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Prolonged exposure to dexamethasone alters the proteome
and cellular phenotype of human testicular peritubular cells
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Abstract

Human testicular peritubular cells (HTPCs) are smooth muscle cells, which in the

testis form a small compartment surrounding the seminiferous tubules. Contractions

of HTPCs are responsible for sperm transport, HTPCs contribute to spermatogen-

esis, have immunological roles and are a site of glucocorticoid receptor expression.

Importantly, HTPCs maintain their characteristics in vitro, and thus can serve as an

experimental window into the male gonad. Previously we reported consequences of

3-day treatment with Dexamethasone (Dex), a synthetic glucocorticoid and multi-

purpose anti-inflammatory drug. However, as glucocorticoid therapies in man often

last longer, we now studied consequences of a prolonged 7-day exposure to 1 μMDex.

Combining live cell imaging with quantative proteomics of samples taken from men,

we confirmed our recent findings but more importantly, found numerous novel pro-

teomic alterations induced by prolonged Dex treatment. The comparison of the 7-day

treatment with the 3-day treatment dataset revealed that extracellular matrix- and

focal adhesion-related proteins become more prominent after 7 days of treatment. In

contrast, extended stimulation is, for example, associated with a decrease of proteins

related to cholesterol and steroid metabolism. Our dataset, which describes pheno-

typic and proteomic alterations, is a valuable resource for further research projects

investigating effects of Dex on human testicular cells.
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Human testicular peritubular cells (HTPCs) are contractile smooth

muscle cells [1], which together with extracellular matrix (ECM) form

the peritubular compartment within the testis. This region is located

between the compartment, in which spermatogenesis takes place, and

the interstitial areas, which contain Leydig cells and blood vessels
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[2–4]. Their localization at the “interphase” between the testosterone-

producing Leydig cells and Sertoli cells/germ cells enables them to

interact with both, the tubular and the interstitial compartments

[5]. Contractions of HTPCs cause sperm transport in the testis [6],

but these cells also participate in testicular immune surveillance, are

important for the spermatogonial stem cell niche and are involved in

paracrine signaling [1, 7–9]. Of note, these human testicular cells can
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be isolated and studied in vitro, as they largely retain their in situ phe-

notype [1], thereby opening a valuable research opportunity of the

male gonad [10]. Androgen and glucocorticoid receptor (GR, encoded

by NR3C1) were unveiled in HTPCs in situ and in vitro [11–13] and

their expression implies regulation by steroids.With particular respect

to glucocorticoids (GC), clinical evidence points towards impaired tes-

ticular function upon exposure to excess or, to a less studied extent,

decreased levels of GCs [14–17]. Recently, it was demonstrated that

a clinically used synthetic GC, Dexamethasone (Dex), induced phe-

notypic changes in HTPCs, including increased expression of smooth

muscle markers and altered composition of the ECM – a remodeling

potentially associatedwith its stiffening due to increased accumulation

of extracellular proteins, for example, the collagen- and laminin-family

members [13, 18]. In this previous study, we investigated the effects

of a 24 h and a 72 h Dex stimulation of HTPCs on proteome, secre-

tome and cytokine levels, and evaluated the effects with respect to

treatment time [18].

As patients frequently receive long-term treatment with Dex, a

common drug for the treatment of rheumatoid and autoimmune dis-

eases, allergies andocular disorders,wenowperformeda further study

to assess the impact of Dex on HTPCs for a longer, 7-day period. To

assure comparability to our recently published work [18], experiments

were carried out using the same analytical procedure. The overall

workflow is displayed in Figure 1A.

HTPCs were prepared from small testicular biopsies of men (5–7

donors, 29–55 years) as previously established [18]. For proteomics

each biological replicate was analyzed in triplicates (n = 3 Dex treated

vs. n = 3 control samples). The study was carried out in accordance

with the relevant guidelines and regulations. All participants granted

written informed consent about use of their biological material for

research purposes [18]. Treatment of HTPCs with 1 μM Dex (#1756;

Sigma-Aldrich, Hamburg, Germany) occurred every second day for up

to 7 days including controls, as outlined in detail previously [18]. Live

cell images of cultured HTPCs at day 0 and day 7 of the experiment

were collected (LeicaDMILLEDmicroscope, LeicaDFC3000Gcamera,

Leica Microsystems GmbH, Wetzlar, Germany) and cell number and

viability of HTPCs was assessed by an automated cell counting device

as previously described [13]. Strikingly, when cultured in the presence

of Dex for 7 days, HTPCs showed alterations of cellular morphology

(Figure 1B). The HTPC-typical, elongated spindle-shaped form turned

into amore bulky shape, as previously seen after a 3-day treatment and

also in the context of replicative senescence [13]. In accordance with

our 3-day treatment study, Dex neither influenced cell number after 7

days nor affected cell viability of HTPCs substantially. As found previ-

ously after 48 h, the levels of immunoreactive GR protein in whole cell

lysates of HTPCswere reduced after 7 days (Supplementary figure).

