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ABSTRACT

Radio galaxies exhibit a rich diversity of morphological characteristics, which make their classification into distinct types a
complex challenge. To address this challenge effectively, we introduce an innovative approach for radio galaxy classification
using COSFIRE filters. These filters possess the ability to adapt to both the shape and orientation of prototype patterns within
images. The COSFIRE approach is explainable, learning-free, rotation-tolerant, efficient, and does not require a large training set.
To assess the efficacy of our method, we conducted experiments on a benchmark radio galaxy data set comprising of 1180 training
samples and 404 test samples. Notably, our approach achieved an average accuracy rate of 93.36 per cent. This achievement
outperforms contemporary deep learning models, and it is the best result ever achieved on this data set. Additionally, COSFIRE
filters offer better computational performance, ~20 x fewer operations than the DenseNet-based competing method (when
comparing at the same accuracy). Our findings underscore the effectiveness of the COSFIRE filter-based approach in addressing
the complexities associated with radio galaxy classification. This research contributes to advancing the field by offering a robust
solution that transcends the orientation challenges intrinsic to radio galaxy observations. Our method is versatile in that it is
applicable to various image classification approaches.

Key words: methods: data analysis —methods: statistical —techniques: image processing — galaxies: active —radio continuum:

galaxies.

1 INTRODUCTION

Classifying radio galaxies according to their morphology is essential
for understanding the physical processes that shape and transform
radio galaxies (Hossain et al. 2023; Ndung’u et al. 2023). Automating
radio galaxy classification is particularly important for ongoing and
upcoming sky surveys: the large volumes of high-resolution data
from modern telescopes such as the LOw-Frequency ARray (LO-
FAR) produce raw data at rates of order TB/s (Rafferty et al. 2013;
Shimwell et al. 2022), making manual classification impractical,
while public citizen science classification initiatives such as Radio
Galaxy Zoo (Banfield et al. 2015) and LOFAR Galaxy Zoo' are both
time-consuming and rely on the consensus of multiple volunteers.
Clearly, these cannot meet the need to label large samples of images
[such as the 4.4 million radio source catalogue produced by Shimwell
etal. (2022)] promptly, so new methods are required to meet the needs
of astronomical population studies. Recently, the development of var-
ious innovative machine/deep learning techniques has proven highly
effective — achieving remarkable accuracies exceeding 90 per cent
(Aniyan & Thorat 2017; Samudre et al. 2022; Ndung'u et al.
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2023). These classification models are both robust and generalizable.
Despite the limited sample sizes of labelled astronomical data sets
(on the order of 10%), the algorithms have attained generalizability
through strategies such as data augmentation and regularization
techniques to mitigate overfitting (Aniyan & Thorat 2017; Maslej-
Kresiidkova, El Bouchefry & Butka 2021; Tang et al. 2022).
Extragalactic radio sources can be differentiated based on the
luminosity and the relative positions of the low- and high-brightness
regions of the radio sources. Building on the findings of Fanaroff
& Riley (1974), their radio galaxy classification system, commonly
known as the Fanaroff & Riley (FR) scheme, has gained widespread
acceptance. Consequently, radio galaxies are now primarily cate-
gorized into four distinct groups, differentiated by their intrinsic
morphological characteristics, as outlined by Alhassan, Taylor &
Vaccari (2018). The most important two are the Fanaroff & Riley I
(FRI) and the Fanaroff & Riley II (FRII) (Fanaroff & Riley 1974).
The FRI galaxies have (sometimes diffuse) radio jets and are brighter
towards their central core. FRII galaxies, on the other hand, are
sources with lobes that are spatially separated from the core. The
lobes are the brightest components, outshining both the core and
the jets. As a result, the radio emission appears dimmer towards
the centre of the galaxy. The third and most common category of
radio galaxies is the Compact class, which refers to point-like radio
sources (Baldi, Capetti & Giovannini 2015; Baldi, Capetti & Massaro
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Compact FRI FRII Bent

Figure 1. (a)-(c) Sample illustration of the Compact, FRI, FRII and Bent
radio sources morphological appearance. (d) Maximum image superposition
of all Compact, FRI, FRII, and Bent radio galaxies from the data set used in
this paper.

Table 1. The size of the original data set distributed across the training,
validation, and test categories.

Source catalogue Type Total  Training  Validation Test
Proctor Bent 508 305 100 103
FROCAT & CoNFIG Compact 406 226 80 100
FRICAT & CoNFIG FRI 389 215 74 100
FRIICAT & CoNFIG  FRII 679 434 144 101
Total 1982 1180 398 404

2018). The Compact sources are similar to FRI, however, they have a
higher radio core dominance and radio luminosity (Baldi et al. 2018)
— making it a unique class from FRI. The fourth category is Bent,
which is composed of radio sources with jets that are bent at an angle,
either in a narrow-angled tail (NAT) or a wide-angled tail (WAT)
configuration (Rudnick & Owen 1976). The four-class scheme was
adopted to maintain consistency and facilitate comparison with other
related methods. Radio sources contained within images obtained
from highly sensitive, high-resolution telescopes are more resolved,
and as such, it is easier to categorize and classify them correctly.
This is especially true when it comes to the Compact and Bent radio
source classes (Baldi et al. 2018; Harwood, Vernstrom & Stroe 2020).
This implies that some sources, given current resolutions, which are
labelled as Compact sources, may in actual fact be unresolved FR
galaxies. It is also important to mention that radio data set creators
have in the past added unresolved sources to the Compact class
(Becker et al. 2021). In Fig. 1 we illustrate a few examples of each of
the four classes as well as superimposed variants created by utilizing
all images from the data set described in Table 1. In addition to the
difficulties related to their shape characteristics, the classification
of FRI, FRII, and Bent galaxies is further exacerbated by the fact
that the galaxies in the data set have differing orientations. Upon
visual inspection, it becomes apparent that each category exhibits a
discernibly distinct brightness distribution. Nonetheless, it is worth
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noting that the FRII and Bent classes share substantial similarities,
thus making it difficult to discern between the two classes and a
challenging task to differentiate them.

