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Chapter 1 
_______________________________________ 

Introduction

Timo J.B. van Eldijk 
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The emergence and spread of antibiotic resistance represent a major 
challenge to public health. Every year an estimated 700,000 people are killed 
globally by antibiotic-resistant infections, and, according to some estimates, 
this number will rise to 10 million by the year 2050 (Willyard, 2017). 
Inadequate prescribing practices, the agricultural use of antibiotics, and the 
improper disposal of wastewater containing antibiotics have all contributed 
to an alarming rise in antibiotic resistance (Martens & Demain, 2017; 
Nadimpali et al., 2017). In addition, the problem of antibiotic resistance is 
exacerbated by a low discovery rate of new antibiotics (Luepke et al., 2017). 

The rise of antibiotic resistance is an example of ‘evolution in action’: 
bacterial populations adapt to a toxic environment by evolving resistance. 
However, luckily, bacterial populations are not always able to adapt to 
survive antibiotic exposure. What determines if a bacterial population can 
adapt and develop resistance? To answer this question, we need to 
understand what mechanisms enable bacterial populations to undergo 
adaptive evolution, along with the factors that constrain their adaptive 
potential. In other words, we need to understand ‘evolvability’ in the context 
of antibiotic resistance. Therefore, this PhD thesis will focus on 
understanding evolvability, using the evolution of antibiotic resistance as a 
model system. I will combine experimental evolution and simulation models 
to gain fundamental insights into the mechanisms and organismal features 
that determine evolvability. Meanwhile, these insights might also help to 
solve a major societal challenge. 

Defining evolvability 

The exact definition of evolvability has been much debated in the literature 
(Wagner, 2007; Pigliucci, 2008). Numerous definitions have been provided, 
yet these definitions can roughly be split into two categories, those based on 
the work of Houle (1992) and those based on Wagner & Altenberg (1996). 
Evolvability as defined by Houle concerns the standing genetic variation and 
covariation within a population (Houle, 1992; Pigliucci, 2008). In evolutionary 
quantitative genetics this standing genetic variation, quantified using 
narrow-sense heritability, determines the response of a population to 
selection (Houle, 1992; Pigliucci, 2008). In the short term, the response to 
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selection may indeed be predominantly determined by the standing genetic 
variation. However, when considering evolution on longer timescales the 
influx of new mutations cannot be neglected, as the evolutionary trajectory 
of a population is ultimately determined by the mutations that occur 
(Tenallion et al., 2012; Lässig et al., 2017). In short, evolvability sensu Houle 
is a concept more focused on short-timescales, which overlaps with the 
already existing concept of heritability. Therefore, under this definition 
evolvability does not provide an interesting extension of evolutionary theory. 
Wagner & Altenberg (1996) made an important conceptual advance by 
stating that the capacity of a biological system to undergo adaptations 
dependent on both the variation present within that system but also the 
variability of that system, that is, the capacity of the system to produce new 
variation (Pigliucci, 2008). When describing evolvability including variability, 
evolvability is a rich concept that goes beyond the standard treatments of 
classical evolutionary theory.  

Throughout this thesis, I will be defining evolvability as the capability of a 
biological system to undergo adaptive evolution. For a detailed motivation 
for using this definition the reader is referred to Chapter 2 of this thesis. 
Whilst this definition is derived from that of Wagner & Altenberg (1996), it is 
different in two crucial ways. Importantly this definition encompasses both 
(standing) variation and variability, and also many other mechanisms and 
organismal features that impact adaptive evolution. The definition I use also 
deliberately focuses on adaptive evolution. This focus is motivated by the 
potential applications of evolvability research; I am ultimately interested in 
understanding and predicting adaptive processes, such as the evolution of 
antibiotic resistance.  

Evolutionary rescue theory 

A particularly useful theoretical modelling framework to describe evolvability 
in the context of antibiotic resistance is evolutionary rescue theory. 
Evolutionary rescue models describe a population facing a drastically altered 
environment, for example a bacterial population facing antibiotics (Ramsayer 
et al., 2013; Alexander et al., 2014; Bell, 2017). When antibiotics are 
introduced, the individuals in the population die faster than they can 
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reproduce, leading to a steady decrease in population size. If nothing 
happens, this decrease will continue until the population is extinct. If a 
resistant mutant arises that can grow in the presence of antibiotics, this 
mutant can rescue the population, allowing the population to recover. Here 
two scenarios are usually considered: Resistant rescue mutants can either be 
already present in the population (standing genetic variation) or they can 
arise during the rescue process because of de-novo mutation. These two 
scenarios echo the two commonly considered aspects of evolvability: 
variation and variability.  

In Chapter 7 of this thesis, I will use simulations to expand evolutionary 
rescue theory to a multispecies context, simulating how species abundances 
change when a whole bacterial community undergoes evolutionary rescue 
as a consequence of antibiotic exposure. Evolutionary rescue theory also 
formed an important inspiration for Chapters 3 and 4 of this thesis. In 
evolutionary rescue theory one of the key parameters that determines the 
probability of evolutionary rescue is the mutation rate, the higher the 
mutation rate the higher the probability of rescue. This emphasizes the role 
of mutation rates as a key mechanism underlying evolvability.  

The mechanisms underlying evolvability  

In Chapter 2 of this thesis, I systematically explore the mechanisms and 
features that underlie evolvability. In short, these determinants can be 
divided into three categories, based on how they impact evolvability. The 
first category of determinants are features or processes that generate and/or 
maintain variation, for example the mutation rate (Tenallion et al., 2016; 
Sprouffske et al., 2018). The second category consists of those determinants 
that shape the effect of variation on fitness. An example is the structure of 
the gene-regulatory network. The structure of this gene-regulatory network 
can shape the way mutations can impact the phenotype, thereby impacting 
the potential for adaptation (Crombach & Hogeweg, 2008). The third 
category of determinants are those that shape the process of selection. An 
example is the generation time: a shorter generation time speeds up 
adaptive evolution (Tomas et al., 2010; Gandon & Michalakis, 2002). It is 
worth noting that determinants of evolvability can fit into more than one 
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category, since some features affect evolvability in more than one way. An 
example of this is horizontal gene transfer: it allows variation to be 
recombined in new ways (generating and maintaining variation), but it also 
allows beneficial variants to spread more quickly (shaping the process of 
selection) (Koonin, 2016; Croll & McDonald, 2012). In this thesis, I will focus 
on three determinants of evolvability: mutation rates, the gene regulatory 
network structure, and horizontal gene transfer. 

The mutation rate 

One of the clearest mechanisms underlying evolvability is the mutation rate. 
Mutation rates are known to vary widely, both between different species and 
between individuals of the same species (Conrad et al., 2011; Sung et al., 
2016). There is also overwhelming evidence that mutation rates are subject 
to selection (Sniegowski et al., 1997; Tenallion et al., 2001; Tenallion et al., 
2016). Normally, when a population is well adapted, there is selection for a 
low mutation rate, because most mutations will have a detrimental effect on 
fitness. The situation is different for populations that are initially poorly 
adapted, such as in microbial evolution experiments in which “mutator” 
strains arise. These mutator strains have an elevated mutation rate, for 
example due to DNA mismatch repair defects (Sniegowski et al., 1997; 
Tenallion et al., 2016). In these experiments, the population is undergoing 
rapid adaptation to a new environment, associated with the spread of 
mutator strains. These mutator strains produce more mutations, many of 
which are maladaptive. However, when adapting to a new environment the 
fitness cost of these maladaptive mutations is more than compensated by 
the faster occurrence of beneficial mutations (Sniegowski et al., 1997; 
Tenallion et al., 2001; Tenallion et al., 2016). Mutator alleles are indirectly 
selected through the beneficial mutations they produce. In other words, 
when a population is poorly adapted the increased influx of beneficial 
mutations offered by an elevated mutation can to some extent outweigh the 
detrimental effects of an elevated mutation rate (Sniegowski et al., 1997; 
Tenallion et al., 2001; Tenallion et al., 2016; Sprouffske et al., 2018). The 
interplay between the beneficial and detrimental effects selects for an 
optimal mutation rate.  
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Considering that a higher mutation rate can be selectively advantageous 
under certain environmental conditions, it does not seem surprising that in 
some cases the mutation rate can be regulated depending on the 
environmental state: in some bacteria the mutation rate is elevated in 
stressful conditions through a process known as stress-induced mutagenesis 
(Bjedov et al., 2003; Foster, 2007).  In Chapter 3 I will experimentally explore 
how an environmental parameter, in this case temperature can shape the 
mutation rate toward antibiotic resistance. I aim to see if the manipulation 
of temperature, can be used as an intervention to lower the mutation rate 
and can thus be used to combat the evolution of antibiotic resistance (i.e. 
lower the probability of evolutionary rescue). In Chapter 4 I will use 
individual-based simulation models to see under what circumstances one 
might expect condition-dependent mutation rates to evolve.  

Gene regulatory network structure 

Traditional evolutionary models often fail to consider the complex 
relationship between the genotype and the phenotype. A wide range of 
underlying mechanisms, including complex network of developmental 
pathways and gene interactions are involved in translating the genotype to 
the phenotype. Explicitly considering this gene regulatory network brings to 
light another interesting mechanism underlying evolvability. The structure of 
the gene regulatory/developmental network can bias the effect of genotypic 
mutations on the phenotype. So, whilst genetic mutations occur at random, 
their effect on the phenotype is biased through the structure of the gene-
regulatory network (Wagner & Zhang, 2011; Hogeweg, 2012). In the 
literature, this effect is sometimes referred to as developmental bias. A well-
known example of developmental bias are the two eyespots on the wings of 
the butterfly Bicyclus anynana. Mutations can easily change the colour 
composition of both eyespots together, but they cannot easily change the 
colour composition of the two eyespots independently (Allen et al., 2008). 
Depending on the direction of selection such a developmental bias could 
inhibit or facilitate adaptive evolution.  

A more extreme case of the gene regulatory network structure shaping 
evolvability is what I have termed a ‘mutational transformer’. This 
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phenomenon was first described by Crombach & Hogeweg (2008) and 
further investigated by Cuypers et al. (2017). They considered an 
environment that alternates between two alternative states and each state 
of these two states requires a different optimal phenotype. They also 
explicitly modelled the underlying gene-regulatory network. The population 
adaptively tracks the environment, this is where the population undergoes 
evolutionary adaptation each time the environment shifts to the alternative 
state (Botero et al., 2015; Cuypers et al., 2017). During the first few 
fluctuations, many different mutations are required to shift to the new 
optimal phenotype when the environment switches. However, after the 
population has experienced many such fluctuations, mutations altering the 
gene regulatory network structure occur that shorten the mutational paths 
between the two optimal phenotypes, creating a mutational transformer. 
Thus, when the environment shifts to the alternative state, these shortened 
mutational paths allows for more rapid adaptation. In a mutational 
transformer the gene regulatory network is structured in such a way that a 
single or very few mutations allow the switch to an alternative adaptive 
phenotype, facilitating rapid adaptation. However, how mutational 
transformers evolve and function is not well understood. In Chapter 5 of this 
thesis, I examine the evolution of mutational transformers in a simple gene 
regulatory network model, elucidating their evolution and inner workings.  

Horizontal gene transfer 

In bacteria, horizontal gene transfer can occur through various mechanisms. 
In this thesis, I focus on conjugation, since many clinically relevant antibiotic 
resistance genes are horizontally transferred using conjugation (Robicsek et 
al., 2006; Litrup et al., 2017; Yui et al., 2019; Venketesan et al., 2023). In 
conjugation, extrachromosomal pieces of DNA called ‘plasmids’ are 
exchanged between bacterial cells through cell-to-cell contact (Lopatkin et 
al., 2017). Here it is important to note that genes on plasmids can also be 
transferred to the chromosome and vice versa through recombination (Heap 
et al., 2012). Carrying plasmids often comes at a cost to the host cell, which 
needs to maintain, replicate, and express an extra piece of DNA. 
Furthermore, since plasmids are pieces of DNA that replicate separately from 
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the bacterial chromosome, they can act as independent ‘selfish’ evolutionary 
entities (San Millan & MacLean; 2017; Ghally & Gillings; 2021). For example, 
some plasmids are maintained due to very high rates of horizontal 
transmission, essentially persisting as an infection, to the detriment of the 
host cells (Brockhurst & Harrison, 2022).  

However, there is also another side to plasmids, several hypotheses can be 
found scattered throughout the literature on how plasmid-based horizontal 
gene transfer might enhance the evolvability of the host cell. First of all, 
horizontal gene transfer creates new combinations of genes, generating 
novelty by recombining existing variation (Hall & Kerney, 2012; Kingston et 
al., 2015). Second, horizontal gene transfer can bring together genes from 
independent clonal lineages, alleviating ‘clonal interference’ (Cooper, 2007). 
In ‘clonal interference’, beneficial genes from different clonal lineages 
compete, this competition of beneficial can hinder adaptation. Third, if 
beneficial genes are spread horizontally as well as vertically this can increase 
the rate of spread of beneficial genes, thereby enhancing the rate of 
adaptation (Chu et al., 2018). Fourth, horizontal gene transfer creates a 
reservoir of genetic variants that can be easily accessed. This kind of reservoir 
dynamic, facilitates the maintenance of genetic variation, thereby enhancing 
evolvability (Croll & McDonald, 2012; Woods et al., 2020; van Dijk, 2020). 
However, the link between horizontal gene transfer through plasmids and 
evolvability is poorly understood at best (Koonin, 2016). In Chapter 6, I will 
use experimental evolution to study the impact of plasmids on the de-novo 
evolution of antibiotic resistance. 

The evolution of evolvability 

If we consider the mechanisms and features underlying evolvability, it is 
evident that these differ widely across the tree of life and are subject to 
evolution (Conrad et al., 2011; Sung et al., 2016; Martinez-Padilla et al., 
2017). However, an important question remains: Have these mechanisms 
been shaped by selection because of their effects on evolvability? In other 
words, is evolvability a selected (evolved) property of a biological system or 
are differences in evolvability simply a side effect of other selective pressures 
or genetic drift (Tenallion et al., 2001; Woods et al., 2011; Nelson & Masel, 
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2018)? For mutation rates, there is a good body of empirical and modelling 
evidence that they are indeed subject to selection for evolvability 
(Sniegowski et al., 1997; Tenallion et al., 2001; Tenallion et al., 2016), 
although these mechanisms are subtle because they tend to rely on indirect 
selection. For most other determinants of evolvability, such evidence is 
currently lacking. In Chapters 4 and 5 I will use simulation models to explore 
the evolution of evolvability in response to fluctuating environments. 

This thesis 

This thesis aims to understand evolvability in the context of antibiotic 
resistance. As a starting point, I have developed a mechanistic framework 
that categorizes the determinants of evolvability and provides several 
concrete recommendations on how to study evolvability (Chapter 2). By 
focusing on the underlying mechanisms of evolvability, I break down the 
problem of understanding evolvability into manageable chunks. Each of my 
chapters will focus on a particular determinant of evolvability: mutation 
rates, the genotype-to-phenotype map, and horizontal gene transfer. 
Throughout I use two complementary approaches: microbial experiments 
(Chapters 3 and 6) and simulation models (Chapters 4, 5 and 7). Theory and 
experiment interact in a synergistic way. Microbial experiments provide new 
observations that aid the development of theoretical models. On the other 
hand, the hypotheses and ideas derived from theoretical models can 
improve the design of experiments. This combination of the practical and 
theoretical is echoed throughout this thesis: I hope to show that fundamental 
theoretical insights into evolvability can help address the very practical 
problem of antibiotic resistance evolution.  

In Chapter 2, I first discuss how to define evolvability. Subsequently, I explore 
the mechanisms and organismal features underlying evolvability and develop 
a coherent mechanistic framework for categorizing these determinants of 
evolvability. I argue that a mechanistic view coupled with a clear definition, 
brings the concept of evolvability into sharper focus. This leads to several 
concrete recommendations on how to study evolvability. For example, I 
recommend that researchers should explicitly account for the timescale on 
which determinants act. Furthermore, I urge researchers to consider what I 
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have termed “the scope” of a determinant. Some determinants, such as 
mutation rates, affect evolvability in a wide range of environments. Other 
determinants, such as the re-structuring of the genotype-to-phenotype map, 
may only affect evolvability in a more restricted set of environments.  

In Chapter 3, I examine an empirical example of a condition-dependent 
mutation rate in the bacterium Escherichia coli. I experimentally assess the 
impact of elevated temperatures on the mutation rate towards antibiotic 
resistance for three different antibiotics. Such elevated temperatures are 
often encountered by bacterial populations since fever (an elevation of body 
temperature) is a common response to infection. I show that even a relatively 
small change in temperature can alter the mutation rate by an order of 
magnitude. However, the nature of the change and the underlying 
mechanism differ depending on the antibiotic. These results might pave the 
way for a new way to mitigate the emergence of antibiotic resistance: the 
choice of an antibiotic and the decision of whether to suppress fever could 
be coordinated to minimize the mutation rate towards antibiotic resistance.  

In Chapter 4, I use an individual-based simulation model to study the 
evolution of condition-dependent mutation rates in a changing environment. 
I consider a model where the mutation rate can potentially be 
changed/regulated according to the mismatch between an individual’s 
phenotype and its environment. I show that both condition-dependent and 
constant mutation-rate strategies can evolve. Which strategy emerges is 
strongly dependent on the rate of environmental change. I also show that 
condition-dependent mutation rates enhance evolvability: they allow 
populations to better track a changing environment.  

In Interlude 1, I worked in a team collaborating with researchers studying 
fatty-acid synthesis in a parasitic wasp. These researchers had found that a 
particular metabolic pathway was only expressed when it was induced by the 
environment, a phenomenon known as phenotypic plasticity. They also 
found that this inducible metabolic pathway was stably maintained over long 
evolutionary timescales, whilst it was only very rarely expressed. This was 
surprising since one would expect such an adaptation to be degraded by 
mutations and subsequently lost, since selection against degrading 
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mutations only occurs very rarely. To help explain this I explore an individual-
based simulation model of how such a phenotypically plastic trait evolves 
and is maintained over long timescales. I show that the structure of the gene 
regulatory network can evolve to become robust to mutation. This explains 
how a phenotypically plastic adaptation can be maintained over long 
timescales even when it is rarely expressed.  

In Chapter 5, I consider a model where the phenotype of an individual is 
determined by a simple gene regulatory network. A population of these 
individuals must adapt to an environment that switches/changes between 
two alternative states (for example the presence or absence of an antibiotic). 
I show that even in this very simple model, the structure of the gene-
regulatory network can evolve to bias the phenotypic effects of mutations 
towards adaptive outcomes, thus facilitating evolvability. I examine in detail 
the mechanisms underlying such mutational transformers and show that two 
distinct mechanisms emerge depending on the nature of gene interactions.  

In Chapter 6, I use a 31-day evolution experiment (approximately 237 
generations) to examine the impact of plasmids on the de-novo evolution of 
antibiotic resistance. I exposed plasmid-bearing and plasmid-free 
populations of the bacterium Lactococcus lactis to an increasing 
concentration of the antibiotic ciprofloxacin. Over the course of the 
experiment, the populations managed to evolve a high level of ciprofloxacin 
resistance. Meanwhile, I also evolved plasmid-bearing and plasmid-free 
control populations in the absence of the antibiotic. I found that, in the 
context of this experiment, plasmids did not have a noticeable impact on 
evolvability. This may be explained by the relatively limited timescale of the 
experiment. I find indications that there is selection against the plasmid, but 
only in the presence of the antibiotic ciprofloxacin. I also used whole-genome 
sequencing to examine the mutations underlying ciprofloxacin resistance. 

In Chapter 7, I use a simulation model to expand evolutionary rescue theory 
to a community context. I model a whole ecological community undergoing 
evolutionary rescue in response to a drastically deteriorated environment, 
for example, a gut microbial community facing antibiotic treatment. I study 
how species abundances change during the evolutionary rescue process. I 
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show that community-wide evolutionary rescue leads to a very rapid loss of 
rare species from the community.  

Bringing everything together in Chapter 8, I briefly summarise the insights 
gained into evolvability and its evolution and how some of these might 
eventually be harnessed to combat the evolution of antibiotic resistance. I 
also outline the way forward for evolvability research. I argue that a 
mechanistic approach is essential, using the synergy between theory and 
experiment to formulate a coherent theory of evolvability. 
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Abstract 

“Evolvability” – the capability to undergo adaptive evolution – is a key 
concept for understanding and predicting the response of biological 
systems to environmental change. Evolvability has various facets and is 
applied in many ways, easily leading to misunderstandings among 
researchers. To clarify matters, we first categorize the mechanisms and 
organismal features underlying evolvability into determinants providing 
variation, determinants shaping the effect of variation on fitness, and 
determinants shaping the selection process. Second, we stress the 
importance of timescale when studying evolvability. Third, we distinguish 
between evolvability determinants with a broad and a narrow scope. 
Finally, we highlight two contrasting perspectives on evolvability: general 
evolvability and specific evolvability. We hope that this framework 
facilitates communication and guides future research. 

Evolvability is an important yet elusive concept 

Understanding adaptation to changing environments is more important than 
ever. Climate change, antibiotic resistance, and viral vaccine evasion 
represent major societal challenges: is an endangered species able to adapt 
to environmental change? Will a bacterial pathogen evolve antibiotic 
resistance? Can a virus evade vaccine-based immunization? At the core of 
these issues lies a common element: the capability of organisms to adapt – 
evolvability [1]. Evolvability research sheds new light on genomic 
architecture [2], the structure of regulatory networks [3,4], and many other 
features of biological systems (see Glossary). It has yielded surprising new 
insights, such as: adaptive evolution can proceed at a similar pace as 
ecological change, resulting in intricate and unexpected eco-evolutionary 
dynamics [5,6], evolvability and robustness do not conflict but mutually 
reinforce each other [3,7,8]; and organisms with high evolvability can 
“generalize” over environments [9,10]. Furthermore, evolvability research 
may add new perspectives to formulating a predictive theory of evolution 
(see Box 1 and Outstanding Questions).  
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Evolvability is studied by diverse approaches. For instance, Johansson et al. 
[11] inspect the genetic variance-covariance matrix; Woods et al. [12] 
compare the speed of adaptation of bacterial strains; and Martín-Serra et. al 
[13] focus on morphological integration and modularity. These approaches, 
though all valid, are widely disparate: all aim to understand evolvability, yet 
each focuses on a different facet. This plurality is also reflected in the fact 
that evolvability has been defined in many different ways (see Box 1). We 
aim to highlight the different facets of evolvability and how they relate to 
each other, to facilitate a more nuanced and cohesive discourse on the topic. 
Throughout, we define evolvability as the capability of a biological system to 
undergo adaptive evolution (see Box 1 for a justification). 

Toward a mechanistic approach to evolvability 

Evolvability is often viewed in terms of outcomes (e.g. speed of adaptation). 
As the same outcome can be achieved in many ways, it is useful to study 
evolvability by a mechanistic approach [14]: viewing evolvability not as a 
phenomenon per se but as a product of the mechanisms and organismal 
features that underlie it. A mechanistic perspective also clarifies discussions 
on the evolution of evolvability [1,14]: while questions regarding the 
evolution of “the capability to undergo adaptive evolution” easily turn 
abstract, they become more obvious and transparent when translated into 
questions regarding the evolution of concrete mechanisms (e.g. the 
mutation rate). 

Categorizing the determinants of evolvability 

We refer to the mechanisms and organismal features that govern evolvability 
as determinants of evolvability. These affect different aspects of adaptive 
evolution, and consequently shape evolvability in different ways. We here 
identify three ways in which determinants can shape evolvability, based on 
what aspect of adaptive evolution they affect, and categorize them 
accordingly (figure 1). Firstly, determinants may affect evolvability by 
providing variation. The mutation rate is the most obvious example of such 
a determinant [2,15–17]. Secondly, determinants may affect evolvability by 
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influencing the effect of variation on fitness. For example, developmental 
biases may predispose mutations towards being beneficial [18–21]. Thirdly, 
determinants may affect evolvability by shaping the selection process – 
shorter generation times, for example, may speed up adaptation [22,23]. 

 
Figure 1: The way that mechanisms and organismal features affect evolvability can be 
classified into three categories. Each one contributes to evolvability in a different way. This 
can be compared to the process of baking a cake: the end result depends on several 
fundamentally different aspects - the amount of ingredients, the quality of ingredients and 
the baking process. We suggest that evolvability is analogously affected by three different 
classes of determinants: those providing variation (“the amount of sugar”), those shaping the 
effect of variation on fitness (“the type of sugar”), and those shaping the selection process 
(“the baking process”). An example of a determinant providing variation is the mutation rate, 
where mutation encapsulates a wide variety of phenomena ranging from point mutations to 
genome rearrangements. Developmental biases are examples for determinants that shape 
the effect of variation on fitness. Consider for instance the developmental system underlying 
the eyespot pattern on the wings of the butterfly Bicyclus anynana. This system is organized 
in such a manner that mutations can easily change the colour composition of the two wing 
eyespots in the same direction, whilst mutations changing the colour composition in opposite 
directions are extremely rare (depiction based on [40]). Depending on whether the selective 
pressure favours eyespots with the same colour composition or not, this bias may facilitate or 
impede evolvability. Finally, an example of a determinant that shapes the selection process is 
generation time: a shorter generation time allows faster adaptation – in absolute time, 
bacteria evolve faster than elephants. 
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Category 1: providing variation 

Heritable variation serves as the raw material for evolution. Hence, our first 
category refers to those mechanisms that generate and maintain variation. 
For example, mutations generate variation in many ways, ranging from point 
mutations to genome rearrangements. Interestingly, mutation rates vary 
widely between organisms as well as within genomes [24–26], and they can 
be regulated based on the environment (e.g. stress-induced mutagenesis, 
[27]) – indicating that evolvability can evolve through the evolution of the 
mutation rate. Examples of determinants maintaining variation include 
evolutionary capacitors such as heat shock proteins. HSP-90 in 
Saccharomyces cerevisiae, for instance, acts as a chaperone protein aiding 
correct protein folding. Chaperoning can shield sequence mutations from 
selection, thus maintaining variation. This can later be released under 
stressful conditions [28,29]. Developmental canalization can affect 
evolvability in a similar manner, in that it allows the accumulation of cryptic 
genetic variation [30]. Furthermore, capacitors may also be behavioural in 
nature, as parental care and thermoregulatory behaviour also allow cryptic 
genetic variation to accumulate [31,32]. Horizontal gene transfer may also 
be viewed as a category 1 determinant, as it allows variants to be maintained 
that would otherwise be lost from the population, for instance by 
establishing an “accessory genome” [33,34] or through the so-called 
rescuable gene hypothesis [35]. Not all heritable variation is genetic: 
epigenetic inheritance, inheritance of environmental features, and cultural 
inheritance can also affect adaptive evolution [36,37]. Hence, category 1 also 
includes mechanisms providing non-genetic heritable variation. 

