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Abstract

TP53INP2 positively regulates autophagy by binding to Atg8
proteins. Here, we uncover a novel role of TP53INP2 in death-
receptor signaling. TP53INP2 sensitizes cells to apoptosis induced
by death receptor ligands. In keeping with this, TP53INP2 defi-
ciency in cultured cells or mouse livers protects against death
receptor-induced apoptosis. TP53INP2 binds caspase-8 and the
ubiquitin ligase TRAF6, thereby promoting the ubiquitination and
activation of caspase-8 by TRAF6. We have defined a TRAF6-inter-
acting motif (TIM) and a ubiquitin-interacting motif in TP53INP2,
enabling it to function as a scaffold bridging already ubiquitinated
caspase-8 to TRAF6 for further polyubiquitination of caspase-8.
Mutations of key TIM residues in TP53INP2 abrogate its interaction
with TRAF6 and caspase-8, and subsequently reduce levels of
death receptor-induced apoptosis. A screen of cancer cell lines
showed that those with higher protein levels of TP53INP2 are more
prone to TRAIL-induced apoptosis, making TP53INP2 a potential
predictive marker of cancer cell responsiveness to TRAIL treatment.
These findings uncover a novel mechanism for the regulation of
caspase-8 ubiquitination and reveal TP53INP2 as an important
regulator of the death receptor pathway.
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Introduction

Apoptosis is a process of programmed cell death that is crucial for

the homeostasis of an organism, and its deregulation occurs in

several pathologies (Jacobson et al, 1999; Vaux & Korsmeyer,

1999). Apoptosis can be triggered through either an intrinsic or

extrinsic pathway (Ferri & Kroemer, 2001; Fulda & Debatin, 2006).

In the former, cellular damage is sensed by various Bcl-2 pro-apop-

totic homologues and leads to Bax/Bak oligomerization in the outer

mitochondrial membrane, release of cytochrome c, and apoptosome

formation, where caspase-9 is activated (Zou et al, 1999). Activated

caspase-9 cleaves caspases-3, -6, and -7, which execute apoptosis

(Zou et al, 1999). In the extrinsic pathway, death ligands (FasL,

TRAIL/Apo2L and TNFa) bind to their cognitive receptors and

induce their trimerization, thereby allowing subsequent binding of

the adaptor protein FADD and caspase-8 to the DISC complex

(death-inducing signaling complex; Medema et al, 1997). Caspase-8

was thought to be activated through the so-called proximity-induced

model, i.e., dimerization of pro-caspase-8 molecules in the DISC

complex. However, this model has recently been challenged by the

DED chain assembly model, which proposes that a FADD molecule

interacts with several caspase-8 molecules (Dickens et al, 2012;

Schleich et al, 2012). Activated caspase-8 directly cleaves execu-

tioner caspases (i.e., caspase-3) in type I cells (e.g., thymocytes),

while in type II cells (e.g., hepatocytes) it cleaves the Bcl-2 homol-

ogy domain 3 (BH3) protein Bid, producing tBid, which amplifies

the signal through mitochondria (Li et al, 1998; Luo et al, 1998).

Recently, several studies have added additional layers of complexity

to caspase-8 activation, revealing that ubiquitination plays a key

role in this process. For example, the E3 ubiquitin ligase cullin-3

1 Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
2 CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain
3 Departament de Bioquimica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
4 Institute of Biochemistry II, Goethe University School of Medicine, Frankfurt am Main, Germany
5 German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
6 Munich Cluster for System Neurology, Medical Faculty, Ludwig-Maximilians-University München, Munich, Germany
7 Hospital Universitari de Tarragona Joan XXIII, Institut Investigació Sanitaria Pere Virgili (IISPV), Universitat Rovira i Virgili, Tarragona, Spain
8 ICREA, Insitució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
9 CIBER de Enfermedades Raras, Barcelona, Spain

10 CIBERONC, Barcelona, Spain
11 Departament de Medicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain

*Corresponding author. Tel: +34934034701; E-mail: saska.ivanova@irbbarcelona.org
**Corresponding author. Tel: +34934037197; E-mail: antonio.zorzano@irbbarcelona.org

ª 2019 The Authors The EMBO Journal 38: e99300 | 2019 1 of 19

D
ow

nloaded from
 https://w

w
w

.em
bopress.org on June 9, 2024 from

 IP 138.246.3.104.

https://orcid.org/0000-0003-0080-6680
https://orcid.org/0000-0003-0080-6680
https://orcid.org/0000-0003-0080-6680
https://orcid.org/0000-0003-2483-7000
https://orcid.org/0000-0003-2483-7000
https://orcid.org/0000-0003-2483-7000
https://orcid.org/0000-0002-7631-4060
https://orcid.org/0000-0002-7631-4060
https://orcid.org/0000-0002-7631-4060
https://orcid.org/0000-0001-6473-2858
https://orcid.org/0000-0001-6473-2858
https://orcid.org/0000-0001-6473-2858
https://orcid.org/0000-0002-9184-7607
https://orcid.org/0000-0002-9184-7607
https://orcid.org/0000-0002-9184-7607
https://orcid.org/0000-0002-1638-0306
https://orcid.org/0000-0002-1638-0306
https://orcid.org/0000-0002-1638-0306
http://crossmark.crossref.org/dialog/?doi=10.15252%2Fembj.201899300&domain=pdf&date_stamp=2019-04-12


ubiquitinates caspase-8 at its C-terminus in the DISC complex and

ubiquitinated caspase-8 is aggregated by p62 for its full activation

(Jin et al, 2009). In contrast, TRAF2 adds K48-ubiquitin chains to

the large catalytic domain of caspase-8 and marks it for degradation

(Gonzalvez et al, 2012), while HECTD3 ubiquitination of the Lys

residue between the DED and the large domain of caspase-8

increases the threshold for death receptor-induced apoptosis (Li

et al, 2013).

One of the hallmarks of cancer cells is their capacity to evade

apoptosis. Most chemotherapies in clinical practice aim to induce

cell death in tumors, thus shrinking the tumors to a size that can be

removed by surgery, or to kill any remaining and/or circulating

tumor cells. Chemotherapy has several disadvantages. In addition to

not being effective in all or even in the majority of patients, it causes

side effects. This observation points to the need for personalized

medicine, i.e., the selection of patients that will respond and benefit

from a given chemotherapy. The initial optimism caused by the

discovery of TRAIL, for example, which selectively kills cancer cells,

plummeted after several unsuccessful clinical trials. Thus, better

antagonists and molecular markers to identify patients who would

respond to TRAIL are needed (de Miguel et al, 2016; von Karstedt

et al, 2017). This need is further emphasized by the observation that

tumors not undergoing apoptosis upon TRAIL administration can

diverge the signaling to cytokine production, thus favoring tumor

growth (Hartwig et al, 2017; Henry & Martin, 2017).

The complexity of the cross-talk between autophagy and apopto-

sis has been widely studied, not only with the purpose of under-

standing the underlying mechanisms, but also of modulating both

pathways in tumors. Several autophagic proteins have a dual role in

both processes (Yousefi et al, 2006; Cho et al, 2009; Giansanti et al,

2011). The inhibition of autophagy causes the accumulation of

autophagosomal membranes, which serve as platforms for intracel-

lular DISC formation (Laussmann et al, 2011; Pan et al, 2011;

Young et al, 2012; Huang et al, 2013). Canonical and intracellular

DISC formation occurs independently and requires distinct

membranes (Jiang et al, 2011; Laussmann et al, 2011; Pan et al,

2011; Young et al, 2012; Deegan et al, 2014). Thus, pro-caspase-8

binds to intracellular DISC on the phagophore through ATG12-

ATG5-FADD on the outer membrane or through LC3-p62 on the

inner membrane of the accumulating autophagosomes (Bell et al,

2008; Jiang et al, 2011; Laussmann et al, 2011; Pan et al, 2011;

Young et al, 2012; Huang et al, 2013; Deegan et al, 2014; Tang

et al, 2017). The LC3-p62 axis most probably recruits ubiquitinated

caspase-8 in a similar way as the autophagic cargo is recruited to

autophagosomes (Pankiv et al, 2007; Huang et al, 2013).

In proliferating cells, TP53INP2 is a nuclear protein that interacts

with nuclear hormone receptors (Baumgartner et al, 2007; Francis

et al, 2010), shuttles from the nucleus to the cytosol (Mauvezin

et al, 2010, 2012), and stimulates protein synthesis by promoting

ribosomal biogenesis in the nucleolus (Xu et al, 2016). However,

upon nutrient depletion, TP53INP2 interacts with a nuclear and

deacetylated pool of LC3 and shuttles it rapidly to the cytosol to

initiate autophagy (Huang et al, 2015). TP53INP2 is a positive regu-

lator of autophagy, and it interacts directly with the LIR sequence of

all Atg8 family members (Nowak et al, 2009; Mauvezin et al, 2010;

Sancho et al, 2012). We recently showed that TP53INP2 is also an

ubiquitin-binding protein, with a preference for mono- and K63-

linked ubiquitin chains (Sala et al, 2014).

