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Abstract

Up to 40% of neurodevelopmental disorders (NDDs) such as intellectual disability,

developmental delay, autism spectrum disorder, and developmental motor abnormali-

ties have a documented underlying monogenic defect, primarily due to de novo vari-

ants. Still, the overall burden of de novo variants as well as novel disease genes in

NDDs await discovery. We performed parent-offspring trio exome sequencing in

231 individuals with NDDs. Phenotypes were compiled using human phenotype

ontology terms. The overall diagnostic yield was 49.8% (n = 115/231) with de novo

variants contributing to more than 80% (n = 93/115) of all solved cases. De novo vari-

ants affected 72 different—mostly constrained—genes. In addition, we identified

putative pathogenic variants in 16 genes not linked to NDDs to date. Reanalysis per-

formed in 80 initially unsolved cases revealed a definitive diagnosis in two additional

cases. Our study consolidates the contribution and genetic heterogeneity of de novo

variants in NDDs highlighting trio exome sequencing as effective diagnostic tool for

NDDs. Besides, we illustrate the potential of a trio-approach for candidate gene dis-

covery and the power of systematic reanalysis of unsolved cases.

K E YWORD S

autism, candidate gene, de novo variant, exome sequencing, intellectual disability,
neurodevelopmental disorder, reanalysis

1 | INTRODUCTION

Neurodevelopmental disorders (NDDs) comprise a heterogeneous

group of conditions affecting brain development and function and can

manifest in impaired cognition, behavior, language, and motor func-

tioning.1 In accordance to “Diagnostic and Statistical Manual of Men-

tal Disorders, Fifth Edition”2 (DSM-5), NDD encompasses intellectual

developmental disorders, communication disorders, autism spectrum

disorders, attention-deficit/hyperactivity disorders, specific learning

disorders, and motor disorders.2 Furthermore, patients with NDDs

often demonstrate additional, (non-) neurological comorbidities.3

While NDDs can have numerous causes such as fetal exposure

to toxicants, perinatal asphyxia and environmental contaminants,

monogenic conditions make an essential contribution to the etiol-

ogy of NDD.1 The genetic etiology underlying NDD is extremely

heterogeneous extending from large chromosomal aberration to

single-nucleotide variants (SNVs) in >1000 of genes.4 Neverthe-

less, theoretical calculations indicate that over 500 novel NDD

genes remain to be discovered.5 It has been widely acknowledged

in large-scale sequencing studies that variants in protein-coding

genes that have arisen de novo are enriched in individuals with

NDDs and constitute the major cause of NDDs in outbred

populations.6-14 42%–48% of individuals with a NDD are thought

to harbor a causative de novo variant in known as well as yet-undi-

scovered disease genes.13 However, the burden of de novo vari-

ants in NDD has not yet been fully illuminated.14

With the aim to better elucidate the genetic spectrum of (de novo)

variants underlying rare NDDs, we describe detailed clinical and

genetic findings in 231 individuals with NDDs who underwent trio

exome sequencing in a single tertiary care genetic center.

2 | MATERIALS AND METHODS

2.1 | Study design

We retrospectively analyzed 231 individuals with NDDs in whom trio

exome sequencing was performed in our institute. The families were

recruited over a period of 3 years (August 2017 until July 2020) from

different centers for human genetics, neuropediatrics, and neurology

in Germany, Switzerland, Slovakia and Czech Republic. 177 (76.6%) of

these 231 trios have not been published previously. Individuals were

found eligible for this study if they had (1) a symptom or a constella-

tion of symptoms consistent with a NDD (in accordance with the

diagnostic criteria of “Diagnostic and Statistical Manual of Mental Dis-

orders, Fifth Edition”2) and (2) no prior genetic diagnosis. We obtained

and thoroughly reviewed clinical records of all individuals and applied

the human phenotype ontology (HPO) to systematically characterize

the individuals' phenotype.15 As previously published, individuals were

categorized to one of two categories based on their clinical presenta-

tion: (1) isolated NDD or (2) NDD plus associated conditions defined

as any additional neurological, systemic, syndromic, or other clinical
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characteristic, for example, microcephaly or neutropenia.16 Family his-

tory was collected by the referring clinician where applicable and a

family history was considered as positive when a first-degree relative

had a NDD.

All participants or their guardians gave written informed consent

for exome sequencing and the publication of relevant findings. The

study was performed in agreement with the ethical standards of the

responsible committee on human experimentation (institutional and

national) and with the Declaration of Helsinki, and was approved by

the respective local ethics committees.

