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ESTIMATION ON THE BASIS OF SNOWBALL
SAMPLES: HOW TO WEIGHT?

by

Tom A. B. Snijders
(Department of Statistics and Measurement Theory,

University of Groningen)

Paper presented at the Workshop on Generalizability Questions for
Snowball Sampling and Other Ascending Methodologies, Groningen, 20-21 
February, 1992.

Abstract. What are the possibilities of snowball sampling, if one desires valid statistical inference without

making probabilistic assumptions on the network structure? In a critical review of the possibilities of snowball
sampling for a population of vertices connected by a network of arcs, it is argued that the snowball method is
much more suitable for the estimation of parameters of the network structure (or parameters of the population of
arcs) than to estimate parameters of the population of vertices. Further work needs to be done to relax the
assumption of randomness of the initial sample of the snowball. Snowball Sampling, Weighting, Parameter
Estimations, Social Networks.

R&eacute;sum&eacute;. Quelle possibilit&eacute; donne un &eacute;chantillon boule de neige pour parvenir &agrave; des inf&eacute;rences statistiques
valides sans faire d’hypoth&egrave;ses probabilistes sur la structure du r&eacute;seau? Dans une revue critique des apport des
&eacute;chantillon boule de neige pour un ensemble de points connect&eacute;s par un r&eacute;seau d’arcs, l’auteur montre que cette
m&eacute;thodes s’applique mieux pour estimer les param&egrave;tres de la structure sociale (ou param&egrave;tres de la population
d’arcs) que d’estimer les param&egrave;tres de la population des points. Plus de travail est n&eacute;cessaire pour amoindrir
l’hypoth&egrave;se de distribution al&eacute;atoire de l’&eacute;chantillon initiale. Echantillonage en boule de neige, Pond&eacute;ration,
Estimations des Param&egrave;tres, R&eacute;seaux sociaux.

1. INFERENCE AND SNOWBALL SAMPLES

Snowball sampling is sometimes used as a rather informal way to reach a
population, and sometimes as a more or less formal sampling method with
the purpose either to make inference with regard to the population of
individuals or to make inference with regard to the network structure in
that population. The purpose that Coleman (1958) had in mind when he
introduced the idea of snowball sampling was the second one. As a formal
sampling method, however, snowball sampling is known to have some
serious problems because of the inherent bias. Berg (1988) states: &dquo;As a
rule, a snowball sample will be strongly biased towards inclusion of those
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who have many interrelationships with, or are coupled to, a large number
of other individuals. In the absence of knowledge of individuals inclusion
probabilities in different waves of the snowball sample, unbiased
estimation is not possible.&dquo; This paper presents some ideas about
possibilities and problems related to the formal use of snowball sample
designs. The leading question is as follows: to what extent is it possible to
treat snowball sampling, and generalisations where nominees are sampled
with known probabilities, as a probability sampling method; and to what
extent can data obtained from a snowball sample be used to derive good
estimators for various population parameters?

2. THE MODEL FOR SNOWBALL SAMPLING

The model assumed for snowball sampling in this paper has the following
features.

* It is a model for a give, fixed but a priori unknown, network. There is
one single directed relation being considered; for the sake of simplicity the
relation shall be described as follows: when i is related to j, then i says that
j is his friend.

* The individuals in the network are assumed to have a number of friends
that varies from individual to individual; if an individual is interviewed (i.e.,
gets the role of respondent) then his or her number of friends can be
observed and a random sample of the friends (possibly all the friends) is
drawn for the continuation of the snowball.

The first feature means that the population of individuals as well as the
relation among them is assumed to be unequivocally defined, and that (in
terms of sampling theory) the inference may be called design-based rather
than model-based. The second feature also is important. The number of
nominees per respondent is not fixed (this differs from Goodman (1961),
who assumes a relation where every individual has the same number of
friends). This is preferable to the assumption of a fixed number of friends
because (a) some respondents will have less than the given number of
friends, (b) if there are so many friends that a choice has to be made among
them then this choice should not be left up to the respondent but should
rather be made at random; otherwise the researcher does not know what is
being observed. The second feature precludes the existence of chaining
processes (as treated by Erickson, 1978), except for pure chance chaining
processes.