Category 2: shaping the effect of variation on fitness 

The mapping from mutation to fitness is affected by a variety of mechanisms: 
mutations may be random with respect to the genotype, but their effects on 
the phenotype and consequently fitness are often not [8]. Through features 
such as genomic, developmental, and regulatory architecture, the genotype-
to-phenotype-to-fitness map can bias the fitness effects of mutations 
[19,38]. Category 2 thus contains determinants that influence the effect of 
variation on fitness. Examples can be found in the evo-devo literature 
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[19,21,39,40], which describes various biases introduced through the 
developmental process (developmental bias, for an example see the 
butterfly Bicyclus anynana in Fig. 1). The effect of variation on fitness can also 
be biased by genomic and regulatory architecture [4,41]. In yeast, for 
example, genes for which upregulation is selectively favoured in a higher-
temperature environment are grouped on the same chromosome. 
Therefore, a duplication of this chromosome suffices to achieve upregulation 
of all relevant genes; without such genome organisation, many independent 
mutations would be required to obtain an equivalent high-temperature 
adaptation [42]. 

Category 3: shaping the selection process 

Starting from the same variation, evolution can still proceed at a very 
different pace and/or can lead to very different outcomes. Thus, category 3 
contains determinants that impact evolvability not by shaping variation, but 
rather by shaping how the selective process acts on this variation. Examples 
are organismal features influencing population structure (e.g. dispersal 
tendency or mating patterns), as population structure may strongly affect 
adaptive evolution [43]. For instance, limited dispersal is hypothesized to 
have aided the rapid evolution of eusociality in diverse clades of insects [44]. 
Two other examples of category 3 determinants are generation time and the 
mode of reproduction. In coevolutionary host-pathogen arms races, the 
shorter generation time of pathogens provides them with an evolvability 
advantage, as they can evolve faster per time unit than their host [23]. 
Considering the Red Queen hypothesis, it becomes evident that hosts need 
other adaptations (e.g. sexual reproduction or a variation-generating 
immune system) to cope with pathogens on a longer-term perspective [45]. 
In the coevolution of hosts and their symbionts, the rapid evolution and/or 
diversification of the symbiont is often not in the interest of their host. 
Accordingly, the hosts of various symbiotic systems reduce the symbiont’s 
evolvability by actively interfering with the symbiont’s sexual reproduction 
[46].  
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How a mechanistic categorisation aids our understanding 
of evolvability 
Some determinants of evolvability can be classified into more than one 
category. This is a deliberate feature of the proposed categorisation, as it 
highlights that a determinant can affect evolvability in different ways. The 
categorisation prompts the researcher to critically consider how mechanisms 
and processes shape adaptive evolution. An illustrative example can be 
found in the literature on evolvability and plasticity. Some have argued that 
plasticity impedes evolvability: plastic responses shield organisms from 
selection, preventing genetic adaptation (category 3) [47]. Others have 
argued that plasticity allows the accumulation of cryptic genetic variation 
(category 1) [10,48], thus potentially enhancing evolvability, because plastic 
traits are only expressed under particular environmental conditions. Finally, 
arguments derived from Gene Regulatory Network models conclude that 
the evolution of plasticity can restructure the genotype-phenotype map in 
such a way that random mutations are more likely to produce adaptive 
phenotypes (category 2) [49,50]. Our categorisation of determinants thus 
showcases these often subtle but nevertheless crucial distinctions. 

The effect of modularity on evolvability provides another example. 
Inspection of the underlying mechanisms reveals that modularity has not one 
but two impacts on evolvability. Firstly, it facilitates innovation by allowing 
pre-existing modules to be combined in different configurations, thus 
providing variation (category 1) [51]. Secondly, it also allows individual 
modules to vary independently, without affecting the functionality of the 
entire system (reducing antagonistic pleiotropy): this makes deleterious 
mutations less impactful, thus creating an adaptive bias that shapes the 
fitness effects of variation (category 2) [52]. This reduced impact of 
deleterious mutations (category 2) may also allow organisms to tolerate 
higher mutation rates (category 1) - showing that determinants in different 
categories can interact in a reciprocal manner: the processes that provide 
variation (category 1), bias the fitness effects of variation (category 2), and 
shape the selection process (category 3) are not independent of each other. 
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Our view on the determinants of evolvability is suited to different 
approaches to evolution and evolvability. The first category (providing 
variation) contains not only mechanisms that provide new mutations, but 
also mechanisms that facilitate major innovations (however, the relationship 
between evolvability and major innovations is not yet well understood). 
Similarly, the second category considers not only instances of genotypic and 
developmental biases, but also includes broader ideas such as phenotypic 
accommodation and the theory of facilitated variation [20,53–55]. Finally, 
the third category considers not only genetic mechanisms (such as horizontal 
gene transfer, which also allows beneficial variants to spread more quickly 
[56]) but also - amongst others - niche construction, where organisms shape 
their own selective environment [57]. 

Explicitly considering timescale resolves apparent 
incongruencies 

Determinants differ in the timescale on which they act – thus, when 
comparing evolvability across biological systems, the outcome is crucially 
dependent on timescale (see figure 2). Considering timescale can help to 
resolve several apparent discrepancies. 

This is exemplified by comparing determinants that provide variation 
(category 1): consider the impact of standing genetic variation [58] and the 
impact of mechanisms generating variation [59] on evolvability ([1], see Box 
1). In the short term, adaptation is more strongly influenced by standing 
genetic variation, whereas mechanisms generating and maintaining variation 
are of greater significance when considering longer-term evolutionary 
trajectories [60].  

Some approach evolvability in terms of speed of evolution [61], whilst others 
approach it in terms of attained level of adaptation [38,62]. Both aspects are 
relevant [63], but they are often two sides of the same coin, which becomes 
apparent when explicitly considering timescale. Consider, for example, 
different modes of inheritance. Epigenetically inherited traits can provide 
fast adaptation - yet this adaptation is often relatively inaccurate, given that 
the relative instability of epigenetic marks impedes the reliable maintenance 
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of a certain optimal phenotype. In contrast, genetic adaptation proceeds 
more slowly, but in view of the high fidelity of genetic inheritance it may, in 
the long term, result in a higher level of adaptation. Therefore, epigenetic 
inheritance confers higher evolvability in the short term, and genetic 
inheritance confers higher evolvability in the long term [36].  

Another discrepancy that can be resolved by considering timescale is the 
debate over the evolvability benefits of sexual reproduction, with both 
sexual and asexual reproduction being linked to increased evolvability [1,64]. 
All other things being equal, the response to selection (and hence the rate of 
adaptive evolution) is higher under asexual reproduction, as in case of sexual 
reproduction selection can only act upon the additive component of genetic 
variation [65] (category 3). Therefore, asexual reproduction facilitates 
evolvability in the short term. In the longer term, sexual reproduction confers 
a higher evolvability, as the slower speed of evolution is outweighed by the 
ability to better explore the fitness landscape and reach global rather than 
local peaks. The claims that sexual reproduction increases evolvability, and 
the claims that asexual reproduction increases evolvability can thus both be 
true, just at different timescales (see figure 2). Overall, the above examples 
show that the effects and relative importance of determinants vary over 
time. Therefore, explicitly considering timescale is crucial when studying 
evolvability. 
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Figure 2: When studying evolvability it is important to explicitly consider timescale; 
observing at different times can lead to different conclusions. Suppose that we observe the 
ability of two fish species to adapt to a new food source. Our conclusions on which of the two 
is more evolvable (is better able to adapt to the new selective challenge) will depend on the 
time at which we observe their level of adaptation. At time t1, the purple fish species is more 
adapted (and hence seems more evolvable), but at time t2, the green fish species is more 
adapted (and hence seems more evolvable). This occurs because rates of adaptation are not 
constant across time - thus, being explicit about the timescale of observation can resolve 
apparent discrepancies when comparing the evolvability of different organisms. 

Accounting for environmental context shows that 
determinants differ in scope 

Evolvability is the capability to undergo adaptive evolution; it is therefore 
necessary to consider in relation to which environmental challenge such 
adaptation arises. This reveals an additional property of determinants: their 
scope. Some determinants affect evolvability across many different 
environmental challenges; we consider these to have a broad scope. For 
example, mutation rates impact evolvability in virtually all environments. 
Other determinants have a narrow scope as they only shape evolvability in a 
restricted set of environments. For example, the grouping of temperature-
relevant genes on one chromosome in yeast [42] only enhances evolvability 
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to a change in temperature; it does not impact adaptation to other 
environmental challenges. 

The scope of determinants pushes the researcher to consider the range of 
environments in which a determinant is relevant. Determinants relevant for 
adaptation to one environment may not be as relevant when considering 
adaptation to another. For example, in the radiation of Darwin’s finches, 
developmental biases in beak development have been implicated in their 
adaptation to different seed sizes [66,67]. However, evolvability with regards 
to beak shape will not be relevant with regards to other environmental 
challenges, such as temperature regulation or predator escape. By contrast, 
a higher mutation rate will affect evolutionary adaptation with regards to 
many different environmental challenges. 

Two perspectives on evolvability 

A very different distinction does not refer to the determinants of evolvability, 
but to the scholars studying evolvability. Depending on their scientific 
discipline, research question, or model system, scholars differ in whether 
they view evolvability as “general” or “specific” with regards to 
environmental challenges (figure 3). Scientists adopting a specific evolvability 
perspective refer to the capability of a biological system to undergo adaptive 
evolution to a specific environment or a specific challenge – the main focus 
therefore is on how well a biological system can meet a specific selective 
target. This perspective is useful when studying adaptation to a particular 
challenge, e.g. when exploring the capability of bacteria to evolve resistance 
to a particular antibiotic, the capability of a virus to evolve resistance to a 
vaccine, or the ability of an endangered species to evolve adaptations to a 
specific anthropogenic threat [68,69]. In contrast, scientists adopting a 
general evolvability perspective view evolvability as the capability of a 
biological system to adapt to a wide spectrum of environments or of 
challenges – thus effectively considering evolvability irrespective of the 
environmental context. This perspective is useful when considering 
adaptation to unpredictable environments, and is also frequently used in 
studies exploring the link between evolvability and diversification [62,70,71].  
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Whilst specific and general evolvability are both useful conceptualizations of 
evolvability, insights gained from one do not necessarily translate into 
insights about the other. Depending on the chosen perspective, the same 
observation can lead to different conclusions (figure 3), it informs what 
questions are asked, and affects how results are interpreted. Consider a 
population that is able to adapt rapidly to a specific challenge, such as a 
bacterial strain quickly evolving resistance to a particular antibiotic. From the 
perspective of specific evolvability this strain has a high evolvability, whilst 
viewed from the perspective of general evolvability this single instance of 
rapid adaptation says nothing about the ability of the strain to adapt to other 
challenges (heat stress, pH stress, etc.). The distinction between general and 
specific evolvability should not be confused with the scope of a determinant: 
the latter is a property of a determinant, whereas the former concerns two 
different ways of viewing evolvability.  
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Figure 3: Specific and general evolvability represent two different perspectives on 
evolvability. This influences questions and interpretation of results in evolvability research. 
Different scientists can reach different conclusions from the same observations. This figure 
illustrates how scientists with different perspectives (on the left: specific evolvability, on the 
right: general evolvability) interpret the same observations regarding adaptation very 
differently. Observation A: A fish species can easily adapt to using cookies as a food source. 
From the specific evolvability perspective (S1), this is interpreted as high evolvability with 
respect to cookies. From the general evolvability perspective (G1), it is not possible to draw 
conclusions, since no information is available regarding the ability to adapt to other food 
sources (environments). Observation B: A fish species cannot adapt to using cookies as food 
source, but (e.g. due to modular mouth parts) can undergo adaptation to a wide range of 
other food sources (environments). From a specific evolvability perspective (S2), this is 
interpreted as a lack of evolvability with regards to cookies. From a general evolvability 
perspective (G2), the ability to adapt to a wide range of different environments (ability to deal 
with dietary shifts) indicates a high evolvability. Notice that the two perspectives characterize 
scholars of evolvability, rather than the determinants of evolvability. The two perspectives 
should therefore not be confused with determinants acting at short vs long timescales, or with 
determinants having narrow vs broad scope. 
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Concluding remarks 

Evolvability is an intricate concept with many facets. Different facets are at 
centre stage in different lines of research. Furthermore, evolvability is 
conceptualized in two different ways: specific and general evolvability. Being 
aware of these differences is crucial for fostering an integrated and 
structured view on evolvability research.  

Throughout we argue that evolvability should not be studied as a 
phenomenon per se, but as a product of the mechanisms underlying it. 
Moreover, it is useful to clearly distinguish between determinants that 
provide variation, shape the effect of variation on fitness and shape the 
selection process. A structured mechanistic approach clarifies debates in the 
literature and provides a sound basis for studying the evolution of 
evolvability.  

Evolvability cannot be quantified by a single number. Both speed of evolution 
and level of adaptation are relevant, but they are not independent. Scholars 
should explicitly consider this when conducting evolvability research. 

We hope that the proposed mechanistic approach facilitates communication 
across disciplines, helps to address major questions regarding evolvability 
(see Outstanding Questions), and provides guidelines for designing future 
studies on evolvability. 
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Box 1. Definitions of evolvability  

Here we will briefly discuss some definitions of evolvability, as they provide 
a good overview of the diversity of approaches in the field of evolvability 
research [63,72,73]. One important early definition revolves around the 
additive genetic coefficient of variation. It defines evolvability as the ability 
to respond to selection as governed by the presence or absence of standing 
genetic variation (often assessed in the G matrix) [38,58,74]. Another 
important perspective was given by Wagner and Altenberg [59], who made 
a distinction between variation and variability, i.e. the propensity of 
characters to vary. Evolvability is then considered not as the currently 
present variation but instead as the ability to generate new variation. A 
third, different perspective on evolvability considers the ability to generate 
major innovations [75,76]. For a comprehensive review of these 
developments, the reader is referred to [1]. Note that these definitions of 
evolvability are reflected in our first category of determinants, as they all 
view evolvability as determined by the presence or provisioning of variation.  

One additional aspect of the definitions of evolvability (also called 
“evolutionary potential” or “adaptive capacity”) is the relationship between 
variation and adaptation. While earlier treatments (as discussed in [1]) 
define evolvability as the ability of a biological system to evolve, irrespective 
of whether evolution is adaptive or not, recent definitions tend to restrict 
the concept to adaptive processes. For example, Payne and Wagner [14] 
combine the aspects of variation and adaptation when they define 
evolvability as “... the ability of a biological system to produce phenotypic 
variation that is both heritable and adaptive”. Other definitions in this vein 
have been provided by [7,38,60,77–81].  

Following the general trend in the field, we here focus on adaptive evolution 
as well. When defining evolvability as the “capability of a biological system 
to undergo adaptive evolution” we do not mean the presence or absence of 
this capability, but rather we consider its degree in a continuous fashion.  
Adopting an adaptive perspective does by no means imply that non-adaptive 
processes (e.g. genetic drift) are irrelevant; in fact, many of the determinants 
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of evolvability reflect such processes (e.g. mutation). However, there are at 
least two reasons for focusing on adaptive evolution. First, many 
applications of evolvability (e.g. evolution of antibiotic resistance, 
adaptation to anthropogenic change) consider the adaptation to 
environmental challenges. Second, relating the rate and outcome of 
evolution to underlying selection pressures provides a yardstick, making it 
possible to differentiate between organismal and environmental features 
[38] and allowing comparisons across organisms. Both features are 
important first steps toward a predictive theory of evolution [82]. 

Acknowledgments 
We thank the members of the MARM group and the Komdeur group at the 
University of Groningen for stimulating discussion and comments on the 
manuscript, and Carlotta Borgato for assistance with the design of the 
figures. We also thank Armin Moczek, David Berger, and two anonymous 
reviewers for their helpful comments and insights. F.J.W., S.T. and T.J.B.v.E. 
acknowledge funding from the European Research Council (ERC Advanced 
Grant No. 789240); J.M.R. is supported by a GELIFES scholarship from the 
University of Groningen. Finally, we thank the imaginary fish of unknown 
species that volunteered to be fed imaginary baked goods for the 
advancement of science. 

Glossary 

Biological system: We here define a biological system to be any biological 
entity that can be subject to evolution by natural selection. 

Cryptic genetic variation: Standing genetic variation that has little effect on 
phenotypic variation under normal conditions, but generates variation 
under changed conditions. The release of this variation can facilitate (or 
hamper) adaptation and thus impact evolvability. 

Developmental bias: The developmental mechanisms underlying a trait can 
introduce biases in the variation in the phenotype, even if the underlying 
mutations are unbiased. These biases can be (but need not be) aligned with 
the direction of selection, in which case they facilitate adaptive evolution.  
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Developmental canalization: Robustness to genetic or environmental 
perturbations frequently exhibited by developmental systems, leading to a 
stable phenotypic outcome. 

Evolutionary capacitor: Mechanism that prevents the expression of genetic 
variation under some conditions, thus allowing the accumulation of cryptic 
genetic variation, and ‘releases’ this variation under other conditions, thus 
exposing it to selection. 

Gene regulatory network (GRN) model: Model that explicitly represents the 
genotype-to-phenotype-map, as a complex network of regulatory 
interactions between genes. GRN models have been studied extensively in 
the context of evolutionary developmental biology and evolvability. 

Modularity: The ability of subsets of a system (“modules”) to function 
independently of other parts of the system (see [51]). Modularity can impact 
evolvability in various ways: for example, independent modules can be easily 
combined in different ways, and furthermore do not interfere with each 
other’s functioning. 

Phenotypic plasticity: The expression of different phenotypes by the same 
genotype in response to environmental conditions. The impact of 
phenotypic plasticity on evolvability is subject to much debate (see for 
example [10,47–50]): their relationship is complex and not yet well 
understood.  

Robustness: The capability of the state of a biological system to persist 
under (environmental or genetic) perturbation. For example, robustness 
may refer to the ability to maintain a certain phenotype in the face of 
environmental fluctuations or genetic mutations. Intuitively one might 
consider evolvability (the ability to change) and robustness (the ability to 
withstand change) to be opposed, however, it has been shown that they can 
be two sides of the same coin [3,7]. 
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Abstract 
Environmental conditions can influence mutation rates in bacteria. Fever is 
a common response to infection that alters the growth conditions of 
infecting bacteria. Here we examine how a temperature change, such as is 
associated with fever, affects the mutation rate towards antibiotic 
resistance. We used a fluctuation test to assess the mutation rate towards 
antibiotic resistance in Escherichia coli at two different temperatures: 37 °C 
(normal temperature) and 40 °C (fever temperature). We performed this 
measurement for three different antibiotics with different modes of action: 
ciprofloxacin, rifampicin, and ampicillin. In all cases, the mutation rate 
towards antibiotic resistance turned out to be temperature dependent, but 
in different ways. Fever temperatures led to a reduced mutation rate 
towards ampicillin resistance and an elevated mutation rate towards 
ciprofloxacin and rifampicin resistance. This study opens a new avenue to 
mitigate the emergence of antibiotic resistance by coordinating the choice 
of an antibiotic with the decision of whether or not to suppress fever when 
treating a patient. Hence, optimised combinations of antibiotics and fever 
suppression strategies may be a new weapon in the battle against 
antibiotic resistance.  

Introduction 
Antibiotic resistance represents a major societal challenge (1). The 
emergence of antibiotic resistance is at its core an evolutionary process, with 
recent research showing that antibiotic resistance can evolve within a patient 
within just three days (2). More specifically, it may be viewed as an 
‘evolutionary rescue’ process (3, 4); when treatment commences, a bacterial 
population needs to rapidly evolve resistance before it is driven to extinction 
by antibiotic exposure. The probability that the bacterial population evolves 
resistance is dependent on the rate of occurrence of mutations that confer 
resistance. The higher the mutation rate towards resistance, the greater the 
probability that antibiotic treatment fails due to the emergence of resistance 
(3, 4).  

Mutation rates in bacteria are not constant but are instead dependent on 
environmental conditions such as temperature (5, 6). Most biochemical 
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processes increase with temperature, so it has been speculated that 
mutation rate would be positively associated with temperature (7, 8). In 
addition, bacterial mutation rates can be regulated to become elevated in 
stressful environments, a phenomenon known as stress-induced 
mutagenesis (9). Pathogenic bacteria may therefore express a different 
mutation rate when their (human) host responds to an infection with fever – 
an increase in the body temperature above 38.3 °C (10) – which can create 
mildly stressful conditions for an infecting bacterial population. This leads to 
a question that, to our knowledge, has not been addressed before: How does 
the increase in temperature associated with fever influence the mutation 
rate towards antibiotic resistance? If in bacteria mutation rates towards 
antibiotic resistance were indeed elevated at fever temperatures, fever 
suppression (using widely available antipyretic drugs such as acetaminophen 
(10)) could be a successful tactic to lower the mutation rate and thus combat 
the emergence of resistance. 

Therefore, we here examine the temperature dependence of the mutation 
rate towards antibiotic resistance in Escherichia coli. We assessed the 
mutation rate towards resistance at two temperatures: 37 °C (representing 
a normal body temperature) and 40 °C (representing a typical fever 
temperature). We performed these measurements using a fluctuation-test 
approach to determine the in-vitro mutation rate towards antibiotic 
resistance for three different antibiotics, each with a different mode of 
action: ciprofloxacin (a topoisomerase and DNA-gyrase inhibitor) (11), 
rifampicin (a DNA-dependent RNA polymerase inhibitor) (12) and ampicillin 
(a peptidoglycan transpeptidase inhibitor) (13).  

Results 

Temperature dependence of the mutation rate  
We used a fluctuation-test approach to assess the mutation rate towards 
antibiotic resistance (14, 15, 16, 17). As shown in Figure 1, the mutation rate 
depended on temperature, yet the direction of this dependency differed 
between antibiotics. The mutation rate towards ciprofloxacin and rifampicin 
resistance was higher at 40 °C than at 37 °C. In contrast, the mutation rate 
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towards ampicillin resistance was higher at 37 °C than at 40 °C. The patterns 
of temperature dependence were for each antibiotic robust to using 
different methods for quantifying mutation rates, including different 
estimators of final population size (results for CFP fluorescence see 
supplement 2.4), different estimation methods (maximum likelihood & 
generating function) and different lifetime models (Luria-Delbrück model 
with exponential lifetimes, Haldane model with constant lifetimes and 
inhomogeneous model; see supplement 2.5).  

 

Figure 1. Effect of temperature on the mutation rate towards antibiotic resistance. At least 
three replicate experiments were conducted for each of the three antibiotics: (A) 
ciprofloxacin, (B) rifampicin, and (C) ampicillin. Points show the estimated mutation rate for a 
given experiment and temperature, with error bars corresponding to ± 1 standard error. Lines 
join the result for 37 °C and 40 °C for a single experiment; the difference between the 
mutation rate at 37 °C and 40 °C was statistically significant for all experiments (for 
ciprofloxacin the three p-values ranged between 0.001  and 0.035; for rifampicin, the three p-
values ranged between 0.0002 and 0.003; for ampicillin, the five p-values were all 
below  0.009). Circular points are for experiments performed at the University of Groningen, 
Netherlands; triangular points are for those performed at the University of Montpellier, 
France (protocol and sample size for these experiments deviate slightly, see supplement 1.3). 
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The estimation of population sizes was based on CFU counts. We used the estimation method 
maximum likelihood, and the Luria-Delbrück exponential lifetime model (default settings in 
FLAN (18)).  

Sequencing  
To confirm that the colonies growing on plates containing antibiotics are 
indeed resistant mutants, a small set of mutants (three per temperature per 
antibiotic, 18 in total) was fully sequenced. We managed to clearly identify 
mutations in resistance genes for most mutants (13/18; see supplement 2.3). 

Temperature-dependent antibiotic efficacy 
To determine whether the observed changes in mutation rate (i.e. the rate 
of appearance of resistant phenotypes) were due to temperature-dependent 
antibiotic efficacy, we assessed antibiotic efficacy at the two experimental 
temperatures, also accounting for the liquid culture temperature (see 
supplement 2.6). For ampicillin, we found that it was consistently more 
effective at 40 °C than 37 °C. For rifampicin, the results were inconclusive due 
to an unexpectedly low sample size. For ciprofloxacin, we did not find a 
consistent effect of temperature on antibiotic efficacy. Instead, we found 
that the efficacy increased slightly when the protocol included a temperature 
change, i.e. when the antibiotic incubation temperature was different from 
the liquid culture temperature. In our fluctuation-test protocol, such a 
change in temperature does not occur, therefore this does not impact our 
mutation-rate estimates. 

Discussion 
We found that the mutation rate towards antibiotic resistance was 
temperature-dependent. A three-degree temperature change, such as the 
one associated with fever, altered the rate at which resistant mutants 
appeared by almost an order of magnitude for all three antibiotics 
considered. All else being equal, a higher rate of appearance of mutants with 
a resistant phenotype (mutation rate towards antibiotic resistance) makes 
evolutionary rescue more probable (3). This would thus increase the 
probability that a bacterial population successfully evolves resistance, which 
in turn could lead to treatment failure (2, 19). Furthermore, the average 
timeframe in which resistance evolves will be shorter. These effects should 
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be especially pronounced if the standing genetic variation at the start of 
infection is relatively low, as would be expected due to the usually small size 
of the initial inoculum (3, 20). Besides the mutation rate, other parameters 
that determine the probability of evolutionary rescue, such as the rate of 
population decay or the establishment probability of mutants (see (3)), may 
also be affected by temperature, a possible avenue for further study. 

For ciprofloxacin (a topoisomerase inhibitor) (11) and rifampicin (a DNA-
dependent RNA-polymerase inhibitor) (12) we found that fever 
temperatures led to an increase in the mutation rate. These findings are 
consistent with the general finding that mutation rates are higher under 
suboptimal conditions. Such stress-induced mutagenesis could be an evolved 
response to facilitate evolutionary rescue under stressful conditions (9). 
However, in the case of temperature it could also be a side-effect of the fact 
that all biochemical processes (including those leading to mutation) are 
accelerated at higher temperatures (5, 8). Regardless of the mechanism, this 
suggests that all else being equal, resistance towards these antibiotics would 
be more likely to evolve under fever temperatures.  