2.2 | Trio exome sequencing

Exome sequencing was performed for all affected individuals and

their parents using a SureSelect Human All Exon Kit 60 Mb, V6

(Agilent, Santa Clara, California) for enrichment and a Illumina

NovaSeq6000 or Illumina HiSeq4000 system (Illumina, San Diego,

California). Reads were aligned to the UCSC human reference assem-

bly (hg19) with BWA v.0.7.8. SNVs and small insertions and deletions

were detected using SAMtools v.0.1.19.17 Copy number variations

(CNVs) were detected with ExomeDepth and Pindel.18,19 Mitochon-

drial DNA (mtDNA) variants were assessed using off-target reads as

previously described.20 Variants were analyzed in the in-house

exome variant analysis database (EVAdb) using I) a recessive filter for

homozygous and compoundheterozygous variantswith aminor allele

frequency (MAF, according to in-house database with over 20 000

exomes) < 1%, II a filter for X chromosomal variants with a

MAF < 0.1% and III) a filter for de novo variants with a MAF < 0.01%.

IV) A phenotype-based search was conducted by performing an

OMIM full term search using the threemost characteristic phenotypic

traits to establish a gene list. The filter queries variants with a

MAF < 0.1%. In addition, CNVs with a MAF < 0.01 and mtDNA vari-

ants with a MAF < 1% were assessed. Identified variants were classi-

fied according to the American College of Medical Genetics and

Genomics (ACMG) guidelines.21-23

Only cases with likely pathogenic or pathogenic variants as per

ACMG (in the following designated “disease-causing”) in established

disease genes for NDDs were considered as solved and were

reflected in the overall diagnostic yield. All genes with “strong” or

“definitive” evidence for gene-disease relationship as defined by the

Clinical Genome Resource (ClinGen) were considered as established

disease genes.24 Individuals with variants in candidate genes subse-

quently established as disease genes, were also categorized as solved

and assigned to the overall yield. Individuals with (1) negative results

(i.e., no variant[s] prioritized), (2) variants of uncertain significance

(VUS) in NDDs associated genes or (3) variants in candidate genes for

NDDs (as of November 2020) were summarized as unsolved cases.

Reanalysis using updated variant annotation and newly discovered

gene disease associations was performed for all cases with negative

results older than ≥1 year (August 2017–September 2019).

For all established disease genes containing causative de novo var-

iants, constraint metrics (pLIs and Z-scores) were extracted from

Genome Aggregation Database (gnomAD) v2.1.1 to evaluate gene

tolerance to loss-of-function or missense variants.25 As recommended

by gnomAD, we used pLI > 0.9 for loss-of-function variants and

Z-score > 3.09 for missense variants as constraint threshold values.26

3 | RESULTS

3.1 | Demographic features and clinical findings

We performed parent-offspring trios in 231 individuals (117 females

and 114 males) with NDDs over a period of 3 years. Age range was

from 1 months to 46 years (median: 5.3 years) with 90% of individuals

falling between 0 and 18 years. Parental consanguinity was reported

in three cases. Information on the family history was available in

86/231 (37.2%) individuals. 9/86 (10.5%) cases had a positive family

history with an affected first-degree relative. A monogenic disorder

could genetically be established in a single cases with a positive family

history, a de novo PTPN11 was identified by trio analysis whereas the

autism spectrum disorder remained without a monogenic explanation

in the brother.

Clinical characteristics were captured using HPO terms

(Table S1).15 Among all 231 individuals, a total of n = 1291 HPO terms

(median pro sample: 5, [interquartile range: 4–7]) were assigned. In

summary, NDD phenotypes comprised global developmental delay

(n = 175, 75.8%), intellectual disability (n = 46, 19.9%), speech delay

(n = 28, 12.1%), motor delay (n = 26, 11.3%) and autistic behavior/

autism (n = 26, 11.3%). Common additional features included seizures

(n = 70, 30.3%), dystonia (n = 59, 25.5%), muscular hypotonia (n = 42,

18.2%), microcephaly (n = 32, 13.9%), cerebral palsy (n = 24, 10.4%),

ataxia (n = 23, 10.0%), abnormal facial shape (n = 23, 10.0%), spasticity

(n = 20, 8.7%) and hearing impairment (n = 13, 5.6%). Figure 1(A) gives

a summary of the most frequent clinical features encountered in our

cohort. The majority of individuals had NDDs plus associated condi-

tions (n = 213/231, 92.2%), while only n = 18/231 (7.8%) individuals

had isolated NDD without any additional features. The proportion of

cases with NDDs plus associated conditions was higher in the sub-

group with autosomal recessive inheritance (n = 19/19, 100%) in com-

parison with those with de novo variants (n = 89/93, 95.7%).

