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ABSTRACT

Multi-object spectroscopic galaxy surveys typically make use of photometric and colour criteria to select their targets. That is not the case of
Euclid, which will use the NISP slitless spectrograph to record spectra for every source over its field of view. Slitless spectroscopy has the
advantage of avoiding defining a priori a specific galaxy sample, but at the price of making the selection function harder to quantify. In its
Wide Survey, Euclid aims at building robust statistical samples of emission-line galaxies with fluxes brighter than 2 × 10−16 erg s−1 cm−2, using
the Hα-[N ii] complex to measure redshifts within the range [0.9, 1.8]. Given the expected signal-to-noise ratio of NISP spectra, at such faint
fluxes a significant contamination by wrongly measured redshifts is expected, either due to misidentification of other emission lines, or to noise
fluctuations mistaken as such, with the consequence of reducing the purity of the final samples. This can be significantly ameliorated by exploiting
the extensive Euclid photometric information to identify emission-line galaxies over the redshift range of interest. Beyond classical multi-band
selections in colour space, machine learning techniques provide novel tools to perform this task. Here, we compare and quantify the performance of
six such classification algorithms in achieving this goal. We consider the case when only the Euclid photometric and morphological measurements
are used, and when these are supplemented by the extensive set of ancillary ground-based photometric data, which are part of the overall Euclid
scientific strategy to perform lensing tomography. The classifiers are trained and tested on two mock galaxy samples, the EL-COSMOS and Euclid
Flagship2 catalogues. The best performance is obtained from either a dense neural network or a support vector classifier, with comparable results
in terms of the adopted metrics. When training on Euclid on-board photometry alone, these are able to remove 87% of the sources that are fainter
than the nominal flux limit or lie outside the 0.9 < z < 1.8 redshift range, a figure that increases to 97% when ground-based photometry is included.
These results show how by using the photometric information available to Euclid it will be possible to efficiently identify and discard spurious
interlopers, allowing us to build robust spectroscopic samples for cosmological investigations.

Key words. methods: statistical – methods: data analysis – techniques: photometric – surveys – galaxies: distances and redshifts

1. Introduction

The ESA Euclid mission will carry out an imaging and spectro-
scopic survey over one third of the sky (Laureijs et al. 2011). The

⋆ This paper is published on behalf of the Euclid Consortium.
⋆⋆ e-mail: marina.cagliari@unimi.it

imaging channel will enable measurements of cosmic shear pro-
viding a tomographic view of the matter distribution, while the
spectroscopic redshift survey will map the large-scale structure
in three dimensions. Jointly, the two probes will yield unprece-
dented constraints on the cosmological model (Euclid Collabo-
ration: Blanchard et al. 2020).
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Fig. 1. Schematic description of the spectroscopic sample selection pipeline. The flowchart shows where a photometric target selection would
be inserted in the spectroscopic selection pipeline. The photometric classifier performance is quantified by its precision and recall (defined in
Sect. 2.1), while the final spectroscopic sample is characterised by the redshift purity and sample completeness.

The Euclid near-infrared spectrograph and photometer
(NISP; Maciaszek et al. 2022) has three broadband filters for
imaging, YE, JE, and HE (Euclid Collaboration: Schirmer et al.
2022) and a set of grisms for spectroscopy, while the visual
instrument (VIS; Cropper et al. 2016) images through a single
broad pass band, IE, spanning the range [530, 920] nm, with high
spatial resolution of 0.1 arcsec/pixel. Jointly, these two instru-
ments will carry out the Euclid Wide and Deep Surveys (Euclid
Collaboration: Scaramella et al. 2022). The NISP instrument op-
erates as a slitless spectrograph, to record the dispersed light of
all sources in the field of view to a nominal emission-line flux
limit of 2 × 10−16 erg s−1 cm−2, which corresponds to a 3.5σ de-
tection of a 0.5 arcsec diameter source in the Wide survey as de-
signed. The use of slitless spectroscopy makes the spectroscopic
survey highly efficient, since individual sources do not need to
be targeted; however, reliable redshift measurements will only be
secured for a fraction of the galaxies that are detected photomet-
rically. The Wide Survey will detect the most luminous Hα emit-
ters over the redshift range 0.9 < z < 1.8, with typical broadband
flux corresponding to HE ≲ 24; however, it will be sensitive to
continuum emission only from the most luminous galaxies and,
so, the redshift estimation will be based primarily on the de-
tection of emission lines (Euclid Collaboration: Gabarra et al.
2023). The Wide Survey will be complemented by the Deep
Survey, which will reach 2 magnitudes deeper in flux over an
area of 50 deg2 split over three separate fields. In the Deep Sur-
vey blue grism ([926, 1366] nm) observations will complement
those with the standard red grism ([1206, 1892] nm). Both the
grisms have a dispersion of 13 Å/pixel. With greater sensitivity
and an extended wavelength range, the Deep Survey will be used
to construct a reference galaxy sample with secure spectroscopic
redshift measurements, to characterise the selection function and
redshift error distribution of the Wide Survey.

The design of the Euclid spectroscopic survey poses a partic-
ular challenge for sample selection: bright emission-line galax-
ies for which the redshift can be measured make up a small
fraction of all photometrically detected sources and this sam-
ple is not known beforehand. We can illustrate our expectations
of the Euclid spectroscopic sample using the Flagship2 mock
galaxy catalogue, which was calibrated against the Hα luminos-
ity function model 3 of Pozzetti et al. (2016). The mock cata-
logue contains approximately 2 × 105 galaxies/deg2 to the mag-
nitude limit HE < 24. Out of this sample, only 2% are in the
redshift range 0.9 < z < 1.8 and have Hα emission-line flux

greater than 2 × 10−16 erg s−1 cm−2. The majority of the photo-
metrically detected sources with HE < 24 will leave no signal on
the spectrograph, being either too faint in continuum emission,
or not having a detectable emission line in the wavelength range
of the red grism. When targeting galaxies at the low signal-to-
noise limit, spurious noise features can be mistaken for emission
lines leading to wrong redshift measurements. Current end-to-
end tests of the data reduction pipeline suggest that the spuri-
ous detection rate is even higher than the naive prediction based
on Gaussian noise statistics due to artefacts from spectral con-
tamination. If not appropriately treated, such wrong redshifts in
the galaxy catalogue degrade the cosmological constraints de-
rived from the two-point correlation function or power spectrum
galaxy clustering statistics (Addison et al. 2019).

In principle, when selecting the sample for analysis all avail-
able information should be used to minimise the fraction of spu-
rious measurements, while at the same time, maximising the
number density of the sample, or another figure of merit. How-
ever, the benefits from including additional constraints in the
sample selection criteria must be carefully weighed against po-
tential systematic biases. In the case of Euclid, including addi-
tional information from ground-based photometry modifies the
selection function of the survey and could couple the sample
with unwanted systematic effects that arise from observations
made through the Earth’s atmosphere (see, e.g., Ross et al. 2011,
for a quantitative discussion of the impact of angular systemat-
ics on the measured clustering). The trade off of adding ground-
based information will clearly also depend on the scientific anal-
ysis being considered. With slitless spectroscopy, since every
galaxy in the field is in any case observed, we shall have the
important advantage of being able to test a posteriori the impact
of any chosen selection on the measured clustering, and evaluate
the robustness of the results.

Our aim with this work is to investigate photometric classi-
fication criteria that are sensitive to both redshift and emission-
line flux, in order to identify the sources that are likely to give
successful spectroscopic redshift measurements in the Wide Sur-
vey. This strategy is similar to the methods used in ground-based
spectroscopic surveys that make use of magnitude and colour se-
lections to build the target sample for spectroscopy. For example,
colour selections were applied to build the Sloan Digital Sky
Survey Luminous Red Galaxy sample (Eisenstein et al. 2001)
and the VIMOS Public Extragalactic Redshift Survey (VIPERS;
Guzzo et al. 2014). A sample of emission-line galaxies was tar-
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geted by the Extended Baryon Oscillation Spectroscopic Sur-
vey (eBOSS) using a colour selection (Comparat et al. 2016),
and a similar approach was adopted for the emission-line galaxy
sample targeted by the Dark Energy Spectroscopic Instrument
(DESI; Raichoor et al. 2023).

As a generalisation of the conventional colour cuts that are
made in a two-dimensional colour-colour plane, we apply ma-
chine learning-based classification algorithms. These algorithms
are well suited to optimising classification tasks in a high-
dimensional parameter space. Thus, we expect them to outper-
form simple selection rules.