In this paper, we propose a lightweight paradigm that involves
trainable COSFIRE (Combination of Shifted Filter Responses)
filters (Azzopardi & Petkov 2012a; Azzopardi, Greco & Vento
2016a). This approach is efficient, learning-free, rotation-tolerant,
explainable, and does not require a large training set. The imple-
mentation of a COSFIRE-based classification pipeline is relatively
easy and straightforward from a conceptual standpoint as described
in Section 4. It involves the configuration of COSFIRE filters
(Azzopardi & Petkov 2012a) whose selectivity of each filter is
automatically determined from the shape properties of a single
training example. The objective is to set up multiple filters, whose
combined responses generate a feature signature for the type of
galaxy present in an image. This approach is analogous to how
visual cells in the mammalian brain are thought to encode visual
information, a concept known as population coding (Pasupathy &
Connor 1999, 2002). COSFIRE filters have been applied in various
computer vision tasks: retina image analysis (Azzopardi et al. 2015;
Strisciuglio, Azzopardi & Petkov 2019; Ramachandran et al. 2020),
crack detection (Strisciuglio, Azzopardi & Petkov 2017), traffic sign
recognition (Gecer, Azzopardi & Petkov 2017), keyword spotting
in handwritten manuscripts (Azzopardi & Petkov 2014), machine
vision (Azzopardi et al. 2016b), delineation of apposing mitochon-
dria in electron microscopy images (Aswath et al. 2023), gender
recognition from face images (Azzopardi et al. 2016a), contour
detection in images with natural scenes (Azzopardi & Petkov 2012b),
and handwritten digit classification (Azzopardi & Petkov 2013). In
this work, COSFIRE filters are configured to extract the hyperlocal
geometric arrangements that uniquely describe the patterns of radio
sources (in terms of blobs) in a given image.

The rest of the paper is structured as follows. Section 2 presents
the current state-of-the-art approaches. Section 3 describes the data
set used in this study. Section 4 describes the proposed COSFIRE-
based paradigm. Section 5 presents the evaluation criteria used to
assess the performance of our approach. Section 6 describes the
experiments and the results obtained. Section 7 provides a discussion
of the results obtained in relation to the relevant work. Finally, we
draw conclusions in Section 8.

2 RELATED WORKS

End-to-end learning, particularly through convolutional neural net-
works (CNNs), has dominated the field in recent years. In particular,
Aniyan & Thorat (2017), used the AlexNet architecture (Krizhevsky,
Sutskever & Hinton 2017), calling the trained model Toothless,? to
achieve accuracies of 91 per cent, 75 per cent, and 95 per cent for
the FRI, FRII, and Bent-tailed morphologies, respectively (on a data
set they assembled from various catalogues). Subsequently, notable
incremental breakthroughs have been made in the applications
of deep learning to the field of radio astronomy, ranging from
shallow CNN architectures (Lukic et al. 2019) to deep and complex
architectures such as DenseNet (Huang et al. 2017; Samudre et al.
2022). Furthermore, other noteworthy advancements within the field
are: model-centric strategies such as group-equivariant CNNs (G-
CNNs) (Scaife & Porter 2021) to support equivariance translations
on various isometries of radio galaxies and multidomain multibranch
CNNs (Tang et al. 2022) to allow models to learn jointly from various

Zhttps://github.com/ratt-ru/toothless
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survey inputs; data-centric approaches such as data augmentation
(Ma et al. 2019; Maslej-Kresnidkovd et al. 2021; Kummer et al. 2022;
Slijepcevic et al. 2022); transfer learning (Lukic et al. 2019; Tang,
Scaife & Leahy 2019), and N-shot learning (Samudre et al. 2022)
(algorithms that have been developed to optimally utilize limited
amounts of supervised information while mitigating obstacles such
as overfitting) to overcome the limited availability of annotated data
sets in radio astronomy. These models have been shown to perform
competitively, providing promising alternatives to prior models such
as the one by Aniyan & Thorat (2017), which showed signs of
overfitting.

Feature-based pipelines offer a more traditional approach, involv-
ing handcrafted features, and have been explored for the morpholog-
ical classification of Fanaroff-Riley (FR) radio galaxies (Becker et al.
2021; Ntwaetsile & Geach 2021; Sadeghi, Javaherian & Miraghaei
2021; Darya et al. 2023). These approaches are not end-to-end as
they decouple the feature description and the classification model.
They rely heavily on the use of handcrafted feature descriptors, such
as Haralick features derived from the Grey Level Co-occurrence
Matrix (Haralick, Shanmugam & Dinstein 1973; Ntwaetsile &
Geach 2021). Gradient boosting methods (Friedman 2002), including
XGBoost (Chen & Guestrin 2016), LightGBM (Ke et al. 2017), and
CatBoost (Dorogush et al. 2018), are also utilized in this context.
This emphasis on deliberate feature engineering has been shown
to produce promising results (Sadeghi et al. 2021), particularly in
smaller data sets. For instance, Darya et al. (2023) demonstrated that
these feature-based methods can be as effective as CNN-based deep
learning models when applied to data sets of around 10 000 images
or fewer.

CNNss are regarded as the state-of-the-art in various image clas-
sification applications (Aniyan & Thorat 2017; Lukic et al. 2019;
Scaife & Porter 2021; Tang et al. 2022). However, they require large
amounts of training data and are susceptible to overfitting when
trained with small data sets, which is the case in radio astronomy.
Moreover, the high computational demands of deep architectures for
training and applying CNNs often require GPUs, which can be costly
and limit their applicability in resource-limited settings. Additionally,
CNN-based models lack insufficient intrinsic robustness to rotations.
To address rotational variations in radio sources, multiple approaches
have been taken. One approach is to utilize group-equivariant CNNs,
where the network is designed to capture the diverse orientation
information of a given input galaxy in encoded form (Scaife & Porter
2021). Another method involves augmenting the training data by
applying rotations to the training samples, enabling the CNNs to learn
different orientations of the classes. Furthermore, a pre-processing
step can be employed to standardize the rotation of all radio sources.
This may be achieved by using principal component analysis to align
the galaxies’ principal components with the coordinate system’s axes,
effectively normalizing their orientations (Brand et al. 2023).

As evident from this literature review, numerous challenges re-
main, including the need for efficient (computationally inexpensive)
and rotationally invariant methods. In this work we address these
limitations with the proposed COSFIRE filter approach.

3 DATA

The data set of radio galaxies used in this paper was compiled and
processed by Samudre et al. (2022). It was constructed by selecting
well-resolved radio galaxies from multiple catalogues: Proctor cata-
logue (Proctor 2011) for the Bent radio galaxies; FROCAT catalogue
(Baldi et al. 2018) and Combined NVSS-FIRST galaxies catalogue
(CoNFIG) (Gendre & Wall 2008; Gendre, Best & Wall 2010) for
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Table 2. The size of the balanced data set distributed across the training,
validation, and test categories.