3.2 | Diagnostic yield

Overall, trio exome sequencing identified disease-causing variants in

developmental disorder associated genes in 115/231 individuals

reflecting an overall yield of 49.8%. The diagnostic yield was signifi-

cantly higher in individuals with NDD plus associated conditions

(n = 111/213, 52.1%) in comparison to individuals with isolated NDD

(n = 4/18, 22.2%, p = 0.0247, Fisher's exact test).27 59/117 female

individuals (50.4%) and 56/114 male individuals (49.1%) received a

genetic diagnosis. In the group of individuals ≥18 years (n = 24/231,

10.4%), the overall yield was 50.0%. In the group of individuals

<18 years (n = 206/231), the overall yield was 49.5%.
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In the majority of individuals (n = 93/115, 80.9%), the molecular

diagnosis based on de novo variants in genes either associated with

autosomal dominant disorders (n = 82/115, 71.3%) or with X-linked

disorders (n = 11/115, 9.6%). In two cases, variants in genes/chromo-

somal locations linked to autosomal dominant disorders (KMT2D,

Chromosome 16q23.2–23.3 deletion) were inherited from an affected

parent (n = 2/115, 1.7%) and in one case, a variant in a gene associ-

ated with a X-linked disorder (MECP2 duplication) was inherited from

the unaffected mother (n = 1/115, 0.9%). 19/115 individuals (16.5%)

harbored homozygous (n = 7/115, 6.1%) or compound heterozygous

(n = 12/115, 10.4%) variants in genes related to autosomal recessive

disorders. 3/7 patients with homozygous variants had a consanguine-

ous background. A disease causing CNV (deletions >500 kb, duplica-

tions >2 Mb) was found in seven individuals leading to an overall

burden of CNVs of 3.0% (n = 7/231).

116/231 individuals (50.2%) remained unsolved after trio exome

sequencing. The unsolved group subsumed individuals with negative

results (n = 92/231, 39.8%), individuals with VUS in DD/ID associated

genes (n = 8/231, 3.5%) and individuals with variants in novel or

known candidate genes for DD/ID (n = 16/231, 6.9%). These overall

results are summarized in Figure 1(B).

3.3 | Characteristics of de novo variants

40.3% (n = 93/231) of all individuals or 80.9% of all solved cases

(n = 93/115), respectively, harbored de novo variants in protein-coding

disease genes, either in autosomal (n = 81/93, 87.1%) or X-linked

genes (n = 12/93, 12.9%). Individuals with de novo variants in autoso-

mal genes (n = 81) subdivided into 43 females and 38 males. Among
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individuals with de novo variants in X-linked genes (n = 12) were four

males and eight females. We identified a variety of variant types with

missense variants being the predominant type (n = 54/93, 58.1%)

followed by frameshift variants (n = 17/93, 18.3%), nonsense variants

(n = 10/93, 10.8%), canonical splice site variants (n = 3/93, 3.2%),

indels (n = 2/93, 2.2%), intragenic deletions (<10 kb) (n = 2/93, 2.2%),

large deletions >500 kb (n = 3/93, 3.2%) and large duplications >2 Mb

(n = 2/03, 2.2%) (Figure 2(A)). Parental mosaicism was identified in

one family (individual 47), in which the frameshift variant in KMT2B

was identified as low-level mosaicism (in 1/216 reads) in the healthy

mother. We did not encounter any cases of postzygotic mosaicism in

the index patients.