An option that is immediately available for such a use are
photometric redshifts. Euclid will construct an unprecedented
photometric redshift catalogue from the combination of ground-
based and Euclid photometric bands. However, as we will dis-
cuss, photometric redshifts alone do not solve the problem. Even
if photometric redshifts allow us to select a sample of galaxies
at the target redshift range, additional criteria on galaxy physical
properties, such as the star-formation rate, will still be needed to
identify the population with bright emission lines (see Sect. 4.4).

A schematic representation of the Euclid spectroscopic sam-
ple selection pipeline is shown in Fig. 1. A redshift measure-
ment will be performed for all sources detected in photometry,
and will be accompanied by an assessment of its confidence
level, as well as the measurements of spectral features includ-
ing emission-line fluxes. Sources that do not have a significant
detection in spectroscopy should be assigned a low measurement
confidence. Additionally, Euclid will produce photometric cata-
logues based on the IE, YE, JE, and HE-band images, which will
be augmented with ground-based measurements (u, g, r, i, z)
needed particularly for photometric redshift estimation (Stanford
et al. 2021).

The photometric classification that we discuss enters as a
second input to spectroscopic sample selection. The classifier
can be trained on the Deep Field catalogues, which is expected
to give robust redshift measurements for the emission-line target
galaxies in the Wide Survey. The classifier will be applied to the
photometric data of the Euclid Wide Survey, and its results com-
bined with the spectroscopic measurements to build the final se-
lected sample. This can be characterised in terms of its ‘redshift
purity’ and ‘sample completeness’. Any photometric criteria will
necessarily reduce the number density of the sample; however, if
emission-line galaxy targets can be identified from the photome-
try, this will increase the fraction of correctly-measured redshifts
and improve the purity.

We use the terms sample completeness and redshift purity to
characterise the quality of the Euclid spectroscopic samples. We
define completeness with respect to the Hα emission-line galaxy
sample that exists in the Universe, which we call the true tar-
gets.1 These are defined by a set of intrinsic properties, including
angular position, redshift, size, and flux, that do not depend on
the measurement process. Once the observations are made, we
construct the sample catalogue which contains the set of mea-
sured properties, signal-to-noise estimates, and quality flags for
the detected sources. The completeness tells us the fraction of the
true targets that have a correct redshift measurement and make it

1 This definition differs from that typically used in ground-based multi-
object spectroscopic surveys that define completeness with respect to a
known target sample constructed from photometric catalogues. Since
the detection in Euclid spectroscopy will depend primarily on the
signal-to-noise ratio of the emission lines, the sample with spectro-
scopic redshifts will not be representative of a simple photometric se-
lection.

into the sample for analysis,

C =
NTrue Targets & Sample & Correct-z

NTrue Targets
. (1)

On the other hand, the redshift purity tells us the fraction of the
sample that has a correct redshift measurement,

P =
NSample & Correct-z

NSample
. (2)

The redshift purity only makes reference to the sample selected
for analysis and does not depend on other intrinsic properties of
the galaxies besides redshift.2

In this paper, we focus on the photometric classification,
which is one step of the selection process illustrated in Fig. 1.
We consider the potential gain from the photometric classifica-
tion in terms of its precision and recall (defined in Sect. 2.1),
which will impact the final purity and completeness of the spec-
troscopic redshift sample. The photometric selection reduces the
size of the sample in the numerator of completeness (Eq. 1) and
thus leads to a lower value of completeness. However, it acts on
both the numerator and denominator of purity (Eq. 2), and so is a
way to potentially boost the purity. The propagation of the pho-
tometric classification to the spectroscopic sample selection and
the computation of purity and sample completeness requires full
end-to-end simulations of the Euclid reduction pipeline. In Sect.
5, we will present results from preliminary simulations based on
the Euclid spectroscopic pipeline, leaving a more detailed inves-
tigation to follow-up work.

The paper is organised as follows. In Sect. 2 we present the
different algorithms we tested, and introduce the metrics we used
to quantify the classifier performance. In Sect. 3 we discuss the
mock catalogues, the noise model we apply to the photometry,
and give the target definition. The results of the different analyses
are presented in Sect. 4 and discussed in Sect. 4.4. In Sect. 5 we
discuss how the photometric selection affects the spectroscopic
sample. We conclude in Sect. 6.

2. Classification algorithms

A classifier is an algorithm that outputs the probability of an
object of being an element of a given class, or group. For the
purpose of this work, which is to identify target galaxies from
their photometric properties, we use a binary classifier. In this
case, the algorithm simply outputs the probability p of the object
being a target, and 1 − p the probability of it being a non-target.
A galaxy enters the target sample if p > pthresh, where pthresh
is a threshold probability value. How the threshold is chosen is
discussed in Sect. 2.1.

In this work we tested six different machine learning clas-
sifiers. The first three are self-organising maps (SOMs), dense
neural networks (NNs) and support vector machine classifiers
(SVCs). The other three are voting classifiers based on decision
trees: the random forest (RF), the adaptive boosting classifier,
or AdaBoost (ADA), and the extremely randomised tree clas-
sifier, or extra-tree classifier (ETC). These specific algorithms
were chosen for our tests as they are known to perform well in
classification tasks and are able to identify non-linear boundaries
between classes.
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Fig. 2. Relationship between precision and recall of a classifier. The
lines are colour-coded as a function of the classification probability
threshold. The solid and dotted lines show the behaviour of two classi-
fiers for illustration. The classifier represented by the solid line performs
better than the dotted line since it gives higher precision and recall.

2.1. Classification metrics

To compare the results from different classifiers, we adopt three
metrics defined from their ‘confusion matrix’. The elements of
the confusion matrix of a binary classifier are the counts of true
positives (NTP), true negatives (NTN), false positives (NFP), and
false negatives (NFN). Our chosen metrics are the ‘precision’,
‘recall’, and ‘false positive rate’ (FPR), defined respectively as

precision =
NTP

NTP + NFP
, (3)

recall =
NTP

NTP + NFN
, (4)

FPR =
NFP

NFP + NTN
. (5)

The precision is the fraction of the selected sample that are
true targets, i.e., it quantifies the level of contamination due to
wrongly classified sources. The recall, also known as ‘true pos-
itive rate’, is the fraction of true targets that are identified cor-
rectly (as NTP + NFN corresponds to the total number of targets).
The false positive rate, or ‘fall-out’, is the fraction of non-targets
that are mislabelled as targets and enter the selected sample as
interlopers. The complement of the false positive rate is the ‘true
negative rate’,

TNR =
NTN

NFP + NTN
= 1 − FPR , (6)

which characterises the fraction of non-targets that are correctly
removed from the sample.

These metrics change as functions of the probability thresh-
old chosen for the classifier, i.e., the probability value pthresh

2 We do not consider the sample purity, which can include other crite-
ria such as flux, since our main objective is to select galaxies with good
redshift measurements for the galaxy clustering analysis.

above which an object is classified as a target. This is a hyper-
parameter of the model, which we set to maximise a chosen met-
ric. In a binary classification, a training set is said to be ‘bal-
anced’ when it is evenly split between targets and non-targets,
and pthresh ∼ 0.5. When the training set contains a much larger
number of targets than non-targets, or vice versa, it is called ‘un-
balanced’, and we refer to this case as an ‘unbalanced classifica-
tion’. In general, in unbalanced classifications the optimal prob-
ability threshold is very different from 0.5. Precision and recall
can be computed as a function of pthresh and plotted against each
other, as shown in the example of Fig. 2. Such a plot is very in-
formative for the photometric selection task that is the scope of
our work. In Fig. 2 we present two possible behaviours of this
curve. The solid line is an almost ideal classifier that has high
precision also when the recall is high, while the dotted curve
corresponds to a classifier with worse performance. Since the
photometric criteria make up only one step of the spectroscopic
sample selection process (see Fig. 1), we want to keep the re-
call of the photometric classification as high as possible. In other
words, we want to get a resulting sample as complete as possi-
ble, discarding the minimum number of true targets. Thus, we
choose a specific value for the recall and, from this relation, de-
rive the corresponding precision yielded by the algorithm. We
use the precision at 95% recall as our benchmark value. A sim-
ilar plot can be produced in terms of redshift purity and sample
completeness. The shape of this curve will depend on the chosen
probability threshold, and consequently the recall, of the photo-
metric classification. In Sect. 5 we justify the choice of the 95%
recall value and present results for the redshift purity and sample
completeness.