For ampicillin (a transpeptidase inhibitor) (13), contrary to our expectations, 
fever temperatures led to a decrease in the mutation rate towards 
resistance. This result was replicated in two different labs (Groningen and 
Montpellier), demonstrating its robustness. The observed effect of 
temperature on the mutation rate (i.e. rate of appearance of resistant 
phenotypes) could be due to a difference in the rate at which mutations 
appear in the genome (genomic mutation rate) or to a difference in the 
proportion of genomic mutations that convey resistance. The proportion of 
mutations that convey resistance could be influenced by temperature if the 
efficacy of an antibiotic is temperature-dependent (i.e. mutations that 
convey resistance at one temperature do not convey resistance at another 
temperature). Therefore, we conducted an experiment which showed an 
increase in the efficacy of ampicillin at 40 °C (see supplement 2.6, including 
results for ciprofloxacin and rifampicin). Thus, the surprising result for 
ampicillin may largely be explained by this increase in efficacy of ampicillin at 
the higher temperature, as some of the mutations conveying resistance at 37 
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°C may not be able to do so at 40 °C, leading to a decrease in the rate of 
occurrence of resistant mutants. A recent study by Cruz-Loya et al. (21) also 
found indications for the temperature-dependent efficacy of ampicillin, 
showing that the presence of ampicillin caused a greater reduction in growth 
rates at higher temperatures. They hypothesised that this may be due to a 
synergistic effect between antibiotic-induced cell wall damage and the 
increased membrane permeability that occurs at higher temperatures. 
Regardless of the exact mechanism of temperature dependence, our 
experiments demonstrate that the rate of appearance of mutants resistant 
to ampicillin is temperature dependent, possibly due to the temperature-
dependent efficacy of the antibiotic. It is ultimately the rate of appearance 
of resistant mutants that determines the probability of resistance evolution. 
Therefore, all else being equal, ampicillin resistance is less likely to evolve 
under fever temperatures. 

The difference in the mutation rates observed at 37 °C and 40 °C is consistent 
between different repeats of the same experiment, and for ampicillin even 
showed replicability across labs. However, for all antibiotics, the estimates of 
the mutation rate differed considerably (sometimes by an order of 
magnitude) between replicate experiments. We can only speculate that 
these differences resulted from small variations (across replicates) in 
environmental conditions in the lab or small differences in the physiological 
state of the pre-culture cells from which the dilute cell suspension was made.  

It would be worthwhile in the future to investigate how the findings 
presented here translate to different antibiotics and bacterial species. 
Furthermore, it would be important to study how our current in vitro results 
translate to the in vivo context, as fever has wider effects than merely 
increasing temperature (such as stimulating immune function (22)). Finally, 
the antibiotic concentrations considered here were chosen so as to maximise 
the ability to detect changes in the mutation rate and are therefore lower 
than those typically used in a clinical setting; future work should reveal 
whether this pattern holds with higher, clinically relevant concentrations.  

The temperature dependence of mutation rates towards antibiotic 
resistance implies that the evolution of antibiotic resistance (i.e. evolvability 
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in the context of antibiotic resistance (23)) is influenced by temperature. This 
study opens up a new way to combat the emergence of antibiotic resistance: 
decisions regarding fever suppression could be leveraged to minimise the 
mutation rate in order to slow down or prevent the evolution of antibiotic 
resistance.  

Methods 
Fluctuation test 
We used Escherichia coli strain REL4548-CFP-lux, a strain from Lenski’s long-
term evolution experiment (24, 25, 25), transformed by chromosomic 
insertion of a CFP reporter gene (27) and a chromosomic insertion of lux 
genes (28) (see supplement 1.1). We estimated the mutation rate towards 
antibiotic resistance using a Luria-Delbrück fluctuation test (14, 15, 16, 17). 
Three experiments were performed for each antibiotic in Groningen; an 
additional two were conducted for ampicillin in a different lab in Montpellier 
(the protocol for these additional two experiments deviates slightly and is 
described in detail in the supplement 1.3). For each experiment and each 
temperature (37 °C and 40 °C), 40 replicate populations, all originating from 
one dilute cell suspension, were grown in liquid culture. When populations 
were in the mid-exponential phase, population density and the number of 
antibiotic-resistant mutants were assessed for each population. Population 
density was estimated using two complementary methods: by counting 
colony forming units (CFU) and by measuring the fluorescence of cyan 
fluorescent protein (CFP; CFP fluorescence-based results shown in 
supplement section 2.4). The number of resistant mutants in each population 
was assessed by counting the number of colonies that were able to grow 
when the population was plated on an antibiotic-containing agar plate. These 
antibiotic-containing agar plates were incubated at the same temperature as 
the populations were initially grown at; i.e., a population grown at 37 °C was 
plated at 37 °C. Finally, the R package FLAN was used to infer mutation rates 
using several different estimation methods (17) (shown in supplement 2.5). 
We also used the FLAN package to conduct a fluctuation analysis test 
comparing the mutation rates at the two temperatures. There was a 
significant day effect for mutation rates, so the experiments for each 
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antibiotic were analysed in a pairwise manner – i.e. for each comparison, 
mutation rate estimates were obtained for both temperatures on the same 
day and from an identical starting culture (with the exception of one of the 
two ampicillin experiments performed in Montpellier).  

Temperature-dependent efficacy 
We observed differences in the mutation rate (rate of appearance of 
resistant phenotypes). This effect could be due to a difference in the rate at 
which mutations appear in the genome (genomic mutation rate) or due to a 
difference in the proportion of genomic mutations that convey resistance. 
The proportion of mutations that convey resistance could be influenced by 
temperature if the efficacy of an antibiotic is temperature-dependent; in that 
case, mutations that convey marginal resistance at one temperature may be 
ineffective in conveying resistance at another temperature. Therefore, we 
conducted experiments to test for temperature-dependent antibiotic 
efficacy. The experiment was carried out as above with the following 
alteration: when assessing the number of resistant mutants in a population 
(grown in liquid culture at 37 °C or 40 °C), each population was split in half, 
and half of the population was grown on antibiotic-containing plates at 37 °C 
and the other half was grown on antibiotic-containing plates at 40 °C. This 
allowed us to assess whether the temperature at which the antibiotic-
containing plates were incubated, affected the number of observed mutants. 
If an antibiotic is equally efficacious independent of temperature, the 
temperature at which the antibiotic-containing plates are incubated should 
not affect the number of mutants observed in a particular population. The 
number of mutants found at each temperature from each population was 
compared using a Wilcoxon signed-rank test, taking into account the liquid 
culture temperature (see supplement 2.6). 

Data availability 
The data supporting the findings of this study is available at: 
https://doi.org/10.34894/BG4ZS8  
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Supplementary material 
 

Detailed Methods 
 

Strain & media 

The bacterial strain used in this experiment was Escherichia coli REL4548-
CFP-lux. The ancestor of this strain was isolated in the long-term evolution 
experiment where E. coli REL606 adapted for 10000 generations to DM25 
medium (Lenski et al., 1991; Lenski & Travisano, 1994; Elena et al. 1998). 
Subsequently, this strain was transformed with a chromosomally integrated 
constitutive high expression CFP marker (Gallet et al. 2012) and kindly 
provided by Romain Gallet. Subsequently, this strain was transformed with a 
chromosomally integrated lux reporter genes according to the protocol 
described by Howe et al. (2010). The plasmid used for the chromosomal 
integration of lux reporter genes can be found here 
https://www.addgene.org/69150/.  The resulting strain REL4548-CFP-lux, 
which we used in our experiment, constitutively expresses CFP and lux 
reporter genes, allowing for close monitoring of cell density and metabolic 
activity respectively.  

CFP fluorescence was measured using a BMG Labtech CLARIOstar with 
excitation = 431 ± 15 nm and emission = 472 ± 15nm. All experiments were 
conducted using Davis minimal media containing 1 mg/mL glucose 
(DM1000). For plating, this medium was supplemented with 1.6% (w/v) agar 
and, when required, antibiotics were added to give the following final 
concentrations: rifampicin 10 μg/mL, ciprofloxacin 0.013 μg/mL, and 
ampicillin 1.5 μg/mL. These concentrations were chosen by plating 200 μL of 
culture on a range of antibiotic concentrations and selecting a concentration 
that resulted in a countable number of mutants, thereby maximizing power 
to detect changes in the mutation rate. Rifampicin stocks were made by 
dissolving rifampicin (Sigma) in 0.1N HCl; ciprofloxacin stocks were made by 
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dissolving ciprofloxacin (Sigma) in 0.1N HCl; and ampicillin stocks were made 
by dissolving ampicillin sodium (Sigma) in sterilized distilled water. 

Fluctuation test 

To measure the mutation rate at two different temperatures, a fluctuation 
test was performed. To set up the experiment, E. coli REL4548-CFP-lux was 
grown to stationary phase overnight at 37 °C (incubator: INCU-line, IL 56 
Premium; agitation: Grant-Bio PMS 1000i, shaking = 540 PM). For the 
ampicillin fluctuation tests, the stationary-phase culture was diluted with a 
factor 106 to create the diluted cell suspension needed to initialize the 
fluctuation test.  For ciprofloxacin and rifampicin, the stationary-phase 
culture was refreshed after approximately 24 hours. This was done by 
diluting the culture with a factor 10 and growing it for another 2.5 hours at 
37 °C. Refreshing the overnight culture ensured that all cells were in the 
exponential growth phase prior to the start of the experiment, minimizing 
the lag time and thereby reducing possible differences in final population 
densities caused by stochastic variations in lag time. The refreshed culture 
was then adjusted to an OD600 value of 0.5 and diluted with a factor 2.5 x 105, 
creating the diluted cell suspension needed to initialize the fluctuation text  

In all experiments, the diluted cell suspension was then used to initialize the 
fluctuation test, by establishing 40 populations in each of three 96-well plates 
(Greiner bio one, clear), for a total of 120 populations. To minimize the effect 
of evaporation only the inner wells of the plate were used, with the wells 
bordering the edge of the plate filled with medium. Each population 
consisted of 200 µL of diluted culture, with each population containing 
approximately 100 cells for the ampicillin experiments and approximately 
200 cells for rifampicin and ciprofloxacin experiments. These initial cell 
numbers per population are somewhat higher than the single cell assumed 
by the fluctuation test, yet they are low enough to ensure that the probability 
that mutations are present at the start of the experiment is small (hence 
ensuring statistical independence between resistance emergence events). 
These somewhat higher initial cell numbers allow to limit stochastic 
population extinction upon starting lineages, and to limit the differences in 
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the final population density (after a fixed growth period) caused by early 
stochastic growth dynamics. The first 96-well plate was used to monitor cell 
growth in a plate reader (shaking = 400 RPM, double orbital). This monitor 
plate served as a rough indication of when the populations were in mid-
exponential phase, this plate was not directly used to gather any data. The 
other two plates were grown under agitation (Grant-Bio PMS 1000i; 
ciprofloxacin and rifampicin shaking = 700 RPM; ampicillin shaking = 540 
RPM) in identical incubators (INCU-line, IL 56 Premium) at 37 °C and 40 °C 
respectively.  

When the populations were roughly in mid-exponential phase (determined 
using CFP fluorescence) the number of mutants in each population was 
assessed by plating the entire population on agar plates containing 
antibiotics. These agar plates were incubated for five or six days at 37 °C or 
at 40 °C  (at the temperature at which the populations were grown in the 96-
well plate). Subsequently, the number of mutants on each agar plate was 
counted. The final population densities at the time of plating were 
determined in two ways: through CFU-counting and CFP fluorescence 
measurements. For CFU counting a 2 µL sample was taken from a subset of 
12 of the populations (for one of the AMP experiments a subset of 4 
populations was used), this sample was subsequently diluted with a factor of 
105 and plated on agar plates without antibiotics, this provided an estimate 
of the mean final population densities. For CFP fluorescence all replicate 
populations were measured in plate reader (BMG Labtech CLARIOstar, 
excitation = 431 ± 15 nm, emission = 472 ± 15nm), and using a calibration 
curve the final number of cells for each replicate population could be 
estimated. This experiment was repeated three times for each antibiotic in 
Groningen (NL).  

The R-package FLAN (Mazoyer et al. 2016) was used to analyze the data, 
using the “mutestim” function to compute mutation rate estimates and using 
the “flan.test” function to perform a fluctuation analysis test to compare the 
mutation rate between the two temperatures. Several different estimation 
methods and lifetime models implemented in the FLAN package were used. 
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Fluctuation tests ampicillin conducted in Montpellier 

For ampicillin, two additional fluctuation test experiments were conducted 
in Montpellier (FR). The experiments shown are a subset of pilot experiments 
used to create a fine-tuned protocol, hence the protocol for these two 
experiments deviates slightly from the one described above for the 
experiments conducted in Groningen. Nonetheless, these experiments are 
included as they illustrate that the patterns observed for ampicillin replicate 
across two different labs. 

First of all, populations created from the dilute cell suspension had a culture 
volume of 250 µl. To determine the population densities only a subset of 8 
populations (instead of 12) were sampled, diluted with a factor 105 and 
plated on agar plates without antibiotics. No CFP measurements of final 
population density were performed. For the first ampicillin experiment 
conducted in Montpellier the experiments for the two temperatures 37 °C 
and 40 °C were conducted on two different days, the number of replicate 
populations also differed between these two days. For 37 °C, 14 populations 
were plated on antibiotic plates. For 40 °C, 30 populations were plated on 
antibiotic plates. For the second ampicillin experiment conducted in 
Montpellier the experiments for the two temperatures, 37 °C and 40 °C , 
were performed on the same day. For each temperature a total of 52 
populations was plated on antibiotic plates to asses the number of mutants 
in each population. 
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Supplemental results 
 
Several additional experiments were conducted to verify that some of 
assumptions of the fluctuation test experiments hold. This included 
comparing the growth rates at 37 °C and 40 °C and comparing the plating 
efficiency at 37 °C  and 40 °C. Additionally, a limited set of mutants was fully 
sequenced to confirm that the colonies growing on antibiotic containing 
plates do indeed represent genetic mutants. Furthermore, the mutation 
rates were estimated using CFP fluorescence as a measure of final population 
density (instead of CFU counting). In addition, the mutation rates were 
estimated using several different estimation methods and lifetime models 
implemented in the FLAN package. Finally, an experiment was conducted to 
assess temperature-dependent antibiotic efficacy. 

Comparing growth rates 

A fluctuation test assumes a pure birth process, hence differences in growth 
rates between the two treatments can cause discrepancies (i.e., a different 
total number of divisions between the treatments). Therefore, the growth 
rate of E. coli REL4548-CFP-lux was at measured at 37 °C and 40 °C using CFP 
fluorescence. An overnight culture was diluted 106-fold and was used to 
create populations in a 96-well plate in a similar way to the fluctuation test. 
This plate was subsequently grown until stationary phase in the plate reader. 
This was repeated on two separate days: on the first day the 96-well plate 
was incubated at 37 °C,  and on the second day the 96-well plate was 
incubated at 40 °C . To prevent any effect of evaporation on the wells on the 
edge of 96-well plate were excluded from the analysis, resulting in 54 
replicate populations for each temperature. To compare growth rates 
between the two temperatures the linear portion of each population’s log 
density dynamics (corresponding to exponential growth) was plotted (figure 
S1). Visual inspection as well as a statistical test (figure S2) indicated that the 
growth rate was not different between 37 °C  and 40 °C (p = 0.7881). 

  

68



 
Figure S1.  Linear portion of the log density dynamics (log (CFP)), including the linear models 
fit to these dynamics.  
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Figure S2.  Temperature did not significantly affect growth rate. The linear portion of the log 
density dynamics was extracted and the slopes compared between temperatures using a t-
test (p = 0.7881). Vertical line shows the median, box shows the interquartile range.  

70



Comparing plating efficiency 

Differences in plating efficiency between the two different temperatures 
could cause discrepancies in estimating final population densities. Therefore, 
the plating efficiency of cells plated on standard agar plates (without 
antibiotics) was compared between the two temperatures. Specifically, an 
overnight culture was grown to stationary phase prior to being diluted 106-
fold. 25 µl of this dilution was then plated on 40 non-selective DM1000 agar 
plates. Subsequently, half of the plates were grown at 37 °C  and half at 40 
°C , resulting in 20 replicates per temperature. Plates were photographed and 
counted as for the fluctuation test. The resulting data is shown in figure S3, 
a Wilcoxon rank sum test showed no significant difference in plating 
efficiency between 37 °C and 40 °C  (p = 0.3935). 

 

 

Figure S3.  Comparing the plating efficiency of cells plated on standard agar plates (without 
antibiotics) between the two temperatures 37 °C and 40 °C. Vertical line shows the median, 
box shows the interquartile range. 
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Sequencing results 

To see if the colonies observed on the agar plates with antibiotics do indeed 
have mutations conferring resistance, a small subset of mutants was fully 
sequenced (three per temperature per antibiotic, 18 in total) and their 
genomes were screened for relevant resistance mutations. Subsequently, 
the mutants and the wild-type REL4548-CFP-lux strain were grown in 
DM1000 and DNA was extracted using the GenElute Bacterial Genomic DNA 
Kit (Merk). The extracted DNA was quantified using a nanodrop and 
subsequently shipped to BGI Europe for sequencing, where sequencing was 
performed on a DNBseq machine using a read length of 150 bp, sequencing 
about 10 million reads per sample. The resulting reads for the starting strain 
and the mutants were aligned to the REL606 reference sequence 
(NC_012967.1, resulting in approximately 300X coverage) and the mutations 
were analysed using Breseq (Detherage & Barrick, 2014). The differences 
between the reference and the starting strain were subtracted from those in 
the mutants so that only mutations that occurred during the experiment 
were observed. The results are summarized in Table S1. Mutations in known 
resistance associated genes were identified in 13/18 mutants tested. 
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Table S1.  Resistance mutations identified using Breseq in fully sequenced mutants and 
references to sources identifying and studying similar mutations.  

Anti- 
biotic 

Temper- 
ature 

Nr Mutation Position Gene mutated Citation 

Amp 37 1 
AC  
L350F (TTA→TTC) 

95,266 
Peptidoglycan 
glycosyltransferase FtsI  
(ftsl) 

Li et al. 2019 

Amp 37 2 
GA 
L714L (CTG→CTA) 

433,084 Endopeptidase La (lon) Nicoloff et al. 2013 

Amp 37 3 
GT 
E96D (GAG→GAT) 

3,464,981 
2‑component system 
response regulator 
OmpR (ompR) 

Jordan et al. 2022 

Amp 40 1 
+AA coding (498/1089 
nt) 

1,003,577 porin OmpF (ompF) Jordan et al. 2022 

Amp 40 2 - - - - 

Amp 40 3 
Δ2 bp coding 
(264‑265/1353 nt) 

3,464,288 
2‑component system 
sensor histidine kinase 
EnvZ (envZ) 

Jordan et al. 2022 

Cipro 37 1 - - - - 

Cipro 37 2 - - - - 

Cipro 37 3 
Δ1 bp coding 
(773/1089 nt) 

1,003,302 porin OmpF (ompF) 
Vinue et al. 2015; 
Kishi & Takei 2009; 
Forst et al., 1989 

Cipro 40 1 - - - - 

Cipro 40 2 
Δ9 bp intergenic 
(‑9/+585) 

1,004,083 
porin 
OmpF/asparagine‑‑tRN
A ligase (ompF/asnS) 

Vinue et al. 2015; 
Kishi & Takei 2009; 
Forst et al., 1989 

Cipro 40 3 Δ314 bp 3,464,348 
2‑component system 
response regulators 
(envZ, ompR)  

Vinue et al. 2015; 
Kishi & Takei 2009; 
Forst et al., 1989 

Rif 37 1 
T→C  
I530T 
(ATC→ACC) 

4,162,444 
DNA‑directed RNA 
polymerase subunit 
beta (rpoB)  

Weinstein & 
Zaman 2018 

Rif 37 2 
G→T 
R529L (CGT→CTT) 

4,162,441 
DNA‑directed RNA 
polymerase subunit 
beta (rpoB) 

Weinstein & 
Zaman 2018 

Rif 37 3 - - - - 

Rif 40 1 
T→A 
I572N (ATC→AAC) 

4,162,570 
DNA‑directed RNA 
polymerase subunit 
beta (rpoB) 

Weinstein & 
Zaman 2018 

Rif 40 2 
T→A 
I572N (ATC→AAC) 

4,162,570 
DNA‑directed RNA 
polymerase subunit 
beta (rpoB) 

Weinstein & 
Zaman 2018 

Rif 40 3 
T→A  
L511Q (CTG→CAG) 

4,162,387 
DNA‑directed RNA 
polymerase subunit 
beta (rpoB) 

Weinstein & 
Zaman 2018 
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Estimation of mutation rates using CFP fluorescence 

A calibration curve was constructed to translate CFP fluorescence values to 
colony forming units (CFU). To construct this calibration curve, a stationary 
phase culture was repeatedly diluted two-fold and CFP emissions for each 
dilution read using the plate reader (BMG Labtech CLARIOstar, excitation = 
431 ± 15 nm, emission = 472 ± 15nm, shaking = 400 RPM, double orbital). To 
collect CFU data, a separate dilution was made so that there was a sufficient 
volume of bacterial culture for plating. From this diluted culture, six 
replicates of each of three concentrations (0.5 x 10-6, 1 x 10-6, and 2 x 10-6) of 
200 μL each were plated on non-selective DM1000 agar and grown at 37 °C  
for approximately 24 hours before counting as above. Since all of these 
dilutions gave a countable number of cells, each replicate was converted to 
the number of cells in an undiluted population and the mean calculated. This 
was then used to calculate the expected number of cells in each of the 
dilutions for which CFP emissions had been measured. A linear model was 
computed between CFU as estimated above and CFP emissions, giving a 
calibration curve (figure S4). Final population densities were also estimated 
using CFP fluorescence. The calibration curve is shown in figure S4 was then 
used to infer final population densities for the fluctuation test experiments, 
using CFP fluorescence measurements. The obtained results are shown in 
figure S5, as can be observed they are in agreement with those obtained 
when estimating final population density using classical CFU counting.   
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Figure S4.  Calibration curve between CFP fluorescence and colony forming units (CFU) 
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Figure S5.  Mutation rates estimated using CFP fluorescence to assess final population density 
for each population: (A) ciprofloxacin, (B) rifampicin, and (C) ampicillin. Points show the 
estimated mutation rate for a given experiment and temperature, with error bars 
corresponding to ± 1 standard error. Lines join the result for 37 °C and 40 °C for a single 
experiment; significant differences between mutation rate at 37 °C and 40 °C (p < 0.05) are 
shown as solid lines, non-significant differences are shown as dotted lines. All experiments 
shown were performed at the University of Groningen, Netherlands. The mutation rates were 
estimated using the FLAN package, using the estimation method maximum likelihood, and 
using the Luria-Delbrück exponential lifetime model (default settings). 
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Different procedures for estimating mutation rates 

Several procedures for inferring mutation rates are implemented in the FLAN 
package (17). These include two different estimation methods (maximum 
likelihood and generating function) and three different lifetime models 
(Luria-Delbrück exponential lifetime model, Haldane constant lifetime model 
and Inhomogeneous model). Figure 1 in the main text is based on the default 
setting in FLAN (maximum likelihood, Luria-Delbrück model). Figures S6 to 
S10 show the results when applying the other combinations of estimation 
method and lifetime model to our data. The figures show that our 
conclusions are robust to the method chosen: in all cases, the differences 
between the mutation rate at 37 °C  and 40 °C were in the same direction 
and significant for all experiments (p < 0.05). 

 

 

Figure S6.  As Figure 1 in main text , but using the estimation method maximum likelihood, 
and using the Haldane constant lifetime model.  
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Figure S7.  As Figure 1 in main text , but using the estimation method maximum likelihood, 
and using the inhomogeneous lifetime model.  
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Figure S8.  As Figure 1 in main text , but using the estimation method generating function, 
and using the Luria-Delbrück exponential lifetime model.  

 

Figure S9.  As Figure 1 in main text , but using the estimation method maximum likelihood, 
and using the Haldane constant lifetime model. 
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Figure S10.  As Figure 1 in main text, but using the estimation method maximum likelihood, 
and using the inhomogeneous lifetime model. 

Temperature-dependent antibiotic efficacy 

Temperature-dependent changes in the mutation rate observed in the 
fluctuation test could be due to changes in the rate at which mutations occur 
in the genome (genomic mutation rate) or, alternatively, they could be 
caused by differences in the proportion of mutations that convey resistance 
at each temperature. The latter effect could be caused by temperature-
dependent efficacy of the antibiotic, implying that mutations that convey 
resistance at one temperature are not able to convey resistance at the other 
temperature. To explore the temperature-dependent efficacy of each of the 
three antibiotics, we conducted a fluctuation test as described above. 
However with an important change, that when assessing the number of 
resistant mutants in a population (grown in a 96-well plate in liquid culture 
at 37 °C  or 40 °C ), each population was split in half, and half of the 
population was grown on antibiotic-containing plates at 37 °C  and the other 
half was grown on antibiotic-containing plates at 40 °C. Therefore, for each 
liquid culture temperature, there were two different antibiotic agar plate 
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culture incubation temperatures. For each population, the number of 
mutants on each of the two antibiotic agar plates should be equal if there is 
no temperature dependent efficacy of the antibiotic, and if we ignore the 
production of de novo mutations during growth on the agar plates, as is 
classically done in fluctuation test data analysis. If on the other hand the 
efficacy of the antibiotic is different per temperature, some of the mutants 
that are resistant at one temperature should not be resistant at another 
temperature, leading to a difference in the observed number of mutants on 
the two agar plates originating from the same liquid culture population. Only 
those liquid culture populations in which at least one mutant was detected 
were included in the analysis, since being able to detect the impact of 
antibiotic agar incubation temperature is conditional on the presence of 
mutants in the liquid culture populations. For each liquid culture 
temperature, the impact of antibiotic agar incubation temperature was 
assessed using a Wilcoxon signed-rank test.  

For ciprofloxacin (figures S11 and S12) it was found that for both liquid 
culture temperatures, the antibiotic agar incubation temperature 
significantly impacted the number of mutants detected (for liquid culture 
37 °C  n = 22 and p = 0.0394 , for liquid culture 40 °C  n = 13 and p = 0.0422). 
However, as can be seen in figure S12, the sign of this effect was different for 
each liquid culture temperature. There is thus no consistent effect of 
temperature on the efficacy of ciprofloxacin, instead it seems that a change 
in temperature between the liquid culture phase and the growth on 
antibiotic agar increases the efficacy of ciprofloxacin. We hypothesize that a 
change in temperature causes a mild-stress on the cells, subsequently 
ciprofloxacin works more effectively to kill these mildly stressed cells. We 
note that such a change in temperature does not occur in our original 
fluctuation-test protocol as antibiotic agar plates are incubated at the same 
temperature as the liquid culture from which they originate. Therefore, the 
effect of a change in temperature on the efficacy of ciprofloxacin should not 
impact our mutation rate estimates obtained using the fluctuation test.  