Here, we identified an unexpected role of TP53INP2 in death

receptor signaling. We show that TP53INP2 sensitizes various

cancer cell lines to death receptor-induced apoptosis. We observed

that TP53INP2 increases the activation of caspase-8 by upregulating

its K63-ubiquitination levels in a TRAF6-dependent manner.

Furthermore, we demonstrate that TP53INP2 acts as a scaffold for

caspase-8 polyubiquitination by TRAF6. In addition, we show that

cancer cell lines with high protein levels of TP53INP2 respond better

to TRAIL-induced apoptosis than those with no or low amounts of

TP53INP2. This observation indicates that TP53INP2 might be a

potential biomarker for personalized TRAIL treatment in cancers

where caspase-8 protease activity is intact. Altogether, our findings

demonstrate that TP53INP2 acts as a switch at the level of caspase-8

activation, favoring death receptor-mediated apoptosis.

Results

TP53INP2 regulates death receptor-induced apoptosis

Several autophagic proteins participate in the cross-talk between

autophagy and apoptosis (Yousefi et al, 2006; Cho et al, 2009;

Laussmann et al, 2011; Huang et al, 2013; Strappazzon et al, 2016).

In this regard, we examined the role of TP53INP2 in apoptosis. We

overexpressed TP53INP2 in HeLa cells, which express undetectable

levels of this protein, and we induced cell death by various agents.

Surprisingly, TP53INP2 increased the sensitivity of cells to death

induced by ligands of death receptors more efficiently than to other

inducers (Fig 1A and Appendix Fig S1A). This observation

prompted us to explore the role of TP53INP2 in death receptor-

induced cell death. Using inhibitors of apoptosis (zVAD) and necro-

sis (necrostatin-1/Nec-1), annexin V staining [flow cytometry

measurement of phosphatidylserine exposure (PS)] and DEVDase

activity (indicative of caspase activity), we confirmed that TP53INP2

sensitizes cells to death receptor-induced apoptosis and not necrop-

tosis (Fig 1B and C, and Appendix Fig S1B). Furthermore, the

activation of caspase-8 and caspase-3, and detection of the caspase-

generated 85 kDa fragment of PARP-1 were higher in cells express-

ing TP53INP2 and treated with a range of concentrations of FasL

and TRAIL (Fig 1D and E). TNFa induces apoptosis by activation of

the death receptor pathway by a process that is stimulated to cyclo-

heximide (Kreuz et al, 2001), and TNFa-induced apoptosis was

further augmented by TP53INP2 overexpression in HeLa cells

(Appendix Fig S1C and D). Similar results were obtained in

MDA231 and MCF7 cells treated with FasL (Appendix Fig S1E and

F). LC3-II protein levels were increased in TP53INP2-overexpressing

cells as previously described (Fig 1D and E; Sala et al, 2014). More-

over, time-course experiments showed that FasL-induced apoptosis

in TP53INP2-expressing cells occurs faster than in control cells. In

the former, apoptosis started around 4 h post-induction (Fig 1F). At

this time point, caspase-3 cleavage was detected and the levels of

TP53INP2 were the highest (Fig 1F), thereby supporting the notion

that TP53INP2 accumulates in the first 4 h of FasL treatment and

that TP53INP2 contributes to faster activation of apoptosis triggered

by death receptors. Similar results were obtained by time-course

experiment with TRAIL (Fig 1G). Since TP53INP2 is cleaved during

apoptosis and we detected a cleavage product of approximately

26 kDa (Fig 1D–G), we explored whether the sensitization of
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TP53INP2 to death receptor-induced apoptosis involves its cleavage

by caspases. To test this, we first mutated aspartate residues at

potential caspase cleavage sites (Fig 1H) to glutamate in order to

produce a caspase-noncleavable mutant form (TP53INP2 3DE).

Indeed, recombinant caspase-3 cleaved the wild-type TP53INP2 but

not the 3DE mutant (Appendix Fig S1G); however, the 3DE mutant

did not abolish the sensitization effect of TP53INP2 to FasL-induced

apoptosis (Fig 1I and J). This observation indicates that the mecha-

nism involved does not require the cleavage of TP53INP2 by

caspases.

In contrast, HeLa cells depleted of TP53INP2 by CRISPR tech-

nology were less sensitive to treatment with FasL or TRAIL

A B C

D E F

G H

JI

Figure 1. TP53INP2 sensitizes cells to death receptor-induced apoptosis.

A HeLa cells were treated with the indicated inducers of apoptosis for 24 h, and cell viability was assessed by annexin V and PI staining.
B The percentage of viable cells 24 h after FasL (50 ng/ml) and TRAIL (10 ng/ml) treatment in the absence or presence of z-VAD-fmk (20 lM) or Nec-1 (30 lM).
C Quantification of DEVDase activity in HeLa cells after 16 h of FasL or 4 h of TRAIL treatment.
D, E HeLa cells were infected with adenovirus for LacZ or TP53INP2 and treated with different concentrations of FasL for 16 h (D) or TRAIL for 4 h (E). Cell lysates were

then subjected to Western blot analysis for various apoptotic and autophagic markers.
F Time-dependent cleavage of PARP-1, caspase-8, caspase-3, and TP53INP2 during FasL-induced apoptosis (50 ng/ml) in HeLa cells expressing LacZ or TP53INP2.
G Time-dependent cleavage of PARP-1, caspase-8, caspase-3, and TP53INP2 during TRAIL-induced apoptosis (50 ng/ml) in HeLa cells expressing LacZ or TP53INP2.
H Schematic presentation of caspase cleavage sites in human and mouse TP53INP2. LIR; LC3 interacting region.
I DEVDase activity quantification in lysates of HeLa cells expressing LacZ, wt TP53INP2 or TP53INP2 3DE mutant in control or FasL-treated cells (50 ng/ml; 16 h).
J HeLa cells were transduced with adenovirus for LacZ, wt TP53INP2 or 3DE mutant, and cell lysates were subjected to Western blot analysis with indicated

antibodies.

Data information: Data are given as mean � SEM and were analyzed by two-way Student’s t-test; n = three independent experiments, *P < 0.05.
Source data are available online for this figure.
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(Fig 2A–H). Thus, percentage of cell death was lower in

TP53INP2-deficient cells compared to wild-type cells upon FasL or

TRAIL (Fig 2B), and similarly, cleaved caspase-3 or PARP-1 was

reduced in TP53INP2-deficient cells treated with FasL or TRAIL

(Fig 2C–H).

Furthermore, we generated liver-specific TP53INP2 KO mice (L-

KO) by crossing Tp53inp2loxP/loxP mice (Sala et al, 2014) with mice

expressing Cre recombinase under the control of the albumin

promoter. TP53INP2 protein levels were undetectable in livers of L-

KO animals, and no changes in the protein levels in other tissues

were detected (Fig 2I; Appendix Fig S2A and B). L-KO male and

female mice showed normal body weight or blood glucose levels

(Appendix Fig S2C and D). Primary hepatocytes isolated from these

mice were less susceptible to FasL- and TNFa-induced apoptosis

than hepatocytes from control mice (Fig 2J and K, and Appendix Fig

S2E). Introducing TP53INP2 back to the L-KO hepatocytes by aden-

oviral infection restored the capacity of FasL or TNFa to induce

apoptosis, as reflected by increased amounts of cleaved PARP-1 and

cleaved caspase-3 (Appendix Fig S2E). Of note, overexpression of

TP53INP2 per se in control and L-KO hepatocytes was pro-apoptotic

(Appendix Fig S2E), thus making high amounts of TP53INP2 toxic

for the liver.

Taken together, our results show that TP53INP2 increases

susceptibility to death receptor-induced apoptosis and that it does

so upstream of caspase activation, i.e., before TP53INP2 is cleaved

by caspases.

A B C D

E

J K

F G H

I

Figure 2. Loss of TP53INP2 renders cells resistant to death receptor-induced apoptosis.

A Western blot analysis of TP53INP2 in wild-type (wt) HeLa and TP53INP2 CRISPR KD cells.
B Cell viability of HeLa wt and TP53INP2 KD cells after 24 h treatment with FasL (50 ng/ml) or TRAIL (10 ng/ml) measured as annexin V- and PI-negative cells.
C HeLa control cells and TP53INP2 CRISPR KD cells were treated with different concentrations of FasL for 16 h, and cell lysates were subjected to Western blot

analysis for PARP and caspase-3 cleavage.
D, E Quantification of protein levels of cleaved PARP (D) and cleaved caspase-3 (E) after FasL treatment.
F HeLa control cells and TP53INP2 CRISPR KD cells were treated with different concentrations of TRAIL for 4 h, and cell lysates were subjected to Western blot

analysis for PARP1, caspase-3, and caspase-8 cleavage.
G, H Quantification of protein levels of cleaved PARP (G) and cleaved caspase-3 (H) after TRAIL treatment.
I Detection of TP53INP2 protein levels in livers of control and TP53INP2 L-KO mice.
J Control and TP53INP2 KO hepatocytes were treated with FasL for 16 h, and levels of cleaved caspase-3 were detected by Western blot.
K Quantification of protein levels of cleaved caspase-3 after FasL treatment.