Finally, we use the false positive rate as the main metric
to compare algorithms trained with different input features (see
Sect. 4.4). The false positive rate helps to visualise the fraction
of misidentified objects in terms of redshift or emission-line flux
and shows the source of the contaminants.

2.2. Self-organising map

Self-organising maps (Kohonen 1982, 1990) use unsupervised
learning to project a high dimensional feature space onto a lower
dimensional one, usually a two-dimensional space, as the name
map suggests. We build a 55 × 55 map trained for 60 epochs,
where an epoch corresponds to an iteration of the algorithm dur-
ing which the entire training set is processed. To train the self-
organising map, in addition to the photometric features used as
inputs for all the other methods, we also add the target label (see
Sect. 3). Then, when projecting new data onto the self-organising
map the target labels are removed. These steps make the im-
plementation of the self-organising map presented here more
similar to a supervised learning algorithm. We also introduce
a weight, wSOM, of the photometric features, which enables us
to control the importance of the label in the training. This is a
hyper-parameter of the self-organising map model. Finally, the
probability of an object of being a target is defined by the target
fraction in the cell it has been projected onto. The self-organising
maps were implemented using SOMPY (Moosavi et al. 2014).

2.3. Neural network

Neural networks are by far the most popular supervised learn-
ing algorithms. They can be described as a sequence of layers;
when the inputs are processed by a layer they first undergo a
linear transformation and then a nonlinear function is applied to
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Fig. 3. A schematic representation of the neural network architecture used for classification. Values pass from the input to the output along the
connected edges; each node represents a linear combination of the inputs and the application of a non-linear activation function. The value at the
output represents the binary classification probability between 0 and 1. The number of input neurons varies for the different configurations (4 for
Euclid-only, and 8 after adding ground-based photometry, see Sect. 4). For visualisation, the number of neurons in each hidden layer has been
divided by 4.

them. During the learning process the neural network updates
the coefficients, usually called weights, of the linear transforma-
tion of each layer in order to fit the target function y = f (x) that
relates the inputs x, to the labels y. This structure enables neu-
ral networks to potentially fit any function of the input features
(LeCun et al. 2015).

Our neural network architecture was optimised for the prob-
lem at hand. Figure 3 shows a schematic representation of the
neural network. The input layer is followed by a first block that
consists of a dense layer with 32 neurons and a batch normalisa-
tion layer (Ioffe & Szegedy 2015). Then, a second block which
consists of a dense layer with 64 neurons and an alpha dropout
layer (Klambauer et al. 2017) with rate 0.05 is repeated four
times. Finally, the first block is repeated before the output layer,
which consists of 1 neuron. The activation function of all the
layers except for the output is a scaled exponential linear unit
(SELU; Klambauer et al. 2017). The last layer, as it has to output
a probability, has a sigmoid activation function. Since the ratio
between positive and negative examples is very low, we opted
for a sigmoid focal cross entropy loss function (Lin et al. 2017),

FL(p) = −α (1 − p)γ ln(p) , (7)

where α and γ are two hyper-parameters of the model. We use
α = 0.6 and γ = 4. We implemented the neural network in the
TensorFlow2 framework (Abadi et al. 2015).

2.4. Support vector machine classifier

Support vector classifiers (Boser et al. 1992) partition the fea-
ture space by applying a kernel transformation to map curved
boundaries into planes and finding the maximum-margin hyper-
plane that separates the classes. It is important to note that for
our training we weight differently the target and non-target ex-
amples. This weighting is necessary in the case of imbalanced
classes. Alternatively, one could select a balanced subsample of
the original training set. However, such a solution would greatly
reduce the size of the training sample. Our approach uses the
support vector classifier implementation of scikit-learn (Pe-
dregosa et al. 2011), which has an inbuilt functionality to balance
the sample via weighting.

We adopt the scikit-learn default kernel, which is the ra-
dial basis function kernel (RBF),

K(x, x′) = exp
(
−γ ∥x − x′∥2

)
, (8)

where ∥x − x′∥2 is the Euclidean squared distance and γ is the
hyper-parameter that controls the dimension of the region of in-
fluence of the training point.

2.5. Decision tree-based classifiers

The last three classifiers are voting or ensemble classifiers. In
general, a voting classifier is an algorithm that combines the out-
put of different base classifiers through a vote, which can be
weighted or not. In this work we used classifiers based on the
same base algorithm, the decision tree. These classifiers differ in
how they split the data set to train the trees, how they build the
trees, and how they combine together their probability outputs.

A decision tree is a supervised machine learning model that
approximates a function with a series of simple decision rules
(see Hastie et al. 2001, Chap. 9). Decision trees have the advan-
tages that they can be easily visualised, have high explainability,
and require very little data preparation; however, they can easily
over-fit the training sample making their output and final struc-
ture dependent on the training set. These issues can be reduced
by combining the results of different trees (e.g., Bauer & Kohavi
1999).

The first of these voting classifiers are random forests. Ran-
dom forests (Breiman 2001) are an ensemble of decision trees
each one trained with a subsample of the training set. This sub-
sample is a bootstrap sample, which means its elements are ran-
domly selected with replacement from the complete training set.
The final output of the random forest for the classification task
is a majority voting between all the decision trees of the forest.
Random forests very efficiently reduce the over-fitting of single
decision trees. To take into account the class imbalance of the
sample we weigh the two class examples by the inverse of their
frequency. The weights are computed for each bootstrap subsam-
ple.

The second ensemble classifier is a discrete adaptive boost-
ing classifier (Freund & Schapire 1995). Differently from the
random forest, adaptive boosting classifiers can use different
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base classifiers. In this work, we limited the analysis to adap-
tive boosting classifiers based on decision trees with weighted
data to balance the sample examples. Adaptive booster classi-
fiers combine the results of subsequently trained base learners
with a weighted majority vote. At each step of the training a new
learner is built from the training set, which is re-weighted to re-
duce the importance of data that have been correctly classified in
the previous steps.

Finally, the last algorithm we use is the extra-tree classifier.
Extra-tree classifiers are ensemble classifiers based on decision
trees (Geurts et al. 2006). An extra-tree classifier is composed
of a group of decision trees, which are trained with bootstrap
subsamples of the training set, as in random forest training. The
difference between a random forest and an extra-tree classifier
lies in how the decision rules of the trees are selected. In ran-
dom forests, the splits of the tree nodes are deterministic and de-
pend on the selection algorithm; in extra-tree classifiers, instead,
they are randomly drawn and the final rule is chosen as the best-
performing one among them. This helps in reducing even more
the variance of the method. All three voting classifiers are im-
plemented in scikit-learn, and the function to weigh the data
to balance them is part of their built-in functionalities.

3. Benchmark data

3.1. Mock galaxy catalogues

We use two catalogues to benchmark the selection algorithms:
the EL-COSMOS catalogue and the Euclid Flagship2 mock
galaxy catalogue. These catalogues include broadband photome-
try, emission-line fluxes and morphological properties. We make
use of the Euclid photometric bands from VIS, IE, and NISP, YE,
JE, and HE (Euclid Collaboration: Schirmer et al. 2022), with
depths listed in Table 1. Additionally, photometric data from
multiple ground-based surveys will be included in Euclid anal-
yses to extend the wavelength coverage to the optical with u, g,
r, i, and z bands and obtain reliable photometric redshifts that
are key for Euclid weak lensing science. These include the Vera
C. Rubin Observatory Legacy Survey of Space and Time (LSST,
LSST Science Collaboration et al. 2009), the Dark Energy Sur-
vey (DES, Flaugher 2005), and the Ultraviolet Near Infrared Op-
tical Northern Survey (UNIONS).3 In order to benchmark the
photometric selection in this work, we use the ugriz filters and
UNIONS survey depths, which are listed in Table 1. Hereafter,
we refer to the photometry of the four Euclid filters as Euclid
photometry, and to the photometric data from the five optical
filters as ground-based photometry. The photometry does not in-
clude the effect of Milky Way extinction.

The resolution of Euclid NISP spectroscopic observations is
not sufficient to separate Hα from its neighbouring [N ii] λ6549
and [N ii] λ6584 companions. As such, Euclid will measure the
combined flux of this triplet of emission lines, which we shall
use here and indicate for brevity as

fHα+[N ii] = fHα + f[N ii]λ6549 + f[N ii]λ6584 . (9)

We refer to the triplet as the ‘Hα complex’.
We also investigate the benefit of adding morphological in-

formation to the target classification. The two mock galaxy cat-
alogues we use here include morphological model parameters
including disk ellipticity, bulge scale, disk scale, and bulge-to-
disk ratio; however, since these properties will not be, in gen-
eral, directly measured from the data, we used them to derive the

3 https://www.skysurvey.cc/aboutus/.

observable half-light radius, rhalf , and axial ratio, e. To do this,
we ran GALSIM (Rowe et al. 2015) using the morphological pa-
rameters for each mock galaxy to generate a simulated image of
the galaxy as it would be observed by VIS, from which we es-
timated the half-light radius and axial ratio. We carried out this
procedure only for the Flagship2 catalogue.