The (finite) population of individuals is represented as a directed labeled
graph: individuals are represented by vertices, and the directed relation
etween the individuals by arcs. The number of vertices is denoted N; the
arc indicators are denoted X :
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(1 ~ i, j sN). It is assumed that there are no loops: Xii = 0 for all i. For every
vertex i, the out-neigbourhood of i is denoted

The cut-neighbourhood Ui may be called the personal network of vertex
(person) I. The out-degree of i, which is the number of elements of Ui , is
Xi+; the in-degree of i is X+i .

Further, there is a vertex variable, Y, with values

It can also be interesting to consider arc variables:

for which it makes sense to assume that they are equal to 0 whenever there
is no arc: Xy = 0 implies Zij = 0.

The generalized snowball sampling procedure operates as follows. An initial
simple random sample of size n is drawn from the population of vertices.
This sample is denoted S(O). For every vertex i in S(O), the out-neigbourhood
Ui of i is observed (i.e., the identities, or labels, of the vertices in Ui are
observed) as well as the value of Yi. To define the snowballin procedure,
suppose that the (s-1 )’th wave (s-1 = 0, 1, ...), denoted ~s-1), of the
snowball sample has been drawn. Then the s’th wave is drawn as follows.
For every i 6S~S-1), a simple random sample of size nsi (nsi ~ Xj+) is drawn
from the out-neigbourhood Ui of i; this sample is denoted Ssi. The union of
all these samples, minus those vertices who were already contained in the
earlier waves, is denoted S(s) :

S(s) is the s’th wave of the snowball sample. For all i S(S), in the s’th wave
the identities (or labels) of all vertices in the out-neighbourhoods of i are
observed, together with the variables Yi. The process stops after a given
number of waves, or at the first moment where no more new vertices are
observed, i. e. , where S(s) is empty. The whole snowball sample is the union
of the several waves:
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If Xi+ = nsi = k, then Goodman’s (1961) snowball sample method is
obtained; if nsi = Xi+ , we obtain Frank’s (1977) snowball sample method;
if nsi = 1, then we obtain Klovdahl’s (1989) random walk design. Most of
this paper will be concerned with Frank’s method, where no actual

sampling (i.e., with sampling fractions < 1) takes place in the later waves.

This snowball method is what is called in sampling theory a probability
sampling method: for every sample, the probability of obtaining this sample
can be calculated. That is nice, but not sufficient for all purposes. The
purposes we might have can be classified as follows:

(1) inference about the population of vertices, say, about the collection of
values ~‘Y1, ..., YN} : e.g., the number of vertices, or the population average Y;

(ii) inference about the population of arcs: e.g., the arc density X++ /{N(N-
1 )}, or the average of the arc variable Zij over all arcs: Z++ /X++ ;

(iii) inference about the population of personal networks U1, ..., UN; e.g.,
the number of isolates in the population, or the degree variance; (formally,
this is an important special case of (I), because the personal networks Ui
may be considered to be attributes of the vertices);

(iv) inference about the total network, i.e., about parameters that can be
expressed as functions of the entire adjacency matrix (Xij ; 1 ~ i, j ~ N); e.~ ,
the total number of pairs of vertices at distance d from each other, or the
number of connected components (for the last parameter the snowball
method does not seem a very good design).

3. INFERENCE TO THE POPULATION OF INDIVIDUALS

Let us first discuss purpose (I). The estimation of the size of the population,
N, from a snowball sample is discussed in Frank and Snijders (1992). In
this section, it is assumed that N is known. To derive estimators for
parameters such as population averages?, the most usual method is the
Horvitz-Thompson method, which needs, however, the inclusion

probabilities, i.e., the probabilities that the observed vertices are sampled. If
the inclusion probability for vertex i is &dquo;’1, i.e.,

then the Horvitz-Thompson estimator for Y is
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Other estimators are also possible; e.g., the estimator proposed in Frank
(1977, Theorem 2). It also seems sensible to use the wavewise inclusion

probabilities:

it is conceivable that conditional wavewise inclusion probabilities are used,

Using these inclusion probabilities, unbiased estimators for f are,

respectively,

and

where the ws are weights for the waves to be chosen in a sensible way;
they should sum to 1. These estimators can only be used if the wavewise
inclusion probabilities, or conditional wavewise inclusion probabilities, are
positive for all vertices i with Yi &dquo;1 0.

