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A B S T R A C T 

Radio galaxies exhibit a rich diversity of morphological characteristics, which make their classification into distinct types a 
complex challenge. To address this challenge ef fecti vely, we introduce an innov ati ve approach for radio galaxy classification 

using COSFIRE filters. These filters possess the ability to adapt to both the shape and orientation of prototype patterns within 

images. The COSFIRE approach is explainable, learning-free, rotation-tolerant, efficient, and does not require a large training set. 
To assess the efficacy of our method, we conducted experiments on a benchmark radio galaxy data set comprising of 1180 training 

samples and 404 test samples. Notably, our approach achieved an average accuracy rate of 93.36 per cent. This achievement 
outperforms contemporary deep learning models, and it is the best result ever achieved on this data set. Additionally, COSFIRE 

filters offer better computational performance, ∼20 × fewer operations than the DenseNet-based competing method (when 

comparing at the same accuracy). Our findings underscore the ef fecti veness of the COSFIRE filter-based approach in addressing 

the complexities associated with radio galaxy classification. This research contributes to advancing the field by offering a robust 
solution that transcends the orientation challenges intrinsic to radio galaxy observations. Our method is versatile in that it is 
applicable to various image classification approaches. 

Key words: methods: data analysis – methods: statistical – techniques: image processing – galaxies: active – radio continuum: 
galaxies. 
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 I N T RO D U C T I O N  

lassifying radio galaxies according to their morphology is essential 
or understanding the physical processes that shape and transform 

adio galaxies (Hossain et al. 2023 ; Ndung’u et al. 2023 ). Automating
adio galaxy classification is particularly important for ongoing and 
pcoming sky surveys: the large volumes of high-resolution data 
rom modern telescopes such as the LOw-Frequency ARray (LO- 
AR) produce raw data at rates of order TB/s (Rafferty et al. 2013 ;
himwell et al. 2022 ), making manual classification impractical, 
hile public citizen science classification initiatives such as Radio 
alaxy Zoo (Banfield et al. 2015 ) and LOFAR Galaxy Zoo 1 are both

ime-consuming and rely on the consensus of multiple volunteers. 
learly, these cannot meet the need to label large samples of images

such as the 4.4 million radio source catalogue produced by Shimwell 
t al. ( 2022 )] promptly, so new methods are required to meet the needs
f astronomical population studies. Recently, the development of var- 
ous innov ati ve machine/deep learning techniques has proven highly 
f fecti ve – achieving remarkable accuracies exceeding 90 per cent 
Aniyan & Thorat 2017 ; Samudre et al. 2022 ; Ndung’u et al.
 E-mail: s.n.machetho@rug.nl 
 https:// www.zooniverse.org/ projects/ chrismrp/ radio- galaxy- zoo- lofar
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rovided the original work is properly cited. 
023 ). These classification models are both robust and generalizable. 
espite the limited sample sizes of labelled astronomical data sets 

on the order of 10 3 ), the algorithms have attained generalizability 
hrough strategies such as data augmentation and regularization 
echniques to mitigate o v erfitting (Aniyan & Thorat 2017 ; Maslej-
re ̌s ̌n ́akov ́a, El Bouchefry & Butka 2021 ; Tang et al. 2022 ). 
Extragalactic radio sources can be differentiated based on the 

uminosity and the relative positions of the low- and high-brightness 
egions of the radio sources. Building on the findings of Fanaroff
 Riley ( 1974 ), their radio galaxy classification system, commonly

nown as the Fanaroff & Riley (FR) scheme, has gained widespread
cceptance. Consequently, radio galaxies are now primarily cate- 
orized into four distinct groups, differentiated by their intrinsic 
orphological characteristics, as outlined by Alhassan, Taylor & 

accari ( 2018 ). The most important two are the Fanaroff & Riley I
FRI) and the Fanaroff & Riley II (FRII) (Fanaroff & Riley 1974 ).
he FRI galaxies have (sometimes diffuse) radio jets and are brighter

owards their central core. FRII galaxies, on the other hand, are
ources with lobes that are spatially separated from the core. The
obes are the brightest components, outshining both the core and 
he jets. As a result, the radio emission appears dimmer towards
he centre of the galaxy. The third and most common category of
adio galaxies is the Compact class, which refers to point-like radio
ources (Baldi, Capetti & Giovannini 2015 ; Baldi, Capetti & Massaro 
is is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 
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https://www.zooniverse.org/projects/chrismrp/radio-galaxy-zoo-lofar
https://creativecommons.org/licenses/by/4.0/
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Figure 1. (a)–(c) Sample illustration of the Compact, FRI, FRII and Bent 
radio sources morphological appearance. (d) Maximum image superposition 
of all Compact, FRI, FRII, and Bent radio galaxies from the data set used in 
this paper. 

Table 1. The size of the original data set distributed across the training, 
validation, and test categories. 

Source catalogue Type Total Training Validation Test 

Proctor Bent 508 305 100 103 
FR0CAT & CoNFIG Compact 406 226 80 100 
FRICAT & CoNFIG FRI 389 215 74 100 
FRIICAT & CoNFIG FRII 679 434 144 101 

Total 1982 1180 398 404 
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018 ). The Compact sources are similar to FRI, ho we v er, the y hav e a
igher radio core dominance and radio luminosity (Baldi et al. 2018 )
making it a unique class from FRI. The fourth category is Bent,
hich is composed of radio sources with jets that are bent at an angle,

ither in a narrow-angled tail (NAT) or a wide-angled tail (WAT)
onfiguration (Rudnick & Owen 1976 ). The four-class scheme was
dopted to maintain consistency and facilitate comparison with other
elated methods. Radio sources contained within images obtained
rom highly sensitive, high-resolution telescopes are more resolved,
nd as such, it is easier to categorize and classify them correctly.
his is especially true when it comes to the Compact and Bent radio
ource classes (Baldi et al. 2018 ; Harwood, Vernstrom & Stroe 2020 ).
his implies that some sources, given current resolutions, which are

abelled as Compact sources, may in actual fact be unresolved FR
alaxies. It is also important to mention that radio data set creators
ave in the past added unresolved sources to the Compact class
Becker et al. 2021 ). In Fig. 1 we illustrate a few examples of each of
he four classes as well as superimposed variants created by utilizing
ll images from the data set described in Table 1 . In addition to the
ifficulties related to their shape characteristics, the classification
f FRI, FRII, and Bent galaxies is further exacerbated by the fact
hat the galaxies in the data set have differing orientations. Upon
isual inspection, it becomes apparent that each cate gory e xhibits a
iscernibly distinct brightness distribution. Nonetheless, it is worth
NRAS 530, 783–794 (2024) 
oting that the FRII and Bent classes share substantial similarities,
hus making it difficult to discern between the two classes and a
hallenging task to differentiate them. 