For rifampicin the sample size was unexpectedly small (for liquid culture 37 
°C  n = 2, for liquid culture 40 °C  n = 4) and hence no statistical testing could 
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be conducted, the data is shown in figure S13. For ampicillin (figures S14 and 
S15) a consistent effect of antibiotic agar incubation temperature was 
detected regardless of liquid culture temperature (for liquid culture 37 °C  
n = 17 and p = 0.0003 , for liquid culture 40 °C  n = 14 and p = 0.0024). This 
clearly indicates that the efficacy of ampicillin is temperature dependent, 
and/or that de novo mutations, on the plates, contribute to the outcome, 
and they are produced at different rates in different temperatures. 

 

 

Figure S11.  The number of ciprofloxacin resistant mutants detected in each population at 
each antibiotic agar incubation temperature, lines connect samples originating from the same 
liquid culture. The left panels shows populations grown in liquid culture at 37 °C. The right 
panel shows populations grown in liquid culture at 40 °C.  
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Figure S12.  Boxplot showing the number of ciprofloxacin resistant mutants detected 
depending on the antibiotic agar incubation temperature. This plot shows the data 
populations grown in liquid culture at 37 °C (left) and at 40 °C (right). 
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Figure S13.  The number of rifampicin resistant mutants detected in each population at each 
antibiotic agar incubation temperature, lines connect samples originating from the same 
liquid culture. The left panels shows populations grown in liquid culture at 37 °C. The right 
panel shows populations grown in liquid culture at 40 °C.  
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Figure S14.  The number of ampicillin resistant mutants detected in each population at each 
antibiotic agar incubation temperature, lines connect samples originating from the same 
liquid culture. The left panels shows populations grown in liquid culture at 37 °C. The right 
panel shows populations grown in liquid culture at 40 °C.  
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Figure S15.  Boxplot showing the number of ampicillin resistant mutants detected depending 
on the antibiotic agar incubation temperature. Shown for populations grown in liquid culture 
at 37 °C (left) and at 40 °C (right). 
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Abstract 

Empirical studies have demonstrated that mutation rates can be affected 
by the condition of an individual or its environment. It has been proposed 
that condition-dependent mutation rates could be selectively favoured as 
in times of maladaptation the production of many new mutants might 
enhance the ability of a population to undergo adaptive evolution (i.e. they 
enhance evolvability). However, models studying the evolution of 
condition-dependent mutation rates are lacking. Here we used an 
individual-based simulation approach to examine the evolution of 
condition-dependent mutation rates in a changing environment. All 
simulations converged to one of two alternative outcomes: a condition-
dependent mutation rate (which is low when the phenotype matches the 
environment and high otherwise) or a constant mutation rate at an 
intermediate level. Populations where a condition-dependent mutation 
rate evolved were substantially better adapted to their (changing) 
environment. The likelihood of the two evolutionary outcomes depended 
on the frequency of environmental change, the initial mutation rates at the 
start of a simulation, and the model assumptions on the mutation rate of 
the mutator loci. When this mutation rate was self-referent (i.e., 
determined by the mutator loci themselves), condition-dependent 
mutation rates evolved much more readily than when the mutation rate of 
mutator loci was externally given. We conclude that condition-dependent 
mutation rates can indeed evolve and that populations with condition-
dependent mutation rates have an enhanced evolvability, that is, an 
enhanced ability to adapt to changing conditions. 

Introduction 

The study of mutational processes is crucial to understanding evolution, as 
mutation provides the variation upon which selection acts. Since mutation 
rates affect what genetic variation is available, they shape the ability of 
biological systems to undergo adaptive evolution. In other words, mutation 
rates are key determinants of evolvability (Badeau & Packard, 2003; Jones et 
al., 2007; Riederer et al., 2022).  
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The rate of mutation is subject to evolution. This is illustrated by the spread 
of mutator strains in the Lenski long-term evolution experiment, leading to 
bacterial strains with an elevated mutation rate (Sniegowski et al., 1999). 
Many researchers have studied the evolution of mutation rates both in 
models (Sniegowski et al., 2000; Badeau & Packard, 2003; Andre & Godelle, 
2006; Desai et al., 2007; Lynch et al., 2016) and empirically, for example by 
using evolution experiments (Sniegowski et al., 1999; Colgrave & Collins, 
2008; Couce et al., 2017; Sprouffske et al., 2018). In general, the optimal 
mutation rate strongly depends on the degree of adaptation. When a 
population is well adapted, a low mutation rate is advantageous, as most 
mutations are deleterious. However, when a population is maladapted, an 
increased mutation rate can be beneficial, as it leads to the more rapid 
production of better-adapted variants. Alleles leading to an increased 
mutation rate can “hitchhike” along with any beneficial variants they 
produce. This is especially effective in asexual populations where the linkage 
between mutator alleles and the adaptive mutations they produce can be 
more easily maintained.  

An organism’s condition can influence its mutation rate. An example of this 
is stress-induced mutagenesis: various stressors are known to result in 
increased mutation rates. There is widespread empirical evidence for such 
stress-induced mutagenesis in many bacterial species, such as Escherichia 
coli, Bacillus subtilis and Staphylococcus aureus (Cirz et al., 2007; Foster, 
2007; Debora et al. 2010; Ram & Hadany, 2012; Ha & Edwards, 2021). A 
stress-related elevation of the mutation rate has also been demonstrated in 
sexually reproducing eukaryotes, such as Saccharomyces cerevisiae and 
Drosophila melanogaster (Heidenreich, 2007; Agrawal & Wang, 2008). 
Stress-induced mutagenesis has even been demonstrated in human cancer 
cells (Cipponi et al., 2020). 

Stress-induced mutagenesis may be a non-adaptive side effect of stressful 
conditions (Ram & Hadany 2012). For instance, a stressor or stress response 
could impact DNA or the enzymes responsible for maintaining and replicating 
DNA, thereby leading to an increase in mutation rates, a phenomenon more 
accurately described as stress-associated mutagenesis (Bjedov et al., 2003; 
Tenallion et al., 2004; Mac Lean et al., 2013). There are, however, at least 
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two adaptive explanations for stress-induced mutagenesis. First, when an 
organism is stressed, the costs of maintaining replicative fidelity could 
outweigh the benefits, inducing selection to switch off fidelity-enhancing 
mechanisms under stressful conditions (Ram & Hadany 2012). Second, stress 
may be an indicator that the organism is not well-adapted to its local 
conditions. As mentioned above, elevating the mutation rate may facilitate 
adaptation under such circumstances (Sniegowski et al., 1999; 2000). 

We are here mainly interested in the second explanation, which is based on 
the idea that selection should shape mutation rates in such a way that they 
keep pace with the level of adaptation: in times of low stress (= a high level 
of adaptation), the mutation rate should be low, whereas in times of high 
stress (= a low level of adaptation), the mutation rate should be elevated. 
According to this logic, the mutation rate should be condition-dependent: it 
should be low under favourable conditions and high under unfavourable 
conditions. Here, ‘condition’ could either refer to the state of the 
environment or to the state of the organism, which by mechanisms like the 
stress-response system may indicate a lack of adaptation. 

Whilst the empirical evidence for condition-dependent mutation rates is 
abundant, the condition-dependence of mutation rates is much less studied 
from a theoretical point of view. The earliest models focused exclusively on 
the effect of deleterious mutations under condition-dependent mutation 
rates (Agrawal 2002; Baer 2008; Shaw & Baer 2011). In contrast, Ram & 
Hadany (2012, 2014, 2019) and Ram et al. (2018) also considered beneficial 
mutations and showed that stress-induced mutagenesis might be favoured 
by selection under a wide array of circumstances. However, the models by 
Ram & Hadany (2012, 2014, 2019) considered the loci determining the 
relationship between an individual's condition and its mutation rate to be 
fixed and not evolvable. In other words, they did not explicitly model the 
evolutionary emergence of the relationship between an individual’s 
condition and its mutation rate.  

Here we use an individual-based simulation approach to better understand 
the evolution of condition-dependent mutation rates. We model individuals 
with a phenotype constantly adapting to a changing environment. We 
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explicitly consider both beneficial and deleterious mutations. Furthermore, 
contrary to the previous models by Ram & Hadany (2012, 2014, 2019), we 
aim to explicitly model the evolutionary dynamics of the relationship 
between an individual condition and the mutation rate. We thus model this 
relationship in a flexible manner: In our model, the current mutation rate is 
determined by two mutation rate loci and a third locus that controls the 
degree of mismatch between the phenotype and the environment at which 
individuals switch between the two mutation rates. We allow these loci to 
dynamically evolve during our simulations.  

We address two research questions. First, can condition-dependent 
mutation rates evolve from scratch and what circumstances are favourable 
for their evolution? In particular, how is the evolution of condition-
dependent mutation rates related to the degree of environmental change? 
Second, how do condition-dependent mutation rates affect the speed of 
adaptation in a changing environment? To what extent does a condition-
dependent mutation rate enhance the evolvability of a population?  

Most previous models of the evolution of mutation rates assume (often 
implicitly) that the mutator loci (i.e., the loci controlling the mutation rate) 
mutate according to an externally given fixed mutation rate (e.g., Agrawal 
2002, Baer 2008; Shaw & Baer 2011; Ram et al., 2018; Ram & Hadany 2012, 
2014, 2019). Here, we also consider the option that the mutation rate at the 
mutator loci is “self-referent” in the sense that this mutation rate is affected 
by the mutator loci themselves. This assumption is not unrealistic. Consider, 
for example, the mechanisms of stress-induced mutagenesis in bacteria, 
where error-prone polymerases are expressed when a certain level of stress 
is reached (Maslowska et al., 2019). The expression of error-prone 
polymerases should increase all mutation rates, including those at the 
mutator loci. We, therefore, investigate whether and how the evolution of a 
condition-dependent mutation rate is affected by the model assumptions on 
the mutation rate at the mutator loci (externally given versus self-referent). 
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Methods  

Model overview 

We use an individual-based simulation approach to study the evolution of a 
population in an environment that may randomly change from one 
generation to the next. Each individual has a genetically determined 
phenotype P. The expected number of offspring of an individual is negatively 
related to the mismatch between the individual’s phenotype P and the 
current state of the environment E. Figure 1A illustrates the change in the 
environment and the tracking of the environment by the average phenotype 
in the population due to the joint action of selection, mutation, and genetic 
drift. 

The mutation rate is determined genetically. We consider two scenarios: a 
constitutive mutation rate and a condition-dependent mutation rate. In the 
first scenario, the mutation rate is determined by the allele on a mutator 
locus; this allele is also inherited from parent to offspring, subject to 
mutation. In the second scenario, the mutation rate is dependent on the 
condition of the individual harbouring this mutation, where the individual’s 
‘condition’ is determined by the mismatch of the individual’s phenotype P 
and the current state of the environment E. As illustrated in Figure 1B, 
condition-dependent mutation rates are encoded by three loci: a threshold 
locus and two mutator loci. The allele at the threshold locus determines the 
degree of mismatch between P and E for which the individual ‘feels’ to be in 
a ‘good’ condition (small mismatch) or in a ‘bad’ condition (large mismatch). 
The allele on mutator locus A determines the mutation rate when in good 
condition, while mutator locus B determines the mutation rate in bad 
condition. Again, the alleles at all three loci are transmitted from parent to 
offspring, subject to mutation. 

In both scenarios, the alleles at the mutation-relevant loci are also affected 
by mutation. We consider two variants for the mutation rate at these loci: (a) 
a constant, externally given (and hence not evolving) mutation rate; or (b) a 
‘self-referent’ mutation rate, which is identical to the mutation rate at the 
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locus determining the phenotype P (and hence determined by the mutation-
relevant loci themselves). 

 

Figure 1. Illustration of the model assumptions. (A) We consider a randomly changing 
environment E (purple line segments) that keeps constant for some generations but switches 
to a new state with a fixed probability. Natural selection tends to reduce the mismatch 
between the genetically determined phenotype of individuals and the current environment. 
As a result, the mean phenotype �̄�𝑃 tends to track the environment. (B) Our model allows 
mutation rates to be condition dependent. In this case, the mutation rate of an individual is 
governed by three heritable traits (𝑀𝑀𝐴𝐴,𝑀𝑀𝐵𝐵,𝑇𝑇): the mutation rate is 𝑀𝑀𝐴𝐴 if the mismatch 
between the individual’s phenotype P and the current environment E (the individual‘s degree 
of maladaptation) is smaller than the threshold T, and it is 𝑀𝑀𝐵𝐵 otherwise. 

Model assumptions 

Environmental change: The environment takes on values between 0 and 1. 
The environmental state E remains constant throughout a generation and is 
the same for all members of the population. From one generation to the 
next, the environmental state changes with a probability χ. Hence the 

expected duration of environmental stasis is 𝐷𝐷 = 1
𝜒𝜒

. Whenever an 

environmental change occurs, a new environmental state is drawn at 
random from the uniform distribution on the interval [0,1]. Unless stated 
otherwise, 𝜒𝜒 = 0.01 or equivalently 𝐷𝐷 = 100. 

Phenotypes, mismatch, and fitness: Each individual has a genetically 
determined (see below) phenotype P, which is a number between 0 and 1. 
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The expected reproductive success (‘fitness’) 𝐹𝐹(𝑃𝑃,𝐸𝐸) of individuals with 
phenotype P in an environment in state E is negatively related to the 
mismatch |𝑃𝑃 − 𝐸𝐸| and proportional to the Gaussian 

    𝐹𝐹(𝑃𝑃,𝐸𝐸) = 𝑒𝑒𝑒𝑒𝑒𝑒( − 𝑠𝑠 ⋅ (𝑃𝑃 − 𝐸𝐸)2), 

where the parameter s measures the strength of selection. For all simulations 
reported in the main text, we chose 𝑠𝑠 = 10, corresponding to a standard 
deviation of √0.05 = 0.224 of the Gaussian. 

Selection and reproduction: We consider a population with discrete, non-
overlapping generations and a fixed population size of N individuals. In all 
simulations reported, we chose𝑁𝑁 = 1,000. Inheritance is asexual; hence, 
offspring inherit the phenotype of their parents unless a mutation occurs. A 
new generation is produced as follows: for each of the N positions, a parent 
is drawn from the previous generation by means of a weighted lottery (with 
replacement), where the probability of an individual i with phenotype 𝑃𝑃𝑖𝑖 to 
be chosen is proportional to the individual’s fitness 𝐹𝐹(𝑃𝑃𝑖𝑖,𝐸𝐸). This procedure 
ensures that the expected number of offspring of each individual is 
proportional to 𝐹𝐹(𝑃𝑃𝑖𝑖 ,𝐸𝐸). 

Inheritance: Individuals are haploid and have either two or four gene loci, 
each of which harbouring infinitely many alleles (corresponding to real 
numbers). All parental alleles are transmitted from parent to offspring, 
subject to mutation. One locus encodes the phenotype P of an individual, 
while the other loci determine the mutation rate at the P locus. The alleles 
at the P locus are elements of the unit interval [0,1]; each allele directly 
corresponds to the phenotype it encodes. In the case of an unconditional 
mutation rate, the second locus encodes the mutation rate M at the P locus. 
To be more specific, the alleles at the M locus are real numbers L that encode 

the logit of the mutation rate: 𝐿𝐿 = 𝑙𝑙𝑙𝑙( 𝑀𝑀
(1−𝑀𝑀))

 and therefore 𝑀𝑀 = 1
(1+𝑒𝑒𝑒𝑒𝑒𝑒(−𝐿𝐿))

. 

Encoding mutation rates by their logit has the convenient property that a 
given reduction in the logit has a smaller and smaller effect on the mutation 
rate the closer the mutation rate is to zero. In the case of a condition-
dependent mutation rate, the mutation rate at the P locus is determined by 
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three parameters (𝑀𝑀𝐴𝐴,𝑀𝑀𝐵𝐵,𝑇𝑇), as indicated in Fig. 1B. The mutation rates 𝑀𝑀𝐴𝐴 
𝑀𝑀𝐵𝐵and threshold locus T are encoded by their logit. 

Mutation at the P locus: Whenever a new offspring is produced, it inherits 
the parental alleles, unless a mutation occurs. At the P locus, a mutation 
occurs with a probability that is determined by the mutation-related loci. If a 
mutation occurs, the new allelic value is given by 𝑃𝑃𝑛𝑛𝑒𝑒𝑛𝑛 = 𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 + 𝛿𝛿𝑃𝑃, where 
the mutational step size 𝛿𝛿𝑃𝑃 is drawn from a normal distribution with mean 
zero and standard deviation 0.05. As P is limited to the unit interval, a 
negative value of 𝑃𝑃𝑛𝑛𝑒𝑒𝑛𝑛 is set to zero, while a value of 𝑃𝑃𝑛𝑛𝑒𝑒𝑛𝑛 exceeding 1 is set 
to 1. 

Mutation at the mutator loci: The alleles encoding the mutation rate are also 
inherited with mutation. In the model variant with externally given mutation 
rates, each of the loci encoding the mutation rate mutates with a constant 
probability 𝜇𝜇 = 0.001. In the model variant with self-referent mutation 
rates, the mutation rate at the mutation-rate determining loci is the same as 
the mutation rate at the P locus (which in turn is determined by the alleles at 
the mutation-rate determining loci). If a mutation occurs at a locus 
determining a mutation rate (M, 𝑀𝑀𝐴𝐴 or 𝑀𝑀𝐵𝐵), the new logit value (L, 𝐿𝐿𝐴𝐴 or 𝐿𝐿𝐵𝐵) 
is given by 𝐿𝐿𝑛𝑛𝑒𝑒𝑛𝑛 = 𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜 + 𝛿𝛿𝐿𝐿, where the mutational step size 𝛿𝛿𝐿𝐿 is drawn 
from a normal distribution with mean zero and standard deviation 0.5. For 
the mutation rate, this implies that 

   𝑀𝑀𝑛𝑛𝑒𝑒𝑛𝑛 = 𝑀𝑀𝑜𝑜𝑜𝑜𝑜𝑜
𝑀𝑀𝑜𝑜𝑜𝑜𝑜𝑜+(1−𝑀𝑀𝑜𝑜𝑜𝑜𝑜𝑜)⋅𝑒𝑒−𝛿𝛿𝛿𝛿

. 

Mutations at the threshold locus T are modelled similarly to mutations at the 
M loci. 

Initialisation: All simulations start with a monomorphic population, with all 
individuals having allele 𝑃𝑃 = 0.5 at the locus determining the phenotype. 
Unless stated otherwise, all mutation rates are initialised at the value 0.001 
and the threshold locus is initialised at 𝑇𝑇 = 0.5. We will later study the effect 
of other initialisations on the evolutionary outcome. 

Simulation details: All simulations were run for 100,000 generations. For 
each initialisation and parameter setting, 100 replicate simulations were run. 
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The simulation programme was written in C++, and the simulation data were 
processed and analysed in R.  

Results  

Evolution of a constitutive mutation rate 

Figure 2 shows what constitutive mutation rate evolved in 100 replicate 

simulations for different average times of environmental stasis 𝐷𝐷 = 1
𝜒𝜒

, or, 

equivalently, for different rates χ of environmental change. In a rapidly 
changing environment (𝜒𝜒 = 0.1;  𝐷𝐷 = 10), the highest possible mutation 
rate 𝑀𝑀 = 1.0tends to evolve, while the evolved mutation rate approaches 
zero in a slowly changing or constant environment (𝜒𝜒 ≤ 0.001;  𝐷𝐷 ≥ 1000). 
The increase of the mutation rate with the rate of environmental change is 
not unexpected, as a high mutation rate allows evolution to keep pace with 
fast environmental change. To verify that a higher mutation rate does indeed 
lead to better adaptive tracking of a rapidly changing environment, we 
investigated the average mismatch between phenotype and environment for 
a range of fixed (i.e., non-evolving) constitutive mutation rates. For the case 
𝐷𝐷 = 100, the results are shown in Figure 3. The mismatch between 
phenotype and environment is highest for very low and very high mutation 
rates and minimal for a constitutive mutation rate of about 0.1. This is in 
agreement with Figure 2, where the evolved constitutive mutation rates 
were also close to 0.1 for 𝐷𝐷 = 100. 
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Figure 2. Effect of the average time of environmental stasis on the evolution of a constitutive 

mutation rate. For six values of 𝐷𝐷 = 1
𝜒𝜒

, a violin plot summarizes the results of 100 replicate 

simulations, with the solid lines indicating the median and the boxes indicating the 
interquartile range. Each point corresponds to the average mutation rate that had evolved at 
the end of a simulation. 
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Figure 3. Effect of a non-evolving constitutive mutation rate on the average mismatch 
between phenotype and environment. For 12 values of a fixed, non-evolving constitutive 
mutation rate and in an environment that changes on average once every 100 generations 
(𝐷𝐷 = 100), each violin plot summarizes the results of 100 replicate simulations. Each point 
corresponds to the time-averaged mismatch between phenotype and environment, 
calculated over the last 25,000 generations, of a simulation.  
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Evolution of condition-dependent mutation rates 

Figure 4 shows the outcome of 100 replicate simulations that allowed for the 
evolution of condition-dependent mutation rates. All simulations were 
initialised with mutation rates 𝑀𝑀𝐴𝐴 = 𝑀𝑀𝐵𝐵 = 0.001 and a threshold value 𝑇𝑇 =
0.5. In the course of evolution, two distinct mutation rate strategies 
emerged, that differ in the value of the threshold, which either converged to 
zero or to one (Fig. 4C). The first strategy, which is illustrated in Fig. 4D, is 
characterized by a low value of the threshold T, a low value of mutation rate 
𝑀𝑀𝐴𝐴, and a high value of mutation rate 𝑀𝑀𝐵𝐵. Individuals with this strategy 
express a low mutation rate (𝑀𝑀𝐴𝐴) when adapted almost perfectly (when the 
mismatch |𝑃𝑃 − 𝐸𝐸| is smaller than the threshold and, hence, close to zero), 
but switch to a high mutation rate (𝑀𝑀𝐵𝐵) as soon as the mismatch is larger 
than the threshold. This is thus a condition-dependent mutation rate 
strategy. The second strategy, which is illustrated in Fig. 4E, is characterized 
by high values of the threshold and intermediate values for mutation rate 
𝑀𝑀𝐴𝐴. In this case, the intermediate mutation rate 𝑀𝑀𝐴𝐴 is expressed under 
almost all conditions, since the mismatch |𝑃𝑃 − 𝐸𝐸| is only in extreme cases 
larger than the threshold (which is close to one). Hence, the mutation rate 
𝑀𝑀𝐵𝐵 is almost never used. In other words, this second strategy is not really 
condition dependent and effectively corresponds to the constitutive 
mutation rate strategy 𝑀𝑀𝐴𝐴. In line with this, the evolved value of 𝑀𝑀𝐴𝐴 is similar 
to the mutation rates that evolved in the constitutive mutation rate model 
for the same value of the parameter D (see Figure 2, 𝐷𝐷 = 100). The two 
strategies form distinct clusters: this can be seen in Figure 4AB, when values 
of 𝑀𝑀𝐴𝐴 and 𝑀𝑀𝐵𝐵 are colour-coded according to the corresponding threshold 
value.  

In the Supplement, we show corresponding simulations, but for weaker 
selection (i.e., lower values of s). Now, the evolution of the mutation rate 
proceeds more slowly and in a more stochastic fashion. However, both the 
condition-dependent strategy and the constant mutation strategy still 
evolve, as shown in Figure S1. 
  

101



 

Figure 4. Evolution of condition-dependent mutation rates. Evolution of (A) the mutation 
rate 𝑀𝑀𝐴𝐴, (B) the mutation rate 𝑀𝑀𝐵𝐵, and (C) the threshold T in 100 replicate simulations of the 
condition-dependent mutation rate model that were all initialised at 𝑀𝑀𝐴𝐴 = 𝑀𝑀𝐵𝐵 = 0.001 and 
𝑇𝑇 = 0.5. Points show the average population value at a particular timepoint for a particular 
replicate. The threshold either converges to zero or to one. The mutation rates in (A) and (B) 
are colour-coded in such a way that the rates evolving for low threshold values appear black, 
while rates evolving for high threshold values appear blue. The distinct clusters in (A) to (C) 
indicate that there are two distinct evolutionary outcomes (which are plotted as in Fig. 1B): 
(D) a condition-dependent mutation-rate strategy with a low threshold T; here, the low 
mutation rate 𝑀𝑀𝐴𝐴 (magenta) is expressed when the mismatch between phenotype and 
environment (the degree of maladaptation) is very low, while the high mutation rate 𝑀𝑀𝐵𝐵 
(cyan) is expressed otherwise; (E) a mutation-rate strategy with a high threshold T; this is 
effectively a constitutive mutation-rate strategy, where an intermediate mutation rate 𝑀𝑀𝐴𝐴 
(magenta) is expressed under almost all conditions, as mismatches |𝑃𝑃 − 𝐸𝐸| close to one occur 
very rarely. In (D) and (E), each simulation is represented by the average value of 𝑀𝑀𝐴𝐴, 𝑀𝑀𝐵𝐵, and 
T; (D) shows all those simulations resulting in �̄�𝑇 < 0.5, while (E) shows the simulations for 
which �̄�𝑇 > 0.5. (F) shows all 100 replicate simulations. Average duration of environmental 
stasis 𝐷𝐷 = 100. 
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Effect of environmental change rate on condition-dependent mutation 
rates 

Figure 4 considered the default setting 𝐷𝐷 = 100, where the environment 
remains constant for, on average, 100 generations. Figure 5 shows the 
outcome of 100 replicate simulations for six different values of D. When the 
average time of environmental stasis is below 1,000, both the condition-
dependent strategy and the constant mutation strategy consistently emerge. 
This is particularly evident in the strongly bimodal distribution of mutation 
rate 𝑀𝑀𝐵𝐵 and the threshold T (Figure 5BC). When the environment remains 
constant or changes very rarely (every 10,000 generations), mutation rate 
𝑀𝑀𝐴𝐴 evolves to very low values, while the evolution of 𝑀𝑀𝐵𝐵 and T does not show 
a clear pattern. If environmental change is very rare, there is no selection for 
a high mutation rate (see Figure 2). In this scenario, the mismatch between 
phenotype and environment will typically be very small, so that selection on 
𝑀𝑀𝐵𝐵 and T is very weak. Accordingly, most of the mutation strategy is never 
expressed and 𝑀𝑀𝐵𝐵 and T will largely evolve by genetic drift. 

