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A B S T R A C T   

The satellite monitoring of vegetation moisture content (VMC) and soil moisture content (SMC) in Southern 
European Atlantic mountains remains poorly understood but is a fundamental tool to better manage landscape 
moisture dynamics under climate change. In the Atlantic humid mountains of Portugal, we investigated an 
empirical model incorporating satellite (Sentinel-1 radar, S1; Sentinel-2 optical, S2) and ancillary predictors 
(topography and vegetation cover type) to monitor VMC (%) and SMC (%). Predictors derived from the S1 (VV, 
HH and VV/HH) and S2 (NDVI and NDMI) are compared to field measurements of VMC (n = 48) and SMC (n =
48) obtained during the early, mid and end of summer. Linear regression modelling was applied to uncover the 
feasibility of a landscape model for VMC and SMC, the role of vegetation type models (i.e. native forest, 
grasslands and shrubland) to enhance predictive capacity and the seasonal variation in the relationships between 
satellite predictors and VMC and SMC. Results revealed a significant but weak relationship between VMC and 
predictors at landscape level (R2 = 0.30, RMSEcv = 69.9 %) with S2_NDMI and vegetation cover type being the 
only significant predictors. The relationship improves in vegetation type models for grasslands (R2 

= 0.35, 
RMSEcv = 95.0 % with S2_NDVI) and shrublands conditions (R2 = 0.52, RMSEcv = 45.3 %). A model incor
porating S2_NDVI and S1_VV explained 52 % of the variation in VMC in shrublands. The relationship between 
SMC and satellite predictors at the landscape level was also weak, with only the S2_NDMI and vegetation cover 
type exhibiting a significant relationship (R2 = 0.28, RMSEcv = 18.9 %). Vegetation type models found sig
nificant associations with SMC only in shrublands (R2 = 0.31, RMSEcv = 9.03 %) based on the S2_NDMI and 
S1_VV/VH ratio. The seasonal analysis revealed however that predictors associated to VMC and SMC may vary 
over the summer. The relationships with VMC were stronger in the early summer (R2 

= 0.31, RMSEcv = 90.1 %; 
based on S2_NDMI) and mid (R2 = 0.37, RMSEcv = 70.8 %; based on S2_NDVI), butnon-significant in the end of 
summer. Similar pattern was found for SMC, where the link with predictors decreases from the early summer (R2 
= 0.33, RMSEcv = 16.0 %; based on S1_VH) and mid summer (R2 = 0.30, RMSEcv = 17.8 %; based on S2_NDMI) 
to the end of summer (non-significant). Overall, the hypothesis of a universal landscape model for VMC and SMC 
was not fully supported. Vegetation type models showed promise, particularly for VMC in shrubland conditions. 
Sentinel optical and radar data were the most significant predictors in all models, despite the inclusion of 
ancillary predictors. S2_NDVI, S2_NDMI, S1_VV and S1_VV/VH ratio were the most relevant predictors for VMC 
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and, to a lesser extent, SMC. Future research should quantify misregistration effects using plot vs. moving 
window values for the satellite predictors, consider meteorological control factors, and enhance sampling to 
overcome a main limitation of our study, small sample size.   

1. Introduction 

In the mountain regions of Europe, emerging interplay of climate 
shift, anthropogenic activities and evolving policies have substantially 
impacted vegetation and soil moisture contents (herein referred to as 
VMC and SMC (%) respectively). These elements play pivotal roles in 
biodiversity, food security, carbon cycle, water supply, and in the well- 
being of human communities (Drenkhan et al., 2023; Gómez-Giráldez 
et al., 2014). Disruptions in VMC and SMC challenge long standing as
sumptions (i.e., mountains being endless water towers), traditions (i.e. 
fire being a fuel management tool) and practices (i.e. farming water 
use), particularly in Mediterranean regions (Pôças et al., 2011; Vij et al., 
2021). Better management of VMC and SMC is therefore becoming 
paramount if the undesirable impacts on mountains and benefitting 
catchments are to be addressed (Costa-Saura et al., 2021; Lehmann 
et al., 2020). When accessibility, time and costs are impeditive to the use 
of direct measurement methods (i.e. time domain reflectometry (Santi 
et al., 2016), satellite remote sensing emerges as a viable alternative 
(Liang et al., 2021; Pace et al., 2021; Pôças et al., 2013; Schönbrodt-Stitt 
et al., 2021), requiring thorough evaluation. 

Satellite remote sensing offers the opportunity to obtain spatially 
explicit information on landscapes at regular time intervals. Over the 
past decade, satellite data have contributed to significant advances in 
retrieving VMC (Forkel et al., 2023) and SMC (i.e., the Copernicus soil 
moisture; (Bauer-Marschallinger et al., 2019). Common approaches for 
evaluating VMC and SMC across landscapes include physically-based 
and empirical models (Acharya et al., 2022), with the commonly 
preferred due the operation constraints of detailed parameterization in 
physically-based models (Forkel et al., 2023). Thus, empirical models 
that estimate moisture from indices derived primarily from optical data 
have been promoted as the most efficient and viable solution (Costa- 
Saura et al., 2021), and important developments in this approach 
continue to take place (i.e., through the PYSMM soil moisture toolbox; 
Greifeneder et al., 2021). Empirical moisture models have largely 
focused on the statistical relationship between field measurements of 
VMC or SMC and optical reflectance data (Yebra et al., 2013). This 
panorama is however changing with the increasing availability of data 
from Synthetic Aperture Radar (SAR) operating in the microwave 
portion of the electromagnetic spectrum, including C-band observations 
by the Sentinel-1 SAR (S1) (Santi et al., 2016). Because of their obser
vational capabilities during day and night regardless of cloud conditions 
and their ability to penetrate a few millimetres beyond the top of the 
canopy, microwave measurements have the potential to allow system
atic measurement of VMC and SMC (Konings and Saatchi, 2021). SAR 
data can be used either alone (Schlund and Erasmi, 2020; Schönbrodt- 
Stitt et al., 2021) or in synergy with optical reflectance data (Liang et al., 
2021; Tanase et al., 2022; Wang et al., 2022). 

In Mediterranean agroecosystems, Costa-Saura et al. (2021) 
demonstrated a strong link between Sentinel-2 (S2) optically-derived 
indices such as the Normalised Difference Moisture Index (NDMI) and 
VMC. Pace et al. (2021) in more humid Atlantic conditions suggested 
that the Normalized Difference Vegetation Index (NDVI) depicted the 
responses of riparian vegetation to water stress. In Chinese semi-arid 
agricultural landscapes, an empirical model composed by the Normal
ized Difference Water Index (NDWI) and short-wave infrared band 
(SWIR) based on S2 was the most accurate for VMC estimation (Wang 
et al., 2022). In Austrian crop conditions, and particularly for corn and 
winter cereals, Vreugdenhil et al. (2018) found that an exponential 
model based on the ratio of the backscatter coefficient in vertically (V) 
and horizontally (H) received backscatter (i.e., VH) and VV polarisations 

could account for 87 % and 63 % of the variation in VMC. For SMC, the 
recent findings have less consensus. In American crop conditions, a very 
weak relationship between moisture related indices obtained from 
Landsat sensor data and surface SMC was reported by Acharya et al. 
(2022). In Mediterranean forest basins, concerns regarding the realism 
of the temporal evolution of SMC derived from S1 were also highlighted 
by Gomis-Cebolla et al. (2022), which concurred with the low agree
ment observed in areas dominated by forests with strong topography 
(Bauer-Marschallinger et al., 2019). The agreement between SMC and 
S1 appeared to increase over plain and agricultural areas (Bauer-Mar
schallinger et al., 2019). Schönbrodt-Stitt et al. (2021) also suggested 
that combining SAR and terrain parameters may help improve model 
accuracy. 