In this paper, we propose a lightweight paradigm that involves
rainable COSFIRE (Combination of Shifted Filter Responses)
lters (Azzopardi & Petkov 2012a ; Azzopardi, Greco & Vento
016a ). This approach is efficient, learning-free, rotation-tolerant,
xplainable, and does not require a large training set. The imple-
entation of a COSFIRE-based classification pipeline is relatively

asy and straightforward from a conceptual standpoint as described
n Section 4 . It involves the configuration of COSFIRE filters
Azzopardi & Petkov 2012a ) whose selectivity of each filter is
utomatically determined from the shape properties of a single
raining e xample. The objectiv e is to set up multiple filters, whose
ombined responses generate a feature signature for the type of
alaxy present in an image. This approach is analogous to how
isual cells in the mammalian brain are thought to encode visual
nformation, a concept known as population coding (Pasupathy &
onnor 1999 , 2002 ). COSFIRE filters have been applied in various
omputer vision tasks: retina image analysis (Azzopardi et al. 2015 ;
trisciuglio, Azzopardi & Petkov 2019 ; Ramachandran et al. 2020 ),
rack detection (Strisciuglio, Azzopardi & Petkov 2017 ), traffic sign
ecognition (Gecer, Azzopardi & Petkov 2017 ), k eyw ord spotting
n handwritten manuscripts (Azzopardi & Petkov 2014 ), machine
ision (Azzopardi et al. 2016b ), delineation of apposing mitochon-
ria in electron microscopy images (Aswath et al. 2023 ), gender
ecognition from face images (Azzopardi et al. 2016a ), contour
etection in images with natural scenes (Azzopardi & Petkov 2012b ),
nd handwritten digit classification (Azzopardi & Petkov 2013 ). In
his work, COSFIRE filters are configured to extract the hyperlocal
eometric arrangements that uniquely describe the patterns of radio
ources (in terms of blobs) in a given image. 

The rest of the paper is structured as follows. Section 2 presents
he current state-of-the-art approaches. Section 3 describes the data
et used in this study. Section 4 describes the proposed COSFIRE-
ased paradigm. Section 5 presents the e v aluation criteria used to
ssess the performance of our approach. Section 6 describes the
xperiments and the results obtained. Section 7 provides a discussion
f the results obtained in relation to the rele v ant work. Finally, we
raw conclusions in Section 8 . 

 RELATED  WO R K S  

nd-to-end learning, particularly through convolutional neural net-
orks (CNNs), has dominated the field in recent years. In particular,
niyan & Thorat ( 2017 ), used the AlexNet architecture (Krizhevsky,
utskever & Hinton 2017 ), calling the trained model Toothless, 2 to
chieve accuracies of 91 per cent, 75 per cent, and 95 per cent for
he FRI, FRII, and Bent-tailed morphologies, respectively (on a data
et they assembled from various catalogues). Subsequently, notable
ncremental breakthroughs have been made in the applications
f deep learning to the field of radio astronomy, ranging from
hallow CNN architectures (Lukic et al. 2019 ) to deep and complex
rchitectures such as DenseNet (Huang et al. 2017 ; Samudre et al.
022 ). Furthermore, other note worthy adv ancements within the field
re: model-centric strategies such as group-equi v ariant CNNs (G-
NNs) (Scaife & Porter 2021 ) to support equi v ariance translations
n various isometries of radio galaxies and multidomain multibranch
NNs (Tang et al. 2022 ) to allow models to learn jointly from various

https://github.com/ratt-ru/toothless
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Table 2. The size of the balanced data set distributed across the training, 
validation, and test categories. 

Source catalogue Type Total Training Validation Test 

Proctor Bent 680 433 144 103 
FR0CAT & CoNFIG Compact 675 431 144 100 
FRICAT & CoNFIG FRI 674 430 144 100 
FRIICAT & CoNFIG FRII 679 434 144 101 

Total 2708 1728 576 404 
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urv e y inputs; data-centric approaches such as data augmentation 
Ma et al. 2019 ; Maslej-Kre ̌s ̌n ́akov ́a et al. 2021 ; Kummer et al. 2022 ;
lijepcevic et al. 2022 ); transfer learning (Lukic et al. 2019 ; Tang,
caife & Leahy 2019 ), and N -shot learning (Samudre et al. 2022 )
algorithms that have been developed to optimally utilize limited 
mounts of supervised information while mitigating obstacles such 
s o v erfitting) to o v ercome the limited availability of annotated data
ets in radio astronomy. These models have been shown to perform 

ompetitiv ely, pro viding promising alternativ es to prior models such 
s the one by Aniyan & Thorat ( 2017 ), which showed signs of
 v erfitting. 
Feature-based pipelines offer a more traditional approach, involv- 

ng handcrafted features, and have been explored for the morpholog- 
cal classification of F anaroff-Rile y (FR) radio galaxies (Becker et al.
021 ; Ntwaetsile & Geach 2021 ; Sadeghi, Javaherian & Miraghaei 
021 ; Darya et al. 2023 ). These approaches are not end-to-end as
hey decouple the feature description and the classification model. 
hey rely heavily on the use of handcrafted feature descriptors, such 
s Haralick features derived from the Grey Level Co-occurrence 
atrix (Haralick, Shanmugam & Dinstein 1973 ; Ntwaetsile & 

each 2021 ). Gradient boosting methods (Friedman 2002 ), including 
GBoost (Chen & Guestrin 2016 ), LightGBM (Ke et al. 2017 ), and
atBoost (Dorogush et al. 2018 ), are also utilized in this context.
his emphasis on deliberate feature engineering has been shown 

o produce promising results (Sadeghi et al. 2021 ), particularly in 
maller data sets. For instance, Darya et al. ( 2023 ) demonstrated that
hese feature-based methods can be as ef fecti ve as CNN-based deep
earning models when applied to data sets of around 10 000 images
r fewer. 
CNNs are regarded as the state-of-the-art in various image clas- 

ification applications (Aniyan & Thorat 2017 ; Lukic et al. 2019 ;
caife & Porter 2021 ; Tang et al. 2022 ). Ho we v er, the y require large
mounts of training data and are susceptible to o v erfitting when
rained with small data sets, which is the case in radio astronomy.

oreo v er, the high computational demands of deep architectures for
raining and applying CNNs often require GPUs, which can be costly 
nd limit their applicability in resource-limited settings. Additionally, 
NN-based models lack insufficient intrinsic robustness to rotations. 
o address rotational variations in radio sources, multiple approaches 
ave been taken. One approach is to utilize group-equi v ariant CNNs,
here the network is designed to capture the diverse orientation 

nformation of a given input galaxy in encoded form (Scaife & Porter
021 ). Another method involves augmenting the training data by 
pplying rotations to the training samples, enabling the CNNs to learn 
ifferent orientations of the classes. Furthermore, a pre-processing 
tep can be employed to standardize the rotation of all radio sources.
his may be achieved by using principal component analysis to align 

he galaxies’ principal components with the coordinate system’s axes, 
f fecti vely normalizing their orientations (Brand et al. 2023 ). 

As evident from this literature re vie w, numerous challenges re-
ain, including the need for efficient (computationally ine xpensiv e) 

nd rotationally invariant methods. In this work we address these 
imitations with the proposed COSFIRE filter approach. 

