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An atlas of substrate specificities for the 
human serine/threonine kinome

Jared L. Johnson1,2,28, Tomer M. Yaron1,2,3,4,5,28, Emily M. Huntsman1,2, Alexander Kerelsky1,2,3, 
Junho Song1,2, Amit Regev1,2, Ting-Yu Lin1,2,6, Katarina Liberatore1,2, Daniel M. Cizin1,2, 
Benjamin M. Cohen1,2, Neil Vasan7,8, Yilun Ma1,2, Konstantin Krismer9,10, 
Jaylissa Torres Robles11,12, Bert van de Kooij10, Anne E. van Vlimmeren10, 
Nicole Andrée-Busch13, Norbert F. Käufer13, Maxim V. Dorovkov14, Alexey G. Ryazanov14, 
Yuichiro Takagi15, Edward R. Kastenhuber1,2, Marcus D. Goncalves1,16, Benjamin D. Hopkins17, 
Olivier Elemento3,4, Dylan J. Taatjes18, Alexandre Maucuer19, Akio Yamashita20, 
Alexei Degterev21, Mohamed Uduman22, Jingyi Lu22, Sean D. Landry22, Bin Zhang22, 
Ian Cossentino22, Rune Linding23, John Blenis1,24,25, Peter V. Hornbeck22, Benjamin E. Turk11 ✉, 
Michael B. Yaffe10,26,27 ✉ & Lewis C. Cantley1,2 ✉

Protein phosphorylation is one of the most widespread post-translational 
modifications in biology1,2. With advances in mass-spectrometry-based 
phosphoproteomics, 90,000 sites of serine and threonine phosphorylation have so  
far been identified, and several thousand have been associated with human diseases  
and biological processes3,4. For the vast majority of phosphorylation events, it is not  
yet known which of the more than 300 protein serine/threonine (Ser/Thr) kinases 
encoded in the human genome are responsible3. Here we used synthetic peptide 
libraries to profile the substrate sequence specificity of 303 Ser/Thr kinases, comprising 
more than 84% of those predicted to be active in humans. Viewed in its entirety, the 
substrate specificity of the kinome was substantially more diverse than expected and 
was driven extensively by negative selectivity. We used our kinome-wide dataset to 
computationally annotate and identify the kinases capable of phosphorylating every 
reported phosphorylation site in the human Ser/Thr phosphoproteome. For the small 
minority of phosphosites for which the putative protein kinases involved have been 
previously reported, our predictions were in excellent agreement. When this approach 
was applied to examine the signalling response of tissues and cell lines to hormones, 
growth factors, targeted inhibitors and environmental or genetic perturbations, it 
revealed unexpected insights into pathway complexity and compensation. Overall, 
these studies reveal the intrinsic substrate specificity of the human Ser/Thr kinome, 
illuminate cellular signalling responses and provide a resource to link phosphorylation 
events to biological pathways.

Phosphorylation of proteins at serine, threonine, tyrosine and histi-
dine residues controls nearly every aspect of eukaryotic cellular func-
tion1,2,5,6. Misregulation of protein kinase signalling commonly results 
in human disease7. Deciphering the cellular roles of any protein kinase 
requires the elucidation of its downstream effector substrates. How-
ever, the majority of kinase–substrate relationships that have been 
published to date involve a relatively small number of well-studied 
protein kinases, while few, if any, substrates have been identified for 
the majority of the approximately 300 human protein Ser/Thr kinases 
within the human kinome8–10. This lack of knowledge of kinase–sub-
strate relationships limits the interpretation of large mass spectrometry 
(MS)-based phosphoproteomic datasets, which to date have collec-
tively reported over 200,000 Ser and Thr phosphorylation sites on 
human proteins3,4,11–13. The specific kinases that are responsible for 

these phosphorylation events have been reported for less than 4% 
of these sites3, substantially limiting the understanding of cellular 
phosphorylation networks.

Well-studied Ser/Thr kinases are generally known to recognize spe-
cific amino acid residues at multiple positions surrounding the site 
of phosphorylation14–17. This short linear motif, which is characteris-
tic of a given protein kinase, ensures fidelity in signalling pathways 
regulating phosphorylation at a given Ser or Thr residue. Knowledge of 
kinase-recognition motifs can facilitate the discovery of new substrates, 
for example, by scanning phosphoproteomics data for matching 
sequences. However, to date, phosphorylation-site sequence motifs are 
known for only a subset of the human protein Ser/Thr kinome. We have 
previously described combinatorial peptide library screening methods 
that enable the rapid determination of specificity for individual kinases 
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based on phosphorylation of peptide substrates18,19. Here we apply those 
methods to experimentally determine the optimal substrate specificity 
for the large majority of the human Ser/Thr kinome, characterize the 
relationship between kinases on the basis of their motifs, and compu-
tationally use these data to identify the protein kinases that are likely 
to phosphorylate any site identified using MS or other techniques. 
Finally, we show how this information can be applied to capture com-
plex changes in signalling pathways in cells and tissues after genetic, 
pharmacological, metabolic and environmental perturbations.

Profiling kinase substrate specificity
Substrate-recognition motifs across the human Ser/Thr kinome 
were determined by performing a positional scanning peptide array 
(PSPA) analysis. We used a previously reported combinatorial pep-
tide library that systematically substitutes each of 22 amino acids (20 
natural amino acids plus phosphorylated Thr and phosphorylated 
Tyr) at nine positions surrounding a central phospho-acceptor posi-
tion containing equivalent amounts of Ser and Thr19 (Fig. 1a). Using 
purified recombinant kinase preparations, we successfully obtained 
phosphorylation-site motifs for 303 Ser/Thr kinases, covering every 
branch of the human Ser/Thr kinase family tree as well as a collection 
of atypical protein kinases (Fig. 1b, Supplementary Fig. 1 and Supple-
mentary Tables 1 and 2). Profiling of the large majority of these kinases, 
including 83 understudied ‘dark’ kinases, was lacking8.

Position-specific scoring matrices (PSSMs) derived from quantified 
PSPA data were analysed by hierarchical clustering to compare kinase 
substrate motifs across the kinome (Fig. 2 and Supplementary Table 2). 
As expected, kinases sharing substantial sequence identity displayed 
a high degree of similarity in their optimal substrate motifs. However, 
we found many cases in which clustering by PSSM did not strictly reca-
pitulate the evolutionary phylogenetic relationships between kinases 
inferred from their primary sequences (Fig. 2). Instead, members of 
most of the major kinase groups were distributed throughout the den-
drogram, reflecting numerous examples in which kinases with low 
overall sequence identity have converged to phosphorylate similar 
optimal sequence motifs. For example, we found that a number of dis-
tantly related kinases (in the YANK, CK1 and 2, GRK and TGFβ receptor 
families) converged to phosphorylate similar sequence motifs despite 
their disparate locations on the kinome tree (Fig. 2 (cluster 3)).

