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Abstract

The glaciogenic nature of the Yudnamutana Subgroup was first recognized over a century ago,
and its global significance was recognized shortly after, with the eventual postulation of a global
Sturtian Glaciation and Snowball Earth theory. Much debate on the origin and timing of these
rocks, locally and globally, has ensued in the years since. A significant corpus of research on
the lithology, sedimentology, geochronology and formal lithostratigraphy of these sequences
globally has attempted to resolve many of these debates. In the type area for the Sturtian
Glaciation, South Australia’s Adelaide Superbasin, the lithostratigraphy and sedimentology
are well understood; however, formal stratigraphic nomenclature has remained complicated
and contested. Absolute dates on the stratigraphy are also extremely sparse in this area. The
result of these longstanding issues has been disagreement as to whether the sedimentary rocks
of the Yudnamutana Subgroup are truly correlative throughout South Australia, and if they
were deposited in the same time span recently defined for Sturtian glacial rocks globally,
c. 717 Ma to c. 660 Ma. This study presents a large detrital zircon study, summarizes and
compiles existing global geochronology for the Sturtian Glaciation and revises the formal
lithostratigraphic framework of the Yudnamutana Subgroup. We show equivalence of
the rocks that comprise the revised Sturt Formation, the main glaciogenic unit of the
Yudnamutana Subgroup, and that it was deposited within the time span globally defined for
the Sturtian Glaciation.

1. Introduction

TheNeoproterozoic is a pivotal time in Earth’s history with significant changes to Earth systems.
These changes led to the Phanerozoic world of extensive macroscopic mineralized life,
significantly oxygenated atmosphere and hydrosphere and a climate devoid of extreme
glaciations of near-equatorial extent (Halverson et al. 2009; Och & Shields-Zhou, 2012; Wallace
et al. 2017; Tostevin & Mills, 2020; Shields et al. 2022). Within the Neoproterozoic, the
Cryogenian Period (derived from the Greek words κρύoς and γένεση; meaning cold and birth,
respectively), is named for the globally distributed and long-lasting continental glaciations
characteristic of this time (Plumb& James, 1986; Plumb, 1991; Shields et al. 2018). The record of
these glaciations is known on every continent except Antarctica (Arnaud et al. 2011), with
notably well-studied sections in Australia. While the concept of globally distributed glaciations,
and even the glaciogenic nature of some of these formations remains contentious (e.g., Eyles &
Januszczak, 2004; Allen & Etienne, 2008; Williams & Gostin, 2019; Le Heron et al. 2020), most
authors accept that at least two major glacial events are observed within Cryogenian rocks: an
older Sturtian Glaciation and a younger Marinoan (also known as ‘Elatina’) Glaciation (or
‘cryochron’; Hoffman et al. 2017). These two major glacial events of the Cryogenian coincide
with major reorganizations of the biosphere (i.e. the rise of algae and other eukaryotic life,
leading to the emergence of animals) (Brocks, 2018; Lechte et al. 2019).

Absolute geochronological constraints have become well established in several regions
(Rooney et al. 2015) and are ever improving across the globe (e.g, Nascimento et al. 2017;
MacLennan et al. 2018; Park et al. 2019; Rud‘ko et al. 2020; Środoń et al. 2022). One notable
exception is that of the sequences of Australia where some of the thickest and best-preserved
Cryogenian glaciogenic formations are found. Until recently (Rose et al. 2013; Cox et al.
2018b; Keeman et al. 2020; Lloyd et al. 2020), radiometric dates of any form for the
Cryogenian glaciogenic and intervening non-glacial sequences of the Adelaide Superbasin,
South Australia, were extremely sparse (Ireland et al. 1998; Fanning & Link, 2006; Kendall
et al. 2006). This is due, in part, to the dearth of known volcanogenic horizons within the South
Australian Cryogenian sequences, the challenges of dating Precambrian sedimentary rocks
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(Halverson et al. 2018; Shields et al. 2022), and the general lack of
geochronological research conducted on the basin since the
marked advancement in laser ablation (LA) and chemical
abrasion geochronological techniques during the mid-2000s
(Mundil et al. 2004; Mattinson, 2005; Gehrels et al. 2008). In this
study, we address this by presenting a new in-situ Rb–Sr shale age
from the Sturt Formation, 1034 new U–Pb detrital zircon (DZ)
analyses from 15 samples (Fig. 1) of the Yudnamutana Subgroup
(Sturtian Glaciation), 59 new U–Pb DZ analyses from the
Yancowinna Subgroup of New South Wales (interpreted as a
correlative of the Yudnamutana Subgroup (Fig. 2)) and an
additional 56 new U–Pb DZ analyses from the post-Sturtian
Glaciation Serle Conglomerate. The purpose of this paper is to
provide the geochronological framework for the Cryogenian rocks
recording the Sturtian Glaciation within the Adelaide Superbasin.

2. Geological background

2.a. Adelaide Superbasin

The Adelaide Superbasin comprises several named basins
and sub-basins that form a large, Neoproterozoic to middle
Cambrian sedimentary system at the southeast margin of
Proterozoic Australia. Formation of the Adelaide Superbasin
initiated at c. 890–830 Ma as a result of the breakup of the
Rodinia supercontinent (Powell et al. 1994; Preiss, 2000; Lloyd
et al. 2022). The Adelaide Rift Complex is the largest and oldest
of the basins within the Adelaide Superbasin and includes a
number of extensional depocentres, including the Yudnamutana
Trough (northern Flinders Ranges), Baratta Trough (Olary and
eastern Flinders Ranges) and Torrowangee Trough of western New
South Wales (Fig. 1). The rift complex is contiguous with the
relatively undeformed rocks of the Torrens Hinge Zone, Stuart
Shelf (Sprigg, 1952) and Coombalarnie Platform (Callen, 1990).
The Cambrian Arrowie Basin and Stansbury Basin are considered
part of the Adelaide Superbasin (Preiss et al. 2002; Lloyd et al.
2020). Deposition within the Adelaide Superbasin occurred over a
duration of ~300 Ma and stretched from the northernmost regions
of South Australia to Kangaroo Island in the south, and east into
western Victoria and New South Wales. The superbasin began as
an intracontinental rift system that progressed to a passive margin
system in the southeast and eastern parts of the basin, yet remained
a failed rift in the north (Preiss, 2000; Lloyd et al. 2022). The
cessation of the Adelaide Superbasin is marked by the Delamerian
Orogeny c. 514–490Ma (Drexel & Preiss, 1995; Preiss, 2000; Foden
et al. 2006; Foden et al. 2020). Present day outcrop of the
superbasin is largely restricted to the Flinders and Mount Lofty
Ranges of South Australia, and the Barrier Ranges of South
Australia and New South Wales.

The stratigraphy of the Adelaide Superbasin is divided into
three supergroups, two of which are Neoproterozoic and the third
is Cambrian (Preiss, 2000). The three supergroups are divided
into numerous groups and subgroups (Fig. 2). The Warrina
Supergroup is the oldest and comprises the Callanna, Burra and
Poolamacca groups. The Heysen Supergroup contains the
Umberatana, Wilpena, Torrowangee and Farnell groups. The
Moralana Supergroup is the youngest and includes all
the Cambrian sequences within the Adelaide Superbasin. In
this paper, we focus on the lowermost division of the
Umberatana Group, the Yudnamutana Subgroup (Figs. 2, 3),
which comprises sedimentary rocks that represent the Sturtian
Glaciation. Additional samples come from the overlying Nepouie

Subgroup and the Yancowinna Subgroup (New South Wales)
which has been interpreted as a correlative of the Yudnamutana
Subgroup (Fig. 2) (Cooper et al. 1974; Preiss, 1987).

The reader is referred to Preiss (1987), Preiss (2000), Counts
(2017), Cowley (2020), Lloyd et al. (2020) and references therein
for further detail on the geological history of the Adelaide
Superbasin.

2.a.1. Yudnamutana Subgroup
The glaciogenic nature of rocks within the Yudnamutana
Subgroup was first recognized by Howchin (1901), with those
sequences being traced throughout the Mount Lofty, Flinders and
Olary Ranges during the early 20th century (Preiss et al. 2011). Of
particular note are the Yudnamutana Subgroup ‘tillites’ that rose to
international prominence at the start of the 1900s (David, 1906;
Howchin, 1908; Cooper, 2010 and references therein). As a result, a
significant amount of research on the nature of the Yudnamutana
Subgroup has been published over the past century (e.g. Howchin,
1901; Howchin, 1904; David, 1906; Howchin, 1906; Howchin,
1908; Howchin, 1920; Segnit, 1939; Mawson & Sprigg, 1950;
Sprigg, 1952; Thomson et al. 1964; Forbes &Cooper, 1976; Coats &
Forbes, 1977; Preiss et al. 1978; Link & Gostin, 1981; Preiss, 1987;
Preiss et al. 1998; Preiss, 2000; Fanning & Link, 2008; Le Heron
et al. 2011; Preiss et al. 2011; Cox et al. 2013; Le Heron et al. 2014;
Cox et al. 2018b; Conor & Preiss, 2019; Virgo et al. 2021).