Because mountains have always been viewed as endless water 
sources, empirical moisture models using satellite data are relatively 
scarce here. However, the large-scale water crisis observed in European 
mountains since 2018 (Stephan et al., 2021) rises the demand for timely 
as well as historical information on VMC and SMC from satellite-based 
monitoring over these critical regions. Satellite-based monitoring 
could be of support for instance for policy compliance (i.e. water use 
restrictions during droughts), risk mitigation (i.e. regulation of tradi
tional man-made fuel management through fire; anticipation of live
stock food insecurity) or climate change adaptation (i.e. understanding 
land system dynamics in climate change societies). Recent studies have 
been encouraging with these highlighting a strong link between the 
heterogeneity in the time-series of Planetscope NDVI and SMC in the 
Rocky mountains (Devadoss et al., 2020). Artificial Neural Network 
models (ANN) also accurately predicted SMC in the Himalayan Foreland 
(Singh and Gaurav, 2023), although overestimates of in-field observed 
SMC based on S1 retrievals were noted in the Iberian mountains (Car
valho-Santos et al., 2018). 

This study evaluated S1 and S2 satellite data for monitoring VMC and 
SMC in Southern European Atlantic humid mountains. The goal was 
twofold: a) to explore an empirical model incorporating satellite-based 
predictors to estimate VMC and SMC with this then providing a poten
tial contribution to the management of landscape moisture dynamics, 
and b) reduce the knowledge gap in this regard in Southern European 
Atlantic humid mountains (Rodriguez-Jimenez et al., 2023). Here, 
innovative landscape management tools have become highly necessary 
for coping with increasing hydroclimatic anomalies that threaten the 
well-being of people and ecosystems (Choler, 2023). Hence, the estab
lishment of a model for landscape moisture prediction would be a 
valuable additional resource, particularly if that model informed by i.e. 
local field data of VMC for the dominant vegetation types and S1 or S2 
predictors would be able to deliver i.e. accurate spatial-explicit VMC 
estimates. This one size fits all concept has great significance for usages 
that goes beyond the remote sensing community. 

In the study, four major questions were established: (1) To what 
extent do S1 radar and S2 optical data and/or derived indices relate to 
VMC and SMC? (2) Can a generalised landscape model be established to 
quantify VMC and SMC from these data (3) Can model performance be 
improved by considering specific vegetation type models? and (4) Are 
any relationships observed stable over time? 

To address these questions were considered the relationships be
tween i) S1 data (VH, VV, VV/VH ratio) and ii) S2 indices (NDVI, NDMI) 
and a dataset of 96 field measurements of VMC (n = 48) and SMC (n =
48) taken in native forests, shrublands and grasslands in the S1 overpass 
days throughout the summer of 2016. 
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2. Methods 

2.1. Study area 

The study area is located in the northern Portugal at Peneda-Gerês 
mountain range, Iberian Peninsula (31110 ha, 41◦42′25.2″ N, 8◦10′1.2″ 
W, Fig. 1). This mountain range has a significant role in the Portuguese 
water catchment context. Elevation ranges from 145 to 1253 m above 
sea level (a.s.l), and the topography is complex. The site is a traditional 
mountain pastoral landscape affected by land abandonment. It is 
renowned for its natural and cultural heritage, namely containing the 
last remaining native forest ecosystem with reduced human influence 
that enclose man-made farmland mosaics (Monteiro et al., 2021). The 

landscape is mainly comprised of fragments of deciduous forests, 
shrublands, and permanent hay meadows. Native oak forests (Habitat 
9230 listed in the Habitats Directive 92/43/EEC) and permanent hay 
meadows (Habitat 6510) are two main conservation priorities. The 
current forces shaping the landscape are the regrowth of oak forests and 
the spread of shrubs into areas that were once farmland. Wildfires are 
important, with the frequency of vegetation burns generally being 
greatest in the summer months (Calheiros et al., 2022). The climate is 
temperate oceanic (Rivas-Martínez et al., 2017) and there is a large 
amplitude of values (from − 10 to 35 ◦C from a mean of 13 ◦C) and hence 
differences in temperature between the winter and summer seasons. The 
annual mean precipitation amounts to 1500 mm/year (Carvalho-Santos 
et al., 2016). Distributed along the autumn (39.1 %), winter (31.5 %) 

Fig. 1. Location of the study in the Portuguese Peneda-Gerês mountain, Gerês-Xurez Transboundary Biosphere Reserve. The upper central panel shows the study area 
captured by the VH backscatter coefficient of S1 on the 6th June 2016 and the location of the plots surveyed for VMC and SMC during the study period (in green, n =
19). The lower central panel shows the size of the sampling plot used (20 x 20 m). The panels on the right exemplify the characteristics of predominating vegetation 
types in the area surveyed: native forests grasslands; shrublands. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

Table 1 
The set of sampling plots (see Fig. 1) and their attributes in terms of vegetation type, altitude, slope (o), aspect (o), and the dominating species. Native forests (N), 
Grasslands (G), Shrublands (S).  

Plot Number Vegetation Type Altitude 
(m a.s.l) 

Slope (◦) Aspect (◦) Exposition Dominating species 

1 N 811  20.16 268 W Quercus pyrenaica; Quercus robur 
2 S 898  8.01 268 W Pterospartum cantabricum; Ulex europaeus; Erica Umbellata; Erica autralis 
3 N 853  7.69 198 S Quercus pyrenaica; Quercus robur 
4 G 881  5.31 262 W Agrostis capillaris; Plantago lanceolata; Ranunculus repens; 
5 N 932  4.57 255 W Quercus pyrenaica; Quercus robur; Salix atrocinerea 
6 G 1020  7.75 167 S Unknown grass 
7 S 1239  8.6 177 S Pterospartum cantabricum; Ulex europaeus; Erica Umbellata;Erica arborea 
8 N 864  15.66 104 E Quercus pyrenaica; Quercus robur 
9 G 1014  1.91 180 S Unknown grass 
10 S 1051  7.59 18 N Calluna vulgaris; Erica Umbellata; Ulex minor; 
11 S 1074  10.11 187 S Cytisus striatus 
12 S 1106  16.4 323 NW Cytisus striatus 
13 G 915  8.86 11 N Unknown grass 
14 S 1043  12.56 138 SE Ulex europaeus; Erica Umbellata; Erica autralis; Erica arborea; 
15 N 962  6.16 129 SE Betula alba 
16 S 928  1.51 148 SE Ulex minor; Erica arborea;Agrostis castellana; Erica autralis; Festuca Iberica 
17 N 913  9.48 150 SE Betula alba 
18 G 638  9.48 117 SE Lolium perenne; Ranunculus repens; Plantago lanceolata 
19 S 917  13.37 124 SE Pterospartum cantabricum; Ulex minor; Erica Umbellata; Erica arborea  
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and spring (27.5 %) seasons. The region is also characterized by long 
periods with high frequency of frost occurrences. In 2016, intense pre
cipitation (compared to historical mean from 1971 to 2000) occurred in 
the late spring and early summer (May, 400 mm, +300 %; June, 100 
mm, +75 %, Atmosfera, 2016). 

2.2. Field data collection 

A field campaign was conducted in 19 sites during the summer of 
2016 to obtain vegetation moisture content (VMC) and soil moisture 
content (SMC). Collection of VMC and SMC data was carried out in the 
early summer (6-7/06/2016), mid summer (12-13/07/2016) and end of 
summer (21-22/09/2016) performing in total six days of field data 
collection. A set of 114 field measurements were obtained (VMC, n = 57; 
SMC, n = 57). After laboratory processing and data quality check (see 
details below), the dataset retained for analysis was composed by 96 
measurements (VMC, n = 48; SMC, n = 48). Table 1 provides de
scriptions for all the sites given in Fig. 1. Dominating species refers to 
plant species that cover most of the sampling unit. In specific, each 
collection date (i.e. early summer) consisted of a two-days field survey 
starting at 10:00 h and ending at 17:00 h. The first day of field survey 
was always coincident with the Sentinel-1 overpass day in the study 
area, except for the collection date at the end of the summer (21-22/09/ 
2016). In the end of the summer, S1 overpass occurred in the second day 
of field data collection. The location of the surveyed sites was a 
compromise between the representativeness of the vegetation type, 
geographical distribution in the study area and easy accessibility. Each 
surveyed site was at least 50x50 m2 large and homogeneous in terms of 
vegetation cover type (i.e. native forests, shrublands and grasslands). 
The altitude of the sites ranged from 638 to 1239 m a.s.l. 