Overall inspection of sequence motifs associated with various 
branches of the motif-based dendrogram revealed that approximately 
60% of the Ser/Thr kinome could be represented by simple assign-
ment to one of three previously observed motif classes: selectivity 
for basic residues N terminal to the phosphorylation site (cluster 1; 
Fig. 2); directed by a proline residue at the +1 position (cluster 2); or a 
general preference for negatively charged (acidic and phosphorylated) 
residues at multiple positions (cluster 3)15,20,21. Notably, more than half 
of all of the reported phosphorylation sites observed by MS could be 
assigned to one of these three signatures (Extended Data Fig. 1). How-
ever, each of these motif classes could be further subcategorized on 
the basis of selectivity both for and against distinct sets of residues at 
other positions, reflecting considerable diversity within these clusters 
(Extended Data Figs. 2–4). The remaining approximately 40% of the 
Ser/Thr kinome comprised many smaller groups that displayed unique 
sequence determinants (Fig. 2; clusters 4–17). For example, motifs for 
the PIKK family kinases (ATM, ATR, DNA-PK and SMG1) clustered into a 
group that primarily selected a Gln residue at the +1 position (cluster 
5), consistent with previous studies22,23. Notably, several clusters dis-
played shared consensus motifs that have not been well recognized 
previously, such as the group including the IRAK, IRE, WNK, SNRK 
and RIP kinases (cluster 13), of which the substrate motifs contained 
basic residues both N and C terminal to the phosphorylation site with 
dominant selection for aromatic residues at the +3 position. As another 
example, the kinases LKB1, CAMKK, PINK1 and PBK (cluster 14) primarily 

recognized hydrophobic residues N terminal to the phosphorylation 
site in combination with selection for turn-promoting residues (Gly or 
Asn) at the +1 position. Structural modelling of kinase–peptide com-
plexes revealed complementary features within the kinase catalytic 
clefts that are probably responsible for the recognition of these motifs 
(Extended Data Fig. 5a,b).

An important and less generally recognized feature that dominated 
the clustering was strong negative selection against either positively 
or negatively charged residues at distinct positions within a motif, sug-
gesting that electrostatic filtering strongly influences kinase substrate 
selection throughout the kinome24. We identified additional classes of 
amino acids, such as hydrophobic residues, that are selected against 
by a variety of kinases. These trends suggest that substrate avoid-
ance has a fundamental role in dictating correct kinase–substrate 
interactions25,26.

Unexpectedly, we observed that many kinases (129 out of 303) 
selected either a phosphorylated Thr or a phosphorylated Tyr as the 
preferred amino acid in at least one position within the motif (Supple-
mentary Fig. 1; where selectivity for phosphorylated Ser was assumed 
to be equivalent to phosphorylated Thr). In addition to kinases of which 
the dependence on phospho-priming was previously known (GSK3, 
CK1 and CK2 families; cluster 3), this phenomenon was particularly 
evident for the GRK- and YANK-family kinases (Extended Data Fig. 4), 
both of which have complementary basic residues within their catalytic 
domains (Extended Data Fig. 5c,d). Notably, individual GRK-family 
members showed unique and specific selection for the location of 
the phosphorylated Thr or phosphorylated Tyr residue within their 
substrate peptides. GRKs are best known for their role in the desensi-
tization of G-protein-coupled receptors (GPCRs), whereby multisite 
phosphorylation induces the binding of arrestin proteins to inhibit 
signalling27,28. Our findings suggest that the capacity for only seven 
GRKs to differentially regulate 800 distinct GPCRs probably involves a 
complex interplay between initial sequence-specific phospho-priming 
of GPCRs by other Ser/Thr and Tyr kinases, followed by a second level 
of specificity resulting from GRK-dependent phosphorylation and 
subsequent recognition by a small number of β-arrestins.

Features of substrate-recognition motifs across the entire kinome 
could be structurally rationalized on the basis of the presence of 
specificity-determining residues at particular positions within the 
kinase catalytic domain29–32, leading to both expected and unexpected 
findings. For example, we found that half of the kinases display some 
degree of selectivity for either a Ser or a Thr as the phospho-acceptor 
residue (Extended Data Figs. 6 and 7). Consistent with our previously 
published observations33, Ser or Thr phospho-acceptor site preference 
strongly correlated with the identity of the ‘DFG+1’ residue (that is, the 
residue immediately after the canonical Asp-Phe-Gly motif within the 
kinase activation loop), with bulky residues (Phe, Trp, Tyr) at this posi-
tion in Ser-selective protein kinases and β-branched residues (Val, Ile, 
Thr) at this position in Thr-selective kinases. However, for some DFG+1 
residues, Ser versus Thr selectivity was unexpectedly context depend-
ent. For example, a Leu residue at the DFG+1 position was observed 
in both Ser-selective and dual-specificity kinases, whereas a DFG+1 
Ala residue resulted in a preference for Thr phosphorylation in the 
context of some kinases (for example, the mitogen-activated protein 
kinase kinase kinases (MAP3Ks)), but a preference for Ser specificity in 
others (the IκB kinases). These observations, notable only within the 
context of the complete Ser/Thr kinome, indicate that additional resi-
dues beyond the previously established DFG+1 position can influence  
Ser/Thr specificity in a context-dependent manner.

Annotation of the human phosphoproteome
Comprehensive knowledge of human Ser/Thr kinase specificity has 
the potential to ‘deorphanize’ the large number of reported phos-
phorylation sites with no associated kinase. To do so, we generated 
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a kinome-wide annotation of the human Ser/Thr phosphoproteome, 
comprising a previously curated set of 82,735 sites that were detected 
using high-throughput MS4 plus an additional 7,017 sites that were iden-
tified using only low-throughput methods3. Using approaches adapted 
from previously published research, we computationally ranked these 
89,752 sites against each Ser/Thr kinase motif34,35 (Fig. 3a and Supple-
mentary Table 3). Notably, approximately 99% of these phosphoryla-
tion sites ranked favourably for at least one kinase that we profiled (that 
is, the site scored in the top 10% of all sites in the human phosphopro-
teome for that kinase). These annotations were strongly concordant 
with sites for which protein kinases involved have been previously 
identified. For phosphorylation sites of which the upstream kinase has 
been previously verified by at least three independent reports, encom-
passing 969 sites and over one third of the kinome, our motif-based 
approach yielded a median percentile of 95% (that is, the reported 
site received a higher score than 95% of all putative phosphorylation 
sites in the phosphoproteome for its established kinase) (Extended 
Data Fig. 8a). Furthermore, when we back-mapped the motifs of all 
303 profiled kinases onto the literature-reported phosphorylation 
sites, our approach yielded a median reported kinase percentile of 92% 
(that is, the reported kinase scored more favourably than 92% of all pro-
filed kinases in our atlas for its established substrate) (Extended Data 
Fig. 9a). These rankings further improved when we considered kinase– 
substrate pairs with higher numbers of previous reports (Extended Data 
Figs. 8 and 9), suggesting that, in a large majority of cases, the linear 
sequence context of phosphorylation sites contributes substantially 
to kinase–substrate relationships.