Data information: Data are given as mean � SEM and were analyzed by two-way Student’s t-test; n = three independent experiments, *P < 0.05.
Source data are available online for this figure.
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Loss-of-function of TP53INP2 protects livers from FasL-induced
apoptosis in vivo

We next tested whether TP53INP2 regulates death receptor-induced

apoptosis in vivo. Control and L-KO mice were injected intraperi-

toneally with PBS or FasL for 4 h. The cleavage product of PARP-1

and cleaved caspase-3 were detected in controls, but were absent or

present to a lesser extent in L-KO mice treated with FasL (Fig 3A

and B). Of note, protein levels of p62 were increased and LC3II

decreased in L-KO mice treated with PBS (Fig 3A), which is in keep-

ing with prior observations in TP53INP2-deficient skeletal muscle

(Sala et al, 2014). In addition, immunohistochemical staining

showed more cleaved caspase-3 positive cells in control livers

treated with FasL than in L-KO livers (Fig 3C and D). Analysis of

TUNEL-positive cells further confirmed more apoptotic cells in

control livers treated with FasL than in L-KO livers (Fig 3E and F).

Given that caspase-8 activation is not sufficient to directly cleave

caspase-3 in liver cells and the signal is amplified through mitochon-

dria, we also checked by immunofluorescence the release of cyto-

chrome c from mitochondria. TOM20 was used as marker of

mitochondria. As expected, cytochrome c colocalized with TOM20

in PBS-treated livers of control and L-KO mice (Fig 3G and H; and

Appendix Fig S3A). However, in FasL-treated livers of control

animals, cytochrome c did not completely colocalize with this

marker, indicating the release of cytochrome c from mitochondria

(Fig 3G and H; and Appendix Fig S3A) and apoptosome formation,

leading to the activation of executioner caspases (i.e., caspase-3). In

contrast, colocalization of TOM20 and cytochrome c was detected in

FasL-treated L-KO mice (Fig 3G and H, and Appendix Fig S3A).

To determine whether TP53INP2 deficiency has an impact on

death receptor independent pathway, control and KD HeLa cells

were treated with agents that induce intrinsic cell death such as

doxorubicin, cisplatin, or actinomycin D. These agents reduced cell

viability in a time-dependent manner (Fig 4A). However, only upon

actinomycin D treatment, a significant increase in viability was

detected in TP53INP2-deficient cells (Fig 4A). DEVDase activity was

similarly induced in control and TP53INP2-deficient cells upon treat-

ment with doxorubicin, cisplatin, or actinomycin D (Fig 4B), and

cleaved PARP-1 was lower in TP53INP2 KD cells compared to

controls upon cisplatin but not after doxorubicin and actinomycin D

treatment (Fig 4D). Next, control and TP53INP2 L-KO mice were

treated with doxorubicin or cisplatin for 48 h. No differences

between control and L-KO groups were visualized when immunode-

tecting either cleaved caspase-3 (Fig 4E and F) or TUNEL-positive

cells upon treatment with doxorubicin (Fig 4G and H). In contrast,

cisplatin administration caused reduction in cleaved caspase-3 or

TUNEL-positive cells in livers from L-KO mice compared with

control mice (Fig 4E–H). Taken together, our data indicate that

TP53INP2 regulates the cell death receptor pathway as well as

some, but not all, of the intrinsic apoptotic pathways in mouse liver.

Regulation of death receptor signaling by TP53INP2 does not
require canonical autophagy

Given that autophagy is involved in the regulation of caspase-8 acti-

vation (Bell et al, 2008; Pan et al, 2011; Huang et al, 2013), we first

studied whether TP53INP2 sensitization to death receptor-induced

apoptosis depends on autophagy. ATG5 was downregulated in HeLa

cells by shRNA (Appendix Fig S4A), and apoptosis was induced

with FasL. ATG5 deficiency did not abrogate DEVDase activity and

apoptosis (Appendix Fig S4B), thereby indicating that canonical

autophagy does not participate in the mechanism by which

TP53INP2 sensitizes cells to FasL-induced apoptosis. We further

confirmed this observation by generating ATG7 KO cells with

CRISPR technology, and we obtained the same results as with the

ATG5 KD model (Appendix Fig S4C–G). In addition, inhibition of

autophagy with bafilomycin A1 (Baf A1) or wortmannin (Wort) did

not rescue the enhanced FasL-induced apoptosis in TP53INP2-

expressing cells (Appendix Fig S4H). All together, these data show

that TP53INP2 sensitization to FasL does not require autophagy or

intracellular DISC formation.

TP53INP2 interacts with and increases the levels of
ubiquitinated caspase-8

An autophagy cargo protein, p62, has been shown to directly acti-

vate caspase-8 by aggregating ubiquitinated caspase-8 (Jin et al,

2009). TP53INP2 overexpression upregulates p62 (Sala et al, 2014);

thus, we addressed whether TP53INP2 function in death receptor

signaling is dependent on p62. The downregulation of p62 did not

rescue FasL-induced cell death in TP53INP2-expressing cells, even

though there was slightly less apoptosis in p62 knock-down cells

(Appendix Fig S4I and J). On the basis of these observations, we

then explored whether TP53INP2 participates directly in caspase-8

activation. Caspase-8-deficient cells (Appendix Fig S4K) showed

reduced FasL-induced apoptosis in control and TP53INP2-expres-

sing cells (Appendix Fig S4L and M). Surprisingly, caspase-8 knock-

down cells tolerated higher protein levels of TP53INP2 than the

scrambled cells (Appendix Fig S4M), thereby further corroborating

our hypothesis that TP53INP2 acts directly through caspase-8. In

order to prove this, we examined whether TP53INP2 aggregated

caspase-8 in a similar way as p62, especially since both proteins

bind ubiquitin and are aggregation-prone. TP53INP2 aggregated

caspase-8 to almost the same extent as p62 (Fig 5A and B);

however, caspase-8 dots in TP53INP2-overexpressing cells were

much smaller than those in p62-overexpressing ones. These obser-

vations suggest that p62 has higher affinity to ubiquitinated

caspase-8 than TP53INP2 and/or that TP53INP2 acts upstream of

the aggregation of ubiquitinated caspase-8. To confirm that

TP53INP2 has a direct effect on caspase-8 activation, we next exam-

ined whether the two proteins colocalize. Caspase-8 and TP53INP2

colocalized in a dot-like manner, but again to a lesser extent than

p62 (Appendix Fig S4N). Since we previously showed that

TP53INP2 dislocates p62 from LC3 in autophagy (Sala et al, 2014),

a process in which the two proteins compete for the same binding

site, we examined whether they also compete for the same binding

sites in caspase-8 or ubiquitinated caspase-8. To test this notion, we

co-expressed p62, TP53INP2, and caspase-8 and analyzed their

localization. All three proteins colocalized in large aggregate-like

dots (Appendix Fig S4O), thereby suggesting that they are in the

same pathway and that p62 and TP53INP2 do not exclude each

other from caspase-8-positive dots; i.e., TP53INP2 and p62 do not

bind to the same binding sites in (ubiquitinated) caspase-8. We con-

firmed this also with endogenous proteins in Snu449 cells, in which

TP53INP2, p62, and caspase-8 completely colocalized when

caspase-8 was aggregated upon TRAIL treatment (Fig 5C and D).
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A B C

D E F

G H

Figure 3. TP53INP2 deficiency protects livers from FasL-induced apoptosis.

A Control and TP53INP2 L-KO animals were injected with PBS or FasL i.p. for 4 h. Whole liver lysates were subjected to immunodetection of the indicated apoptotic
and autophagic markers.

B Quantification of Western blot of cleaved caspase-3 and PARP. Data are presented as mean � SEM of four samples.
C Cleaved caspase-3 immunohistochemistry staining of livers from control and TP53INP2 L-KO mice treated with PBS or FasL (Scale bar, 100 lm).
D Quantification of cleaved caspase-3 immunohistochemistry staining. Data are presented as mean � SEM of nine different fields (per mice) where in each field more

than 200 cells were counted.
E TUNEL immunohistochemistry staining of livers from control and TP53INP2 L-KO mice treated with PBS or FasL (Scale bar, 100 lm).
F Quantification of TUNEL immunohistochemistry staining. Data are presented as mean � SEM of more than 1,500 cells counted per mice (four mice in each

experimental group).
G TOM20 (red) and cytochrome C (green) immunohistofluorescence staining of livers from control and TP53INP2 L-KO mice (Scale bar, 25 lm).
H Quantification of cells with disperse cytochrome c staining. Data are presented as mean � SEM of more than 300 cells counted per each experimental group.

Data information: Two-way Student’s t-test was performed, *P < 0.05.
Source data are available online for this figure.
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Figure 4. TP53INP2 differentially sensitizes to intrinsic apoptotic inducers.

A, B Viability (A) and DEVDase activity (B) of HeLa control and TP53INP2 KD cells treated with doxorubicin, cisplatin, and actinomycin D. Data are presented as
mean � SEM of n = 4–8 of independent experiments in (A) and three in (B).

