition
buffers 700 ms of samples, equivalent to 𝑁 · 𝑁𝑛𝑐 samples, where 𝑁 represents the number
of samples used for CI (equivalent to 100 ms), and 𝑁𝑛𝑐 is 7, representing the maximum
number of GPDIT non-coherent combinations used for detecting weak signals. For each
GPDIT iteration, the algorithm takes 100 ms worth of samples (referred to as 𝑥 [𝑛]) from the
acquisition buffer 𝑥𝐼𝑁 [𝑛] and performs a Doppler frequency search on 𝑥 [𝑛], from the minimum
Doppler frequency 𝑓𝑚𝑖𝑛 to the maximum Doppler frequency 𝑓𝑚𝑎𝑥 in 𝑓𝑠𝑡𝑒𝑝 steps. For each
tested Doppler frequency 𝑓𝑑 , the acquisition conducts Doppler wipeoff and performs a circular
correlation between the received signal 𝑥 [𝑛] and Galileo pilot codes in the frequency domain
𝐶 [𝑘], obtaining the CAF 𝑅𝑘 (𝜏, 𝑓𝑑). The CAF is used to compute the corresponding GPDIT
iteration 𝑍GPDIT(𝜏, 𝑓𝑑). The algorithm then searches the time-Doppler frequency grid for the
peak value of the computed GPDIT iteration, obtaining the peak value along with an estimation
of the Doppler frequency and code phase {𝑆𝑚𝑎𝑥 , 𝑓𝑖, 𝜏𝑗 }. Finally, it evaluates a Generalized
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Likelihood Ratio Test (GLRT) function ΓGLRT, and determines whether the searched signal is
detected. If positive, the algorithm declares successful acquisition; otherwise, it returns to the
main loop to compute the next successive CAF and the next GPDIT iteration. If a total of 7
GPDIT combinations are computed and the signal is not detected, then the algorithm declares
negative acquisition.

Algorithm 3 High-sensitivity acquisition
1: Set the total number of GPDIT iterations 𝑁𝑛𝑐 = 7
2: Buffer 700 ms worth of samples: 𝑥𝐼𝑁 [0], 𝑥𝐼𝑁 [1], . . . , 𝑥𝐼𝑁 [𝑁 · 𝑁𝑛𝑐]
3: Set the current GPDIT iteration 𝑛𝑛𝑐 = 1
4: While 𝑛𝑛𝑐 ≤ 𝑁𝑛𝑐 do
5: Take the next 100 ms worth of samples from the acquisition buffer:

𝑥 [𝑛] = {𝑥𝐼𝑁 [(𝑛𝑛𝑐 − 1) · 𝑁], 𝑥𝐼𝑁 [(𝑛𝑛𝑐 − 1) · 𝑁 + 1], . . . , 𝑥𝐼𝑁 [(𝑛𝑛𝑐 − 1) · 𝑁 + 𝑁 − 1]}
6: For 𝑓𝑑 = 𝑓𝑚𝑖𝑛 to 𝑓𝑑 = 𝑓𝑚𝑎𝑥 in 𝑓𝑠𝑡𝑒𝑝
7: Perform Doppler wipe-off: 𝑥𝑑 [𝑛] = 𝑥 [𝑛] · 𝑒− 𝑗2𝜋 𝑓𝑑𝑛𝑇𝑠 , for 𝑛 = 0, . . . , 𝑁 − 1
8: Compute 𝑋𝑑 [𝑘] = 𝐹𝐹𝑇𝑁 (𝑥𝑑 [𝑛])
9: Compute 𝑌 [𝑘] = 𝑋𝑑 [𝑘] · 𝐶 [𝑘], for 𝑘 = 0, . . . , 𝑁 − 1

10: Compute 𝑅𝑛𝑛𝑐 (𝜏, 𝑓𝑑) = 1
𝑁2 𝐼𝐹𝐹𝑇𝑁 (𝑌 [𝑘])

11: Compute 𝑍GPDIT(𝜏, 𝑓𝑑) =
∑𝑛𝑛𝑐
𝑘=1 |𝑅𝑘 (𝜏, 𝑓𝑑) |

2 + 2|∑𝑁𝑛𝑐

𝑘=2 𝑅𝑘 (𝜏, 𝑓𝑑)𝑅
∗
𝑘−1(𝜏, 𝑓𝑑) |

12: End for
13: Search the peak value and its indices in the search grid:

{𝑆𝑚𝑎𝑥 , 𝑓𝑖, 𝜏𝑗 } = 𝑚𝑎𝑥 𝑓 ,𝜏𝑍GPDIT(𝜏, 𝑓𝑑)
14: Compute input signal power estimation �̂�𝐼𝑁 = 1

𝑁

∑𝑁−1
𝑛=0 |𝑥 [𝑛] |2

15: Compute the GLRT function with normalized variance Γ =
2𝑁𝑆𝑚𝑎𝑥

�̂�𝐼𝑁

16: If ΓGLRT > 𝛾 (Compare with threshold value)
17: Declare positive acquisition and provide 𝑓𝑑𝑎𝑐𝑞 = 𝑓𝑖 and 𝜏𝑎𝑐𝑞 = 𝜏𝑗
18: Break;
19: Else
20: If 𝑛𝑛𝑐 = 𝑁𝑛𝑐 − 1 (last GPDIT iteration)
21: Declare negative acquisition
22: End if
23: End if
24: End while

The acquisition algorithm is executed collaboratively by the FPGA and the embedded
processor, with each component handling a distinct portion of the process. The FPGA is
responsible for capturing the samples from the analog front-end and computing the successive
CAFs using the captured samples. Concurrently, the embedded processor executes the GPDIT
iterations and the CFAR detector. Even though the FPGA manages the majority of the
computational workload related to the acquisition process, the embedded processor is actively
involved in the acquisition tasks.

The embedded processor can simultaneously handle the acquisition process and the other tasks
required for the baseband software processing engine. These tasks include the control of the
FPGA tracking multicorrelator hardware accelerators, the execution of the telemetry decoders,
the computation of GNSS basic measurements, and the derivation of the navigation solutions.
The Zynq UltraScale+ XCZU9EG All-Programmable MPSoC [63] used to demonstrate the
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proposed design, features a quad-core embedded processor. Therefore, from a computing
power perspective, dedicating one processor core to the acquisition process leaves the other
three cores available for additional tasks, thus facilitating the real-time processing of GNSS
signals. Regardless, the embedded processor operates in an SMP configuration.

Figure 6.5 shows a detailed view of the FPGA acquisition hardware accelerator depicted in
Figure 6.2. The PL DDR4 memory component shown in Figure 6.5 is the same as the
one shown in Figure 6.2. The acquisition hardware accelerator comprises two modules: the
Sample Capture module and the CAF computation module. When performing acquisition
in high-sensitivity mode, the Sample Capture module collects 700 ms worth of samples
from the analog front-end and stores the samples into the PL DDR4 memory component.
Once the first 100 ms worth of samples has been captured, concurrently with the remaining
part of the sample capture process, the CAF computation module initiates the calculation
of the successive CAFs. By overlapping the CAF computation and the sample capture,
the acquisition latency is reduced. The FPGA writes the computed CAFs to the PL memory.
Concurrently, the embedded processor reads the computed CAFs from the PL memory
component and executes the GPDIT iterations. The embedded processor executes the GPDIT
iterations simultaneously to the FPGA calculating the CAFs, to further reduce the acquisition
latency. In accordance with the architecture presented in Chapter 3, the high-sensitivity
acquisition hardware accelerator exposes memory-mapped registers to the embedded processor
for operation control. Additionally, it is equipped to issue interrupt requests to the embedded
processor, facilitating the efficient synchronization of operations.

High-Sensitivity Acquisition FPGA IP

Sample Capture

CAF computation

L1/E1 Sample 
buffer

L5/E5a Sample 
buffer

PL 
DDR4 
RAM

Figure 6.5 High-sensitivity acquisition FPGA hardware accelerator block diagram.

Figure 6.6 presents a timing diagram for the acquisition process, illustrating the concurrent
computation of successive CAFs (𝑅𝑘 (𝜏, 𝑓𝑑)) and GPDIT iterations (𝑍GPDIT𝑘

(𝜏, 𝑓𝑑)) within
the FPGA and the embedded processor, respectively. In the figure, time progresses from left
to right. The FPGA and the embedded processor synchronize their operations by means of
interrupt requests (marked as “Int.” in Figure 6.6), going from the FPGA to the PS. This
process is explained below in more detail.

The embedded processor commences the acquisition process, as indicated by ’Initiate Acqui-
sition Process’ in Figure 6.6, which includes directing the FPGA to capture samples, a step
referred to as ’Initiate Sample Capture’ in the same figure. This involves the FPGA collecting
700 ms worth of samples in 100 ms increments. After capturing the first segment, the FPGA
generates an interrupt request to the embedded processor. The processor, in response, instructs
the FPGA to start the computation of the first CAF at the initial tested Doppler frequency
(𝑅𝑘 (𝜏, 𝑓𝑚𝑖𝑛)). This instruction from the processor to the FPGA is denoted as ’Initiate CAF
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Computation’ in Figure 6.6. Following this, the FPGA and embedded processor work in se-
quence to compute the CAFs and GPDIT iterations for each Doppler frequency.
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Figure 6.6 Acquisition timing diagram.

For each frequency, the FPGA performs circular cross-correlation between the received signal
and the local replica. After completing this computation, it issues an interrupt request to the
embedded processor. Upon receiving the interrupt, the processor initiates the corresponding
GPDIT iteration for that Doppler frequency. Simultaneously, it commands the FPGA to
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calculate the CAF for the next frequency. This command is not shown in 6.6 to maintain
clarity. This procedure is systematically repeated across all Doppler frequencies, progressing
from 𝑓𝑑 = 𝑓𝑚𝑖𝑛 to 𝑓𝑑 = 𝑓𝑚𝑎𝑥 in increments defined by 𝑓𝑠𝑡𝑒𝑝. Through this orchestrated
approach, the FPGA consistently stays ahead by computing the CAF for the next frequency
while the embedded processor concurrently handles the GPDIT iteration for the current
frequency. Specifically, the FPGA computes the CAF for the (𝑛 + 1)-th Doppler frequency
(𝑅𝑘 (𝜏, 𝑓𝑚𝑖𝑛 + 𝑛 · 𝑓𝑠𝑡𝑒𝑝)), while the embedded processor executes the GPDIT iteration for the
𝑛-th frequency (𝑍GPDIT𝑘 (𝜏, 𝑓𝑚𝑖𝑛 + (𝑛 − 1) · 𝑓𝑠𝑡𝑒𝑝)).