Notably, motif predictions alone successfully identified numerous 
prominently studied kinase–substrate relationships. For example, 
phosphorylase kinases PHKG1 and PHKG2 emerged as the top two 
hits (out of 303 kinases) for phosphorylating Ser15 of glycogen phos-
phorylase (Fig. 3b). This phosphoregulatory event, the very first to be 
discovered36, opened up the entire field of phosphorylation-dependent 
signal transduction. The most highly cited kinase–substrate interaction 
reported to date is the phosphorylation of the tumour suppressor p53 
at Ser15 by the DNA-damage-activated kinase ATM, which scored among 
the top-ranking kinases associated with that site (Fig. 3c). Notably, 
other kinases reported to phosphorylate the same site—ATR, SMG1 
and DNAPK—scored within the top four predicted kinases3.

Our approach could also correctly identify kinases for phospho-
rylation events driven by substrate co-localization or non-catalytic 
docking interactions, for which we expected less dependence on the 
phosphorylation-site motifs of their kinases. For example, we cor-
rectly identified both the mitochondrial-localized phosphorylation 
of pyruvate dehydrogenase by the pyruvate dehydrogenase kinases 
(Extended Data Fig. 10a) and the docking-driven phosphorylation 
of the MAP kinase ERK by MEK37 (Extended Data Fig. 10b). Notably, 
the phosphorylation site on ERK was selected against by nearly every 
human protein kinase that we profiled except for MEK, explaining how 
ERK can be exclusively regulated by MEK while avoiding phosphoryla-
tion by the kinome at large. Finally, our approach could tease apart 
kinase subfamilies with similar motifs and correctly assign them to their 
established substrates. For example, we could distinguish between the 
CDK family kinases that assume classical roles in cell cycle progression 
(that is, CDK1, CDK2, CDK3, CDK4 and CDK6) and the subset of CDKs 
that govern gene transcription (that is, CDK7, CDK8, CDK9, CDK12, 
CDK13 and CDK19)38,39 (Extended Data Fig. 11).

Functional annotation of the human phosphoproteome enabled us 
to examine global trends in kinase–substrate interactions. We found 
that most phosphorylation sites could be assigned to a small number of 
putative kinases (that is, BRAF–MEK1, ATM–p53 and CDK4–Rb; Fig. 3d 
and Supplementary Table 3). However, approximately one-third of all 
sites lacked unique negative sequence-discriminating features and, 
instead, matched well to the optimal phosphorylation motifs for a 
greater number of kinases21,40,41,42 (that is, Ser119 of CREB, Ser9 of GSK3B 
and Thr1079 of LATS1; Fig. 3d). This could suggest the importance of 
other kinase-determining factors (scaffolds, localization and so on) for 
proper kinase substrate recognition, or may indicate that these specific 
phosphorylation sites are points of convergence for multiple signal-
ling pathways. For example, cAMP response element binding protein 
(CREB) is canonically phosphorylated at Ser119 by cAMP-dependent 
protein kinase (PKA); however, numerous previous reports demon-
strate that a broad range of cellular stimuli and drug perturbations 
impinge on the phosphorylation of this site by no less than ten distinct 
kinases3. Taken together, these findings suggest that the presence of 
negative-selectivity elements flanking a putative phosphorylation site 
can be used to insulate a substrate from inappropriate phosphorylation 
by dozens of related kinases, whereas the absence of such negative 
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Fig. 1 | Profiling the substrate specificity of the human serine/threonine 
kinome. a, Experimental workflow for the PSPA analysis and representative 
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selectivity can enable protein kinases in distinct pathways to converge 
on the same target.

Motif-enrichment analysis
Cell signalling networks are complex and dynamic. Perturbation of 
kinase signalling pathways by genetic manipulations, treatment with 
growth factors and ligands, environmental stress or small-molecule 
inhibitors reshapes the phosphoproteome through both direct and 
indirect effects as a consequence of secondary signalling responses 
and/or off-target effects from the experimental treatment43.  

Owing to the interconnected and dynamic nature of phosphorylation 
networks, distinguishing between initial signalling events and those 
that result from the subsequent activation of additional signalling path-
ways is a common and challenging problem. We reasoned that kinases 
underlying both primary and secondary phosphorylation events could 
potentially be revealed by a global motif-based analysis of changes 
in the corresponding phosphoproteome. To test this idea, we used 
publicly available MS datasets from cells collected in the absence or 
presence of various perturbations and scored all phosphorylation 
sites with our atlas of Ser/Thr kinase motifs. Kinase motifs that were 
significantly enriched or depleted after experimental treatment were 
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then represented as volcano plots of motif frequencies and adjusted 
P values (Fig. 4a).

Using this approach, we found that sequence motifs corresponding 
to the most direct target of a genetic or chemical perturbation were 
among the most significantly regulated, as seen, for example, for the 
genetic deletion of the secreted primordial casein kinase FAM20C 
(Fig. 4b). When quantitative phosphoproteomics data from HepG2 
cells lacking FAM20C44 were analysed using our kinome-wide dataset, 
the most downregulated kinase-recognition motif corresponded to 
that of FAM20C. Similarly, when skeletal-muscle-like myotube cells 
were stimulated for 30 min with isoproterenol45, the most upregu-
lated phosphorylation motifs corresponded to multiple isoforms of 
cAMP-dependent protein kinase (PKA)—canonical effector kinases 
downstream of the β1 and β2 adrenergic receptors (Fig. 4c). Notably, 
PKA motifs are highly similar to those of several other basophilic 
kinases, yet we could identify their enrichment in this scenario. Moreo-
ver, our comprehensive Ser/Thr kinome motif collection elucidated 
secondary signalling events in a dataset from HeLa cells arrested in 
mitosis using the PLK1 inhibitor BI 2536 (Fig. 4d)46; here, in addition 
to observing a notable downregulation of substrates containing the 
optimal PLK1 motif, we also noted upregulation of substrates phos-
phorylated by ATM and ATR. This finding is in good agreement with 
previous reports that PLK1 can suppress DNA damage signalling in 
mitotic cells47,48.