Proteome analysis was performed as described in earlier: upon fil-

tering for set significance criteria the proteins of lower and higher

abundancewere visualized by a 3d- and a7d-Volcano plots (Figure 1C)

[18]. Briefly, 106 cells per sample were lysed in a buffer consisting

of 8 mol/L urea in 50 mmol/L NH4HCO3 and sonicated. Cysteines

were reduced using 1,4-dithiothreitol and alkylation was performed

with iodoacetamide. Protein digestion was performed using lysyl-

Statement of significance

This dataset extends the knowledge of glucocorticoid recep-

tor mediated, dexamethasone-induced changes in human

testicular peritubular cells, describes the phenotypic and

proteomic changes, and thus provides a resource of novel

protein targets for future research.

endopeptidase C (1:100 enzyme/protein ratio, Lys C; Fujifilm Wako,

Neuss, Germany) for 3 h at 37◦C and overnight at 37◦C with mod-

ified porcine trypsin (1:50 enzyme/protein ratio, Promega, Madison,

WI, USA). For nano LC-MS/MS analysis 1.5 μg of peptides were loaded

on an Ultimate 3000 RSLC instrument connected to a Q Exactive

HF-X mass spectrometer (Thermo Scientific, Waltham, MA, USA) and

separated on an EASY-spray column (Pepmap™ RSLC C18, 2 μm,

100 Å, 75 μm × 50 cm, Thermo Scientific, Waltham, MA, USA) at

a flow rate of 250 nL/min. A two-step gradient from 6% B (0.1%

(v/v) formic acid in acetonitrile) to 20% B in 80 min followed by a

ramp to 40% B for 9 min was used. For data aquisition, a top 15

DDA method was used. For data analysis MaxQuant (1.6.11.0) using

the H. sapiens subset of the Swiss-Prot (retrieval: 10/2020) was used.

The analysis of the samples from the 7-day treatment experiment

led to the identification of 52,838 unique peptides corresponding to

4301 proteins. In order to perform the “3-day vs 7-day Dex stim-

ulation” comparison, our recently published dataset was used [18].

Statistics (Welch’s t-test), volcano plots, principal component analysis

(PCA) and heatmaps were performed with Perseus v1.6.5.0 [19] and

R Statistical Software (v4.3.0; R Core Team 2023). For multiple test-

ing correction and significance cut-off curves s0 = 0.1 and FDR <0.05

was applied. In total, 56 and 70 differentially abundant proteins (|log2

fold change| > 0.6, adjusted p-value (q-value) < 0.05) in the 3day- and

7day-experiment were detected, respectively (supplementary tables

“Hits_3d_diffAbundance” and “Hits_7d_diffAbundance”). Of those, 19

entries weremutual (“Hits_3d_diffAbundance”).

For the functional enrichment analysis (Figure 2), the “Database for

Annotation, Visualization and IntegratedDiscovery” (DAVID)was used

with the following parameters: BP_ALL, CC_ALL, MF_ALL, and KEGG

and Reactome Pathways checked; stringency “high.” Results with an

enrichment score≥1.3 and p-value≤0.05were plotted.

For the 3-day treated cells, proteins related to cellular motility,

adhesive properties, as well as ECM structure were less abundant,

whereas proteins related to cellular signaling and metabolism were

more abundant (Figure 2A). Notably the functional enrichment

analysis of the 7-day dataset (Figure 2B) displayed additional terms,

that is, apoptosis-related and proteins associated to cholesterol and

steroid metabolism/biosynthesis were decreased in abundance. Of

particular note, the terms “ECM structural constituent conferring ten-

sile strength (protein count: 3; p-value: 0.00348)” and “cell adhesion

(protein count: 9; p-value: 0.00015)” appeared in the 7-day dataset

for the more abundant proteins but in the 3-day dataset for the less
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F IGURE 1 (A) Experimental design. (B) Live cell imaging of two donors. (C) Volcano plots: less (blue) andmore (red) abundant proteins upon
Dex stimulation for the 3 d—vs. 7 d experiments.
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F IGURE 2 (A) Bubble plots for proteins less versus more abundant upon 3 days of stimulation with Dex. (B ) Bubble plots for proteins less
versus more abundant upon 7 days of stimulation with Dex. (C) GO-terms simultaneously picked out, groupedwith relation to “Apoptosis,”
“Cholesterol+ Steroidmetabolism,” “ECM,” and “Focal Adhesion,” and filtered for unique proteins.
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abundant proteins (protein count: 7; p-value: 0.00119). Finally,

decreased abundance of proteins associated with either “immune

relevance” or involvement in “inflammatory response” became more

obvious whenDex exposure was extended to 7 days.