C Immunodetection of cleaved PARP in control and TP53INP2 KD cells after treatment with doxorubicin, cisplatin, and actinomycin D.
D Quantification of protein levels of cleaved PARP. Data are presented as mean � SEM of at least three independent experiments.
E Cleaved caspase-3 immunohistochemistry staining of livers from control and TP53INP2 L-KO mice treated with PBS, doxorubicin, or cisplatin (Scale bar, 100 lm).
F Quantification of cleaved caspase-3 immunohistochemistry staining. Data are presented as mean � SEM of nine different fields (per mice) where in each field

more than 200 cells were counted.
G TUNEL immunohistochemistry staining of livers from control and TP53INP2 L-KO mice treated with PBS, doxorubicin, or cisplatin (Scale bar, 100 lm).
H Quantification of TUNEL immunohistochemistry staining. Data are presented as mean � SEM of more than 1,500 cells counted per mice (four mice in each

experimental group).

Data information: Two-way Student’s t-test was performed, *P < 0.05.
Source data are available online for this figure.
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Figure 5. TP53INP2 interacts with caspase-8 and regulates its ubiquitination levels.

A HeLa cells were transfected with xpress-casp-8-NCC alone or together with TP53INP2 or p62. Caspase-8 in dimers/aggregating localization and dot-like structures
were detected with xpress antibody (Scale bar, 10 lm).

B Quantification of caspase-8 dots in immunofluorescence experiment. Data are presented as mean � SEM of 25 cells per experimental group.
C Immunofluorescence colocalization analysis of caspase-8 with TP53INP2 and p62 in Snu449 cells in control or TRAIL (250 ng/ml) treated cells for 30 min (Scale bars,

10 lm).
D Quantification of the colocalization. Data are presented as mean � SEM of 25 cells per experimental group.
E HEK293T cells were transfected with xpress-casp-8-NCC and FLAG-TP53INP2, and 24 h later, cell lysates were pulled down with FLAG resin. IPs and inputs were

afterward immunodetected with xpress and TP53INP2 antibody.
F HEK293T cells were transfected with wt FLAG-casp-8 or FLAG-casp-8-Ub6 or FLAG-casp-8-Ub9 with or without TP53INP2 in the presence of 20 lM z-VAD-fmk. Pull-

down assays were done with FLAG resin. IPs and inputs were immunodetected with FLAG or TP53INP2 antibodies.
G Pull-down assay of recombinant pro-caspase-8 and TP53INP2.
H HEK293T cells were transfected with xpress-casp-8-NCC, His-Ub, and TP53INP2 in the presence or absence of 20 lM z-VAD-fmk. Denaturing pull-down assays were

done with His resin. IPs and inputs were immunodetected with the indicated antibodies.
I Denaturing pull-down assays of HEK293T cells transfected with indicated plasmids. IPs and inputs were subjected to immunodetection with xpress, casp-8, and

TP53INP2 antibodies. The amount of ubiquitinated casp-8 was quantified with Fiji software.

Data information: Two-way Student’s t-test was performed, *P < 0.05.
Source data are available online for this figure.
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Surprisingly, TP53INP2 is not mainly nuclear in Snu449 cells

(Fig 5C). This is coherent with the fact that caspase-8 activation in

death receptor-induced apoptosis is cytosolic. We further analyzed

whether the cellular localization of TP53INP2 in HeLa cells is coher-

ent with the cytosolic aggregation and activation of caspase-8.

Immunolocalization and subcellular fractionation assays revealed

that TP53INP2 was mainly nuclear in HeLa cells at all times after

TRAIL treatment, but a significant proportion of TP53INP2 was also

cytosolic, and therefore available for interaction with caspase-8

(Appendix Fig S5A–D, Movie EV1).

In order to further confirm the interaction, we performed co-

immunoprecipitation experiments of caspase-8 and TP53INP2. We

pulled down caspase-8 with TP53INP2 (Fig 5E), and this interaction

was not due to the ubiquitination of TP53INP2, since we obtained

the same result with a TP53INP2 mutant that cannot be ubiquiti-

nated (3KR, Appendix Fig S4P). Moreover, we pulled down

TP53INP2 with wild-type caspase-8 and to a higher extent with

chimeric proteins of caspase-8 fused to 6 or 9 ubiquitins (Fig 5F). In

this experiment, we added z-VAD-fmk to the cells due to high levels

of apoptosis, especially in those transfected with caspase-8-Ub6 or

caspase-8-Ub9. Altogether, our pull-down assays showed that

TP53INP2 and caspase-8 interact and that this interaction is stronger

in the presence of ubiquitin(s). We can rule out this interaction

being due exclusively to the cleavage of TP53INP2 by caspase-8

since we also detected it in the presence of z-VAD-fmk, an inhibitor

of caspases that irreversibly binds to the catalytic site of caspase

proteases.

Our results indicate that TP53INP2 binds to caspase-8 and/or

ubiquitinated caspase-8. To discriminate between these two possi-

bilities, we tried to identify the ubiquitin-binding motifs in

TP53INP2. We split TP53INP2 into two halves and used these

constructs for the pull-down assays. The N-terminal half of

TP53INP2 retained capacity to interact with ubiquitin/ubiquitinated

proteins, while interaction with the C-terminal half was almost

completely abolished (Appendix Fig S6A). We excluded the possibil-

ity of the N-terminal part being ubiquitinated as all three Lys resi-

dues in the protein are at the C-terminal. We checked the TP53INP2

sequence and identified a potential ubiquitin-interacting motif (UIM;

Appendix Fig S6B). Mutation of the key residues in the UIM motif

(Appendix Fig S4B) caused a 20% decrease in the interaction of

TP53INP2 ALA mutant with ubiquitin (Appendix Fig S6C and D).

This observation suggests that besides the potential UIM motif

TP53INP2 has additional ubiquitin-binding motifs/domains. Since

we could not make a mutant of TP53INP2 lacking the capacity to

bind ubiquitin, we performed experiments with recombinant

proteins. As seen in Fig 5G, we pulled down TP53INP2 with

caspase-8 in the absence of ubiquitin (even when caspase-8 was

aggregating), supporting the view that TP53INP2 interacts directly

with caspase-8.

We next tested whether TP53INP2 acts upstream of caspase-8

ubiquitination, i.e., whether it participates in the regulation of

caspase-8 ubiquitination. We performed denaturing pull-down

assays with His-Ub and caspase-8 in the presence or absence of

TP53INP2. The addition of TP53INP2 upregulated the levels of ubiq-

uitinated caspase-8, and caspase-8 and TP53INP2 were cleaved,

thereby confirming faster activation of caspase-8 in the presence of

TP53INP2 (Fig 5H). In order to fully appreciate the difference in the

degree of caspase-8 ubiquitination, experiments were performed by

pre-treating the cells with z-VAD-fmk. Again, and to a much higher

extent, TP53INP2 upregulated the levels of ubiquitinated caspase-8

compared with the sample without TP53INP2 (Fig 5H). Several

studies have reported that ubiquitin chains added to caspase-8 can

be K48 or K63 (He et al, 2006; Jin et al, 2009; Gonzalvez et al,

2012; Li et al, 2013). Ubiquitin K48 chains mark caspase-8 for

degradation, while ubiquitin K63 can enhance or block the activa-

tion of the caspase-8, depending on which Lys residue is ubiquiti-

nated. To determine the chains that are preferentially added to

caspase-8 in the presence of TP53INP2, we used mutants of ubiqui-

tin that can make only K48 or K63 chains. As expected, mainly

because TP53INP2 enhances apoptosis, we detected an increase in

the K63 ubiquitination of caspase-8 in the presence of TP53INP2

(Fig 5I), precisely the type of ubiquitination that favors caspase-8

activation. Collectively, our data show that TP53INP2 colocalizes

and interacts with caspase-8. Moreover, they reveal that TP53INP2

promotes caspase-8 ubiquitination with K63 ubiquitin chains.

TP53INP2 sensitization to death receptor-induced apoptosis is
dependent on TRAF6

TP53INP2 is not an E3 ubiquitin ligase, but it may act as a scaffold,

bringing together several components of the same complex for a

more efficient function of the signaling hub. To determine the E3

ubiquitin ligase responsible for the enhanced ubiquitination of

caspase-8 in the presence of TP53INP2, we first analyzed cullin-3,

which ubiquitinates caspase-8 with K63 chains in death receptor-

induced apoptosis (Jin et al, 2009). We did not detect any interac-

tion between TP53INP2 and cullin-3 (Appendix Fig S7A). Further-

more, we repressed cullin-3 expression (Appendix Fig S7B) and

induced apoptosis with FasL in control and TP53INP2-expressing

cells. No differences in the levels of cleaved caspase-3 were detected

in wild-type or CUL3-deficient cells upon TP53INP2 expression

(Appendix Fig S7C). These observations thus exclude this E3 ubiqui-

tin ligase as being responsible for enhanced caspase-8 ubiquitination

in the presence of TP53INP2.