VMC and SMC were measured using destructive sampling. In each 
surveyed site, a sampling unit of 20x20 m2, homogeneous in terms of 
overhead vegetation fractional cover, species composition and canopy 
height, was established. Next, to obtain VMC in grasslands and shrub
lands, the ground vegetation was harvested in a 0.5x0.5 m2 quadrat 
using a handheld mower, and a representative sample composed of the 
dominating species collected. In native forest sampling units, only leaves 
were collected at north, south, east, and west exposures using a clipper. 
All the samples were stored in a waxed paper bag. For SMC, a soil sample 
for the first 10 cm was collected in the non harvested area of the sam
pling unit using a footstep soil probe (SoilIsMPLR series- Martin Lish
man) and stored in an aluminium soil sample box (120 cc). The decision 
to collect at 10 cm depth was related to the sensitivity of SAR data to soil 
moisture in the top 5–10 cm of soil (El Hajj et al., 2017; Feldman et al., 
2023; Jackson et al., 1984). Using a digital scale, all vegetation and soil 
samples were weighed directly in the field to avoid water loss and stored 
in a portable cooler bag for transportation. Twigs and leaves were 
weighed together in the shrublands, but for native forest samples, only 
the leaves were gathered and weighed. On return to the laboratory, the 
vegetation samples were oven dried for 48 h at 70 ◦C (Brown et al., 
2022) whilst the soil samples were oven dried for 48 h but at 105 ◦C 
(Holzman et al., 2017). VMC and SMC were estimated in percentage on a 
dry-weight basis for the collected sample (at vegetation type level) using 
Equation (1), where FW is the fresh weight measured in the field and DW 

represents the oven dry weight of the same sample. Following laboratory 
processing of the VMC and SMC, a quality check round was undertaken, 
which resulted in the exclusion of three plots from early (8,15,18), mid 
(4, 11, 12) and end of summer (4,11,12) due to inconsistencies in the 
data. The final dataset (n = 96) was composed by 16 observations for 
VMC and SMC in each collection data (early summer, 6-7th June; mid 
summer, 12-13th July; end of summer 21st – 22nd September), per
forming a total of 48 observations for each moisture variable. 

Samplemoisture(%) =

(
(Fw − Dw)

Dw

)

*100 (1)  

2.3. Copernicus satellite imagery collection and processing 

2.3.1. Sentinel-1 
The S1 is a satellite mission from the European Space Agency (ESA) 

equipped with a C-band Synthetic Aperture Radar (SAR, 5.405 GHz, 5.6 
cm wavelength) with both VV (vertical transmit and vertical receive) 
and VH (vertical transmit and horizontal receive) polarizations. Here, 
the data was obtained from the Copernicus Data Space Ecosystem (https 
://dataspace.copernicus.eu/) in the format of Level-1 Interferometric 
Wide (IW) Ground Range Detected (GRD), and a spatial resolution is 5 
m × 20 m. To obtain the S1 backscatter (σ0), each image was processed 
within the ESA’s Sentinel Application Platform (SNAP V6.0, European 
Space Agency, Benninga et al., 2020) in the sequence of (1) apply orbit 
file, (2) thermal noise removal, (3) radiometric calibration, (4) speckle 
filtering (Lee filter), (5) range Doppler terrain correction, and (6) con
version to radar backscattering coefficient (σ◦) in decibels (dB). Three 
S1A radar backscattering images (Table 2) of the ascending pass with a 
local overpass time of 18:27 h were used to create three predictor var
iables for VMC and SMC, namely VV (referred to as S1_VV) and VH 
(S1_VH) backscatter coefficients and the ratio of VV and VH polarisation 
(S1_VV_VH_ratio). S1_VV/VH ratio was calculated as the difference be
tween VV and VH, since it was calculated in decibels [dB] (Schlund and 
Erasmi, 2020). Because of VV and VH have different sensitivities to soil 
and vegetation moisture (Rao et al., 2020), we hypothesized that S1_VV/ 
VH ratio could highlight the heterogeneity typical of Mediterranean 
vegetation types and thus benefit model estimates. The S1 acquired data 
on the 6th June, 12th July and 22St September 2016 coincided with the 
first day of field survey in the collection dates of early summer and mid 
summer, and with the second day of field survey in the collection date of 
the end of summer, respectively (see section 2.2.). The ascending pass 
was selected as the VMC has a strong diurnal cycle during the summer 
season (Konings and Saatchi, 2021) and we assumed that our data 
collected between 10:00 and 17:00 h would be more related to the S1 
backscatter image captured at 18:27 h than to the descending pass at 
06:33 h due of moisture depletion during the sampling period. Lastly, to 
match the spatial resolution of the S2 optical images (Section 2.3.2), the 
S1 images were resampled to 10 m using a bilinear interpolation 
approach and registered for UTM-WGS84 Zone 23 N reference frame. 

2.3.2. Sentinel-2 
Three cloud-free S2 Level 1C images (S2A MSI L1C, T29TNG tile) of 

the study area were acquired on 2nd June, 9th July and 20th September 

Table 2 
Calendar of on-site vegetation and soil moisture measurements and specifications of Sentinel-2 and Sentinel-1 satellites overpass in the Peneda-Gerês mountain range. 
CET stands for Central European Time.  

Time 
(year of 
2016) 

On-site Dates Sentinel-2 
Overpass 

Sentinel-1A Overpass 

Day of 
acquisition 

Time of acquisition 
(CET) 

Relative orbit 
number 

Incidence angle over the study 
area 

Pass 

Early Summer 6-7th June 2nd June 6th June 18:27h33s 147 38.25◦ to 39.28◦ Ascending 
Mid Summer 12–13th July 9th July 12th July 18:27h35s 147 38.25◦ to 39.28◦ Ascending 
End of 

Summer 
21–22th 
September 

20th September 22th September 18:27h38s 147 38.25◦ to 39.28◦ Ascending  
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2016. These images were the closest in time to the date of the field 
campaigns (Table 2). S2 supports a multispectral optical sensor and the 
acquired imagery are provided free of charge by the European Space 
Agency (ESA). Each image comprises thirteen spectral bands and the 
spatial resolution ranges from 10 m or 20 m to 60 m depending upon the 
spectral region considered. S2 Level 1C data was downloaded through 
the United States Geological Survey (USGS) EarthExplorer (EE) user 
interface (https://earthexplorer.usgs.gov/) and pre-processed with the 
Sen2Cor software (Costa-Saura et al., 2021) to achieve the S2 Level 2A 
or Bottom-Of-Atmosphere (BOA) corrected reflectance images. Sen2Cor 
executes the atmospheric, terrain and cirrus correction of the Top-Of- 
Atmosphere (TOA) S2 Level 1C input data. Sen2Cor was parameter
ized to release S2 Level 2A outputs at 10 m spatial resolution (Pace et al., 
2021) registered to the UTM-WGS84 Zone 23 N. Next, the red (b4, 665 
nm, 10 m), near-infrared (NIR; b8, 842 nm, 10 m) and short wave 
infrared (SWIR; b11, 1610 nm, 20 m) were accessed as these allowed 
calculation of two optical predictor variables related previously to VMC 
and SMC (Costa-Saura et al., 2021; Liang et al., 2021; Rao et al., 2020): 
NDVI (S2_NDVI, Equation (2) and NDMI (S2_NDMI, Equation (3). NDVI 
and NDMI were estimated in Python using the osgeo, rasterio and 
numpy libraries. 