With this approach, upon completion of the computation of the 𝑛𝑛𝑐-th CAF, the FPGA initiates
the computation of the subsequent (𝑛𝑛𝑐+1)-th CAF in parallel with the embedded processor
finishing the execution of the 𝑛𝑛𝑐-th GPDIT iteration. Importantly, this parallel computation
is speculative, meaning the results of the (𝑛𝑛𝑐+1)-th CAF might not be utilized if the CFAR
detector signals a positive detection at the conclusion of the 𝑛𝑛𝑐-th GPDIT iteration. Adopting
this strategy minimizes acquisition latency through the simultaneous computation of CAF and
GPDIT iterations.

Figure 6.7 shows a detailed block diagram of the CAF computation module shown in
Figure 6.5, as it is implemented in the FPGA. The CAF computation module performs Doppler
wipeoff and computes the circular correlation between the received signals and the local replica
of the pilot tiered code in the frequency domain. It has four memory interfaces implemented
using the AMBA AXI4-Lite protocol specification [61]: AXI4-Lite interface 1 retrieves the
FFT of the local replica of the pilot-tiered code from the PL memory component. AXI4-Lite
interface 2 fetches the captured samples from the analog front-end, which are also stored in
the PL DDR4 memory component. AXI4-Lite interface 3 stores the computed CAF in the PL
DDR4 memory. These three memory interfaces perform read and write transactions to and from
the PL DDR4 simultaneously, thus decreasing the acquisition latency. AXI4-Lite interface
4 exposes a bank of memory-mapped registers to the embedded processor. The embedded
processor uses these registers to configure and control the acquisition process. Furthermore,
the CAF computation module also incorporates the following units, as depicted in Figure 6.7:
a Doppler wipeoff unit, a unit for computing large FFTs and IFFTs (the large FFT/IFFT
block), a unit for multiplying the FFT output with the local replica of the pilot tiered code
(the Enable/Disable Local Code Mult block), and a unit for reporting a scaling factor to the
embedded processor. This scaling factor is automatically applied to the FFT/IFFT output to
prevent saturation, and it is referred to as the block exponent in Figure 6.7. Finally, a state
machine controls the execution of the CAF computation, which occurs in two steps:

1. In the first step, the CAF computation module computes the frequency domain repre-
sentation of the circular correlation: the module fetches 100 ms of samples from the
PL memory component, performs Doppler wipeoff, computes the FFT of the Doppler-
corrected signal, and multiplies the results by the FFT of the local replica of the pilot
tiered code. Finally, the result of this multiplication is stored back into the PL memory
component. Storing intermediate results in the PL memory component reduces FPGA
memory usage. During this first step, the Enable/Disable Doppler wipeoff block and the
Enable/Disable FFT Multiplication block shown in Figure 6.7 are enabled. The local car-
rier used for Doppler wipeoff is efficiently implemented using the Coordinate Rotation
Digital Computer (CORDIC) algorithm [178].

2. In the second step, the CAF computation module calculates the time-domain representa-
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tion of the circular cross-correlation. It retrieves the results of the multiplication of the
FFT by the local replica obtained in step 1, performs the IFFT, and then stores the results
back in the PL memory component.
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Figure 6.7 CAF computation module.

The large FFT/IFFT module depicted in Figure 6.7 computes the FFT and the IFFT, applying
a scaling factor to the input signals to prevent overflow in the calculations. The scaling factor
applied is made available to the embedded processor through the Report Block Exponent block.
The embedded processor normalizes the application of the scaling factor to ensure uniform
scaling across all Doppler frequencies and GPDIT iterations.

Figure 6.8 shows a block diagram of the large FFT/IFFT module depicted in Figure 6.7. This
module computes large FFTs and IFFTs by combining multiple small FFTs and IFFTs with
complex exponentials, extending the transform size. This approach is explained in Section
6.4.4.2 and illustrated in Equation (6.6), where an 𝑁-point DFT is computed as a weighted
combination of 𝑃 DFTs, each of length 𝑁/𝑃. The same principle applies for the computation
of the IFFT.

The 64𝑘-FFT/IFFT module, shown in Figure 6.8, is implemented using AMD’s FFT Logi-
CORE IP v9.1 [179]. This FFT core imposes a maximum transform size limit, restricting it
to 216 = 64𝑘 samples. To accommodate this limitation, the receiver’s sampling frequency is
deliberately chosen to ensure that the computation of a 100 ms circular cross-correlation in the
frequency domain results in an FFT size that is a multiple of 64𝑘 samples. Consistent with
this, the sampling frequency is set to 15.728640 Mega samples per second (Msps), which pro-
vides sufficient capability to track GNSS signals in both the L1/E1 and L5/E5a bands [139].
As shown in Figure 6.2, the acquisition hardware accelerator incorporates a downsampling fil-
ter in the L1/E1 band, reducing the sampling frequency by a factor of 4 to 3.932160 Msps.
Consequently, to compute the CAF using a CI time of 100 ms, FFTs/IFFTs with a transform
size of 393,216 samples are required. This transform size is equivalent to 6× 64𝑘 samples.
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To efficiently handle this calculation, the FPGA computes FFTs of 393, 216 samples by com-
bining six FFTs, each of 64𝑘 samples, following the approach depicted in Figure 6.4.
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Compute 
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Figure 6.8 Large FFT/IFFT module implemented in the high-sensitivity acquisition.

The FFT LogiCORE is configured to implement a 6-channel 64𝑘-FFT on the incoming
samples. An input sample selector in the 64𝑘-FFT/IFFT module cyclically distributes the
incoming samples to the FFT channels sequentially, assigning the 1st sample to the 1st channel,
the 2nd sample to the 2nd channel, and so forth. In the complex exponential combining block,
a state machine combines the outputs of the 64𝑘-FFT with the complex exponentials 𝑒− 𝑗2𝜋

𝑘
𝑁
𝑠,

as illustrated in Equation (6.6). The complex exponentials are implemented using the CORDIC
algorithm. TheFFT LogiCORE automatically applies a scaling factor (block exponent) to each
channel to prevent overflow. The Apply Scaling Factors module in Figure 6.8 dynamically
equalizes the various FFT channels by ensuring that the same scaling factor is uniformly
applied to all of them. The scaling factor used is reported to the embedded processor. Finally,
the 64𝑘-FFTs, combined with the complex exponentials, are added to obtain the 393, 216-
point FFT results. The 393, 216-point FFT and IFFT output samples are produced out of order.
However, these samples are automatically reordered during the storage process to memory,
minimizing latency.

6.4.5 Doppler Prediction

The high-sensitivity acquisition process parallelizes the code phase search by conducting a
circular cross-correlation between the received GNSS signal and a local replica of the signal’s
tiered PRN code. However, this correlation has to be performed once for each possible trial
Doppler frequency [38]. In cases where a static GNSS receiver lacks prior knowledge of the
received Doppler frequencies, it is obligated to conduct a search spanning from −5 kHz to +5
kHz. As shown in Section 6.4.4.1, when operating in high-sensitivity mode, the use of a CI
time of 100 ms yields a Doppler search step of 5 Hz. Consequently, the acquisition process
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involves testing 2001 Doppler frequencies, conducting a frequency sweep across all possible
frequencies within ±5 kHz of the nominal carrier frequency in increments of 5 Hz. This leads
to a significant acquisition latency.

When the receiver is processing signals in real time, the acquisition latency cannot be arbitrarily
large. The key factors limiting the maximum acceptable latency are the maximum allowable
TTFF and the degradation over time of the parameters estimated during acquisition, such as
timing synchronization and Doppler frequency. This degradation is caused by the receiver
clock drift and the continuously changing Doppler frequency in the received signals. A slow
acquisition process can result in the receiver beginning to track the detected signal only after
changes have occurred in the Doppler frequency, affecting both the carrier signal and the code
phase. This, coupled with local crystal oscillator inaccuracies, diminishes the accuracy of the
Doppler frequency and code phase estimated during the acquisition process.

The receiver employs the assistance data to predict the Doppler frequency of the incoming
signals, leading to a reduction in the Doppler search space during acquisition. The Doppler
search is performed considering potential inaccuracies in the Doppler prediction, and the
presence of a Carrier Frequency Offset (CFO) in the RFFE, originating from deviations in
the accuracy of the local crystal oscillator.

Even with Doppler prediction, the search range for the Doppler frequency can remain large,
due to the need to consider the inaccuracies of Doppler prediction and the effect of CFO in
the RFFE. This situation can result in significant acquisition latency, thereby diminishing the
chances of successfully tracking detected signals. To address this problem, the receiver offers
an option to execute the acquisition process in two stages. The first stage performs a potentially
large Doppler search around the predicted Doppler frequency to account for inaccuracies in
Doppler predictions and CFO mentioned above. Then, in the second stage, the acquisition
process is repeated with new samples from the analog front-end, using a much smaller Doppler
search space centered on the Doppler frequency identified in the first stage. The Doppler
search space in stage 2 can be significantly smaller because CFO and potential inaccuracies
in the Doppler prediction have already been accounted for in stage 1. The execution of stage
2 is much faster than the execution of stage 1 because of the smaller Doppler search space.
While this two-stage execution increases overall acquisition latency and may influence the
probability of detection, stage 2 reduces the latency from sample capture to the initiation
of the tracking process, thereby enhancing the accuracy of the parameters estimated during
acquisition. The two-step acquisition process is shown in Table 6.7.

The method outlined in Table 6.7 is effective provided that, during the execution of stage 1,
the change in the Doppler frequency of the received signal remains within the Doppler search
range specified for stage 2. Otherwise, the signal detected in stage 1 may not be detected in
stage 2. The probability of detection may also be affected by the need to detect the same signal
twice.
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Table 6.7 Acquisition process in two steps.

Stage Algorithm

Stage 1 Capture samples from the analog front-end.
Perform acquisition using a reduced

Doppler search space around the predicted
Doppler frequency (the Doppler search
space is large enough to account for any

CFO and Doppler prediction inaccuracy).

Stage 2 Capture samples from the analog front-end.
Perform acquisition using a much smaller
Doppler search space around the Doppler
frequency estimated during stage 1. As a
result, when executing stage 2, the system
quickly transitions from capturing samples

to starting the tracking process.