Source catalogue Type Total  Training  Validation  Test
Proctor Bent 680 433 144 103
FROCAT & CoNFIG Compact 675 431 144 100
FRICAT & CoNFIG FRI 674 430 144 100
FRIICAT & CoNFIG  FRII 679 434 144 101
Total 2708 1728 576 404

Compact radio galaxies; FRICAT catalogue (Capetti, Massaro &
Baldi 2017a) and CoNFIG catalogue for FRI radio galaxies and
finally FRIICAT catalogue (Capetti, Massaro & Baldi 2017b) and
CoNFIG catalogue for FRII radio galaxies. In this paper, we utilize
this data set to perform comparative analyses, specifically in relation
to the work conducted by Samudre et al. (2022).

The initial data set is composed of the following classes: Compact
(406 samples), Bent (508 samples), FRI (389 samples), and FRII (679
samples). These samples are further divided into training, validation,
and testing sets as shown in Table 1. According to Samudre et al.
(2022), the original data set’s underrepresented classes were balanced
by adding randomly duplicated samples to the training and validation
data sets. Table 2 depicts the distribution of the balanced data set.

The images were pre-processed by utilizing sigma-clipping with
a threshold of 30 (Aniyan & Thorat 2017). This technique involves
eliminating or discarding pixels that have background noise levels
above or below 3 standard deviations from the mean (Aniyan &
Thorat 2017).

Although more recent catalogues exist, as described by Ndung’u
et al. (2023), the latest catalogues, such as the LOFAR Two-metre
Sky Survey — Data Release I & II (Shimwell et al. 2019, 2022),
are not annotated according to the Fanaroff & Riley classification
scheme. Consequently, they were not utilized in this study, as their
inclusion would hinder direct comparison of our results with other
related methods. Instead, they are labelled by automated tools such as
the Python Blob Detector and Source-Finder (PyBDSF) (Mohan &
Rafferty 2015) that categorize astronomical sources into three types:
‘S’ for single isolated sources modelled with one Gaussian, ‘C’ for
sources that are within a group but can be individually modelled with
a single Gaussian, and ‘M’ for extended sources that need multiple
Gaussians for accurate modelling. This system aids in the efficient
identification and analysis of space emissions.

4 METHODS

This section gives a comprehensive description of the methodology
that we propose for radio galaxy image classification with the
COSFIRE filter approach. We explain the process of radio source
blob detection, the configuration of COSFIRE filters with rotation
invariance, the formation of feature descriptors, and the utilization
of these descriptors for classification.

4.1 Blob detection

Blob detection is a technique used for identifying points or regions
in an image that exhibit a sudden change in intensity (areas that are
either brighter or darker than the surrounding areas), known as a
‘blob’. This approach enables the identification of regions that may
correspond to objects or structures of interest within an image; in our
case radio source(s). In computer vision, one of the commonly used
blob detectors is based on the Laplacian of Gaussian (LoG) (Wang,

MNRAS 530, 783-794 (2024)
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Lopez-Molina & De Baets 2017, 2020). The LoG is the second-order
derivative of the Gaussian function, which we denote by G(x, y):

1 x2+y?
G(xs y’U) = ) exp (_ 262 s (])

where o is the standard derivation. The Laplacian of Gaussian is
typically estimated by a Difference-of-Gaussian (DoG) function,
which is separable, and thus convolving it with a 2D image is much
more computationally efficient. Given two Gaussian functions, G,
and G, with their respective standard deviations o; and o, the
Gaussians are defined as:

1 x4+ y2
Gi(x,y; = ——eX — 2
l(x y Gl) 27_[012 Y ( 2012 ( )

1 x2 + y2
Go(x,y; = — 3
2(X Yy 02) 27TO'22 €xXp ( 20_22 ) ( )

The DoG function is obtained by subtracting one Gaussian function
from another, each having a different standard deviation:

DoG(x, y;01,02) = Gi(x, y;01) — Ga(x, y; 02) 4

For a point (x, y) and an image I with intensity distribution I(x’, y),
we calculate the response ¢, o, (x, ¥) of a DoG filter with a kernel
function DoGy, o, (x — x’, y — y’) by convolution:

Cop,0, (X, ¥) = ReLU(I * D0Gy, 5, )1, » &)

where ReLU is a rectification linear unit, as adapted from Nair &
Hinton (2010), and it serves as an activation function that assigns
zero to all values below the given threshold ¢, [see equation (6)], and
* represents convolution,

0ifx <1
x ifx > 1

ReLU(x) = { (6)

When o, < o, we refer to the resulting DoG function as a centre-
on DoG or DoG™ for brevity, with the central region (radio source)
exhibiting a positive response and the surrounding (background)
exhibiting a negative response. Conversely, when o, < o the
configuration results in a centre-off DoG function, which we denote
by DoG™. In this work, we adopt the approach used by Azzopardi
et al. (2015) and always set the smaller standard deviation to be half
of the larger standard deviation.

The centre-on DoG filter highlights bright blobs on a dark
background and is more sensitive to intensity increases at the centre
of the blob. This filter is effective in detecting and highlighting areas
of the image with radio sources (blobs) relative to the background
noise and is less sensitive to edges or sharp changes in intensity. On
the other hand, the centre-off DoG filter highlights dark blobs on a
bright background and is more sensitive to intensity decreases at the
centre of the blob. This filter responds well to corners and edges and
is less sensitive to objects or regions of uniform intensity. Therefore,
both centre-on and centre-off DoG filters are used to detect blobs
or regions of interest in an image, see Fig. 2 for an illustration on
Compact, FRI, FRII, and Bent radio sources. The DoG filter is a type
of band-pass filter that can eliminate high-frequency components
that represent noise as well as some low-frequency components that
represent homogenous areas.

4.2 COSFIRE filter configuration

A COSFIRE filter is automatically configured by examining the
shape properties of a given prototype pattern of interest in an image,
which ultimately determines its selectivity. The process of configura-
tion can be summarized in three main steps: convolve-ReLU-keypoint
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Compact FRI FRII Bent

.

Figure 2. Centre-on and centre-off DoG filter response maps obtained with
convolution on example images from the Compact, FRI, FRII, and Bent
classes of radio sources, utilizing a standard deviation o of 3 for the outer
Gaussian function. The images are of size 150 x 150 pixels.