The Fitton Formation (Figs. 3, 4) is the oldest known unit of the
Yudnamutana Subgroup and is present only in the Yudnamutana
Trough of the northern Flinders Ranges (Fig. 1). The Fitton
Formation consists of a basal conglomeratic facies, known as the
Hamilton Creek Member, while the remainder of the formation
is predominantly finely laminated mudstone and hornfels. The
Hamilton Creek Member comprises laminated silty mudstone
interbedded with gravel to boulder conglomerates and minor
sandstone. The conglomerates range from a few centimetres to
20 m in thickness and are mostly massive although some have
crude stratification. Sandy orthoconglomerates predominate, some
are graded, with diamictite present in the lower parts of the unit.
Mudstones are commonly interbedded with thin sandstone layers
and gravel-to-pebble conglomerate. Some rare ripple-cross
laminations are present in the unit, and dropstones are noted in
the upper part of the member (Young & Gostin, 1989b). The
majority of the Fitton Formation primarily comprises laminated
silty mudstones containing abundant metamorphic scapolite, with
diamictite beds throughout. Minor conglomerates, sandstones and
actinolitic marbles are also present. Sandstones are more abundant
in the lower half of the formation, while diamictite is more
abundant in the upper half, as are dropstones (Preiss, 1987; Young
&Gostin, 1989b). The formation has been interpreted as recording
a sequence of glacial advance, retreat and then a second advance
(Young & Gostin, 1989b). The Fitton Formation is conformably
overlain by the Bolla Bollana Tillite (Young &Gostin, 1989b; Preiss
et al. 1998).

The Bolla Bollana Tillite is one of six formally named
diamictite-abundant formations of the Yudnamutana Subgroup,
which are lithostratigraphic correlatives (Figs. 3, 5). The six
correlative formations are the Appila Tillite (Thomson et al. 1964)
(based on the section of Segnit, 1939), the Bolla Bollana Tillite
(Thomson et al. 1964; Coats & Forbes, 1977), the Calthorinna
Tillite (Ambrose et al. 1981), the Merinjina Tillite (Coats & Preiss,
1987), the Pualco Tillite (Forbes & Cooper, 1976) and the Sturt
Tillite (Howchin, 1920; Mawson & Sprigg, 1950). These six
correlative formations are here combined and referred to as the
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Sturt Formation (Figs. 3, 5) with a formal redefinition presented in
section 5.e.1 below.

At the type locality, the Sturt Formation comprises (boulder)
diamictite showing evidence for glaciogenic origin and numerous
subsidiary lithologies including poorly sorted sandstones and

conglomerates through to finely laminated shales containing a
wide variety of lonestones and dropstones (Fig. 4). Four
generalized lithofacies are defined at the type location (Belperio,
1973; Young &Gostin, 1989b). The lowermost unit comprises very
poorly sorted conglomerates with sandy matrix to diamictites with

Figure 1. (Colour online) Sample locality map, showing distribution of Neoproterozoic stratigraphy within the Adelaide Rift Complex of the Adelaide Superbasin and
Koonenberry Belt of New South Wales. GPS coordinates for samples are providedwith the U-Pb data (see data availability). The Stuart Shelf lies to the east of Ngarndamukia/Lake
Torrens, and the Davenport and Denison Ranges further to the northeast of the limit of this map.
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muddy, silty and even very fine sandy matrix. Clasts range up to
boulder size (largest observed is ~1 m) and there are minor
interbeds of laminated siltstone. A higher concentration of larger
clasts is present in the lower sections. The next lithofacies
comprises interbedded, well-laminated shales and sandy mica-
ceous siltstones. There are minor pebbly lenses and silty arenites
with cross-bedding present and are often ripple marked. The third
lithofacies comprises crudely stratified diamictite (lithic wacke,
muddy to silty matrix) with clasts ranging up to boulder size (max.
observed: 90 cm). There are minor interbeds of calcareous shale
and thick interbeds of massive diamictite. The uppermost
lithofacies is similar to the third; however, it has a higher mud
content in the matrix and is mostly massive diamictite. There are
also a greater number of clasts with greater size diversity ranging
up to 1.25 m (observed) in this uppermost lithofacies.

In general, the lithologic sequence common throughout the
basin for the Sturt Formation (Fig. 5) for complete or near-
complete sections consists of three units. The lowermost is a poorly
sorted, gravel-to-boulder conglomerate (diamictite in some areas)
with a generally sandy matrix. Scoured bases are common in areas
where the Fitton Formation is not present. The middle unit
comprises interbedded fine laminated siltstones and shales to
cross-bedded sandstones with few lonestones/dropstones. The
uppermost unit is either a massive or stratified boulder diamictite.
Regional variation does occur, notably arkosic, poorly sorted
immature sandstones and cross-bedded sandstones are predomi-
nant in some areas. Carbonate matrixes and interbeds are
abundant in some regions (Hood et al. 2021). Clast size and type
in diamictite vary greatly across the basin, with sizes up to boulder
megaclasts of ~1.25 km (Conor & Preiss, 2019). Iron-rich sections

are present within the Sturt Formation underlying the Benda
Siltstone and Holowilena Ironstone (Preiss, 1987; Preiss et al. 2011;
Lechte & Wallace, 2015).

The Benda Siltstone, Old Boolcoomata Conglomerate Member
and Holowilena Ironstone either overlie or form the Sturt
Formation (Fig. 3) but are only found in the Baratta Trough
(Fig. 1) (Preiss, 2006; Lechte & Wallace, 2015; Conor & Preiss,
2019). The accurate stratigraphic correlation of these units is still
uncertain; however, they are likely partial equivalents of both
underlying (Sturt Formation) and overlying (Wilyerpa and
Lyndhurst formations) stratigraphy. The Benda Siltstone and
Holowilena Ironstone have complex interfingering stratigraphic
relationships with the Sturt Formation and Wilyerpa Formation.

The Benda Siltstone comprises dark-weathering, calcareous,
dark and medium grey laminated siltstone and minor silty
limestone. Iron-rich siltstone occurs in the lower part of the Benda
Siltstone. Regional variation includes interbedded sandstones and
dolostones (Preiss, 1987). The Old Boolcoomata Conglomerate
Member of the Benda Siltstone comprises mainly clast-supported
oligomictic conglomerate and minor arkosic grit. Clasts in the Old
Boolcoomata Conglomerate Member are predominantly well-
rounded to subrounded and mainly consist of two-mica S-type
granites from the early Mesoproterozoic Bimbowrie Suite, with
subsidiary clasts of migmatite, psammite, psammopelite, pelitic
schist, albistized metasediment and calcalbitite (Preiss, 2006).

The Holowilena Ironstone is defined as a haematite siltstone
with lenses of dolomite and wacke with glacial erratics and is
considered to be an unmetamorphosed equivalent of the Benda
Siltstone (Thomson et al. 1964; Preiss, 1987, 1993). The Holowilena
Ironstone comprises hematitic siltstone, siltstone with minor lenses
of dolostone, quartzite and pebbly to boulder, often massive
ironstone (Thomson et al. 1964; Preiss, 1987; Lechte & Wallace,
2015). The silty units are thinly and evenly bedded, occasionally with
small cross-bedding. Regionally, some jasper is present.

The Wilyerpa Formation (Thomson et al. 1964; Dalgarno &
Johnson, 1966; Forbes, 1971) and correlative Lyndhurst Formation
(Figs. 3, 4) (Thomson et al. 1964; Young & Gostin, 1989b) are the
youngest units of the Yudanamutana Subgroup (Fig. 2) and have
been interpreted to represent the waning of the Sturtian Glaciation
(Preiss, 1987; Preiss et al. 1998; Cox et al. 2018b).

TheWilyerpa Formation is a variably thick unit (up to 4,400 m)
comprising grey to green siltstones and shales with interbedded
arenites and subsidiary diamictites and dolostones. Arkosic and
quartzitic sandstones are common and predominate in some areas
(Preiss, 1987). Two members, the Warcowie Dolomite Member
and Bibliando Tillite Member, are defined within the Wilyerpa
Formation. While originally thought to be restricted to the Baratta
Trough (Fig. 1), subsequent research indicates that the Wilyerpa
Formation may be more widespread (Fanning & Link, 2006;
Fanning & Link, 2008; Cox et al. 2018b). Relationships with the
underlying stratigraphy (Sturt Formation, Benda Siltstone,
Holowilena Ironstone) are variable with some areas being
gradational and others disconformable, the latter likely due to
active tectonics (Preiss, 1987; Preiss et al. 1998; Preiss, 2000).

The Lyndhurst Formation is a sequence of predominantly
laminated and ripple cross-laminated, blue pyritic and silty shale
with minor green silty shale and interbedded quartzite, grits and
sparse pebbly diamictites (Fig. 4). The unit conformably overlies
the Sturt Formation and is considered to be restricted to the
Yudnamutana Trough (Fig. 1) (Preiss, 1987; Young & Gostin,
1989b; Preiss et al. 1998).

Figure 2. (Colour online) Simplified stratigraphic chart showing Supergroup, Group
and Subgroup division of the Neoproterozoic stratigraphy within the Adelaide
Superbasin. ICC = International chronostratigraphic chart; SG = Supergroup;
G = Group; MDA/ICA = maximum depositional age (denoted by ≤) and igneous
crystallization age (no preceding annotation). Colours used to fill group level cell are
consistent with colours used in later figures. Geochronology data from Lloyd et al.
(2020) and references therein, van der Wolff (2020), and Lloyd et al. (2022).
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2.a.2. Yancowinna Subgroup
The Yancowinna Subgroup, Torrowangee Group, of western New
South Wales was defined by Cooper and Tuckwell (1971) and
described in more detail by Cooper et al. (1974). It consists of a
sequence of coarse poorly sorted siliciclastics that include arkose,
quartzite, sandstone, siltstone, conglomerate and diamictite
(Cooper et al. 1974; Preiss, 1987; Fitzherbert & Downes, 2015).
Tillite has only been confidently recognized in one area (Cooper,
1973), but many of the facies closely resemble probable correlatives
(Fig. 2) in South Australia (Preiss, 1987).