Two more E3 ubiquitin ligases, TRAF6 and HECTD3, have been

reported to add K63 chains to caspase-8 during death receptor-

induced apoptosis (He et al, 2006; Li et al, 2013). HECTD3 K63-

linked polyubiquitination of caspase-8 inhibits its activation, so we

focused on TRAF6. TRAF6 was knocked out by CRISPR technology

(Fig 6A). The absence of TRAF6 alone decreased FasL- and TRAIL-

induced apoptotic cell death compared to control cells (Fig 6A). The

same was seen in MDA231 TRAF6 KO cells (Appendix Fig S8A). In

addition, TRAF6 deficiency reduced FasL- and TRAIL-induced

caspase activity, the levels of cleaved caspase-3 and cleaved PARP-

1, and percentage of cell death in TP53INP2-expressing cells

(Fig 6B–H, and Appendix Fig S8B). Furthermore, we obtained simi-

lar results in TRAF6 KO MEF cells (Appendix Fig S8C and D).

Moreover, TP53INP2 immunoprecipitated with TRAF6 in basal

conditions and to a greater extent after a 20 min treatment of the

cells with FasL (Fig 6I). However, this interaction appeared to be

transient, since the amount of TP53INP2 immunoprecipitated

dropped after 1 h of FasL treatment, or, on the other hand, caspase-

8 was already activated in TRAF6- and TP53INP2-overexpressing

cells and started cleaving TP53INP2, which might explain the

decrease in the levels of TP53INP2 in the extracts (inputs in Fig 6I).

In addition, the interaction of TRAF6 and TP53INP2 did not depend
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on the ubiquitination of TP53INP2 by TRAF6, since the TP53INP2

3KR mutant interacted with TRAF6 to same extent (Appendix Fig

S8E).

We mapped a TRAF6-interacting motif (TIM; Ye et al, 2002) in

the N-terminal part of TP53INP2 (Fig 6J). We mutated the two key

residues in the TIM, generating the TP53INP2 TIM mutant (Fig 6J).

A D

FE G

I J K

L M N

O P

H

B C

Figure 6.
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The mutation of TIM in TP53INP2 reduced the binding to TRAF6 by

about 50% compared to the wild type (Fig 6K). Mutations of

TP53INP2 in the N-terminal might alter its exit from the nucleus;

however, we proved that this was not the case with the TIM mutant,

in contrast to the LIR mutant, which was unable to leave the

nucleus (Appendix Fig S8F). Moreover, overexpression of the TIM

and LIR mutant decreased the levels of FasL-induced apoptosis

compared to the wild-type TP53INP2 (Appendix Fig S8G), thereby

suggesting that the sensitization of TP53INP2 to FasL apoptosis

relies on its binding to TRAF6 and also on its ability to exit the

nucleus. In addition, we co-immunoprecipitated endogenous

caspase-8 with TRAF6. The interaction was stronger in the presence

of TP53INP2 (Fig 6L), thus indicating that caspase-8, TRAF6, and

TP53INP2 are in the same complex. We could also co-immunopreci-

pitate endogenous TRAF6 and TP53INP2 with endogenous caspase-

8 in HeLa cells stably expressing TP53INP2 (Fig 6M). Catalytically

inactive TRAF6 (C70A) did not pull down the endogenous caspase-

8. Also, the amount of TP53INP2 was reduced dramatically

(Fig 6N), implying that the strength of the caspase-8/TRAF6/

TP53INP2 complex depends on the ubiquitination activity of TRAF6.

Since the TP53INP2 TIM mutant and the TRAF6 C70A mutant

reduced the binding of TRAF6 and TP53INP2 to the same extent, we

speculated that the remaining binding between the two proteins (in

Fig 6N) is not due to an additional TRAF6 binding site in TP53INP2

but to the binding of TP53INP2 to ubiquitinated TRAF6 itself or to

other ubiquitinated components of the complex. Indeed, expression

of the TP53INP2 TIM and TRAF6 C70A mutants abolished the inter-

action between the two proteins (Fig 6N). The direct interaction

between the two proteins (TRAF6 and TP53INP2) was also seen in

in vitro pull-down of recombinant proteins (Fig 6O). To confirm that

TP53INP2 upregulates caspase-8 ubiquitination in the presence of

TRAF6, we performed an in vitro ubiquitination assay. TRAF6 alone

ubiquitinated caspase-8. However, the addition of TP53INP2 further

increased the ubiquitination of caspase-8 (Fig 6P).

Taken together, our results support the notion that TP53INP2

acts as a scaffold for caspase-8 ubiquitination by TRAF6.

Protein levels of TP53INP2 correlate with sensitivity of cancer
cell lines to TRAIL treatment

TRAIL kills cancer cells selectively without major damage to normal

cells. Therefore, this specific apoptotic pathway has been exten-

sively studied for possible clinical applications (Naoum et al, 2017).

However, initial enthusiasm was back-fired by unsuccessful TRAIL

pre-clinical/clinical trials that highlighted the need for optimized

TRAIL antagonists and for strategies to optimize the selection of

patients who would most benefit from TRAIL treatment (i.e.,

through biomarkers; de Miguel et al, 2016; Naoum et al, 2017; von

Karstedt et al, 2017). In line with this notion, our results suggest

that TP53INP2 may serve as a potential biomarker for the selection

of patients for TRAIL treatment. In order to further explore this

possibility, we first screened several breast cancer cell lines for

protein levels of TP53INP2 and then determined the percentage of

cells undergoing apoptosis upon TRAIL treatment. The cell lines dif-

fered in their protein levels of TP53INP2: those with highest levels

were BT20, whereas MCF7 and BT474 showed no TP53INP2 or

undetectable levels (Fig 7A). As expected, BT20 cells were the most

sensitive to TRAIL treatment, whereas the cell lines with no or less

TP53INP2 did not undergo apoptosis (Fig 7B, and Appendix Fig S9A

and C). Moreover, there was a positive correlation (r = 0.84)

between the protein levels of TP53INP2 and susceptibility to apopto-

sis (Fig 7C). We did the same set of experiments in various liver

cancer cell lines and obtained the same results; i.e., Snu449 cells

had the highest levels of TP53INP2 and responded to TRAIL

◀ Figure 6. TRAF6 is indispensable for TP53INP2 function in death receptor-induced apoptosis.

A Western blot analysis of TRAF6 and viability assay in wt HeLa cells and TRAF6 CRISPR KO cells. Data are presented as mean � SEM of five independent
experiments.

B HeLa wt and TRAF6 KO cells expressing LacZ or TP53INP2 were treated with 50 ng/ml FasL for 16 h, and whole lysates were analyzed by Western blot against
PARP-1, caspase-8, and caspase-3 antibodies.

C, D Quantification of protein levels of cleaved PARP and caspase-3. Data are presented as mean � SEM of three independent experiments.
E HeLa wt and TRAF6 KO cells expressing LacZ or TP53INP2 were treated with 25 ng/ml TRAIL for 4 h, and whole lysates were analyzed by Western blot against

PARP-1, caspase-8, and caspase-3 antibodies.
F, G Quantification of protein levels of cleaved PARP and caspase-3. Data are presented as mean � SEM of three independent experiments.
H Viability assay of HeLa wt and TRAF6 KO cells expressing LacZ or TP53INP2 and treated with 50 ng/ml FasL or 10 ng/ml TRAIL for 24 h. Data are presented as

mean � SEM of five to eight independent experiments.
I HEK293T cells expressing FLAG-TRAF6 and/or TP53INP2 were left untreated or treated with FasL (100 ng/ml) for the indicated times and then immunoprecipitated

with FLAG resin. Immunocomplexes were subjected to Western blot analysis with anti-FLAG and anti-TP53INP2 antibodies.
J Schematic presentation of the consensus TRAF6 interaction motif (TIM) in TP53INP2 protein and the amino acids mutated in a TP53INP2 TIM mutant.
K HEK293T cells expressing FLAG-TRAF6, wt TP53INP2, and TIM mutant were immunoprecipitated with FLAG resin, and immunocomplexes were analyzed by Western

blot with anti-FLAG and anti-TP53INP2 antibody. The amount of TP53INP2 precipitated with TRAF6 was quantified with Fiji software. Data are presented as
mean � SEM of three independent experiments.

L HEK293T cells expressing FLAG-TRAF6 and TP53INP2 were immunoprecipitated with FLAG resin, and immunocomplexes were subjected to Western blot analysis
with anti-FLAG, anti-TP53INP2, and anti-caspase-8 antibody. Note that we were able to immunoprecipitate endogenous caspase-8 in the same complex with
TRAF6 and TP53INP2.

M HeLa cells stably overexpressing TP53INP2 were left untreated or treated with 100 ng/ml TRAIL for 30 min and subjected to immunoprecipitation with caspase-8
antibody. Immunocomplexes were subjected to Western blot analysis with anti-TRAF6, anti-TP53INP2, and anti-caspase-8 antibody.

