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Background

While treatment options for stroke have greatly improved over the last 30 years, important 

gaps remain. Expectations towards neuroprotectant agents have not been met, in part 

because of challenges in selecting suitable agents with strong a priory evidence for efficacy 

in humans.1, 2 Also, we are still missing targeted preventive treatments for small vessel 

disease (SVD), a major cause of ischemic stroke, haemorrhagic stroke, and vascular 

cognitive impairment.3, 4 Without an improved understanding of the underlying molecular, 

cellular, and physiological mechanisms this situation is unlikely to change. Looking at 

atherosclerosis and the concept of residual inflammation,5 the results from the recent 

CANTOS (Canakinumab Anti-Inflammatory Thrombosis Outcomes Study)6 and COLCOT 

(Colchicine Cardiovascular Outcomes Trial)7trials illustrate how progress in understanding 

the initiating and propagating events in cardiovascular disease can further improve treatment 

options even in scenarios where highly effective therapies, such as lipid lowering agents, 

are in place. Consequently, there is great demand for a better understanding of fundamental 

disease mechanisms in stroke.
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Genetics has gone quite some way in identifying Mendelian causes for stroke.8 These 

discoveries have highlighted the importance of individual pathways relevant to specific 

stroke subtypes. For instance, the discovery of genes implicated in hereditary SVD 

(COLIVa1 and COLIVa2; HTRA1, and NOTCH3 amongst others) pinpointed changes of 

the extracellular matrix (ECM) as a major initiating and propagating factor while also 

emphasizing the role of specific cellular constituents (endothelial cells, pericytes, and 

smooth muscle cells) in SVD pathogenesis.8 They further enabled functional studies in 

animal models for SVD,9–11 and allowed testing novel therapeutic strategies,12 some of 

which may also have relevance for the larger group of patients with sporadic SVD.

More recently genome-wide association studies (GWAS) have identified multiple (>40) risk 

loci for stroke thereby pinpointing a causal role of specific genes and gene regions in stroke 

pathogenesis and offering additional starting points for functional studies in experimental 

models.13–17 For example, the identification of HDAC9 as a major risk locus for large 

artery stroke, coronary artery disease, and peripheral artery disease has enabled functional 

studies in atherosclerosis-prone mice and cultured cells.18, 19 These studies revealed a 

mechanism, by which Hdac9 (encoding histone deacetylase 9) regulates atherosclerotic 

plaque vulnerability. They further showed that treatment with TMP195, a class-IIa specific 

HDAC inhibitor, attenuates plaque formation in mice thus offering a novel therapeutic 

strategy for atheroprotection.18

Aside from HDAC9, recent stroke GWAS clearly demonstrate the potential of large-scale 

genetic studies for drug discovery: risk loci in MEGASTROKE were substantially enriched 

in drug-target genes for antithrombotic therapy. This included FGA (encoding fibrinogen 

alpha chain), a target for alteplase and other thrombolytic agents, and PDE3A (encoding 

phosphodiesterase 3A), a target for cilostazol,20 raising confidence, that stroke risk loci 

harbour meaningful targets for drug development.

Beyond its potential for discovery and molecular genetic testing for monogenic diseases, 

genetics offers unanticipated opportunities for clinical applications. Examples include: (1) 

risk prediction based on common genetic variants using polygenic risk scores (PRS); 

(2) the exploration of potential therapeutic targets by mendelian randomization; (3) drug 

discovery; (4) and pharmacogenomics. Given the rapid accumulation of genetic information 

and continued progress in analytical protocols these applications are becoming increasingly 

powerful. The current issue highlights two areas, where substantial progress has been made 

over the last years: Mendelian randomization (see Georgakis et al. page XXXX)21 and risk 

prediction using PRS (see Abraham et al., page XXXX).22 This issue further contains a 

guide on diagnostic testing and clinical management of monogenic stroke,(see Guey et al. 

page XXXX)23 a topic that regularly comes up in clinical practice. Much has happened in 

the field of genetics of intracranial aneurysms, which is why we included an update on this 

topic (see Bakker et al. page XXXX).24 The last article gives an overview on the genetics of 

stroke outcome, a field that is still at its infancy but gaining importance for the development 

of neuroprotective agents (see Lee et al. page XXXX).25 Below, we summarize some of the 

highlights while also touching on other topics relevant to clinical applications.