Radio source

Centre-off DoG
response maps

Centre-on DoG
response maps

detection. The first two steps involve the convolution of centre-on and
centre-off DoG filters followed by ReLU as described above. Finally,
keypoint detection requires the determination of local maximum
thresholded DoG responses along a set of concentric circles around
a point of interest. The point of interest is a location in the image
that characterizes the radio source(s), and consequently it is the
location where the configured COSFIRE filter is expected to respond
maximally. For this application, we use the centre of the image as the
point of interest, but in principle, any location can be used for this
purpose. The number and radii of the concentric circles along with the
threshold #; used by the ReLU function are hyperparameters of the
COSFIRE approach. A keypoint denoted by k, which is identified
as a local maximum of a DoG filter along a concentric circle, is
characterized by a four-element tuple: (o, 8, px, ¢r). Here, oy and
8x indicate the standard deviation of the outer Gaussian function
of the DoG function and its polarity (centre-on or centre-off) that
achieved the highest response in the polar coordinates with radius p;
at an angle of ¢, radians with respect to the given point of interest.
We denote by Cy a COSFIRE filter, which is represented as a list of
such tuples:

Cr ={(ok: 8 o> ) | k=1, n}, @)

where n refers to the number of DoG responses considered in Cy,
which plays a crucial role in the selectivity and generalization of the
COSFIRE filter. Typically, selectivity increases and generalization
decreases with increasing value of n (i.e. number of keypoints).

Fig. 3 demonstrates the automatic configuration of a COSFIRE
filter, showcasing the superposition of centre-on and centre-oftf DoG
response maps derived from a Bent class image in the training set,
the one shown in Fig. 2. The example uses two concentric circles
and the resulting COSFIRE filter is a set of ten tuples describing the
ten keypoints indicated in Fig. 3(b). The keypoints are identified at
the positions along the circles where the DoG responses reach local
maxima.
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Figure 3. Example of keypoint detection for the configuration of a COSFIRE
filter. (a) A Bent class image of the superposition of a centre-on and a centre-
off DoG response maps. This is the same example used in the last column
of Fig. 2. (b) The ten dots indicate the ten keypoints that are identified in
locations that exhibit local maximum DoG values along the given two radii
with respect to the centre (x, y).

4.3 COSFIRE filter response

The response of a COSFIRE filter Cy for a given (x, y) location is
computed by combining the responses of the DoG functions whose
scale o, polarity &, and position (o, ¢x) With respect to (x, y) are
indicated in the set Cy. The process of computing the response can be
summarized in five main steps: convolve-ReLU-blur-shift-combine.
The convolve step refers to the convolution of centre-on and centre-
oft DoG filters followed by the ReLU operation that sets to zero all
values below the given threshold ¢;. These are the same two steps that
were required for the configuration described above. Then, in order
to allow for some tolerance in the preferred positions of the involved
DoG responses, we blur each DoG response with a Gaussian function
G,/(x',y"), whose standard deviation ¢ is a linear function of the
distance p: 0’ = oy + apr], with o) and « being hyperparameters.
Moreover, we shift the blurred responses in the direction opposite of
the polar coordinates such that all DoG responses of interest meet
at the same (x, y) location. Finally, the combine step is implemented
as suggested by Azzopardi & Petkov (2012a), where a COSFIRE
filter response, which we denote by r¢,, is obtained by the geometric
mean function that combines all blurred and shifted thresholded DoG
responses:

re,(x,y) = (Hzak,ak,,,k,d,k(x, y)> , (8)

k=1

where
2018k i b (x,y) = I?%?F{an (x — Axg — X’, y— Ay — }’/)Ga’(xl! )’/)}
()

is the combined blurred and shifted DoG filter response map of
tuple k. The shifting operation displaces each blurred DoG response
of interest to the support centre of the COSFIRE filter. The shift
vector is denoted by (Axy, Ay;), where Axy = —prcos ¢y and Ayy
= —psin ¢g. Additionally, —30’ <X,y < 30’.

4.4 Tolerance to rotations

Tolerance to rotations can be attained by configuring multiple
COSFIRE filters using rotated versions of a single prototype pattern.
An effective approach to achieve this involves defining new filters
by modifying the parameters of an existing COSFIRE filter. For
instance, consider a COSFIRE filter denoted as Cy,, designed to
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be selective for the same underlying pattern that was employed to
configure the original COSFIRE filter Cy, but rotated by  radians.
This new filter is defined as follows:

Cy, = {(ok, Sk, pis B + V) | ¥ (0%, Sk, prs Pi) € Cy} (10)

The rotation-tolerant response of a COSFIRE filter 7c, is then
achieved by taking the maximum response across all COSFIRE filters
selective for the same pattern at 12 equally-spaced orientations:

fcf(x, y) = max {"Cfv,(x.y) Vi el{0,m/6,..., 1171/6}} (11)

4.5 COSFIRE descriptor

For a given image, a COSFIRE descriptor, which we denote by
D and define below, is generated by applying all COSFIRE filters
in rotation-tolerant mode and extracting the maximum value from
each filter, regardless of its location. Consequently, for a set of A
filters, the resulting description of a given image is represented by a
A-dimensional vector.

D= [max {fcf](x,y)},...,max{fch(x,y)}] (12)
x,y xy

This concept is inspired by neurophysiology research, which
suggests that the shape representation of a stimulus is based on the
combined activity of a group of shape-selective neurons in area V4
(Wielaard et al. 2001; Azzopardi & Petkov 2012b; Weiner & Ghose
2015). V4 cells are neurons in the visual cortex that are involved in
form perception, recognizing objects and their features such as shape
(Weiner & Ghose 2015).

4.6 COSFIRE descriptor pre-processing

The only pre-processing step done to the COSFIRE descriptors is L2
normalization (Dai et al. 2018). L2 normalization is performed by
dividing the original vector by its magnitude, where the magnitude is
calculated as the square root of the sum of the squares of the vector’s
elements. This process effectively scales the vector to have a unit
length in Euclidean space. The key advantage of L2 normalization is
its ability to make the descriptors robust to variations in illumination
and contrast. By ensuring that the magnitude of feature vectors is
consistent, L2 normalization enables more accurate and reliable
comparisons between features extracted from images with varying
conditions, such as different contrast or brightness levels, thereby
improving the performance of image classification and recognition
tasks.