 DATA  

he data set of radio galaxies used in this paper was compiled and
rocessed by Samudre et al. ( 2022 ). It was constructed by selecting
ell-resolved radio galaxies from multiple catalogues: Proctor cata- 

ogue (Proctor 2011 ) for the Bent radio galaxies; FR0CAT catalogue 
Baldi et al. 2018 ) and Combined NVSS–FIRST galaxies catalogue 
CoNFIG) (Gendre & Wall 2008 ; Gendre, Best & Wall 2010 ) for
ompact radio galaxies; FRICAT catalogue (Capetti, Massaro & 

aldi 2017a ) and CoNFIG catalogue for FRI radio galaxies and
nally FRIICAT catalogue (Capetti, Massaro & Baldi 2017b ) and 
oNFIG catalogue for FRII radio galaxies. In this paper, we utilize

his data set to perform comparative analyses, specifically in relation 
o the work conducted by Samudre et al. ( 2022 ). 

The initial data set is composed of the following classes: Compact
406 samples), Bent (508 samples), FRI (389 samples), and FRII (679
amples). These samples are further divided into training, validation, 
nd testing sets as shown in Table 1 . According to Samudre et al.
 2022 ), the original data set’s underrepresented classes were balanced
y adding randomly duplicated samples to the training and validation 
ata sets. Table 2 depicts the distribution of the balanced data set. 
The images were pre-processed by utilizing sigma-clipping with 

 threshold of 3 σ (Aniyan & Thorat 2017 ). This technique involves
liminating or discarding pixels that have background noise levels 
bo v e or below 3 standard deviations from the mean (Aniyan &
horat 2017 ). 
Although more recent catalogues exist, as described by Ndung’u 

t al. ( 2023 ), the latest catalogues, such as the LOFAR Two-metre
k y Surv e y – Data Release I & II (Shimwell et al. 2019 , 2022 ),
re not annotated according to the Fanaroff & Riley classification 
cheme. Consequently, they were not utilized in this study, as their
nclusion would hinder direct comparison of our results with other 
elated methods. Instead, they are labelled by automated tools such as
he Python Blob Detector and Source-Finder (PyBDSF) (Mohan & 

afferty 2015 ) that categorize astronomical sources into three types: 
S’ for single isolated sources modelled with one Gaussian, ‘C’ for
ources that are within a group but can be individually modelled with
 single Gaussian, and ‘M’ for extended sources that need multiple
aussians for accurate modelling. This system aids in the efficient 

dentification and analysis of space emissions. 

 M E T H O D S  

his section gives a comprehensive description of the methodology 
hat we propose for radio galaxy image classification with the 
OSFIRE filter approach. We explain the process of radio source 
lob detection, the configuration of COSFIRE filters with rotation 
nvariance, the formation of feature descriptors, and the utilization 
f these descriptors for classification. 

.1 Blob detection 

lob detection is a technique used for identifying points or regions
n an image that exhibit a sudden change in intensity (areas that are
ither brighter or darker than the surrounding areas), known as a
blob’. This approach enables the identification of regions that may 
orrespond to objects or structures of interest within an image; in our
ase radio source(s). In computer vision, one of the commonly used
lob detectors is based on the Laplacian of Gaussian (LoG) (Wang,
MNRAS 530, 783–794 (2024) 
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opez-Molina & De Baets 2017 , 2020 ). The LoG is the second-order
eri v ati ve of the Gaussian function, which we denote by G ( x , y ): 

 ( x , y ; σ ) = 

1 

2 πσ 2 
exp 

(
−x 2 + y 2 

2 σ 2 

)
, (1) 

here σ is the standard deri v ation. The Laplacian of Gaussian is
ypically estimated by a Difference-of-Gaussian (DoG) function,
hich is separable, and thus convolving it with a 2D image is much
ore computationally ef ficient. Gi ven two Gaussian functions, G 1 

nd G 2 with their respective standard deviations σ 1 and σ 2 , the
aussians are defined as: 

 1 ( x , y ; σ1 ) = 

1 

2 πσ 2 
1 

exp 

(
− x 2 + y 2 

2 σ 2 
1 

)
(2) 

 2 ( x , y ; σ2 ) = 

1 

2 πσ 2 
2 

exp 

(
− x 2 + y 2 

2 σ 2 
2 

)
(3) 

he DoG function is obtained by subtracting one Gaussian function
rom another, each having a different standard deviation: 

oG ( x , y ; σ1 , σ2 ) = G 1 ( x , y ; σ1 ) − G 2 ( x , y ; σ2 ) (4) 

For a point ( x , y ) and an image I with intensity distribution I ( x ′ , y ′ ),
e calculate the response c σ1 ,σ2 ( x , y ) of a DoG filter with a kernel

unction DoG σ1 ,σ2 

(
x − x ′ , y − y ′ 

)
by convolution: 

 σ1 ,σ2 ( x , y ) = ReLU ( I � DoG σ1 ,σ2 ) t 1 , (5) 

here ReLU is a rectification linear unit, as adapted from Nair &
inton ( 2010 ), and it serves as an acti v ation function that assigns

ero to all v alues belo w the given threshold t 1 [see equation ( 6 )], and
 represents convolution, 

eLU ( x) = 

{
0 if x < t 1 
x if x ≥ t 1 

(6) 

When σ 1 < σ 2 we refer to the resulting DoG function as a centre-
n DoG or DoG 

+ for brevity, with the central region (radio source)
 xhibiting a positiv e response and the surrounding (background)
 xhibiting a ne gativ e response. Conv ersely, when σ 2 < σ 1 the
onfiguration results in a centre-off DoG function, which we denote
y DoG 

−. In this work, we adopt the approach used by Azzopardi
t al. ( 2015 ) and al w ays set the smaller standard deviation to be half
f the larger standard deviation. 
The centre-on DoG filter highlights bright blobs on a dark

ackground and is more sensitive to intensity increases at the centre
f the blob. This filter is ef fecti ve in detecting and highlighting areas
f the image with radio sources (blobs) relative to the background
oise and is less sensitive to edges or sharp changes in intensity. On
he other hand, the centre-off DoG filter highlights dark blobs on a
right background and is more sensitive to intensity decreases at the
entre of the blob. This filter responds well to corners and edges and
s less sensitive to objects or regions of uniform intensity. Therefore,
oth centre-on and centre-off DoG filters are used to detect blobs
r regions of interest in an image, see Fig. 2 for an illustration on
ompact, FRI, FRII, and Bent radio sources. The DoG filter is a type
f band-pass filter that can eliminate high-frequency components
hat represent noise as well as some low-frequency components that
epresent homogenous areas. 