Dichgans et al. Page 2

Stroke. Author manuscript; available in PMC 2022 August 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Polygenic risk scores – ready for implementation?

By combining the effects of multiple genetic variants with individually small effects in 

a polygenic score (PRS; or genomic risk score, GRS) it is possible to quantify genetic 

predisposition to traits and conditions like blood pressure (BP), low density lipoprotein 

(LDL) levels, coronary artery disease (CAD), or stroke.26 This is typically achieved 

through a weighted sum of allele counts. The inclusion of variants beyond those meeting 

stringent GWAS significance levels has been shown to boost predictive performance.27, 28 

Performance can be further enhanced by combining PRS from multiple related traits such 

as BP, LDL levels, and stroke in a so-called metaGRS (for discussion see Abraham et al 

XXXX).22 Indeed, a meta GRS for CAD consisting of 1.7 million single nucleotide variants 

(SNPs) achieved a hazard ratio (HR) of 1.71 (95% CI 1.68–1.73) per standard deviation 

of the score.29 The HR obtained with the latest metaGRS for stroke is considerably lower 

(HR=1.26; 1.22–1.31; c-index=0.585)30 but likely to increase as information from additional 

GWAS will be integrated. PRS for cardiovascular disease (CVD) typically perform better 

than individual traditional risk factors (e.g. BP),29, 30 and can be added into risk models as 

an essentially independent factor (31 and Abraham et al. XXX-XXX).22 In fact, PRS for 

CVD consistently increase predictive power when added to established clinical risk scores 

(32 and Abraham et al. XXX-XXX).22

PRS offer distinct advantages over traditional risk factors: genetic risk is present from 

birth and essentially stable over time, whereas traditional risk factors may vary over 

time requiring multiple measurements. PRS can be ascertained by a single genotyping 

effort long before traditional risk factors manifest enabling early decisions on lifestyle 

interventions and targeted monitoring.30, 33 In fact, there is evidence that addition of a 

PRS for CVD to conventional risk prediction models in the general population could help 

reducing cardiovascular events34 while also being economically meaningful.35 However, 

important questions remain that need be addressed before implementing these scores in 

clinical practice including validation across different ancestries, sex-specific aspects, and 

issues related to the deployment and communication of PRS results to individuals (https://

doi.org/10.1101/2020.09.18.20197137; Abraham et al. XXX-XXX).22

Mendelian randomization – exploring causal relationships

As well-powered GWAS have accumulated for a variety of traits of interest in stroke 

and cerebrovascular disease, a specific use case for PRS has emerged via Mendelian 

Randomization (MR).36 MR is an epidemiologic approach that uses genetic variants known 

to be associated with an exposure of interest to test for a causal effect of those variants 

on disease risk or other outcomes.37 As a form of instrumental variable analysis, a PRS 

that explains a portion of the observed variance in a trait, such as plasma HDL levels, can 

be used to examine the causal role of a similar amount of variance in that trait in disease 

risk, such as myocardial infarction (MI), testing the causality of HDL levels on MI risk in 

a manner not possible using observational biomarker data alone.38 Because an individual’s 

germ-line genotypes cannot be modified by behaviour or disease, associations made in this 

methodological framework can be consistent with a directional or causal process, but only if 

a series of important assumptions are met.39 Genetic variants must only act on the outcome 
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through their effect on a risk factor (independence), they must explain a reasonable degree 

of the variance in the risk factor (strong/weak instruments), and the variants cannot have 

effects on other risk factors that are themselves associated with the outcome (exclusion 

restriction). This last assumption can be particularly challenging, as genetic variants often 

impact multiple biological processes (termed horizontal pleiotropy) which may themselves 

be known or unknown.4039 If a set of genetic variants were associated with alcohol intake, 

but also cryptically associated with tobacco intake, an observed association between genetic 

predisposition to alcohol intake and heart disease could be invalidated by pleiotropic 

associations with smoking. Fortunately, statistical tools and best practices continue to evolve 

that can aid in the validation of the underlying assumptions of MR and facilitate its use in 

exploring causal inferences between risk factors and disease in observational studies.41 As 