The Yancowinna Subgroup is overlain by the Euriowie
Subgroup (postglacial) that is in turn overlain by the Teamsters
Creek Subgroup (Fig. 2), which has been interpreted as recording the
younger Cryogenian Marinoan (Elatina) Glaciation (Preiss, 1987;
Fitzherbert & Downes, 2015). The stratigraphic position of the
Yancowinna Subgroup supports correlation with the Yudnamutana
Subgroup of South Australia. Aside from detailed mapping and the
original sedimentological work, there is extraordinarily little
research on the Torrowangee Group (Fig. 2) sequences, and no
geochronology has been published to date. As such the correlations
are likely but uncertain and not yet confirmed by geochronology.

2.a.3. Nepouie Subgroup
The postglacial Nepouie Subgroup (Fig. 2) is believed to begin with
the Serle Conglomerate, a sequence of stratified to crudely
stratified conglomerates, with interbedded sandstones and shales
(Young & Gostin, 1989a; Preiss et al. 1998). The conglomerates of
the Serle Conglomerate trend from primarily sandy siliciclastic
matrix to carbonate-rich matrix up-sequence and are interpreted

to have been deposited as part of a submarine fan complex (Young&
Gostin, 1989a). The stratigraphic position of the Serle Conglomerate
is still somewhat uncertain; however, it appears to conformably
underlie the Tapley Hill Formation and unconformably overlie the
Lyndhurst Formation (Fig. 3) with an erosional contact (Young &
Gostin, 1989a; Dyson, 1996; Preiss et al. 1998; Dyson, 2004).

The Tapley Hill Formation primarily comprises well-sorted,
commonly carbonaceous, calcareous or dolomitic siltstone, with
pyritic shale and dolostone at its base (i.e. the Tindelpina Shale
Member). Grain size and carbonate content tend to increase up-
sequence, and fine laminations are abundant throughout the
Tapley Hill Formation. While extensive in both distribution
(basin-wide) and lithological uniformity, there are several minor
lithofacies variations within the Tapley Hill Formation, including
arkose, wacke, siltstone, dolostone and lenticular conglomerate
beds (Preiss, 1987; Preiss et al. 1998; Virgo et al. 2021). The latter is
attributed to debris flows reworking the underlying glaciogenic
sequences (Preiss, 1987). Where the Serle Conglomerate is not
present, the base of the Tapley Hill Formation is often
disconformable with the underlying Yudnamutana Subgroup,
although it may be gradational over a few centimetres in some
areas (Preiss, 1987).

The youngest units of the Nepouie Subgroup are the Brighton
Limestone and Balcanoona Formation, which conformably overlay
and often interfinger with the Tapley Hill Formation. Both
formations are predominately limestones with oolitic and
stromatolitic features (Preiss, 1987, 2000). The Balcanoona
Formation is coeval with the upper Tapley Hill Formation,
forming large palaeo-reef systems above it and passing laterally

Figure 3. (Colour online) Stratigraphic table showing past (Preiss et al. 1998) and current correlations (this study) of the Yudnamutana Subgroup.
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into it (Wallace et al. 2015), while the Brighton Limestone has
been interpreted as the culmination of shallowing at the top of
the Nepouie Subgroup (Preiss, 2000).

2.b. Sturtian Glaciation

The term Sturtian was originally defined as a chronostratigraphic
unit (Series) in South Australia (Mawson & Sprigg, 1950) and was
later proposed for use as a global chronostratigraphic division by
Dunn et al. (1971). However, this archaic local chronostratigraphic
terminology has been superseded by international nomenclature
(Plumb, 1991; Gradstein et al. 2005; Knoll et al. 2006; Shields-Zhou
et al. 2016; Shields et al. 2022). Presently, ‘Sturtian’ is used
informally by the international community as the name for the
older of two global (or near-global) glacial events proposed to have
occurred during the Cryogenian (Harland, 1964; Kirschvink, 1992;
Hoffman et al. 1998; Hoffman & Schrag, 2002; Fairchild &
Kennedy, 2007; Hoffman et al. 2017). In a split from growing
consensus, Le Heron et al. (2020) have advocated that the term
‘Laurentian Neoproterozoic Glacial Interval’ is used in favour of
Sturtian, and that use of Sturtian should become restricted to the
formations in Australia – a concept we are not in favour of and
discuss in section 5.e.2 below.

The global distribution of Cryogenian glacial sequences, in
particular those now attributed to the Sturtian Glaciation, was
recognized nearly a century ago (Cooper, 2010; Hoffman, 2011;
Hoffman et al. 2017 and references therein). However, their
synchroneity was long debated until the advent of reliable and
precise radiometric geochronology within the past two decades,
which supports that, separately, the onset of glaciation and
deglaciation of each of the two major Cryogenian glacial events
(Sturtian andMarinoanGlaciations) is coeval globally (Fig. 6) (e.g.,
Dempster et al. 2002; Kendall et al. 2006; Kendall et al. 2009; Xu
et al. 2009; Macdonald et al. 2010; Calver et al. 2013; Miller, 2013;
Rooney et al. 2014; Rooney et al. 2015; Hoffman et al. 2017; Cox
et al. 2018b; Shields et al. 2018; Lamothe et al. 2019; Park et al.
2019; Keeman et al. 2020; Lloyd et al. 2020; Rooney et al. 2020).
This global synchroneity led Hoffman et al. (2017) to propose
calling the Cryogenian glacial events ‘cryochrons’. For the older
Sturtian event within the Cryogenian, the onsets of glaciation and
deglaciation are interpreted to occur at c. 717 Ma at c. 660 Ma,
respectively (Fig. 6) (Rooney et al. 2015; Hoffman et al. 2017).

Many of the thickest Cryogenian glacial successions are found
in extensional basins associated with the break-up of Rodinia; the
very thick Yudnamutana Subgroup (Figs. 2, 3) deposits in the
Baratta, Yudnamutana and Torrowangee troughs (Fig. 1) of the
Adelaide Superbasin are typical of these.

3. Methods

3.a. DZ U–Pb geochronology

Seventeen samples were analysed for DZ U–Pb geochronology; 15
diamictite samples (Fig. 1) from the Yudnamutana Subgroup
(FR1_005_02, FR1_009_01, FR2_007_01, FR2_024_01, FR3_005,
FR3_006, FR3_009, FR3_034, FR3_065, FR3_073, FR3_084a,
FR3_109, FR3_139, ML_017 and ML_018), one diamictite sample
from the correlative Yancowinna Subgroup (GSNSWKB002), and
one conglomerate sample from the lowermost Nepouie Subgroup
(FR3_004). The distribution of these samples was intended to

Figure 4. (Colour online) Generalized composite stratigraphic log of the Fitton
Formation, Sturt Formation and Lyndhurst Formation at their type sections near
MacDonald Creek, Arkaroola area. Based on data from Young and Gostin (1989b).
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Figure 5. (Colour online) Generalized stratigraphic logs of the Sturt Formation at its type section and additional reference sections. For coordinates of locations see the accompanying stratigraphic unit definition (Appendix 2). Copley,
Yankaninna, Willouran Ranges and Vulkathuhna-Gammon Ranges sections are from logging done by authors in this study. Type section is based on data from Belperio (1973) and Young and Gostin (1989b). Other sections are compiled
from Segnit (1939), Forbes and Cooper (1976), Coats and Preiss (1987) and Link (1977).

G
eochronology

and
form

alstratigraphy
of

the
Sturtian

G
laciation

7

https://doi.org/10.1017/S0016756823000390 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0016756823000390
https://doi.org/10.1017/S0016756823000390