Our previous studies investigated Dex effects on HTPCs for up

to 3 days. We extended the time period to 7 days and observed

numerous similarities including abundance alterations of the previ-

ously reported candidates FKBP5, NEXN, PALLD, LAMB1, and ICAM1

[18]. The consequences on the cellular shape were also comparable,

with bulky and irregular morphological appearance upon Dex stimula-

tion for 3 or 7 days. Importantly however, a number of distinct novel

aspects became apparent. In contrast to our 3-day based findings, an

increased abundance of several collagen-family proteins (COL4A1, -

5A1, and -5A2), as well as fibronectin (FN1) were found together

with increased levels of transforming growth factor beta-1-induced

transcript 1 protein (TGFB1I1). TGFB1 was shown to promote accu-

mulation of collagens and other extracellular proteins in vivo [20]. This

situation may lead to the deposition of collagens into and stiffening of

the ECM in situ, as reported for tumor initiation and cancer progres-

sion [20, 21] or fibrotic remodeling. In humans, fibrotic remodeling and

thickening of the peritubular compartment is often seen in the testis of

men with impairments of spermatogenesis [7, 22]. Also in contrast to

our previously published findings, mitochondrial steroidogenic acute

regulatory protein (StAR) attributed to steroid biosynthesis [23–25],

displayed a decreased abundance in the 7-day dataset. This finding

was additionally accompanied by reduced levels of steroid A-ring 5ß-

reductase (AKR1D1), a protein involved in catabolism of steroids, but

also reported to play a role in regulating GR activation [26, 27]. We

further observed an increased abundance of 11-beta-hydroxysteroid

dehydrogenase 1 (HSD11B1) important for conversion of biologically

active GCs [28, 29], which is also required for testicular development

[30].

Of further interest are decreased levels of proteins involved in

cellular anti-inflammatory response. Among them were prothymosin

alpha (PTMA) and gamma-interferon-inducible protein 16 (IFI16).

The first mentioned possesses extracellular immunoenhancing roles

[31] and was recently demonstrated to be expressed in the human

testis, and is claimed to be involved in testicular cancer development

[32]. The latter is a cytokine-family type protein crucially mediat-

ing anti-inflammatory actions carried out by type-I interferons [33,

34]. In humans IFI16 is supposed to be a functional modulator of

GR function [35] associated with a possible role in testicular car-

cinoma development [36]. Though, the overall decrease of proteins

possessing immune and/or inflammatory relevance is in line with the

general mode of action by Dex in “streamlining” the reduction of

inflammatory phenotype. Finally, regarding possible effects on cell

death, among others, the high mobility group protein B2 (HMGB2)

was identified. This protein is involved in apoptosis, DNA repair as

well as cellular response to oxidative stress, and is expressed at rather

high levels in the human testis [37, 38]. Another candidate worth

mentioning in this regard is the mitochondrial protein NADH dehy-

drogenase (ubiquinone) 1 alpha subunit 13 (NDUFA13) also known as

GRIM19, which is an apoptosis-inducing protein [39–41]. GC actions

on apoptosis have been assessed as highly tissue-specific, ranging

from pro- to anti-apoptotic. When observing the male reproductive

system alone, numerous studies reported adverse, that is, apoptosis-

inducing effects ofDexonmale rat testicular germcells and Leydig cells

[42], while actions on peritubular cells have not been reported to our

knowledge.

In conclusion, our results demonstrate thatDexalters theproteomic

phenotype of HTPCs in a time-dependent way and entails profound

changes in cellular homeostasis and the cellular phenotype. Compared

to a 3-day exposure, prolonged 7-day Dex treatment induced addi-

tional distinct changes. If transferable to the in situ situation, long-term

Dex therapies in men may thus have implications on testicular health.

Remodeling of the cytoskeletal architecture of peritubular cells and

alterations in ECM composition may have consequences for contrac-

tility. Also cellular homeostasis and metabolism and immune relevant

factors could be affected. Further studies are required to examine,

whether the changes described in vitro occur in situ and might be a

possible risk factor for male fertility.
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