6.4.6 Acquisition in Normal-Sensitivity Mode

When working in normal-sensitivity mode, the acquisition process detects GPS L1 C/A, GPS
L5, Galileo E1b/c, and Galileo E5a signals received at nominal 𝐶/𝑁0 levels. Additionally,
the acquisition process can be configured to detect either the data component or the pilot
component of the received signals. Much like the procedure in high-sensitivity mode,
the acquisition process involves conducting a cross-correlation between the received signal and
a local replica of the satellite PRN code. However, this correlation is performed using a short
CI time, equal to the length of the PRN code (1 ms for GPS L1 C/A, GPS L5, and Galileo E5a;
4 ms for Galileo E1b+c) or a small multiple of this length. The results from several consecutive
CAFs 𝑅𝑘 (𝜏, 𝑓𝐷) can be effectively combined using the NPDI technique, illustrated in

𝑍NPDI =

𝑁𝑛𝑐∑︁
𝑘=1

|𝑅𝑘 (𝜏, 𝑓𝐷) |2 , (6.8)

where 𝑍NPDI is the result of the NCI. Throughout this process, a CFAR detector is employed.

When operating in normal-sensitivity mode, the high-sensitivity acquisition hardware accel-
erator is responsible for capturing samples from the analog front-end. Subsequently, the em-
bedded processor takes charge of all calculations, including Doppler wipe-off, the circular
cross-correlation, and the computation and the non-linear combinations of consecutive CAFs.
The rationale behind this arrangement lies in the current design of the high-sensitivity acquisi-
tion hardware accelerator in the FPGA. Specifically tailored for acquiring weak signals using
long CI times, the current version lacks the flexibility required to compute the CAF in normal-
sensitivity mode. Nonetheless, the Ultrascale+ XCZU9EG MPSoC’s embedded processor has
ample computing power, enabling it to execute the acquisition in normal-sensitivity mode in
real-time. Additionally, it can manage other assigned tasks, including operating the FPGA
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tracking multicorrelators, running the telemetry decoders, computing the observables, and de-
termining the PVT.

6.4.7 Tracking

As explained in Section 2.3.5, the role of a tracking algorithm is to follow the evolution of the
signal synchronization parameters: code phase 𝜏(𝑡), Doppler frequency 𝑓𝑑 (𝑡) and carrier phase
𝜙(𝑡). The proposed receiver implements tracking loops to continuously monitor and adjust
to the code and carrier parameters of the incoming signal. Specifically, a Delay Lock Loop
(DLL) is employed to track the signal’s code delay, a Phase Lock Loop (PLL) is dedicated to
monitoring and adjusting to the signal’s phase, and a Frequency Locked Loop (FLL) can be
enabled to monitor the signal’s frequency.

The receiver implements the tracking multicorrelator hardware accelerators presented in
Section 3.1.5. These multicorrelators perform the Doppler wipe-off and the multicorrelation of
the incoming signal with the local replica of the PRN codes. The embedded processor executes
the PLL, the FLL, and the DLL. The PLL and the FLL employ a four-quadrant arctangent
discriminator. The DLL employs a noncoherent Very Early Minus Late Power (VEMLP)
normalized discriminator when tracking Galileo E1b/c signals, and a noncoherent Early Minus
Late envelope-normalized discriminator when tracking Galileo E5a, GPS L1 C/A, and GPS L5
signals.

The tracking multicorrelator hardware accelerators are configured as shown in Table 3.3 in
Chapter 3. When tracking GPS L1 C/A signals, the receiver follows the data component of
the received signals. For other signals, the receiver tracks the pilot component, utilizing an
additional correlator dedicated to demodulating the data component.

6.4.7.1 Tracking in High-Sensitivity Mode

When tracking Galileo E1b/c signals in high-sensitivity mode, the receiver initiates signal
tracking with synchronization to the pilot’s secondary code. This synchronization is achieved
through the acquisition process, which computes the CAF using a circular cross-correlation
with the complete Galileo pilot tiered code, including both the primary and secondary codes.

Consequently, the tracking process can commence with an extended CI time that surpasses the
duration of the PRN code. The receiver is configured to track the pilot signals, which have
predictable tiered codes. This configuration enables the utilization of CI times that exceed the
duration of a single data bit in the tracking process. These capabilities are essential for tracking
weak signals, addressing the challenges posed by potential bit errors in the demodulated data
due to low 𝐶/𝑁0 conditions [176, 177].

To effectively track weak signals, it is necessary to employ an extended CI time. However,
due to the fundamental differences between tracking and acquisition in signal processing, the
tracking process can utilize a shorter CI time compared to acquisition. Tracking is an estimation
problem that benefits from prior knowledge about the code phase and the carrier phase. This
information not only enhances the sensitivity of the tracking loops but also allows for refined
estimations of these parameters. In contrast, acquisition is primarily a detection problem,
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focused on initially identifying the signal’s presence without the benefit of prior accurate
information. In line with this, the receiver was tested using various extended CI times between
20 ms and 100 ms. When using an OCXO, we could track signals with a 𝐶/𝑁0 down or very
close to 20 dB-Hz with a tracking CI time of 20 ms. However, tracking sensitivity appeared
to be at its limit. Minor changes in the 𝐶/𝑁0 of the received signals caused the tracking loops
to lose lock. To enhance tracking sensitivity and accommodate small fluctuations in received
signal power during tracking, the receiver was set to use an extended CI time of 40 ms for
weak signals. Therefore, the tests reported in Section 6.5 utilized a tracking CI time of 40
ms for high-sensitivity mode, shorter than the CI time used in acquisition (100 ms). For more
details on the configuration of the tracking loops, refer to Appendix 6.A.

The current implementation of the tracking algorithm does not include any type of multipath
mitigation. The high sensitivity tracking mode is mainly designed to track weak GNSS signals.

6.4.7.2 Tracking in Normal-Sensitivity Mode

In normal-sensitivity mode, the receiver initiates tracking of detected signals without synchro-
nization to the pilot’s secondary code or the telemetry preambles. The tracking process com-
mences with a CI time equivalent to the duration of the PRN primary code. Once synchro-
nization with the pilot’s secondary code or the telemetry preambles is achieved, the tracking
process dynamically increases the CI time based on user configuration.

6.4.8 Telemetry Decoding

When tracking very weak Galileo E1b/c signals, the receiver may not be able to correctly
demodulate the telemetry messages due to the presence of bit errors [176, 177]. However,
demodulating the received telemetry messages is needed to obtain the TOW of the received
messages. The TOW is used to compute the GNSS basic measurements and the navigation
solutions. For this reason, the GNSS-SDR software telemetry decoder was upgraded to
estimate the TOW of the received Galileo E1b/c messages using the ToA of the telemetry
synchronization patterns and the receiver’s local clock. The receiver performs TOW estimation
in three steps: sync frame detection, sync frame confirmation, and TOW estimation. These
steps are explained below.

6.4.8.1 Sync Frame Detection

The Galileo telemetry decoder initiates its process by identifying the I/NAV synchronization
patterns within the received telemetry frames. To address the potential presence of bit
errors, the receiver maintains a list of sample stamps corresponding to the most recently
detected synchronization patterns. These sample stamps represent the receiver sample counter
associated with those patterns. For each identified synchronization pattern, the receiver
verifies if the timing relative to any of the most recently detected patterns is a multiple of the
Galileo E1 I/NAV synchronization pattern period. If this condition is met, then the telemetry
decoder assumes sync frame detection and proceeds to the second step, which involves sync
frame confirmation.
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6.4.8.2 Sync Frame Confirmation

The telemetry decoder checks that at least a certain percentage of preambles is accurately
detected at the expected timings. If the detection of the telemetry sync patterns is confirmed,
then the receiver assumes correct sync frame detection and proceeds to the third step, which
involves TOW estimation. Otherwise, the receiver assumes a synchronization issue and goes
back to the sync frame detection.

6.4.8.3 TOW Estimation

The receiver estimates the TOW using the ToA of the telemetry synchronization patterns and
the local embedded OS clock. The TOW of the Galileo synchronization patterns corresponds
to the exact timing of the telemetry page frame boundaries [29]. The receiver takes advantage
of the fact that, in the Galileo E1b/c signals, the synchronization patterns are transmitted in
sync with the second. The estimation of the TOW involves measuring the exact ToA of the
telemetry sync patterns and rounding this time to the nearest second. The ToA is computed in
Galileo System Time (GST) as follows: In the first step, the local time is converted to UTC
considering the local time zone. In the second step, the computed UTC time is converted to
GST considering the leap seconds between UTC and GST. Assuming that the GNSS signal
travel time, plus the error induced by delays in the receiver detecting the preambles, added to
the receiver’s local clock offset is in total below ±500 ms, the computed TOW estimation
is deemed correct. This is because rounding the ToA to the nearest second provides the
TOW. Achieving the required accuracy in the local OS clock is performed by synchronizing
the receiver’s OS clock to the true local time using the Network Time Protocol (NTP) [180].
The NTP protocol offers a nominal accuracy of tens of milliseconds on Wide Area Networks
(WANs) [180], which is sufficient for the proposed TOW estimation process.

The need for precise clock accuracy becomes less critical in this receiver when exclusively
tracking Galileo E1b/c signals. In such cases, even with a slight clock offset, the PVT solution
may still converge, indicating a clock bias. However, when tracking Galileo E1b/c alongside
other GNSS signal types that do not perform TOW estimation in the same manner, precise clock
synchronization is essential. Without it, relative timing delays could arise between observables
of different GNSS signal types, significantly compromising the PVT solution’s accuracy.

When in the TOW estimation state, the telemetry decoder continuously verifies that a minimum
percentage of preambles is accurately detected at the expected timings. If the receiver fails to
detect the telemetry preambles, it assumes a synchronization issue and reverts to the frame sync
detection state. This allows the receiver to resynchronize with the received preambles in case
of an incorrect sync frame detection.

When working in post-processing mode using recorded GNSS signals, the receiver local OS
clock time does not correspond to the recorded signal time. Therefore, the receiver embedded
OS clock cannot be used to estimate the ToA of the telemetry sync patterns. In this case,
the telemetry decoder estimates the TOW of the telemetry messages using the receiver sample
counter and a predetermined relationship between the sample counter and the recorded signal
time that shall be provided by the user. The sample counter counts up the number of processed
samples and is automatically reset when the user starts the GNSS-SDR software receiver.
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6.4.9 Computation of the Navigation Solutions

The embedded processor computes navigation solutions using the GNSS basic measurements:
pseudorange, carrier phase, and Doppler shift. The computation of the navigation solutions
is implemented using the RTKLIB open-source package for standard and precise positioning
with GNSS [181].