NDVI =
(NIR − RED)

(NIR + RED)
(2)  

NDMI =
(NIR − SWIR)
(NIR + SWIR)

(3)  

2.4. Topographic data 

Schönbrodt-Stitt et al. (2021) suggested combining topographic pa
rameters with S1 data to improve the single SAR-based model for SMC 
retrieval in Mediterranean agroforestry systems. Slope and aspect were 
therefore included in the set of predictor variables and act as control 
factors for topographical effects. Both were derived from the Copernicus 
30 m Digital Elevation Model (DEM) dataset (Airbus, 2020), which was 
resampled to 10 m resolution using a bilinear interpolation approach. To 

Fig. 2. Boxplots of VMC (top) and SMC (bottom) in percentage at the landscape level (a,d) and the variation across the different vegetation types (b,e) and during the 
season of field collection (c,f). The midline in a boxplot represents the median; the lower and upper box edges represent the 25th and 75th percentiles; the maximum 
and minimum values are represented by whiskers; and points beyond the whiskers indicate outliers. 

Fig. 3. Map showing the distribution of VMC (%) measured in the sampling 
sites in the early (6/07/2016), mid (12/07/2016), and end of summer (22/09/ 
2016), and the Sentinel-1 VH and VV backscatter coefficients in decibels. 
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enable statistical analysis, the circular variable aspect was converted 
into a north–south (Northness) and east–west (Eastness) gradient, 
respectively, using the cosine and sine functions (Monteiro et al., 2013). 
All procedures were performed in QGIS version 3.24 (QGISTeam, 2022). 

2.5. Approaches to retrieval of VMC and SMC 

In view of a model for monitoring VMC and SMC under the condi
tions prevailing in Atlantic humid mountains characterised by Peneda- 
Gerês, we evaluated the relationship between field measurements of 
VMC and SMC and a set of satellite and ancillary predictors. VMC and 
SMC were the response variables. The prediction dataset included the S1 
backscattering in decibels (S1_VV and S1_VH) and the ratio VV/VH 
(S1_VV_VH_ratio), the S2-derived NDVI (S2_NDVI) and NDMI 
(S2_NDMI), the topographic parameters (slope and aspect) and the 
vegetation cover type of the sample site (categorical variable used only 
in the models at landscape level). 

In specific, at spatial level we tested the establishment of a gener
alized landscape level moisture model and the improvement in model 
performance by considering specific vegetation type models. At tem
poral level, we analysed the seasonal variation of the relationships be
tween satellite predictors and VMC and SMC. The hypothesis of a 
generalized landscape level moisture model was measured using the 
entire dataset of each response variable (n = 48) composed by the field 
measurements obtained in native forest, grasslands and shrublands. We 

assumed that these vegetation types together represent the key charac
teristics of the Southern European Atlantic humid mountains. To eval
uate the effect of vegetation type models in model performance, we 
analysed the relationships between response and predictor variables 
using the dataset of each vegetation type (native forests, n = 15; 
shrublands, n = 20; grasslands, n = 13). To evaluate the seasonal vari
ation of the relationships, we assessed the relationships between 
response and predictor variables using the dataset of each collection 
date (early summer, n = 16; mid summer, n = 16; end of summer, n =
16). 

To link the predictor variables to VMC and SMC, a correlation 
network analysis followed by linear regression models with leave-one- 
out cross-validation (LOOCV) were applied (Fava et al., 2009). Corre
lation network analysis was based on the Spearman’s Rank Correlation, 
which identified the set of variables having a significant correlation with 
VMC and SMC (p < 0.05) and collinearity among the predictor variables 
(r > 0.65). The set of significant predictor variables identified was then 
included in a linear regression model evaluating the capacity to predict 
VMC and SMC. The performance of the linear models was assessed by 
LOOCV as the dataset is small (i.e. VMC full dataset, n = 48) and the 
traditional data splitting (i.e.70/30) would not be truly representative of 
the overall dataset (Meyer et al., 2017). LOOCV delivers unbiased esti
mates for in-sample predictive accuracies but does not allow perfor
mance for predictions outside the spatial range covered by the dataset to 
be assessed (Wenger and Olden, 2012). The performance metrics were 

Fig. 4. Correlation network plot including all the Spearman correlations (r) between vegetation moisture content (VMC) and the predictor variables at landscape 
level (full dataset (n = 48), A), and across each vegetation type (native forests (n = 15), B; and grasslands (n = 13), C, shrublands (n = 20), D). Predictor variables 
that are more highly correlated with VMC appear closer, joined by large path thicknesses, coloured towards blue or red in case of positive or negative direction of the 
correlation, respectively. Predictor variables significantly associated with VMC (p < 0.05) are signed as *. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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the coefficient of determination (R2) and the cross-validated root mean 
squared error (RMSECV). 

This statistical procedure was performed separately for VMC and 
SMC. The linear model stage was not performed as there was no sig
nificant correlation between dependent and predictor variables. To 
avoid model overfitting by including more predictor variables than 
allowed by the sample size, the maximum number of predictor variables 

in each linear model corresponded to one tenth of the number of ob
servations used (Fieberg and Johnson, 2015). The predictor with 
strongest correlation coefficient was used to formulate the linear models 
where the sample size allowed only the inclusion of a single predictor (i. 
e. early summer model) All operations were performed using the pack
ages Corrr, Hmisc, Caret, Tidyverse, Leaps, ggplot in the R statistical 
environment (RStudioTeam, 2020). 

Fig. 5. Boxplots for the satellite variables selected to predict vegetation (VMC) and soil (SMC) moisture content in percentage at the landscape level (a, d, g, j, m), 
across vegetation types (grasslands; native forests; shrublands) and over the season (c, f, i, l, o). The midline in a boxplot represents the median; the lower and upper 
box edges represent the 25th and 75th percentiles; the maximum and minimum values are represented by whiskers; and points beyond the whiskers indicate outliers. 
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3. Results 

3.1. Spatio-temporal dynamics of VMC and SMC 

At the landscape level, the VMC ranged from 10.3 % to 378.9 %, with 
a median of 80.5 % (Fig. 2-a) indicating a large heterogeneity in vege
tation moisture between sites (Fig. 3) At vegetation type level, the 
highest VMC variability was associated with the grasslands sites, 
ranging from 10.3 % to 378.9 % (with a median of 185.1 %; Fig. 2-b). In 
the native forest sites, a lower amplitude was observed as the range was 
from 31.4 % to 204.6 % (median of 81.7 %). Shrubland sites had a 
median VMC of 71.1 % and a range from 10.9 % to 205.6 %. At seasonal 
level, the median VMC decreased from 104.2 % to 76.2 % and then to 
74.9 % from early to mid and late summer respectively. At the landscape 
level, SMC ranged from 0.86 % to 108.1 % (median of 15.6 %; Fig. 2-d). 
As with the VMC, grasslands exhibited the highest SMC variability, 
ranging from 1.2 % to 108.1 % (median of 28.6 %; Fig. 2-e). The SMC 
range of native forest sites was narrower (0.9 % to 81.7 %) and the 
median of 12.9 % was the lowest among the three vegetation types. For 
the shrubland sites, the SMC values ranged from 1.8 % to 15.6 % (me
dian of 15.7 %). As with the VMC, the median SMC decreased from 23.6 
%, to 16.6 % and then to 2.4 % from early to mid and late summer 
respectively; Fig. 2-f). 

3.2. Satellite-based predictive model of VMC 

Among the predictor variables analysed (satellite, topographic and 
vegetation cover type), only the satellite-based and vegetation cover 
type variables demonstrated a significant relationship with VMC, which 
varied both spatially and temporally. At the landscape level, most pre
dictor variables have correlation values below 0.65, except for S2_NDMI 
and S2_NDVI (r = 0.68), S1_VH and S1_VV (r = 0.87). To address this 
collinearity issue, the S2_NDVI and S1_VV were excluded from the 
analysis (Fig. 4-A and Supplementary Fig. S1-A). Correlation network 
analysis revealed that S2_NDMI was the only satellite variable showing a 
significant moderate relationship with VMC (r = 0.40, p = 0.005). 
S2_NDMI, which ranged from − 0.16 to 0.48 (Fig. 5-d), displayed a 
positive association with VMC, indicating that sites with higher NDMI 
values tended to have higher VMC values. A linear model based on 
S2_NDMI and vegetation cover type explained 30 % of the variation in 
VMC (R2 = 0.30, RMSEcv = 69.9 %; Table 3 and Fig. 5-a). None of the S1 
or topographic predictors were related to VMC (p > 0.05). 