We use only galaxies in the mock catalogue, without ac-
counting for the possibility that stars or active galactic nuclei
may be misclassified in real data and enter the sample. Contam-
ination from faint stars, in particular, can potentially reduce the
purity of the galaxy sample. The severity of such contamina-
tion depends on the performance of the star-galaxy classifica-
tion, which is a separate step of the Euclid data analysis and
whose impact is beyond the scope of this work.

3.1.1. EL-COSMOS

The EL-COSMOS catalogue is an extension of the COSMOS
2020 photometric catalogue (Weaver et al. 2021). The COSMOS
catalogue is a multi-band data set assembled in the Hubble Space
Telescope COSMOS field over the past fifteen years (Scoville
et al. 2007). The catalogue was extended as described in Saito
et al. (2020) with synthetic photometry and emission-line fluxes.
To assign the fluxes of the emission lines the authors combined
spectral energy fits of the stellar continuum, which correlates
with the intrinsic emission line fluxes, with a careful modelling
of dust attenuation as a function of redshift. We use an update to
the emission-line catalogue produced for the Euclid Consortium
(Euclid Collaboration, in prep.). It contains about 2 × 105 galax-
ies and 2000 active galactic nuclei. This catalogue also contains
stars observed in the COSMOS field, which, as explained, we do
not consider.

3.1.2. Euclid Flagship

The Euclid Flagship2 mock galaxy catalogue (Euclid Collabo-
ration, in prep.) is based on the Flagship2 N-body simulation,
the large reference simulations built by the Euclid Consortium.
Galaxies were added to the simulation using an extended halo
occupation distribution model. The Flagship2 galaxy mock cat-
alogue represents an improvement with respect to the previous
version in terms of modelling of the galaxy properties. The cata-
logue contains photometric and spectroscopic information, mor-
phological parameters, along with lensing properties. The mor-
phological parameters are correlated with the galaxy properties
to reproduce observed trends in galaxy size. For our work, we
selected a subsample of ∼ 2× 105 objects that contains a number
of galaxies comparable to EL-COSMOS. We note that Flagship2
does not contain active galactic nuclei, while EL-COSMOS con-
tains about 2000 of them.

An additional step must be taken to compute the total flux
of the Hα complex for Flagship2 mock galaxies. The catalogue
gives the flux of Hα and of the [N ii] λ6584 line only. Assuming
a relative 1:3 ratio for the [N ii] doublet, we estimate the total
flux as

fHα+[N ii] = fHα +
4
3

f[N ii]λ6584 . (10)

The emission-line fluxes in Flagship2 were calibrated against
the Hα luminosity function model 3 of Pozzetti et al. (2016). We
use the line and broadband fluxes with internal dust attenuation
applied. From Flagship2 we use both Euclid and ground-based
photometric data, as well as the morphological parameters de-
rived as discussed earlier.
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Table 1. Point source magnitude limits at depth (S/N)lim = 10 for ugriz,
and for IE, YE, JE, and HE.

Band mlim,10σ

u 23.5
g 24.4
r 24.1
i 23.5
z 23.3

IE 24.6
YE 23.0
JE 23.0
HE 23.0

Notes. The 10σ point source depth values in AB magnitude adopted
for each filter.

The Flagship2 catalogue also provides photometric redshift
estimates, hereafter photo-zs, obtained with state-of-the art algo-
rithms using both Euclid and ground-based photometry (Euclid
Collaboration: Desprez et al. 2020). In order to allow the compu-
tations of photo-zs for billions of Euclid sources, a two-stage ap-
proach has been adopted. First, Phosphoros, a template-fitting
code (Paltani et al. in preparation), is used to compute the red-
shift probability distribution functions on a sample of galaxies
selected from reference fields that benefit from very deep obser-
vations in a large number of photometric bands (e.g., COSMOS;
Weaver et al. 2021). The k-nearest neighbour photometric red-
shift algorithm (Tanaka et al. 2018) is then used to estimate the
posterior distributions of redshift for sources in the Euclid Wide
Survey. This procedure was replicated in the Flagship2 mock
galaxy catalogue. In this work we use the first mode of the pos-
terior redshift distribution as the photo-z estimate. We use the
photo-z to select galaxies within the redshift range of interest
and compare the metrics with the results from the trained classi-
fiers.

3.2. Noise model

The errors on the broadband photometric measurements were
simulated assuming background-limited observations (Euclid
Collaboration: Pocino et al. 2021) such that the standard devi-
ation on the measurement is

σ f =
flim

(S/N)lim
, (11)

where flim is the flux at the specified signal-to-noise limit
(S/N)lim. In Table 1 we show the AB magnitude limits, mlim, cor-
responding to flim for (S/N)lim = 10.4 The observed fluxes were
then extracted from a Gaussian distribution with the true galaxy
flux, f , as mean, and variance given by σ f . In order to be able
to reproduce the results, we constructed observed catalogues for
both EL-COSMOS and Flagship2, which contain realisations of
the flux errors produced following the recipe described above.

The driving idea in the application of our selection procedure
to the real Euclid data is that the training set will be constructed
from the higher signal-to-noise data of the Euclid Deep Fields,
which will have high completeness and purity at the depth of the
Wide Survey. In order to build a training set that matches the
noise properties in the Wide Survey, the photometry from the

4 The magnitude limits for UNIONS in Table 1 were computed from
the 5σ limits available at https://www.skysurvey.cc/survey/.

Deep Fields will have to be either measured in Wide-like stacks
or degraded appropriately to match the noise level of the Wide
Survey.

3.3. Sample selection and pre-processing

For our analysis, we selected from the EL-COSMOS and Flag-
ship2 catalogues two sub-samples limited to HE < 24 (which
corresponds to a 4σ point-source detection limit). In addition, as
mentioned earlier, the resulting Flagship2 catalogue was further
sparsely sampled in order to match the same number of objects
of EL-COSMOS. Each catalogue was then split into three sub-
sets, for training, validation, and testing, containing respectively
75%, 15%, and 10% of the total parent catalogue. In fact, the val-
idation set is needed only for the training of the neural network;
for the other algorithms we could use 90% of the total sample as
the training set. However, for the sake of a fair comparison, we
opted to use the same training and test sets for all methods, by
discarding the validation set objects when not needed.

The galaxies we aim to select with the photometric selection
have, on top of the HE < 24 cut,{

0.9 < z < 1.8
fHα+[N ii] > 2 × 10−16 erg s−1 cm−2 , (12)

where z and fHα+[N ii] are the true redshift and emission line flux
of the galaxies. The objects satisfying this selection are what we
call ‘target’ galaxies. In terms of the classifier training, we assign
a label 1 to the target galaxies and a label 0 to the remaining ob-
jects, hereafter non-targets. It should be noted that the Hα+[N ii]
flux criterion in the target definition is specified to select galax-
ies with bright emission lines that are likely to give successful
spectroscopic redshift measurements. We will see that this target
definition does not impose a sharp flux cut in the measured sam-
ple; galaxies just below the flux limit still have a high probability
of being selected and of giving a correct redshift measurement.
Moreover, these galaxies will also contribute to the redshift pu-
rity metric.

The percentage of galaxies entering the target sample within
the full HE < 24 catalogues is very low: ∼ 8% for EL-COSMOS
and ∼ 3% for Flagship2. The difference between the two cata-
logues is consistent with the current uncertainty in the Hα lu-
minosity function at z > 1. The low target fractions of the two
catalogues make the classification task extremely unbalanced.
The solutions adopted for each classifier were discussed in Sect.
2 and span from weighting schemes to specific loss functions.

Finally, all input training parameters are pre-processed via
standard scaling,

X =
x − x̄
σx
, (13)

where x̄ is the mean value of input feature x over the training
sample, and σx its standard deviation. After this normalisation,
the sample has zero mean and unit standard deviation, which
makes the training of the algorithms more efficient, typically
leading to better results.