GWAS samples sizes for human traits increase, the proportion of variance explained by PRS 

for these traits likewise increases, maximizing statistical power for novel causal inference 

and even providing opportunities to perform mediation analyses within the framework of 

MR for variants and traits with known confounding relationships with other risk factors. 

Two-sample MR utilizes genetic variants associated with a risk factor of interest from 

a GWAS in one population and uses them to test for association with outcomes in an 

independent population, allowing the genetic variants to “stand in” for biological variance 

in an unmeasured exposure.42 As an example of the latent power of this approach, a 

recent MR analysis of serum lipid levels on both chronic and acute forms of cerebral SVD 

found that genetic predisposition to higher levels of HDL-C were associated with reduced 

risk of small vessel ischaemic stroke and lower white matter hyperintensity volumes, even 

after adjustment for LDL-C and triglycerides.43 While the contributions of specific HDL 

subcomponents remain to be clarified, these results support a potential independent causal 

role of HDL in protection from cerebral SVD, and provide at least some evidence to support 

further investigation in formal randomized controlled trials (RCTs).

Intracranial aneurysms – sample size remains key

Of particular interest to the development of clinical applications of genomic medicine are 

conditions with a high heritability. Aneurysmal subarachnoid haemorrhage, due to rupture of 

an intracranial aneurysm (IA), is highly heritable44 with common variants explaining about 

25% of the disease.45 The most recent GWAS meta-analysis on IA included individuals 

from multiple ancestries integrating the majority of previous GWAS studies.45 Overall, this 

study found 17 risk loci, 11 of which were new. Further analyses of putative causative 

genes pointed to a prominent role of endothelial cells (ECs) in disease pathogenesis (see 

article by Bakker et al. on p.XXXXX 24 and 45). Several of these genes are involved 

in cell signalling including the sensing of mechanical stress, which might contribute to 

aneurysm formation or rupture through vascular pressure sensing. An important insight 

from this study is a high degree of genetic correlation between ruptured and unruptured 

IA implying that the genetic architecture of ruptured and unruptured aneurysms is very 

similar. The study further found considerable genetic overlap of IA with ischemic stroke, 

ICH, and abdominal aortic aneurysm, which was largely accounted for by genes implicated 

in BP regulation and smoking.45 As such, the available genetic evidence complements 

epidemiological findings, which point to a causal role of smoking and hypertension in IA 
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and aneurysmal subarachnoid haemorrhage. Notably, this risk can be modified by lifestyle 

interventions and medical therapy. Given the high heritability of IA, genetic risk prediction 

by means of PRS seems a logical development. The development of a powerful PRS will 

depend on the availability of larger genetic datasets, which can be expected over the next 

years. PRS could then be integrated into screening strategies for IA in selected populations 

although this would need to be tested in prospective studies.

Genetics of stroke outcome – the next big thing

As outlined above, there is great demand for the development of neuroprotective agents. 