4.7 Classification model

The SVM model, introduced by Cortes & Vapnik (1995), has been
selected for the classification of COSFIRE-based image descriptors
due to its capacity to handle high-dimensional data, manage outliers,
and achieve robust generalization. The training of the SVM model is
conducted using the COSFIRE descriptors extracted from a training
set that encompasses four distinct classes of radio galaxies. Given
the imbalance in class distribution of the training set, as highlighted
in Table 1, we utilize a bagging (bootstrap aggregating) approach
to train an ensemble of classification models. This method involves
creating balanced subsets of the training data for each model in the
ensemble. Employing balanced subsets effectively reduces biases
toward the majority classes, enhancing the overall performance and
fairness of the classification. The inherent advantage of the bagging
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Figure 4. A graphic representation of the proposed COSFIRE-based pipeline for radio galaxy classification for both training and inference phases. The training
phase involves configuring COSFIRE filters, extracting descriptors, and training an ensemble of classifiers using a bagging approach. Specifically, we create k
= 10 classifiers (where i represents an individual classifier in this series). These models are applied in the inference stage and the label of the given image is

determined by decision fusion.

strategy, as proposed by Breiman (1996), not only addresses the
skewness in class distribution but also improves the generalization of
the ensemble to unseen data by aggregating diverse models trained
on varied representations of the data. Fig. 4 illustrates the entire
process of training and inference. In the training phase, we employ a
resampling technique with replacement to randomly select balanced
subsets of images from each class. To achieve this balance, we
calculate two-thirds of the size of the majority class (in this case,
434), which results in 290 images. By selecting 290 images from each
class, we also ensure that the resulting balanced subset is roughly
the same size as the original imbalanced training set. Using these
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balanced subsets, we then train a set of ten different SVM models.
In the inference phase, we use the ten SVM models to perform
classification by aggregating their predictions on the test data set.
In practice, the subset size and the number of classifiers are two
hyperparameters of the bagging approach, which can be fine-tuned
by cross validation. For the individual SVM models, we use default
parameter values,’ including a linear kernel and a cost parameter C

3https://github.com/cjlin1/libsvm/blob/master/matlab/svmtrain.c

$20z Aepy gz uo Jasn uabuiuols) ysusisAuNsyiiy Aq v/ £¥£9//€8//1/0ES/3101LE/SBIUW /W02 dNO"dIWapeae//:sdy Wol) PaPEOjUMO(]


https://github.com/cjlin1/libsvm/blob/master/matlab/svmtrain.c

set to 1. The fine-tuning of the SVM hyperparameters is beyond the
scope of the proposed COSFIRE paradigm.

5 PERFORMANCE METRICS FOR
EVALUATION

5.1 Accuracy

As in prior research on morphological classification (Lukic et al.
2019; Samudre et al. 2022), we evaluate the performance of the
proposed COSFIRE approach following the widely adopted accuracy
metric, which computes the proportion of correctly classified images
out of the total number of images tested.

5.2 Floating point operations

Floating point operations (FLOPs) are a measure of computer
performance that indicates the number of floating-point operations
that a processor executes to complete a task. This measurement
is commonly used in scientific programs/applications that heavily
depend on floating-point (FP) calculations such as CNNs. In Sec-
tion 6.3, we explain in detail how the computational complexity of our
approach is measured in terms of the number of FLOPs required. We
then benchmark this against the DenseNet161 classification model,
which achieved the highest performance on the same data set we
employ, as reported by Samudre et al. (2022). This comparison
aims to contextualize our approach’s efficiency relative to the top-
performing model in the existing literature.

FLOPs estimation for both algorithms is performed during the
inference phase rather than the training phase of the classification
process. This phase entails only the forward pass of input data
through the model to produce classifications, thereby focusing on
the computational cost of executing the already trained model.

6 EXPERIMENTS AND RESULTS

In this section, we present and analyse the experimental results
obtained in our research on radio galaxy classification. We also
compare the performance and computational complexities of our
method with other existing approaches in radio galaxy classification.

6.1 Performance

We conducted a series of experiments to evaluate the performance
of the proposed trainable COSFIRE filter approach. As detailed
in Section 4, our pipeline involves the automatic configuration of
COSFIRE filters and their application to training, validation, and test
data sets for each distinct class (Bent, Compact, FRI, and FRII). Our
primary objective was to attain the highest classification accuracy
for distinguishing among the four radio source classes. Through this
rigorous evaluation process, we conducted an in-depth exploration
of the trainable COSFIRE filters’ performance and their potential in
the realm of radio source classification.

We used the validation data set to determine the hyperparameters
of the COSFIRE filter configuration (o, the set of radii P used to
configure COSFIRE filters, and ¢;) and application (o, and «). In
our experimentation, we explored three values per hyperparameter
as shown in Table 3. This resulted in a total of 243 unique parameter
sets. For every unique set, we configured up to 100 COSFIRE
filters for each class, leading to a total of 400 COSFIRE filters. The
filters were configured by selecting random images from the training
set. To compensate for the randomness of the image selection, we
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Table 3. Search space for hyperparameter tuning of COSFIRE filters. This
table lists the sets of values for each hyperparameter that were explored to
determine the optimal configuration of COSFIRE filters.

Parameter name Values

o {5.6,7}
{0, 5, 10, 15, 20},

P {0, 5, 10, 15, 20, 25},
{0, 5, 10, 15, 20, 25, 30}

f {0.05,0.1,0.15}

06 {0.5,0.75, 1}

o {0.1,0.15,0.2}

executed three experiments with the same set of hyperparameters
and then took the average results across the three experiments. These
experiments resulted in a 243 x 400 matrix of accuracy rates. We then
identified the maximum accuracy rate for each row (i.e. for each set
of hyperparameters). Importantly, multiple sets of hyperparameters
yielded very close accuracies. Therefore, to account for all the
hyperparameters generating similar results, we performed a right-
tailed student #-test statistic (Marshall & Jonker 2011) between the
row with the global maximum accuracy rate and all the other rows.
A right-tailed student z-test statistic is used in hypothesis testing to
determine if there is a statistically significant increase in the mean
performance of one set of hyperparameters compared to another set
or a specified benchmark. In our analysis, we discovered that 26 sets
of hyperparameters demonstrated performance levels that were not
significantly lower than the performance of the best-performing set,
referred to as the ‘global maximum’. This implies that while these
26 sets did not necessarily outperform the global maximum, their
performance was comparable, indicating no significant statistical
difference in terms of inferiority. The average maximum accuracy of
the experiments with these 26 sets of hyperparameters was achieved
with 93 COSFIRE filters per class on the validation set.