N The same as in (L), except that we also expressed FLAG-TRAF6 C70A and/or TP53INP3 TIM mutant.
O Pull-down assay of recombinant GST-TRAF6 and FLAG-TP53INP2 proteins using FLAG resin and Western blot analysis of immunocomplexes with anti-GST and anti-

TP53INP2 antibodies.
P In vitro ubiquitination assay with immunoprecipitated xpress-casp-8-NCC, FLAG-TRAF6, and TP53INP2.

Data information: Two-way Student’s t-test was performed, *P < 0.05.
Source data are available online for this figure.

ª 2019 The Authors The EMBO Journal 38: e99300 | 2019 11 of 19

Sa�ska Ivanova et al The EMBO Journal

D
ow

nloaded from
 https://w

w
w

.em
bopress.org on June 9, 2024 from

 IP 138.246.3.104.



treatment, while those with no or almost undetectable levels of

TP53INP2 did not (Fig 7D and E; Appendix Fig S9B and D). In the

case of liver cancer cell lines, we also detected a positive correlation

between TP53INP2 and percentage of dying cells (r = 0.87; Fig 7F).

The expression of Bcl-2 homologues did not correlate with

TP53INP2 expression in the different cells studied (Appendix Fig

S9E and F). In addition, the differences observed in the Bcl-2 homo-

logues between different cell lines do not explain the differences

seen in susceptibility to TRAIL treatment (Appendix Fig S9E and F).

Moreover, downregulation of TP53INP2 expression in MDA231 and

Snu449 cells reduced the response to TRAIL treatment (Fig 7G–J).

On the contrary, the overexpression of TP53INP2 in different breast

and liver cancer cell lines with no or low levels of TP53INP2 sensi-

tized them to TRAIL-induced apoptosis (Appendix Fig S9G–J).

Collectively, our results suggest that cancer cell lines that express

high levels of TP53INP2 will respond favorably to TRAIL-induced

apoptosis and that TP53INP2 might be a good biomarker of respon-

siveness to TRAIL treatment.

Discussion

The engagement of death ligands with death receptors can trigger

three signaling cascades, i.e., apoptosis, necroptosis, or the NF-kB

pathway (Tummers & Green, 2017), depending on the signaling

complexes being formed downstream of death receptors and the

proteins expressed in a given cell. Recently, several new compo-

nents in this pathway have been reported (Jin et al, 2009; Murphy

et al, 2013; Lu et al, 2014; de Miguel et al, 2016), thus increasing

their complexity and shedding light on how the same event can give

such divergent outcomes. In the context of cancer, it is important to

understand how we can manipulate the death receptor pathway and

switch between outcomes, in this case preferentially to apoptosis.

Here, we have shown that TP53INP2 is one of such switches, favor-

ing apoptosis in cells that have a sufficient amount of TP53INP2.

Increasing the amount of TP53INP2 in cells depleted or deficient in

this protein by adenoviral or other means of manipulating its

expression would sensitize them to TRAIL. It is important to state

that TP53INP2 exerts this role in cells where active caspase-8 can

induce apoptosis. In cells with low caspase-8 expression, the apop-

totic effect of TP53INP2 is reduced. Surprisingly, in caspase-8

knock-down cells, the protein levels of TP53INP2 tolerated are

much higher than in wild-type cells, thus suggesting that caspase-8

regulates TP53INP2 protein levels or that cells with a high amount

of both caspase-8 and TP53INP2 undergo apoptosis spontaneously.

Indeed, we observed spontaneous apoptosis of TP53INP2-overex-

pressing primary hepatocytes. This finding would indicate that high

protein levels of TP53INP2 are toxic.

TP53INP2 is an intrinsically disordered protein, which makes dif-

ficult any prediction of protein-protein interactions. However, it is a

scaffold, thus explaining its role in mediating protein-protein inter-

actions, most probably through short binding motifs like in the case

of LIR (LC3 interacting region; Sancho et al, 2012) or hormone

nuclear binding motif (Baumgartner et al, 2007), which are just few

amino acids long and are sufficient for efficient interaction and scaf-

folding function in signaling hubs. Here, we identified a TIM (Ye

et al, 2002) around 20 amino acids preceding LIR motif in

TP53INP2. The binding of TRAF6 would probably sterically impede

the interaction with LC3 at the same time, thus explaining why we

do not see a major effect of autophagy on TP53INP2 sensitization to

death receptor signaling. In contrast, we were unable to identify all

the ubiquitin binding sites in TP53INP2. Since TP53INP2 is an acidic

protein, additional binding to ubiquitin in the TP53INP UIM mutant

might be due to the interaction of negatively charged amino acids of

TP53INP2 with positively charged surface patches in ubiquitin,

thereby accommodating the secondary structure of TP53INP2 upon

binding, a phenomenon known to occur when intrinsically

disordered proteins bind to their cognitive interactors.

Our data demonstrate that TP53INP2 activates caspase-8 by

promoting its ubiquitination by TRAF6 and, in consequence, it shifts

the response toward apoptotic cell death. TP53INP2 acts as a signal-

ing adaptor, bringing together crucial components of the signaling

pathway, namely TRAF6, caspase-8, and ubiquitin (Fig 8A–C). The

TIM of TP53INP2 is postulated to bind to the canonical adaptor

binding groove of the TRAF_C domain of TRAF6, a domain that

normally recognizes upstream regulators of TRAF6 (Ye et al, 2002;

Shi et al, 2015). The N-terminal RING finger domain of TRAF6 binds

to the E2 Ubc13 displaying E3 ubiquitin ligase activity and mediat-

ing K63-linked ubiquitination of caspase-8, thus modulating activa-

tion of apoptosis (Fig 8B and C; Wooff et al, 2004). We propose that

TP53INP2, like p62, binds to ubiquitinated caspase-8, probably

before the caspase is fully activated. Activated caspase-8 can cleave

TP53INP2 at the LIR motif, thus separating the part encompassing

the TIM from the rest of the protein, including the UIM region. This

cleavage would inactivate TP53INP2 function in death receptor-

induced apoptosis, but also in autophagy, since it cuts off the LIR

region from the major part of the protein. In contrast to our previous

data on autophagy, where TP53INP2 and p62 are mutually exclusive

in binding to Atg8 homologues (Sala et al, 2014), both can bind to

ubiquitinated caspase-8 and promote its activation. In addition, p62

also binds to TRAF6 and, like TP53INP2, participates in determining

TRAF6 substrates (Jadhav et al, 2011). It will be interesting to deter-

mine the extent to which the substrates are shared between the

TRAF6/p62 and TRAF6/TP53INP2 complexes and to identify those

that are unique to each complex. Caspase-8 may not be common to

the two scaffold proteins, since it does not have the TRAF6/p62

ubiquitination consensus site (Jadhav et al, 2011), and repression of

p62 does not rescue TP53INP2 sensitization to death receptor-

induced apoptosis (Appendix Fig S3F and G). Our data, in addition

to other studies (Jin et al, 2009), indicate that p62 interacts with

ubiquitinated caspase-8 and facilitates its aggregation and full acti-

vation. Since both p62 and TP53INP2 are involved in differentiation

(Linares et al, 2011; McManus & Roux, 2012; Li et al, 2014;

Sugiyama et al, 2017), apoptosis (Jin et al, 2009; Moscat & Diaz-

Meco, 2009; Bhattacharya et al, 2015), nuclear hormone receptor

signaling (Baumgartner et al, 2007; Duran et al, 2016), diabetes

(Sala et al, 2014; Kruse et al, 2015; Long et al, 2017), and auto-

phagy (Pankiv et al, 2007; Moscat & Diaz-Meco, 2009; Nowak et al,

2009; Mauvezin et al, 2010; Sancho et al, 2012), further studies are

needed to unravel how they interplay/overlap in these pathways.

Along the same line, TRAF6 has been implicated in multiple signal-

ing pathways, such as autophagy, development, and immunity

(Linares et al, 2015; Walsh et al, 2015). We previously showed that

TP53INP2 modulates skeletal muscle mass by regulating autophagy

(Sala et al, 2014), and the same has been shown for TRAF6 (Paul &

Kumar, 2011). These observations thus suggest that these two
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proteins work together to regulate skeletal muscle mass. In addition,

TRAF6 has a regulatory role in amino acid starvation and mitophagy

(Murata et al, 2013; Linares et al, 2015), raising the question as to

whether TP53INP2 also has an adaptor role for TRAF6 in these two

processes or more in general, which are the pathways that TRAF6 is

involved in and might be modulated by TP53INP2.

As mentioned, TRAIL induces selective apoptosis in cancer cells

(Ashkenazi et al, 1999; Walczak et al, 1999); however, this feature

A

E F

G H JI

D
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Figure 7. TP53INP2 is a molecular biomarker for TRAIL responsive tumor cell lines.