Interestingly, the strength of the relationship with VMC improved 
when analysed at the vegetation type level, with the exception of native 

forests where the relationships were non-significant (Fig. 4-B, Table 3 
and Supplementary Fig. S2-A). In grasslands, there was a significant 
moderate association between VMC and the S2_NDVI (r = 0.57, p =
0.04; Fig. 4-C and Supplementary Fig. S2-B). A linear model based on 
S2_NDVI accounted for 35 % of the variation in VMC (R2 = 0.35, 
RMSEcv = 95 %; Table 3 and Fig. 6-e). The S2_NDVI ranged from 0.30 to 
0.86 (Fig. 5-b). The positive relationship between the S2_NDVI and VMC 
suggests that the former increases with VMC. However, it was in 
shrublands that the strongest relationship between satellite predictors 
and VMC was found. VMC correlated strongly with S2_NDVI (r = 0.64, p 
= 0.002) and moderately with S1_VV (r = -0.47, p = 0.04, Fig. 4-d and 
Supplementary Fig. S2-C). A model based on these variables explained 
52 % of the variation in VMC across the sampling sites (R2 = 0.52, 
RMSEcv = 45.3 %, Table 3 and Fig. 6-c). A positive relationship between 
the S2_NDVI and VMC in shrublands was observed with NDVI values 
ranging from 0.39 to 0.83 (Fig. 5-b). In contrast, VMC has a negative 
relationship with S1_VV backscatter coefficient. The S1_VV values 
ranged from − 14.4 dB to − 7.9 dB with a median value of − 10.8 dB. 

The seasonality of the relationships was assessed by analysing the 
relationship between VMC and the predictor variables in each collection 
date (early, mid and end of summer). The comparison of the VMC re
lationships indicated that the relationships were not stable over the 
summer season. They varied in terms of predictors associated to VMC 
and predicting capacity. In the early summer, VMC correlated strongly 
with S2_NDMI (r = 0.61, p = 0.05) and moderately with S1_VH (r =
-0.53, p = 0.05, Fig. 7-A and Supplementary Fig. S3-A). Both predictors 
could integrate a VMC model, but our sample size (n = 16) allowed only 
the inclusion of a single predictor. A linear model based on S2_NDMI, 
strongest predictor, explained 31 % of the variation of VMC (R2 = 0.31, 
RMSEcv = 90.1 %, Table 4 and Fig. 11-a). In mid summer the predicting 
capacity expanded slightly (R2 = 0.37, RMSEcv = 70.8 %, Table 4 and 
Fig. 11-b) based on a moderate positive correlation between VMC and 
S2_NDVI (r = 0.57, p = 0.05, and Supplementary Fig. S3-B). At the end 
of the summer season (Fig. 7-C, Table 4 and Supplementary Fig. S3-C) no 
significant relationships were found to VMC. 

3.3. Satellite based predictive model of SMC 

Satellite and vegetation cover type predictors were found to be the 
only variables linked to SMC spatially and temporally. Fig. 8 maps the 
distribution of SMC in the surveyed sites. Fig. 9 provides the network 
correlation plots illustrating the significant relationships at landscape 
and vegetation type level. Fig. 10 illustrate the significant relationships 
at temporal level or by the season of data collection. Further details for 

Table 3 
Regression models for vegetation moisture content (VMC) and soil moisture content (SMC) as a function of spatial scale: landscape (full dataset, n = 48) and vegetation 
type (native forests, n = 15; grasslands, n = 13; shrublands, n = 20).  

Model Model Structure 
(Coefficient, SE) 

Df Intercept P- 
value 

R2 R2
CV RMSECV 

(%) 

Landscape VMC ~ S2_NDMI (135.66, 54.00) + Veg_type Native forests (− 73.05, 25.14) + Veg_type 
Shrublands (− 75.36, 23.58) 

46 145.35 ± 19.76 0.001 0.30 0.16 69.9 

SMC ~ S2_NDMI (51.01, 14.71.00) + Veg_type Native forests (− 16.54, 6.85) + Veg_type 
Shrublands (− 11.69, 6.43) 

46 22.52 ± 5.39 0.002 0.28 0.15 18.9  

Native 
forests 

VMC~ – – n.s – – – 
SMC~ – – n.s – – –  

Grasslands VMC ~ S2_NDVI (315.86, 128.86) 11 − 26.47 ± 81.5 0.03 0.35 0.17 95.0 
SMC~ – – n.s – – –  

Shrublands VMC ~ S1_VV (–14.96, 4.83) + S2_NDVI (164.13, 69.11) 17 − 189.02 ±
63.80 

0.001 0.52 0.36 45.3 

SMC ~ S2_NDMI (15.53, 12.57) + S1_VV_VH_ratio (− 17.50, 13.70) 17 41.44 ± 21.86 0.04 0.31 0.11 9.03 

Note: Standard Error (SE), Degrees of freedom (df), R squared (R2), cross-validated coefficient of determination (R2
CV) and cross-validated root mean squared error 

(RMSECV in percentage). 
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the relationships are provided in the Supplementary Figs. S1, S2, S3. At 
the landscape level (n = 48), both the S2_NDMI (r = 0.44, p = 0.002) and 
S2_NDVI (r = 0.30, p = 0.04) were moderately correlated with SMC 
(Fig. 9-A and Supplementary Fig. S1-B). However, due to their strong 
correlation (r > 0.65), S2_NDVI was excluded from the analysis. A model 
based on the S2_NDMI and vegetation cover type explained 28 % of the 

variation in SMC (i.e, R2 = 0.28, RMSEcv = 18.9 %; Table 3 and Fig. 6- 
b). S2_NDMI was positively associated with SMC. Sites with large NDMI 
values presented large SMC values. 

At the vegetation type level, the strength of the link with SMC did not 
improve and the only areas where a significant relationship with SMC 
was found were shrublands (Fig. 9-D and Supplementary Fig. S2-4). SMC 

Fig. 6. Predicted and observed vegetation moisture content (VMC, %) and soil moisture content (SMC, %) using the regression models established with the predictors 
significantly correlated with VMC and SMC at landscape level and by vegetation type. VMC and SMC at landscape level predicted using the S2_NDMI and vegetation 
cover type, respectively (a, b); VMC for shrublands predicted using the S1_VV backscattering and S2_NDVI (c); SMC for shrublands predicted using the S2_NDMI and 
S1_VV_VH_ratio (d). VMC for grasslands predicted using the S2_NDVI (e). Coefficient of determination (R2). 
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in native forest and grassland conditions were not significantly corre
lated with any predictor variables (p > 0.05). SMC in shrublands was 
related to S2_NDMI (r = 0.53, p = 0.02) and S1_VV_VH_ratio (r = -0.46, 
p = 0.04). A model based on these variables explained 31 % of the 
variation in SMC (R2 = 0.31, RMSEcv = 9.03 %; Table 3 and Fig. 6-d). In 
shrublands, S2_NDMI ranging from − 0.16 to 0.48 (Fig. 5-e) increases in 
sites with higher SMC. The S1_VV_VH_ratio, which ranged from 3.1 dB to 
6.53 dB, was larger in sites with lower SMC. 

Regarding the seasonality of the relationships, a trend could not be 
discerned. Predicting capacity and predictors associated to SMC varied 
with the season. The relationship was more robust in the early summer 
and mid summer, but no significant models were identified in the late 

summer (Fig. 10 and Table 4). In the early summer, SMC was moderately 
correlated with S1_VH (r = 0.61, p = 0.05) and S1_VV (r = -0.53, p =
0.05, Fig. 10-A and Supplementary Fig. S3-4). A linear model based on 
S1_VH, strongest predictor, explained 33 % of the variation of SMC (R2 

= 0.33, RMSEcv = 16.0 %, Table 4 and Fig. 11-b). In mid summer, the 
predicting capacity decreased slightly (R2 = 0.30, RMSEcv = 17.8 %, 
Table 4 and Fig. 11-d) based on a positive correlation between VMC and 
S2_NDMI (r = 0.55, p = 0.05). Although a significant correlation was 
observed between S2_NDVI and topographic slope and the SMC, the 
linear model constructed using S2_NDVI did not yield statistical signif
icance (Table 4). 