Subsequently, we employed the COSFIRE filters in conjunction
with the corresponding classifiers, which were configured using
26 distinct sets of hyperparameters determined previously on the
validation set, to the test data. The outcomes of this process are
graphically represented in Fig. 5. This figure includes two principal
plots illustrating the variation in accuracy rates as a function of
the number of COSFIRE filters used. One plot delineates the
performance when the filters operate in a rotation-invariant manner,
while the other depicts the scenario without rotation invariance. Each
plot is the average across the results obtained by the experiments
using the 26 sets of hyperparameters, with the grey shading indicating
the standard deviations. With 93 filters per class (as determined from
the validation data) and rotation invariance, the average accuracy
on the test set is 93.36 = 0.57 per cent (with the minimum being
92.24 per cent and the maximum being 94.31 per cent), whereas
without rotation invariance, the same filters yielded an average
accuracy of 82.25 £ 2.06 per cent. This performance trend is
visually depicted in Fig. 5, highlighting that as the number of
filters increases, the disparity in performance between including
and excluding rotation becomes more pronounced. Additionally, the
figure shows that the model performance is more stable with rotation
invariance than without it. The latter has high variability even with
more COSFIRE filters.

6.2 Comparison with previous works

The most direct comparison to our study is the research that used
DenseNet-161 (Huang et al. 2017) and Siamese networks (Koch
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Figure 5. Accuracy rate achieved on the original test set (see Table 1) as
a function of the number of COSFIRE filters used. The plots demonstrate
how the average accuracy rate over the experiments with the determined 26
sets of hyperparameters varies based on the number of COSFIRE filters used,
considering both cases of rotation invariance and without rotation invariance.
Specifically, employing 48 filters for each class approximates the 92 per cent
accuracy level of DenseNet161, as reported by Samudre et al. (2022). Using
93 filters per class, which led to the maximum average accuracy on the
validation set, we achieve an accuracy of 93.36 per cent on the test set. The
four spots indicate the accuracies achieved with 48 and 93 filters per class,
both with and without rotation invariance.
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Figure 6. Number of tuples as a function of the number of COSFIRE filters
used per class. The total number of tuples increases linearly with the increase
in the number of COSFIRE filters per class, but the number of unique tuples
increases sublinearly, since most tuples are shared among all COSFIRE
filters and stored in the memory, hence requiring less computations. The
total number of tuples required by 48 filters is very close to the number
required by 93 filters.

et al. 2015) methodologies conducted by Samudre et al. (2022) on
the same data. In their work, they conducted their experiments on
two versions of the data: the original and the balanced data set as
presented in Table 1 and Table 2, respectively. According to their
reported results, Siamese networks and DenseNet-161 achieved the
highest accuracies of 71.1 & 0.40 per cent and 91.2 & 0.60 per cent,
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respectively, on the original data set. On the other hand, Siamese
networks achieved 73.9 &£ 0.50 per cent and DenseNet-161 achieved
92.1 4 0.40 per cent accuracy on the balanced data set. Notably, our
COSFIRE approach achieves an accuracy of 93.36 & 0.57 per cent
without data augmentation or any further image pre-processing. This
is more than 16 per cent reduction in the classification error rate
compared to the DenseNet-161 model (Samudre et al. 2022). The
significant reduction in the error rate is mainly attributed to the
rotation invariance properties of the COSFIRE approach. We did not
perform runs on the balanced data set (Table 2) since this would not
generate new insights, as the data set was augmented through image
duplication of the minority classes.

6.3 Computational complexity

6.3.1 COSFIRE filter approach

The FLOPs associated with the single convolution required by the
COSFIRE filter approach are computationally inexpensive due to the
exploitation of the separability property of Gaussian filters. For the
separability of the Gaussian filter, equation (13), the 2D Gaussian can
be written as the multiplication of two functions: one that depends on
x and the other that depends on y. In this case, the two functions are
the same and they are both 1D Gaussian. This reduces the number of
operations required to apply the filter to an image. For example,
applying a 5 x 5 filter to an image requires 25 multiplications
per pixel, but applying two 1D filters of length 5 requires only
10 multiplications per pixel. Because the DoG function combines
two Gaussian functions linearly, the separability property is also
preserved in the DoG function.

1 x2+y?
G, yi0) = 2oz P <_ 202

1 x? 1 y2 13
T (a) e (a) 09

Table 4 provides a breakdown of the FLOPs that are required by the
COSFIRE methodology at the inference stage. In that table, we use
the following set of hyperparameters as an example: o = 5, P € {0, 5,
10, 15,20},# =0.1,09=0.5, and ¢ = 0.1. The FLOPs computations
are mainly on the processes of convolve-ReLU-blur-shift-combine.
For a given image of 150 x 150 pixels and 400 COSFIRE filters, the
total estimated number of FLOPs is ~1.5 GFLOPs. Also, in order
to optimize the computational efficiency in a system using 4800
COSFIRE filters (i.e. 100 filters for each of the four classes applied
in 12 orientations) that collectively involve 64 284 tuples, we employ
the following strategy:

(i) Elimination of redundancy: Recognizing that numerous tu-
ples are repeated across these filters, we first isolate every distinct
tuple from the entire set. In fact, the number of tuples increases
sublinearly with the increase in the number of COSFIRE filters used,
Fig. 6.

(i) Computation and storage: We calculate the response map
for each unique tuple only once. This response map is essentially a
modified version of the centre-on or centre-off DoG response map,
subjected to blurring and shifting. We then store each computed
response map in a hash table for quick retrieval, avoiding redundant
computations.

(iii) Configuration sharing: Upon further analysis, we find that
the configurations of many COSFIRE filters share identical pairs of
tuples.
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Table 4. COSFIRE filter FLOPs estimation at inference stage. The FLOPs calculation in the columns FLOPs basic and FLOPs (computation with pre-computed
response maps of pairs of tuples) are based on the number of tuples obtained when using a single image for inference. As an example here is a breakdown of
FLOPs at each stage for the specific set of hyperparameters: 0 =5, P € {0, 5,10, 15, 20}, t1 =0.1, 06 = 0.5, and « = 0.1. In the FLOPs column, the symbol —

represents the equivalent value from the FLOPs basic column.

Step

Formula FLOPs basic FLOPs

Centre-On DoG sigma: Convolve the m x n(150 x 150) image with a
DoG kernel whose size is s = 60 + 1 (here o = 5). The expression a
combines the product and summation operations, and the result is
multiplied by 2 to account for the vertical and horizontal separable
filters of the DoG functions.