Our motif-based analysis could also be used to reveal key signal-
ling events resulting from more complex interventions. For example, 
we examined phosphoproteomic data from A549 cells treated with 
6 Gy of ionizing radiation49 (Fig. 4e). Our analysis revealed the up- and 
downregulation of numerous signalling pathways, including upregula-
tion of canonical kinases involved in the DNA-damage response (ATM, 
ATR, DNA-PK) and downregulation of canonical kinases involved in 
cell cycle progression (CDK1, CDK2, CDK4 and CDK6), consistent with 
G1/S and G2/M arrest. Furthermore, we found up- and downregulation 
of less-appreciated DNA-damage-responsive kinases (MAPKAPK250,51, 
PLK352 and LRRK253).

The full collection of Ser/Thr kinome motifs also enabled the 
temporal dynamics of signalling to be resolved from time-resolved 
phosphoproteomic datasets. For example, motif-based analysis of 
phosphoproteomic data from insulin-treated 3T3-L1 adipocytes54 
revealed rapid activation of the phosphoinositide 3-kinase signalling 
pathway within 1 min after insulin stimulation followed by subsequent 
activation of the MAPK pathway, together with downregulation of 
AMP-activated protein kinases within 60 min (Fig. 4f). Similarly, phos-
phoproteomic data analysis from lipopolysaccharide-stimulated 
dendritic cells55 suggested marked upregulation at 30 min of a set 
of stress-activated kinases including the IKKs, JNK and p38 MAPKs, 
along with the MAPKAPK family of p38 effector kinases. This was fol-
lowed within 4 h by the subsequent upregulation of the PIM kinases 
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and suppression of the MAPKs in parallel with the downregulation of 
their upstream MAPK3Ks (MEKK1, MEKK2 and ZAK)56, suggestive of a 
negative-feedback loop (Fig. 4g). Thus, comprehensive motif-based 
approaches, when applied to time-resolved phosphoproteomics 
experiments, can decipher the distinct temporal dynamics of differ-
ent groups of kinases.

Discussion
Here we present the full spectrum of substrate motifs of the human 
serine/threonine kinome and provide an unbiased comprehensive 
framework to further explore their cellular functions. Globally, these 
motifs are substantially more diverse than expected, suggesting a 
broader substrate repertoire of the kinome. Hierarchical clustering 
of this dataset reorganized the kinome into at least 38 motif classes 
and introduced several shared motif features (Fig. 2 and Extended 
Data Figs. 2–4).

The Ser/Thr kinases that we profiled were, almost without exception, 
strongly discriminatory against specific motif features. These findings 
suggest that fidelity in kinase signalling pathways is largely achieved 
through selective pressure on substrates to avoid phosphorylation by 
the majority of irrelevant kinases, and that this may occur by tuning the 
amino acid sequences surrounding the phosphorylation sites to be dis-
favoured by non-cognate kinases. As this negative selection contributes 
substantially to proper substrate recognition, accurate identification 
of kinase–substrate relationships requires a comprehensive knowledge 

of kinase phosphorylation motifs—not only for an individual kinase of 
interest, but also for all other kinases in the human kinome that might 
compete for the same substrate pool.

When this kinome-wide dataset was used to predict the specific 
kinases that are responsible for substrate phosphorylation solely based 
on the amino acid sequence surrounding the phosphorylation site, the 
results were highly accurate at identifying correct kinase–substrate 
relationships, even without knowledge of tissue specificity, scaffolding 
effects or subcellular localization. Including such additional informa-
tion will probably further improve these predictive approaches57,58.  
A limitation of using first-order peptide arrays in these experiments is 
that they do not directly measure the contributions of interpositional 
contacts within the substrate peptides, which we have previously shown 
can affect substrate selection for some tyrosine kinases32, albeit less 
so for Ser/Thr kinases59. Moreover, we were unable to differentiate 
between positional selection of Ser or Thr residues and direct phospho-
rylation of neighbouring residues (for example, peptides containing 
more than one phospho-acceptor). Structural modelling approaches 
guided by kinase substrate motif data will potentially decipher this 
additional information to further improve predictions60,61.

The examination of MS phosphoproteomic datasets using this global 
collection of motifs yielded potential biological insights and putative 
kinase substrates (Fig. 4). For example, in cells undergoing exposure 
to ionizing radiation (Fig. 4e), ATM was predicted to target 37 of the 
phosphorylation sites that were upregulated, most of which have 
never been associated as substrates for ATM (Supplementary Table 4).  
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Fig. 4 | Global motif analysis reveals how kinase perturbations and pathway 
rewiring reshape the phosphoproteome. a, Workflow of the motif 
enrichment analysis of phosphoproteomics data. The schematic was created 
using BioRender. b–g, Results from published datasets. b, Conditioned 
medium of HepG2 cells after genetic deletion of FAM20C44. c, Cultured 
myotubes after 30 min treatment with 2 μM isoproterenol45. d, HeLa cells after 
mitotic arrest by treatment for 45 min with 0.1 μM PLK1 inhibitor BI 2536 (ref. 46). 

e, A549 cells 2 h after exposure to 6 Gy of ionizing radiation49. f, 3T3-L1 
adipocytes after serum starvation and then 1 min and 60 min treatment with 
100 nM insulin54. g, C57BL/6J mouse bone-marrow-derived dendritic cells after 
30 min and 4 h treatment with 100 ng ml−1 lipopolysaccharide (LPS)55. The 
enrichments in b–g were determined using one-sided exact Fisher’s tests and 
corrected for multiple hypotheses using the Benjamini–Hochberg method. 
Fully annotated versions of these plots are presented in Supplementary Fig. 2.
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As the application of phosphoproteomics to human clinical samples 
and disease model systems continues to advance, our comprehensive 
motif-based approach will be uniquely equipped to unravel the complex 
signalling that underlies human disease progressions, mechanisms 
of cancer drug resistance, dietary interventions and other important 
physiological processes. In summary, we foresee that this will provide 
a valuable resource for a broad spectrum of researchers who study 
signalling pathways in human biology and disease.
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Methods

Cell lines
Expi293 (Thermo Fisher Scientific) and HEK293T (ATCC) cells were 
obtained directly from vendors that perform short tandem repeat 
genotyping for authentication of human cells and were verified to be 
mycoplasma-free. Sf9 insect cells were obtained from Thermo Fisher 
Scientific.