Fig. 7. Correlation network plot including all the Spearman correlations (r) between vegetation moisture content (VMC) and the set of predictor variables grouped by 
time: early (6-7th June, n = 16, A), mid (12-13th July, n = 16, B) and end (21st-22nd September, n = 16, C) of summer 2016. Predictor variables more highly 
correlated with VMC appear closer, joined by large path thickness coloured towards blue or red in case of positive or negative directions of the correlation, 
respectively. Predictor variables significantly associated with VMC (p < 0.05) are signed as *. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 

Table 4 
Regression models for vegetation moisture content (VMC) and soil moisture content (SMC) as a function of time (early (6-7th June), mid (12-13th July) and late (21st 
and 22nd September,) summer 2016.  

Model Model Structure 
(Coefficient, SE) 

df Intercept P- value R2 R2
CV RMSECV (%) 

Early Summer VMC ~ S2_NDMI (313.58, 125.6) 13 56.91 ± 35.44 0.02 0.31 0.11 90.1 
SMC ~ S1_VH (− 5.09, 1.94) 14 − 50.91 ± 30.88 0.02 0.33 0.07 16.0  

Mid Summer VMC ~ S2_NDVI (261.88, 91.99) 14 − 89.50 ± 68.13 0.01 0.37 0.14 70.8 
SMC ~ S2_NDMI (54.39, 22.02) 14 18.29 ± 5.09 0.03 0.30 0.10 17.8  

End of Summer VMC~ – – n.s – – – 
SMC ~ S2_NDVI (− 2.90, 7.82) 13 5.40 ± 4.67 n.s 0.22 0.02 4.74 

Note: Standard Error (SE), Degrees of freedom (df), R squared (R2), cross-validated coefficient of determination (R2
CV) and cross-validated root mean squared error 

(RMSECV in percentage). 
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4. Discussion and conclusions 

4.1. Remote sensing of vegetation and soil moisture content in Atlantic 
humid mountains 

The aim of this exploratory study was to evaluate an empirical model 
that uses satellite-based predictors to estimate VMC and SMC in 
mountainous regions of the Southern European Atlantic, with this then 
providing a potential contribution to the management of landscape 
moisture dynamics. It is the first attempt to simultaneously investigate 
the use of S1 and S2 data for retrieving VMC and SMC, specifically in the 
Portuguese mountains. For that purpose, comparisons between field- 
measured VMC and SMC and S1 backscatter data and ratios and S2- 
derived optical indices were undertaken at landscape and vegetation 
type level, and across the season. The analyses were conducted in the 
summer season, where tools for assessing the VCM and SMC are most 
needed (Costa-Saura et al., 2021). The field measurements indicated 

that vegetation was in average not stressed (median VMC = 80.5 %), but 
SMC values indicated soil drought in the top-layer (median SMC = 15.6 
%), except in grasslands (median SMC = 28.6 %), where prevailed wet 
conditions. Within the vegetation types there was, however, large het
erogeneity, a typical feature of Southern European Atlantic humid 
mountains. 

4.1.1. Landscape vs vegetation type models 
A pertinent question for the monitoring of VMC and SMC regards the 

spatial approach to follow, namely if a generalized landscape predictive 
model can be established, or if ecosystem specific models are needed to 
achieve better predictions. In general, our results showed that remote 
sensing of VMC and SMC remains challenging also in Atlantic humid 
mountains. While S1 and S2 predictors were significantly related VMC 
and SMC, the moderate predictive capacity of the models suggest 
caution in the use of these predictors to state moisture conditions in the 
vegetation and soil. Vegetation type models presented larger prediction 

Fig. 8. Map showing the distribution of SMC (%) measured in the sampling sites in the early (6/07/2016), mid (12/07/2016), and end of summer (22/09/2016), and 
the NDVI and NDMI obtained from Sentinel-2 imagery for the 2nd June, 9th July and 20th September of 2016. 
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capacity than landscape models, particularly for VMC. Ecosystem spe
cific models seems to be the most appropriate methodological pathway 
for spatially retrieving VMC and/or SMC. Best retrievals in VMC were 
obtained in shrublands and, to a lesser extent, in grasslands conditions. 
The variations explained by a model containing only shrublands or 
grasslands sites were 1.7 times and 1.2 times larger than from a land
scape model (full dataset). This finding is congruent with previous 
studies that describe a decrease in model performance with the expan
sion of the range of vegetation conditions included in the VMC model 
(García et al., 2020; Rao et al., 2020) and also with the recent focus on 
specific vegetation type models (Lai et al., 2022). It also has implications 
for assessments that usually adopt satellite proxy variables to assess 
landscape VMC or introduce the effects of moisture in modelling 
frameworks. For SMC, our ecosystem-specific theory as the booster of 
model performance has less support, since only one vegetation type 
model was significant (i.e., shrublands) and with similar predictive ca
pacity of the landscape model. SMC requires additional investigation in 
this regard. 

The explained variance of our models was lower than in previous 
studies. The landscape model for VMC (R2 = 0.30) was slightly below 
the 32.5 % of variation explained in Israel’s Mediterranean ecosystems 
(Bar-Massada and Sviri, 2020), and far from the 55 % registered in Spain 
(R2 = 0.55, Tanase et al., 2022) or the 69 % proposed in more arid and 
flat conditions in the south of Portugal (Santos et al., 2023). Our model 
results converged more when compared with previous studies under
taken at the vegetation type level, particularly in shrublands conditions. 
These studies also showed that VMC in shrublands is retrieved with 

higher accuracy than in grasslands and woodlands (Costa-Saura et al., 
2021; Yebra et al., 2013). The lack of a significant model for native 
forests and a generally poor performance in grasslands conditions 
corroborate such findings in this study. More than half of the variation of 
shrublands VMC was explained in our study (R2 = 0.52), which is 17 % 
lower than reported in Mediterranean shrubland conditions over Spain 
(R2 = 0.70, Costa-Saura et al., 2021; Yebra et al., 2013) or Southern 
United States (R2 = 0.69, Lai et al., 2022). Indeed, considering cost- 
effective VMC models for Southern European Atlantic mountains, a 
shrublands model can be considered as the most promising. VMC maps 
of shrublands areas can be highly beneficial considering that such areas 
are the future forests and one of the most fire prone and abundant cover 
types in Mediterranean mountains (Moreira et al., 2009). The counter 
expectation was the weak results in grasslands conditions, as other 
studies showed a good association between VMC and satellite indices in 
grassland areas (Sow et al., 2013). Few comparative studies are avail
able for grasslands (Davidson et al., 2006; Mendiguren et al., 2015; 
Sibanda et al., 2019), but our results were (R2 = 0.35) substantially 
weak than the observed by Mendiguren et al., (2015) in Mediterranean 
dehesas when using MODIS data in South African grasslands with Hys
pIRI and EnMAP sensors (R2 = 0.59, (Sibanda et al., 2019) or in the 
Canadian grasslands with Landsat data (R2 = 0.76, Davidson et al., 
2006). To what concerns SMC, significant models (landscape, R2 = 0.28; 
shrublands, R2 = 0.31) presented lower performance than that reported 
with S1 at the global level based on site-scale comparison (R2 = 0.53, 
Mattia et al., 2018), in Mediterranean agroforestry conditions (R2 =

0.89, Schönbrodt-Stitt et al., 2021), in the Himalayan Forelan (R2 =

Fig. 9. Correlation network plot including all the Spearman correlations ® between soil moisture content (VMC) and the predictor variables at landscape level (full 
dataset (n = 48), A), and across each vegetation type (native forests (n = 15), B; and grasslands (n = 13), C, shrublands (n = 20), D). Predictor variables more highly 
correlated with SMC appear closer, joined by large path thickness coloured towards blue or red in case of positive or negative directions of the correlation, 
respectively. Predictor variables significantly associated with SMC (p < 0.05) are signed as *. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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0.80, Singh and Gaurav, 2023) or in Chinese agricultural landscapes 
based in the synergetic use of S2 and S1 (R2 = 0.65, Liang et al., 2021). 
The sensitivity of the S1 and S2 measurements to variations in SMC 
requires further investigations in Southern European Atlantic 
mountains. 