Centre-off DoG (same sigma): Centre-off is simply the negative of the
centre-on response map.

ReLU of centre-on DoG map: Assigns all values below 7; to zero
across the centre-on responses using ReLU activation function.

ReLU of centre-off DoG map: Same as above but for the centre-off
response map.

Blurring: Similar to a, convolve the m x n (150 x 150) image with a
DoG kernel of size: o'y = |0 + api]. The expression a is multiplied
by two to account for centre-on and centre-off DoG response maps. The
extent of blurring depends on the radii: 0, 5, 10, 15, and 20. The kernel
size of the blurring function for the k-th radius is calculated as

Sk =66, + L:iso=6(1)+1=7,55 =7, s10 =13, s15 =13, 500 = 19.

Shifting: Shift the two DoG response maps as many times as the
number of all unique tuples #, across all COSFIRE filters. In our
experiments, the £, was 3187 (with rotation invariance).
Multiplication: Compute the responses of all COSFIRE filters by
multiplying the corresponding shifted response maps. The number of
rotations is denoted by n, = 12. The variable n; = 4800 represents the
number of COSFIRE filters, which here is set to 400 (100 per class) and
multiplied by the total number of rotations (n, = 12). T}, represents the
total number of tuples across all the COSFIRE filters (7), = 64, 284).
The set of total tuples configured considering rotation invariance have
repetitions that do not need to be re-computed. In this step, we pair the
tuples that appear more than once among the 64 284 tuples. Then, we
only compute and store in the memory a single pair of the shared tuples
(duplicates) to save on computations. Therefore, the FLOPS are
calculated from the pre-computed response maps of pairs of tuples and
those of unique tuples.

Hashkey: Before applying the multiplication operation, the shifted
response map must first be retrieved from a hashtable residing in
memory. The keys of this hashtable are determined by multiplying the
first four prime numbers raised to given o, 8, p and ¢: by = 2° 385079,
The retrieval of each tuple response map from memory is therefore 7
FLOPS.

Taking the root for geometric mean: Geometric mean calculation
operations for each response map of all n; COSFIRE filters.
Descriptor formation: Determination of a ng, = 400-element
descriptor by taking the maximum value of each of the n4, response
maps.

Decision fusion of 10 SVM classifiers: SVM calculations depend on
the number of decision function hyperplanes (n,) given the number of
classes under classification. This experiment uses the one-vs-one
(‘ovo’) decision function approach, which means that nj, = z(z — 1)/2.
In this case, z = 4 and hence nj, = 6. Each hyperplane separates one
class from the rest of the classes. The number of FLOPs is therefore
based on the dot products needed for one SVM between the given
feature vector of size ngy, and the ny, hyperplanes. Since the dot product
involves multiplications and additions then one SVM takes 2n4,n,
FLOPs. Having 10 SVM, this is repeated 10 times and finally, we
choose the maximum which takes another 9 FLOPs.

Total FLOPs

a=2(mnQ2s — 1)) 2745000 -

b=mn 22500 -

c=mn 22500 -

d=mn 22500 -

(p=0) = 2(2(mn(2(7) — 1))) 1170000 -
8(pp=5) = 22(mn(2(7) — 1)) 1170000 _
e(pe=10) = 2(2(mn(2(13) — 1))) 2250000 -
(p=15) = 2(2(mn(2(13) — 1))) 2250000 _
(o =20) = 2(2(mn(2(19) — 1))) 3330000 _

€= Zie(O,S,IO,lS,ZO) (o =i)
f=mnt, 71707 500 -

g =mnT, — mnny 1338390000 937305300

h = Tyhny. 449988 -

i = mnngn, 108 000 000 -

J = mnngp 9000 000 -

k= 10Q2ngpmp) + 9 48009 -

a+b+ct+d+e+f+g+h+i+j+k 1540825497 1139740797
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Figure 7. The number of FLOPs with and without the pre-computation of
response maps of pairs of tuples against the number of COSFIRE filters per
class.

(iv) Pairwise response maps: We compile a list of these common
tuple pairs and pre-calculate the combined response map for each
pair by performing a multiplication of the individual response maps.

(v) HashTable for pairs: The resulting combined response maps
of tuple pairs are also stored in a hash table. This ensures that the
response for any pair that is used by more than one filter can be
quickly fetched without recalculating it.

By implementing this approach, we make the process more
efficient, as we avoid unnecessary recalculations for both individual
tuples and their pairs, which significantly reduce the computational
load and speeds up the overall filtering process. Using this efficient
technique, the total number of FLOPs required is reduced to ~1.1
GFLOPs; i.e. 26 per cent reduction in the FLOPs (comparison of
FLOPs basic and FLOPs column values in Table 4).

Similarly, conducting three trials with 26 sets of optimal hyperpa-
rameters from the validation data set, we noted a significant decrease
in FLOPs, as depicted in Fig. 7, corresponding to an increasing
number of COSFIRE filters. In fact, with reference to Fig. 7 and Fig.
5 we demonstrate that we can achieve very high performance with
fewer filters using the COSFIRE approach. Using just 48 filters for
each class yields an accuracy rate of 92.46 £ 0.76 per cent, with
a computational cost of 0.8 GFLOPs—approximately 20 times less
than the DenseNet161 model that achieves a similar result.

6.3.2 Convolutional neural networks

Calculating the FLOPs in a convolutional neural network involves
determining the number of arithmetic operations performed during
the forward pass. This includes the multiplications and additions
between the input data elements and the trainable convolution
kernels. The FLOPs computation takes into account factors such
as the input size, kernel size, number of filters, and the presence of
padding, dilation, and stride. Padding is the process of adding extra
pixels around the input image to maintain size post-convolution.
Dilation refers to spreading out kernel elements to cover a larger
input area without increasing filter size. Stride is the step size of the
filter across the image, affecting downsampling. For a comprehensive
definition and explanation of padding, dilation, stride, as well as a
general introduction to CNNs, we refer the reader to O’Shea &
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Nash (2015). A CNN convolutional operation with padding set to 0,
dilation set to 1, and stride set to 1, for simplicity (Freire et al. 2022),
can be summarized as follows:

ng nwy nc

yﬁ), =¢ Z Z Z th]k Leictyrj-1k b’ (14)

i=1 j=1 k=1

In equation (14), the output of a specific convolutional layer is
denoted by yxf ,» Whichrepresents a feature map. Here, the superscript
findicates the filter index, while the subscripts x, y, and k represent
the row, column, and channel indices of the output feature map,
respectively. The trainable convolution kernel is denoted by K ,«’j jko
and it performs element-wise multiplications with the corresponding
input elements of image / of dimensions ny x ny X nc. To meet
the input requirements of a DenseNet model, the original images
are resized from 150 x 150 to 224 x 224 x 3 pixels. The bias
term b is added to the sum, and the resulting value undergoes the
activation function ¢(-) to generate the output feature map element
yxf, ,- This equation embodies the convolution operation in a CNN,
where each output feature map element is computed by convolving
the corresponding region of the input feature maps with trainable
filters and introducing non-linearity through the activation function.