Plasmids
For expression and purification from bacteria, the DNA sequences 
for the human Ser/Thr kinases, binding partners and chaperones 
listed below were codon-optimized for expression in Escherichia coli 
using GeneSmart prediction software (GenScript). Optimized coding 
sequences were synthesized as gBlocks (Integrated DNA Technologies) 
carrying 16 bp overhangs at the 5′ and 3′ ends to facilitate in-fusion 
cloning (Clontech) into pET expression vectors (EMD Millipore).

pCDFDuet1 constructs were as follows: HSP90AA1-His6(full 
length), hereafter referred to as ‘HSP90’; untagged HSP90(full 
length); His6-MO25a(full length); His6-ALPHAK3/ALPK1 N-terminal 
domain (1–474); and His8-CCNC(full length) in tandem with 
MED12-His8(1–100); untagged MEK5/MAP2K5(S311D, T315D; 
full length); and untagged CK2B(full length). pET28a constructs 
were as follows: His6-PDPK1(full length); His6-PRP4/PRPF4B(519–
end); GST-CAMK1A(full length); GST-CHAK2/TRPM6(1699–end); 
His6-caMLCK/MYLK3(490–end); His6-CAMKK1 (124–411); His6-ERK7/
MAPK15(full length); His6-SUMO-ALPHAK3/ALPK1 CTD(959–end); 
MYO3A-His6(1–308); ERK5/MAPK7-His6(1–405); His6-NIK/MAP3K14(327–
673); and BMPR2-His6(172–504). pETDuet1 constructs were as follows: 
His6-CDK8(1–360, fusion with C-tail of CDK19(360–end)), His6-CDK19(full 
length); His6-AAK1(27–365); His6-BIKE(37–345); CK2A1-His6(full length); 
CK2A2-His6(full length); His10-MBP-MEKK1/MAP3K1(1174–end); 
His6-CLK1(128–end); His8-PLK2(57–360); His10-MAP3K15(631–922); 
His6-SUMO-ASK1/MAP3K5(659–951); and His6-TAO2(1–350). The pACY-
Duet1 construct was as follows: untagged CDC37(full length).

For enhanced expression in mammalian lines cells, the DNA 
sequences of His6-GST-SBK1(full length) and Flag-His6-WNK3(1–434) 
were optimized for expression in Homo sapiens using GeneSmart (Gen-
Script) and synthesized as gBlocks (Integrated DNA Technologies) 
carrying 16 bp overhangs to facilitate in-fusion cloning into digested 
pCDNA3.4 (Thermo Fisher Scientific).

To generate a mammalian expression construct for the TAK1/
MAP3K7, the coding sequence for this kinase (GE Healthcare Dharma-
con, MHS6278-202756930) and its binding partner TAB1 (GE Healthcare 
Dharmacon, MHS6278-202760135) were PCR-amplified and ligated as 
a fusion construct (TAK1(1–303)-TAB1(451–end)) into the mammalian 
expression vector pLenti-X by in-fusion.

Expression constructs purchased or obtained from other laborato-
ries or Addgene were as follows: bacterial expression constructs for 
GST-VRK1(full length) and GST-VRK2(full length), in pGEX-4T, were 
received as gifts from P. Lazo62. The bacterial expression construct for 
mouse CDKL5-His6(1–352), in pET23a+, was received as a gift from S. 
Katayama63. Bacterial expression constructs for His6-SUMO-PDHK1(full 
length), His6-SUMO-PDHK4(full length), pGroESL (GroEL/GroES) and 
MBP-BCKDK(full length) were received as gifts from D. Chuang, S.-C. Tso 
and R. Wynn64,65. pProEx HTa-BRAF_16mut V600E(444–721) was a gift 
from M. Therrien at Université de Montréal66. Mammalian expression 
constructs for Flag-ATR(S1333A) and HA-ATRIP were provided by D. Cor-
tez67. Bacterial expression constructs for DMPK1, CAMK1G, CAMK2G, 
PHKG2, CDKL1, GAK and lambda phosphatase were purchased from 
Addgene (Addgene, 1000000094)68.

Expression and Purification from bacteria
Transformations were performed using BL21 Star cells (Thermo Fisher 
Scientific) unless specified otherwise. Antibiotic concentrations used 

were as follows: carbenicillin (100 mg l−1), kanamycin (50 mg l−1), 
spectinomycin (25 mg l−1) and chloramphenicol (25 mg l−1 in ethanol, 
prepared fresh). Transformed cells were grown in 1 l Terrific Broth 
by shaking at 190 rpm at 37 °C until the optical density (λ = 600 nm) 
reached 0.7–0.8, at which point 1 mM IPTG was added to induce expres-
sion. The cells were then transferred to a refrigerated shaker and shaken 
at 220 rpm at 18 °C for 16–20 h. Cells were centrifuged at 6,000g, and 
the pellets were snap-frozen in liquid nitrogen and stored at −80 °C.

All of the steps for protein purification were performed at 4 °C. Cell 
pellets were solubilized in lysis buffer (described below) and lysed by 
probe sonication. The lysate was centrifuged at 20,000g for 1 h and the 
supernatant was combined with affinity purification resin, nickel NTA 
(Qiagen) or glutathione Sepharose (GE Health) that had been rinsed in 
base buffer. The supernatant-bead slurry was agitated for 30 min. Resin 
was washed with 1 l base buffer and eluted in 10 bed volumes of elution 
buffer. Eluted protein was concentrated using the Ultra Centrifugal 
Filter Units (Amicon), supplemented with 1 mM DTT and 25% glycerol, 
and snap-frozen in liquid nitrogen and stored at −80 °C.

The buffers were as follows. Standard lysis buffer: 50 mM Tris 
pH 8.0, 100 mM NaCl, 2 mM MgCl2, 2% glycerol, HALT EDTA-free 
phosphatase and protease inhibitor cocktail (Life technologies), 5 mM 
β-mercaptoethanol and 1–3 g of lysozyme (Sigma-Aldrich). Standard 
base buffer: 50 mM Tris pH 8.0, 100 mM NaCl, 2 mM MgCl2, 2% glycerol 
(50 mM imidazole was included for purifications involving polyhisti-
dine tags). Standard wash buffer: 50 mM Tris pH 8.0, 500 mM NaCl, 
2 mM MgCl2, 2% glycerol (50 mM imidazole was included for purifica-
tions involving polyhistidine tags). Polyhistidine-tag elution buffer: 
50 mM Tris pH 8.0, 100 mM NaCl, 2 mM MgCl2, 2% glycerol, 350 mM 
imidazole. GST-tag elution buffer: 50 mM Tris pH 8.0, 100 mM NaCl, 
2 mM MgCl2, 2% glycerol, 10 mM glutathione (pH was adjusted after 
addition of glutathione).