.2 COSFIRE filter configuration 

 COSFIRE filter is automatically configured by examining the
hape properties of a given prototype pattern of interest in an image,
hich ultimately determines its selectivity. The process of configura-

ion can be summarized in three main steps: convolve-ReLU-keypoint
NRAS 530, 783–794 (2024) 
etection . The first two steps involve the convolution of centre-on and
entre-off DoG filters followed by ReLU as described abo v e. Finally,
eypoint detection requires the determination of local maximum
hresholded DoG responses along a set of concentric circles around
 point of interest. The point of interest is a location in the image
hat characterizes the radio source(s), and consequently it is the
ocation where the configured COSFIRE filter is expected to respond

aximally. For this application, we use the centre of the image as the
oint of interest, but in principle, any location can be used for this
urpose. The number and radii of the concentric circles along with the
hreshold t 1 used by the ReLU function are hyperparameters of the
OSFIRE approach. A keypoint denoted by k , which is identified
s a local maximum of a DoG filter along a concentric circle, is
haracterized by a four-element tuple: ( σ k , δk , ρk , φk ). Here, σ k and
k indicate the standard deviation of the outer Gaussian function
f the DoG function and its polarity (centre-on or centre-off) that
chieved the highest response in the polar coordinates with radius ρk 

t an angle of φk radians with respect to the given point of interest.
e denote by C f a COSFIRE filter, which is represented as a list of

uch tuples: 

 f = { ( σk , δk , ρk , φk ) | k = 1 , . . . , n } , (7) 

here n refers to the number of DoG responses considered in C f ,
hich plays a crucial role in the selectivity and generalization of the
OSFIRE filter. Typically, selectivity increases and generalization
ecreases with increasing value of n (i.e. number of keypoints). 
Fig. 3 demonstrates the automatic configuration of a COSFIRE

lter, showcasing the superposition of centre-on and centre-off DoG
esponse maps derived from a Bent class image in the training set,
he one shown in Fig. 2 . The example uses two concentric circles
nd the resulting COSFIRE filter is a set of ten tuples describing the
en keypoints indicated in Fig. 3 (b). The keypoints are identified at
he positions along the circles where the DoG responses reach local
axima. 
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Figure 3. Example of keypoint detection for the configuration of a COSFIRE 

filter. (a) A Bent class image of the superposition of a centre-on and a centre- 
off DoG response maps. This is the same example used in the last column 
of Fig. 2 . (b) The ten dots indicate the ten keypoints that are identified in 
locations that exhibit local maximum DoG values along the given two radii 
with respect to the centre ( x , y ). 
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.3 COSFIRE filter response 

he response of a COSFIRE filter C f for a given ( x , y ) location is
omputed by combining the responses of the DoG functions whose 
cale σ k , polarity δk , and position ( ρk , φk ) with respect to ( x , y ) are
ndicated in the set C f . The process of computing the response can be
ummarized in five main steps: convolve-ReLU-blur-shift-combine . 
he convolve step refers to the convolution of centre-on and centre- 
f f DoG filters follo wed by the ReLU operation that sets to zero all
 alues belo w the gi ven threshold t 1 . These are the same two steps that
ere required for the configuration described abo v e. Then, in order

o allow for some tolerance in the preferred positions of the involved
oG responses, we blur each DoG response with a Gaussian function 
 σ ′ ( x ′ , y ′ ), whose standard deviation σ ′ is a linear function of the

istance ρk : σ ′ = � σ ′ 
0 + αρk � , with σ ′ 

0 and α being hyperparameters. 
oreo v er, we shift the blurred responses in the direction opposite of

he polar coordinates such that all DoG responses of interest meet 
t the same ( x , y ) location. Finally, the combine step is implemented
s suggested by Azzopardi & Petkov ( 2012a ), where a COSFIRE
lter response, which we denote by r C f , is obtained by the geometric
ean function that combines all blurred and shifted thresholded DoG 

esponses: 

 C f ( x , y ) = 

( 

n ∏ 

k= 1 

z σk ,δk ,ρk ,φk 
( x , y ) 

) 

1 
n 

, (8) 

here 

 σk ,δk ,ρk ,φk 
( x , y ) = max 

x ′ ,y ′ 
{ c σk 

( x − 	x k − x ′ , y − 	y k − y ′ ) G σ ′ ( x ′ , y ′ ) } 

(9) 

s the combined blurred and shifted DoG filter response map of
uple k . The shifting operation displaces each blurred DoG response
f interest to the support centre of the COSFIRE filter. The shift
ector is denoted by ( 	 x k , 	 y k ), where 	 x k = −ρk cos φk and 	 y k 
 −ρk sin φk . Additionally, −3 σ ′ ≤ x ′ , y ′ ≤ 3 σ ′ . 

.4 Tolerance to rotations 

olerance to rotations can be attained by configuring multiple 
OSFIRE filters using rotated versions of a single prototype pattern. 
n ef fecti ve approach to achie v e this involv es defining new filters
y modifying the parameters of an e xisting COSFIRE filter. F or
nstance, consider a COSFIRE filter denoted as C f ψ , designed to 
e selective for the same underlying pattern that was employed to
onfigure the original COSFIRE filter C f , but rotated by ψ radians.
his new filter is defined as follows: 

 f ψ = { ( σk , δk , ρk , φk + ψ) | ∀ ( σk , δk , ρk , φk ) ∈ C f } (10) 

The rotation-tolerant response of a COSFIRE filter ˆ r C f is then 
chieved by taking the maximum response across all COSFIRE filters 
elective for the same pattern at 12 equally-spaced orientations: 

ˆ  C f ( x , y ) = max 

{
r C f ψ ( x ,y ) ∀ ψ ∈ { 0 , π/ 6 , . . . , 11 π/ 6 } 

}
(11) 

.5 COSFIRE descriptor 

or a given image, a COSFIRE descriptor, which we denote by
 and define below, is generated by applying all COSFIRE filters

n rotation-tolerant mode and extracting the maximum value from 

ach filter, regardless of its location. Consequently, for a set of λ
lters, the resulting description of a given image is represented by a
-dimensional vector. 

 = 

[
max 
x,y 

{
ˆ r C f 1 ( x , y ) 

}
, . . . , max 

x,y 

{
ˆ r C f λ ( x , y ) 

}]
(12) 

This concept is inspired by neurophysiology research, which 
uggests that the shape representation of a stimulus is based on the
ombined activity of a group of shape-selective neurons in area V4
Wielaard et al. 2001 ; Azzopardi & Petkov 2012b ; Weiner & Ghose
015 ). V4 cells are neurons in the visual cortex that are involved in
orm perception, recognizing objects and their features such as shape 
Weiner & Ghose 2015 ). 

.6 COSFIRE descriptor pr e-pr ocessing 

he only pre-processing step done to the COSFIRE descriptors is L2
ormalization (Dai et al. 2018 ). L2 normalization is performed by
ividing the original vector by its magnitude, where the magnitude is
alculated as the square root of the sum of the squares of the vector’s
lements. This process ef fecti vely scales the vector to have a unit
ength in Euclidean space. The key advantage of L2 normalization is
ts ability to make the descriptors robust to variations in illumination
nd contrast. By ensuring that the magnitude of feature vectors is
onsistent, L2 normalization enables more accurate and reliable 
omparisons between features extracted from images with varying 
onditions, such as different contrast or brightness levels, thereby 
mproving the performance of image classification and recognition 
asks. 