 

Figure 5. Effect of the average time of environmental stasis on the evolution of condition-

dependent mutation rates. For six values of 𝐷𝐷 = 1
𝜒𝜒

, three violin plots show (A) the evolved 

mutation rate 𝑀𝑀𝐴𝐴, (B) the evolved mutation rate 𝑀𝑀𝐵𝐵, and (C) the evolved threshold T in 100 
replicate simulations of the condition-dependent mutation rate model that were all initialised 
at 𝑀𝑀𝐴𝐴 = 𝑀𝑀𝐵𝐵 = 0.001 and 𝑇𝑇 = 0.5. Each point corresponds to the average value at the end of 
one replicate simulation. The solid lines indicate the median. 
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Initialization effects the evolution of condition-dependent mutation rates 

Whenever evolution can have different outcomes, the likelihood of each 
outcome typically depends on the initial conditions. Figure 6 shows that this 
general principle also applies to the evolution of condition-dependent 
mutation rates. The colour of the small squares corresponds to the average 
threshold value that evolved in 900 simulations: almost all of these values 
were either close to zero (blue) or close to one (yellow). As explained above, 
the evolved value of T indicates the evolved mutation-rate strategy: low 
threshold values are associated with a condition-dependent mutation-rate 
strategy, while high threshold values are associated with a constitutive 
mutation-rate strategy. Most of the simulations result in a condition-
dependent mutation rate if the threshold is initialised at a low value (𝑇𝑇 =
0.1) or if the mutation rates 𝑀𝑀𝐴𝐴 and 𝑀𝑀𝐵𝐵 are initialised in such a way that 
𝑀𝑀𝐴𝐴 < 𝑀𝑀𝐵𝐵. 

The emergence of the two alternative mutation-rate strategies can 
intuitively be understood as follows. At the start of a simulation, any change 
in the environment selects for an increase the mutation rate, as the initialised 
mutation rates are relatively low. If mutation rate 𝑀𝑀𝐴𝐴 is initially higher than 
mutation rate 𝑀𝑀𝐵𝐵, the effective mutation rate can be rapidly increased by 
increasing the threshold value: with a higher threshold, the relatively high 
mutation rate 𝑀𝑀𝐴𝐴 is expressed more often. When the threshold approaches 
one, the resulting mutation-rate strategy is effectively non-condition-
dependent. In this case, mutation rate 𝑀𝑀𝐵𝐵 is (almost) never expressed and 
hence selection cannot effectively operate on it. Mutation rate 𝑀𝑀𝐴𝐴 evolves 
to higher values, in a fashion similar to the constitutive mutation rate model. 
.If, in contrast, mutation rate 𝑀𝑀𝐴𝐴 is initially lower than mutation rate 𝑀𝑀𝐵𝐵, a 
similar effect operates in the opposite direction. Now, there is initial 
selection to lower the threshold value, as this increases the effective 
mutation rate. In this case, a condition-dependent mutation-rate strategy 
evolves where the threshold evolves to a low value, mutation rate 𝑀𝑀𝐴𝐴 
evolves to a low value and mutation rate 𝑀𝑀𝐵𝐵 evolves to a very high value. 
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Figure 6. Effect of initial conditions on the evolution of condition-dependent mutation rates. 
100 replicate simulations (small coloured squares lined in white) were run for each of nine 
parameter combinations (larger squares lined in black), which correspond to different sets of 
initial conditions for the parameters 𝑀𝑀𝐴𝐴, 𝑀𝑀𝐵𝐵, and T of the condition-dependent mutation rate 
model. In the horizontal direction, the threshold T was initialised at the values 0.1, 0.5, and 
0.9, respectively. In the vertical direction, the mutation rate 𝑀𝑀𝐵𝐵 was initialised at the values 
0.001, 0.01, and 0.1, while 𝑀𝑀𝐴𝐴 was initialised at 0.01 in all cases. Each simulation is represented 
by a small square that is coloured according to the average value of the threshold T that 
evolved in that simulation. Squares coloured yellow represent simulations that evolved a 
threshold value close to 1, indicating a constitutive mutation-rate strategy. Squares coloured 
blue represent simulations that evolved a threshold value close to zero, indicating a condition-
dependent mutation-rate strategy. A condition-dependent mutation rate evolved in most 
simulations that were initialised with a low threshold (𝑇𝑇 = 0.1) and where at the same time 
the initial values of 𝑀𝑀𝐴𝐴 and 𝑀𝑀𝐵𝐵 satisfied 𝑀𝑀𝐴𝐴 ≤ 𝑀𝑀𝐵𝐵. In contrast, a constitutive mutation rate 
evolved in most simulations that were initialised at a higher threshold (𝑇𝑇 ≥ 0.5), while the 
mutation rates were initialised with 𝑀𝑀𝐴𝐴 > 𝑀𝑀𝐵𝐵. Average duration of environmental stasis 𝐷𝐷 =
100. 
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Self-referent mutation rates 

Until now we assumed that the three loci determining the mutation rate 
mutated with a fixed mutation probability (μ = 0.001). Now, we consider a 
self-referent mutation rate: the loci encoding the mutation rate mutate with 
the same probability as the P locus (whose mutation rate is encoded by these 
loci). A self-referent mutation rate can create an evolutionary runaway 
effect: the higher the mutation rate, the faster it can change. The accelerated 
evolutionary dynamics becomes apparent when comparing Figure 7 (self-
referent mutation rate) with the corresponding Figure 4ABC (fixed mutation 
rate at the mutator loci). A self-referent mutation rate also alters the 
likelihood of the two mutation-rate strategies. As shown in Figure 8, a self-
referent mutation rate results much more often in a condition-dependent 
mutation-rate strategy than a fixed mutation rate at the mutator loci (Figure 
6). 

In Supplementary Figure S2, we examine the impact of a self-referent 
mutation rate on the evolution of a constitutive mutation rate. Again, we find 
an acceleration of the evolutionary dynamics, as observed in the condition-
dependent model. 
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Figure 7. Evolution of condition-dependent mutation rates when the mutation rate at the 
mutator loci is self-referent. Evolution of (A) the mutation rate 𝑀𝑀𝐴𝐴, (B) the mutation rate 𝑀𝑀𝐵𝐵, 
and (C) the threshold T in 100 replicate simulations of the condition-dependent mutation rate 
model that were all initialised at 𝑀𝑀𝐴𝐴 = 𝑀𝑀𝐵𝐵 = 0.001 and 𝑇𝑇 = 0.5. Points show the average 
population value at a particular timepoint for a particular replicate. The threshold either 
converges to zero or to one. The mutation rates in (A) and (B) are colour-coded in such a way 
that the rates evolving for low threshold values appear black, while rates evolving for high 
threshold values appear blue. Average duration of environmental stasis 𝐷𝐷 = 100. 
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Figure 8. Effect of initial conditions on the evolution of condition-dependent mutation rates 
when the mutation rate at the mutator loci is self-referent. The figure corresponds in all 
aspects to Figure 6, but now the mutation rates are self-referent. Now, the likelihood of 
evolution of the condition-dependent mutation-rate strategy (simulations corresponding to 
blue squares) is conspicuously higher than in the case of a fixed mutation rate at the mutator 
loci. 
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Implications for population fitness 

The different mutation strategies influence adaptive tracking of the changing 
environment. Figure 9 shows how the time-averaged mismatch between 
phenotype and environment depends on the model version and the evolved 
mutation-rate strategy. s: the constitutively expressed self-referent mutation 
rate, the constitutively expressed non-self-referent mutation rate, the 
condition-dependent self-referent mutation rate (split based on whether a 
condition-dependent mutation strategy evolved in a given replicate 
simulation or not, i.e. based on whether the average threshold value was 
below or above 0.5), the condition-dependent non-self-referent mutation 
rate (split in the same way). A condition-dependent mutation rate strategy 
leads to better adaptive tracking of the environment: the simulations in 
which a condition-dependent mutation strategy evolved show a clearly 
decreased average mismatch between ecological trait and environment.   
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Figure 9. Time-averaged mismatch between phenotype and environment for different 
evolved mutation-rate strategies. Each point corresponds to the time-averaged mismatch 
between phenotype P and environmental state E in the final 25,000 generations of a single 
simulation. For four model variants, the violin plots summarize the outcome of 100 replicate 
simulations. The two left-most violin plots show the results for the constitutive mutation rate 
model, either with a non-self-referent mutation rate (yellow) or a self-referent mutation rate 
(orange). The middle pair of violin plots and the right-most pair of plots each represent 100 
simulations for the condition-dependent mutation rate model, either with non-self-referent 
(middle pair) or with self-referent (right-most pair) mutation rate. In the latter two model 
variants, the simulation outcomes are split according to whether a condition-dependent 
mutation-rate strategy evolved (as indicated by a small evolved threshold �̄�𝑇 < 0.5: cyan or 
light-green plots) or whether a constitutive strategy evolved (as indicated by a large evolved 
threshold �̄�𝑇 > 0.5: dark-blue or dark -green plots). This figure reveals that a condition-
dependent mutation-rate strategy leads to better adaptive tracking of the changing 
environment than a constitutive mutation rate. Average duration of environmental stasis 𝐷𝐷 =
100.  
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Discussion 

This study provides four main findings. Firstly, we show that elevated mutation rates 
evolve under fast environmental change, which facilitate better tracking of the 
environment. Secondly, when we allow for a condition-dependent mutation rate to 
evolve, two different outcomes emerge: switching between a high and low mutation 
rate depending on individual condition, or constitutively expressing only one 
mutation rate. Thirdly, condition-dependent mutation rates allow for better 
adaptation in changing environments. Fourthly, it matters a lot whether mutation 
rates are self-referent or not, i.e. whether mutator alleles affect their own mutation 
rate. Self-referent mutation rates speed up the dynamics of mutation rate evolution 
and increase the likelihood that a condition-dependent mutation rate will evolve. 

Constitutive mutation rates 

As a standard of comparison, we first studied the evolution of a constitutive 
mutation rate. in relation to the frequency of environmental change. The simulations 
revealed that, for a given rate of environmental change, the time-averaged 
mismatch between phenotype and environment is minimised at a particular, 
intermediate mutation rate. In the simulations, the mutation rate tended to evolve 
towards this ‘optimal’ value. Moreover, higher mutation rates evolved in more 
rapidly changing environments. This finding is in agreement with earlier models of 
mutation rate evolution (Sniegowski et al., 2000; Badeau & Packard, 2003; Andre & 
Godelle, 2006; Desai et al., 2007; Lynch et al., 2016). The evolution of elevated 
mutation rates in this model is also consistent with experimental evidence showing 
that elevated mutation rates can even evolve in response to a single environmental 
change (Sniegowski et al., 1997). Our results here are also consistent with the 
experimental results obtained by Sprouffske et al. (2018) who experimentally 
showed that only a modestly elevated mutation rate conveys adaptive benefits, 
whilst highly elevated mutation rates do not. This echoes the observation of an 
‘optimal’ mutation rate in our model.  

Condition-dependent mutation rates  

When we allowed for the evolution of a condition-dependent mutation rate, we 
found that replicate simulations could result in two different outcomes: a mutation 
rate that is indeed strongly dependent on the condition of an individual (i.e., the 
mismatch between phenotype and environment), or a mutation rate that is 
essentially independent of an individual’s condition and, hence, constitutive. The 
condition-dependent mutation-rate strategy shows a low mutation rate when the 
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individual is well adapted to the current environmental conditions and a very high 
mutation rate when there is the slightest mismatch between phenotype and 
environment. The emergence of this condition-dependent strategy is in agreement 
with general results on mutation rate evolution, which show that elevated mutation 
rates can be advantageous during times of maladaptation, as they allow for the 
increased production of potentially beneficial variants (Sniegowski et al., 2000; 
Andre & Godelle, 2006; Sprouffske et al., 2018). Simulations in which condition-
dependent mutation rates evolved also show closer tracking of the environment. 
Why then do some replicates evolve a non-condition-dependent mutation-rate 
strategy, which is associated with a worse performance? 

To address this question, we examined under which initialisation conditions each 
strategy evolves. The likelihood of the two mutation strategies is strongly dependent 
on the initial values of the mutation rates. During the early stages of the simulation, 
the fluctuating environment creates a strong selective pressure to increase the 
effective mutation rate, in order to keep up with the changing environment. One 
way the effective mutation rate can quickly be increased is by modifying the 
threshold locus to predominantly express the highest of the two mutation rate loci. 
If the highest value mutation rate locus is the mutation rate expressed under low 
mismatch (mutation rate A) then the threshold locus will evolve towards a high 
value, leading to the continuous expression of only a single mutation rate. 
Subsequently drift will act on the non-expressed mutation rate locus, subsequently, 
it becomes costly to decrease the threshold again, as it risks expressing the now 
maladapted mutation rate locus. Overall, this has thus effectively trapped the 
population into a regime in which only a single mutation rate locus is adapted and 
used: condition dependence is lost. This explains why some replicates evolve a non-
condition-dependent mutation strategy despite this strategy being associated with 
worse performance. 

Self-referent mutation rates 

Most models on the evolution of condition-dependent mutation rates 
implicitly assume that alleles at the mutator loci mutate according to a fixed, 
externally given rate (Agrawal 2002, Baer 2008; Shaw & Baer 2011; Ram et 
al., 2018; Ram & Hadany 2012, 2014, 2019). Contrary to most previous 
models, we also considered the possibility that the effects of the mutator loci 
are ‘self-referent’, that is, that the mutator loci affect their own mutation 
rate. Such self-reference had a considerable impact on mutation rate 
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evolution. A mutation rate locus with a higher value can change more rapidly; 
this can create a runaway effect that speeds up the dynamics of mutation 
rate evolution. With a self-referent mutation rate, almost all simulations 
evolved a condition-dependent mutation-rate strategy, with the lower-
performing non-condition-dependent mutation-rate strategy only evolving 
in a few replicates. Overall, we found that the evolutionary dynamics of self-
referent and non-self-referent mutation rates are strikingly different: when 
studying the evolution of mutation rates and in particular when studying the 
evolution of condition-dependent mutation rates, it is thus important to 
consider if the mutation rate is self-referent or not. 

The exploration of self-referent mutation rates is grounded in biology: 
mutation rates have been shown to vary strongly across the genome 
(Hodgkinson & Eyre-Walker, 2011; Monroe et al., 2022) – so genes that affect 
the mutation rate in one particular part of the genome without affecting the 
mutation rate of their own genetic basis likely exist (not self-referent). 
However, some mechanisms enhancing the mutation rate, such as error-
prone polymerases (Maslowska et al., 2019), will likely also affect the 
accuracy of replication of the genes in which they are encoded (self-
referent). In nature, self-reference may also not be a categorical trait, as how 
much of the genome is affected by a mutation rate modifier can likely vary 
both plastically and along a continuous scale. However, since we here show 
the evolutionary dynamics of self-referent and non-self-referent mutation 
rates to be starkly different, it is worth considering to what extent the 
mutation rate modifier considered in a particular study is self-referent or not 
- something that has been so far largely ignored in both the theoretical and 
empirical literature on mutation rates. 

Modelling approach 

In general, our results align well with those obtained by Ram & Hadany 
(2012), who, to our knowledge, conducted the only other theoretical study 
concerning the evolution of condition-dependent mutation rates. They 
concluded that condition-dependent mutation rates should evolve under a 
wide range of circumstances as long as at least some mutations are 
beneficial. In our model, the occurrence of beneficial mutations is most likely 
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when the environment changes and the population becomes maladapted. 
Accordingly, condition-dependent mutation rates do not evolve in a static (or 
nearly static) environment. Note that the modelling approach we used here 
is in many ways different from that of Ram & Hadany (2012). Ram & Hadany 
(2012) analysed the fixation probability of individuals with a fixed condition-
dependence of the mutation rate in a population of individuals that express 
a constitutive mutation rate. Our model follows the evolution of a flexible 
condition-dependent mutation rate, which allows both condition-dependent 
and constant (not condition-dependent) mutation strategies to emerge. 
Furthermore, in the model of Ram & Hadany (2012) the mutation rate 
responds to the presence of deleterious alleles, whereas in our model the 
mutation rate is linked to the mismatch of the ecological trait and the 
environment. Whilst the modelling of the condition-dependent mutation 
rate in our model is more flexible than in previous models, it is worth noting 
that our implementation still represents a simplification. We use only three 
evolving loci to model conditional strategies, this significantly restricts the 
shape of the function relating individual condition to the mutation rate. 
Future models could use more loci, thereby allowing for more complex 
functions to evolve. 

Mutation rates in our model are also implemented in a rather simplified way 
– a necessary feature of simulation models. It is nevertheless worthwhile to 
consider to what extent this implementation may reflect real-life mutation 
processes. The high mutation rates that evolved in our models are rather 
unrealistic, highlighting a drawback of this modelling approach: an 
individual’s adaptation to its environment is determined by a single evolving 
locus, which is of course a strong simplification. In a real-world scenario, this 
may be complicated by, e.g., traits under constant stabilizing selection (such 
as traits required to maintain basic physiological functioning) or by 
pleiotropic relationships between traits. The absence of such complications 
in our models facilitates a clearer analysis but also leads to an 
underestimation of the effect of deleterious mutations. This in turn leads to 
the evolution of unrealistically high mutation rates. Nevertheless, the choice 
not to model such additional traits or relationships was made deliberately to 
keep the model simple, allowing us to observe effects governing mutation 
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rate evolution more easily. In the future, we aim to extend our model by 
including extra traits that are not subject to fluctuating selection. 

Mutation rates and the evolution of evolvability 

Mutation rates are linked to a key concept in evolutionary biology: 
evolvability, the capability of a biological system to undergo adaptive 
evolution. Since mutation rates affect at what rate variation is generated, 
they are a crucial determinant of evolvability (Badeau & Packard, 2003; Jones 
et al., 2007; Riederer et al., 2022). Thus, our modelling results shed some 
light on evolvability and its evolution. Firstly, we show that in fluctuating 
environments, increased mutation rates and thus an increased ability to 
track the environment evolves – in other words, evolvability itself is here 
evolving. Secondly, we demonstrate that populations employing a condition-
dependent mutation strategy show better tracking of a changing 
environment, i.e. they have greater evolvability. This is interesting 
considering that determinants of evolvability can affect evolvability in 
various, fundamentally different ways. These include generating variation 
(e.g. through increased mutation rates) as well as shaping the fitness effects 
of this variation (Riederer et al., 2022). Under a condition-dependent 
mutation strategy, mutations mostly occur in maladapted individuals, where 
they are more likely to be adaptive. Overall, this highlights how condition-
dependence in mutation rates can enhance evolvability by ensuring that the 
variation created through mutation is more likely to be beneficial. It is also 
clear that in our simulations the condition-dependent mutation rate strategy 
emerges because of its effect on evolvability. Thus our results lend support 
to the so-called “evolvability hypothesis” as discussed by MacLean et al. 
(2013), which states that condition-dependent mutation rates in bacteria 
evolved due to their effect on evolvability. We demonstrate that evolvability 
can itself be shaped by selection, leading to the evolution of condition-
dependent mutation rates. 
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Supplementary material 
 

 

Figure S1. Evolution of condition-dependent mutation rates under weak selection. The 
figure corresponds in all aspects to Figure 4 in the main text, but now the selection strength is 
reduced from the default value 𝑠𝑠 = 10 to 𝑠𝑠 = 0.1, corresponding to a standard deviation of 

√5 = 2.24 of the Gaussian fitness function. Average duration of environmental stasis 𝐷𝐷 =
100. This figure shows that even under relatively weak selection both condition-dependent 
and non-condition-dependent mutation strategies still emerge.  
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Figure S2. Evolution of a constitutive mutation rate when (A) the mutation rate is self-
referent and (B) the mutation rate at the mutator locus is fixed. Each panel shows 100 
replicate simulations. Average duration of environmental stasis 𝐷𝐷 = 100. Assuming a self-
referent mutation rate drastically accelerates the evolutionary dynamics. Panel A shows that 
the value of a self-referent mutation rate rapidly fluctuates and also attains higher values 
when compared to non-self-referent mutation rate shown in panel B. 
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Introduction 
During my PhD we collaborated with researchers from Louvain University 
(BE) on a study on the apparent reverse evolution of lipogenesis in parasitic 
wasps (Visser et al., 2021). We contributed by formulating a simulation 
model to contextualize and corroborate the empirical section of this project. 
Together with my colleagues, I developed an individual-based model that 
showed how adaptive plastic responses can maintain functionality against 
deleterious mutation for very long periods of time. Our conclusions from this 
model helped to explain the apparent disappearance and re-evolution of 
complex traits (such as lipogenesis) and resolve the apparent conflict of these 
observations with Dollo’s law of irreversibility (Chamberlain, 1905; Gould, 
1970). 
 
Caroline Nieberding, Bertanne Visser, and their collaborators detected the 
presence of fatty acid synthesis (lipogenesis) in the parasitic wasp of the 
species Leptopilina heterotoma. These parasitic wasps were never recorded 
to express lipogenic activity before and were thought to have lost this 
complex metabolic trait 200 million years previous as Ellers and Visser 
pointed out in a previous publication (Visser et al, 2010). The overall absence 
of this trait in parasitoid Hymenoptera is explained by the fact that parasitic 
wasps’ development takes place inside fat-rich insect larvae (Visser et al, 
2010). Therefore, these wasps do not need to produce their own fat as they 
can easily gain this resource from their host; and since lipogenesis is a costly 
trait to maintain, they have gradually lost it. In the same publication, 
however, the authors remark that in some cases host-generalist species 
seemed to have re-evolved lipogenesis from scratch. This discovery seemed 
to contradict one of the few law-like principles in evolutionary biology: 
Dollo’s law of irreversibility (Chamberlain, 1905). This principle articulated by 
19th-century Belgian paleontologist Louis Dollo states that: “an organism 
never returns exactly to a former state, even if it finds itself placed in 
conditions of existence identical to those in which it has previously lived.” 
(Gould, 1970), meaning that an organism will never re-evolve the same 
complex adaptation again, once they have lost it. To reconcile Dollo’s law of 
irreversibility and the reappearance of the apparently lost lipogenic 

124



metabolism, Ellers, Nieberding and Visser speculated that lipogenesis was 
never actually lost in parasitic wasps, but instead kept dormant in the vast 
majority of cases and plastically reactivated only when strictly necessary. In 
Visser et al., (2021), it was indeed shown that lipogenesis reappears when 
these wasps are raised in larval hosts under starvation. These starved hosts 
have very low body-fat percentages and thus do not present the parasitic 
wasps with the fat-rich environment in which they normally develop, forcing 
them to re-express lipogenesis. This explanation, however, requires that a 
plastic response can maintain functionality over long periods of time even if 
selection is not acting on it. One would normally expect that, in the absence 
of selection deleterious mutations would accumulate and gradually 
deteriorate the expressed trait. However, we argued that when considering 
a network of genes and their non-linear interactions, instead of single genes 
that only interact linearly, the effects of deleterious mutations would be 
greatly reduced. Interconnected and nonlinear genomes are able to evolve 
mutational robustness (Payne and Wagner, 2014; Masel and Trotter, 2010; 
Edlund and Adami, 2004) allowing unselected traits to remain functional for 
much longer periods of time. To corroborate this argument, we designed an 
individual-based simulation to test if indeed it was possible for a plastic 
phenotype-switch to maintain correct functionality (i.e. on in rare fat-poor  
environments, off in frequent fat-rich environments). The results from this 
model show that the on–off switch underlying plasticity can evolve 
mutational robustness and be maintained in the genome for hundreds to 
thousands of generations. This helped to solidify the conceptual background 
necessary to support the claims and explanation of the empirical findings. 
This work resulted in a publication (see Visser et al., 2021). Below, I give an 
account of the modelling aspects of this article.  
 

Model description 
We consider the general situation where phenotypic plasticity is only 
sporadically adaptive and ask the question of whether and under what 
circumstances plasticity can remain functional over long evolutionary time 
periods when the regulatory processes underlying plasticity are gradually 
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broken down by mutations. We consider a regulatory mechanism that 
switches on or off a pathway (like fat synthesis) in response to environmental 
conditions (e.g., host fat content). 

Fitness considerations 

We assume that the local environment of an individual is characterized by 
two factors: fat content 𝐹𝐹 and nutrient content 𝑁𝑁, where nutrients represent 
sugars and other carbohydrates that can be used to synthesize fat. Nutrients 
are measured in units corresponding to the amount of fat that can be 
synthesized from them. We assume that fitness (viability and/or fecundity) 
is directly proportional to the amount of fat stored by the individual. When 
fat synthesis is switched off, this amount is equal to 𝐹𝐹, the amount of fat in 
the environment. When fat synthesis is switched on, the amount of fat stored 
is assumed to be 𝑁𝑁 − 𝑐𝑐 + (1 − 𝑘𝑘)𝐹𝐹. This expression reflects the following 
assumptions: (1) fat is synthesized from the available nutrients, but this 
comes at a fitness cost c; (2) fat can still be absorbed from the environment 
but at a reduced rate (1 − 𝑘𝑘). It is adaptive to switch on fat synthesis if  𝑁𝑁 −
𝑐𝑐 + (1 − 𝑘𝑘)𝐹𝐹  is larger than 𝐹𝐹, or equivalently if 𝐹𝐹 < (𝑁𝑁 − 𝑐𝑐)/𝑘𝑘. The right-
hand side of this inequality is a straight line, which is illustrated by the blue 
line in Figure 1. The three boxes in Figure 1 illustrate three types of 
environmental conditions. Red box: low-fat environments. Here, 𝐹𝐹 <
(𝑁𝑁 − 𝑐𝑐)/𝑘𝑘 is always satisfied, implying that fat synthesis should be switched 
on constitutively. Yellow box: high-fat environments. Here, 𝐹𝐹 > (𝑁𝑁 − 𝑐𝑐)/𝑘𝑘, 
implying that fat synthesis should be switched off constitutively. Orange box: 
intermediate-fat environments. Here, fat synthesis should be plastic and 
switched on if for the given environment (𝑁𝑁,𝐹𝐹) the fat content is below the 
blue line and switched off otherwise. The simulations reported here were all 

run for the parameters 𝑘𝑘 = 1
2
  and 𝑐𝑐 = 1

4
  . We also investigated many other 

combinations of these parameters; in all cases, the results were very similar 
to those reported here. 
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Figure 1. Environmental conditions encountered by the model organisms. For a given 
combination of environmental nutrient content 𝑁𝑁 and environmental fat content 𝐹𝐹, it is 
adaptive to switch on fat synthesis if (𝑁𝑁,𝐹𝐹) is below the blue line (corresponding to 𝐹𝐹 <
(𝑁𝑁 − 𝑐𝑐)/𝑘𝑘) and to switch it off otherwise. The three boxes illustrate three types of 
environment: a low-fat environment (red) where fat synthesis should be switched on 
constitutively; a high-fat environment (yellow) where fat synthesis should be switched off 
constitutively; and an intermediate-fat environment (orange) where a plastic switch is 
selectively favored. 