Figure 6. (Colour online) Compilation of global geochronologic data for the Sturtian andMarinoan (Elatina) Glaciations. Symbols are colour coded to reflect analytical method (see Fig. legend for details). Open symbols are data from pre-,
inter- and post-glaciogenic strata, and closed symbols denote data from syn-glaciogenic strata. Shapes signify age type where squares are considered syn-depositional ages, and triangles denote minimum (tip points older) or maximum
(tip points younger) depositional ages. Data sources: AUSTRALIA: (1) This study; (2) Calver et al. (2013); (3) Kendall et al. (2009); (4) Rose et al. (2013); (5) Kendall et al. (2004); (6) Lloyd et al. (2020); (7) Ireland et al. (1998); (8) Kendall et al.
(2006); (9) Cox et al. (2018b); (10) Keeman et al. (2020); (11) van der Wolff (2020); (12) Armistead et al. (2020). ARABIA/NUBIA: (13) Bowring et al. (2007); (14) Abd El-Rahman et al. (2020); (15) MacLennan et al. (2018); (16) Li et al. (2018).
CONGO: (17) Rooney et al. (2015); (18) Key et al. (2001); (19) Nascimento et al. (2016). KALAHARI: (20) Prave et al. (2016); (21) Schmitz (2012); (22) Frimmel et al. (1996); (23) Hoffman et al. (1996); (24) Borg et al. (2003); (25) Frimmel et al.
(2001). LAURENTIA: (5) Kendall et al. (2004); (17) Rooney et al. (2015); (26) Dempster et al. (2002); (27) Rooney et al. (2011); (28) Rooney et al. (2014); (29) Isakson (2017); (30) Keeley et al. (2013); (31) Condon and Bowring (2011); (32) Lund et al.
(2003); (33) Eyster et al. (2018); (34) Baldwin et al. (2016); (35) Denyszyn et al. (2009); (36) Cox et al. (2018a); (37) Denyszyn et al. (2009); (38) Macdonald et al. (2010); (39) Macdonald et al. (2018); (40) Cox et al. (2015); (41) McDonough and
Parrish (1991); (42) Strauss et al. (2014); (43) Fetter and Goldberg (1995); (44) Karlstrom et al. (2000); (45) Ross and Villeneuve (1997); (46) Aleinikoff et al. (1995); (47) Jefferson and Parrish (1989). BALTICA: (48) Zaitseva et al. (2019); (49)
Krasnobaev et al. (2019); (50) Środoń et al. (2022) SIBERIA: (51) Kochnev et al. (2015); (52) Rud‘ko et al. (2020). MONGOLIA: (17) Rooney et al. (2015). NORTH CHINA: (53) Xu et al. (2009); (54) He et al. (2014). SOUTH CHINA: (21) Schmitz
(2012); (55) Chongyu et al. (2005); (56) Zhang et al. (2005); (57) Rooney et al. (2020); (58) Zhou et al. (2019); (59) Zhou et al. (2020); (60) Zhou et al. (2004); (61) Lan et al. (2015); (62) Song et al. (2017); (63) Lan et al. (2014); (64) Lan et al. (2020);
(65) Zhang et al. (2008).
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provide good geographic and stratigraphic coverage across the
basin system for strata of interest.

Rock samples were prepared for DZ analysis by standard
methods at the University of Adelaide (Lloyd et al. 2022).
Cathodoluminescence images were obtained on either a FEI
Quanta 600 scanning electron microscope (for zircon analysed in
2020) or a Cameca SXFive Electron Microprobe (for zircon
analysed in 2021). All zircons were analysed using a RESOlution-
LR 193 nM ArF excimer LA system coupled with an Agilent 7900x
inductively coupled plasmamass spectrometer (ICP-MS) to obtain
a suite of elemental data for U–Pb geochronology and rare earth
element analysis. All analytical instruments used are housed at
Adelaide Microscopy, University of Adelaide, Australia.

Primary calibration reference materials were the zircon
standard GJ-1 (Jackson et al. 2004; Horstwood et al. 2016) for
U–Pb ratios, and the glass standard NIST610 (Jochum et al. 2011)
for Pb isotope ratios and trace element data. Zircon standards
Plešovice (Sláma et al. 2008; Horstwood et al. 2016) and 91500
(Wiedenbeck et al. 1995; Wiedenbeck et al. 2004; Horstwood et al.
2016) were used as validation reference materials to check accuracy.
Data were processed using LADR (Norris & Danyushevsky, 2018),
version 1.1.06. Statistical analysis of the zirconU–Pb data follows the
method of Lloyd et al. (2020). Data are considered concordant if
within ± 10%, and a meaningful age if the two-standard error
(2SE) uncertainty is ≤10% – if a datum satisfies both parameters
it is termed a Filtered Age. Maximum depositional ages (MDAs)
are determined from the youngest single grain (YSG); however, a
stricter 2% concordance filter is used to determine a conservative
and reliable MDA from the YSG. All uncertainties are quoted at
2SE level. Further details can be found in Appendix 1 (Extended
Methods).

Metadata for the LA-ICP-MS sessions, data for all analyses,
cathodoluminescence images and R code used to generate plots are
available from the links in data and code availability.

3.b. In-situ Rb–Sr geochronology

Two siltstone/shale samples (3404236 and 3404235) were acquired
for in-situ Rb–Sr geochronology from the Sturt Formation within
drillhole SR13/2 located on the north-eastern margin of the Stuart
Shelf, South Australia. Samples were mounted and polished as rock
blocks in 25 mm round epoxy and then mapped for mineral
composition and petrography using a Hitachi SU3800 SEM
(Subarkah et al. 2021, 2022). Samples were analysed using an
Agilent 8900x ICP-MS/MS coupled to a RESOlution-LR 193 nM
ArF excimer LA system. All instruments are housed at Adelaide
Microscopy, the University of Adelaide. Methods follow Redaa
et al. (2021) and Subarkah et al. (2021). Primary calibration
reference materials were NIST610 (Jochum et al. 2011) for Sr
isotope ratios, and the Mica-Mg (Govindaraju, 1995) pressed
nanopowder pellet for Rb–Sr ratios. Accuracy was checked by
analysingMDC (crystalline phlogopite) and Högsbo (crystalline
muscovite) (Hogmalm et al. 2017; Redaa et al. 2021) as
validation reference materials. Data were reduced in LADR
(Norris & Danyushevsky, 2018) version 1.1.07.

Isochrons were calculated using IsoplotR (Vermeesch, 2018)
using a 87Rb decay constant (λ) of (1.3972 ± 0.0045) × 10−11 a−1

(Villa et al. 2015). Error correlations (ρ) were calculated in
LADR by using a workaround to proxy the Rb–Sr data as U–Pb
data. Uncertainties are quoted at 2SE level (accounting for
overdispersion), initially without decay constant uncertainty
propagation. The decay constant uncertainty is propagated into
the quoted 2SE uncertainty (accounting for overdispersion)
during the discussion when compared to other geochronometric
systems. Further details can be found in Appendix 1 (Extended
Methods). The Rb–Sr data are available from the links provided
in data availability.

4. Results

4.a. DZ geochronology

4.a.1. Fitton Formation
A total of 124 U–Pb and trace element DZ analyses were
conducted for samples FR3_065 (92/74), FR3_009 (9/1) and
FR2_024_01 (23/20), with 95 analyses passing filtering

Figure 7. (Colour online) Kernel density estimates (KDEs) of detrital zircon
populations from Yudnamutana, Yancowinna and Nepouie Subgroup samples. Data
are from this study unless otherwise denoted. Tick marks below each plot represent an
analysis. n = filtered analyses/total analyses. Generated using IsoplotR (Vermeesch,
2018).
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parameters. Data from these samples were combined as only two
samples yield more than one filtered analysis. The two samples
with more than one filtered analysis were ~200 m apart
(geographically), all three samples were from the broader local
area (Fig. 1) and there were no discernible differences in the age
spectra. Ages range from 2458 ± 37 Ma to 1134 ± 24 Ma, with a
primary population peak c. 1580 Ma and a secondary peak c.
1160 Ma (Fig. 7).

4.a.2. Sturt Formation and equivalents
A total of 162 U–Pb and trace element DZ analyses were conducted
for samples ML_017 (117/93) and ML_018 (45/14), South Mount
Lofty Ranges (Sturt Gorge, Adelaide), with 107 analyses passing
filtering parameters. Data from these samples were combined as
the two sampling sites were ~60 m apart (geographically) (Fig. 1).
Ages range from 2933 ± 34 Ma to 930 ± 16 Ma, with a primary
population peak c. 1840 Ma, tailing towards 1560 Ma. A minor
population peak is present c. 1100 Ma (Fig. 7).

A total of 178 U–Pb and trace element DZ analyses were
conducted for sample FR1_009_01, North Mount Lofty Ranges
(Spalding area) (Fig. 1), with 98 passing filtering parameters. Ages
range from 3374 ± 32Ma to 1501 ± 48Ma, with a single population
peak c. 1790 Ma (Fig. 7).

A total of 81 U–Pb and trace element DZ analyses were
conducted for samples FR2_007_01 (31/28) and FR3_139 (50/49),
North Flinders Ranges (Copley area) (Fig. 1), with 77 analyses
passing filtering parameters. Data from these samples were
combined for MDS and KDE analysis as they were sampled from
the same stratigraphic interval (Fig. 1) at the approximately same
stratigraphic position, and their age spectra are remarkably similar
(Fig. 7). Ages range from 2718 ± 21 Ma to 663 ± 11 Ma, with a
primary population peak c. 1740 Ma and secondary population
peaks c. 1580 Ma, 1180 Ma and 1050 Ma (Fig. 7). The individual
sample MDAs were 663 ± 11 Ma for FR3_139 and 698 ± 12Ma for
sample FR2_007_01

A total of 52 U–Pb and trace element DZ analyses were
conducted for samples FR3_084a (10/9) and FR3_109 (42/37),
North Flinders Ranges (Yankaninna area), with 46 analyses
passing filtering parameters. Data from these two samples were
combined as they were sampled from within 30 m of each other in
the same interval of outcrop (Fig. 1). Ages range from
2514 ± 48 Ma to 1042 ± 19 Ma, with a single population peak c.
1640 Ma (Fig. 7).

A total of 118 U–Pb and trace element DZ analyses were
conducted for sample FR3_073, North Flinders Ranges
(Vulkathuhna-Gammon Ranges) (Fig. 1), with 94 passing filtering
parameters. Ages range from 3322 ± 35 Ma to 891 ± 15 Ma, with a
single broad, and slightly bimodal population peak range of c.
1740 Ma to c. 1620 Ma (Fig. 7).

A total of 144 U–Pb and trace element DZ analyses were
conducted for sample FR3_034, North Flinders Ranges (Stubbs
Waterhole, Arkaroola), with 125 passing filtering parameters. Ages
range from 2691 ± 42 Ma to 1117 ± 34 Ma, with a primary
population peak c. 1590 Ma and a secondary population peak c.
175 Ma (Fig. 7).