CDK8 was co-purified with CCNC/MED12. CDK19 was co-purified 
with CCNC/MED12. CK2A1 and CK2A2 were co-purified with CK2B. 
ERK5 was co-expressed with MEK5DD. The kinases BRAF and NIK 
were co-expressed with untagged HSP90–CDC37 complex. ALPHAK3 
N- and C-terminal domains were co-purified. DMPK1, CAMK1G, 
CAMK2G, PHKG2, CDKL1 and GAK were co-expressed with lambda 
phosphatase in Rosetta 2 cells (Novagen). PDHK1, PDHK4 and BCKDK 
were co-expressed with GroeL/GroeS and purified with the follow-
ing buffers: lysis buffer (100 mM potassium phosphate pH 7.5, 10 mM 
l-arginine, 500 mM KCl, 0.1 mM EDTA, 0.1 mM EGTA, 0.2% Triton X-100, 
lysozyme), wash buffer (50 mM potassium phosphate pH 7.5, 10 mM 
arginine, 500 mM NaCl, 0.1% Triton X-100, 2 mM MgCl2), and elution 
buffer (25 mM Tris pH 7.5, 120 mM KCl, 0.02% Tween-20, 50 mM argi-
nine, 350 mM imidazole for PDHK1 and PDHK4, 20 mM maltose for 
BCKDK). BCKDK was purified by its MBP tag on amylose resin (NEB). 
CDKL5 was expressed in BL21-codonplus(DE3)-RIL cells. KIS (full length) 
was purified as described previously69.

Expression and purification from mammalian cells
Expi293F cells (Thermo Fisher Scientific) were cultured in 500 ml 
Expi293 Expression Medium (Thermo Fisher Scientific) in 2 l spinner 
flasks on a magnetic stirring platform at 100 r.c.f. at 36.8 °C under 8% 
CO2. For transfection, 500 μg of expression constructs was diluted 
in Opti-MEM I Reduced Serum Medium (Thermo Fisher Scientific). 
ExpiFectamine 293 Reagent (Thermo Fisher Scientific) was diluted 
with Opti-MEM separately then combined with diluted plasmid DNA 
for 10 min at room temperature. The mixture was then transferred to 
the cells (3 × 106 cells per ml) and stirred. Then, 20 h after transfection, 
ExpiFectamine 293 Transfection Enhancer 1 and Enhancer 2 (Thermo 
Fisher Scientific) were added to the cells. Two days later, the cells were 
centrifuged at 300g for 5 min, snap-frozen in liquid nitrogen and stored 
at −80 °C (3 days after transfection).

All of the steps for protein purification were performed at 4 °C. 
Cell pellets were solubilized in lysis buffer and lysed by dounce 
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homogenization (20 strokes). The lysate was centrifuged at 100,000g 
for 1 h and the supernatant was combined with affinity purification 
resin, nickel NTA (Qiagen), glutathione Sepharose (GE Health) or 
anti-Flag M2 affinity gel (Sigma-Aldrich), and agitated for 30 min (nickel 
and glutathione beads) or 1 h (anti-Flag beads). Resin was washed with 
1 l base buffer and eluted in 10 bed volumes of elution buffer. For elu-
tion of Flag tagged-proteins, beads were immersed in elution buffer 
(0.15 μg ml−1 3× Flag peptide (Sigma-Aldrich)) and agitated for 1 h before 
elution. Eluted protein was concentrated using Ultra Centrifugal Filter 
Units (Amicon), supplemented with 1 mM DTT and 25% glycerol, and 
snap-frozen in liquid nitrogen and stored at −80 °C.

Buffers were as follows. Standard lysis buffer: 50 mM Tris pH 8.0, 
150 mM NaCl, 2 mM MgCl2, 5% glycerol, 1% Triton X-100, 5 mM 
β-mercaptoethanol, HALT protease inhibitors. Standard base buffer: 
50 mM Tris pH 8.0, 100 mM NaCl, 2 mM MgCl2, 2% glycerol. Standard 
wash buffer: 50 mM Tris pH 8.0, 500 mM NaCl, 2 mM MgCl2, 2% glycerol.

His6–GST-tagged SBK was purified sequentially on nickel and then 
glutathione resins. The buffers were as follows: the first wash buffer: 
25 mM imidazole. SBK1 elution buffer for polyhistidine tag: 50 mM Tris 
pH 8.0, 100 mM NaCl, 2 mM MgCl2, 2% glycerol, 250 mM imidazole. 
SBK1 elution buffer for GST tag: 50 mM Tris pH 8.0, 100 mM NaCl, 2 mM 
MgCl2, 2% glycerol, 10 mM glutathione. Flag–TAK1–TAB1 elution buffer: 
50 mM Tris pH 8.0, 100 mM NaCl, 2 mM MgCl2, 2% glycerol, 0.15 μg ml−1 
3× Flag peptide.

Flag–His6–WNK3 was purified sequentially on nickel and then 
anti-Flag resins. The buffers were as follows: the first wash buffer: 25 mM 
imidazole. Flag-tag elution buffer (chloride-free): 50 mM Tris pH 7.5, 
2 mM magnesium acetate, 2% glycerol, 0.15 μg ml−1 3× Flag peptide.

Flag–ATR(S1333A) (350 μl) and HA–ATRIP (150 μg) were 
co-transfected into Expi293 cells and incubated for one additional 
day after addition of enhancers (4 days after transfection). The buffers 
were as follows. ATR lysis buffer: 50 mM HEPES pH 7.4, 150 mM NaCl, 
10% glycerol, 0.25% Tween-20, 2 mM MgCl2, DTT. ATR wash buffer: 
50 mM HEPES pH 7.4, 150 mM NaCl, 0.01% Brij-35, 2 mM MgCl2, 5 mM 
ATP, DTT. ATR elution buffer: 20 mM HEPES pH 7.4, 150 mM NaCl, 0.01% 
Brij-35, DTT, 0.15 μg ml−1 3× Flag peptide.

Eluates were concentrated to 1 ml in 100 kDa MWCO Amicon tubes 
and resolved using the MonoS column in a 0–1 M NaCl gradient (buffer: 
25 mM Bis-Tris pH 6.9, 0.01% Brij-35 and 5 mM TCEP). A total of 1 ml of 
each fraction was collected. Fractions 1–4 were combined and con-
centrated to 1 ml using a 100 kDa MWCO filter and resolved using 
size-exclusion (Superose 6) in 20 mM HEPES pH 7.4, 200 mM NaCl, 0.01% 
Brij-35 and 5 mM TCEP. A total of 1 ml of each fraction was collected. Frac-
tions 11–14 were verified to be pure ATR–ATRIP complex on SDS–PAGE.