.7 Classification model 

he SVM model, introduced by Cortes & Vapnik ( 1995 ), has been
elected for the classification of COSFIRE-based image descriptors 
ue to its capacity to handle high-dimensional data, manage outliers, 
nd achieve robust generalization. The training of the SVM model is
onducted using the COSFIRE descriptors extracted from a training 
et that encompasses four distinct classes of radio galaxies. Given 
he imbalance in class distribution of the training set, as highlighted
n Table 1 , we utilize a bagging (bootstrap aggregating) approach
o train an ensemble of classification models. This method involves 
reating balanced subsets of the training data for each model in the
nsemble. Employing balanced subsets ef fecti vely reduces biases 
oward the majority classes, enhancing the o v erall performance and
airness of the classification. The inherent advantage of the bagging 
MNRAS 530, 783–794 (2024) 
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Figure 4. A graphic representation of the proposed COSFIRE-based pipeline for radio galaxy classification for both training and inference phases. The training 
phase involves configuring COSFIRE filters, extracting descriptors, and training an ensemble of classifiers using a bagging approach. Specifically, we create k 
= 10 classifiers (where i represents an individual classifier in this series). These models are applied in the inference stage and the label of the given image is 
determined by decision fusion. 
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trategy, as proposed by Breiman ( 1996 ), not only addresses the

kewness in class distribution but also impro v es the generalization of
he ensemble to unseen data by aggregating diverse models trained
n varied representations of the data. Fig. 4 illustrates the entire
rocess of training and inference. In the training phase, we employ a
esampling technique with replacement to randomly select balanced
ubsets of images from each class. To achieve this balance, we
alculate two-thirds of the size of the majority class (in this case,
34), which results in 290 images. By selecting 290 images from each
lass, we also ensure that the resulting balanced subset is roughly
he same size as the original imbalanced training set. Using these
NRAS 530, 783–794 (2024) 
alanced subsets, we then train a set of ten different SVM models.
n the inference phase, we use the ten SVM models to perform
lassification by aggregating their predictions on the test data set.
n practice, the subset size and the number of classifiers are two
yperparameters of the bagging approach, which can be fine-tuned
y cross validation. For the individual SVM models, we use default
arameter values, 3 including a linear kernel and a cost parameter C

https://github.com/cjlin1/libsvm/blob/master/matlab/svmtrain.c
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Table 3. Search space for hyperparameter tuning of COSFIRE filters. This 
table lists the sets of values for each hyperparameter that were explored to 
determine the optimal configuration of COSFIRE filters. 

Parameter name Values 

σ { 5, 6, 7 } 

P 

⎧ ⎨ 

⎩ 

{ 0 , 5 , 10 , 15 , 20 } , 
{ 0 , 5 , 10 , 15 , 20 , 25 } , 
{ 0 , 5 , 10 , 15 , 20 , 25 , 30 } 

⎫ ⎬ 

⎭ 

t 1 { 0.05, 0.1, 0.15 } 
σ ′ 

0 { 0.5, 0.75, 1 } 
α { 0.1, 0.15, 0.2 } 
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et to 1. The fine-tuning of the SVM hyperparameters is beyond the
cope of the proposed COSFIRE paradigm. 

 P E R F O R M A N C E  METRICS  F O R  

VALUATION  

.1 Accuracy 

s in prior research on morphological classification (Lukic et al. 
019 ; Samudre et al. 2022 ), we e v aluate the performance of the
roposed COSFIRE approach following the widely adopted accuracy 
etric, which computes the proportion of correctly classified images 

ut of the total number of images tested. 

.2 Floating point operations 

loating point operations (FLOPs) are a measure of computer 
erformance that indicates the number of floating-point operations 
hat a processor e x ecutes to complete a task. This measurement
s commonly used in scientific programs/applications that heavily 
epend on floating-point (FP) calculations such as CNNs. In Sec- 
ion 6.3 , we explain in detail how the computational complexity of our 
pproach is measured in terms of the number of FLOPs required. We
hen benchmark this against the DenseNet161 classification model, 
hich achieved the highest performance on the same data set we 

mploy, as reported by Samudre et al. ( 2022 ). This comparison
ims to contextualize our approach’s efficiency relative to the top- 
erforming model in the existing literature. 
FLOPs estimation for both algorithms is performed during the 

nference phase rather than the training phase of the classification 
rocess. This phase entails only the forward pass of input data 
hrough the model to produce classifications, thereby focusing on 
he computational cost of e x ecuting the already trained model. 

 EX P ERIM ENTS  A N D  RESULTS  

n this section, we present and analyse the experimental results 
btained in our research on radio galaxy classification. We also 
ompare the performance and computational complexities of our 
ethod with other existing approaches in radio galaxy classification. 

.1 Performance 

e conducted a series of experiments to e v aluate the performance
f the proposed trainable COSFIRE filter approach. As detailed 
n Section 4 , our pipeline involves the automatic configuration of
OSFIRE filters and their application to training, validation, and test 
ata sets for each distinct class (Bent, Compact, FRI, and FRII). Our
rimary objective was to attain the highest classification accuracy 
or distinguishing among the four radio source classes. Through this 
igorous e v aluation process, we conducted an in-depth exploration 
f the trainable COSFIRE filters’ performance and their potential in 
he realm of radio source classification. 

We used the validation data set to determine the hyperparameters 
f the COSFIRE filter configuration ( σ , the set of radii P used to
onfigure COSFIRE filters, and t 1 ) and application ( σ ′ 

0 , and α). In
ur experimentation, we explored three values per hyperparameter 
s shown in Table 3 . This resulted in a total of 243 unique parameter
ets. F or ev ery unique set, we configured up to 100 COSFIRE
lters for each class, leading to a total of 400 COSFIRE filters. The
lters were configured by selecting random images from the training 
et. To compensate for the randomness of the image selection, we 
 x ecuted three e xperiments with the same set of hyperparameters
nd then took the average results across the three experiments. These
xperiments resulted in a 243 × 400 matrix of accuracy rates. We then 
dentified the maximum accuracy rate for each row (i.e. for each set
f hyperparameters). Importantly, multiple sets of hyperparameters 
ielded very close accuracies. Therefore, to account for all the 
yperparameters generating similar results, we performed a right- 
ailed student t -test statistic (Marshall & Jonker 2011 ) between the
ow with the global maximum accuracy rate and all the other rows.
 right-tailed student t -test statistic is used in hypothesis testing to
etermine if there is a statistically significant increase in the mean
erformance of one set of hyperparameters compared to another set 
r a specified benchmark. In our analysis, we disco v ered that 26 sets
f hyperparameters demonstrated performance levels that were not 
ignificantly lower than the performance of the best-performing set, 
eferred to as the ‘global maximum’. This implies that while these
6 sets did not necessarily outperform the global maximum, their 
erformance was comparable, indicating no significant statistical 
ifference in terms of inferiority. The average maximum accuracy of 
he experiments with these 26 sets of hyperparameters was achieved 
ith 93 COSFIRE filters per class on the validation set. 
Subsequently, we employed the COSFIRE filters in conjunction 