A Set of breast cancer cell lines analyzed by Western blot for the protein levels of TP53INP2 and other components of the TRAIL signaling pathway.
B Viability of breast cancer cell lines after 24 h with 10 or 25 ng/ml of TRAIL was measured by annexin V and PI using flow cytometer. Cells that were annexin V- and

PI-negative were considered viable. Data are presented as mean � SEM of three independent experiments.
C Correlation plot of TP53INP2 protein levels and cell death in breast cancer cell lines; r = Pearson’s coefficient.
D Set of liver cancer cell lines analyzed by Western blot for the protein levels of TP53INP2 and other components of the TRAIL signaling pathway.
E Viability of liver cancer cell lines after 24 h with 10 or 25 ng/ml of TRAIL was measured by annexin V and PI using a flow cytometer. Cells that were annexin V- and

PI-negative were considered viable. Data are presented as mean � SEM of three or four independent experiments.
F Correlation plot of TP53INP2 protein levels and cell death in liver cancer cell lines; r = Pearson’s coefficient.
G Western blot of TP53INP2 in MDA231 wt and CRISPR KD cells.
H Cell viability of MDA231 wt and TP53INP2 KD cells after 25 ng/ml TRAIL treatment. Data are presented as mean � SEM of three or four independent experiments.
I Western blot of TP53INP2 in Snu449 wt and CRISPR KD cells.
J Cell viability of Snu449 wt and TP53INP2 KD cells after 25 ng/ml TRAIL treatment. Data are presented as mean � SEM of four or five independent experiments.

Data information: Two-way Student’s t-test was performed; *P < 0.05, **P < 0.01, ***P < 0.001.
Source data are available online for this figure.
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Figure 8. Model of TP53INP2 function in death receptor-induced apoptosis.

A Schematic presentation of TP53INP2 function in death receptor signaling. Upon receiving an upstream signal, the DISC complex is formed, where caspase-8 is
recruited. TP53INP2 facilitates TRAF6 and caspase-8 complex and subsequent caspase-8 ubiquitination and activation.

B, C Proposed molecular mechanism of TP53INP2 in the ubiquitination of caspase-8 by TRAF6. E2 Ubc13 binds to the N-terminal RING and first ZZ domain of TRAF6,
while TP53INP2 binds to the adaptor groove of the TRAF_C domain of TRAF6. In addition, TP53INP2 binds caspase-8 (B) and/or ubiquitinated caspase-8 (C), thus
bringing caspase-8 and Ubc13 closer together for a more efficient ubiquitin transfer from Ubc13 to caspase-8. Since we could not make a mutant of TP53INP2 that
cannot bind to ubiquitin, we cannot clearly discriminate between the two options. Our data indicate that TP53INP2 can bind to both forms of caspase-8 (non-
ubiquitinated and ubiquitinated). However, binding is more efficient if caspase-8 is ubiquitinated, suggesting that TP53INP2 facilitates polyubiquitination of
caspase-8 (C).
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has not brought any benefit to cancer patients so far. There is a need

for optimized TRAIL antagonists and strategies to tackle the resis-

tance of tumors to TRAIL monotherapy. Furthermore, there is also a

lack of biomarkers that can effectively identify patients likely to

respond favorably to TRAIL-based therapy (Lemke et al, 2014b). To

date, only one potential biomarker has been discovered. In this

regard, CDK9 inhibition leads to the downregulation of two anti-

apoptotic proteins, namely FLIP and MCL1, which act at the level of

caspase-8 activation and mitochondria amplification of apoptosis

(Lemke et al, 2014a). In addition, E-cadherin may also discriminate

between the cells that respond to TRAIL therapy (Lu et al, 2014).

Our results indicate that, by facilitating the ubiquitination and acti-

vation of caspase-8, TP53INP2 is another potential biomarker for

TRAIL treatment (Fig 7). It would be interesting to see the expres-

sion of CDK9 in cancer cells with high levels of TP53INP2 and

address whether CDK9 inhibition would synergistically increase

sensitivity to TRAIL treatment. TRAIL therapy alone is clearly not

effective. In this regard, it is important to simultaneously target

several factors that cause TRAIL resistance and/or to increase the

sensitivity of cancer cells to apoptosis. This strategy is critical since

TRAIL administration could have pro-tumorigenic functions in some

types of cancer, such as KRAS-mutated cancer (von Karstedt et al,

2015; Pal et al, 2016).

We report that TP53INP2 belongs to those proteins with dual

functions in autophagy and apoptosis, which also include ATG5,

ATG4D, Beclin 1, p62, and AMBRA1 among others (Yousefi et al,

2006; Cho et al, 2009; Laussmann et al, 2011; Huang et al, 2013;

Strappazzon et al, 2016). TP53INP2 promotes autophagosomal

formation and activates autophagy flux in different cell types

(Nowak et al, 2009; Mauvezin et al, 2010; Sala et al, 2014; Romero

et al, 2018). In this study, we show that TP53INP2 acts also as a

switch at the level of caspase-8 activation, favoring death receptor-

mediated apoptosis. This effect of TP53INP2 promoting caspase-8

activation does not require autophagy machinery, probably because

TP53INP2 function in death receptor signaling is upstream from

autophagy. Once caspase-8 is activated, it cleaves TP53INP2 at LIR

sequence and prevents its role in autophagy, thus further promoting

apoptosis and downregulating the pro-survival role of autophagy. It

will be interesting to see how other stresses (not death ligands)

influence TP53INP2 function in apoptosis/autophagy cross-talk.

Taken together, our data reveal an unexpected role of TP53INP2

in the regulation of death receptor signaling. The mechanism

involves the scaffolding function of TP53INP2 and facilitates

caspase-8 ubiquitination by TRAF6, thereby switching or shifting

death receptor signaling toward apoptosis. This finding unveils an

additional point of apoptosis regulation that can be explored in

TRAIL therapy.

Materials and Methods

Plasmid constructs

We used following constructs: pCDNA3-FLAG-TP53INP2, pCMV-

FLAG-TRAF6 was a gift from John Kyriakis (Addgene 21624),

pCMV-FLAG-TRAF6 C70A, HA-Ub was a gift from Edward Yeh

(Addgene 18712), His-Ub was a gift from Astar Winoto (Addgene

31815), HA-Ub K48 was a gift from Ted Dawson (Addgene 17605),

HA-Ub K63 was a gift from Ted Dawson (Addgene17606), XPRESS-

caspase-8-NCC (kind gift from A. Ashkenazi), FLAG-caspase-8 (kind

gift from A. Ashkenazi), FLAG-caspase-8-Ub6 (kind gift from A.

Ashkenazi), FLAG-caspase-8-Ub9 (kind gift from A. Ashkenazi),

pCDNA3-TP53INP2, pCDNA3-TP53INP2 TIM mutant, pCDNA3-

TP53INP2 3KR mutant, pCDNA3-TP53INP2 LIR mutant, pCDNA3-

TP53INP2 3DE mutant, HA-p62 was a gift from Qing Zhong

(Addgene 28027), and myc-caspase-3 C163A was a gift from Guy

Salvesen (Addgene 11814). All mutations were done with the Quick

Mutagenesis Kit by Promega, following the manufacturer’s instruc-

tions, and the sequences were verified by DNA sequencing.

Cell culture

HeLa, HEK293T, MCF7, MDA-MB-231, MDA-MB-468, SKBr3, Huh7,

PLC, Hep3B, and MEF TRAF6 KO (kind gift from Manolis Paspar-

akis) cells were grown in DMEM (Gibco) supplemented with 10%

fetal bovine serum (FBS, Sigma); BT20 cells were grown in MEM

supplemented with 10% FBS; T47D and BT474 cells were grown in

RPMI (Gibco) supplemented with 10% FBS; and Snu449, HLE, and

HLF cells were cultured in RPMI with 10% FBS and 1% NEAA

(Sigma). Flp-In T-REx 293 cells expressing HA-FLAG-TP53INP2

were made following the manufacturer’s instructions (Thermo

Fisher Scientific). Staurosporine, doxorubicin, and actinomycin D

were from Sigma, bafilomycin A1 from Santa Cruz, cisplatin from

Ebewe Pharma, nec-1 from Enzo Life Sciences, z-VAD-fmk from

Bachem, FasL and TNFa from Milipore, TRAIL from R&D Systems,

and CHX from Calbiochem. Nec-1 and z-VAD-fmk were added 2 h

before the induction of apoptosis.

Mouse model

The L-KO DOR mouse line was generated by crossing homozygous

TP53INP2 loxP/loxP mice with a mouse strain expressing Cre

recombinase under the control of the albumin promoter. Mice were

in a C57BL/6J pure genetic background. Non-expressing Cre

TP53INP2loxP/loxP littermates were used as controls for knockout

animals. Twelve- to 16-week-old mice were used in all experiments.

All animal experiments were done in compliance with guidelines

established by the University of Barcelona Committee on Animal

Care. Mice were kept under a 12-h dark–light period and provided

with a standard chow-diet and water ad libitum. For FasL treatment,

mice were injected i.p. with 0.15 lg/g body weight and sacrificed

4 h later. For doxorubicin (30 mg/kg body weight) and cisplatin

(20 mg/kg body weight), mice were injected i.p. and sacrificed 48 h

later.