4.1.2. Satellite-based predictors associated to VMC and SMC 
Our mountainous context led us to hypothesize a topographic effect 

on the retrieval of VMC and SMC, and ancillary topographic variables 
were considered to act as control factors and improve model perfor
mance as shown by Schönbrodt-Stitt et al. (2021). No improvement of 
model performance with topographic control factors was found. The 
significant models found for VMC and SMC included always satellite 
predictors, indicating a role for Sentinel data in cost-effective predictive 
tools for these variables. Among the predictors for VMC, S2_NDMI and 
S2_NDVI were present in all significant models highlighting the rele
vance and importance of using optical satellite data. They related 
negatively and positively to VMC, respectively. The link and significance 
of S2_NDMI and S2_NDVI in quantifying VMC is in line with previous 
studies, which emphasized a more prominent role of the S2_NDMI than 
the S2_NDVI in the Mediterranean region (Bar-Massada and Sviri, 2020; 
Costa-Saura et al., 2021). Our results appear however to support a more 
important role of S2_NDVI, since it was always present in the best 
models for VMC. The relevant role of the NDVI aligns with previous 
findings in Mediterranean grassland–shrublands (Chuvieco et al., 2004). 
Nonetheless, the model with the largest explanation (shrublands) 
included S2 and S1 SAR predictors, namely the S1_VV backscatter co
efficient. The combination of optical and SAR benefits the model esti
mations as demonstrated in other studies (Rao et al., 2020). S1_VV 
polarization showed an inverse relationship with VMC. For SMC, 

S2_NMDI remained a relevant predictor, but results also emphasized the 
role of the S1 VV/VH ratio (S1_VV_VH_ratio) and S1_VH, both negatively 
associated to SMC. Previous studies observed the link of SMC with the 
S2_NDMI (Acharya et al., 2022), S1 VV/VH ratio (Nativel et al., 2022) 
and S1_VH (Rodionova, 2019). The negative association between SMC 
and S1_VH was also found in France (Rodionova, 2019) and in arid 
systems based on ground-based stations measurements (Ullmann et al., 
2023). The S1 VV/VH ratio (S1_VV_VH_ratio) used by our study was less 
commonly used than S1 VH/VV ratio in soil moisture studies (Nativel 
et al., 2022; Ullmann et al., 2023; Vreugdenhil et al., 2020). VV/VH 
ratio was mostly applied in vegetation moisture content studies (Rao 
et al., 2020; Soudani et al., 2021b). Our results suggest further investi
gation of the S1 VV/VH ratio in soil moisture studies. S1 VV/VH ratio 
presented an inverse relationship with SMC as documented by Ullmann 
(Ullmann et al., 2023) for the S1 VH/VV ratio in arid conditions. 

4.1.3. Variation of relationships during the summer season 
The temporal portability of spectral approaches for estimating bio

physical attributes such as VMC or SMC must be assessed before they can 
be considered consistent predictive tools (Davidson et al., 2006). While 
our study is exploratory and do not have the necessary time-series evi
dence to argue on temporal portability, our results based on seasonal 
relationships (early summer, mid summer, end of summer) may provide 
initial insights in this regard. They highlighted a variation in the rela
tionship between satellite predictors and VMC and SMC over the season. 
The intensity and the predictors associated with both moisture variables 
changed between the early and end of summer. For VMC and SMC, the 
end of the summer season was a time window where the link to spectral 
predictors was totally absent. This period coincided with the lowest 
values of VMC and SMC registered in this study. This time-scale 

Fig. 10. Correlation network plot including all the Spearman correlation (r) between soil moisture content (SMC) and the set of predictor variables grouped by the 
season of data collection: early (6-7th June, n = 16), mid (12-13th July, n = 16) and end (21st-22nd September, n = 16) of summer 2016. Predictor variables more 
highly correlated with SMC appear closer, joined by large path thickness coloured towards blue or red in case of positive or negative directions of the correlation, 
respectively. Predictor variables significantly associated with SMC (p < 0.05) are signed as. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
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dependence was recently shown by Linscheid and colleagues (Linscheid 
et al., 2021) at an interannual time scale where the focus was on vege
tation productivity based on satellite-based proxies. Soudani et al. 
(2021) also observed that, for the same LAI, the response of i.e. VV/VH 
differed depending on the phenological phase considered. Literature 
suggests that in the case of soil moisture, subsurface scattering may 
explain the lack of relationship between S1 and SMC (Wagner et al., 
2022), because under dry soil conditions it reduces the sensitivity of 
backscatter to soil moisture. Overall, time-scale effects are one of chal
lenges of integrating satellite remote sensing in ecosystem modelling at 
local scales (Pasetto et al., 2018) and empirical models for VMC and 
SMC need to account for seasonal sensitivities of moisture proxy vari
ables (Linscheid et al., 2021). In Southern European Atlantic mountains 
particular attention should be taken in the late summer season. 

4.2. Limitations 

While this study made an effort to follow the best practices for using 
satellite data and derived measures for monitoring terrestrial ecosystems 
(Zeng et al., 2022), a number of limitations must be highlighted. First, 

the field data collection is limited to three collection dates over the 
summer. Second, the sample values in each collection date were based 
on a single measurement inside the plot (20 × 20 m), not measuring i.e. 
VMC or SMC at species level. Our VMC and SMC values are however in 
line with those reported in similar studies (Chuvieco et al., 2004; Costa- 
Saura et al., 2021; de Figueiredo et al., 2021; García et al., 2020; Tanase 
et al., 2022; Yebra et al., 2013). At modelling, the small sample size 
limited the construction of more complex models at vegetation type and 
at seasonal level. It is likely an improvement of predictive capacity for 
VMC and SMC with more complex models. We have indications that a 
more accurate model would be achievable with a bigger sample size, at 
least based on the early summer VMC model where two meaningful 
independent predictors were found. Despite that, efforts to improve 
model performance were performed, namely by including topographic 
control factors (discussed above), and by in parallel evaluating regres
sion models using relativized spectral indexes (data not shown, García 
et al., 2020) or different curve fitting (i.e. exponential, quadratic; Liang 
et al., 2021). We did not find a model improvement through these 
strategies. Overall, with assumed limitations, this study brings impor
tant insights for satellite landscape management of vegetation and soil 

Fig. 11. Predicted and observed vegetation moisture content (VMC, %) and soil moisture content (SMC, %) using the regression models established with the 
predictors significantly correlated with VMC and SMC at each season (early summer, mid summer and end of summer). VMC and SMC predicted in the early summer 
using the S2_NDMI and S1_VH backscattering, respectively (a, b); (d). VMC and SMC predicted in the mid summer using the S2_NDVI and S2_NDMI, respectively (c, 
d). Coefficient of determination (R2). 
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moisture in the Southern European Atlantic mountains. This and other 
similar regions are facing increasing challenges due to climate change 
(Zapata-Sierra et al., 2022), European policies concerning water man
agement (Commission, 2021) and there is an increasing need for local 
communities to adapt to the evolving mountain environment (Castro 
et al., 2021). Further improvement in VMC and SMC prediction may be 
achieved by including meteorological control factors from local weather 
observations (Costa-Saura et al., 2021), intensifying sampling efforts, 
and testing the effect of plot vs moving window values for the predictors 
in order to evaluate uncertainty rising from misregistration between plot 
and reference pixels. 