ith the corresponding classifiers, which were configured using 
6 distinct sets of hyperparameters determined previously on the 
alidation set, to the test data. The outcomes of this process are
raphically represented in Fig. 5 . This figure includes two principal
lots illustrating the variation in accuracy rates as a function of
he number of COSFIRE filters used. One plot delineates the 
erformance when the filters operate in a rotation-invariant manner, 
hile the other depicts the scenario without rotation invariance. Each 
lot is the average across the results obtained by the experiments
sing the 26 sets of hyperparameters, with the grey shading indicating 
he standard deviations. With 93 filters per class (as determined from
he validation data) and rotation invariance, the average accuracy 
n the test set is 93.36 ± 0.57 per cent (with the minimum being
2.24 per cent and the maximum being 94.31 per cent), whereas
ithout rotation invariance, the same filters yielded an average 

ccuracy of 82.25 ± 2.06 per cent. This performance trend is 
isually depicted in Fig. 5 , highlighting that as the number of
lters increases, the disparity in performance between including 
nd excluding rotation becomes more pronounced. Additionally, the 
gure shows that the model performance is more stable with rotation

nvariance than without it. The latter has high v ariability e ven with
ore COSFIRE filters. 

.2 Comparison with previous works 

he most direct comparison to our study is the research that used
enseNet-161 (Huang et al. 2017 ) and Siamese networks (Koch 
MNRAS 530, 783–794 (2024) 
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Figure 5. Accuracy rate achieved on the original test set (see Table 1 ) as 
a function of the number of COSFIRE filters used. The plots demonstrate 
how the av erage accurac y rate o v er the experiments with the determined 26 
sets of hyperparameters varies based on the number of COSFIRE filters used, 
considering both cases of rotation invariance and without rotation invariance. 
Specifically, employing 48 filters for each class approximates the 92 per cent 
accurac y lev el of DenseNet161, as reported by Samudre et al. ( 2022 ). Using 
93 filters per class, which led to the maximum average accuracy on the 
validation set, we achieve an accuracy of 93.36 per cent on the test set. The 
four spots indicate the accuracies achieved with 48 and 93 filters per class, 
both with and without rotation invariance. 

Figure 6. Number of tuples as a function of the number of COSFIRE filters 
used per class. The total number of tuples increases linearly with the increase 
in the number of COSFIRE filters per class, but the number of unique tuples 
increases sublinearly, since most tuples are shared among all COSFIRE 

filters and stored in the memory, hence requiring less computations. The 
total number of tuples required by 48 filters is very close to the number 
required by 93 filters. 
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t al. 2015 ) methodologies conducted by Samudre et al. ( 2022 ) on
he same data. In their work, they conducted their experiments on
wo versions of the data: the original and the balanced data set as
resented in Table 1 and Table 2 , respectively. According to their
eported results, Siamese networks and DenseNet-161 achieved the
ighest accuracies of 71.1 ± 0.40 per cent and 91.2 ± 0.60 per cent,
NRAS 530, 783–794 (2024) 
espectively, on the original data set. On the other hand, Siamese
etworks achieved 73.9 ± 0.50 per cent and DenseNet-161 achieved
2.1 ± 0.40 per cent accuracy on the balanced data set. Notably, our
OSFIRE approach achieves an accuracy of 93.36 ± 0.57 per cent
ithout data augmentation or any further image pre-processing. This

s more than 16 per cent reduction in the classification error rate
ompared to the DenseNet-161 model (Samudre et al. 2022 ). The
ignificant reduction in the error rate is mainly attributed to the
otation invariance properties of the COSFIRE approach. We did not
erform runs on the balanced data set (Table 2 ) since this would not
enerate new insights, as the data set was augmented through image
uplication of the minority classes. 

.3 Computational complexity 

.3.1 COSFIRE filter approach 

he FLOPs associated with the single convolution required by the
OSFIRE filter approach are computationally ine xpensiv e due to the
xploitation of the separability property of Gaussian filters. For the
eparability of the Gaussian filter, equation ( 13 ), the 2D Gaussian can
e written as the multiplication of two functions: one that depends on
 and the other that depends on y . In this case, the two functions are
he same and they are both 1D Gaussian. This reduces the number of
perations required to apply the filter to an image. For example,
pplying a 5 × 5 filter to an image requires 25 multiplications
er pixel, but applying two 1D filters of length 5 requires only
0 multiplications per pixel. Because the DoG function combines
wo Gaussian functions linearly, the separability property is also
reserved in the DoG function. 

 ( x , y ; σ ) = 

1 

2 πσ 2 
exp 

(
−x 2 + y 2 

2 σ 2 

)

= 

1 √ 

2 πσ
exp 

(
− x 2 

2 σ 2 

)
× 1 √ 

2 πσ
exp 

(
− y 2 

2 σ 2 

)
(13) 

Table 4 provides a breakdown of the FLOPs that are required by the
OSFIRE methodology at the inference stage. In that table, we use

he following set of hyperparameters as an example: σ = 5, P ∈ { 0, 5,
0, 15, 20 } , t 1 = 0.1, σ 0 = 0.5, and α = 0.1. The FLOPs computations
re mainly on the processes of conv olve-ReLU-blur -shift-combine.
 or a giv en image of 150 × 150 pixels and 400 COSFIRE filters, the

otal estimated number of FLOPs is ∼1.5 GFLOPs. Also, in order
o optimize the computational efficiency in a system using 4800
OSFIRE filters (i.e. 100 filters for each of the four classes applied

n 12 orientations) that collectively involve 64 284 tuples, we employ
he following strategy: 

(i) Elimination of redundancy : Recognizing that numerous tu-
les are repeated across these filters, we first isolate every distinct
uple from the entire set. In fact, the number of tuples increases
ublinearly with the increase in the number of COSFIRE filters used,
ig. 6 . 
(ii) Computation and storage : We calculate the response map

or each unique tuple only once. This response map is essentially a
odified version of the centre-on or centre-off DoG response map,

ubjected to blurring and shifting. We then store each computed
esponse map in a hash table for quick retrie v al, a v oiding redundant
omputations. 

(iii) Configuration sharing : Upon further analysis, we find that
he configurations of many COSFIRE filters share identical pairs of
uples. 
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Table 4. COSFIRE filter FLOPs estimation at inference stage. The FLOPs calculation in the columns FLOPs basic and FLOPs (computation with pre-computed 
response maps of pairs of tuples) are based on the number of tuples obtained when using a single image for inference. As an example here is a breakdown of 
FLOPs at each stage for the specific set of hyperparameters: σ = 5, P ∈ { 0, 5, 10, 15, 20 } , t 1 = 0.1, σ ′ 

0 = 0 . 5, and α = 0.1. In the FLOPs column, the symbol –
represents the equi v alent v alue from the FLOPs basic column. 