Immunohistochemistry and immunofluorescence in liver sections

For immunohistochemistry and immunofluorescence assays, livers

were fixed in PFA 4% o/n at room temperature. After two washes

in PBS for 5 min, sections were incubated in NH4Cl (50 mM) and

glycine (20 mM) to reduce the autofluorescence and permeabilized

by incubating them with a solution of 0.1% Triton X-100 in 0.1%

sodium citrate for 2 min at 4°C. After two washes in PBS for 5 min

and blocking during 30 min in 10% FBS in PBS, slides were incu-

bated with Tom20 (Santa Cruz) and cytochrome c (BD Pharmingen)

in blocking solution for 2 h. After three 10 min washes in PBS,
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samples were further incubated in donkey anti-guinea pig Alexa-

Fluor 568 conjugated secondary antibodies (Invitrogen) for 1 h,

followed again by three 10 min washes in PBS. Hoechst33342 (1/

2,000; Molecular Probes) was used to label DNA. Sections were kept

in the dark after secondary antibody incubation. Slides were finally

covered using Fluoromount (Sigma) and allowed to dry o/n before

being stored at 4°C. A Leica TCS SP5 confocal scanning microscope

was used to analyze the immunofluorescence. TUNEL staining to

detect apoptosis was performed according to the manufacturer’s

instructions (In Situ Cell Death Detection Kit Fluorescein, Roche).

For light microscopy, sections were stained with hematoxylin and

eosin or cleaved caspase-3 following standard protocols.

Caspase-3 protein expression and cleavage assay

Recombinant caspase-3 was expressed in Escherichia coli and puri-

fied as described previously (Stennicke & Salvesen, 1999). Caspase

cleavage assays were performed in 20 mM Hepes buffer, pH 7.2,

containing 100 mM NaCl, 10 mM dithiothreitol, 1 mM EDTA, 0.1

(w/v) CHAPS, and 10% (w/v) sucrose at 37°C. Briefly, caspases

were incubated for 5 min in the reaction buffer at 37°C prior to the

addition of lysates overexpressing wild-type TP53INP2 or 3DE

mutant to the final volume of 25 ll. The final concentration of

caspases was 1 lM. After 1-h incubation with caspases, the reac-

tions were terminated by the addition of l× SDS loading buffer and

boiling. The reaction mixtures were analyzed by 12% SDS–PAGE

gels and Western blot.

Immunoblotting

Cells were collected at the times indicated in the text post-induction

of apoptosis and incubated in RIPA buffer [50 mM Tris (pH 8.0),

100 mM NaCl, 0.1% (w/v) SDS, 1% (v/v) Nonident P-40, 0.5%

(w/v) deoxycholic acid, 1 mM EDTA] for 10 min on ice. Insoluble

material was removed by centrifugation at 18,000 g for 10 min.

Pierce assay (Promega) was used to determine protein concentra-

tion, and 50 lg of protein was resolved in 10 or 12% SDS–PAGE

gels. After transfer to PVDF membrane (Millipore), blots were

probed with antibodies against PARP (Cell Signaling), caspase-3

(Cell Signaling), cleaved caspase-3 (Cell Signaling), caspase-8 (Cell

Signaling, BD Pharmingen), p62 (Progen), DR4 (Cell Signaling),

DR5 (Cell Signaling), LC3 (MBL International), TP53INP2 (made in

our laboratory), TRAF6 (Cell Signaling), FLAG (Sigma), XPRESS

(Invitrogen), Bcl-2 (Santa Cruz), Bid (Cell Signaling), Mcl-1 (Cell

signaling), Bcl-xl (Santa cruz), Bak (Santa Cruz), Bax (Cell Signal-

ing), actin (Sigma), myc (Santa Cruz), and appropriate HRP-conju-

gated secondary antibodies (Jackson) and visualized with ECL

following the manufacturer’s instructions (Amersham). Cell frac-

tionation was done with NE-PER Nuclear and Cytoplasmic Extrac-

tion Reagents Kit (Thermo Fisher) following manufacturer’s

instructions.

Immunoprecipitation and pull-down assay

Cells were transfected with the indicated plasmids with polyethyle-

neimine (PEI) from Polysciences Inc., lysed for 36 h after transfec-

tion in lysis buffer and subjected to pull-down assays with FLAG

(Sigma), Nickel (Invitrogen), or HA (Sigma) resin, following the

manufacturer’s instructions. For denaturing pull-down, 6 M urea

was added to the lysis buffer. Immunocomplexes were separated by

SDS–PAGE and detected by Western blot analysis. For endogenous

immunoprecipitation, cells were incubated or not with 100 ng/ml of

TRAIL for 30 min. Afterward, cells were cross-linked with formalde-

hyde (PanReac AppliChem) for 10 min, scraped and washed with

PBS. Cell lysis was performed with FLAG lysis buffer, and super-

natants were added to the protein G sepharose beads (Sigma) previ-

ously incubated with normal mouse IgG (Sigma) or anti-caspase-8

mouse antibody (BD Pharmingen). Primary antibodies were cross-

linked to protein G sepharose by DMP (Thermo Fisher) following

manufacturer’s instructions, and immunocomplexes were eluted

with glycine (pH = 3). For recombinant proteins pull-downs, FLAG-

caspase-8, TP53INP2, and FLAG-TP53INP2 were in vitro translated

with Promega’s TNT in vitro translation system and GST (Abcam)

and GST-TRAF6 (Abnova) were purchased. Recombinant proteins

were subjected to pull-down with FLAG (Sigma) resin, following

manufacturer’s instructions.

DEVDase activity and FACS analysis

30 lg of protein of untreated and treated cells in the presence or

absence of inhibitors was used to determine caspase activity by

measuring the cleavage of fluorogenic substrate Ac-DEVD-AFC

(Bachem) using Tecan.

For flow cytometry, cells were harvested at the indicated times

after treatment. Culture medium supernatant and PBS washes were

retained to ensure that both floating and adherent cells were

analyzed. After incubation for 15 min with Annexin V Alexa-647

(Invitrogen) following the manufacturer’s instructions, and propid-

ium iodide, cells were subjected to FACS analysis.

Fluorescence microscopy

Cells grown on coverslips for the indicated treatments were washed

with PBS and fixed in 4% paraformaldehyde (Santa Cruz) for 10 min,

followed by permeabilization with 0.2% (v/v) Triton X-100 in PBS

for 15 min. After extensive washing with PBS, cells were incubated

with primary antibodies for 1 h on room temperature. Following an

additional round of extensive washing with PBS, cells were incubated

either with goat anti-rabbit Alexa-647 or goat anti-mouse Alexa-488

antibody (Molecular Probes) for 60 min at room temperature. After

incubation, cells were washed with PBS, mounted on slides with

Fluoromount (Sigma), and visualized by confocal microscope

(Leica). Hoechst (Sigma) was used to stain the nuclei. For live cell

imaging, HeLa cells were transfected with TP53INP2-RFP and wide-

field images of live cells were captured using an Olympus 1X81

microscope in an imaging chamber with CO2 and temperature

control. Scans were taken every 5 min for approximately 3 h. TRAIL

(100 ng/ml) was added after second frame was taken.

Knock-down and CRISPR technology

HeLa cells were transfected with lentiviruses with shRNA for ATG5,

p62, and caspase-8 with PEI, and 48 h after exposed to puromycin

selection. The level of knock-down was analyzed by Western blot.

To knock out TRAF6, ATG7, and TP53INP2, we used a CRISPR tech-

nology. For TRAF6 and TP53INP2, the CRISPR plasmids were
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bought from Santa Cruz and done according to manufacturer’s

instructions. Forward and reverse oligonucleotides containing the

guide sequence to Atg7 (Forward 1: CACCGGAAGCTGAACGAGTAT

CGGC, Reverse 1: AAACGCCGATACTCGTTCAGCTTCC; Forward 2:

CACCGAACTCCAATGTTAAGCGAGC; Reverse 2: AAACGCTCGCT

TAACATTGGAGTTC) and TP53INP2 (Forward 1: CACCGCTCTGGT

TCTTGGACCGGCG, Reverse 1: AAACCGCCGGTCCAAGAACCAGA

GC; Forward 2: CACCGACCGGCGCGGACGGCTCTCG; Reverse 2: A

AACCGAGAG CCGTCCGCGC CGGTC) were annealed and cloned

into the pX330 plasmid (Cong et al, 2013) that was subsequently

transfected into HeLa cells using NanoJuice (NanoJuiceTM Transfec-

tion Kit, Novagen). GFP-positive cells were sorted 24 h after trans-

fection (BD FACSAria III SORP) and grown as single clones.

Screening for Atg7-KO and TP53INP2-KO cells was carried out by

Western blotting.

In vitro ubiquitination

In vitro ubiquitination assays were performed with the following

components: immunoprecipitated XPRESS-caspase-8-NCC, FLAG-

TP53INP2 and FLAG-TRAF6 (E3), UbcH13 (E2) and ubiquitin acti-

vating kit (Enzo), following the manufacturer’s instructions.

Statistics

Microsoft Office Excel was used for data analysis. Student’s t-tests

were used to compare results between two groups. Data were

presented as mean with standard error of the mean (SEM).

P-values < 0.05 were considered significant.

Expanded View for this article is available online.
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