CRediT authorship contribution statement 

Antonio T. Monteiro: Conceptualization, Data curation, Formal 
analysis, Methodology, Project administration, Writing – original draft. 
Salvador Arenas-Castro: Conceptualization, Data curation, Methodol
ogy, Writing – original draft, Writing – review & editing. Suvarna M. 
Punalekar: Writing – original draft, Writing – review & editing. Mário 
Cunha: Formal analysis, Methodology, Writing – original draft, Writing 
– review & editing. Inês Mendes: Writing – original draft, Writing – 
review & editing. Mariasilvia Giamberini: Writing – original draft, 
Writing – review & editing. Eduarda Marques da Costa: Writing – 
original draft, Writing – review & editing. Francesco Fava: Methodol
ogy, Writing – original draft, Writing – review & editing. Richard 
Lucas: Methodology, Supervision, Writing – original draft, Writing – 
review & editing. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request. 

Acknowledgements 

The authors would like to thank Ana Buchadas and Paulo Alves for 
helping in field data collection. This work was supported by the Portu
guese FCT – Fundação para a Ciência e Teconologia in the framework of 
the ATM Junior researcher contract DL57/2016/CP1442/CP0005 and 
funding attributed to CEG-IGOT Research Unit (UIDB/00295/2020 and 
UIDP/00295/2020). SAC is supported by a María Zambrano fellowship 
funded by the Spanish Ministry of Universities and European Union- 
Next Generation Plan. We also acknowledge ECOPOTENTIAL 
(Improving Future Ecosystem Benefits Through Earth Observations) - 
European framework programme H2020 for research and innovation- 
grant agreement N◦ 641762. We acknowledge the mountain research 
facility “Branda Cientifica São Bento do Cando” at Peneda-Gerês Na
tional Park. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.ecolind.2024.112123. 

References 

Acharya, U., Daigh, A.L.M., Oduor, P.G., 2022. Soil moisture mapping with moisture- 
related indices, OPTRAM, and an integrated random forest-OPTRAM algorithm from 
Landsat 8 images. Remote Sens. (Basel) 14, 3801. 

Airbus, D., 2020. Copernicus DEM Copernicus Digital Elevation Model Validation Report. 
Airbus Defence and Space—Intelligence: Potsdam, Germany. 

Atmosfera, I.P.d.M.e., 2016. Boletim climatológico de Portugal Continental- Maio de 
2016, in: IPMA (Ed.). 

Bar-Massada, A., Sviri, A., 2020. Utilizing vegetation and environmental new micro 
spacecraft (VENµS) data to estimate live fuel moisture content in Israel’s 
Mediterranean Ecosystems. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 13, 
3204–3212. 

Bauer-Marschallinger, B., Freeman, V., Cao, S., Paulik, C., Schaufler, S., Stachl, T., 
Modanesi, S., Massari, C., Ciabatta, L., Brocca, L.L., Wagner, W., 2019. Toward 
global soil moisture monitoring with Sentinel-1: harnessing assets and overcoming 
obstacles. IEEE Trans. Geosci. Remote Sens. 57, 520–539. 

Benninga, H.-J.-F., van der Velde, R., Su, Z., 2020. Sentinel-1 soil moisture content and 
its uncertainty over sparsely vegetated fields. J. Hydrol. X 9, 100066. 

Brown, T.P., Hoylman, Z.H., Conrad, E., Holden, Z., Jencso, K., Jolly, W.M., 2022. 
Decoupling between soil moisture and biomass drives seasonal variations in live fuel 
moisture across co-occurring plant functional types. Fire Ecology 18, 14. 

Calheiros, T., Benali, A., Pereira, M., Silva, J., Nunes, J., 2022. Drivers of extreme burnt 
area in Portugal: fire weather and vegetation. Nat. Hazards Earth Syst. Sci. 22, 
4019–4037. 

Carvalho-Santos, C., Nunes, J.P., Monteiro, A.T., Hein, L., Honrado, J.P., 2016. Assessing 
the effects of land cover and future climate conditions on the provision of 
hydrological services in a medium-sized watershed of Portugal. Hydrol. Process. 30, 
720–738. 

Carvalho-Santos, C., Monteiro, A.T., Arenas-Castro, S., Greifeneder, F., Marcos, B., 
Portela, A.P., Honrado, J.P., 2018. Ecosystem services in a protected mountain range 
of Portugal: satellite-based products for state and trend analysis. Remote Sens. 
(Basel) 10, 1573. 
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Holzman, M., Rivas, R., Carmona, F., Niclòs, R., 2017. A method for soil moisture probes 
calibration and validation of satellite estimates. MethodsX 4, 243–249. 

A.T. Monteiro et al.                                                                                                                                                                                                                            

https://doi.org/10.1016/j.ecolind.2024.112123
https://doi.org/10.1016/j.ecolind.2024.112123
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0005
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0005
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0005
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0020
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0020
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0020
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0020
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0025
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0025
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0025
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0025
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0030
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0030
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0035
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0035
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0035
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0040
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0040
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0040
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0045
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0045
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0045
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0045
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0050
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0050
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0050
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0050
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0055
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0055
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0055
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0060
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0060
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0070
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0070
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0070
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0070
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0075
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0075
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0075
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0075
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0080
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0080
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0080
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0085
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0085
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0085
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0090
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0090
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0090
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0090
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0095
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0095
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0095
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0100
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0100
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0100
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0105
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0105
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0105
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0110
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0110
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0110
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0110
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0110
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0115
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0115
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0120
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0120
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0120
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0125
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0125
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0125
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0125
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0130
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0130
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0130
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0135
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0135
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0135
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0140
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0140
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0140
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0145
http://refhub.elsevier.com/S1470-160X(24)00580-6/h0145


Ecological Indicators 163 (2024) 112123

16

Jackson, T.J., Schmugge, T.J., O’Neill, P., 1984. Passive microwave remote sensing of 
soil moisture from an aircraft platform. Remote Sens. Environ. 14, 135–151. 

Konings, A.G., Saatchi, S.S., 2021. Detecting forest response to droughts with global 
observations of vegetation water content. 27, 6005–6024. 

Lai, G., Quan, X., Yebra, M., He, B., 2022. Model-driven estimation of closed and open 
shrublands live fuel moisture content. Giscience & Remote Sensing 59, 1837–1856. 
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Bioclimatology of the Iberian Peninsula and the Balearic Islands. In: Loidi, J. (Ed.), 
The Vegetation of the Iberian Peninsula, Volume 1. Springer International 
Publishing, Cham, pp. 29–80. 

Rodionova, N.V., 2019. Correlation of the Sentinel 1 Radar data with ground-based 
measurements of the soil temperature and moisture. Izv. Atmos. Ocean. Phys. 55, 
939–948. 

Rodriguez-Jimenez, F., Lorenzo, H., Novo, A., Acuña-Alonso, C., Alvarez, X., 2023. 
Modelling of live fuel moisture content in different vegetation scenarios during dry 
periods using meteorological data and spectral indices. For. Ecol. Manage. 546, 
121378. 

RStudioTeam, 2020. RStudio: Integrated Development for R., in: RStudio (Ed.), PBC, 
Boston, MA. 

Santi, E., Paloscia, S., Pettinato, S., Fontanelli, G., 2016. Application of artificial neural 
networks for the soil moisture retrieval from active and passive microwave 
spaceborne sensors. Int. J. Appl. Earth Obs. Geoinf. 48, 61–73. 

Santos, F.L.M., Couto, F.T., Dias, S.S., Ribeiro, N.A., Salgado, R., 2023. Vegetation fuel 
characterization using machine learning approach over southern Portugal. Remote 
Sensing Applications: Society and Environment, 101017. 

Schlund, M., Erasmi, S., 2020. Sentinel-1 time series data for monitoring the phenology 
of winter wheat. Remote Sens. Environ. 246, 111814. 
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Sow, M., Mbow, C., Hély, C., Fensholt, R., Sambou, B., 2013. Estimation of herbaceous 
fuel moisture content using vegetation indices and land surface temperature from 
MODIS data. Remote Sens. (Basel) 5, 2617–2638. 

Tanase, M.A., Nova, J.P.G., Marino, E., Aponte, C., Tomé, J.L., Yáñez, L., Madrigal, J., 
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