Gene regulatory networks 

In our model, the switching device was implemented by an evolving gene 
regulatory network (GRN, as in van Gestel and Weissing, 2016). As shown in 
Figure 2, the networks considered had two receptor (or input) nodes, several 
(levels of) processor nodes, and an effector node. The two receptor nodes 
sense the fat and nutrient content in the local environment, respectively. The 
effector node switches on fat synthesis if the combined weighted inputs from 
all nodes connected to the effector node exceeds a threshold value T and 
switches it off otherwise. We ran simulations for GRNs of varying complexity, 
but for simplicity, we here focus on the simplest possible network, consisting 
of just two receptor nodes and an effector node. If 𝐹𝐹 and 𝑁𝑁 are the local fat 
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and nutrient content and 𝑤𝑤𝐹𝐹 and 𝑤𝑤𝑁𝑁 are the corresponding weighing factors, 
fat synthesis is switched on if 𝑤𝑤𝐹𝐹𝐹𝐹 + 𝑤𝑤𝑛𝑛𝑁𝑁 > 𝑇𝑇  (and off otherwise). Hence, 
this simple GRN is characterised by the weighing factors 𝑤𝑤𝐹𝐹  and 𝑤𝑤𝑁𝑁 and the 
threshold 𝑇𝑇. Simulations (shown in Figure 3) are based on the most 
straightforward possible network, consisting of two receptor nodes (sensing 
the fat and the nutrient content in the local environment, respectively) and 
an effector node that switches on fat synthesis if the combined weighted 
input of the two receptor nodes exceeds a threshold value 𝑇𝑇 and switches it 
off otherwise. Hence, fat synthesis is switched on if 𝑤𝑤𝐹𝐹𝐹𝐹 + 𝑤𝑤𝑛𝑛𝑁𝑁 > 𝑇𝑇  (and 
off otherwise). The GRN is characterized by the weighing factors 𝑤𝑤𝐹𝐹 and 𝑤𝑤𝑛𝑛 
and the threshold 𝑇𝑇. These parameters are transmitted from parents to 
offspring, and they evolve subject to mutation and selection. For the simple 
GRN described above, the switching device is 100% adaptive when the switch 
is on (i.e., 𝑤𝑤𝐹𝐹𝐹𝐹 + 𝑤𝑤𝑛𝑛𝑁𝑁 > 𝑇𝑇) if 𝐹𝐹 < (𝑁𝑁 − 𝑐𝑐)/𝑘𝑘 and off otherwise. A simple 
calculation yields that this is the case if 𝑤𝑤𝑛𝑛 > 0 and 𝑤𝑤𝐹𝐹 =  −𝑘𝑘𝑤𝑤𝑛𝑛 and 𝑇𝑇 =
𝑐𝑐𝑤𝑤𝑁𝑁 

Evolution of the GRN 

For simplicity, we consider an asexual haploid population with discrete, 
nonoverlapping generations and fixed population size of 10,000. Each 
individual has several gene loci, each locus encoding one parameter of the 
GRN. In the case of the simple network described above, there are three gene 
loci, each with infinitely many alleles. Each individual harbors three alleles, 
which correspond to the GRN parameters 𝑤𝑤𝐹𝐹, 𝑤𝑤𝑛𝑛 and 𝑇𝑇 , and hence 
determine the functioning of the genetic switch. In the simulations, each 
individual encounters a randomly chosen environment (𝑁𝑁,𝐹𝐹). Based on its 
(genetically encoded) GRN, the individual decides on whether to switch on 
or off fat synthesis. If the synthesis is switched on, the individual’s fitness is 
given by 𝑁𝑁 − 𝑐𝑐 + (1 − 𝑘𝑘)𝐹𝐹; otherwise, its fitness is given by 𝐹𝐹. 
Subsequently, the individuals produce offspring, where the number of 
offspring produced is proportional to the individual’s fitness. Each offspring 
inherits the genetic parameters of its parent, subject to mutation. With 
probability µ (per locus) a mutation occurs. In such a case the parental value 
(in the case of a simple network: the parent’s allelic value 𝑤𝑤𝐹𝐹, 𝑤𝑤𝑛𝑛 or 𝑇𝑇) is 
changed to a mutated value( 𝑤𝑤𝐹𝐹 + 𝛿𝛿, 𝑤𝑤𝑛𝑛 + 𝛿𝛿 and 𝑇𝑇 + 𝛿𝛿 ) where the 
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mutational step size 𝛿𝛿 is drawn from a normal distribution with mean zero 
and standard deviation σ. In the reported simulations, we chose        
µ = 0.001 and σ = 0.1. The speed of evolution is proportional to µ · σ2 , 
implying that the rate of change in Figure 3 (both the decay of plasticity and 
the rate of regaining adaptive plasticity) are positively related to µ and σ. 

 

Figure 2. GRNs of varying complexity were simulated. The results reported here refer to the 
simplest GRN considered (encircled). Bottom: In-detail illustration of the functioning of the 
simplest GRN. Two local concentrations of fat and nutrients 𝐹𝐹 and 𝑁𝑁 feed into two separate 
connections and are multiplied by the respective connections weights: 𝑤𝑤𝐹𝐹  and 𝑤𝑤𝑛𝑛 . The values 
of the two weighted inputs are then summed together. If the sum is larger then the threshold 
value 𝑇𝑇 the switch for plastic lipogenesis is switched on, otherwise it is kept off. 

 

Preadaptation of the GRNs 

Starting with a population with randomly initialized alleles for the GRN 
parameters, we first let the population evolve for 10,000 generations in the 
intermediate-fat environment (the orange box in Figure 1). In all replicate 
simulations, a “perfectly adapted switch” (corresponding to 𝑤𝑤𝑛𝑛 > 0 and 
𝑤𝑤𝐹𝐹 =  −𝑘𝑘𝑤𝑤𝑛𝑛 and 𝑇𝑇 = 𝑐𝑐𝑤𝑤𝑁𝑁) evolved, typically within 1,000 generations. Still, 
the evolved GRNs differed across replicates, as they evolved different values 
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of  𝑤𝑤𝑛𝑛 > 0. These evolved networks were used to seed the populations in 
the subsequent “decay” simulations. 

Evolutionary decay of the GRNs 

For the decay experiments reported in Figure 3, we initiated a large number 
of monomorphic replicate populations with one of the perfectly adapted 
GRNs from the preadaptation phase. These populations were exposed for an 
extended period of time (1,000,000 generations) to a high-fat environment 
(the yellow box in Figure 1), where all preadapted GRNs switched off fat 
synthesis. However, in some scenarios, the environmental conditions 
changed back sporadically (with probability 𝑞𝑞)  to the intermediate-fat 
environment (the orange box in Figure 1), where it is adaptive to switch on 
lipogenesis in 50% of the environmental conditions (when (𝑁𝑁,𝐹𝐹)  is below 
the blue line in Figure 1). In Figure 3, we report on the changing rates 𝑞𝑞 = 0 
(no changing back; red), 𝑞𝑞 = 0.001 (changing back once every 1,000 
generations; purple), and 𝑞𝑞 = 0.01 (changing back once every 100 
generations; pink). When such a change occurred, the population was 
exposed to the intermediate-fat environment for 𝑡𝑡 generations (Figure 3 is 
based on 𝑡𝑡 = 3).  

Throughout the simulation, the performance of the network was monitored 
every 100 generations as follows: 100 GRNs were chosen at random from the 
population, and each of these GRNs was exposed to 100 randomly chosen 
environmental conditions from the intermediate-fat environment (orange 
box in Figure 1). From this, we could determine the average percentage of 
“correct” decisions (where the network should be switched on if and only if 
𝐹𝐹 < (𝑁𝑁 − 𝑐𝑐)/𝑘𝑘. 1.0 means that the GRN is still making 100% adaptive 
decisions; 0.5 means that the GRN only makes 50% adaptive decisions, as 
would be expected by a random GRN or a GRN that switches the pathway 
constitutively on or off. This measure for performance in the “old” 
intermediate-fat environment was determined for 100 replicate simulations 
per scenario and plotted in Figure 3 (mean ± standard deviation). 
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Results 
If plasticity of fat synthesis arose in the common ancestor of parasitic wasps, 
and wasps are generally exposed to lipid-rich hosts, the question arises 
whether a switching device that is not used for extensive periods of time 
should be lost during the course of evolution. To investigate this, we ran 
individual-based simulations that monitored the sustained functionality of a 
switching device (a gene regulatory network that could decay by mutation) 
that is only sporadically used in evolutionary time. Figure 3 shows that the 
switching device rapidly disintegrates (red simulations) if it is never used (see 
the methods section for model assumptions, modeling details, and 
simulation settings). However, even very infrequent use (pink: every 100 
generations; purple: every 1000 generations) suffices to keep the switching 
device largely intact. Interestingly, the switching device does not erode 
gradually, but instead slowly evolves an improved performance over 
evolutionary time (i.e., the percentage of correct decisions increases with the 
increasing number of generations). An inspection of the evolving gene 
regulatory networks (GRNs) reveals that they become more and more robust 
(i.e., less and less affected by mutational decay), in line with earlier findings 
on network evolution (Wagner, 2013). The simulations in Figure 3 are 
representative of all networks and parameters considered. Whenever 𝑞𝑞 = 0, 
the performance of the regulatory switch eroded in evolutionary time, but 
typically at a much lower rate in the case of the more complex GRNs. 
Whenever 𝑞𝑞 = 0.01, the performance of the switch went back to levels 
above 90% and even above 95% for the more complex GRNs. Even for  𝑞𝑞 =
0.001, a sustained performance level above 75% was obtained in all cases. 
Intriguingly, in the last two scenarios the performance level first drops rapidly 
(from 1.0 to a much lower level, although this drop is less pronounced in the 
more complex GRNs) and subsequently recovers to reach high levels again. 
Apparently, the GRNs have evolved a higher level of robustness, a property 
that seems to be typical for evolving networks (Masel and Trotter, 2010; 
Edlund and Adami, 2004; Wagner, 2008). For the simple GRN studied in 
Figure 3, this outcome can be explained as follows. The initial network was 
characterized by the genetic parameters 𝑤𝑤𝑛𝑛 > 0, 𝑤𝑤𝐹𝐹 =  −𝑘𝑘𝑤𝑤𝑛𝑛 and 𝑇𝑇 = 𝑐𝑐𝑤𝑤𝑁𝑁 
(see above), where 𝑤𝑤𝑛𝑛  was typically a small positive number. In the course 

131



of evolutionary time, the relation between the three evolving parameters 
remained approximately the same, but 𝑤𝑤𝑛𝑛  (and with it the other 
parameters) evolved to much larger values. This automatically resulted in an 
increasingly robust network, since mutations with a given step size 
distribution affect the performance of a network much less when the 
corresponding parameter is large in absolute value. We also considered 
alternative network structures (see Figure 2), and obtained very similar 
results. 
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Figure 3. Simulation results comparing the average performance for different scenarios. We 
first evolved replicate GRNs in a variable environment where it is adaptive to switch on a 
metabolic pathway (fat synthesis) under low-fat conditions and to switch it off under high-fat 
conditions. In generation 0, a monomorphic population was established, where all 10,000 
individuals were endowed with the same well-performing GRN (different across replicates). 
Subsequently, the population evolved subject to selection, mutation (µ = 0.001  per gene 
locus), and genetic drift in a fat-rich environment, where it is adaptive to constitutively switch 
off the metabolic pathway. Every 100 generations, we monitored the performance of a sample 
of GRNs (percentage correct decisions) in the original (fat-variable) environment: 1.0 means 
that the GRN is still making 100% adaptive decisions; 0.5 means that the GRN only makes 50% 
adaptive decisions, as would be expected by a random GRN or a GRN that switches the 
pathway constitutively on or off. The colored graphs show the average performance (± 
standard deviation) of the GRNs for three scenarios (100 replicates per simulation). Red: the 
population never again encounters the fat-variable environment; performance converges to 
0.5, corresponding to constitutively switching off fat synthesis and hence the loss of adaptive 
plasticity. Pink: the individuals encounter a fat-variable environment on average every 100 
generations; after an initial rapid drop in performance, a sustained high performance (> 90% 
correct decisions) of the GRNs is regained after about 100,000 generations. Purple: the 
individuals encounter a fat-variable environment on average every 1000 generations; after an 
initial rapid drop in performance, an intermediate performance (> 75% correct decisions) is 
regained gradually. 
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Discussion 
We showed that a switch underlying plastic responses evolves mutational 
robustness and can withstand decay if it remains unused for extended 
periods of time. Another modeling study found that adaptive plasticity will 
be maintained in the genome for 108 generations (Masel et al, 2007). Our 
simulation study shows that non-switching rapidly evolves in a fat-rich 
environment (leading to the loss of plasticity), but once the device has 
evolved mutational robustness, only incidental ‘switching on’ of the trait is 
sufficient for plasticity to be maintained within the genome. Plasticity itself 
can thus be highly robust to mutational change, which can apply also to other 
traits and systems. Our results further revealed large differences in the 
slopes of reaction norms between families, suggesting that there is genetic 
variation for plastic expression of fat 8 synthesis. The plasticity of fat 
synthesis itself may thus evolve according to the local fat availability of host 
populations in the wild. Phenotypically plastic organisms can incur different 
types of costs (Auld et al, 2010). In our simple model, we only consider the 
cost of phenotype-environment mismatching, that is, the costs of expressing 
the ‘wrong’ phenotype in a given environment. When placed in a high-fat 
environment, the preadapted GRNs in our simulations take the ‘right’ 
decision to switch off lipogenesis. Accordingly, they do not face any costs of 
mismatching. Yet, the genetic switch rapidly decays (as indicated in Figure 3 
by the rapid drop in performance when tested in an intermediate-fat 
environment), due to the accumulation of mutations. It is not unlikely that 
there are additional fitness costs of plasticity, such as the costs for the 
production and maintenance of the machinery underlying plasticity (Auld et 
al, 2010). In the presence of such constitutive costs, plasticity will be selected 
against when organisms are living in an environment where only one 
phenotype is optimal (as in the high- and low-fat environments in Figure 1). 
This would obviously affect the evolutionary dynamics in Figure 3, but the 
size of the effect is difficult to judge, as the constitutive costs of plasticity are 
notoriously difficult to quantify. In the case of the simple switching device 
considered in our model, we consider the constitutive costs of plasticity as 
marginal, but these costs might be substantial in other scenarios. 
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Abstract 
At the genetic level, mutations are generally assumed to be random with 
respect to the 'demands' of natural selection. Yet, it has been 
demonstrated that mutations are often biased with respect to their 
phenotypic effects. Such biases can be important, as they allow the rapid 
adaptation of a population to changing conditions. Here, we demonstrate 
that adaptation-enhancing biases can readily evolve in a fluctuating 
environment. To this end, we consider a population that is exposed to a 
stochastically changing environment. The environment can be in two states 
for which different phenotypes are adaptive. The phenotype of an 
individual is determined by a gene regulatory network that cannot sense 
the environmental state and can therefore only adapt to environmental 
change through mutation and selection. In our model, the mutation process 
at the genetic level is random and not evolvable. Yet, even small networks 
rapidly evolve a structure that biases the phenotypic effects of mutations 
in such a way that adaptive evolution after environmental change is 
speeded up considerably. We term the mechanism responsible for this 
increase in evolvability a “mutational transformer”. A mutational 
transformer is a network configuration where the phenotypic effects of 
genetic mutations are distributed in such a way that substantial adaptation 
to new conditions can be achieved via a single or few genetic mutations. 
We show that in our model mutational transformers are based on two 
distinct mechanisms: mutation amplification and mutation canalisation. 

Introduction 
Evolvability concerns “the capability of a biological system to undergo 
adaptive evolution”(Payne & Wagner, 2019; Pigliucci, 2008; Riederer, Tiso, 
van Eldijk, & Weissing, 2022). The mechanisms that govern evolvability are 
subject to evolution themselves; hence, evolvability is far from a static 
property but is shaped by selection and other evolutionary processes. For 
instance, mutation rates can evolve to increase the production of variation 
under stressful conditions, thereby enhancing evolvability (Metzgar & Wills, 
2000; Sprouffske, Aguílar-Rodríguez, Sniegowski, & Wagner, 2018; Woods et 
al., 2011). Evolvability can also change over the generations through the 
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evolution of mechanisms that amplify, buffer, or bias the effect of (genetic) 
variation on fitness (Kokko et al., 2017; Pavlicev & Hansen, 2011; Uller, 
Moczek, Watson, Brakefield, & Laland, 2018), phenomena that are 
sometimes referred to as developmental bias and/or canalisation (Crombach 
& Hogeweg, 2008; Riederer et al., 2022; Waddington, 1942). These 
mechanisms alter the genotype-to-phenotype map that describes how 
changes at the genetic level translate into phenotypic differences. Any 
alteration of this map can have implications for the dynamics and outcome 
of evolutionary processes (Greenbury, Louis, & Ahnert, 2022; McGuigan & 
Aw, 2017; Takeuchi & Hogeweg, 2012). 

Some genotype-to-phenotype maps enhance evolvability more than others 
(Riederer et al., 2022). This may simply be a coincidence or a side-effect of 
other processes. However, it is worth considering the possibility that the 
structure of the genotype-to-phenotype map has been selected for 
evolvability, so as to facilitate rapid adaptation to frequently encountered 
environmental changes. In several empirical systems, there is evidence for 
this, as after a commonly encountered environmental change, a highly 
adaptive phenotype can be achieved via a single or very few mutations with 
large phenotypic effect. A first example concerns the rapid emergence of 
antibiotically resistant subpopulations that quickly arise in bacterial 
populations grown from a single susceptible clone (‘heteroresistance’). This 
extremely fast acquisition of resistance is associated with the spontaneous 
tandem amplification of specific resistance-enhancing genes (Andersson, 
Nicoloff, & Hjort, 2019; Band & Weiss, 2019; Hjort, Nicoloff, & Andersson, 
2016; Nicoloff, Hjort, Levin, & Andersson, 2019; Pereira, Larsson, Hjort, Elf, & 
Andersson, 2021). A second example concerns the adaptation of the yeast 
Saccharomyces cerevisiae to heat stress. Rapid adaptation to a higher-
temperature environment can be provided by the duplication of a single 
chromosome. This duplication simultaneously upregulates a multitude of 
genes that provide adaptation to a higher temperature (Yona et al., 2012). In 
these and other examples, the structure of the genotype-to-phenotype 
seems to have evolved to facilitate rapid adaptation. The idea that the 
structure of the genotype-to-phenotype map evolves to facilitate the 
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generation of adaptive variation has also been proposed and extensively 
discussed in the theory of facilitated variation (Solopova et al., 2012). 

But how can the genotype-to-phenotype map evolve in a way that random 
genetic mutations have phenotypic effects that speed up adaptive evolution? 
A key theoretical study on this question was performed by Anton Crombach 
and Paulien Hogeweg (Crombach & Hogeweg, 2008), who considered the 
evolution of gene regulatory networks (GRNs) that generated expression 
patterns, which in turn resulted in a specific phenotypic effect. A population 
of individuals evolved in an environment that alternated between two states, 
each selecting for a different target GRN expression pattern. The authors 
observed that throughout evolution the GRNs re-organized to allow for 
increasingly rapid switching between the two target expression patterns. 
Moreover, the increasing rate of adaptation was accompanied by a reduction 
in the number of mutations required to switch between expression patterns. 
These findings clearly demonstrate that structural features can evolve to 
enhance evolvability: whilst the frequency and type of genetic mutations 
remain random and constant, the GRNs evolve to be structured in such a way 
that a single or very few mutations are sufficient to switch to a phenotype 
that is well-adapted to the new environment. In a follow-up study, Hogeweg 
and colleagues (Cuypers, Rutten, & Hogeweg, 2017) showed that such a 
mutational configuration can also evolve in GRNs that are able to sense the 
environment and, hence, can evolve phenotypic plasticity. The results of 
(Crombach & Hogeweg, 2008) and (Cuypers et al., 2017) showcase clear 
instances of the evolution of developmental biases toward an adaptive 
phenotype. We here term the underlying configuration a “mutational 
transformer”: the GRN is structure transforms the phenotypic impact of 
mutations in such a way that a single or very few mutations allow for a switch 
to a different adaptive phenotype, facilitating rapid adaptation. The name 
indicates that a population has evolved to use mutation (and not plasticity) 
to rapidly switch between alternative adaptive phenotypic states.  

The studies of Hogeweg and colleagues provide proof of principle that 
mutational transformers can evolve. However, the GRNs and their 
phenotypic effects in (Crombach & Hogeweg, 2008) and (Cuypers et al., 
2017) are quite complex, making it difficult to see how the mutational 
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transformers arise and how they function. Moreover, it remains unclear 
whether such complexity is essential for mutational transformers to evolve. 
Here, we therefore take a minimal modelling approach that allows us to 
study in detail whether, when, and how the distribution of phenotypic effects 
of random genetic mutations evolves under changing environmental 
conditions. To this end, we consider simple heritable GRNs consisting of a 
small number of interacting nodes and a single phenotypic output value. The 
performance of a network is determined by how well this output value 
matches the current state of the environment. In line with (Crombach & 
Hogeweg, 2008), we evolve these GRNs in an environment that randomly 
alternates between two different states. The GRNs considered cannot sense 
their environment, making it impossible to evolve phenotypic plasticity. 
Accordingly, individuals whose phenotype matches one environment will 
inevitably be mismatched to the other. Thus, the only way in which an 
individual's phenotype can track environmental change is through mutation 
and genetic evolution of their GRN. Over a long period of evolution, in which 
the population has been repeatedly selected to adapt to a transition 
between environmental states, we expect the evolution of a mutational 
transformer, that is, the evolution of networks that rely on a smaller number 
of mutations to change their phenotype from one optimal phenotype to the 
other. In a first step, we will demonstrate that mutational transformers do 
indeed evolve even in very simple networks, consisting of merely two nodes 
and encoded by just three gene loci. This allows us to investigate the 
evolution and functioning of a mutational transformer in considerable depth 
and detail. Subsequently, we study how the complexity of the GRN influences 
the evolution of a mutational transformer. Besides varying the number of 
nodes, we also investigate whether non-linear interactions in the gene 
regulatory network allow for the evolution of more efficient mutational 
transformers. 

Model 

Model overview 

The model structure is illustrated in Figure 1. Each simulation follows a 
population of fixed size (1,000 individuals) over a period of 1 million 
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generations. Generations are discrete and non-overlapping and reproduction 
is asexual. The individuals are living in an environment that can be in one of 
two states (E1 or E2). The state is constant throughout a generation (and the 
same for all individuals), but it switches stochastically to the other state once 
in a while. Each individual has a phenotype y that is determined by a heritable 
gene regulatory network. Phenotype 𝑦𝑦 = +0.5 is optimal in environment E1, 
while 𝑦𝑦 = −0.5 is optimal in environment E2. The ‘fitness’ (expected 
reproductive success) of an individual is negatively related to the distance of 
its phenotype y from the optimal value 𝑦𝑦opt of its environment. 
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Figure 1. Graphical illustration of the model. A. Determination of the phenotype of an 
individual. Each individual harbours a heritable gene regulatory network (GRN) that 
determines the individual’s phenotype. The panel shows the simplest network, which consists 
of two connected nodes (coloured circles). The working of the network is characterised by two 
baseline activation levels b1 and b2, the connection weight w, and the expression function 
f(x), which is either the identity function (left) or a sigmoidal function (right). The phenotype 
y of an individual is fully determined by these ingredients. The parameters b1, b2, and w are 
encoded by alleles at three gene loci and transmitted from a parent to its offspring, subject to 
rare mutations. All three loci have the same mutation rate and the mutational step size is 
normally distributed around zero. B. The environment fluctuates stochastically between two 
states (E1 and E2). The duration of the periods between environmental switch events is 
geometrically distributed, with a mean value of 100 generations. In each state, there is a 
different optimal phenotypic value (indicated in green). C. Individuals are selected to minimise 
the mismatch between their phenotype y and the optimal phenotype 𝑦𝑦opt in the current 
environment: the expected reproductive success of an individual is given by a Gaussian 
function of this mismatch and therefore decreases with the squared mismatch between y and 
𝑦𝑦opt. D. Selection and mutation determine (together with genetic drift) determine how the 
genotype distribution (and the corresponding phenotype distribution) change from one 
generation to the next.  
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Each individual harbours a GRN that is encoded by N gene loci (where N 
depends on the network architecture). The alleles at these loci are real 
numbers whose values represent the strength of gene-gene interactions and 
basal gene-activity levels (Figure 1A). Together, the GRN alleles of an 
individual determine the individual’s phenotype. These alleles are 
transmitted from parent to offspring, subject to rare mutations. At the start 
of each generation, 1,000 offspring are produced. In a first step, a parent is 
assigned to each offspring by drawing an individual from the previous 
generation (with replacement) by means of a weighted lottery where the 
weighing factor of each potential parent is proportional to the fitness of that 
individual. This procedure ensures that the ‘fitness’ of each individual in the 
parental population is proportional to the individual’s expected reproductive 
success. Each newly produced offspring inherits all GRN alleles from its 
parent. Subsequently, mutation takes place: at each GRN locus, a mutation 
takes place with a certain mutation probability that is fixed and the same for 
all loci. If a mutation takes place, the parental allele a is changed by adding a 
small number (the mutational step size) to it. For all loci, the mutational step 
sizes are drawn from the same normal distribution with mean zero and a 
small mutational variance. After mutation has taken place, the offspring’s 
phenotype is determined, which, in turn, determines the fitness of the 
offspring. 

This procedure results in an evolutionary trajectory that is governed by the 
interplay of selection, mutation, and genetic drift. At the genetic level, the 
mutation process is completely random, that is, not affected by the state (or 
the state dynamics) of the environment: the mutation rate and the 
distribution of mutational step sizes remain constant throughout each 
simulation. However, the phenotypic effect of a mutation depends on the 
allelic values at the GRN loci (see below). Accordingly, the distribution of 
phenotypic mutational effects can evolve. We are interested in the evolution 
of this distribution and the corresponding evolution of the ‘evolvability’ of 
the population, which we quantify by the speed with which the new 
phenotypic optimum is approached after each change of the environment. 
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Environmental change 

In each generation, the environment is in one of two states (E1 or E2). At the 
start of each generation, the environment switches from the previous state 
to the alternative state with probability 𝜒𝜒 = 0.01. Hence the duration of 
environmental stasis is geometrically distributed with mean value 𝜒𝜒−1 =
100 generations. 