All this is very nice in theory, but how can these inclusion probabilities be
observed, computed, estimated? Compute, yes, in principle, but observe or
estimate ... For the zero-th wave, everything is fine due to the assumption
of a simple random initial sample:

For the first wave, we have
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In the case described in Section 2, where S 11 is a simple random sample of
size nlj from Uj , the last conditional probability is not very attractive to
calculate. In the less general case where S]j = Uj (all j’s friends are
interviewed), the result is

This is a function of the in-degree x+i of i; it is intuitively clear that this
should be the case. When nx+; /N is small, the probability that two (or
more) individuals in the initial sample both have i as a friend is negligible,
and,7il can be approximated (in the general case) as follows; we write for
the sampling fraction within j’s personal network nlj /xj+ = fj .

This is the computation for77il’ We can conclude that at the very least, we
need to know the tn-degree of the respondents. This amounts to posing the
question, &dquo;How many individuals would say you are their friend?&dquo; Only in
very special cases may we expect to get valid and reliable answers to such a
question. If the generalized snowball procedure is used, i.e., fj < 1, then we
need then values for all individuals j who would mention respondent i as
their friend ... This seems even more difficult.

Let us now consider two more specific situations, where difficulties are a
bit smaller.

( 1 ) Multtplicity sampling. In multiplicity sampling (Sirken, 1970, and later
publications), individuals are asked about themselves as well as about
household members or about others havin a specific (family) relationship
with the respondent. This can be considered as a one-wave snowball
sample where the relation is defined as &dquo;being part of the same household&dquo;,
etc. In such applications of multiplicity sampling, the network structure is
obtained from a partitioning of the population (e.g., into households). The
crucial circumstance here is that it is well possible for the respondent to
give the in-degrees of his/herself and of the nominees.
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(2) An urtdirected graph, i.e., a relation that is by definition mutual;
combined with a snowball design with fi = 1, i.e., where all friends belong to
the next wave of the snowball (except those who were encountered already
at earlier waves). For this case, it is not too difficult to computers. Define

dij = graph-theoretic distance between vertices i and j,
i.e., the length of the shortest path from i to j.

(E.g., dii = 0 for all i; if i and j are friends, then dij = 1; if i and j are not
friends but do have a mutual friend then dij = 2; if there is no path from i
to j, then did =at.) Then

Define

the number of vertices (including i) at distance at most s from i; note that
Dip = 1. Then the wavewise inclusion probabilities can be computed from

The value of Dis can be observed by extending the snowball sample s-1 1
waves beyond the wave where vertex i was observed. This implies that we
could take a 2s-1 - wave snowball sample, use the first s waves to observe
the numerical values of Yi and (of course) the relations, and the last s-1 I
only to observe the relations so that Dit will be known for t = 1, ..., s.

What does the literature say? Frank (1977, 1979) treats one-wave snowball
samples with fj = 1, and assumes that in-degrees are observable. (He also
treats in the 1977 paper some other sampling designs: network sampling a
la Granovetter (1976), sampling of random edges, and also estimation

problems in the spirit of purpose (ii) mentioned above.) Frank (1979) goes
on (in his Section V) to discuss a specific probabilistic model for contact
processes which enables him to get some further results, but this is model-
based rather than design-based inference, so it is not relevant for the
questions of this paper. Schmeidler (1990, p. 21) proposes a weighting
method that is not fully clear to me, and for which a rationale is not given. I
must confess that my impression is that his proposal does not make much
sense.
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My conclusions are the following with respect to the use of snowball
samples for purpose (i), if estimators based on the idea of the Horvitz-
Thompson estimator are used.

(1) In-degrees for non-symmetric relations are often unobservable (an
exception is multiplicity sampling). Therefore, in ’order to get statistically
valid estimates from snowball designs, it is advisable to use symmetric
relations only. In practice, this means that the inclusion criterion has to be
defined in such a way that the relation may be considered to be mutual;
this can be checked by noting whether nominees, when interviewed,
mention among their &dquo;friends&dquo; the respondent who mentioned them. There
remain serious problems of data reliability, however; the literature review
by Sudman (1985) is relevant here.

(2) Stick to a low number of waves. Valid statistical analysis of a one-wave
snowball sample is difficult enough. In a 2s-1 - wave snowball sample for
an undirected (mutual) relation, use the last s-1 waves just to estimate the
Dis needed to compute the inclusion probabilities.