The estimated receiver positions might include invalid solutions due to unmodeled measure-
ment errors. The processor performs a series of validation tests on the estimated receiver po-
sitions, including a residuals test and a Geometric Dilution of Precision (GDOP) Test [181].
If any of these tests fails, the solution is rejected as an outlier. In addition, the software im-
plements Receiver Autonomous Integrity Monitoring Fault Detection and Exclusion (RAIM-
FDE) [182]. RAIM-FDE attempts to exclude invalid measurements due to satellite malfunc-
tion, receiver fault, or large multipath by iteratively estimating the receiver’s position while
excluding one visible satellite at a time.

When operating in high-sensitivity mode, the receiver utilizes assistance ephemeris data to
determine PVT. This is necessary because the receiver may encounter challenges in correctly
demodulating the telemetry messages of weak Galileo E1b/c signals, primarily due to the
presence of bit errors [176, 177]. If the telemetry decoder successfully demodulates the
telemetry messages during operation, the receiver then updates the assistance ephemeris data
with the latest information received from the satellites. Assistance ephemeris data can be
optionally employed for the GPS and the Galileo E5a signals as well.

6.4.10 GNSS Output Products

The proposed receiver outputs GNSS signal products in standard open formats as detailed
in Section 2.4.3, such as RINEX, RTCM (for sensor integration), and GPX, while also
generating PVT solutions in WGS-84, tailored for various applications. It offers precise
satellite measurements—pseudorange, Doppler shift, signal strength—and navigation and
timing data (GPS Time, Galileo Time, UTC time), enabling thorough satellite tracking and
analysis.

6.5 Results

The performance of the proposed receiver was assessed based on several KPIs. These included
acquisition latency, the receiver’s ability to process Galileo E1b/c signals in high-sensitivity
mode, and its capability to simultaneously process Galileo E1b/c signals in high-sensitivity
mode alongside Galileo E5a and GPS signals in normal-sensitivity mode. The precision of
navigation solutions and the power consumption were also evaluated. Additionally, FPGA
resource usage is also reported.

The receiver’s ability to process Galileo E1b/c signals in high-sensitivity mode was tested using
three different TCXOs and an OCXO. Two TCXOs caused a CFO in the received signals larger
than expected, requiring the user to perform a manual estimation and correction of the CFO
before using the receiver in high-sensitivity mode. This procedure was not required when
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using an OCXO, which offers better frequency stability. For this reason, we switched to using
an OCXO for the remaining tests. However, improving the acquisition algorithm to eliminate
the need for manual CFO compensation remains as future work. A detailed explanation is
provided in Section 6.5.2.

Appendix 6.A provides the receiver configuration used for processing the Galileo E1b/c signals
in high-sensitivity mode, while Appendix 6.B offers the configuration for processing the
Galileo E5a and GPS signals in normal-sensitivity mode. Appendix 6.C details the receiver’s
PVT configuration.

6.5.1 Test Setup

Figure 6.9 illustrates the block diagram of the test setup used to apply live signals to the
proposed receiver. The antenna captures GNSS signals from the sky. A variable attenuator is
manually adjusted to decrease the 𝐶/𝑁0 of the received signals down to 20 dB-Hz. Achieving
a uniform 𝐶/𝑁0 of 20 dB-Hz for all signals proved to be challenging due to variations in the
received signal power from different satellites. Splitter 1 divides the received signals into two
paths: one leading to the device under test and the other to a commercial receiver, which is used
to validate the 𝐶/𝑁0 of the received signals. The proposed HS-GNSS receiver uses splitter 2
to divide the incoming signal internally, distributing it between the two RF inputs of the AD-
FMCOMMS5-EBZ analog front-end. RF1 is tuned to the E1/L1 frequency band, while RF2 is
tuned to the E5a/L5 band.

The test setup involves two splitters in the signal path of the high-sensitivity GNSS receiver
(splitter 1 and splitter 2). Similarly, the signal path of the commercial receiver incorporates
splitter 1 and splitter 3. Each splitter introduces a 3-dB attenuation in the received signal.
This arrangement allows us to maintain equal signal conditions, as detailed in the following
explanation.

GNSS 
Antenna + 

LNA

Splitter 1

Splitter 2

Splitter 3

Variable 
Attenuator

AD-FMCOMMS5-EBZ 
Analog Front-End

RF 1 (tuned to 
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frequency band)

RF 2 (tuned to 
the L5/E5a 

frequency band)

Xilinx ZCU102 
Development Board

Zynq Ultrascale+ 
XCZU9EG All-

Programmable 
MPSOC

High Sensitivity GNSS Receiver

Commercial 
GNSS 
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º

PC

LAN 
connection
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Figure 6.9 Test setup for the high-sensitivity GNSS receiver.
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The 𝐶/𝑁0 observed by both receivers can be computed using the Friis formulas for noise [35].
When the variable attenuator is not used, the 𝐶/𝑁0 observed by the receivers is primarily
influenced by factors such as received signal strength, antenna noise temperature, and the noise
figure of the LNA in the active antenna. The splitters in the signal path, including splitters 1, 2,
and 3, each introduce an insertion loss of 3 dB, because they divide the received signal power
between their two output ports. However, these losses have negligible effects on the 𝐶/𝑁0 due
to the compensating presence of the LNA, as explained in Section 2.3.2. However, despite
the presence of the LNA, when the variable attenuator introduces substantial attenuation, the
𝐶/𝑁0 observed by the receivers becomes primarily determined by the total attenuation from the
antenna to the analog front-end. This total attenuation encompasses both the variable attenuator
and the attenuation introduced by the splitters. Splitter 3 introduces an attenuation of 3 dB,
ensuring that the commercial receiver perceives the same 𝐶/𝑁0 as the receiver under test when
the variable attenuator introduces significant attenuation. One of the output ports of splitter 3
is connected to the commercial GNSS receiver. The other output port is left open.

The 𝐶/𝑁0 of received Galileo E1b/c signals was validated using a U-blox NEO-M8T
receiver [161]. The variable attenuator was adjusted to decrease the carrier-to-noise density
ratio (𝐶/𝑁0) of the received signals. This adjustment aimed to reduce the 𝐶/𝑁0 of the weakest
Galileo E1b/c signals to as low as 20 dB-Hz, while maintaining consistent attenuation levels
across other signals.

The rooftop GNSS antenna facility of the GESTALT testbed [146] was utilized to enhance
satellite visibility during the tests. Additionally, the tests evaluating the receiver’s ability to
process Galileo E1b/c, Galileo E5a, GPS L1 C/A, and GPS L5 signals (Section 6.5.3) were
conducted using both the rooftop GNSS antenna facility and the receiver’s TW8825 active
antenna.

6.5.2 High-Sensitivity Acquisition Latency

The latency of the two-stage acquisition scheme was evaluated using both a TCXO and an
OCXO. The evaluations were carried out following the test setup described in Section 6.5.1 and
the procedure outlined in Table 6.8. The variable attenuator was used to decrease the 𝐶/𝑁0 of
the received signals to as low as 20 dB-Hz. The software was temporarily modified to measure
the worst-case acquisition latency as follows: the acquisition process consistently performed
7 GPDIT iterations, with the receiver recording the acquisition latency during each execution.
The latency was measured as the time it takes for the receiver to execute each acquisition stage.
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Table 6.8 Acquisition latency: test procedure.

Step Description

Step 1 Configure the Doppler search space of the
two-stage acquisition process.

Step 2 Apply weak Galileo E1b/c signals to the
receiver, aiming for a 𝐶/𝑁0 ratio that is

approximately 20 dB-Hz. Verify the 𝐶/𝑁0
using the commercial receiver.

Step 3 Confirm that the receiver acquires and
initiates tracking of the weak signals,
successfully detecting the telemetry

preambles. Measure the acquisition latency.

6.5.2.1 Tests Results Using the TCXO

When using the TCXO, a significant CFO was observed in the received signals. To determine
the required Doppler search space for acquisition, we used the receiver to perform a coarse
estimation of the CFO. To perform this estimation, the receiver operated in normal-sensitivity
mode to predict the Doppler frequency of the tracked satellites. It then compared this prediction
to the measured Doppler frequency, and averaged the error. Three different instances of TCXOs
were tested. Each TCXO was tested multiple times over the course of a week. Table 6.9 shows
the minimum and maximum estimated CFO values in the E1 frequency band for each TCXO
over that week.

Table 6.9 CFO in the E1 frequency band when using a TXCO.

TCXO Measured CFO in the E1 Frequency
Band

TCXO 1 −61 Hz to 89 Hz

TCXO 2 109 Hz to 156 Hz

TCXO 2 −273 Hz to −185 Hz

The measurements shown in Table 6.9 indicate a frequency stability of approx. 56 ppb, 99
ppb, and 170 ppb for TCXO 1, TCXO 2, and TCXO 3, respectively. A certain variation
in the detected CFO is expected, given that the stability of the TCXO can be influenced by
environmental factors including temperature, voltage and load variations, as well as long term
frequency drift [183]. However, the CFOs induced by TCXOs 2 and 3 were higher than
expected. The TCXOs were mounted on a custom-made PCB, which was attached to the
RFFE and exposed to the environment. The exploration of the underlying reasons behind the
observed frequency stability fluctuations in the TCXOs lies beyond the scope of this thesis.

The large CFO observed in TCXO 2 and TCXO 3 required the use of a large Doppler search
space in the acquisition. The receiver could in principle be capable of handling this Doppler
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search space at the expense of increased computational load, memory usage and TTFF. In the
current design, that might require optimizing memory usage. Testing the receiver with a very
large number of trial Doppler frequencies could lead to insufficient OS system memory. This
issue stemmed from the need to simultaneously store the temporary results of non-coherent
integrations for all these frequencies. For the sake of simplicity and to prevent a large TTFF,
a crude two-step CFO estimation and correction process was implemented in the software to
mitigate the CFO. The first step required taking the receiver outdoors and using the receiver
in normal-sensitivity mode. The receiver estimated the CFO during tracking using the method
described above. In the second step, the receiver was tested in high-sensitivity mode, and the
estimated CFO was corrected by adjusting the tuning frequency in the E1/L1 and the E5a/L5
frequency bands accordingly.