Fitness 

The optimal phenotype in environmental state E1 is 𝑦𝑦opt = 0.5, while it is 
𝑦𝑦opt = −0.5 in state E2. The fitness of an individual with phenotype y 
decreases with the mismatch 𝑦𝑦 − 𝑦𝑦opt with the environmental optimum in a 
Gaussian manner: 

𝐹𝐹(𝑦𝑦) = 𝑒𝑒𝑒𝑒𝑒𝑒( − 𝑆𝑆 ⋅ (𝑦𝑦 − 𝑦𝑦opt)2). 

The parameter S quantifies the strength of selection. In all our simulations 
𝑆𝑆 = 2. 

Gene regulatory networks 

The phenotype of an individual is encoded by a gene regulatory network. 
There are various ways to model GRNs. We here follow (van Gestel & 
Weissing, 2016), where the flow of information through the network (via 
gene activation and inhibition) is modelled in close analogy to that of artificial 
neural networks. The GRNs considered are multilayered and feedforward: 
they consist of one initial node, multiple layers of internal nodes, and one 
output node. The type of network will be indicated by the notation n1-n2-n3-
1, where nk is the number of nodes in layer k, and the 1 to the right denotes 
the output node. For Instance, 1-2-2-2-1 refers to a network with one initial 
layer of one node and three internal layers with two nodes per layer. The 
simplest network considered does not have internal layers and is of type 1-
1. This network is shown in Fig. 1A. 

Each node j of the GRN has an activation state xj and produces an output 𝑧𝑧𝑗𝑗 =
𝑓𝑓(𝑒𝑒𝑗𝑗), where f is the so-called transfer function of the node. The activation 
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state of a node j is given by the node’s baseline activation 𝑏𝑏𝑗𝑗 and a weighted 
sum of the outputs of the nodes in the previous layer: 

𝑒𝑒𝑗𝑗 = 𝑏𝑏𝑗𝑗 + ∑ 𝑤𝑤𝑖𝑖𝑗𝑗 ⋅ 𝑧𝑧𝑖𝑖𝑖𝑖 = 𝑏𝑏𝑗𝑗 + ∑ 𝑤𝑤𝑖𝑖𝑗𝑗 ⋅ 𝑓𝑓(𝑒𝑒𝑖𝑖)𝑖𝑖 , 

where i ranges over all nodes of the previous layer. The baseline activation 
values 𝑏𝑏𝑗𝑗 and the connection weights 𝑤𝑤𝑖𝑖𝑗𝑗 are real numbers that are 
transmitted from parents to their offspring (subject to rare mutations). 
Together with the transfer function, they fully determine the functioning of 
the GRN and the resulting phenotype: The initial nodes have no inputs from 
other nodes. Accordingly, their activation state is 𝑒𝑒𝑖𝑖 = 𝑏𝑏𝑖𝑖 and its output is 
𝑧𝑧𝑖𝑖 = 𝑓𝑓(𝑒𝑒𝑖𝑖). Together with the weighing factors 𝑤𝑤𝑖𝑖𝑗𝑗, where j ranges over the 
nodes of the second layer, this determines the activation states 𝑒𝑒𝑗𝑗 and the 
output 𝑧𝑧𝑗𝑗 = 𝑓𝑓(𝑒𝑒𝑗𝑗) of these nodes. These again determine the activation 
states and the output values of the nodes in the third layer, and so on. In the 
end, the output node 𝜔𝜔 is reached. As before, the activation level 𝑒𝑒𝜔𝜔 of this 
node is determined by this node’s baseline activation level 𝑏𝑏𝜔𝜔 and a 
weighted sum of the outputs of the nodes of the previous layer. In our model, 
the output of the terminal node 𝑧𝑧𝜔𝜔 = 𝑓𝑓(𝑒𝑒𝜔𝜔) corresponds to the phenotype 
of the individual (𝑦𝑦 = 𝑧𝑧𝜔𝜔 = 𝑓𝑓(𝑒𝑒𝜔𝜔)). 

The simplest network of type 1-1 (illustrated in Fig. 1A) has only two nodes: 
the input node 0 and the output node 𝜔𝜔. Hence, there are only three 
heritable parameters: the baseline activation levels 𝑏𝑏0 and 𝑏𝑏𝜔𝜔 and the 
weighing factor 𝑤𝑤0𝜔𝜔, which, for simplicity, we call w. In view of the above 
rules, the phenotype of an individual with a 1-1 network is therefore given 
by: 

𝑦𝑦 = 𝑓𝑓(𝑒𝑒𝜔𝜔) = 𝑓𝑓(𝑏𝑏𝜔𝜔 + 𝑤𝑤 ⋅ 𝑧𝑧0) = 𝑓𝑓(𝑏𝑏𝜔𝜔 + 𝑤𝑤 ⋅ 𝑓𝑓(𝑏𝑏0)). 

We will consider two transfer functions. The simplest is the identity function 
𝑓𝑓(𝑒𝑒) = 𝑒𝑒. In this case, the phenotype of an individual is given by the 
relationship 𝑦𝑦 = 𝑏𝑏𝜔𝜔 + 𝑤𝑤 ⋅ 𝑏𝑏0. The second is the sigmoidal function 
(illustrated in Fig. 1A) 𝑓𝑓(𝑒𝑒) = 𝑥𝑥

(1+|𝑥𝑥|). 
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Inheritance and mutation 

Individuals are haploid and have an allele at all GRN loci, that is, at the loci 
encoding the baseline activation values 𝑏𝑏𝑗𝑗 and the connection weights 𝑤𝑤𝑖𝑖𝑗𝑗. 
The alleles are real numbers that are transmitted from parents to their 
offspring, subject to mutation. The per-locus mutation probability is 𝜇𝜇 =
0.01. If a mutation occurs, a mutational step size is drawn from a normal 
distribution 𝑁𝑁(0,𝜎𝜎) with mean sigma and mutational standard deviation 𝜎𝜎 =
0.1. This step size is added to the parental value, yielding the new mutated 
value.  

Quantifying evolvability 

To assess whether long-term evolution in a fluctuating environment 
enhances evolvability, we need to quantify the rate of adaptation to a new 
environmental state after a change in the environment. To this end, we 
operationally define the “time to adaptation” as the number of generations 
it takes until the mean fitness of the population reaches a threshold value of 
0.9. In two situations, no “time to adaptation” is recorded: (a) if the threshold 
value is not reached before another change in environmental state occurs, 
and (b) if immediately after a change in environment the mean fitness of the 
population already exceeds the threshold value. However, we record how 
often situations (a) and (b) do occur.  

Results 

Network structure and the evolution of mutational transformers 

The example simulation in Figure 2 illustrates that, in the course of long-term 
evolution, the time to adaptation substantially decreases even in the case of 
a simple 1-1 GRN with identity transfer function. The substantial decrease in 
the time to adaptation from the start of the simulation (Fig. 2A) to the end 
of the simulation (Fig. 2B) suggests that a “mutational transformer” has 
evolved, that is, a change in the way how random mutations at the genetic 
level translate into changes of the phenotype. 
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To check for the generality of this result, we run multiple replicate 
simulations for a wide range of GRN architectures. GRNs varied in the 
number of layers, the number of nodes per layer, and the type of transfer 
function. Figure 3 shows the results for four network architectures (1, 1-1, 
10-2-1-1-1 and 5-5-5-1) and both transfer functions. In each case, the time to 
adaptation was reported in relation to the duration of evolution. If a 
mutational transformer evolves, the time to adaptation should decrease in 
the course of evolution. This does not happen for the trivial “network” 1 
(consisting of just one output node and therefore arguably not really a 
network). As shown in Fig. 3A, the time to adaptation did not noticeably 
decrease in the course of evolution, neither for the identity nor for the 
sigmoidal transfer function. In contrast, there is a pronounced decrease in 
the time to adaptation in GRNs of type 1-1 (Fig. 3B), both in the case of an 
identity transfer function (for which this phenomenon is illustrated by Fig. 2) 
and even more so in case of a sigmoidal transfer function 

 
Figure 2. Time to adaptation at (A) the start and (B) the end of long-term evolution. For an 
example simulation based on a 1-1 network with identity transfer function, the graphs show 
the drop and increase in mean fitness after two instances of environmental change. The state 
of the environment is indicated by the background colour (blue: 𝑦𝑦opt = 0.5, red: 𝑦𝑦opt = −0.5). 
The dashed line indicates the threshold value of 0.9 used to quantify the time to adaptation. 
In the early part of the simulation (Panel A: generations 200 to 400), the mean fitness of the 
population recovers much more slowly after environmental change than in the end of the 
simulation (Panel B: the final 200 generations). 
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The boxplots in Fig. 3CD show, for the GRNs considered, the time to 
adaptation in the second half of the evolutionary trajectory. In all cases, the 
initial time to adaptation was typically 50 generations or more. With the 
exception of the trivial “network” 1, the time to adaptation decreased in all 
cases to a median value between 5 and 10 in the second half of the 
simulations (the final 500,000 generations). In other words, all non-trivial 
GRNs allowed for the evolution of a faster rate of adaptation (i.e., higher 
evolvability). There is no clear relationship between network complexity and 
the evolved time to adaptation. However, for any network architecture 
considered, the evolved time to adaptation was markedly shorter for the 
sigmoidal transfer function than for the identity function. We will now 
investigate in more detail how the reduction in adaptation time was 
achieved. For this, it will be useful to consider the two transfer functions 
separately. 
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Figure 3. Evolution of the time to adaptation for GRNs differing in complexity and transfer 
function. A. For the trivial “network” with just one output node, no evolutionary trend in the 
time to adaptation was observed, neither in the case of the identity transfer function (left 
panel) nor in the case of a sigmoidal transfer function (right panel). Point colours indicate the 
two different environments.  B. For the 1-1 network, the time to adaptation markedly 
decreased in the initial phase of evolution (first 10,000 generations), for both transfer 
functions. C. Evolved time to adaptation during the last 500,000 generations of the simulation 
for GRNs differing in architecture (1, 1-1, 10-2-1-1-1 and 5-5-5-1) and transfer function 
(identity or sigmoidal). In the boxplots, the data of 7-10 replicate simulations are combined. 
With the exception of the trivial “network” 1, a fast adaptation rate evolved in all GRNs. D. A 
zoomed-in version of panel C, showing only those types of GRN that evolved a fast rate of 
adaptation. This panel shows that the GRNs with a sigmoidal transfer function evolved a faster 
rate of adaptation than GRNs with the same architecture but an identity transfer function. 
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Figure 4. Phenotypic effects of mutations at the three loci of a 1-1 GRN that evolved a fast 
rate of adaptation. Data in (A-C) reflect a mutational analysis of a 1-1 GRN with linear transfer 
function that had evolved a fast rate of adaptation. The panels show the phenotypic effects of 
random mutations at A. the b1 locus, B. the w locus, and C. the b2 locus. The allelic values 
before mutation are indicated by the solid red line. The phenotype produced by the 
unmutated GRN (indicated by the dotted red line) matches the current environmental 
optimum (which happens to be equal to -0.5). The dotted green line indicates the alternative 
optimum (0.5), the “desired” value after a change in environment. While the mutational 
effects on the phenotype are relatively small in case of the b1 and the b2 locus, the w locus 
acts as a mutation amplifier: the other phenotypic optimum can be reached with just one or 
two mutations, which is the defining property of a mutational transformer. 
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Mutational amplifiers cause mutational transformation in linear GRNs 

To understand the inner workings of a network that evolved a fast mutation 
rate, we first study the simplest type of GRN: a network with two nodes and 
a linear transfer function (1-1). The behaviour of this GRN is controlled by 
only three loci: b1, w, and b2. When analysing the results of many replicate 
simulations, we observe that in this linear GRN, either the w locus or the b1 
locus evolves to become responsible for the fast adaptation; this locus is the 
sensitive locus that acts as a mutational transformer. This is illustrated by 
Figure 4, which shows for an evolved example network the phenotypic 
effects of genetic mutations at each of the three loci. While the phenotypic 
effects of mutations at the b1 and b2 locus are very small (Fig. 4AC), the 
sensitive w-locus acts as a “mutation amplifier”: mutations at this locus have 
a large effect on the phenotype, allowing the rapid evolution of the 
phenotype to a new optimum, should the environment require this. In fact, 
the distribution of phenotypic effects induced by small-scale and normally 
distributed mutations at the w-locus encompass both phenotypic optima. 
Hence, if a GRN is adapted to one phenotypic optimum, the other phenotypic 
optimum can be produced by just one or two mutations. To summarise these 
findings: The amplification of small mutations on the sensitive locus to large 
phenotypic changes, allows the alternate optimal phenotype to be reached 
through a single mutation, thereby facilitating rapid adaptation when the 
environment changes, creating a mutational transformer. 

These results can be explained by the fact that for the network considered 
the phenotype of an individual is given by 𝑦𝑦 = 𝑤𝑤 ⋅ 𝑏𝑏1 + 𝑏𝑏2 (see Methods). 
This shows that b1 and w have a similar effect on the phenotype and explains 
why both corresponding loci can be sensitive. The phenotypic effect of 
mutations at the w locus are amplified by a factor b1, the current value of 
b1. Hence, the allele at the b1 locus regulates the phenotypic effects of w-
mutations, and vice versa. 

Non-linear GRNs evolve more refined mutational transformers 

For all network architecture considered, the evolved time to adaptation was 
markedly shorter for the sigmoidal transfer function than for the identity 
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function (Figure 3D). We hypothesise that non-linear gene interactions allow 
for the evolution of a more refined mutational transformer. To understand 
this, we now examine the simplest nonlinear GRN that managed to evolve a 
mutational transformer (i.e. 1-1, see Figure 5). Figure 5A illustrates that in 
the initial phase of evolution (in generations 200 to 400, left panel) it takes 
more than 50 generations before, after a change of the environment, the 
mean fitness of the population has regained the value 0.9, while the time to 
adaptation is much faster (between 5 and 10 generations) in the final stage 
of evolution (right panel). This is achieved by a marked differentiation of the 
alleles b1, w, and b2 at the three GRN loci (Fig. 5B). This raises the question: 
how does the evolution of these loci translate to the evolution of a 
mutational transformer? To investigate this, we record the phenotypes 
produced by 1000 different mutations at each locus of the best-performing 
GRN at a certain time point (Figure 5C). Initially all loci are similarly sensitive 
to mutations and the distribution of the phenotypes produced is unimodal. 
Most mutations will only slightly alter the value of the currently expressed 
phenotype. This explains why, at the start of the simulation, the recovery of 
the population after an environmental change is slow and gradual: after an 
environmental change, many mutations are required to shift to the new 
optimal phenotype. 

Towards the end of the simulation, when the population is able to recover 
rapidly from environmental change (i.e. the mutational transformer has 
evolved), we observe that the phenotype is highly sensitive to mutations at 
a particular, sensitive, locus. We observed this same pattern in the linear 
GRNs, where a single gene evolved to be sensitive to mutations. However, 
instead of being unimodal as for the 1-1 GRN with an identity transfer 
function (Figure 4), the distribution of phenotypes produced by mutations at 
the sensitive locus of non-linear 1-1 GRN is bimodal, that is, with two peaks 
(Figure 5C, panels 3 and 4). The two peaks coincide with the two optimal 
phenotypes showing that the GRN has evolved to bias the effect of random 
mutations toward these phenotypes. The distribution of phenotypic effects 
of mutations on the sensitive locus is shaped such that the phenotype to 
which the population is currently adapted is most frequently produced. The 
second peak in the distribution of the phenotypic effects of mutations 
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corresponds with the optimal phenotype of the alternative environment. 
This mechanism seems to be symmetrical: after adaptation to an 
environmental change, the new optimal phenotype is now produced more 
often. If mutation leads to an intermediate phenotype that is between the 
two different optimal phenotypes, mutations are equally likely to produce 
either of the two optimal phenotypes. 

In all non-linear GRNs considered (1-1, 10-2-1-1-1 and 5-5-5-1), a sensitive 
locus with similar properties evolved and it always occurred in the initial part 
of the GRN (either at the b0 locus or at one of the loci encoding the weighing 
factor w0j of the connection between the initial node and a node j in the first 
processing layer). 
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Figure 5. Evolution of a refined mutational transformer. The figure shows a representative 
simulation of the evolution of a 1-1 GRN with sigmoidal transfer function. A. Evolutionary 
trajectory of mean population fitness at the start (generations 200 to 400, left panel) and the 
end (final 200 generations, right panel) of the simulation. The state of the environment is 
indicated by the background colour (blue: 𝑦𝑦opt = 0.5, red: 𝑦𝑦opt = −0.5). B. Evolved allelic 
values at the three network loci at the start (left panel) and the end (right panel) of the 
simulation. C. Distributions of the phenotypic effects of mutations at four different time points 
during the simulation. The first two time points are early in the simulation, shortly before 

(𝑡𝑡before
early ) and after (𝑡𝑡after

early) an environmental change. The other time points are from a later 

stage in the simulation, shortly before (𝑡𝑡before
late ) and after (𝑡𝑡after

late ) an environmental change. A 
comparison of the phenotypic-effect distributions at the early time points with those at the 
later time points reveals that for two of the GRN loci genetic mutations have a small effect on 
the phenotype, while the GRN locus encoding b1 is “sensitive”: mutations at this locus produce 
a broad spectrum of phenotypes. Moreover, the distribution of phenotypic effects at the 
sensitive locus is strongly asymmetric and bimodal, with a sharp peak close to the current 
environmental optimum and a second maximum close to phenotypic optimum at the other 
environmental state. 
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The inner workings of a refined mutational transformer: a mutation 
canaliser 

The mutational transformers that evolve in non-linear GRNs represent a 
more refined solution when compared to the mutational amplifiers observed 
in linear GRNs. This is highlighted by the faster recovery of performance after 
an environmental change (Figure 3 C-D). The non-linear GRNs evolve their 
architecture, not only to put the two optimal phenotypes in the range of a 
single mutation step, but also to canalise the phenotypic outcomes of 
mutations towards particular phenotypic values. We term this more refined 
mechanism underlying the evolution of a mutational transformer in 
nonlinear GRNs a mutation canaliser. 

The behaviour of the non-linear 1-1 GRN is governed by only three 
parameters which allow for numerical analysis (Figure 6). This allowed us to 
study how mutations on the sensitive locus affect not only the output of the 
second node (phenotype) but also how they affect the output of the first 
(intermediate) node. Applying normally distributed mutations to the evolved 
value of locus b1 leads to a slightly skewed distribution of node 1 output 
values. The values of the b2 and w loci have evolved so that when the skewed 
distribution of outputs of node 1 is fed into node 2 it is transformed to a 
bimodal distribution of phenotypes (output values). As can be seen in Figure 
6 A, the ability of node 2 to transform the asymmetrical distribution of 
outputs of node 1 into a bimodal distribution of phenotypes relies on the 
presence of a non-linear (sigmoidal) transform function. This shows why in 
our minimal model the ability to canalise mutations towards particular 
phenotypic values is contingent on the presence of a non-linear transfer 
function. As we previously noted the mechanism of a mutational canaliser 
seems to be symmetrical, after mutation to the other environmental 
optimum a bimodal distribution of phenotypes is maintained. Figure 6 B 
shows that this symmetry is a consequence of the sigmoid transfer function. 
If we apply the average mutation to the sensitive locus (b1 =+ 0.1 in Figure 6 
B) this causes the bimodal distribution to “flip”. The main phenotypic peak 
now sits on the alternative optimum and the smaller peak on the current 
optimum. This, therefore, shows that canalisers not only have evolved to 
easily move to an alternative adaptive phenotype but that they have also 
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evolved an architecture that allows them to easily revert back to the previous 
adaptive phenotype as well. 
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Figure 6. Transformation of normally distributed genetic mutations into a bimodal 
distribution of phenotypic effects. The plots in each panel (A, B) show how different 1-1 
networks transform a normal distribution of mutations on the sensitive locus (b1 in this 
case) into a (different) distribution of phenotypes. A represents an evolved and adapted 
GRN, and B shows the same GRN but now with a mutated/perturbed value of its sensitive 
locus, The values of the sensitive locus are on the x-axis of the plots on the left column, while 
the values of the phenotype are projected on the y-axis of the plots on the right column. The 
plots on the left show the mapping of mutations on b1 to outputs of node 1, the solid red 
line corresponds with the non-mutated original value of b1, while the dashed red line shows 
the value of the corresponding original output. The plots on the right show how the 
distribution of outputs of node 1 (now on the x-axis) is transformed into a distribution of 
phenotypes (outputs of node 2, y-axis). Also in this case the red and dashed line mark the 
non-mutated input and output values, while the dashed green lines show the values of the 
two environmental optima. A: The mutations-to-phenotype mapping of an evolved network. 
The distribution of outputs of node 1 produced by mutations is skewed but not bimodal. The 
distribution of phenotypic values in node 2 instead is clearly bimodal, with two peaks 
corresponding to the two optimal phenotypic values of the two environmental states. 
Therefore, mutations on node 1 of an evolved network will preferentially produce adaptive 
outcomes. In the evolved network we can see how node 1, although being the one sensitive 
to mutations that cause the mutational transformer (see Figure 5C), does not create the 
bimodal distribution of phenotypes. It instead skews the distribution of mutations. The 
asymmetry in these outputs is then used in node 2 to create a bimodal distribution of 
phenotypes. B: The mutations-to-phenotype mapping of a network for where the sensitive 
locus (b1) is perturbed (adding the average mutation step = 0.1 to its evolved value). Node 1 
still skews the distribution of outputs but towards slightly lower values. This causes the 
creation of a bimodal distribution of outputs in node 2 but now with the two peaks inverted. 
If before the main peak of the bimodal distribution sat on the environmental optimum value 
of 0.5, now it sits on the other optimum value -0.5. At the same time, the smaller peak now 
sits at 0.5 instead of -0.5. This shows that the architectures of these GRNs evolved to be able 
to match the environmental optimum and, as well, rapidly switch to the other 
environmental optimum via a single mutation. 
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Discussion 

First of all, we have demonstrated that even in a very simple model of a GRN 
the genotype-to-phenotype map can evolve to facilitate rapid adaptation to 
fluctuating environments. Even with such a simple genotype-to-phenotype 
map consisting of just three loci, evolution can lead to a mapping, such that 
adaptation to an environmental change occurs very fast and through a single 
mutation. Building on the work of those who studied this phenomenon 
before us (Crombach & Hogeweg, 2008; Cuypers et al., 2017), we term this 
phenomenon a mutational transformer, where the phenotypic state rapidly 
changes between alternative adaptive states through mutation.  

Mutational transformers evolve in both GRNs with both linear and non-linear 
gene interactions. Whilst both types of mutational transformers facilitate 
rapid adaptation, the time to adaptation is shorter for non-linear GRNs. This 
points to the fact that these two different types of GRN lead to the evolution 
of mutational transformers that function through two distinct mechanisms. 
Both mechanisms enhance the evolvability of GRNs. However, they do so in 
two distinct ways. 

Linear GRNs rapidly switch phenotype by amplifying the phenotypic effects 
of small mutations on a specific locus. Thus, these GRNs evolve to reach a 
relatively wide range of phenotypes through a single mutation; we term this 
type of mechanism a mutation amplifier. A mutational amplifier increases 
the amount of phenotypic variation that is created through mutation, 
providing a wider range of phenotypic variance on which selection can act. 
We show that the range of phenotypic variation is tuned to the specific 
distance between the two adaptive phenotypes encountered during 
evolution. Whilst the range of phenotypic variation is tuned, the phenotypes 
generated through mutation are not biassed towards the particular adaptive 
values. This also highlights a key drawback of mutation amplifiers; whilst they 
accelerate evolution when a population is maladapted (not on a fitness 
peak), they lead to the production of a lot of deleterious phenotypes when a 
population is well adapted (on a fitness peak). These properties of mutation 
amplifiers are reminiscent of results obtained by those studying the 
evolution of mutation rates, here it has been shown that high mutation rates 
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are advantageous only when a population is maladapted (Sprouffske et al., 
2018).  

On the other hand, non-linear GRNs (sigmoid transfer function) evolve a 
more refined mutational transformer. In these GRNs, the distribution of 
phenotypes generated through mutation is targeted towards the two 
adaptive phenotypes encountered during evolution. The non-linear 
interactions are essential to this strategy: they allow normally distributed 
mutations to create a bimodal distribution of phenotypes. In other words, 
the genotype-to-phenotype map evolves to  canalise the effects of mutations 
towards adaptive outcomes; we term this mechanism a mutation canaliser. 
A mutational canaliser, biases variation towards particular adaptive 
outcomes, shaping the way mutations affect fitness. This more refined 
mechanism explains why non-linear GRNs adapt faster in response to a 
change in environment than their linear counterparts. Interestingly the 
mechanism behind the mutation canaliser seems to closely resemble the 
phenomenon described by Crombach and Hogeweg (Crombach & Hogeweg, 
2008), where the evolution of the genotype-to-phenotype map increased the 
frequency of beneficial mutations.  

When comparing the mutation amplifier and the mutation canaliser two key 
differences are apparent. Since the mutation canaliser preferentially 
produces adaptive outcomes it has a much lower production of deleterious 
phenotypes when the population is well-adapted (on a fitness peak) 
compared to the mutation amplifier. However, this lower production of 
deleterious phenotypes comes at a cost: mutation canalisers  are only 
expected to enhance adaptation when environmental fluctuations are 
repetitive (i.e. previous adaptive challenges are representative of future 
adaptive challenges), whereas a mutation amplifier is also expected to 
enhance adaptation in more irregularly fluctuating environments. In other 
words, mutational amplifiers have a broader scope than mutational 
canalisers (see also (Riederer et al., 2022)). Whilst above we compare and 
contrast the two caricatures of the mutation amplifier and the mutation 
canaliser, it is worth noting that in our opinion mutation amplification and 
mutation canalization are not mutually exclusive, it is possible to amplify the 
phenotypic effects of mutations whilst also somewhat biassing the effects of 
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mutation towards particular adaptive outcomes. In our model the 
environmental fluctuations are repetitive, switching between two different 
adaptive values, therefore previous adaptive challenges are representative 
of future adaptive challenges. It is clear that mutation amplifiers can enhance 
adaptation in such repetitively fluctuating environments. However, given 
that the phenotypic variation generated by a mutation amplifier is not 
directed towards a particular phenotype, mutation amplifiers are also 
expected to enhance adaptation in environments that fluctuate in a more 
irregular manner.  