Recent GWAS in mostly Caucasian populations have identified an initial set of genes and 

risk loci that were significantly associated with clinical or radiological outcomes after stroke 

thus demonstrating the feasibility of such studies.46–49 In some instances these findings 

could be related to biological processes that show strong candidacy for influencing stroke 

outcome (reviewed in Lee et al. Stroke 2021).25 By design, stroke outcome studies are 

conducted within cases, i.e. without a healthy control group. Key variables to consider 

include time from stroke onset and status at baseline. Accordingly, dynamic measures 

such as the change in NIHSS from 6 hours to 24 hours after stroke (ΔNIHSS24h) have 

been proposed as key readouts and there is good reasoning for using the ΔNIHSS24h 

as a primary outcome measure in genetic studies (reviewed in Lee et al. Stroke 2021).25 

Still, other measures such as hemorrhagic transformation47 or long-term outcomes (clinical 

and imaging-defined) remain important alternatives as they capture complementary aspects 

of early injury, secondary injury (including secondary neurodegeneration) and recovery. 

Another readout that has repeatedly been proposed is serum neurofilament light (sNfL), a 

marker for neuroaxonal injury that was shown to reflect primary and secondary neuronal 

injury after ischemic stroke and can be quantified with high accuracy.50 Quantitative 

trait GWAS have distinct advantages over binary case-control GWAS by providing more 

statistical power. Yet, sample sizes for stroke outcome studies have been at the lower 

end and there is a requirement for further harmonization across studies as highlighted 

by the Global Alliance in Acute and Long-term Outcome (https://genestroke.wixsite.com/

alliesinstroke) initiative. While still at the beginning, the field of stroke outcome genetics is 

already receiving considerable interest by pharmaceutical industry highlighting its potential 

for drug discovery.

Leveraging genetics for drug development

Less than 10% of drugs move from phase I to marketing authorization51, 52 and this rate is 

even lower for CVD.52 Human genetics has become a crucial source of evidence for guiding 

the selection of targets for drug development and prioritizing their use in clinical trials. In 

fact, compounds targeting candidates with evidence from human genetics have a several-fold 

probability to reach approval than those without such evidence.53, 54 In this issue, Georgakis 

and colleagues discuss the potential of Mendelian randomization for drug discovery (see 

Georgakis et al. p. XXXXX).21 MR continues to have great potential for candidate selection 

as illustrated by a recent MR study of ATP citrate lyase and CVD55 that was published 

in parallel with the results of the CLEAR (Cholesterol Lowering via Bempedoic Acid, an 
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ACL-Inhibiting Regimen) Harmony trial and that essentially predicted and explained the 

results of the trial.51,56, 57

Yet, there are alternative approaches with a successful track record in CVD. One of them 

involves naturally occurring human genetic variants that are predicted to inactivate protein- 

coding genes.58 Perhaps the most compelling example is PCSK9. Discovered as a gene 

implicated in familial hypercholesterolemia in 2003,59 it was subsequently shown that loss

of- function (LoF) variants in PCSK9 are associated with a reduced risk for CAD.60 Within 

less than 10 years two monoclonal antibodies targeting the gene product were approved 

for clinical use with large prospective RCTs pointing to improved cardiovascular outcomes 

only shortly thereafter.61, 62 The identification of individuals with two loss-of-function 

PCSK9 alleles who suffered from no apparent adverse health consequences63–65 provided 

strong assurance for a beneficial safety profile early in the drug development process. 

Additional examples of complete loss-of-function (“knock-out”) with implications for drug 

development include nonsense mutations in ANGPTL365–68 and APOC3.69 As sequencing 

efforts in large-scale biobanks continue, additional human knock-outs for genes relevant to 

CAD and stroke drug development can be expected to emerge. Such datasets are currently 

generated through governmental (e.g. the UK Biobank), commercial (e.g. DeCode genetics) 

and institutional (e.g. Kaiser Permanente Research Bank) funding,8 as well as through 

collaborative efforts across large deeply phenotyped cohort studies, such as the Trans-Omics 

for Precision Medicine (TOPMed) programme.70

Large-scale genetic data from prospective biobank cohorts further allow predicting 

unanticipated effects of drugs through a study design termed Phenome-wide association 

study (PheWAS). In such studies, one or multiple genetic variants are tested for their 

associations with hundreds of phenotypes spanning multiple organ systems.65, 71 This allows 

exploring desirable and undesirable (adverse) clinical outcomes linked to loss-of-function of 

a given gene.