4. Results and discussion

4.1. Benchmark selections

Before discussing the performance of the machine learning al-
gorithms we present the results from simple classifiers based on
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Fig. 4. Optimised colour selection in the (IE − HE) versus HE colour-magnitude plane for EL-COSMOS and Flagship2. The blue dashed lines
correspond to the non-target distribution and the solid red lines to the target distribution. The contours contain 99%, 50%, and 25% of the samples.
The dotted black segments represent an optimised colour cut in this plane corresponding to recall ∼ 95%.

Table 2. Recall (%) and precision (%) for different HE cuts.

EL-COSMOS Flagship2

HE cut Recall Precision Recall Precision

22.84 95 13.8 - -

22.06 - - 95 8.9

21.0 20.2 11.3 47.6 10.0

22.0 63.1 16.3 93.3 9.1

23.0 97.1 12.7 100 4.8

24.0 100 7.8 100 2.6

Colour cut 95 14.3 95 9.9

Notes. Precision and recall for EL-COSMOS and Flagship2 at
different HE magnitude limits. The first two rows correspond to the HE

cut that gives 95% recall respectively for EL-COSMOS and Flagship2.

magnitude and colour with Euclid photometry. These tests pro-
vide a benchmark for the machine learning classifiers. We focus
on the (IE − HE) versus HE plane, which shows the largest dis-
placement between targets and non-targets (see Figs. 4 and A.1).
The distributions are seen to be most separated in HE magnitude.
Indeed, the use of HE is expected to be particularly suited to cap-
ture information on the Hα flux, as it covers the [1.5, 2.0] µm
band, which encompasses the Hα complex for 1.3 ≲ z ≲ 2. In
addition, the (IE−HE) colour is sensitive to redshift, since it spans
the 4000 Å break at z > 1.

We thus begin by considering magnitude-limited samples in
HE. Table 2 gives the resulting recall and precision metrics for
HE cuts ranging from 21 to 24 magnitudes. For the Flagship2
catalogue, all targets have HE < 23 giving 100% recall at that
limit, while for EL-COSMOS, 100% recall is reached at HE <
24.

Next, we consider a selection in the (IE − HE) versus the HE

plane. The colour-magnitude selection reads as follows,

(IE − HE) < a (HE − b) AND HE < Hcut
E . (14)

We searched for a selection with the form of Eq. (14) that max-
imises the purity while giving recall ∼ 95%, which we chose as
the reference value for comparing the algorithms (see Sects. 2.1
and 5). The best colour cut for EL-COSMOS has slope a =
−2.36, pivot b = 23.60, and Hcut

E = 22.85. For Flagship2 the
slope is a = −1.90, b = 14.74, and Hcut

E = 22.13.
Figure 4 shows the targets (solid red) and non-target (dashed

blue) distributions in the colour-magnitude plane of interest for
EL-COSMOS (left panel) and Flagship2 (right panel). The dot-
ted black line corresponds to the colour-magnitude cut. The two
panels show the difference in the target distributions of EL-
COSMOS and Flagship2. Flagship2 does not have any targets
with HE > 23, in contrast, EL-COSMOS targets reach the mag-
nitude limit of the sample. For this reason we allow the HE cut
to adapt to the training data. We report the precision of the opti-
mised colour cuts in the bottom row of Table 2.

From Table 2, we see that all selections give a higher preci-
sion for EL-COSMOS than Flagship2. This can be understood
since the fraction of targets is higher in EL-COSMOS than in
Flagship2. The colour cut gives a marginal improvement in pu-
rity (0.5 – 1) over the HE cut. We next show the results from
machine learning classifiers, which make full use of the high-
dimensional parameter space to optimise the selection.

4.2. Using Euclid data only

We first discuss the results obtained training the classifiers us-
ing only Euclid photometry, comparing the two catalogues EL-
COSMOS and Flagship2. The input features for each object are
the same for both catalogues, namely its HE magnitude and near-
infrared colours, (IE − YE), (YE − JE), (JE − HE).

Figure 5 shows the precision-recall curves produced by the
six different classifiers using respectively EL-COSMOS (left
panel) and Flagship2 (right panel). We remark that for an ideal
classifier the plot would show a close-to-flat precision around
unity (see Fig. 2), followed by a sharp drop at the highest pos-
sible recall value. To provide a reference baseline, in Fig. 5 we
also present (dotted magenta line) the curve one obtains when
simply selecting HE < Hlimit

E magnitude-limited samples. The
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Table 3. Precision values (%) at 95% recall for the different classifiers.

SOM NN SVC RF ADA ETC

Euclid EL-COSMOS 13.9 17.5 17.3 16.4 12.9 16.7

Flagship2 12.7 16.0 18.0 15.5 10.4 16.9

Flagship2 morphology 9.6 17.6 16.8 15.3 11.0 14.7

Euclid + EL-COSMOS ground 20.7 34.3 34.3 31.5 29.1 28.0

Flagship2 ground 26.1 47.9 43.5 39.3 39.7 35.6

Notes. The two top rows give the results for training using Euclid photometry only, while morphological data and ground-based photometry,
respectively, are used in the bottom rows. The relative uncertainty on all values is ∼ 6%, estimated from multiple realisations of the training and
test sets.
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Fig. 5. Precision vs. recall performance of the different classifiers, using Euclid photometry alone for the training. The two panels correspond to
the two test catalogues as indicated. The vertical solid line gives our reference recall value of 95%.

curve has been computed by smoothly varying Hlimit
E between

20.0 and 24.0 (see Table 2). The vertical black line corresponds
to 95% recall, as reported in Table 3.

Comparing the two panels, the first evident difference is
the larger variance in performance over the whole recall range
shown by the different algorithms in the case of the Flagship2
sample. Conversely, the classifiers trained with EL-COSMOS
show a sharper drop in precision at small recall values. In
both cases, the magnitude-limited selection is (not unexpectedly)
worse than the machine learning classifiers, but in the case of
EL-COSMOS the resulting performance becomes comparable to
that of the worse-performing classifiers at 95% recall.

Overall, Fig. 5 and Table 3 show similar performance when
training with either Flagship2 or EL-COSMOS, with the former
showing a larger variance at the recall threshold. Such an agree-
ment is an encouraging indication of the robustness of the gen-
eral conclusions that can be drawn from these results. In both
cases, the best-performing algorithms are the neural network, the
support vector classifier, and the extra-tree classifier. The ran-
dom forest follows shortly behind, indicating that the bootstrap
resampling used in the decision tree training is especially effi-
cient for this task. Last comes the self-organising map, which
is not optimised for this kind of task, and the adaptive boosting
classifier.

The effect of complementing Euclid infrared photometry
with morphological information described by the galaxy half-
light radius and axial ratio values can be seen in Fig. 6. The
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Fig. 6. Same as Fig. 5, but now adding morphological information in
terms of half-light radius and axial ratio values.

plot shows no large improvement and some classifiers perform
worse. We also observe an even larger variance between the
different classifiers, especially at low recall values. The best-
performing one is still the neural network, followed by the
support vector classifier, the random forest, and the extra-tree
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classifier. Again, the adaptive boosting classifier and the self-
organising map fare poorly. A more detailed discussion is left
for Sect. 4.4.

4.3. Adding ground-based photometry

When we combine Euclid and ground-based photometry we sub-
stitute the IE band with the five ground-based filters, ugriz. In this
case, the input features of the classifiers are the following seven
colour combinations (u − g), (g − r), (r − i), (i − z), (z − YE),
(YE − JE), and (JE − HE). In addition, we also use HE as the last
input feature.

Figure 7 shows how the diagnostic plots change when com-
bining Euclid and ground-based photometry. We immediately
see from Fig. 7 how the ground-based data improves the overall
performance, yielding curves that are much closer to the ideal
shape (see Fig. 2). In the case of Flagship2 we also mark (green
dot) the precision (∼ 5.5%) and recall (∼ 92.4%) values recov-
ered when using photometric redshifts to simply isolate targets
with 0.9 ≤ zphoto ≤ 1.8, with no extra information to constrain
the desired Hα line flux. We note that the photometric redshift
selection does not reach the 95% recall value. We also consider
photometric redshift selections with various HE magnitude lim-
its, shown by the magenta dotted line. In Appendix B we present
a preliminary test that combines the photometric and the redshift
information in the training of a neural network.