The output size of the CNN at each layer is important when
calculating the FLOPs of the CNN architecture used. It is given

by,
2p—k

OutputSize — ["’14“7” + 1} , (15)
S

where ny, is the image input size, p is padding, k is the kernel size,
and s is the stride. The number of FLOPs can then be estimated as:

FLOPscnn = ngn;ny - OutputSize, (16)

where n; is the number of filters. In each sliding window, there are
n; n; multiplications and the sliding window process needs to be
repeated as many times as the OutputSize. This entire procedure is
then repeated for all ny filters. The estimated number of FLOPs of
the DenseNet-161 model is 15.6 GFLOPs based on the workflow by
Sovrasov (2023); roughly GMACs = 0.5 % GFLOPs.* Importantly,
the 15.6 GFLOPs calculations include the operations involving the
dense and activation layers in the DenseNet architecture. Other
commonly used CNN benchmarking architectures, such as AlexNet,
VGGI16Net, and ResNet50 for an image of size 224 x 224, require
1.44, 31.04, and 8.26 GFLOPs, respectively, for processing an
image. Original images would need to be resized from 150 x 150
to 224 x 224 x 3 pixels to align with the input specifications
of these models. The COSFIRE approach, besides its superior
computational efficiency, offers a distinct advantage in terms of
flexibility. Notably, the COSFIRE method stands out for its adaptable
architecture, allowing users to customize the number of COSFIRE
filters employed according to their specific needs. This flexibility
is a significant benefit, enabling efficient computation without
sacrificing performance. In practice, utilizing merely 48 COSFIRE
filters per class results in an architecture that uses only 0.8 GFLOPs
and approximates the same accuracy of 92 per cent achieved by
DenseNetl161 (see Fig. 7).

7 DISCUSSION
The proposed trainable COSFIRE filter approach, which is designed

to capture radio galaxies at different orientations, achieved better

“https://github.com/sovrasov/flops-counter.pytorch
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results than the CNN-based approach for radio galaxy classification
on the same data set. This suggests that the trainable COSFIRE
filter approach can capture more relevant salient features of the radio
galaxy images than the CNN-based approach. The shape of radio
galaxies that we observe depends on how their jets are oriented in
the plane of the sky; making rotation invariance crucial for robust
and accurate galaxy classification. Therefore, for effective model
generalization, it is imperative that a classification model remains
invariant to rotations, ensuring consistent predictions irrespective of
the input’s orientation.

In other similar studies, multiple approaches exist for addressing
the challenge of rotation invariance using different data sets in radio
astronomy (Becker et al. 2021; Scaife & Porter 2021; Brand et al.
2023). Brand et al. (2023) showed that classification performance is
improved when the orientations of training galaxies are normalized
as opposed to when no such attempt was made to address rotational
variations. They achieved an accuracy of 96.10 per cent. In Scaife
& Porter (2021), group-equivariant CNNs were applied to capture
various orientations of a given input galaxy, achieving an optimal
accuracy of 96.56 per cent. Moreover, the widely adopted data
augmentation pre-processing step in machine model development
is another approach that also addresses this challenge of radio galaxy
equivariance. Becker et al. (2021) applied this approach and achieved
amean per class accuracy of 71.75 per cent. While data augmentation
is a useful tool, especially for small data sets, it increases the cost
of training the classification model. In addition, it requires domain
knowledge to develop a good augmentation strategy, which considers
all possible equivariant transformations given a galaxy image. The ro-
tation invariance in the COSFIRE approach is intrinsic to the method
and does not require data augmentation. This makes the approach
more robust, versatile, and completely data-driven, with no domain
expertise required, and hence highly adaptable to various computer
vision applications. Importantly, our results align with the studies
discussed above that explore various approaches to enhance robust-
ness against different orientations of radio galaxies. However, those
approaches use different data sets and processing steps, making them
not directly comparable. This provides an avenue for further research,
where a common data set and consistent processing steps would be
applied to assess performance and energy requirements for a scal-
able, robust, and rotation-invariant radio astronomical classification
model.

CNN-based networks are computationally expensive. For instance,
the forward pass of DenseNet161 consumes ~15.6 GFLOPs. On the
other hand, the COSFIRE filter approach demonstrates efficiency by
utilizing a substantially lower number of FLOPs (Fig. 7), resulting
in significantly lower demand for computational resources. The
workflow of the COSFIRE approach is also more flexible than
conventional CNN architectures. The number of filters used is
a hyperparameter of this paradigm, which is in contrast to the
fixed number of filters used in its counterpart. Our approach,
based on the COSFIRE filter, is a novel algorithm for the clas-
sification of radio galaxies and comes with a low computational
cost.

8§ CONCLUSION

In this work, we introduce a novel descriptor based on trainable
COSFIRE filters for radio galaxy classification. We combine this
descriptor with an SVM classifier using a linear kernel and achieve
better performance compared to the only previous work on the data
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set proposed by Samudre et al. (2022).% The previous study utilized a
DenseNet161 transfer learning-based pre-trained network and few-
shot learning-based Siamese networks, as detailed in Samudre et al.
(2022). Our technique is computationally inexpensive (~20 x lower
cost with the same accuracy as the DenseNet161 model), rotation
invariant, free from data augmentation and does not rely on domain
expert knowledge. These features make our technique not only
effective (in terms of accuracy) but also efficient (in terms of FLOPs)
for radio galaxy image classification tasks. We achieved a better
accuracy of 93.36 per cent compared to 92.10 per cent which was
achieved by the DenseNet161 model.

This work contributes to the field of radio astronomy by providing
an alternative technique for identifying and analysing radio sources.
As the next-generation telescopes (such as LOFAR, MeerKAT, and
SKA) produce high-resolution images of the sky, our future work
will explore the effectiveness of our methodology on these new data
and assess the possibility of cross-survey predictions.
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