For instance, a PheWAS in more than 100.000 individuals from the UK Biobank showed 

that beyond their effects on CAD, genetically lowered Lp(a) levels are associated with a 

lower risk of stroke, peripheral vascular disease, heart failure, and aortic stenosis.72 Another 

PheWAS identified a previously unknown effect of nondihydropyridine calcium channel 

blockers on diverticulosis risk that was subsequently confirmed in observational cohorts.73 

The field of genetics and its use for drug discovery is rapidly developing as highlighted by 

recent topical reviews.51, 58, 65

Pharmacogenomics

The study of how an individual’s genome influences the activity, safety, or efficacy of 

a drug is termed pharmacogenomics. Pharmacogenomics is a broadening of the prior 

field of pharmacogenetics, which technically refers to the way in which variants in a 

single gene affect response to a drug. Both pharmacogenetics and pharmacogenomics 

appeal to the concept that genetic information can “personalize” medical decision-making, 

helping clinicians choose the correct drug, at the correct dose, to maximize therapeutic 

benefit and minimize side-effects or adverse outcomes. While somatic cancer mutations are 
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frequently utilized to select chemotherapy regimens, such as the targeting of HER2-positive 

breast cancer with trastuzumab.74 there are relatively fewer examples of using germ-line 

variation to guide medication selection in standard clinical practice. The United States Food 

and Drug Administration currently requires that 12 medications include boxed warnings 

regarding pharmacogenomic biomarkers, out of a total of 457 that include pharmacogenomic 

information in the product labels. One prominent example is the FDA recommendation for 

HLA-B*1502 genotyping in individuals of Asian ancestry being considered for treatment 

with carbamazepine.75 Individuals harboring this variant, which can approach 10% of 

Asian ancestry populations, are at an increased risk of Stevens-Johnson Syndrome and 

toxic epidermal necrolysis when exposed to carbamazepine and FDA guidance suggests 

that carriers of HLA- B*1502 not be treated with this drug. Other implementations of 

pharmacogenomics include clinical trial-driven support for the use of genomics to guide 

medication dosing and even therapeutic decision-making.

Several genes involved in warfarin metabolism, including VKORC1, CPY2C9, CYP4F2 
have been shown to impact dosing regimens required to maintain adequate anticoagulation 

via the International Normalized Ratio (INR).76 The GIFT (Genetic Informatics Trial) 

RCT examined an aggregate genetic score of variants in these genes as a means to guide 

warfarin dosing, demonstrating a significant improvement in a composite outcome of 

INR ≥ 4, major bleeding, venous thromboembolism, and death in the genotype-informed 

dosing arm.77 Further implementation studies have shown this genotype-guided approach to 

warfarin dosing to be feasible and even cost-effective, although these results are perhaps of 

diminishing significance with the interim rise of direct oral anticoagulant options.78

In stroke and CVD, a prominent example of pharmacogenomics has arisen from the 

observation of reduced platelet inhibitory effect of clopidogrel in individuals harboring 

CYP2C19*2 and *3 gene mutations.79 These loss-of-function mutations result in reduced 

metabolism of clopidogrel into its active metabolite, and carriers of these variants have 

been shown to exhibit increased incidence of cardiovascular events and stroke while 

on clopidogrel.80 The recent TAILOR-PCI RCT was designed to prospectively test 

whether CYP2C19 genotype-guided antiplatelet use would lead to improved outcomes 

after percutaneous coronary intervention compared with a genotype-agnostic approach.81 

While the primary composite ischemic endpoint did not reveal a significant difference in 

outcomes between groups at 12 months, there was an 80% reduction in ischemic events 

in the genotype-guided group in the first 3-months that was subsequently lost over the 

remainder of follow-up. The results of TAILOR-PCI may be considered disappointing by 

those advocating for increasing uptake in genotype-directed therapy in stroke and other 

vascular diseases, but this observed early benefit in ischemic events suggests that there may 

be more specific use-cases where pharmacogenomic patient benefit could be demonstrated.