Step Formula FLOPs basic FLOPs 

Centre-On DoG sigma: Convolve the m × n (150 × 150) image with a 
DoG kernel whose size is s = 6 σ + 1 (here σ = 5). The expression a 
combines the product and summation operations, and the result is 
multiplied by 2 to account for the vertical and horizontal separable 
filters of the DoG functions. 

a = 2( mn (2 s − 1)) 2 745 000 –

Centre-off DoG (same sigma): Centre-off is simply the ne gativ e of the 
centre-on response map. 

b = mn 22 500 –

ReLU of centre-on DoG map: Assigns all values below t 1 to zero 
across the centre-on responses using ReLU acti v ation function. 

c = mn 22 500 –

ReLU of centre-off DoG map: Same as abo v e but for the centre-off 
response map. 

d = mn 22 500 –

Blurring: Similar to a , convolve the m × n (150 × 150) image with a 
DoG kernel of size: σ ′ 

k = � σ 0 + αρk � . The expression a is multiplied 
by two to account for centre-on and centre-off DoG response maps. The 
extent of blurring depends on the radii: 0, 5, 10, 15, and 20. The kernel 
size of the blurring function for the k -th radius is calculated as 
s k = 6 ̂ σk + 1: s 0 = 6(1) + 1 = 7, s 5 = 7, s 10 = 13, s 15 = 13, s 20 = 19. 

ˆ e ( ρk = 0) = 2(2( mn (2(7) − 1))) 1 170 000 –
ˆ e ( ρk = 5) = 2(2( mn (2(7) − 1))) 1 170 000 –

ˆ e ( ρk = 10) = 2(2( mn (2(13) − 1))) 2 250 000 –
ˆ e ( ρk = 15) = 2(2( mn (2(13) − 1))) 2 250 000 –
ˆ e ( ρk = 20) = 2(2( mn (2(19) − 1))) 3 330 000 –
e = 

∑ 

i∈{ 0 , 5 , 10 , 15 , 20 } ̂  e ( ρk = i) 
Shifting: Shift the two DoG response maps as many times as the 
number of all unique tuples t p across all COSFIRE filters. In our 
experiments, the t p was 3187 (with rotation invariance). 

f = mnt p 71 707 500 –

Multiplication: Compute the responses of all COSFIRE filters by 
multiplying the corresponding shifted response maps. The number of 
rotations is denoted by n r = 12. The variable n d = 4800 represents the 
number of COSFIRE filters, which here is set to 400 (100 per class) and 
multiplied by the total number of rotations ( n r = 12). T p represents the 
total number of tuples across all the COSFIRE filters ( T p = 64, 284). 
The set of total tuples configured considering rotation invariance have 
repetitions that do not need to be re-computed. In this step, we pair the 
tuples that appear more than once among the 64 284 tuples. Then, we 
only compute and store in the memory a single pair of the shared tuples 
(duplicates) to save on computations. Therefore, the FLOPS are 
calculated from the pre-computed response maps of pairs of tuples and 
those of unique tuples. 

g = mnT p − mnn d 1 338 390 000 937 305 300 

Hashkey: Before applying the multiplication operation, the shifted 
response map must first be retrieved from a hashtable residing in 
memory. The keys of this hashtable are determined by multiplying the 
first four prime numbers raised to given σ , δ, ρ and φ: h k = 2 σ 3 δ5 ρ7 φ . 
The retrie v al of each tuple response map from memory is therefore 7 
FLOPS. 

h = T p h k n r . 449 988 –

Taking the root for geometric mean: Geometric mean calculation 
operations for each response map of all n d COSFIRE filters. 

i = mnn d n r 108 000 000 –

Descriptor formation: Determination of a n dp = 400-element 
descriptor by taking the maximum value of each of the n dp response 
maps. 

j = mnn dp 9 000 000 –

Decision fusion of 10 SVM classifiers: SVM calculations depend on 
the number of decision function hyperplanes ( n hp ) given the number of 
classes under classification. This experiment uses the one-vs-one 
(‘ovo’) decision function approach, which means that n hp = z( z − 1)/2. 
In this case, z = 4 and hence n hp = 6. Each hyperplane separates one 
class from the rest of the classes. The number of FLOPs is therefore 
based on the dot products needed for one SVM between the given 
feature vector of size n dp and the n hp hyperplanes. Since the dot product 
involves multiplications and additions then one SVM takes 2 n dp n hp 

FLOPs. Having 10 SVM, this is repeated 10 times and finally, we 
choose the maximum which takes another 9 FLOPs. 

k = 10(2 n dp n hp ) + 9 48 009 –

Total FLOPs a + b + c + d + e + f + g + h + i + j + k 1 540 825 497 1 139 740 797 
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M

Figure 7. The number of FLOPs with and without the pre-computation of 
response maps of pairs of tuples against the number of COSFIRE filters per 
class. 
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(iv) Pairwise response maps : We compile a list of these common
uple pairs and pre-calculate the combined response map for each
air by performing a multiplication of the individual response maps.
(v) HashTable for pairs : The resulting combined response maps

f tuple pairs are also stored in a hash table. This ensures that the
esponse for any pair that is used by more than one filter can be
uickly fetched without recalculating it. 

By implementing this approach, we make the process more
fficient, as we a v oid unnecessary recalculations for both individual
uples and their pairs, which significantly reduce the computational
oad and speeds up the o v erall filtering process. Using this efficient
echnique, the total number of FLOPs required is reduced to ∼1.1
FLOPs; i.e. 26 per cent reduction in the FLOPs (comparison of
LOPs basic and FLOPs column values in Table 4 ). 
Similarly, conducting three trials with 26 sets of optimal hyperpa-

ameters from the validation data set, we noted a significant decrease
n FLOPs, as depicted in Fig. 7 , corresponding to an increasing
umber of COSFIRE filters. In fact, with reference to Fig. 7 and Fig.
 we demonstrate that we can achieve very high performance with
ewer filters using the COSFIRE approach. Using just 48 filters for
ach class yields an accuracy rate of 92.46 ± 0.76 per cent, with
 computational cost of 0.8 GFLOPs–approximately 20 times less
han the DenseNet161 model that achieves a similar result. 

.3.2 Convolutional neural networks 

alculating the FLOPs in a convolutional neural network involves
etermining the number of arithmetic operations performed during
he forward pass. This includes the multiplications and additions
etween the input data elements and the trainable convolution
ernels. The FLOPs computation takes into account factors such
s the input size, kernel size, number of filters, and the presence of
adding, dilation, and stride. Padding is the process of adding extra
ixels around the input image to maintain size post-convolution.
ilation refers to spreading out kernel elements to co v er a larger

nput area without increasing filter size. Stride is the step size of the
lter across the image, affecting downsampling. For a comprehensive
efinition and explanation of padding, dilation, stride, as well as a
eneral introduction to CNNs, we refer the reader to O’Shea &
NRAS 530, 783–794 (2024) 
ash ( 2015 ). A CNN convolutional operation with padding set to 0,
ilation set to 1, and stride set to 1, for simplicity (Freire et al. 2022 ),
an be summarized as follows: 

 

f 
x,y = φ

⎛ 

⎝ 

n H ∑ 

i= 1 

n W ∑ 

j= 1 

n C ∑ 

k= 1 

K 

f 

i,j ,k · I x + i −1 ,y + j−1 ,k + b f 

⎞ 

⎠ (14) 

n equation ( 14 ), the output of a specific convolutional layer is
enoted by y f x,y , which represents a feature map. Here, the superscript
 indicates the filter index, while the subscripts x , y , and k represent
he row, column, and channel indices of the output feature map,
espectively. The trainable convolution kernel is denoted by K 

f 

i,j ,k ,
nd it performs element-wise multiplications with the corresponding
nput elements of image I of dimensions n H × n W 