SMG1–SMG9 complexes were purified from HEK293T cells as 
described previously70. RIPK1, RIPK2 and RIPK3 were purified from 
insect cells (Sf9) as described previously71. The following recombinant 
active kinases obtained from other laboratories. Recombinant active 
CDK12–CycK, CDK13–CycK and CDK9–CycT complexes were provided 
as gifts from M. Geyer72,73. Recombinant active DCAMKL1/DCLK1 and 
MELK were provided as gifts from N. Gray, H.-T. Huang and K. Westover, 
Y. Liu and W. Harshburger74–76. Recombinant active PRPK(full length)–
CGI121/TPRKB(full length) complex was provided as a gift from L. Wan 
and F. Sicheri77. Recombinant active HASPIN(452–798) was provided 
as a gift from A. Musacchio78. Recombinant active YSK1 was provided 
as a gift from X. Luo79. Recombinant CK1G2 was provided as a gift from  
S. Knapp. A list of catalogue and lot numbers of purchased recombinant 
kinases is provided in Supplementary Table 1.

PSPA analysis
Recombinant kinase was added to a 384-well plate containing pep-
tide substrate library mixtures in solution phase at 50 μM (Anaspec, 
AS-62017-1 and AS-62335). The reaction was initiated with the addi-
tion of 50 μM ATP (50 μCi ml−1 γ-32P-ATP, Perkin-Elmer) and incubated 
for 90 min. The assay conditions for each kinase are described in 

Supplementary Table 1 (refs. 80–84). After completion of the reaction, 
the solutions were spotted onto streptavidin-conjugated membranes 
(Promega, V2861), where the peptides tightly associated through their 
C-terminal biotinylation. The membranes were rinsed and then imaged 
using the Typhoon FLA 7000 phosphorimager (GE) to measure the 
extent of peptide phosphorylation. Raw data (GEL file) were quantified 
using ImageQuant (GE) to generate densitometry matrices (Supple-
mentary Table 2). For the kinase ALPHAK3, spots were normalized to 
the surrounding background, owing to spatial variation in background 
signal. PDHK1 and PDHK4 showed dual specificity for serine and tyros-
ine. For these kinases, we used a customized peptide substrate library 
devoid of tyrosine residues at randomized positions.

In total, 283 human kinase motifs, one motif from a mouse kinase 
orthologue (CDKL5), one motif from a rat kinase orthologue (KIS) 
and one motif from an arthropod Pediculus humanus corporis kinase 
orthologue (PINK1), were combined with 17 human kinase motifs that 
we previously published, including AKT185, SRPK135, SRPK235, SRPK335, 
CK1D35, DYRK1A86, DYRK286, GSK3A86, GSK3B86, CK1A86, CK1E86, CK1G186, 
CDK1087, CDK288, CDK388, CDK1888 and CDK789.

For the zero-control experiments in Extended Data Fig. 6, bioti-
nylated peptides were synthesized containing only serine or threo-
nine as the phospho-acceptor, where all nine surrounding positions 
contained degenerate mixtures of the 20 natural amino acids excluding 
serine, threonine, tyrosine and cysteine.

Matrix processing
The densitometry matrices were column-normalized at all positions by 
the sum of the 17 randomized amino acids (excluding serine, threonine 
and cysteine), to yield PSSMs (Supplementary Table 2). PDHK1 and 
PDHK4 were normalized to the 16 randomized amino acids (excluding 
serine, threonine, cysteine and additionally tyrosine), correspond-
ing to the uniquely customized peptide library that profiled these 
kinases. The cysteine row was scaled by its median to be 1/17 (1/16 for 
PDHK1 and PDHK4). The serine and threonine values in each position 
were set to be the median of that position. The ratio of serine versus 
threonine phospho-acceptor favourability (S0 and T0, respectively) 
was determined by summing the values of the serine and threonine 
rows in the densitometry matrix (SS and ST, respectively), accounting 
for the different serine versus threonine composition of the central 
(1:1) and peripheral (only serine or only threonine) positions (Sctrl and 
Tctrl, respectively), and then normalizing to the higher value among the 
two (S0 and T0, respectively, Supplementary Note 1).

Matrix clustering
The dendrogram in Fig. 2 was generated using the normalized matrices 
with the 20 unmodified amino acids, as well as phosphothreonine and 
phosphotyrosine. The linkage matrix was computed using the SciPy 
package in Python (v.3.7.6), using the Ward method. Results were con-
verted to the Newick tree format and plotted using FigTree (v.1.4.4).

Substrate scoring
For scoring substrates, the values of the corresponding amino acids in 
the corresponding positions were multiplied and scaled by the prob-
ability of a random peptide (Supplementary Note 2).

For the percentile score of a substrate by a given kinase, we first com-
puted the a priori score distribution of that kinase PSSM by scoring a 
reference Ser/Thr phosphoproteome comprising 82,735 identified  
sites4 using the method discussed above (Fig. 3a). The percentile score of a 
kinase–substrate pair is defined as the percentile ranking of the substrate 
within the score distribution of each kinase34. This value was used when 
analysing all of the detected phosphorylation sites for kinase enrichment.

Kinase enrichment analysis
The single phosphorylation sites (not including multi-phosphorylated 
peptides) in the analysed phosphoproteomics studies were scored by 



all of the characterized kinases (303 Ser/Thr kinases), and their ranks 
in the known phosphoproteome score distribution were determined as 
described above. For every non-duplicate, singly phosphorylated site, 
kinases that ranked within the top 15 kinases for the Ser/Thr kinases 
were considered to be biochemically favoured kinases for that phos-
phorylation site. For assessing kinase motif enrichment in phospho-
proteomics datasets, we compared the percentage of phosphorylation 
sites for which each kinase was predicted among the upregulated/
downregulated (increased/decreased, respectively) phosphorylation 
sites (sites with |log2[fold change]| equal or greater than the log[fold 
change] threshold), versus the percentage of biochemically favoured 
phosphorylation sites for that kinase within the set of unregulated 
(unchanged) sites in this study (sites with |log2[fold change]| less than 
the log[fold change] threshold). The log-transformed fold change 
threshold was determined to be 1.5 for all panels in Fig. 4, except for 
Fig. 4e, in which the threshold was set to 0.5 owing to the low range of 
the log[fold change] in the data. Contingency tables were corrected 
using Haldane correction (adding 0.5 to the cases with zero in one of 
the counts). Statistical significance was determined using one-sided 
Fisher’s exact tests, and the corresponding P values were adjusted 
using the Benjamini–Hochberg procedure. Kinases that were sig-
nificantly enriched (adjusted P ≤ 0.1), or depleted (log2[frequency 
factor] < 0) for both upregulated and downregulated analysis were 
excluded from downstream analysis. Then, for every kinase, the 
most significant enrichment side (upregulated or downregulated) 
was selected on the basis of the adjusted P value and presented in 
the volcano plots.