When using the TCXO, the two-stage acquisition process was set as follows: the Doppler
search space for the first acquisition stage was configured to accommodate Doppler prediction
inaccuracies and the CFO observed in the L1/E1 frequency band, but it was limited to ±100 Hz
to limit memory usage and to prevent a large TTFF. The Doppler search space for the second
stage was set to be small enough to minimize the latency from sample capture to the beginning
of the tracking process, ensuring successful tracking of the detected signals. Additionally,
the following constraint was considered: in the worst-case scenario, the change in the Doppler
frequency of the received signal during the time it takes to go from stage 1 to stage 2 should
not exceed the Doppler search space set for the stage 2. As explained in Section 6.4.5, failure
to adhere to this constraint could result in the inability of the second stage to identify the signal
detected during the first stage. In line with this, the acquisition was configured as shown in
Table 6.10.

Table 6.10 Acquisition latency using a TCXO.

Stage Doppler Search Space Measured Latency

Stage 1 ±100 Hz around the Doppler
frequency predicted using
assistance data, in steps of

5 Hz

initial part of sample
capture: 100 ms
+ 7 non-coherent

combinations: 14 s
Total: 14.1 s

Stage 2 ±15 Hz around the Doppler
frequency estimated in step

1, in steps of 5 Hz

initial part of sample
capture: 100 ms

+ 7 non-coherent iterations:
2 s

Total: 2.1 s

When utilizing a TCXO with the configuration outlined in Table 6.10, the acquisition process
takes a maximum of 14.1 s to transition from stage 1 to stage 2 in the worst-case scenario.
Considering that the worst-case Doppler shift rate experienced by a static receiver on the
Earth’s surface is approximately 1 Hz/s, as explained in Section 2.2.4, the Doppler frequency
of the received signal may change by 14.1 Hz during the transition from stage 1 to stage 2.
The Doppler search space used in the second stage is ±15 Hz, which is larger than 14.1 Hz.
Therefore, any signal detected in the first stage can be detected in the second stage.
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The limitation of the Doppler search space to ±100 Hz necessitates the use of CFO
compensation and correction, due to the large CFO observed in TCXO 2 and TCXO 3. For this
reason, the receiver was tested using the two-stage acquisition process configured according to
Table 6.10, along with the CFO estimation and correction procedure. The receiver successfully
acquired the weak GNSS signals listed in Table 6.11, initiated tracking of them, and detected
their telemetry preambles. The satellites acquired by each TCXO differ because the results
were obtained at different times. The advantage of utilizing the second acquisition stage
became evident, as the receiver failed to track the detected signals if the second stage was
disabled. When using the TCXOs, some channels experienced occasional loss of lock during
tracking. This issue was related to the configuration of the tracking loops (see Appendix 6.A)
and the measured TCXO frequency stability shown in Table 6.9. This problem did not occur
when using the OCXO (see Section 6.5.2.2).

Table 6.11 List of signals acquired and tracked when utilizing a TCXO.

TCXO E1b/c Signals C/N0 in dB-Hz

TCXO 1

E1 33
E4 27

E13 30
E15 20
E21 33
E26 27

TCXO 2

E2 31
E11 28
E18 27
E24 21
E25 31
E36 36

TCXO 3

E10 29
E12 25
E24 26
E25 23
E33 22

6.5.2.2 Tests Results Using the OCXO

The acquisition was also tested using an OCXO. The OCXO did not require any CFO
correction. The OCXO was accurately tuned using a trimmer when used for the first time,
and required no further adjustments. When using an OCXO, the receiver was configured
according to Table 6.12, with a Doppler search space of ±50 Hz. This Doppler search
space accounts for possible inaccuracies in the estimation of the Doppler frequency and in
the OCXO calibration.
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Table 6.12 Acquisition latency using an OCXO.

Stage Doppler Search Space Measured Latency

Stage 1 ±50 Hz around the Doppler
frequency predicted using

assistance data, in steps of 5
Hz

Initial part of sample
capture: 100 ms

+ 7 non-coherent iterations:
7 s

Total: 7.1 s

Stage 2 ±10 Hz around the Doppler
frequency estimated in step

1, in steps of 5 Hz

Initial part of sample
capture: 100 ms

+ 7 non-coherent iterations:
1.4 s

Total: 1.5 s

As shown in Table 6.12, when using the OCXO, stage 1 takes 7.1 s to complete. Considering
that the largest Doppler shift rate experienced by a static receiver is about 1 Hz/s [26],
the Doppler shift in the received signal may vary by up to 7.1 Hz when transitioning from
stage 1 to stage 2. This change is larger than acquisition Doppler search step, which is set to 5
Hz. Consequently, if the second acquisition stage is not utilized, the Doppler frequency of the
received signal might not align with the Doppler frequency estimated during acquisition upon
initiation of the tracking process.

To mitigate this issue, the two-stage acquisition process was employed also for the OCXO.
As explained in Section 6.4.5, stage 2 captures new samples from the analog front-end,
increasing the total acquisition latency, but reducing the latency from sample capture to the
initiation of the tracking process. In this case, stage 2 was configured to perform a Doppler
search of ±10 Hz around the Doppler frequency detected in Stage 1. In this way, stage 2
reduces the time required to transition from sample capture to tracking down to 1.5 s. This
ensures that when the receiver begins tracking the detected signals, the Doppler frequency of
the detected signals remains close to the Doppler frequency estimated during acquisition. This
approach is expected to increase the probability of successfully tracking the detected signals.

The receiver was tested using the configuration shown in Table 6.12, successfully acquiring
and tracking weak Galileo E1b/c signals and detecting the telemetry preambles. However, we
did not perform tests to quantify the impact of enabling or disabling the second acquisition
stage when using the OCXO. Detailed lists of weak signals that were successfully acquired
and tracked by the receiver, utilizing an OCXO, are provided in Section 6.5.3.

Due to the manual estimation and correction of the CFO induced by the TCXOs being
inconvenient, we switched to using an OCXO, configuring the receiver as outlined in Table 6.12
for subsequent tests. Nevertheless, it would be desirable to improve the acquisition algorithm
to eliminate the need for manual CFO compensation. Achieving this would make the use
of TCXOs practical in the proposed receiver, as TCXOs enable the detection of weak GNSS
signals with a 𝐶/𝑁0 as low as 20 dB-Hz
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6.5.3 Acquisition and Tracking of GNSS Signals in Real Time

The objective of the acquisition and tracking tests was to confirm the receiver’s capability to
process GNSS signals and derive navigation solutions in real-time. The receiver underwent
testing using the test setup described in Section 6.5.1. The performance of the receiver was
assessed both using signals received at nominal power and using weak signals with a 𝐶/𝑁0
down to 20 dB-Hz. The OCXO was used for these tests. The test results presented in
this section were obtained using the GESTALT testbed rooftop GNSS antenna facility [146].
Similar results could be obtained using the Tallysman TW8825 active antenna and a variable
attenuator in outdoor conditions. Each test was conducted over a period of 10 min.

The test procedure is outlined in Table 6.13. Steps 1 and 2 verify the receiver’s ability to process
Galileo E1b/c signals in high-sensitivity mode concurrently with Galileo E5a and GPS signals
in normal-sensitivity mode. Steps 3 and 4 confirm the receiver’s ability to process Galileo
E1b/c signals at a 𝐶/𝑁0 down to 20 dB-Hz. The OCXO was used for these tests.

Table 6.13 Test procedure.

Step Description

Step 1 Use the receiver in normal-sensitivity mode
to obtain the ephemeris data,

the ionospheric data, and the UTC model for
the visible Galileo satellites.

Step 2 Use the receiver in high-sensitivity mode
with assistance data, including the data

obtained in step 1, to receive GNSS signals
at nominal power and obtain

navigation solutions

Step 3 Stop the receiver and increase the signal
attenuation until the 𝐶/𝑁0 of some Galileo

E1b/c signals is down to 20 dB-Hz

Step 4 Use the receiver in high-sensitivity mode,
to acquire and track weak GNSS signals and

obtain navigation solutions.

For each test, we report the GNSS signals that were successfully acquired and tracked, and the
time it took for the receiver to obtain a position. When using weak signals, the 𝐶/𝑁0 of the
signals that were successfully tracked is also reported.

More accurate TTFF measurements could be obtained by measuring and averaging the time
required for the receiver to determine its position over a period of 24 hours, thereby reducing
the impact of geometric effects.
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6.5.3.1 Tests Results Using GPS and Galileo Signals at Nominal Power Levels

Table 6.14 shows the test results obtained using signals received at nominal power. The receiver
successfully acquired and tracked Galileo E1b/c, Galileo E5a, GPS L1 C/A, and GPS L5
signals, achieving navigation solutions with TTFF values of about 1 minute.

Table 6.14 Processing GNSS signals at nominal power levels.

Test Signals Tracked TTFF

Test 1 8 Galileo E1b/c + 8 Galileo
E5a + 7 GPS L1 C/A + 5

GPS L5

1 min 03 s

Test 2 8 Galileo E1b/c + 8 Galileo
E5a + 6 GPS L1 C/A + 4

GPS L5

57 s

Test 3 8 Galileo E1b/c + 8 Galileo
E5a + 7 GPS L1 c/a + 4 GPS

L5

1 min 12 s

6.5.3.2 Tests Results Using Weak Galileo E1b/c Signals

The test results using weak signals are summarized in Table 6.15. The receiver successfully
acquired and tracked weak Galileo E1b/c signals, including those with a 𝐶/𝑁0 down to 20 dB-
Hz, obtaining navigation solutions with TTFF values ranging from 1 to 2 minutes. The receiver
used the observations obtained from signals with a 𝐶/𝑁0 at or close to 20 dB-Hz to compute
the navigation solutions.
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Table 6.15 Processing weak Galileo E1b/c signals.

Test E1b/c Signals Tracked and
C/N0 in dB-Hz

TTFF

Test 1

E2: 27 dB-Hz

1 min 40 s
E8 : 20 dB-Hz
E10: 20 dB-Hz
E25: 25 dB-Hz
E36: 23 dB-Hz

Test 2

E13: 23 dB-Hz

53 s

E15: 28 dB-Hz
E21: 20 dB-Hz
E27: 28 dB-Hz
E30: 26 dB-Hz
E34: 26 dB-Hz

Test 3

E3: 21 dB-Hz

1 min 15 s
E8: 22 dB-Hz

E13: 22 dB-Hz
E15: 21 dB-Hz

The results demonstrate that the receiver can detect weak Galileo E1b/c signals with a 𝐶/𝑁0
as low as 20 dB-Hz in real-time and obtain navigation solutions. However, while many
measurements yielded a TTFF between 1 and 2 min, there were instances where the receiver
faced challenges in determining position using the observables derived from weak signals.