The improvement in performance appears to be larger when
estimated using Flagship2 than with EL-COSMOS with a differ-
ence of ∼ 10% in precision for all algorithms. The reason for this
can be related to the colour distribution of the targets. In the EL-
COSMOS catalogue the distribution functions of magnitudes
and colours for targets shows more variance than in Flagship2
where the targets are more localised on colour space. When Eu-
clid-only photometry is used, the information is not sufficient
for tightly constraining the target region in the parameter space,
thus producing similar results from the two catalogues. However,
when ground-based photometry is added, in the Flagship2 case
it becomes easier to isolate the targets. These differences may be
due to the recipes used for assigning spectral energy distributions
and synthetic emission lines in the two catalogues.

The relative ranking of the different classifiers derived from
the two catalogues is the same. The worst performing algorithm
at the recall threshold is the self-organising map, which shows
a steeper drop in precision than the others (see Table 3). The
remaining algorithms have precision values > 35% for Flag-
ship2, with the neural network reaching almost 50%. For EL-
COSMOS at the recall threshold the values of the precision are
always > 25%, peaking at ∼ 34% for both the neural network
and the support vector classifiers.

4.4. Comparison of the results

In this section, we focus on the results based on the Flagship2
training and discuss the results obtained with the three configu-
rations. We will then focus on the best-performing classifier, the
neural network, and discuss in more detail the three cases. We
will also show a comparison with a simpler redshift-only selec-
tion based on Euclid photometric redshifts.

Figures 5, 6, and 7, together with Table 3, provide a di-
rect quantitative comparison of the three training configurations:
the best performance is obtained by the combined Euclid and
ground-based photometry. For Flagship2, this more than dou-
bles the precision at the recall threshold with respect to the other

two configurations, a clear benefit of the extra information on
lower redshift objects provided by the optical bands (see discus-
sion in the following). The addition of morphological informa-
tion through the half-light radius and ellipticity, conversely, does
not introduce any significant improvement: the neural network
and the adaptive boosting classifier show only a minimal gain,
while all others worsen their performance.

The half-light radius, in particular, does show a trend as a
function of redshift, but this relation has a large scatter and weak
correlation coefficient. It is possible that other morphological
measures that we did not consider, such as the Sérsic index, will
be more sensitive to galaxy type and have a greater importance
for classification; however, we reserve this investigation for fu-
ture work. When fed uninformative features, the classification
algorithms will tend to ignore them. The majority of the tested
classifiers have, in fact, built-in mechanisms to ignore a feature.
Specifically, the neural network would reduce, during the train-
ing, the weight of the specific feature that appears to be unin-
formative, while the decision tree-based classifier would not in-
troduce decision rules based on it. Similarly, the support vector
classifier would only produce boundaries orthogonal to an un-
informative feature. The same cannot be said about a standard
self-organising map: in this case, the effect of an uninformative
feature is to spread the classification targets over a larger number
of cells, thus reducing the sensitivity.

In order to understand which features are most relevant for
classification, which is known as the ‘saliency’ in the machine
learning literature, in Fig. 8 we show the mean gradients of the
network outputs with respect to the input features. We see that
the most important feature turns out to be the HE magnitude, fol-
lowed by the ground-based colours. The dependence on the opti-
cal colours and in particular on (IE−YE) in the Euclid photometry
configuration has two main reasons. First, the optical bands re-
tain low redshift information (see following discussion); second,
the correlation between the IE and fHα+[N ii] is even stronger than
the correlation of the emission line flux and HE. The network
uses (IE − YE) to extract IE from the pivot magnitude HE and infer
this correlation. Lastly, as expected, the morphological parame-
ters are the least important inputs for the neural network.

Having identified the HE magnitude as the most informative
feature, we can gain additional intuition about the classifiers by
comparing the number counts N(HE) of the true targets to those
of the samples recovered by the neural network. These are shown
in Fig. 9. The green histogram gives the number counts for the
true targets, i.e., the reference distribution we are trying to re-
produce with the classifier. Notably, the counts go to zero for
HE > 22.5, hence there are no target galaxies fainter than this
magnitude. This explains the rapid gain in precision one obtains
by simply cutting the full sample (here shown by the orange
histogram) at brighter and brighter values of HE (see Table 2).
Looking at the other histograms, we see that the application of
the neural network effectively cuts the distribution down to the
correct HE. When using only Euclid bands (blue histogram), this
leaves an excess of sources, which are either outside the redshift
range or below the chosen Hα + [N ii] flux limit, which are sig-
nificantly reduced by adding the ground-based information (ma-
genta dashed histogram). Note also how a selection over the tar-
get redshift range [0.9, 1.8] using photometric redshifts clearly
does not effectively cut on the HE magnitude, leaving a large
population of faint objects. Nevertheless, we remind the reader
that this discussion is specific to Flagship2. In the case of EL-
COSMOS, also galaxies fainter than HE ≃ 22.5 are part of the
target sample (see Fig. 4 and Table 2).
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Fig. 7. Precision versus recall curves for the analyses with Euclid photometry and ground-based photometry. Left: results for EL-COSMOS. Right:
results for Flagship2. The dotted magenta line represents the photo-z selection for a range of HE magnitude limits. The green marker indicates the
photo-z selection with HE < 24.
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Fig. 8. Mean gradients of the neural network output as a function of
the input for the three training configurations. In blue, orange, and pur-
ple are respectively plotted the mean gradients of the neural networks
trained with Euclid photometry, Euclid photometry and morphology,
and Euclid and ground-based photometry. All gradients have been nor-
malised to that corresponding to the Euclid HE magnitude.

We can use the false positive rate (see Sect. 2.1) to inter-
pret the origin of misclassified galaxies as a function of redshift
and emission-line flux. In the top panel of Fig. 10 this quan-
tity is plotted as a function of redshift. The sample produced
using Euclid photometry alone shows an excess of false posi-
tives at z < 1. This explicitly shows the inability with only the
Euclid bands to properly exclude low-redshift galaxies, as well
as some with flux below the flux limit. The addition of ground-
based photometry effectively cures this, removing all galaxies at
z < 0.9, leaving only a fraction of misidentified objects fainter
than 2 × 10−16 erg s−1 cm−2 inside the target redshift range. It
is interesting to note that the Euclid-only and the Euclid plus
ground curves become indistinguishable at z ≳ 1.4. This is con-
sistent with the redshift at which the 4000 Å break enters the YE

band (at 9600 Å) and indicates that in this range the combination
of IE and YE, JE, and HE provides, in general, sufficient spectral
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Fig. 9. HE-band number counts for samples built from the Flagship2 cat-
alogue. The samples selected with the neural network classifier, using
Euclid photometry only or combined with ground-based photometry are
shown, respectively, by the blue-solid and magenta-dashed histograms.
As indicated by the legend, the red-dotted histogram corresponds to a
sample selected in redshift only, using Euclid photometric redshifts.
The counts for the full Flagship2 catalogue and the true target sam-
ple are also shown for reference, by the orange and green histograms.
Note how the distribution of the true targets (green histogram) dies off
at magnitudes fainter than HE ≃ 22.5. The targets in the EL-COSMOS
catalogue extend to fainter flux.

leverage to break degeneracies to both capture the correct red-
shift and identify emission-line targets. As also shown, a pho-
tometric redshift selection is effective at removing low-redshift
galaxies, but keeps in the sample all the low-flux galaxies (as is
expected, since we are selecting on redshift alone).

In Fig. 10 bottom panel, instead, we plot the false positive
rate as a function of fHα+[N ii]. In this case, the peak and discon-
tinuity evident at the flux limit, 2 × 10−16 erg s−1 cm−2, is due to
sources just below the flux limit, which enter the sample as false
positives. Above the flux limit, instead, false positives arise from
galaxies that are outside the redshift range. For this reason, the
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Fig. 10. False positive rate as function of redshift and fHα+[N ii]. The plot
allows us to identify the origin of non-targets that enter the selected
samples. The solid blue, dashed orange, and dotted purple curves, re-
spectively, correspond to the neural networks trained with Euclid pho-
tometry, Euclid plus morphological data, and Euclid plus ground-based
photometry. The dash-dotted red line is the false positive rate of the
photo-z selection. Top: False positive rate as a function of z. The green
shaded area marks the target redshift range. Bottom: False positive rate
as a function of fHα+[N ii]. The green shaded area corresponds to the Hα
limiting flux. There is a peak in the false positive rate just below the
flux limit used to define the target sample, although we note that these
galaxies can still give correct redshift measurements.

photo-z selection gives the lowest false positive rate, followed
by the Euclid and ground-based classification. This does not tell
the full story, however. The photo-z selection includes a num-
ber of false positives entering the sample at low fluxes, which
are the cause of the very low precision shown by this selection.
The classifier trained with ground-based photometry provides
the best solution by balancing the two conditions of removing
objects below the line flux limit and outside the redshift range.