A wide spectrum of diagnoses was established based on the

molecular findings. In total, 72 distinct diagnoses were made with the
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majority of them occurring only once (n = 58/72, 79.2%). The most

commonly affected gene was ZEB2 (n = 4/72, 5.6%) associated with

“Mowat-Wilson syndrome”, followed by ARID1B (n = 3/72, 4.2%),

GNAO1 (n = 3/72, 4.2%), KMT2B (n = 3/72, 4.2%) and PURA (n = 3/

72, 4.2%). Disease-causing variants in nine different X-linked genes

comprising DDX3X (n = 2), MSL3 (n = 2), SMC1A (n = 2), CDKL5 (n = 1),

HNRNPH2 (n = 1), NONO (n = 1), PDHA1 (n = 1), STAG2 (n = 1), and

ZC4H2 (n = 1) were detected. The spectrum of genes containing

disease-causing de novo variants is visualized in Figure 2(B). Except for

one variant in GNAO1 (NM_020988.3:c.625C>T, p.(Arg209Cys)), no

recurrent variants were observed. More than half of all de novo vari-

ants (n = 50/93, 53.8%) were novel at the time of data interpretation

and had not yet been published. All de novo variants were absent from

the gnomAD as well as from the Database of Genomic Variants

(DGV).25 Table 1 gives an overview of all disease-causing de novo vari-

ants identified in this study, including the associated disorder.

We systematically evaluated constraint metrics (pLIs and Z-scores)

for all genes containing (likely) pathogenic de novo variants (excluding

CNVs spanning more than one gene). We observed that the majority of

genes (n = 58/67, 86.6%) showed a pLI score > 0.9 indicating a high

intolerance toward loss-of-function variants. 46/67 (68.7%) genes had

a Z-score > 3.09 expressing a high constraint toward missense variants

(Figure 2(C), Figure 2(D)). We further evaluated those five genes

(RHOBTB2, SPTBN2, KCNT1, IMPDH2, IFIH1, SOX11) that did not show

an overall constraint toward missense as well as toward loss-of-

function variants (Z-scores ≤3.09 and pLIs ≤0.9). Apart from SOX11,

whose pLI is most likely low due to the small gene size, we observed

that pathogenic variants reported in those genes are all missense vari-

ants that cluster within or around a specific domain, in line with a

region-specific high constraint (Table S2, Figure S2).

3.4 | Identification of novel candidate and disease
genes

In cases without a definite molecular diagnosis, we sought to uncover

(novel) candidate genes for NDDs. In summary, 22 different candidate

genes were prioritized in 23 individuals. In the majority of individuals

(n = 16), de novo variants in candidate genes for autosomal dominant

inherited NDDs were found. Seven individuals harbored biallelic variants

in candidate genes for autosomal recessive inherited NDDs. All nomi-

nated candidate genes were submitted to GeneMatcher. Six individuals

were subsequently published within large collaborations connected

through GeneMatcher and one individual was published as case report

following two previous case descriptions, all together establishing six

novel disease-associated genes for NDDs, namely CYFIP2, KDM3B,

IMPDH2, FITM2, RALGAPA1, and VARS.28-33 Those seven individuals were

considered as solved and assigned to the overall yield (Supplemental

Figure 1A). Furthermore, we published another three individuals from this

study as single case reports proposing three novel candidate genes for

NDDs (CAMK4, POU3F2, RBL2).34-36 A number of the nominated candi-

date genes from this study is included in ongoing studies with manu-

scripts in process and is therefore not listed in detail.

3.5 | Systematic reanalysis of unsolved cases

We reanalyzed existing exome data from all cases with negative

results older than ≥1 year (August 2017–September 2019). In sum-

mary, we performed reanalysis of 80 initially negative cases using

updated variant annotation and newly discovered disease-associated

genes. We achieved a diagnosis in two additional individuals increas-

ing the overall yield from n = 113/231 (48.9%) to n = 115/231

(49.8%). Both individuals harbored variants in genes associated with

autosomal recessive disorders (SMPD4, UGDH)37,38 that had not been

described as disease-associated genes at the time of data interpreta-

tion and were therefore not prioritized as potentially relevant variants.

Furthermore, two previously not prioritized candidate genes were

identified (Supplemental Figure 1B).

4 | DISCUSSION

In this study, we present 231 individuals with different NDDs who

underwent trio exome sequencing. We further delineate the associ-

ated genetic spectrum of NDDs and corroborate the burden of de

novo variants in NDDs.

Performing trio exome sequencing in 231 individuals with NDDs

and their parents, we achieved an overall yield of 49.8%. The diagnos-

tic yield was significantly higher in individuals with NDD plus associ-

ated conditions in comparison to individuals with isolated NDD. Our

results are in accordance with a recent meta-analysis (assessing

30 articles with data on molecular diagnostic yield of exome sequenc-

ing in individuals with NDDs) that reported a diagnostic yield of 31%

for isolated NDD and 53% for NDD plus associated conditions.16 One

possible reason for this difference in diagnostic yields might be that a

subgroup of those cases with isolated NDD has a multifactorial basis

rather than a monogenic explanation.