6.5.4 Precision of the Navigation Solutions

The quality of navigation solutions obtained by the receiver was evaluated in high-sensitivity
mode through two tests. In the first test, the receiver processed Galileo E1b/c signals in high-
sensitivity mode along with Galileo E5a and GPS signals in normal-sensitivity mode, all signals
received at nominal power levels. In the second test, the receiver processed weak Galileo E1b/c
signals with a 𝐶/𝑁0 of approximately 20 dB-Hz.

As explained in Section 2.7.4, the concept of precision denotes how closely a given solution
aligns with the average of all solutions gathered, reflecting the repeatability and distribution
of the measurements. The precision of the navigation solutions was evaluated by employing
the standard positioning precision metrics outlined in Section 2.7.4, along with their respective
static confidence regions. These measurements included DRMS and CEP for 2D positioning,
as well as SAS, MRSE, and SEP for 3D positioning. The DRMS and CEP measurements are
detailed in Table 2.10, whereas the SAS, MRSE, and SEP measurements are detailed in Table
2.11, in Chapter 2.

The latitude, longitude, and height coordinates obtained by the receiver were converted to a
local ENU coordinate system. The ENU system was anchored to a selected reference point in
proximity to the receiver’s antenna, employing a WGS-84 reference ellipsoid. The means and
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standard deviations were computed as detailed in Section 2.7.4.

The measurements were conducted using the GESTALT testbed rooftop antenna [146].
The experimental scenario described in Section 6.5.1 was employed, along with the test setup
depicted in Figure 6.9. The OCXO was used for these tests.

The receiver, configured for single-point positioning mode, processed GNSS signals in real
time and dumped PVT solutions to a file. Each test was conducted over a period of 10 min.

6.5.4.1 Tests Results Using GPS and Galileo Signals at Nominal Power Levels

The 2D precision results are presented in Table 6.16, and the 3D precision results are provided
in Table 6.17. The receiver successfully processed 7 Galileo E1b/c, 7 Galileo E5a, 7 GPS
L1 C/A, and 4 GPS L5 signals. The navigation solutions were obtained using up to 11
observations. The satellites broadcasting the unhealthy flag were not used for the computation
of the PVT.

Table 6.16 The 2D precision results.

Measure Results [m] Confidence Region
Probability

2DRMS 4.3 95%
DRMS 2.1 65%
CEP 1.8 50%

Table 6.17 The 3D precision results.

Measure Results [m] Confidence Region
Probability

99% SAS 8.5 99%
90% SAS 6.3 90%

MRSE 5.0 61%
SEP 3.8 50%

Significantly, 2D precision measurements demonstrate greater accuracy compared to their 3D
counterparts, as expected due to the superior GNSS accuracy in the horizontal plane when
contrasted with the vertical plane. This variation is influenced by the angle between the line of
sight to various satellites and the Earth’s surface.

6.5.4.2 Tests Results Using Weak Galileo E1b/c Signals

The accuracy of the navigation solutions was evaluated using weak signals. These measure-
ments yielded variable outcomes. The test results shown below are an example of the perfor-
mance that could be achieved.
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The𝐶/𝑁0 of the received Galileo E1b/c signals was decreased to the levels shown in Table 6.18
using the variable attenuator. The receiver processed the received signals and obtained the
navigation solutions using four observations. The 2D precision results are presented in
Table 6.19, and the 3D precision results are provided in Table 6.20.

Table 6.18 Galileo satellites tracked and 𝐶/𝑁0.

Satellite C/N0 in dB-Hz

E3 20 dB-Hz
E8 23 dB-Hz

E13 22 dB-Hz
E15 20 dB-Hz

Table 6.19 The 2D precision results using weak Galileo E1b/c signals.

Measure Results [m] Confidence Region
Probability

2DRMS 7.5 95%
DRMS 3.8 65%
CEP 3.1 50%

Table 6.20 The 3D precision results using weak Galileo E1b/c signals.

Measure Results [m] Confidence Region
Probability

99% SAS 18.0 99%
90% SAS 13.4 90%

MRSE 11.4 61%
SEP 8.9 50%

The precision of navigation solutions can significantly decrease when tracking weak GNSS
signals, and the quality of these solutions becomes highly variable, while the results in
Tables 4.9 and 6.20 are achievable, errors can increase depending on satellite geometry and
signal strength. Implementing algorithms to enhance the accuracy of PVT solution when
tracking severely degraded signals is a focus for future work.

6.5.5 FPGA Resource Utilization

Table 6.21 details the FPGA resource utilization for the HS-GNSS receiver developed with
the XCZU9EG device. This table reports the resource usage of the GNSS receiver features,
including channel conditioning, buffering, and acquisition and tracking hardware accelerators,
along with their AXI4 memory-mapped registers. The FPGA resource usage is categorized by
LUTs, LUTRAMs, FFs, BRAMs, and DSP slices.
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Compared to the resource utilization of the XCZU9EG-based spaceborne receiver shown in
Section 4.4.2.5, this design consumes a larger number of resources in the FPGA. This increase
in resource usage is associated with the high-sensitivity acquisition hardware accelerator, which
utilizes a large, multi-channel FFT, resulting in increased memory consumption.

Table 6.21 FPGA resource utilization in the high-sensitivity GNSS receiver implemented on the
XCZU9EG device.

Resource Utilization Resources available Utilization %

LUT 146000 274080 53

LUTRAM 4028 144000 3

FF 232544 548160 42

BRAM 823 912 90

DSP 885 2520 35

6.5.6 Estimated Power Consumption

The estimated power consumption of the XCZU9EG-FFVB1156-2-e SoC-FPGA, when
operating a high-sensitivity GNSS receiver, is 12 W. This estimate, provided by FPGA design
tools, assumes an average processor load of 75%. Such a load occurs when the receiver
processes a large volume of GNSS signals simultaneously, including 10 signals each from
Galileo E1, GPS L1 C/A, Galileo E5a, and GPS L5. This figure results in a power consumption
of approximately (12 W)/(40 channels) = 0.3 W/channel.

To evaluate the average processor load during the processing of multiple signals, we followed
a similar approach as described in Section 4.4.1.6 for the spaceborne receiver. The receiver
was connected to the rooftop GNSS antenna facility of the GESTALT testbed [146], allowing
it to simultaneously track the same signals across multiple channels. This ensured that every
channel tracked at least one satellite signal. The average processor load was estimated using
the OS tools available on the receiver.

The rise in power consumption, compared to the spaceborne receiver implemented on the
same board as discussed in Section 4.4.2.6, is primarily attributed to the activity of the
high-sensitivity acquisition hardware accelerator. This accelerator executes computationally
demanding algorithms and accesses an additional external memory (referred to as the PL
memory in Section 6.4) through the FPGA pinout. Consequently, this leads to increased I/O
operations and requires additional circuitry within the FPGA to support the memory interface.
It is assumed that the high-sensitivity acquisition hardware accelerator continuously searches
for visible satellites as long as there are available channels in the receiver.

The real-time acquisition of weak signals in high-sensitivity mode has not been implemented
purely in software. However, as detailed in Section 4.4.1.6, the power consumption of the
GNSS-SDR software receiver is estimated to be approximately 0.53 W per channel when
operating in normal-sensitivity mode on a PC equipped with a 28 W, 11th generation Intel
Core i7-1185G7 processor running at 3 GHz. This comparison suggests an improvement in
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power efficiency in the SoC-FPGA of at least 43% in terms of power consumption per channel,
compared to the general purpose processor.

6.6 Conclusions

This chapter reported the design, proof-of-concept implementation, and preliminary perfor-
mance assessment of a HS-GNSS receiver, providing practical details of a working prototype.

This design showcases the effectiveness of SDR techniques for the acquisition and tracking
of severely degraded GNSS signals in real-time, thereby facilitating experimentation and the
development of high-sensitivity GNSS receiver algorithms. Leveraging the SoC-FPGA GNSS
receiver architecture proposed in Chapter 3, it combines the massive parallelism and energy
efficiency of FPGAs with the flexibility of embedded processors to offer a balanced solution
for implementing experimental HS-GNSS receivers that work in real time. Furthermore, the
integration of a FOSS software-defined GNSS receiver with hardware accelerators in the FPGA
facilitates experimentation of innovative high-sensitivity algorithms.

After presenting the system architecture, the receiver was tested. It demonstrated the ability
to acquire and track weak Galileo E1b/c signals in real-time. The receiver processes Galileo
E1b/c signals with a carrier-to-noise ratio (𝐶/𝑁0) as low as 20 dB-Hz, successfully obtaining
navigation solutions. Furthermore, it can simultaneously handle Galileo E5a, GPS L1 C/A, and
GPS L5 signals at their nominal power levels, enhancing the availability of satellite signals.

The estimated power consumption of the SoC-FPGA implementing the proposed receiver is
approximately 12 W, making it suitable for operation in battery-powered devices. The physical
dimensions of the receiver prototype are relatively large, measuring approximately 23.8 cm
by 24.4 cm, with the analog front-end being 14 cm by 9 cm. Despite its size, the receiver
remains portable and can be conveniently placed in backpacks, for instance, to facilitate testing
in various indoor environments.

To enhance the proposed receiver’s performance, the following potential improvements were
identified:

The quality of navigation solutions can deteriorate when tracking GNSS signals in moderate
indoor scenarios, due to variations in received signal strength, satellite geometry, and potential
signal reflections. The proposed receiver is designed to facilitate research and testing
of experimental multipath mitigation algorithms, which could significantly enhance these
navigation solutions. Although it is capable of acquiring and tracking weak GNSS signals,
it currently does not incorporate such algorithms.

In addition, receiver availability in moderate indoor scenarios (the proportion of time the
software receiver is in a functioning condition) may be significantly improved by acquiring
and tracking GPS and Galileo E5a signals in high-sensitivity mode. This would improve the
success rate of positioning and the quality of the navigation solutions by receiving more satellite
signals in harsh environments.