Complementarily, it is also interesting to look at the true neg-
ative rate (Eq. 6) of the whole selected sample, which gives an
insight into the fraction of non-targets removed from the sample.
When we select galaxies using Euclid photometry only, the true
negative rate is 87%; the combination with ground-based data in-
creases this metric up to 97%. Conversely, the true negative rate
of the photo-z selection is 59%. Again, the better performance of

the classifiers in comparison to the photo-z selection reflects the
fact that the latter does not make a selection in the emission-line
limiting flux.

Finally, the machine learning algorithms identify regions in
the full colour-magnitude space with a higher density of targets.
In the case of the classifier trained on Euclid photometry, this
is a four-dimensional space. In Appendix C we present slices
through the four-dimensional probability maps constructed from
each classifier, showing how the selection depends on colour.
It is interesting to visualise the boundaries constructed by each
classifier. There is no visible separation between target and non-
target galaxies in the colour planes and the classification algo-
rithms define complex boundaries in the four-dimensional space.
The support vector classifier and the neural network produce par-
ticularly smooth boundaries, while the self-organising map and
tree-based classifiers do not. The irregular boundary is an indica-
tion that the classifier is over-fitting the training set and will not
generalise well. In addition, we verified that the 5% of the targets
that we lose by imposing the 95% recall value are uniformly dis-
tributed in colour and are not part of any particular object class.
We note that the lost targets are mainly faint objects.

5. Purity and completeness

The final purity of the spectroscopic sample will depend on the
combination of the photometric information with the selection
criteria applied to the spectroscopic measurements, as described
by the flow diagram of Fig. 1. To provide a concrete, yet prelim-
inary, example, we would like to quantify here the improvement
in the final redshift purity and sample completeness produced
by our photometric selection process. This work is based on a
set of simulated spectra that were processed by the Euclid spec-
troscopic measurement pipeline (the SPE processing function).
Although the simulated data were not yet fully realistic, they
are nevertheless very useful for understanding how a machine
learning-based photometric classification can aid in the sample
selection. Also, the simulated spectra were built from the EL-
COSMOS sample described in Sect. 3.1.1, which helps in mak-
ing this test self-consistent. Two-dimensional spectral images
were generated using the FastSpec code based on the spectral
energy distribution and morphological parameters of the galax-
ies. These images were convolved with the NISP instrumental
point spread function and realistic noise was added according to
the detector model. Multiple exposures were simulated for each
source and stacked with one to four exposures. One-dimensional
spectra were extracted from the images and input to the Euclid
spectroscopic measurement processing function to measure the
redshift and spectral features.

The spectroscopic measurement pipeline carries out a likeli-
hood analysis using spectral templates to estimate the redshift. It
produces a probability distribution function of the redshift that is
typically sharply peaked with a few primary redshift solutions.
The integral of the peak provides a useful measure of the reli-
ability of the solution. We vary the threshold in this reliability
value to select spectroscopic samples and build the relationship
between redshift purity and completeness, as shown by the SPE
solid blue line in Fig. 11.

In the following discussion we focus on the results from the
neural network classifier applied to the simulated spectroscopic
sample. The purity and completeness values should be taken as
indicative of the general trends and not as accurate forecasts of
the pipeline performance. The values depend on the specific dis-
tribution of simulated sources and instrumental configuration.
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Fig. 11. Redshift purity and sample completeness as a function of spec-
troscopic reliability threshold. The solid blue, dashed red, dotted green,
and dash-dotted orange lines respectively correspond to a selection us-
ing only SPE reliability, SPE reliability combined with a photometric
classification based on Euclid data, with the classification that uses Eu-
clid and ground-based photometry, with the HE magnitude limit selec-
tion, and with the colour selection in the (IE − HE)-HE plane
. In all cases the recall of the photometric classification is set to

95%.

The target sample is defined as described in Sect. 3.3, using the
total flux of the Hα and N ii complex.

Figure 11 shows how redshift purity versus sample com-
pleteness plot improves when we complement the pure spec-
troscopic reliability cut selection (blue solid line) with increas-
ing information provided by the photometric neural network
classifier for the two configurations using Euclid-only or Eu-
clid and ground-based photometry. The curve corresponding to
the HE magnitude-limit selection that gives 95% recall (see Ta-
ble 2) is also plotted together with the curve corresponding to
the colour selection presented in Sect. 4.1. These two curves vi-
sually overlap, but the colour cut curve (dash-dot-dotted purple
line) is marginally higher than the simple magnitude cut curve
(dash-dotted orange line). The figure shows that in the range be-
tween 40% and 60% completeness, the photometric classifica-
tion improves the redshift purity. For example, at a fixed value
of 45% sample completeness, the classification based on Euclid-
only bands improves the purity by ∼ 20%, when we add ground-
based photometry the improvement rises to ∼ 45%. The simple
HE magnitude limit selection, at that same completeness value,
gives an improvement of a few per cent only (≲ 10%), evidencing
the importance of exploiting all available photometric informa-
tion.

To examine the effect of the photometric classification in
more detail, in the top panel of Fig. 12 we show the redshift
purity and sample completeness as a function of the reliability
threshold imposed on the spectroscopic redshift measurement.
The photometric classification has its own threshold parame-
ter on the classification probability, which when combined with
the spectroscopic selection, produces a family of curves. We la-
bel these curves based on their recall values. The bottom panel
shows the dependence of redshift purity on the photometric se-
lection recall, when the completeness is fixed to 45%. As we
see, a recall value of 95% approximately maximises the purity-
completeness curve, which justifies the choice made in Sect. 2.1.
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Fig. 12. Spectroscopic redshift purity and completeness with the addi-
tion of the photometric classification. Top: the curves are colour-coded
as a function of the recall of the photometric classification. The spectro-
scopic reliability threshold varies along each curve, while varying the
threshold on the photometric classification probability shifts the curve.
The purity improves as recall increases, reaching a maximum for recall
∼ 95% and declining after. For better visualisation, the first lines are la-
belled with the corresponding recall value. At recall values above 95%
the curves are tightly packed. The solid black line corresponds to 100%
recall, while the dashed line to 95% recall, the value we chose to bench-
mark our results. Bottom: redshift purity as a function of the recall of
the photometric classification, fixing the value of sample completeness
to 45%.

The main conclusion from this exercise is that the impact
of properly elaborated photometric information on the final pu-
rity and completeness of the Euclid spectroscopic sample is very
significant, with a major improvement especially when ground-
based visible bands are included. The precise gain, however, will
depend on the galaxy distribution, the survey configuration and
the instrument model.

6. Conclusions

We have investigated the benefits of combining photometric in-
formation with the spectroscopic measurement criteria for se-
lecting Euclid spectroscopic samples. Euclid spectroscopy will
give estimates of the galaxy redshifts, fluxes of the emission
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lines, and confidence intervals. However, since emission-line
galaxies make up only a small fraction of the photometric sam-
ple, measurement noise can reduce the redshift purity and com-
pleteness of the sample and degrade the figure of merit for the
galaxy clustering probe. The addition of photometric criteria in
the selection can allow us to improve the purity of the sample
by identifying sources that are likely to be bright emission-line
galaxies at the target redshift.

To this end, we compared a set of machine learning clas-
sification algorithms with the aim of photometrically select-
ing emission-line target galaxies that are likely to give good
redshift measurements in the Euclid Wide Survey. We used
two catalogues to benchmark the classification performance,
EL-COSMOS and Flagship2. Both catalogues have Euclid and
ground-based simulated photometry. We produced noisy reali-
sations of the catalogues assuming background-limited obser-
vations. The two catalogues yield similar results when using
as input Euclid-only photometry, but when this is combined
with ground-based data, the results using Flagship2 outperform
those with EL-COSMOS. This is related to the differences in
the Hα luminosity function and colour distribution of the two
catalogues. In addition to these two configurations (Euclid-only
and Euclid plus ground) we also considered adding morpholog-
ical information (half-light radius and the axial ratio). We find
that in general, while the addition of ground-based data strongly
improves the precision (doubling it in the case of Flagship2), in-
cluding morphological information (at least in the form provided
here) gives negligible improvement.