Conclusions

As can be seen from these brief highlights and in detail in the accompanying articles, 

the field of medical and population genetics in stroke is moving at a rapid pace with 

multiple current and near-term opportunities to influence and improve the care and 

treatment of stroke and related vascular diseases. These advancements have in large 
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part been triggered by substantial investments in recruitment and biobanking of genetic 

information on increasingly large and well-characterized populations in both health and 

disease and facilitated by collaboration in consortia such as the International Stroke 

Genetics Consortium (ISGC, www.strokegenetics.org). It is both the ascertainment of 

data and its broad sharing that has been so critical to innovation. Summary genotype 

data from MEGASTROKE, currently the largest available GWAS of stroke and its 

subtypes, is available for download (www.megastroke.org) and this and 18 other stroke 

genetic datasets are also shared at the Cerebrovascular Disease Knowledge Portal (http://

cd.hugeamp.org). The UK Biobank contains genetic data and a plethora of stroke-relevant 

phenotypes for analysis available by completing a web-based application. But there remains 

work to be done in this regard. While national biobanks like China-Kadoorie (https://

www.ckbiobank.org), Biobank Japan (https://biobankjp.org/), or international consortia such 

as H3Africa (https://h3africa.org/) are providing precious information on genetic risk for 

human disease in East Asian and African populations, the vast majority of available genome

wide datasets continue to be of predominantly white European ancestry. Diversification 

of genetic research holds great promise not only for improvement in understanding of 

disease risk in understudied populations, but in all populations through approaches such as 

trans-ethnic fine-mapping and meta-analysis.82

Substantial progress has also been made in deciphering the genetic determinants of MRI- 

markers of covert cerebral SVD, such as white matter hyperintensity volume, through 

collaborative efforts in population-based brain imaging studies from the Cohorts for 

Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium,83 the UK 

Biobank,84and the ISGC. So far, these studies have been more powerful than genetic studies 

of small vessel stroke and have revealed that SVD genes already have a significant impact 

on white matter microstructure in young adults. Identifying early predictors of stroke and 

vascular cognitive impairment could have major implications for our understanding of 

disease mechanisms across the lifespan and for devising effective and timely prevention 

strategies.

As work proceeds to map genotypes to traits, the next great frontier must be to transform 

these associations into biological understanding. The International Common Disease 

Alliance (ICDA, www.icda.bio) has established the “Maps to Mechanisms to Medicine” 

initiative to define barriers, identify opportunities, and coordinate partnerships to guide 

the field of medical genetics through the transition from variant to function. A substantial 

component of this transition will require the incorporation of additional high-throughput 

molecular data from transcriptomics, epigenomics, proteomics, and metabolomics, to 

capture a greater spectrum of effects induced by genome variation. Understanding the 

biological mechanisms through which variants impact disease risk and outcome will greatly 

enhance not only our conception of the basis of human disease, but also the efficiency 

with which we can translate these discoveries into novel therapeutics. Moreover, identifying 

circulating biomarkers of stroke capturing simultaneously inherited and environmental 

characteristics may lead to rapid applications for routine research or clinical practice given 

ease of access and low cost.
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Finally, disease risk is imparted by both genetic and non-genetic exposures, and advances in 

genetics are being met by advances in understanding and quantification of the environmental 

exposures that often factor heavily in disease risk, both directly and through gene

environment interactions.85 Social determinants of health (SDOH) have emerged as a critical 

component of potentially modifiable disease risk that are inequitably distributed across 

our populations. Hypertension, a critical risk factor for stroke, is a condition particularly 

impacted by SDOH,86 and better understanding of the genetic and environmental factors 

contributing to blood pressure could improve risk modeling as well as stratification of 

vulnerable populations for targeted intervention to reduce the risk of stroke and related 

vascular and cognitive diseases.
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