A total of 132 U–Pb and trace element DZ analyses were
conducted for sample FR3_006, North Flinders Ranges (Stanley
Mine, Arkaroola) (Fig. 1), with 122 passing filtering parameters.
Ages range from 2858 ± 47 Ma to 969 ± 16 Ma, with a primary
population peak c. 1580 Ma and secondary population peaks c.
1790 Ma and 1160 Ma (Fig. 7).

A total of 59 U–Pb and trace element DZ analyses were
conducted for sample GSNSWKB002, Yancowinna Subgroup,
Barrier Ranges (New South Wales) (Fig. 1), with 48 passing
filtering parameters. Ages range from 2404 ± 37 Ma to
1065 ± 18 Ma (Fig. 7).

4.a.3. Lyndhurst and Wilyerpa Formations
Sample FR3_005, Lyndhurst Formation, had extremely low zircon
yield with only three zircons obtained and analysed for U–Pb ratios
and trace element concentrations. Of those three zircon analyses,
only two passed filtering parameters, with ages of 1532 ± 24 Ma
and 1174 ± 19 Ma (Fig. 7).

A total of 40 U–Pb and trace element DZ analyses were
conducted for sample FR1_005_02, Wilyerpa Formation, North
Mount Lofty Ranges (Fig. 1). Of these 40 analyses, 33 passed
filtering parameters with ages ranging from 2560 ± 79 Ma to
1020 ± 19 Ma, with a primary population peak c. 1580 Ma and a
secondary population peak c. 2500 Ma (Fig. 7).

4.a.4. Serle Conglomerate
A total of 56 U–Pb and trace element DZ analyses were conducted
for sample FR3_004, Serle Conglomerate, with 48 passing filtering
parameters. Ages range from 2679 ± 65Ma to 1246 ± 24Ma, with a
primary population peak c. 1590 Ma and a secondary population
peak c. 1760 Ma (Fig. 7).

4.b. Zircon trace element geochemistry

Most analyses resolved lanthanoid concentrations that are
typical for zircons, with several orders-of-magnitude increase in
concentration from light to heavy elements, a slight negative
deviation in europium (Eu) and a positive deviation in cerium (Ce)
(Supplementary Figure S1). However, two analyses (FR1_009_01b-
057 and FR1_009_01-044) have lanthanoid concentrations atypical
of zircon, with overall positive (based on ionic radii) linear slopes (λ1
of þ7.14, and þ1.06) due to highly elevated concentrations of light
lanthanoids (La to Nd). Overall, the lanthanoid pattern of both
analyses has a concave-up shape with heavy lanthanoid concen-
tration increasing as would normally occur in zircon.Major element
percentages, ~14.4 wt% and ~15.6 wt% silicon, suggest these two
analyses are zircon, and CL images also support this, although show
patchy textures. The ages for these are at the limit of discordance
acceptance (90%). It is likely these two analyses have gone through
complicated zones of inclusions, altered metamict zones and/or
mineral overgrowths.

4.c. Shale petrology and in-situ Rb–Sr geochronology

Clay minerals in sample 3404325 form mottled domains where
boundaries of individual flakes are difficult to distinguish
(Supplementary Fig. S2). Illite grains preserve their primary
compaction structures, wrapping around detrital, angular
quartz grains (dashed lines in Supplementary Figure S2). In
contrast, clays in samples 3404236 are large and angular. Illite
grains in this sample show discrete, sharp grain boundaries
(solid white lines in Supplementary Fig. S2). Of the two siltstone/
shale samples analysed for Rb–Sr geochronology, 3404236 (upper
Sturt Formation) and 3404235 (lower Sturt Formation), only the
latter sample yielded a meaningful result. The analyses on sample
3404236, n= 60, had little spread in Rb/Sr ratios and a low
percentage of radiogenic Sr (87Sr/86Sr< 0.8); nonetheless, a date of
839 ± 235 Ma was obtained with an initial 87Sr/86Sr of
0.7030 ± 0.0127 (Fig. 8). For sample 3404235, n= 51, there was
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reasonable spread in Rb/Sr ratios and a date of 684 ± 37Ma with an
initial 87Sr/86Sr of 0.7204 ± 0.0054 was obtained (Fig. 8).

5. Discussion

5.a. Zircon trace element geochemistry

Zircons analysed in this study mostly show affinity to generation in
continental crust with only a small number of zircons potentially of
oceanic affinity (Supplementary Fig. S3), as inferred by the U/Yb
against Y plot (Grimes et al. 2007, 2015). Almost all zircons have a
Th/U ratio >0.07 and are inferred to be magmatic rather than
metamorphic as Th preferentially partitions into common
metamorphic minerals, e.g. monazite and allanite (Rubatto, 2002;
Collins et al. 2004). C1 chondrite normalized (O’Neill, 2016)
lanthanoid concentrations are generally typical for zircon
(Supplementary Fig. S1) with a positive slope (increasingly negative
λ1 values) from light to heavy lanthanoids, a positive Ce anomaly
and negative Eu anomaly (Hoskin & Ireland, 2000; Hoskin &
Schaltegger, 2003). There is no apparent trend in lanthanoid slope or
curvature (Supplementary Fig S4), denoted as λ1 (linear slope),
λ2 (quadratic slope) and λ3 (cubic slope) (Anenburg, 2020), with
time or sample. Both Eu and Ce anomalies (denoted by Eu* and
Ce*) show a scattered distribution through time (Supplementary
Fig. S4). The youngest few zircons c. 670 Ma, although limited in
number, have out-of-phase Eu* (low) and Ce* (high) anomalies
suggestive of growth in competition with plagioclase and not
reflective of magma oxidation state (Verdel et al. 2021).

5.b. Provenance and MDAs

5.b.1. Maximum depositional ages
The older limit of expected depositional age for samples in this
study is constrained by two DZ MDAs from the underlying Belair

Subgroup, namely the Gilbert Range Quartzite (731 ± 34 Ma,
Keeman et al. 2020; Lloyd et al. 2020) and Mitcham Quartzite
(720 ± 21 Ma, van der Wolff, 2020). The younger age limit for
deposition of the Yudnamutana Subgroup is constrained by a
663.03 ± 0.76 Ma tuff in theWilyerpa Formation (Cox et al. 2018).
The Serle Conglomerate is older than the c. 642 Ma minimum
depositional age of the Tapley Hill Shale (Re–Os shale, Kendall
et al. 2006) that it is interpreted to underlie.

An MDA of 1134 ± 24 Ma was obtained for the combined
Fitton Formation samples. This is significantly older than the
expected depositional age c. 730–663 Ma.

The MDAs for the Sturt Formation, both existing and newly
obtained, are presented in Table 1 according to the groupings
outlined in section 4.a.2 above. There is significant scatter inMDAs
across samples from the Sturt Formation; however, DZ age spectra
are similar (Figs. 7, 9) throughout all samples (spanning more than
500 km north–south, Fig. 1). Three independent samples covering
a distance of ~250 km north–south have MDAs within uncertainty
of each other. While DZ population spectra variations occur
locally, as is expected across a large basin, and with significant
recycling of underlying stratigraphy in glacially derived sediment,
the remarkable similarity of most samples’ spectra (Figs. 7, 9) is
consistent with lithostratigraphic mapping, which indicates that
these units are correlative. In addition, many researchers have
noted that the Sturt Formation often consists of two diamictite-
abundant units separated by an argillaceous or arenaceous
sequence (Lechte & Wallace, 2015; Virgo et al. 2021). Different
regions of the basin likely preserve deposits from different parts of
the Sturtian glacial event where the two diamictite-abundant units
may represent discrete periods of glacial advance or various phases
of the glaciation (Lechte & Wallace, 2015; Lechte et al. 2018).
Chronological constraints for the Sturt Formation had been almost
non-existent up until recently but are now robust enough to

Figure 8. (Colour online) Rb–Sr isochrons of the two shale/siltstone samples from the Sturt Formation in drillhole SR13/2 analysed in this study. Quoted uncertainty and ellipses
are two standard errors (2SEs). The second uncertainty term accounts for overdispersion. Generated using IsoplotR (Vermeesch, 2018), without the decay constant uncertainty
propagated. 87Rb decay constant used = (1.3972 ± 0.0045) × 10−11 a−1.
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bracket deposition of the Sturt Formation and Fitton Formation to
between 720 ± 21Ma and 663.03 ± 0.76Ma (Fanning & Link, 2008;
Cox et al. 2018b; Keeman et al. 2020; van der Wolff, 2020). Given
the younger limit imposed by the Wilyerpa Formation tuff, the
MDA of c. 663 ± 11 Ma is likely close to the true depositional age
for at least the terminal deposits (upper portion) of the Sturt
Formation.

GSNSWKB002 was a reconnaissance sample collected from
undifferentiated Yancowinna Subgroup in the Barrier Ranges of
New South Wales to test the general correlation with the
Yudnamutana Subgroup of South Australia. This area is the
easternmost known extension of the Adelaide Superbasin during
the Neoproterozoic (Cooper & Tuckwell, 1971; Cooper, 1973;
Preiss, 1987; Fitzherbert & Downes, 2015; Lloyd et al. 2020). The
sample is from a highly weathered diamictite with clasts ranging up
to pebble size and a silty to fine sand matrix. An MDA of
1065 ± 18Ma was obtained from the sample, with a DZ population
spectrum similar to that of the probable correlatives in South
Australia (Figs. 7, 9]. This provides limited but supporting
evidence of a shared detrital source and that these two subgroups
are correlative as is indicated by the existing lithostratigraphic
framework (Lloyd et al. 2020).