4. INFERENCE TO THE TOTAL NETWORK

Purposes (ii) and (iv) are concerned with the network structure. E.g., what
Frank (1977, p. 247) calls graph totals are the kind of parameters that are
estimated under purpose (ii). It is not without reason that Goodman ( 1961 )
focuses his paper on the estimation of the frequencies of various kinds of
chains and cycles. Snowball sampling is a method where such frequencies
are estimated in a very natural way. For example, consider the transitivity
parameter

where N2 is the number of chains of length 2,

and C3 is the number of triangles,

N2 can be estimated from a single-wave snowball sample, e.g., as follows.
Let N2 (S(o)) be the number of chains of length 2, of which at least one of
the end points is an element of S(O) :
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This is a statistic in the single-wave snowball design. For every pair (I, k), it
holds that

This implies that

so that an unbiased estimator for N2 is

Similarly, let C3 (seo) ) be the number of triangles of which at least one of
the vertices is in 51°> :

Then C3 (Sto) ) is a statistic in the 2-wave snowball design. For all triples (i,
j, k) it holds that .
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so that an unbiased estimator for C3 is

It can be concluded that, from the 2-wave snowball design, we can
construct N2 /U3 as a reasonable estimator for the transitivity parameter
N2 /C3 . This is not meant to imply that this estimator is the most efficient
one possible; but it does demonstrate that for network parameters that are
functions of chain and cycle frequencies, the snowball method yields rather
natural ways to construct reasonable estimators.

From this discussion, which can be underpinned further by Goodman
(1961) and Frank ( 1977), it can be concluded that for the estimation of
certain network parameters, such as are meant under purposes (ii) and (iv),
snowball sampling may be much more adequate than for the estimation of
the vertex-population parameters of purpose (1).

5. NON-RANDOMNESS OF THE INITIAL SAMPLE?

The weak underbelly of the snowball method is the assumption of a
random initial sample. Snowball samples mostly are taken from
populations for which a sampling frame is not available. There are even
cases where the number of vertices is to be estimated from the snowball
sample - a problem definition which is contradictory to the availability of a
sampling frame. Without a sampling frame, how can we draw a simple
random initial sample?

We can not. The best we can do is to draw the respondents, as much as
possible, from independent sources. E.., if a snowball sample of drug
users is to be taken and &dquo;bars&dquo; is one of the &dquo;social milieux&dquo; where initial
respondents can be sought, not more than one initial respondent is to be
sought in one bar or in one small-scale &dquo;social environment&dquo; of any kind.
This physical approximation to independence will hopefully lead to

somethin approximating random sampling in the sense that for
Individuals to be together in the initial sample is uncorrelated with the
direct and indirect (i.e., larger distance) ties between them. However,
practically all &dquo;ethnographic&dquo; methods to get initial respondents will lead to
bias in the sense that the more widely known individuals (i.e., those with
higher in-degrees) are over-represented, even in the initial sample. It would
be interesting to try some simulation examples to see how badly this affects
estimation results, and to try to find correction methods for this bias.

A related point is that there are often several separate social sources of
initial respondents; e.g., in a study of drug users: bars, police contacts,
socio-medical institutions, and educational institutions. The initial sample
is then stratified, and about the sizes of the various subpopulations
corresponding to these social sources, there often is not enough
information to determine whether the initial sampling fractions in the
subpopulations are anywhere near each other. In such cases, the
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assumption that the initial sample of the snowball is a stratified random
sample may be much closer to reality than the assumption that it is a

simple random sample. It could be worthwile to elaborate estimation
methods that are valid under the assumption of a stratified random initial
sample; or, more generally, under the assumption of known but varying
probabilities of inclusion in the initial sample.

As a last comment, a warning is in order with respect to the relation
between initial sample size an size of the population (i.e., the number of
vertices) from which the snowball sample is drawn. With regard to the
information it gives about population size and network structure, the
snowball method lives on the chains that return to vertices observed earlier
in the snowball. The observed number of returning chains should be
sufficiently large so that the relative error in this number is not too high;
say, at least 0 returning chains should be observed. For a single-wave
snowball design in an undirected graph, the expected number of chains i - zu
- k where I and k are in the initial sample, is pn(n - 1 ) / 2, where p is the
fraction of pairs of vertices which are at distance 2 from each other. In a
large undirected graph where degrees are about 12, the order of magnitude
of out-neigbourhoods at distance 2 is 100 (a bit less than 122 ), so p
100 / N. This implies pn(n- 1) / 2;*50n(n- 1) / N. If this is to be at least 50, then
n2 N. This seems to imply the rule of thumb that, for relations where we
can ask respondents about something like 12 nominees at the most, the
initial sample size n of a one-wave snowball sample should not be much
smaller than the square root of the population size, in order to make

precise statistical inferences from snowball samples.
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