× n C . To meet
he input requirements of a DenseNet model, the original images
re resized from 150 × 150 to 224 × 224 × 3 pixels. The bias
erm b f is added to the sum, and the resulting value undergoes the
cti v ation function φ( ·) to generate the output feature map element
 

f 
x,y . This equation embodies the convolution operation in a CNN,
here each output feature map element is computed by convolving

he corresponding region of the input feature maps with trainable
lters and introducing non-linearity through the acti v ation function. 
The output size of the CNN at each layer is important when

alculating the FLOPs of the CNN architecture used. It is given
y, 

utputSize = 

[
n h + 2 p − k 

s 
+ 1 

]
, (15) 

here n h is the image input size, p is padding, k is the kernel size,
nd s is the stride. The number of FLOPs can then be estimated as: 

LOPs CNN = n f n i n k · OutputSize , (16) 

here n f is the number of filters. In each sliding window, there are
 i n k multiplications and the sliding window process needs to be
epeated as many times as the OutputSize. This entire procedure is
hen repeated for all n f filters. The estimated number of FLOPs of
he DenseNet-161 model is 15.6 GFLOPs based on the workflow by
o vraso v ( 2023 ); roughly GMACs = 0.5 ∗ GFLOPs. 4 Importantly,

he 15.6 GFLOPs calculations include the operations involving the
ense and acti v ation layers in the DenseNet architecture. Other
ommonly used CNN benchmarking architectures, such as AlexNet,
GG16Net, and ResNet50 for an image of size 224 × 224, require
.44, 31.04, and 8.26 GFLOPs, respectively, for processing an
mage. Original images would need to be resized from 150 × 150
o 224 × 224 × 3 pixels to align with the input specifications
f these models. The COSFIRE approach, besides its superior
omputational ef ficiency, of fers a distinct adv antage in terms of
exibility . Notably , the COSFIRE method stands out for its adaptable
rchitecture, allowing users to customize the number of COSFIRE
lters employed according to their specific needs. This flexibility

s a significant benefit, enabling efficient computation without
acrificing performance. In practice, utilizing merely 48 COSFIRE
lters per class results in an architecture that uses only 0.8 GFLOPs
nd approximates the same accuracy of 92 per cent achieved by
enseNet161 (see Fig. 7 ). 

 DI SCUSSI ON  

he proposed trainable COSFIRE filter approach, which is designed
o capture radio galaxies at different orientations, achieved better

https://github.com/sovrasov/flops-counter.pytorch
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esults than the CNN-based approach for radio galaxy classification 
n the same data set. This suggests that the trainable COSFIRE
lter approach can capture more rele v ant salient features of the radio
alaxy images than the CNN-based approach. The shape of radio 
alaxies that we observe depends on how their jets are oriented in
he plane of the sky; making rotation invariance crucial for robust
nd accurate galaxy classification. Therefore, for ef fecti ve model 
eneralization, it is imperative that a classification model remains 
nvariant to rotations, ensuring consistent predictions irrespective of 
he input’s orientation. 

In other similar studies, multiple approaches exist for addressing 
he challenge of rotation invariance using different data sets in radio 
stronomy (Becker et al. 2021 ; Scaife & Porter 2021 ; Brand et al.
023 ). Brand et al. ( 2023 ) showed that classification performance is
mpro v ed when the orientations of training galaxies are normalized 
s opposed to when no such attempt was made to address rotational
 ariations. They achie ved an accuracy of 96.10 per cent. In Scaife
 Porter ( 2021 ), group-equi v ariant CNNs were applied to capture

arious orientations of a given input galaxy, achieving an optimal 
ccuracy of 96.56 per cent. Moreover, the widely adopted data 
ugmentation pre-processing step in machine model development 
s another approach that also addresses this challenge of radio galaxy 
qui v ariance. Becker et al. ( 2021 ) applied this approach and achieved
 mean per class accuracy of 71.75 per cent. While data augmentation
s a useful tool, especially for small data sets, it increases the cost
f training the classification model. In addition, it requires domain 
no wledge to de velop a good augmentation strategy, which considers
ll possible equi v ariant transformations gi ven a galaxy image. The ro- 
ation invariance in the COSFIRE approach is intrinsic to the method 
nd does not require data augmentation. This makes the approach 
ore robust, versatile, and completely data-driven, with no domain 

xpertise required, and hence highly adaptable to various computer 
ision applications. Importantly, our results align with the studies 
iscussed abo v e that e xplore various approaches to enhance robust-
ess against different orientations of radio galaxies. Ho we ver, those 
pproaches use different data sets and processing steps, making them 

ot directly comparable. This provides an avenue for further research, 
here a common data set and consistent processing steps would be 

pplied to assess performance and energy requirements for a scal- 
ble, robust, and rotation-invariant radio astronomical classification 
odel. 
CNN-based networks are computationally e xpensiv e. F or instance, 

he forward pass of DenseNet161 consumes ∼15.6 GFLOPs. On the 
ther hand, the COSFIRE filter approach demonstrates efficiency by 
tilizing a substantially lower number of FLOPs (Fig. 7 ), resulting
n significantly lower demand for computational resources. The 
orkflow of the COSFIRE approach is also more flexible than 

onventional CNN architectures. The number of filters used is 
 hyperparameter of this paradigm, which is in contrast to the 
xed number of filters used in its counterpart. Our approach, 
ased on the COSFIRE filter, is a no v el algorithm for the clas-
ification of radio galaxies and comes with a low computational 
ost. 

 C O N C L U S I O N  

n this work, we introduce a no v el descriptor based on trainable
OSFIRE filters for radio galaxy classification. We combine this 
escriptor with an SVM classifier using a linear kernel and achieve 
etter performance compared to the only previous work on the data 
et proposed by Samudre et al. ( 2022 ). 5 The previous study utilized a
enseNet161 transfer learning-based pre-trained network and few- 

hot learning-based Siamese networks, as detailed in Samudre et al. 
 2022 ). Our technique is computationally ine xpensiv e ( ∼20 × lower
ost with the same accuracy as the DenseNet161 model), rotation 
nvariant, free from data augmentation and does not rely on domain
xpert knowledge. These features make our technique not only 
f fecti ve (in terms of accuracy) but also efficient (in terms of FLOPs)
or radio galaxy image classification tasks. We achieved a better 
ccuracy of 93.36 per cent compared to 92.10 per cent which was
chieved by the DenseNet161 model. 

This work contributes to the field of radio astronomy by providing
n alternative technique for identifying and analysing radio sources. 
s the next-generation telescopes (such as LOFAR, MeerKAT, and 
KA) produce high-resolution images of the sky, our future work 
ill explore the ef fecti veness of our methodology on these new data

nd assess the possibility of cross-surv e y predictions. 
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