With regard to disease burden of CNVs in NDDs, the observed

proportion of 3% in our cohort was smaller than previous estimations

ranging from 10% to 15%.24,39 This discrepancy most likely originates

from a depletion of our cohort for cases with CNVs due to prior

genetic work up including chromosome microarray analysis in some

cases. From a phenotype perspective, the vast majority of individuals

in our study displayed additional, often predominant neurological fea-

tures such as dystonia or seizures further underlining the convergence

in the genetics of NDDs and other neurological comorbidities.1,30,40

Even though it is widely recognized that de novo variants in protein-

coding genes constitute the major genetic cause of NDDs in outbred

populations, theburdenaswell as thegenetic spectrumdenovovariants in

NDDs have not been fully elucidated yet.14 In terms of de novo variants,

we made several key observations in our study: First, the frequency of

disease-causing de novo variants of 40.3% (n = 93/231) aligns with the

prevalence of 42% recently presented in a large sequencing study of indi-

viduals with NDDs,13 emphasizing the utility of trio sequencing as a

first-line strategy, in particular in sporadic cases.41,42 Second, with the

identification of 72 distinct molecular diagnoses in our cohort, we repli-

cate the enormous genetic heterogeneity underlying NDDs which
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challengesdiagnostic determinations based on clinical examinationalone,

even in disorders actually considered as highly recognizable such as

MowatWilson syndrome.16,43 Those findings illustrate the advantage of

exomesequencingovera targetedpanel sequencingapproachandfurther

support exome sequencing as first-tier for the genetic testing of

unexplained NDD in clinical practice.16,44 Third, we expand the list of

disease-causing variants in NDDs-associated genes with 50 previously

unreported (likely) pathogenic variants facilitating variant classification in

other cases. Last, we observed that in the majority of genes containing

de novo variants the predicted constraint metrics indicated an overall

high intolerance toward loss-of-function (pLI > 0.9) and/or missense

variants (Z-score > 3.09) or a region-specific constraint illustrating the

importance of constraint metrics for disease gene discovery and the

understanding of diseasemechanism.25

The percentage of autosomal recessive disorders in our NDD

cohort (�16%) which did not derive from a significant proportion of

cases with a consanguineous background was surprisingly high in

comparison to a previous study showing a low contribution (�4%) of

autosomal recessive disorders to NDD in patients with European

ancestry.45 The proportion of cases with syndromal NDD was higher

in the subgroup with autosomal recessive inheritance (n = 19/19,

100%) in comparison with those with de novo variants (n = 89/93,

95.7%) raising the question whether inclusion criteria were different

in our study in comparison with previously published cohorts.

As hundreds of novel causal genes for rare NDDs still await

discovery,5 we also aimed to elucidate novel disease-associated genes

for NDDs leading to the prioritization of more than 20 different candi-

date genes in our cohort of 231 individuals. A number of the nomi-

nated candidate genes have already resulted in publication as novel

disease-associated genes,28,29,31 once more emphasizing the potential

of international data sharing and cooperation.46,47 Most important,

we illustrate that a parent-offspring trio approach is also a powerful

tool for the discovery of novel disease-associated genes as it facili-

tates the prompt identification of de novo variants and assignment of

zygosity for inherited variants.42 Given the fact that our overall diag-

nostic yield did not include individuals with findings in new candidate

genes, some of which are currently in preparation for publication, we

furthermore anticipate that the actual number of molecular diagnoses

in our cohort is going to increase.

The discovery of gene-disease and variant-disease associations is

continually growing necessitating regular reevaluation of unsolved

exomes.48,49 In line with previous studies demonstrating an improved

diagnostic yield by systematic reanalysis of existing data,48,50 we

achieved a definitive diagnosis in two additional individuals (among

80 reanalyzed individuals with initial negative results). Beyond,

reanalysis in our cohort lead to the identification of two novel candi-

date genes for NDDs highlighting the potential of subsequent

reanalysis also for disease gene discovery.41,51

In summary, we consolidate the contribution and genetic hetero-

geneity of de novo variants in NDDs highlighting trio exome sequenc-

ing as an excellent diagnostic tool for rare NDDs. Besides, we

illustrate the potential of a trio-approach for candidate gene discovery

and the power of systematic reanalysis of unsolved cases.
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SUPPORTING INFORMATION

Additional supporting information may be found online in the

Supporting Information section at the end of this article.
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