Sequence logos
Sequence logos were made using logomaker package in Python90. For 
individual kinases, the normalized matrix was used, where the height 
of every letter is the ratio of its value to the median value of that posi-
tion. The serine and threonine heights in the central position (position 
zero) were set to the ratio between their favourability. For clustered 
groups of kinases, the average matrix was calculated and presented 
as sequence logo as described above.

Comparative analyses between amino acids in the kinase 
domains and their substrate specificities
For Extended Data Fig. 7, kinases were sorted by their log2[S0/T0] values. 
For the sequence logo, kinase domains of 290 available kinases were 
obtained from previously aligned kinase sequences91. The alignments to 
residues Met1–Leu296 in CDK2 (Protein Data Bank (PDB): 1QMZ) were 
obtained for each kinase, and the frequencies of amino acids in incre-
ments of 15-kinases were calculated and plotted as a sequence logo.

Known kinase–substrate pairs
Experimentally validated kinase–substrate relationships were obtained 
from PhosphoSitePlus ( July 2021). The number of reports for each pair 
was determined by the sum of the in vivo and in vitro reports.

Illustrations
Experimental schema and illustrative models were generated using 
BioRender (https://biorender.com/). Kinome tree images were gen-
erated and modified using Coral (http://phanstiel-lab.med.unc.edu/
CORAL/). Structural illustrations were generated using PyMOL. Generic 
kinase domains in Figs. 1 and 3 were as follows: PKAα (PDB: 1ATP). The 
kinase and substrate structures in Fig. 3 were as follows: ATM (PDB: 
7SIC)92 and p53 (chimera of AlphaFold AF-P04637-F1-model_v2_1 (1–95)61 
and 2ATA(96–292)92) (Fig. 3c), and PHKG2 (PDB: 2Y7J)92 and PYGM (PDB: 
1ABB)92 (Fig. 3b).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The data generated (RAW files) and analysed in this study are provided 
in this paper. All plasmids generated in this study have either been 
deposited at Addgene or available on request.

Code availability
The analytical tools used in this study and underlying code are available 
to the public online (https://kinase-library.phosphosite.org).
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Extended Data Fig. 1 | Representation of phosphorylation site motifs  
in the human serine and threonine phosphoproteome. Venn diagram 
representation of the percentages of three prominent Ser/Thr kinase motif 
features, pertaining to Clusters 1, 2, and 3 in Fig. 2, across 82,735 human serine 

and threonine phosphorylation sites confidently identified in mass 
spectrometry experiments4. The phosphorylated residues in the logos  
are represented as S/T.
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Extended Data Fig. 2 | Subcategorization of the basophilic kinases of Cluster 1. Subcategorization of Cluster 1 from Fig. 2 into 11 motif classes.



Extended Data Fig. 3 | Subcategorization of the proline-directed kinases of Cluster 2. Subcategorization of Cluster 2 from Fig. 2 into 5 motif classes.
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Extended Data Fig. 4 | Subcategorization of the acidophilic kinases of Cluster 3. Subcategorization of Cluster 3 from Fig. 2 into 8 motif classes.
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Extended Data Fig. 5 | Structural models of kinase–substrate complexes.  
a, Synthetic peptide from its complex with PAK4 (PDB: 2Q0N) modelled onto 
WNK3 (PDB: 5O26). Dotted circle highlights a shallow hydrophobic pocket 
accommodating a +3 Phe residue. b, GSK3 peptide from its complex with  
AKT2 (PDB: 1O6L) modelled onto CAMKK2 (PDB: 2ZV2). Circle indicates a 
hydrophobic pocket that could accommodate a −2 aliphatic residue.  
c, Monophosphorylated peptide from p63 bound to CK1δ (PDB: 6RU6) 

modelled onto GRK2 (PDB: 1YM7). Circle shows positive surface potential in the 
vicinity of the −2 and −3 pSer residues. d, p63 peptide bound to CK1δ (PDB: 
6RU8) was modelled onto YANK1 (PDB: 4FR4) showing potential binding sites 
for −3 and +2 phosphorylated residues. Surface electrostatics are represented 
with Coulombic potential values were computed in ChimeraX and represented 
by scale bars (kcal/mol·e).
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results in (a) with the position sum approach applied in this study to score  
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Extended Data Fig. 8 | Global performance analysis of substrate percentile 
scores for their literature-annotated kinases. a, Percentile-score 
distributions of substrates for their literature-annotated kinases (AUCDF=  
area under the cumulative distribution function). b, Percentile-score of 
literature-annotated kinase–substrate pairs as a function of number of reports. 
Higher number of reports correlates with more favourable percentile-scores 
between the reported kinase and its substrate. n = 9,073, n = 3,945, n = 544, 

n = 224, and n = 201 for kinase–substrate relationships with 1, 2, 3, 4, and 5 or 
more reports, respectively. Statistical analyses were performed using 
Double-sided Mann-Whitney U-test. Box minima=25th percentile, centre=50th 
percentile, maxima=75th percentile. Whiskers extend from the box maxima or 
minima to the largest or smallest value no further than 1.5 x interquartile range. 
(ns p > 0.05, * p ≤ 0.05, ** p ≤ 10−3, *** p  ≤ 10−4, **** p ≤ 10−5).
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Extended Data Fig. 9 | Global performance analysis of kinase ranks for their 
literature-annotated substrates. a, Rank distributions of kinases for their 
literature-annotated substrates (AUCDF= area under the cumulative 
distribution function). b, Rank of the literature-annotated kinase–substrate 
pairs, as a function of number of reports. Higher number of reports correlates 
with more favourable ranking of reported kinase for its substrate. n = 9,073, 

n = 3,945, n = 544, n = 224, and n = 201 for kinase–substrate relationships with 1, 
2, 3, 4, and 5 or more reports, respectively. Statistical analyses were performed 
using Double-sided Mann-Whitney U-test. Box minima=25th percentile, 
centre=50th percentile, maxima=75th percentile. Whiskers extend from the 
box maxima or minima to the largest or smallest value no further than 1.5 x 
interquartile range. (ns p > 0.05, * p ≤ 0.05, ** p ≤ 10−3, *** p ≤ 10−4, **** p ≤ 10−5).
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Extended Data Fig. 11 | Scoring comparison of CDK subfamilies. Illustration 
of the phosphoregulation of RNA Polymerase II (POLR2A) CTD and 
Retinoblastoma protein (Rb) by their respective canonical CDKs, the 

transcriptional CDKs (purple) and the cell cycle progression CDKs (green) 
(left). Links between kinases and substrates correspond to favourable scores 
between motifs and phosphorylation sites (right).
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