Finally, incorporating a TCXO into the receiver necessitates a manual process for estimating
and correcting the CFO, which arises from clock instability. As an alternative, optimizing
memory usage could allow the receiver to manage the increased CFO, but would lead to greater
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acquisition latency and a longer TTFF. To improve usability, it’s desirable to enhance the
receiver’s algorithms, allowing the practical application of TCXO without the need for manual
CFO estimation and correction, and without a significant increase in TTFF. This is particularly
important as TCXOs are capable of detecting and tracking GNSS signals down to 20 dB-Hz
and are widely used in mass-market receivers.

Future work includes implementing multipath mitigation algorithms extending the high-
sensitivity mode for GPS and Galileo E5a signals, thereby enhancing the accuracy of navigation
solutions. Additionally, it is planned to improve the resilience of the acquisition algorithm to
CFO and to integrate it with the proposed receiver that utilizes a TCXO.

The results presented in this chapter were published in

• [19] M. Majoral, J. Arribas, and C. Fernández-Prades, “Implementation of a High-
Sensitivity Global Navigation Satellite System Receiver on a System-on-Chip Field-
Programmable Gate Array Platform,” Sensors, vol. 24, no. 5, 2024, Art. no. 1416. doi:
10.3390/s24051416
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Appendix 6.A Receiver configuration for Galileo E1 b/c sig-
nals in high-sensitivity mode

Table 6.22 presents the acquisition parameters for the Galileo E1b/c signals when operating in
high-sensitivity mode. The Doppler max represents the maximum Doppler frequency, and the
Doppler step is the frequency step in the search grid. Doppler prediction is enabled to narrow
down the Doppler frequency search space. The proposed two-step acquisition scheme is used.
In the first step, a large Doppler search space of ±50 Hz is performed. In the second step, a very
small Doppler search space of ±10 Hz is used around the Doppler frequency detected in the
first step.

The sampling frequency of the base-band processing engine is set to 15.728640 Msps.
Additionally, a downsampling filter is specifically applied in the L1/E1 band to reduce the
acquisition latency. This filter is exclusively utilized during the acquisition process and reduces
the sampling frequency used to acquire the Galileo E1b/c signals from 15.728640 Msps to
3.932160 Msps, hence facilitating the computation of long FFTs in the acquisition.

Table 6.22 High-sensitivity receiver Galileo E1b/c acquisition configuration.

Parameter type Parameter Value

Acquisition Galileo E1b/c CI time 100 ms
Max NCI combinations 7

Doppler prediction Enabled
1st stage acq: Doppler max 50 Hz
1st stage acq: Doppler step 5 Hz
2nd stage acq: Doppler max 10 Hz
2nd stage acq: Doppler step 5 Hz

PFA 0.01
Downsampling factor 4

Table 6.23 displays the receiver’s tracking configuration parameters for the Galileo E1b/c
signals when operating in high-sensitivity mode. The CI time is specifically set to 40 ms to
enhance the apparent signal-to-noise ratio. In high-sensitivity mode, upon initiating tracking
for the detected signals, the receiver is already synchronized with the secondary code of the
received signals, enabling for the utilization of a long CI time right from the start.

In Table 6.23, early-late narrow space chips refers to the spacing between the Early and
Prompt correlators, and between the Prompt and Late correlators. Similarly, very early late
space narrow chips indicates the spacing between the Very-Early and Prompt correlators,
and between the Prompt and Very-Late correlators. Both spacings are normalized by the
chip period. The PLL filter bandwidth with a narrow correlator configuration represents the
bandwidth of the PLL low-pass filter. Finally, the DLL filter bandwidth with a narrow correlator
configuration denotes the bandwidth of the DLL low-pass filter.
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Table 6.23 High-sensitivity receiver Galileo E1 b/c tracking configuration.

Parameter type Parameter Value

Tracking Galileo E1b/c CI time 40 ms
Early-Late space narrow chips 0.15 chips

Very Early-Late space narrow chips 0.5 chips
PLL filter bandwidth (narrow

correlator configuration)
5 Hz

DLL filter bandwidth (narrow
correlator configuration)

1.0 Hz
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Appendix 6.B Receiver configuration for Galileo E5a and
GPS signals in normal-sensitivity mode

In Table 6.24, the receiver configuration for the acquisition of the Galileo E5a and the GPS
signals is detailed. Doppler prediction is not utilized. However, self-assistance to acquisition,
from the primary to secondary band, is enabled. Therefore, once the primary band is
successfully acquired, the receiver estimates the Doppler frequency in the secondary band.
Subsequently, it initiates acquisition in the secondary band with a reduced Doppler search grid.
For instance, a Doppler search space of ±5000 Hz is applied for GPS L1 C/A signals, while
a reduced Doppler search space of ±500 Hz around the estimated Doppler frequency in the
secondary band is employed for the GPS L5 and the Galileo E5a signals.

The sampling frequency of the base-band processing engine is set to 15.728640 Msps.
Additionally, a downsampling filter is specifically applied in the L1/E1 band to reduce the
acquisition latency. This filter is exclusively utilized during the acquisition process and reduces
the sampling frequency used to acquire the GPS L1 C/A signals from 15.728640 Msps to
3.932160 Msps.

Table 6.24 High-sensitivity receiver GPS and Galileo E5a acquisition configuration (normal-
sensitivity mode).

Parameter type Parameter Value

Acquisition GPS L1 C/A CI time 1 ms
Max NCI combinations 4

Doppler Max 5000 Hz
Doppler Step 250 Hz

PFA 0.1
Downsampling Factor 4

Acquisition GPS L5 CI time 1 ms
Max NCI combinations 4

Assistance to secondary band Enabled
Doppler Max 500 Hz
Doppler Step 250 Hz

PFA 0.1

Acquisition Galileo E5a CI time 1 ms
Max NCI combinations 4

Assistance to secondary band Enabled
Doppler Max 500 Hz
Doppler Step 250 Hz

PFA 0.1

Table 6.25 presents the tracking configuration parameters for the GPS signals, while Table 6.26
presents the tracking configuration parameters for the Galileo E5a signals. Initially, the tracking
process operates without synchronization to telemetry preambles and/or the pilot’s secondary
code, utilizing a CI time of 1 ms, equivalent to the duration of the primary PRN code.
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After achieving synchronization, the CI time is set to 20 ms to enhance the apparent signal-to-
noise ratio. The early–late space chips represents the spacing between the Early and Prompt,
and between the Prompt and Late correlators before synchronization, while the early–late
narrow space chips denotes the spacing between the Early and Prompt, and between the
Prompt and Late correlators after synchronization. Both parameters are normalized by the
chip period. Additionally, the PLL filter bandwidth and the DLL filter bandwidth, along with
their configurations with narrow correlator settings, indicate the bandwidths of the PLL and
DLL low-pass filters before and after achieving synchronization, respectively.

Table 6.25 High-sensitivity receiver GPS tracking configuration (normal-sensitivity mode).

Parameter type Parameter Value

Tracking GPS L1 C/A CI time 20 ms
Early-Late space chips 0.5 chips

Early-Late space narrow chips 0.1 chips
PLL filter bandwidth 35 Hz

PLL filter bandwidth (narrow
correlator configuration)

7.5 Hz

DLL filter bandwidth 2 Hz
DLL filter bandwidth (narrow

correlator configuration)
0.5 Hz

Tracking GPS L5 CI time 20 ms
Early-Late space chips 0.5 chips

Early-Late space narrow chips 0.1 chips
PLL filter bandwidth 20 Hz

PLL filter bandwidth (narrow
correlator configuration)

7.5 Hz

DLL filter bandwidth 1.5 Hz
DLL filter bandwidth (narrow

correlator configuration)
0.5 Hz

Table 6.26 High-sensitivity receiver Galileo E5a tracking configuration (normal-sensitivity
mode).

Parameter type Parameter Value

Tracking Galileo E5a CI time 20 ms
Early-Late space chips 0.5 chips

Early-Late space narrow chips 0.1 chips
PLL filter bandwidth 20 Hz

PLL filter bandwidth (narrow
correlator configuration)

7.5 Hz

DLL filter bandwidth 1.5 Hz
DLL filter bandwidth (narrow

correlator configuration)
0.5 Hz
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Appendix 6.C Receiver configuration for PVT

Table 6.27 displays the receiver PVT configuration parameters, with the positioning mode set
to single-point positioning. The receiver incorporates RAIM FDE, follows the broadcasted
ionospheric model for ionospheric correction, and employs the Saastamoinen tropospheric
model [151]. The PVT output rate is configured at 1 s, and satellites broadcasting the unhealthy
bit are excluded from the computation of the PVT solution. Additionally, a Kalman filter is
applied to the PVT solutions.

Table 6.27 High-sensitivity receiver PVT configuration.

Parameter type Parameter Value

General

Positioning Mode
RAIM FDE
Iono Model
Trop Model

PVT Output Rate
Use Unhealthy sats

Single
Enabled

Broadcast
Saastamoinen

1 s
Disabled

PVT Kalman Filter
Standard deviation of the position

estimations
1 m

Std. dev. of the velocity estimations 0.1 m
Std. dev. of the dynamic system

model for pos.
2 m

Std. dev. of the dynamic system
model for vel.

0.5 m
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Chapter 7

Conclusions and Directions for Future
Work

This chapter consolidates the conclusions and contributions derived from the research discussed
in the previous chapters. Furthermore, it suggests a list of potential topics for future
investigation.

This dissertation focused on the design and development of a low-cost SoC FPGA architecture
for prototyping experimental GNSS receivers. The proposed architecture not only overcomes
the flexibility limitations of commercial receivers but also improves energy consumption
compared to software-defined receivers operating on general-purpose processors. Combining
the adaptability of SDR with the parallel processing capabilities and energy efficiency of
reprogrammable hardware, it presents a synergistic solution that emphasizes customization,
flexibility, and reprogrammability. Furthermore, this architecture is based on a FOSS software-
defined GNSS receiver engine, fostering collaborative development and facilitating both the
inspection and modification of the signal processing path. Such an approach facilitates the
creation of compact, portable, multi-band, and multi-constellation GNSS receivers for research
and field testing.