The purity of the final spectroscopic sample will depend on
the combination of the photometric classification with further se-
lection criteria based on the properties of the spectroscopic data
(see diagram in Fig. 1). To investigate this requires full end-to-
end simulations of the spectroscopic reduction pipeline. We pre-
sented a preliminary exercise to assess the relative gain when the
spectroscopic data are complemented by the photometric selec-
tion discussed here. This will be expanded in future work. We
showed that in the range between 40% and 60% completeness
the purity is boosted by ∼ 20% when using Euclid-only bands,
and between 40% and 100% when including ground-based pho-
tometry. We consider this a remarkable indication.

The introduction of ground-based data significantly im-
proves the purity of the sample, but in the practical applica-
tion can also bring additional nuisance in the form of system-
atic errors. The ground-based photometry will come from mul-
tiple surveys and so will not be fully homogeneous. It will also
suffer from additional selection effects correlated with the ob-
serving conditions that can propagate as systematic errors to the
galaxy clustering measurements and cosmological constraints.
Thus, the gains in purity from incorporating ground-based data
must be carefully weighed against the potential of adding sys-
tematic errors, also considering the specific requirements of the
science analysis to be carried out. We foresee that ground-based
data may be used in analyses where a higher level of purity is
desired, such as for studying the galaxy halo occupation distri-
bution or galaxy evolution as a function of environment.

Photometric redshifts can also play a key role in sample se-
lection. We used the Euclid photometric redshift estimates to se-
lect galaxies in the target redshift range and compared the per-
formance of such a selection to that of the colour-based ma-
chine learning classifiers. Figure 10 shows that the photo-z se-
lection is very efficient for redshift classification, especially to
remove low redshift interlopers, but is not effective in identi-
fying emission-line galaxies. Indeed, the photo-z selection has
the highest fraction of false positives from faint galaxies with

fHα+[N ii] < 2 × 10−16 erg s−1 cm−2, but the lowest for bright ones
with fHα+[N ii] > 2 × 10−16 erg s−1 cm−2, which means that it
makes a better redshift selection than the algorithms presented
in this work. Photometric redshifts could be used with addi-
tional constraints from spectral energy distribution fits to identify
bright emission-line galaxy targets. In particular, the Euclid pho-
tometric redshift pipeline will output estimates of galaxy physi-
cal properties including the star-formation rate and dust attenua-
tion, which will allow us to select emission-line galaxy samples.
We expect that a classifier developed based on photometric red-
shifts and estimates of physical properties from spectral energy
distribution fitting would perform similarly to the pure colour
and magnitude-based classifiers that we tested, since the under-
lying photometric information is the same. Analogously, we ex-
pect a classifier trained to make a selection in redshift alone to
perform similarly to the photo-z selection. Alternative classifiers
that use the estimates of galaxy physical properties from the Eu-
clid photometric redshift pipeline for sample selection will be
investigated in a future work.

It is important to note that in this study some of the complica-
tions that will be present in real Euclid data were not considered.
First, we assume an ideal training set, which is fully representa-
tive of the Wide Survey data. In the actual Euclid Wide Survey,
the training set will come from the Deep Fields, which will to-
tal ∼ 50 deg2. Shallow and full-depth photometric measurements
will be available for the Euclid photometry in the Deep Fields;
however, we will only have the full-depth measurements for the
ground-based photometry. As they are currently trained, the ma-
chine learning algorithms learn to classify the targets at a given
noise level and it is not necessarily true that they will be able to
generalise their results when trained and tested on samples with
different noise levels. Therefore, if ground-based photometry is
used, it will be necessary to degrade the measurements to match
the noise level in the Wide Survey. Since the ground-based pho-
tometry will come from multiple surveys, this operation will not
be simple, and residual variations in homogeneity in the noise
can lead to systematic variations in the classifier performance.

Moreover, the effective emission-line flux limit will vary
across the Wide Survey due to foreground emission including
zodiacal light and scattered stellar light (Euclid Collaboration:
Scaramella et al. 2022). In this study, we used a fixed flux limit
to build the training set of emission-line galaxies. In practice, this
does not impose a sharp flux cut in the measured sample. How-
ever, when developing a classifier on real data, we will be able to
use the Deep Survey to define the training set as the set of galax-
ies that are correctly measured by the Euclid pipeline, without
imposing any specific constraints on their physical properties. It
will also be possible to construct a classifier that accounts for
variations in the noise level across the Wide Survey to optimise
the sample.

Finally, a further complication that must be considered is
contamination from stars in the galaxy catalogue that can impact
the purity. The photometric classifier can be trained to maximise
the precision in the presence of stars. This work will require us to
incorporate a star-galaxy classifier, which is based both on size
and photometric colours. Here, the morphological measurements
will be important.

In the next stage of this work, we will consider the full set
of spectroscopic and photometric selection criteria in order to
compute the redshift purity, sample completeness and ultimately
cosmologically relevant figures of merit. This requires running
the spectroscopic reduction pipeline on mock data in order to
produce end-to-end simulations. Such simulations will allow us
to optimise the sample selection criteria, possibly with the use
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of machine learning classifiers. With Euclid observations begin-
ning in fall 2023, we will be able to further tune the selection
based on the actual telescope performance and ultimately con-
struct the spectroscopic galaxy sample that will be used to test
the cosmological model.
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Fig. A.1. Target and non-target distributions in colour-colour and
colour-magnitudes planes for the Flagship2 catalogue. The contours
contain 99%, 50%, and 25% of the samples.

Appendix A: Colour-magnitude projection planes

We present in Fig. A.1 the colour-colour and colour-magnitude
distributions for targets and non-targets in the Flagship2 cat-
alogue for three different combinations. The contours contain
99%, 50%, and 25% of the samples. There is a nearly complete
overlap of the targets and non-targets in the colours.

Appendix B: Photo-z as input variables

As an additional test, we trained a neural network with Flagship2
data in the Euclid plus ground-based configuration with the ad-
ditional information of the measured photo-z. In principle, the
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Fig. B.1. Comparison of the precision versus recall curves of two neu-
ral networks trained with and without photo-zs as an input feature. The
two neural networks were trained with Euclid and ground-based pho-
tometry, but in the case of the solid blue line the algorithm takes the
photo-z of the galaxy as an additional feature. The solid vertical line
corresponds to 95% recall.

neural network can extrapolate the redshift from the photomet-
ric information. However, by directly providing the photo-z we
may facilitate the selection process as the network will be able
to put more attention on the emission line flux.

The precision at 95% recall is 47.9% in the case without
photo-z, as reported in Table 3. When we add the photo-z of the
galaxy as an input feature the precision rises to 50.1%. Neverthe-
less, the addition of the photo-z to the input information makes
the classifier dependent on the complex process used to produce
the photo-zs, including the training sets, spectral energy distribu-
tion models, and algorithms used. We postpone to a future work
the detailed study of these dependencies and the performance on
realistic data.

Appendix C: Selection probability maps

Figure C.1 gives a visualisation of the selection probability for
each classifier in planes through the parameter space. We show
the results from the Flagship2 catalogue for the case when classi-
fiers are trained with Euclid photometry alone. Each row shows
the colour-colour and colour-magnitude plots for a given algo-
rithm. The parameter space is four-dimensional, and the two-
dimensional planes are made by fixing two of the parameters to
their median values.

One notices that the different classifiers identify a similar re-
gion of maximum probability for a given pair of features. The
shape and the gradients of these regions, however, vary for each
algorithm. This is due to the differences in the selection algo-
rithms and possible projection effect when the boundaries are
represented on the planes. In the case of the single classifiers
(top three rows: self-organising map, neural network, and sup-
port vector classifier) they are compact and well defined, unlike
for the cases of voting classifiers based on decision trees (bottom
three rows). Also, the contours and gradients are less smooth for
the self-organising map than for the neural network and the sup-
port vector classifier. The probability gradient of the support vec-
tor classifier is very steep, especially in comparison to the neural
network.
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Fig. C.1. Probability maps in colour-colour and colour-magnitude planes, for the six classifiers tested in this paper, trained using Flagship2 Euclid
photometry only. The thick white contour marks the probability threshold that gives 95% recall.

The probability maps for the voting classifiers (bottom three
rows) show orthogonal contours. This is due to the common base
classifier of these algorithms, the decision tree, which tends to
produce decision rules orthogonal to one another. At the same
time, the three algorithms have very different probability con-
tours. These differences are related to the batch selection rule
used to train the decision trees (see Sect. 2). We expect that
the algorithms that give a classification model with irregular and

steep contours (such as the self-organising map) or stepped con-
tours (such as the decision trees) will be prone to over-fitting and
will show poorer performance than algorithms that give smooth
probability contours.
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