An MDA of 1477 ± 33 Ma was obtained from the Wilyerpa
Formation (FR1_005_02) sampled in the Clare Valley. This is
significantly older than the expected depositional age (i.e. c.
663 Ma) and may be a factor of low zircon yield and/or no zircon
close to depositional age being present in the sample.

An MDA of 1246 ± 24 Ma was obtained from the Serle
Conglomerate sample (FR3_004). Again, this is significantly older
than true depositional age, which is expected to be between c.
663 Ma and c. 642 Ma. The DZ population spectrum somewhat
differs (Figs. 7, 9) from the nearby Sturt Formation sample
(FR3_006), although this may partially be an artefact of the much
lower zircon yield from the Serle Conglomerate sample.

5.b.2. Provenance
TwoDZ populations, c. 1840–1790Ma and c. 1640–1580Ma, form
major peaks in virtually all samples. The exact age positions and
magnitude of the population peaks vary slightly by sample, with
broad north–south and east–west variations, generally trending to
older Palaeoproterozoic age populations in the west and south. It is
likely that there is significant recycling of the unconformably
underlying stratigraphy due to sub-glacial erosion (Young &

Gostin, 1989b). The similarity of the DZ spectra within the samples
of this study to each other, and to earlier rocks of the Adelaide
Superbasin (Fig. 9), suggests homogenization of detrital material
over a large area, potentially with extra-basin material, as well as
intra-basin recycling of earlier stratigraphy, presumably by glacial
erosion.

Zircons with ages greater than c. 1400 Ma are likely sourced
locally from the Gawler Craton, Barossa Complex and Curnamona
Province that collectively record numerous zircon generation
events and sedimentary sequences known to contain DZ of these
ages (Swain et al. 2005; Fanning et al. 2007; Barovich & Hand,
2008; Conor & Preiss, 2008; Reid et al. 2008; Stevens et al, 2008;
Belousova et al. 2009; Fraser & Neumann, 2010; Fraser et al. 2010;
Jagodzinski & Fricke, 2010; Wade, 2011; McAvaney, 2012;
Meaney, 2012; Reid & Hand, 2012; Kromkhun et al. 2013;
Morrissey et al. 2013; Reid et al. 2014a; Reid et al. 2014b;
Jagodzinski & McAvaney, 2017; Meaney, 2017; Reid & Payne,
2017; Reid et al. 2017; Morrissey et al. 2018; Morrissey et al. 2019;
Reid, Halpin & Dutch, 2019; Jagodzinski et al. 2020; Reid et al.
2021). The southernmost samples from Sturt Gorge are dominated
by c. 1840 Ma zircons, and northward progression through the
basin system generally sees a shift in dominance of the c. 1840 Ma
population to the younger c. 1590 Ma population of zircon. This
observation is likely a result of the variation in local basement
geology of the Gawler Craton and Curnamona Province near the
sample sites.

The generally minor Stenian population of zircon at c. 1160 Ma
suggests provenance from the Musgrave Province (Smithies et al.
2008; Wade et al. 2008; Smithies et al. 2011; Smits et al. 2014), but
as noted in Lloyd et al. (2022), they may be sourced from an as yet
undiscovered but inferred lateMesoproterozoic (c. 1300–1000Ma)
source to the east (Wysoczanski & Allibone, 2004; Fergusson et al.
2007; Mackay, 2011; Korsch et al. 2012). This Stenian zircon
population is generally more abundant in samples closer to the
eastern and western margins of the basin (Figs. 7, 1). Alternative
sources of this late Mesoproterozoic zircon could be the South
Tasman Rise (Fioretti et al. 2005), Coompana Province (Pawley
et al. 2020) or far-field transport across Antarctica from the Tonian
Oceanic Arc Super Terrane (Jacobs et al. 2015). Again, recycling of
underlying stratigraphy is a likely source of some of these zircons.

Neoproterozoic zircons with ages between c. 900 Ma and c.
780 Ma can be attributed to igneous events early in the Adelaide
Superbasin. The known igneous events of the Adelaide Superbasin

Table 1. Sturt Formation MDAs

Location Existing MDA* New MDA

South Mount Lofty Ranges (Sturt Gorge, Adelaide) 714 ± 28 Ma 1007 ± 14 Ma

North Mount Lofty Ranges (Clare Valley) 1743 ± 34 Ma

South Flinders Ranges (Pichi Richi Pass): 667 ± 6 Ma

North Flinders Ranges (Copley area) 663 ± 11 Ma, 698 ± 12 Ma

North Flinders Ranges (Yankaninna area) 1185 ± 23 Ma

North Flinders Ranges (Vulkathuhna-Gammon Ranges) 891 ± 15 Ma

North Flinders Ranges (Stubbs Waterhole, Arkaroola) 1178 ± 20 Ma

North Flinders Ranges (Stanley Mine, Arkaroola) 1096 ± 22 Ma

North Flinders Ranges (Willouran Ranges) 673 ± 19 Ma

*Keeman et al. (2020); Lloyd et al. (2020).
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for this time period are the Willouran Large Igneous Province c.
830 Ma (Wingate et al. 1998; Preiss, 2000; Wade et al. 2014;
Lloyd et al. 2022), Oodla Wirra Volcanics c. 798 Ma (Fabris et al.
2005), Boucaut Volcanics c. 788 Ma (Armistead et al. 2020) and
magmatism associated with the Kooringa Member of the
Skillogalee Dolomite c. 7 0 Ma (Preiss et al. 2009).

Zircon younger than 780 Ma is much more difficult to
reconcile. It is apparent that some zircon-bearing igneous events
were occurring c. 700 Ma to c. 660 Ma, and that these zircons were
in the sediment supply of the Sturt Formation. The igneous events
may have been distal to the basin and may have occurred as short-
lived pulses. While a 663.03 ± 0.76 Ma tuff has been dated (Cox

et al. 2018b) from within the Wilyerpa Formation immediately
post-dating deposition of the Sturt Formation, the site of the
volcanic centre for the ashfall is unknown. Additionally, zircon of
c. 700–660 Ma within the Sturt Formation has so far only been
found on the far western margin of the Adelaide Rift Complex
within the Adelaide Superbasin (Fig. 10), indicating this magmatic
source may have been to the west of or on the western margin of
the basin.

Within the Centralian Superbasin, the syn-glacial Yardida
Tillite and Areyonga Formation, and the post-glacial Aralka
Formation are suggested as correlatives of the Sturt Formation
and Tapley Hill Formation, respectively (Preiss et al. 1978;

Figure 9. (Colour online) Non-metric multidimensional scaling plot of samples analysed (n> 30) in this study (purple circles) with data from potential correlative formations of
the Centralian Superbasin (purple squares), potential source regions (black and grey circles and triangles), older stratigraphy within the basin (blue and orange circles) and
synthetic distributions (black stars) generated from the primary and secondary peaks of a KDE that combines all new data in this study. This plot shows relative similarity of all
data to each other and is intended as a visual guide. Points that plot closer together suggest greater similarity and points that plot further away from each other indicate greater
dissimilarity. Axes are omitted as the algorithm used produces normalized values with no physical meaning and can be safely removed. Produced using IsoplotR with the
Kolmogorov-Smirnov metric (Vermeesch, 2018).
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Edgoose, 2013; Kruse et al. 2013; Normington & Donnellan,
2020). Interestingly, the DZ age spectrum of the Yardida Tillite
(Georgina Basin, Northern Territory/Queensland) is very similar
(Fig. 9) to that of the local basement of South Australia (e.g.
Gawler Craton). This is explained by its proximity to the Mount
Isa and Aileron provinces, suggested to be the primary zircon
source for the Yardida Tillite (Verdel et al. 2021). These provinces
host abundant c. 1850–1640 Ma zircon that is also found in the
Gawler Craton and Curnamona Province. In addition,

palaeomagnetic and geological reconstructions for the time
suggest that the South Australian Craton may have been rotated
closer to the Georgina Basin at that time (Li & Evans, 2010; Lloyd
et al. 2020). The DZ age spectra of the Areyonga Formation and
Aralka Formation (Amadeus Basin, Northern Territory/Western
Australia) are similar to the Burra Group and Sturt Formation
samples (Fig. 9) from the western margin of the Adelaide Rift
Complex. All these units may have received zircons from the
Musgrave Province where Stenian-aged zircons are abundant,

Figure 10. (Colour online) Schematic map with pie charts
at sample locations to highlight the changes in zircon
population spectra relative to geographic location. Arrows
are generalized schematic indicators of palaeo-sediment
transport direction. Includes data from this study, Preiss
(2014), Keeman et al. (2020) and Lloyd et al. (2020).
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and both basins have abundant nearby sources of pre-Stenian
zircon. Notably, no zircon younger than c. 800Ma has been found
in the Areyonga and Aralka formations to date.