This work began with a background on GNSS systems in Chapter 2. The operation of GNSS
receivers was introduced, providing an overview of basic positioning techniques. Additionally,
we discussed the GNSS-SDR software-defined receiver, which plays an integral role in the SoC
FPGA architecture proposed in this thesis. Subsequently, we explored the intricacies of FPGA
and SoC FPGA technologies, focusing on their principal characteristics and design flows. An
FPGA is a programmable, multi-purpose digital chip comprising a matrix of CLBs connected
through programmable interconnects. This makes FPGAs particularly suitable for applications
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that benefit from massive parallelism, such as those requiring high computing performance
with minimal decision branching. However, designing with FPGAs presents several challenges,
including the use of complex design tools, the need to master HDL languages, and engaging
in extensive design processes like simulation, synthesis, and implementation, consequently
extending the design cycle and potentially increasing development times. Therefore, FPGAs
are most effectively utilized in tasks that leverage their strengths in parallel processing
and simultaneously require infrequent updates. After exploring FPGA and SoC FPGA
technologies, the background section concluded with an overview of design forces and KPIs
relevant to GNSS devices.

Following the background section, Chapter 3 delved into the proposed SoC FPGA receiver
architecture and its design methodology. To maximize the synergy between software and
hardware and to merge their benefits, we adopted a two-dimensional approach to software-
hardware partitioning, aligning with the FPGA strengths explored in Chapter 2. This approach
is based on the nature of the tasks and their maintenance requirements: Signal processing tasks
demanding significant computing power, benefiting from parallelism, and requiring infrequent
updates are allocated to the FPGA. Generally, in GNSS receivers, these tasks are those that
process the incoming samples from the RFFE at the base-band sampling rate. In line with
this, in the proposed architecture, the FPGA implements sample conditioning, buffering, and
the execution of acquisition and tracking multicorrelator hardware accelerators for signal
processing. Detailed descriptions were provided for the implementation of these hardware
accelerators within the FPGA, covering the specific acquisition and tracking algorithms used.
Conversely, tasks with lower processing demands, ranging from managing tracking loops to
computing PVT solutions, are allocated to the embedded processor.

The proposed architecture implements a scalable platform, enabling the unrestricted incorpo-
ration of additional signals and algorithms. Key highlights of the architecture are its extensive
testing framework, detailed application-level logging, and adaptable configuration system. The
FPGA hardware accelerators are not necessarily subject to FOSS licenses. This provides an op-
portunity to monetize research while also increasing research impact and reputation. Neverthe-
less, accessibility to the signal processing details can be facilitated through the implementation
of equivalent algorithms in GNSS-SDR and the documentation of FPGA IP cores.

After discussing the architecture we moved to the design methodology. In the proposed
design methodology, experimental algorithms are initially tested in software, using GNSS-
SDR. Subsequently, these algorithms are ported to a SoC FPGA platform for field testing
and validation on portable devices. The modifications proposed to the GNSS-SDR software
receiver designed to facilitate the offloading of computationally intensive tasks to the FPGA
were also discussed. Communication between the embedded processor and the FPGA is
facilitated by memory-mapped registers and interrupt lines, ensuring fast data exchange and
synchronized operations with minimal latency.

The introduction of a SoC FPGA architecture and a generic design methodology leveraging a
FOSS core GNSS engine opens new possibilities for prototyping satellite navigation systems
for various applications requiring precise positioning and timing solutions, with low power
consumption. The adoption of a FOSS GNSS baseband processing engine accelerates
innovation by allowing a diverse range of contributors to enhance the technology. Collectively,
these innovations represent a step forward, making advanced GNSS technologies more
accessible and adaptable to research needs.
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The main challenges for the proposed architecture in supporting cost-effective prototyping
of GNSS receivers within the research community stem from the intricacies associated with
FPGA design and its portability. These challenges are compounded by the fact that major
FPGA manufacturers offer specialized proprietary software tools designed specifically for
their hardware, driven by the intricacies of FPGA architecture, the limited availability of open
documentation, and the need for intellectual property protection. The concept demonstrators
proposed in this thesis have been developed using AMD’s SoC FPGAs, which span from low-
power and cost-efficient designs to high-performance models suited for complex applications,
offering flexibility across a broad spectrum of hardware options. However, porting these
designs to SoC FPGAs from other manufacturers poses considerable challenges due to
significant hardware differences between the FPGAs of various producers. These challenges
can be mitigated by employing platform-independent HDL coding practices as much as
possible and embracing modular designs. Still, portability across manufacturers remains an
obstacle. In addition to this, adding new functionalities or addressing fixes in the FPGA often
requires more time compared to software modifications because of the inherent complexities in
FPGA design and implementation. A viable approach to enhancing maintainability would be to
establish a continuous integration system for the FPGA code that includes automated builds and
testing. This continuous integration system could automatically instantiate newly committed
FPGA code on a development board, integrate it with the embedded OS and GNSS-SDR, and
then automatically run a series of tests. This process would not only verify the system but also
further streamline the development process.

Following our discussion on the proposed architecture and design methodology, Chapter 4
presented the design and proof-of-concept implementation of the first concept demonstrator—a
spaceborne GNSS receiver based on the proposed framework. It also included a preliminary
performance assessment of this demonstrator. This receiver was tested in both static and LEO
scenarios, proving its real-time capability in dual-frequency, dual-constellation mode. Tests
with recorded signals demonstrated the system’s ability to deliver highly accurate navigation
solutions. The receiver was implemented using two development boards. One board, featuring
a SFF with dimensions of 10 cm by 6.2 cm, served as a proof of concept to demonstrate
the feasibility of designing compact receivers suitable for CubeSat integration. The other
board, which targets a more powerful SoC FPGA, demonstrated the scalability of the proposed
architecture, adapting to increased computational resources, potentially enabling the support of
more complex processing tasks.

The spaceborne receiver exemplifies the effectiveness of SDR techniques in handling high-
dynamic scenarios, underscoring the practicality of the proposed architecture and design
methodology. It not only validated the suitability of SDR techniques for challenging
environments but also illustrated how SoC FPGA technology can be employed to develop
low-power, highly customizable receivers. Designed to process GNSS signals in real time
and suitable for space-like conditions, this receiver effectively demonstrated the application
potential of the architecture.

Chapter 5 detailed the design, proof-of-concept implementation, and initial performance
evaluation of the second concept demonstrator: a GNSS rebroadcaster. Specifically designed
for low-latency rebroadcasting of incoming GNSS signals, this device not only reproduces any
unpredictable data embedded in navigation messages accurately but can also perform real-time
modifications to the rebroadcasted PVT solution. Its performance was assessed across multiple
metrics: ability to process multiple parallel channels in real-time, functionality across diverse
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operating modes and GNSS signal types, power efficiency, and the accuracy of rebroadcasted
navigation solutions compared to the original received signals.

The test results confirmed the rebroadcaster’s efficacy in accurately reproducing GNSS signals.
This design underscores the potential of SDR techniques to efficiently generate and rebroadcast
GNSS signals, offering opportunities for real-time PVT solution adjustments and various
GNSS scenario simulations. The incorporation of advanced processing features within a
cost-effective SoC FPGA framework, combined with an open-source software-defined GNSS
receiver model, marks a significant innovation in the domain.

Finally, Chapter 6 reported the design, proof-of-concept implementation, and preliminary
performance assessment of the third concept demonstrator: a HS-GNSS receiver for processing
weak GNSS signals. The proposed concept demonstrator implements two operating modes:
normal sensitivity mode and high-sensitivity mode, with an acquisition and tracking sensitivity
of about 37 dB-Hz for normal sensitivity mode, and as low as 20 dB-Hz for high-sensitivity
mode. The initial version of the concept demonstrator was specifically designed to showcase
high-sensitivity mode for Galileo E1 b/c signals. To maximize signal availability whenever
possible, the receiver can be configured to process Galileo E1 b/c signals in high-sensitivity
mode while simultaneously handling GPS signals and Galileo E5a signals in normal-sensitivity
mode.

The HS-GNSS receiver was tested against several KPIs, demonstrating the receiver’s ability
to process Galileo E1b/c signals with a carrier-to-noise ratio (𝐶/𝑁0) as low as 20 dB-Hz,
successfully obtaining navigation solutions, and to simultaneously handle Galileo E5a, GPS L1
C/A, and GPS L5 signals at their nominal power levels, enhancing the availability of satellite
signals. This design showcases the effectiveness of SDR techniques for the acquisition and
tracking of severely degraded GNSS signals in real-time, thereby facilitating experimentation
and the development of high-sensitivity GNSS receiver algorithms. Potential improvements
include implementing a high-sensitivity mode for GPS and Galileo E5a signals, along with the
testing and development of multipath mitigation algorithms for indoor environments.

Potential areas for improvement among the concept demonstrators showcased in this thesis
include increasing processing capacity for simultaneous GNSS channels—especially when
operating on low-power SFF development boards—and enhancing the quality of navigation
solutions when operating with dual RF transceivers.

Specifically, the spaceborne GNSS receiver deployed on the ADRV9361-Z7035 development
board could only process up to 24 satellite signals simultaneously in real-time. The receiver
achieved this capability by temporarily throttling the PVT block to reduce the processor load
during operation. This limitation mainly arises from the elevated rate of interrupts requests
generated by the tacking multicorrelator hardware accelerators in the FPGA, whose maximum
coherent integration time is currently limited to the duration of one data symbol, meaning
that longer integrations have to be accumulated in software. By extending the coherent
integration time within the FPGA beyond that, the frequency of interrupt requests would be
reduced. This would be particularly beneficial when tracking Galileo E1b/c signals and GPS
L5 signals, which have brief data symbol durations of 4 ms and 10 ms respectively. Such an
implementation would enable the receiver to simultaneously track a greater number of GNSS
signals.

Furthermore, when utilizing the ZCU102 development board and the AD-FMCOMMS5-EBZ
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RFFE in multi-frequency mode, there is potential for improvement in the quality of navigation
solutions. This challenge arises from the RF transceivers in the AD-FMCOMMS5-EBZ not
being calibrated for dual-frequency operation, which may result in delays between frequency
bands.

Future work includes addressing these potential areas for improvement, increasing the number
of channels that can be simultaneously processed in real time, and developing calibration
procedures for the RFFE. Furthermore, we intend to implement a continuous integration system
to effectively manage and improve the efficiency of the development process of the FPGA
source code. This will facilitate the collaborative utilization of the proposed architecture for
the implementation, testing, and validation of novel GNSS signal processing algorithms.

The continuous improvement and integration of new features will progressively enhance the
proposed architecture’s value, elevating its flexibility and optimizing the development process
for experimental GNSS receiver prototypes. This initiative marks a significant advancement
for the research community, streamlining the creation and deployment of experimental GNSS
receivers, and facilitating the thorough validation and field-testing of groundbreaking GNSS
signals and systems.
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