5.b.3. Comparison to palaeocurrent data
Observations drawn in this study from DZ generally support
existing palaeocurrent data. Palaeocurrent data from the
Yudnamutana Subgroup suggest a westerly transport direction
in the Mount Painter area and along the Paralana fault system,
northerly transport on the northern side of the Gammon syncline
and Yankaninna anticline and north-easterly transport along the
western edge of the Adelaide Rift Complex (Copley area, south-
eastern Willouran Ranges) (Link & Gostin, 1981; Young & Gostin,
1989b; Young & Gostin, 1991). It is likely that underlying strata
were recycled by sub-glacial erosion, making the use of DZ spectra
for determining palaeo-transport paths difficult. However, the only
area where detrital data from this study potentially differ in
transport direction from the existing palaeocurrent data is the
Vulkathuhna-Gammon Ranges. The DZ populations in our data
(Fig. 7: FR3_073, Fitton Formation samples) are most similar
(Fig. 9) to older stratigraphy of the basin and to nearby basement
sources located to the northeast (Fig. 1). This suggests a south or
south-westerly sediment transport (Fig. 10) direction from these
neighbouring basement sources into the depocentre.

5.c. Rb–Sr geochronology

In-situ Rb–Sr geochronology is a rapidly developing technique
that, when applied to shales, can provide information about
depositional ages or early diagenetic illite formation (Subarkah
et al. 2021). In shales, the Rb–Sr isotopic system is susceptible to
low–moderate temperature hydrothermal alteration and can be
influenced by detrital input (Subarkah et al. 2022) meaning that
careful assessment must be done before assigning geological
significance to obtained isochron ages. For the two samples
analysed in this study, the obtained dates must be between 730 Ma
and 663 Ma for them to be representative of depositional age.
Uncertainties quoted in this section include propagation of the
decay constant uncertainty on 87Rb (~0.32%, Villa et al. 2015) to
enable comparison to other geochronometric systems (e.g. U–Pb).

The 839 ± 241 Ma date obtained for sample 3404236 (Fig. 8) is
not a meaningful date due to large uncertainty, and the old
isochron date suggests it contains a significant detrital component.
The clay morphologies of the sample (Supplementary Fig. S2) are
large and sub-rounded, with distinct edges and preserving their
internal structure. These morphologies are characteristic of detrital
illite (Rafiei & Kennedy, 2019; Deepak et al. 2022) and have been
identified elsewhere in the late Neoproterozoic sections of the
Adelaide Superbasin (Rafiei et al. 2020). These concerns also apply
to former attempts to date the overlying Tapley Hill Formation via
traditional whole rock Rb–Sr methods (Webb, 1980; Webb et al.
1983). The 684 ± 37 Ma (Fig. 8) date obtained for sample 3404235
is consistent with the constrained depositional age for the Sturt
Formation and can be considered a meaningful, syn-depositional
age. The clay minerals in this sample appear to have formed within
the sediment (Supplementary Fig. S2), where illite appears moss-
like, fills pore spaces and wraps around detrital grains.

5.d. Tectonic and palaeogeographic implications

While the DZ and palaeocurrent datasets need to be expanded in
future to cover more of the basin, particularly to the east (Olary
area, and New South Wales) and far northwest (Davenport and

Denison Ranges), some inferences can be made regarding the
palaeogeography and tectonics of the Adelaide Superbasin during
the Cryogenian. Firstly, it is apparent that the DZ spectrum of each
sample is highly dependent on local geology, commonly recycling
the underlying stratigraphy and/or derived from the nearby
basement geology. Recycling of underlying material supports the
common observation that clasts in diamictite of the Yudnamutana
Subgroup can be identified as derived from the Burra Group and,
locally, the Callanna Group (Coats & Preiss, 1987). During
deposition of the preceding Burra Group, far-field sediment supply
dominated; however, locally derived detritus became much more
prominent during the deposition of the Yudnamutana Subgroup
implying a change in the mechanism of sediment transport (e.g.
glacial ice).

Secondly, active zircon-bearing magmatism occurred at c. 700–
660 Ma, although the location and volume of this magmatism
remain unknown. The spatial distribution of the samples
containing Cryogenian zircon (Fig. 10) suggests that the source
was to the west, or along the western margin, of the basin. Of note,
there is a conglomerate with basalt clasts at the top of the Sturt
Formation at the central-western margin (Depot Creek) of the
Adelaide Rift Complex (Hopton, 1983), however, its origin and age
remain enigmatic.

Thirdly, the DZ spectrum of the Yancowinna Subgroup sample
supports a common sediment source with the Sturt Formation
samples in the northeast of the basin, consistent with earlier
palaeographic interpretations that the Curnamona Province was a
topographic high between these two regions and was shedding
detrital material to both. The data presented here also support the
Yancowinna Subgroup being correlative to the Yudnamutana
Subgroup, as suggested by the current stratigraphic framework
(Cooper & Tuckwell, 1971; Cooper, 1973; Preiss, 1987; Fitzherbert
& Downes, 2015; Lloyd et al. 2020).

In combination with glacial scouring, it is clear that active
tectonics played a significant control on the dramatic thickness
variations of the Yudnamutana Subgroup sedimentary rocks
(Young & Gostin, 1991; Preiss et al. 2011; Le Heron, 2012; Le
Heron et al. 2014). The Yudnamutana, Baratta and Torrowangee
troughs (Fig. 1) are major extensional sub-basins bounded by
mappable normal growth faults (Preiss, 1985; Preiss & Conor,
2001; Preiss et al. 2011). This normal faulting has been
interpreted to record the final phase of rifting associated with
continental separation (Preiss, 2000), although Merdith et al.
(2017) considered that the rift-drift transition of the Australia–
Laurentia margin occurred earlier at c. 780 Ma. While the debate
regarding timing of rift–drift transition is beyond the scope of this
research, it is unlikely to be resolved in the northern regions of the
basin given it is distal to the margin of the palaeo-Pacific Ocean.
Contrastingly, near the basin margin proximal to the inferred
location of the palaeo-Pacific (southern and eastern regions), a
change in the rate of accommodation space creation should be
evident. This rate change in accommodation space creation
would coincide with the rift-drift transition as active rifting is
expected to stop once ocean-crust formation is underway.

5.e. Sturtian nomenclature

5.e.1. South Australian formal stratigraphy
The correlation of diamictite-abundant units of the Yudnamutana
Subgroup was subject to much debate during the 1970s and
1980s, with arguments both for and against these rocks
representing two discrete glacial events separated by an
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unconformity (Coats & Forbes, 1977; Murrell et al. 1977; Coats &
Preiss, 1987). Subsequent research showed that the rocks named
‘Tillites’ of the Yudnamutana Subgroup were consistent with only
one glacial event (Preiss, 1993; Preiss et al. 1998; Preiss, 2000) but
representing ice sheet advance-retreat cycles (Le Heron, 2012). The
conjecture regarding correlation of the diamictite-abundant units
using a specific clast type, and mapping by numerous individuals
over a long period of time, has led to six formal names for a unit
that is now known to be correlative across the entire Adelaide
Superbasin. The six different names for what are the same unit
have led to unnecessary artefacts on geologic maps (e.g. a unit
changing name across amap sheet boundary) and can be confusing
to those who are unfamiliar with local formal stratigraphic
nomenclature.

No significant lithological differentiation distinguishes the
diamictite-abundant units (Fig. 5) within the Yudnamutana
Subgroup from each other, and both stratigraphic position and
geochronology support their broad equivalence (Young & Gostin,
1989b; Preiss et al. 1998, 2011; Cox et al. 2018b; Keeman et al. 2020;
Lloyd et al. 2020; this study). Considering this evidence, we
propose a refined stratigraphic nomenclature for the diamictite-
abundant formations of the Yudnamutana Subgroup (e.g. Appila
Tillite, Bolla Bollana Tillite, Sturt Tillite) as the Sturt Formation
(Fig. 3). The name ‘Sturt’ is retained as the first glacial diamictite
formally named the Sturtian tillite (Howchin, 1920; Mawson &
Sprigg, 1950); therefore, it takes precedence over all other
correlative formation names. Furthermore, it has become
eponymous with the global Sturtian Glaciation. ‘Tillite’ has been
dropped in favour of ‘Formation’ as, while glacial diamictite is the
most distinctive lithology, it was not exclusively deposited by the
direct action of glacial ice (much of it is glaciomarine) and is not the
most volumetrically abundant rock type within the Sturt
Formation across the entire Adelaide Superbasin (Preiss et al.
2011). Instead, the Sturt Formation comprises numerous
lithologies that were deposited under general glacial conditions
(Link, 1977; Link & Gostin, 1981; Preiss, 1987; Preiss, 2000; Preiss
et al. 2011; Virgo et al. 2021). The use of ‘Formation’ instead of
‘Tillite’ was proposed previously by Murrell et al. (1977) and
follows the international stratigraphic guide. A formal definition
card accompanies this paper as Appendix 2, with the generalized
stratigraphic logs of the type and reference sections presented in
Figures 4 and 5. An additional stratigraphic log from drillhole
SR13/2 on the Stuart Shelf is provided in Supplementary Figure S4.

5.e.2. Sturtian Glaciation (Cryochron)/Laurentian
Neoproterozoic Glacial Interval
Le Heron et al. (2020) proposed that the name ‘Laurentian
Neoproterozoic Glacial Interval’ be used in favour of the name
‘Sturtian Glaciation’ for the first of two, major pan-glacial events
recognized in Cryogenian rocks. Further, they suggest that the
term ‘Sturtian Glaciation’ should be exclusively used for Australian
strata, and that the global geochronologic data permit only a short
2.4 Ma long global glacial event or diachronous shifting of ice-
centres across Rodinia. While Le Heron et al. (2020) highlight the
issue of interpreting results in a model-led approach, a notion we
agree on, we disagree with their suggestion that use of the name
SturtianGlaciation for the first major Cryogenian pan-glacial event
is no longer justifiable. This suggestion was primarily based on
their interpretation that most rocks representing the Sturtian
Glaciation in Australia chronometrically lie outside of the Sturtian
glacial interval, c. 717–661 Ma (Rooney et al. 2015; Rooney et al.
2020). Only the tuff from near the base of the Wilyerpa Formation

(663.03 ± 0.76 Ma, Cox et al. 2018b) was considered to be within
the time interval defined for the Sturtian glacial event; this
argument was reiterated by Kennedy et al. (2020).

However, the interpretation by LeHeron et al. (2020) appears to
hinge on the previous lack of data from early Cryogenian glacial
(Yudnamutana Subgroup) and late Tonian pre-glacial (Burra
Group) sequences in South Australia. Even with the challenges
associated with constraining deposition by DZ studies, two studies
(Keeman et al. 2020; Lloyd et al. 2020) have provided MDA
constraints from the Sturt Formation (Table 1). This study
presents a further ten DZ samples with two samples yielding
MDAs within the 717–661 Ma period (Table 1), and a new in-situ
Rb–Sr age from the Sturt Formation of 684 ± 37 Ma (Fig. 8).
Importantly, DZ MDA constraints from the underlying Belair
Subgroup (Fig. 2), namely the Gilbert Range Quartzite
(731 ± 34 Ma, Keeman et al. 2020; Lloyd et al. 2020) and
Mitcham Quartzite (720 ± 21 Ma, van der Wolff, 2020), provide
maximum age estimations for when final deposition of the upper
Burra Group began.

Additionally, Le Heron et al. (2020) consider the Cox et al.
(2018b) tuff age (Wilyerpa Formation, AUS) to be an MDA;
however, both Fanning and Link (2006) and Cox et al. (2018b)
demonstrate that the tuff is syn-depositional, with their dating
indicating volcanism was coeval with deglaciation. The tuff age
provides neither a maximum nor minimum age for the Wilyerpa
Formation as it occurs ~80 m below the base of the Tapley Hill
Formation; however, it provides a robust minimum age constraint
for the underlying Sturt Formation.

Thus, theMDAs from the underlying Burra Group and the syn-
depositional tuff in the Wilyerpa Formation require that rocks
representing the early Cryogenian Sturtian Glaciation in South
Australia (Sturt Formation, Fitton Formation) were deposited
≤730Ma and≥663 ± 0.76Ma, thereby independently constraining
the age of the Sturt Formation to the globally defined interval for
the Sturtian Glaciation (Rooney et al. 2015; Rooney et al. 2020).
Initiation of final deglaciation for the Sturtian Glaciation can also
be constrained, albeit loosely, by data in this study to c. 674–
663 Ma, as sample FR3_139 from the upper Sturt Formation
(MDA: 663 ± 11 Ma) came from the same stratigraphic interval as
the Wilyerpa Formation tuff.

Furthermore, data from our study refute the Le Heron et al.
(2020) suggestion of a short, 2.4 million year, Sturtian
Glaciation, 659.6 ± 10.2 Ma to 657.2 ± 5.4 Ma, based on Re–
Os ages from the Aralka Formation (Kendall et al, 2006), and
Ballachulish Slate (Rooney et al. 2011) as the Australian
Sturtian Glaciation deposits are definitively older than this
proposed interval, there is an erosional unconformity between
the Yudnamutana Subgroup rocks and the overlying post-
glacial transgressive sequences, and the Aralka Formation is
demonstrably post-glacial.

In contrast to the Wilyerpa Formation tuff, Le Heron et al.
(2020) interpret the age of an epiclastic tuff in the Pocatello
Formation, USA (Fanning & Link, 2004), as a minimum age
estimate for the formation. This epiclastic tuff from the upper
diamictite of the Pocatello Formation has been re-evaluated as an
MDA andmay actually be from a late CryogenianMarinoan glacial
sequence, unconformably overlying a non-glacial sequence, which
in turn unconformably overlies a lower Sturtian glacial sequence
(Isakson, 2017). Additionally, Isakson (2017) had earlier revised
several of the igneous ages presented in the Le Heron et al. (2020)
compilation, notably a syn-Sturtian age of the Hogback Rhyolite
from 684 ± 4 Ma (Lund et al. 2003; Lund et al. 2010) to
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693.03 ± 0.73 Ma. Isakson (2017) presented two additional ages,
697.05 ± 0.28 Ma and 697.78 ± 0.18 Ma, from volcanics in the
lower Scout Mountain Member of the Pocatello Formation,
previously interpreted to be 686 ± 4 Ma (Fanning & Link, 2008).
The data of Keeley et al. (2013) from the lower Scout Mountain
member (685 ± 0.4 Ma) are presented as a depositional age by Le
Heron et al. (2020), rather than as an MDA as the original authors
and Isakson (2017) present.

Available geochronology suggests that deposition of early
Cryogenian glaciogenic rocks in at least Australia (Keeman et al.
2020; Lloyd et al. 2020; this study), Arabia/Nubia (MacLennan
et al. 2018; Park et al. 2019), Baltica (Środoń et al. 2022), Laurentia
(Rooney et al. 2014; Isakson, 2017; Macdonald et al. 2018), South
China (Song et al. 2017; Wang et al. 2019; Lan et al. 2020; Rooney
et al. 2020) and Siberia (Rud‘ko et al. 2020) occurred globally
within the c. 717–661 Ma interval. These ages cannot eliminate
some diachroneity in the timing of onset of glaciation or the
possibility of glacial advance and retreat cycles. Globally, final
deglaciation appears to be relatively synchronous at c. 663–
661 Ma (Fig. 6).

While Figure 6 and the equivalent diagram in Le Heron et al.
(2020) provide brevity for visualization and assessment of the
expanding global Cryogenian geochronologic datasets, they lack
detailed stratigraphic context and methodology: unavoidable
limitations for this style of diagram, with size, legibility and
accessibility considerations all contributing factors (e.g. Crameri
et al. 2020). The ideal, more accurate representation of global
Cryogenian chronostratigraphic datasets would include detailed
stratigraphic logs, accompanying regional correlations, and
detailed geochronometric methodology and results. In some
regions, these datasets are currently unavailable, unreliable or
limited.

The apparent diachroneity of glacial onset present in Laurentia
(Fig. 6) is likely a result of complexity in zircon age determinations
and chronostratigraphic misinterpretations (e.g. syn-depositional
instead ofMDA). Eyster et al. (2018) also highlight how this style of
misinterpretation was used to argue for diachroneity of onset
(Baldwin et al. 2016). Careful scrutiny of geochronologic data, its
methodological limitations and its chronostratigraphic interpre-
tation is essential to prevent spurious conclusions.

6. Conclusions

This research provides an updated chronostratigraphic framework
for the Yudnamutana Subgroup of South Australia and presents it
in the context of global Cryogenian chronostratigraphic data and
their interpretations. Additionally, the lithostratigraphy represent-
ing the main diamictite-abundant units of the Yudnamutana
Subgroup (Appila Tillite, Bolla Bollana Tillite, Calthorinna Tillite,
Merinjina Tillite, Pualco Tillite and Sturt Tillite) is consolidated
and redefined as the Sturt Formation based on their lithostrati-
graphic similarity and stratigraphic position, with support from
DZ age spectra. Furthermore, DZ age spectra support lithostrati-
graphic correlation of Yancowinna Subgroup (New South Wales)
with the Yudnamutana Subgroup (South Australia).

The Sturt Formation was deposited ≤720 ± 21 Ma (van der
Wolff, 2020), and prior to 663.03 ± 0.76Ma (Cox et al. 2018b), with
the upper part of the unit being deposited c. 673–663 Ma,
providing further support to prior studies (Keeman et al. 2020;
Lloyd et al. 2020). In-situ Rb–Sr dating of the lower Sturt
Formation yielded an age of 684 ± 37 Ma that is interpreted to be a
syn-depositional age. Broadly equivalent DZ age spectra (Fig. 9) for

samples from the Sturt Formation (with local variation) and
similarity to underlying Burra and Callanna Group rocks suggest
recycling of underlying stratigraphy and sourcing of detritus from
local basement rocks consistent with the common occurrence of
clasts derived from the underlying geology.

Here we refute the suggestion of a short (2.4 Ma) global glacial
event (Le Heron et al. 2020), which is based on their interpretation
that most stratigraphy (with the exception of the Wilyerpa
Formation tuff) representing the Sturtian Glaciation in South
Australia lies chronometrically outside the defined global interval
(717–661 Ma). The data in this and prior (Keeman et al. 2020;
Lloyd et al. 2020) studies from the Sturt Formation fall within the
globally defined Sturtian event (Rooney et al. 2015), and we
demonstrate how the data interpreted by LeHeron et al. (2020) can
be reinterpreted to also support this duration for the Laurentian
early Cryogenian glaciations (Keeley et al. 2013; Isakson, 2017).
Additionally, we provide an updated compilation of global
geochronology data for the Cryogenian (Fig. 6), which shows
relatively synchronous deglaciation globally for the Sturtian
Glaciation, while showing some diachroneity for onset with the
caveat that this figure can be misinterpreted. Our study supports
the continued use of Sturtian Glaciation or cryochron
globally for the first major pan-glacial event recorded in
Cryogenian stratigraphy and does not support using Laurentian
Neoproterozoic Glacial Interval in its place.
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