We think that a mechanism similar to the mutational amplifier and the 
mutational canaliser might be responsible for the pattern we observed in 
some empirical examples described above, such as heteroresistance, yeast 
thermal adaptation, and evolution of lactose metabolism. The rapid 
switching to an adaptive phenotype using a single or very few mutational 
steps closely resembles the behaviour of mutational transformers in our 
model. In  each of these three empirical cases it is very likely that populations 
have previously repeatedly faced the relevant environmental change 
(antibiotics presence/absence, different growth temperatures, loss of 
lactose metabolising plasmid). Therefore we strongly suspect that in these 
cases the structure of the underlying GRN is not a fluke, it is instead the 
product of the evolution of evolvability, which has led to the creation of a 
mutational transformer. Furthermore, the mutational canaliser is 
reminiscent of many of the examples of developmental bias described in the 
literature. Consider for example how the structure of the GRN shapes the 
available variation in Bicyclus anynana (Allen, Beldade, Zwaan, & Brakefield, 
2008), where the structure of the underlying GRN seems to favour the 
production of particular phenotypic variants over others. 

Our results are largely aligned with those obtained by Crombach and 
Hogeweg (Crombach & Hogeweg, 2008), and Cuypers et al. (Cuypers et al., 
2017), who studied similar questions using a different set of models. Their 
models used more complex GRNs and explicitly modelled a wide set of 
biological mechanisms, aiming to more closely mimic biological complexity. 
We instead set out to create a minimal model of a mutational transformer, 
which allowed us to uncover in detail the evolution of the underlying 
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mechanisms. We have demonstrated the evolution of mutational 
transformers across a wide range of different network architectures. It can 
be concluded that a minimal complexity of two nodes (three loci) is required, 
a network with a single node is not able to evolve a mutational transformer. 
Surprisingly, complexity beyond two nodes does not seem to improve the 
functioning (i.e. time to adaptation) of the mutational transformer. We 
demonstrate that mechanisms that shape the effect of mutations on the 
phenotype can readily evolve in very simple systems. 

The fact that mutational transformers readily evolve in our extremely simple 
GRN model leads us to expect they may be a rather widespread 
phenomenon, in organisms facing fluctuating environments. Mutational 
transformers might be especially prevalent when organisms face repetitively 
fluctuating environments, where past adaptive challenges are likely to be 
similar to future adaptive challenges. Future work should explore exactly if 
and how mutational transformers can evolve under more diverse and 
complex environmental regimes (e.g.: more than two alternating 
environmental optima) or environments where the phenotype is 
represented by more than one dimension). In a more general sense, our 
results indicate that the genotype-to-phenotype map can easily evolve to 
shape the phenotypic effects of mutation towards adaptive outcomes, even 
with minimal complexity. This outcome seems to contradict the assumptions 
of standard evolutionary theory, which assigns little relevance to the exact 
nature of the genotype-to-phenotype map. However, recent work has shown 
that explicitly considering the structure of the genotype-to-phenotype map 
greatly influences the outcomes of evolutionary models (Milocco & Salazar-
Ciudad, 2020; van Gestel & Weissing, 2016). Our results are in line with these 
findings, we demonstrate that even a simple model of a genotype-to-
phenotype map produces dynamics rarely observed in more classical models 
i.e. the evolution of evolvability. All in all we show in detail how mutational 
transformers evolve and function. We argue that mutational transformers 
can greatly impact evolutionary dynamics and that their emergence 
represents a clear example of the evolution of evolvability. 
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Abstract 

Many relevant antibiotic-resistance genes are found on plasmids. Whilst 
plasmids play an important role in the spread of antibiotic resistance, the 
role that plasmids play in the de-novo development of resistance is less 
well understood. However, it has been hypothesised that plasmids can 
enhance evolvability and hence speed up the evolution of antibiotic 
resistance. Here we use experimental evolution to study the impact of 
plasmids on the de-novo evolution of ciprofloxacin resistance. As our 
model system, we use Lactococcus lactis MG1363 and the pLP712 plasmid 
which both do not contain any resistance genes at the start of the 
experiment. Over the course of 31 days of experimental evolution, both 
plasmid-free and plasmid-bearing populations managed to evolve high 
levels of ciprofloxacin resistance. Plasmid-bearing strains did not evolve 
resistance faster and their final resistance level was equal to that of their 
plasmid-free counterparts. Hence, we did not find evidence that plasmids 
enhance the rate of resistance evolution. Instead, we found evidence for 
ciprofloxacin-dependent selection against the plasmid, as in populations 
exposed to ciprofloxacin the plasmid frequency decreased drastically over 
the course of the experiment. Using next-generation sequencing we also 
found several new genes that may play a role in ciprofloxacin resistance. 
These new genes provide potential new avenues to better understand 
ciprofloxacin resistance. The finding that exposure to ciprofloxacin seems 
to induce selection against plasmids could in the future be used to combat 
plasmids encoding resistances to other antibiotics 

Introduction 

Antibiotic resistance represents a massive public health problem (WHO, 
2014). To effectively combat antibiotic resistance, it is necessary to 
understand the mechanisms underlying resistance. Here it seems that 
plasmids play a crucial role: many clinically relevant antibiotic-resistance 
genes are located on plasmids. Plasmids are small circular extrachromosomal 
pieces of DNA that have their own origin of replication and can thus replicate 
independently from the chromosome (Caratolli, 2011). Plasmids can be 
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horizontally transferred between bacterial cells through a process known as 
conjugation, where a connection is formed between two cells through which 
the plasmid is transferred. By recombination and transposable elements, 
genes can move between the plasmid and the chromosome. Plasmids often 
impose a fitness cost on the host bacterial cell (San Millan et al. 2017). 
Infamous are so-called multi-resistance plasmids, such as those commonly 
found in Staphylococcus aureus, where genes encoding resistances to 
multiple antibiotics are located on a single plasmid (Shearer et al. 2011; Liu 
et al. 2013; Dun et al. 2019; Hao et al. 2019). This is especially worrying since 
plasmids can facilitate the spread of antibiotic resistance, both 
geographically and across different bacterial species (Waters, 1999; 
Rozwandowicz et al, 2018). It is clear that plasmids play an important role in 
the spread of antibiotic resistance. However, before resistance can spread it 
must first arise. The exact process of how resistance arises and how this 
process may be impacted by plasmids is much less well understood. Here we 
investigate the role of plasmids in the evolutionary process that transforms 
a naïve bacterial population, harbouring plasmids without any resistance 
genes into a resistant population harbouring plasmids containing resistance 
genes.  

So how might plasmids impact the de-novo evolution of antibiotic 
resistance? It has been hypothesised that plasmids can enhance the 
evolvability of bacteria, that is, the ability of bacteria to undergo adaptive 
evolution (Ramsay & Firth 2017; Riederer et al. 2022). One key study showed 
that a strain with resistance precursor genes located on a plasmid (and not 
on the chromosome) was able to evolve resistance more quickly(San Millan 
et al 2016). Since each cell had more than one copy of the plasmid, this 
increased the mutational target size, making mutations conferring resistance 
more probable. However, for the de-novo evolution of resistance this 
mutational target size effect seems of somewhat limited relevance since it 
requires precursor genes to already be located on a plasmid, which may not 
always be the case. 

There is an additional way in which plasmids might enhance bacterial 
evolvability because some plasmids can facilitate horizontal gene transfer 
between cells. Several hypotheses have been put forward as to how plasmid-

173



based horizontal gene transfer might enhance evolvability. First of all, 
horizontal gene transfer can recombine existing genetic variation, leading to 
new combinations of genes (Hall & Kerney, 2012; Kingston et al., 2015). This 
generation of new variation and evolutionary novelty can accelerate 
adaptation, thus increasing evolvability. A second hypothesis concerns the 
rate of spreading beneficial mutations in a population. If beneficial mutations 
can spread through intercellular gene transfer (horizontally) as well as 
through cell division (vertically) the rate of spread of beneficial genes is 
accelerated, thereby increasing the rate of adaptation (Chu et al., 2018). 
Third, horizontal gene transfer can create a reservoir of genetic variation. 
This kind of reservoir dynamic also allows variation to be maintained that 
would otherwise be lost. This maintenance of variation due to horizontal 
gene transfer enhances evolvability (Croll & McDonald, 2012; Woods et al., 
2020; van Dijk, 2020). Fourth, plasmid-mediated horizontal gene transfer can 
alleviate “clonal interference”. In clonal interference different beneficial 
mutations compete with one another because they occur in different asexual 
lineages, and this competition can hinder adaptation (Gerish & Lenski, 1998). 
Plasmid-mediated horizontal gene transfer allows for recombination 
between different lineages, which can bring beneficial mutations together in 
the same lineage, thereby preventing clonal interference and accelerating 
adaptation (Cooper, 2007; Winkler & Kao, 2012). Whilst some theoretical 
models underpin these different hypotheses (Gerish & Lenski, 1998; van Dijk, 
2020), most hypotheses lack experimental verification. Furthermore, it is 
unclear exactly under what conditions different evolvability-enhancing 
mechanisms might operate: do plasmids always enhance evolvability or do 
they only do so under a limited set of circumstances? All in all, mechanisms 
by which plasmids might enhance evolvability are currently poorly 
understood. Thus, experiments studying the impact of plasmids on 
evolvability are clearly needed.  

We aimed to uncover which role plasmids play in the de-novo evolution of 
antibiotic resistance using experimental evolution. We experimentally 
evolved resistance to ciprofloxacin in populations of Lactococcus lactis with 
and without plasmids. We also evolved control populations in a medium 
without ciprofloxacin. Previous experimental studies aiming to study the 
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impact of plasmids on resistance evolution have used engineered plasmids 
of some sort. These plasmids already contain a particular resistance gene or 
a resistance precursor gene. We take a different, more open-ended 
approach, using a naturally occurring metabolic plasmid that does not carry 
any known resistance precursor genes. Our model system aims to simulate a 
situation in which a bacterium containing naturally occurring plasmids that 
do not encode antibiotic resistance genes comes into contact with a new 
antibiotic, as we hope to uncover the role that plasmids play in the de-novo 
evolution of resistance.  

We address two research questions. Do plasmids enhance evolvability in the 
context of antibiotic resistance evolution? To this end, we compare the rate 
of resistance evolution between plasmid-bearing and plasmid-free 
populations. If as hypothesized plasmids enhance evolvability we would 
expect resistance to evolve faster in plasmid-bearing populations. How do 
plasmids influence the evolutionary trajectories that lead to resistance? To 
address this question we use whole genome sequencing to investigate the 
mutations that underpin ciprofloxacin resistance to see if the presence of a 
plasmid impacts the evolutionary trajectories leading to resistance. If 
plasmids enhance evolvability in the context of antibiotic resistance 
evolution, then we might expect plasmids to impact the combination of 
mutations underpinning resistance.  

Material and methods 

Strains & media 

We choose to work with L. lactis since it is a well-studied model organism 
that is safe to work with (generally regarded as safe), yet is relatively closely 
related to Streptococcus pneumoniae, an important pathogen that has 
acquired problematic resistance to ciprofloxacin (Sahm et al., 2000; Mrazek 
et al. 2002; Wegeman et al. 2007; Patel et al. 2011), meaning that any new 
insights gained into ciprofloxacin resistance in L. lactis are likely to be of some 
clinical relevance. Another reason for using L. lactis concerns the fact that 
plasmids seem to have played an important role in past adaptation of L. lactis 
to the milk environment, meaning that there are many well-studied naturally 
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occurring plasmids available (Wegeman et al. 2012; Tarazanova et al. 2016). 
The plasmid we use, pLP712 is capable of high-frequency horizontal transfer 
through conjugation and genetic exchange with the chromosome has also 
been shown (Gasson, 1983; Wegeman et al. 2012; Tarazanova et al. 2016). 
The pLP712 plasmids plays an important role in wild-type L. lactis, since it 
carries genes that are essential for growing in milk (Wegeman et al. 2012; 
Tarazanova et al. 2016).  

In this experiment, we used two different L. lactis strains: As a plasmid-free 
strain we used the plasmid-cured strain MG1363 (Gasson et al, 1983; 
Wegeman et al. 2007; Linares et al. 2010;). Our plasmid-bearing strain was 
created by transforming MG1363 with the pLP712 plasmid (Gasson et al, 
1983; Wegeman et al. 2012; Tarazanova et al. 2016). These two strains 
formed the starting point for our evolution experiment, they are henceforth 
referred to as our two starting strains. Both strains were obtained from the 
laboratory collection of the Molecular Genetics group at the University of 
Groningen (The Netherlands). Using PCR, we tested both strains for the 
presence/absence of the pLP712 plasmid and the presence of the sex factor 
(see supplementary figure S1). The sex factor is a chromosomally integrated 
mobile genetic element that contains the genes required for conjugation, the 
presence of this element is necessary to allow for the conjugative transfer of 
the pLP712 plasmid. The sex factor has also been shown to facilitate 
chromosomal integration of the pLP712 plasmid (Gasson et al.1992; 
Wegeman et al. 2012; Wels et al. 2019). We confirmed that our plasmid-
bearing strain contained both the sex factor and the pLP712 plasmid. Our 
plasmid-free was shown to contain the sex factor, but indeed lacks the 
pLP712 plasmid. Both strains were regrown from a single colony before 
starting the experiment, to assure minimal standing genetic variation within 
the two starting strains. All experiments were conducted in CDMPC medium 
(Goel et al 2012; Solopova et al. 2017; Price et al. 2017). The treatment 
culture medium was supplemented with ciprofloxacin (Sigma) dissolved in 
0.1N HCl to achieve the following final concentrations over the course of the 
evolution experiment: 2.5 ug/ml, 5 ug/ml, 10 ug/ml, 20 ug/ml/ 40 ug/ml, 80 
ug/ml and 160 ug/ml. During the experiment cells were cultivated in 96-well 
plates in a culture volume of 200ul, all cultures were incubated at 30 °C. 
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Determining initial resistance 

Before starting the experiment, the initial resistance of both the plasmid-free 
and the plasmid-bearing starting strain was determined. The strains were 
grown in several concentrations of ciprofloxacin, whilst measuring the 
optical density (OD600) of the strains in a plate reader (BMG Clariostar). The 
following concentrations of ciprofloxacin were tested: 2.5  μg/ml, 5 μg/ml, 
10 μg/ml, 16 μg/ml, 18 μg/ml, 20 μg/ml / 40 μg/ml, 80 μg/ml, and 160 μg/ml. 
As a control, the strains were also grown in medium without ciprofloxacin. 
This experiment was repeated twice, both leading to the conclusion that no 
growth occurred at a concentration of 10 ug/ml or higher. On the basis of 
this data 2.5 ug/ml was chosen as the initial concentration to start the 
evolution experiment, as this concentration was well below the inhibitory 
concentration and hence still allowed for adequate growth. The data from 
these experiments was also used to assess the growth rate of the two starting 
strains (plasmid-free and plasmid-bearing) in medium without antibiotic and 
in medium containing the sub-inhibitory concentration of ciprofloxacin (2.5 
ug/ml).  We used eight replicate growth curves per strain (obtained across 
two days, four per treatment per day). Growth rates were estimated by 
fitting a linear model to the exponential growth phase (OD600 between 0.05 
and 0.3) of the log-transformed OD600 growth curve. 

Experimental evolution protocol 

The evolution experiment followed a sequential batch culture protocol, in 
which a total of 32 populations were evolved, all originating from our two 
starting strains. These 32 populations were spread across four different 
treatments each with eight replicate populations: eight plasmid-free control 
populations, eight plasmid-bearing control populations, eight plasmid-free 
populations exposed to ciprofloxacin and eight plasmid-bearing populations 
exposed to ciprofloxacin. The control populations served to control for any 
adaptation to the medium that might occur throughout the experiment. To 
start the experiment an overnight culture of the two starting strains was 
prepared (in selective medium for the plasmid-bearing strain), subsequently 
on day 0, 1 ul of this overnight culture was used to initialise the populations. 
For all populations, the first transfer occurred on day 1 and in total the 
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populations were transferred 31 times (until day 31). The control populations 
were grown in medium without antibiotics and approximately every 24 hours 
1ul of each population was transferred to 200ul of fresh medium, with the 
first transfer occurring on day 1. The populations exposed to ciprofloxacin 
were initialised using the overnight cultures and were initially grown in 
medium containing 2.5 ug/ml on day 0. Subsequently, every 24 hours 1ul of 
each population was transferred to two separate wells, one containing the 
current ciprofloxacin concentration and one well containing twice the 
current ciprofloxacin concentration. If after 24 hours the population had 
managed to grow in the double concentration (i.e. Optical Density (OD600) 
> 0.3) 1 ul of the double concentration well was used for transfer and the 
double concentration then became the current ciprofloxacin concentration 
of that population. If in 24 hours the population had not managed to grow in 
the double concentration (i.e. OD600 < 0.3), the current concentration 
remained unchanged and the well with the current concentration was used 
for continued cultivation. In this way the population is always growing at the 
highest concentration of ciprofloxacin to which it is resistant, therefore the 
current concentration provides a measurement of the level of ciprofloxacin 
resistance of a particular population. If the current concentration reached 
the maximum concentration of 160 ug/ml the population was cultivated at 
this maximum concentration for the remainder of the experiment. Every 
third transfer as well as on the final day (day 31), a glycerol stock was 
prepared from all the populations, with the first stock being made on day 3. 
At the end of the experiment, all evolved populations were grown in CDMPC 
medium without ciprofloxacin inside a plate reader (BMG Clariostar) to 
determine their growth rate. This allowed us to assess the cost of evolving 
resistance. 

Resuscitation of failed populations 

During the experiment some populations failed to grow after transfer, for 
these populations the resuscitation protocol was initiated. The initiation of 
resuscitation occurred a total of 10 times during the experiment. It occurred 
both when the ciprofloxacin concentration had been increased (4 times) and 
when the concentration had remained the same, with the latter likely due to 
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pipetting error (1 time in control populations, 5 times in populations exposed 
to antibiotics). If a population (control or exposed to antibiotics) failed to 
grow then the current concentration was halved (if applicable) and the 
population was resuscitated using 1 ul of culture from the previous day 
(inoculated 48 hours ago) using the old culture with the lowest ciprofloxacin 
concentration available. This old culture was also turned into a glycerol stock. 
For subsequent resuscitation attempts 1 ul of this glycerol stock was used, 
each time halving the current concentration, this was continued until the 
population managed to grow again in the current concentration. If during the 
resuscitation process the population did not manage to grow at the lowest 
concentration of 2.5 ug/ml a final attempt was made to resuscitate the 
population at this concentration using 10 ul of the glycerol stock. On the final 
day of the experiment (day 31) a single population failed to grow in both the 
double and current concentration, but as the experiment ended, 
resuscitation was not possible. For this population the glycerol stock made 
on day 30 was used for all final analyses. A separate test was made after day 
31 that confirmed that this population was able to grow in half the current 
concentration, and hence this was denoted as the final resistance level for 
this population.  

Sequencing & analysis 

For sequencing the evolved strains and the two starting strains were grown 
overnight in CDMPC medium without ciprofloxacin. Subsequently, using 5 ml 
of these overnight cultures, DNA was extracted using the gen elute bacterial 
genomic DNA kit (Sigma), using the gram-positive protocol (including 
incubation with lysozyme). Subsequently, the DNA was sequenced by 
Eurofins on the Illumina platform, generating at least 5 million 150 bp paired 
end-reads per sample. These reads were subsequently analysed in BRESEQ 
(Detherage & Barrick, 2014) using the pLP712 reference genome (GenBank 
FJ649478.1) and the MG1363 reference genome (GenBank AM406671.1) For 
the MG1363 reference genome 71 insertion sequences were manually 
annotated as mobile elements, with a version of the reference genome 
containing these additional annotations kindly provided by A. M. Veenstra. 
The BRESEQ analysis used the following filters: polymorphism bias cutoff = 
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0.05, polymorphism minimum variant coverage = 10 and polymorphism total 
variant coverage = 20. Using the GD tools available in BRESEQ the mutations 
present in the starting strains were subtracted from those in the evolved 
strains so that only those mutations that occurred during the experiment 
could be analysed.  

Results 

Growth rates in the absence of the antibiotic 

We compared the growth rates of our two starting strains (plasmid-free and 
plasmid-bearing) in medium without the antibiotic. The growth rate was 
estimated by fitting a linear model to the linear portion of the log-
transformed OD600 data; model fits are shown in supplementary figure S2. 
The resulting growth rate estimates are plotted in Figure 1. In the absence of 
the antibiotic, the plasmid-bearing strain has a significantly higher growth 
rate than the plasmid-free strain (t-test, p =0.007), with the growth rate of 
the plasmid-bearing strain being approximately 5% higher than that of the 
plasmid-free strain. In other words, in the absence of the antibiotic having 
this plasmid seems to increase the bacterial growth rate. 
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Figure 1. Growth rates of plasmid-free and plasmid-bearing strains in the absence of 
ciprofloxacin. The growth rates of 8 populations of the plasmid-bearing and the plasmid-free 
strain were estimated by the slope of the linear portion of the log-transformed OD600 
trajectory (as shown in Supplementary Figure S2). Black lines show the mean value and the 
boxes show the 95% confidence interval of the growth rate of the two strains. In the absence 
of ciprofloxacin, the growth rate of the plasmid-bearing strain is significantly higher than that 
of the plasmid-free strain (t-test, p =0.007). 
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Growth rates in the presence of the antibiotic 

Next, we assessed the growth rate of the two starting strains (plasmid-free 
and plasmid-bearing) in medium containing a sub-inhibitory concentration of 
ciprofloxacin (2.5 ug/ml). The model fits used to obtain these growth rate 
estimates are shown in supplementary figure S3. The growth rate estimates 
are plotted in Figure 2. At this sub-inhibitory concentration of ciprofloxacin 
the plasmid-free strain has a significantly higher growth rate (t-test, p = 
0.004), with the growth rate of the plasmid-free strain approximately 10% 
higher than that of the plasmid-bearing strain. It thus seems that in this case 
having a plasmid lowers the growth rate. 

 

Figure 2. Growth rates of plasmid-free and plasmid-bearing strains in the presence of 
ciprofloxacin. The growth rates of 8 populations of the plasmid-bearing and the plasmid-free 
strain at a sub-inhibitory concentration of ciprofloxacin (2.5 ug/ml) were estimated by the 
slope of the linear portion of the log-transformed OD600 trajectory (as shown in 
Supplementary Figure S3). Black lines and boxes indicate the mean value and the 95% 
confidence interval of the growth rate of the two strains. At this sub-inhibitory concentration 
of ciprofloxacin the growth rate of the plasmid-free strain is significantly higher than that of 
the plasmid-bearing strain (t-test, p =0.004). 
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Resistance trajectories during experimental evolution 

Figure 3 shows the mean resistance trajectories of the eight plasmid-free and 
the eight plasmid-bearing populations over the course of the evolution 
experiment. First of all, both the plasmid-free and plasmid-bearing 
populations manage to evolve high levels of resistance. Second, the final 
resistance level of the plasmid-bearing populations lags behind that of the 
plasmid-free populations. When it comes to the maximum level of resistance 
two plasmid-free populations managed to reach this level by the end of the 
experiment (160 ug/ml), whilst none of the plasmid-bearing populations 
managed to reach this maximum. Figure 4 shows the log-transformed final 
resistance level achieved in the populations exposed to ciprofloxacin. A t-test 
comparing the mean final resistance level of the plasmid-bearing and the 
plasmid-free populations indicated no significant difference (p=0.475). It 
seems that the presence of the plasmid did not impact the final resistance 
level evolved during the experiment.  

Next, we assessed the rate of resistance evolution in each of the populations 
exposed to ciprofloxacin. To this end, a linear model was fitted to the log-
transformed resistance trajectory of each population. The slope of this linear 
model fit (slope of resistance increase) served as an indicator of the rate of 
resistance evolution. For populations that showed a very drastic decrease in 
resistance during resuscitation, only the trajectory before the decline was 
used to fit the linear model. Model fits and resistance trajectories for 
plasmid-fee and plasmid-bearing populations are shown in Supplementary 
Figures S4 and S5, respectively. Figure 5 shows the resulting slopes of 
resistance increase, obtained using these linear model fits. A t-test 
comparing the mean slope of resistance between the plasmid-free and 
plasmid-bearing populations did not produce a significant result (p=0.757). 
In other words, there is no evidence that plasmids did impact the rate of 
resistance evolution during the experiment. 
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Figure 3. Average resistance trajectory of plasmid-free (red) and plasmid-bearing (blue) 
populations. Mean ciprofloxacin resistance trajectories in ug/ml of the eight plasmid-free (in 
red) and the eight plasmid-bearing populations (in blue) for each day of the experiment, 
shown on a logarithmic scale. The error bars indicate the 95% confidence interval of the 
resistance level. 
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Figure 4 Final resistance level achieved at the end of evolution. The logarithm of the final 
resistance levels achieved in the different populations exposed to ciprofloxacin at the end of 
the experiment (day 31). The left violin shows the plasmid-free populations and the right violin 
shows the plasmid-bearing populations. Black lines indicate the mean, boxes indicate the 95% 
confidence interval of the growth rate. 

Figure 5. Rate of resistance increase over the course of evolution. The estimates of the rate 
of increase are based on the linear model fits shown in supplementary figures S4 and S5. The 
left violin shows the plasmid-free populations, the right violin shows the plasmid-bearing 
populations. Black lines indicate the mean, boxes indicate the 95% confidence interval of the 
slope. 
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Sequencing results of evolved strains 

Based on the sequencing results, the mutations that occurred during the 
experiment in the evolved strains were analysed. Mutations were assessed 
at the gene level, therefore multiple mutations in the same gene were 
counted as a single mutation. Only mutations with an estimated within-
population frequency of 10% or above were included in the analysis.  

First, we compared the number of mutations that occurred in the evolved 
populations during the experiment, which is shown in Figure 6. It is evident 
that more mutations occurred in populations evolving resistance to 
ciprofloxacin, whilst the presence or absence of a plasmid did not influence 
the number of mutations that occurred. This impression was confirmed by 
using a Kruskal-Wallis test which revealed significant differences between 
the treatments (p = 0.00005) (non-parametric tests were used as it concerns 
count data). A post-hoc Dunn test did not find an indication for an effect of 
the presence or absence of the plasmid (Control NP-Control P: p=0.828 and 
Cipro NP-Cipro P: p=1.0). There was however a significant difference in the 
number of mutations between those populations exposed to ciprofloxacin 
and the control populations (Control NP-Cipro NP: p= 0.007, Control NP-Cipro 
P: p= 0.001, Control P-Cipro NP: p= 0.010 , Control P-Cipro P: p= 0.002).   
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Figure 6. Number of mutations occurring during the evolution experiment. Mutations were 
counted at the gene level and only mutations with a frequency of 10% or higher were included. 
From left to right the following treatments are displayed: control plasmid-free, control 
plasmid-bearing, ciprofloxacin exposed plasmid-free and ciprofloxacin exposed plasmid-
bearing. Populations exposed to ciprofloxacin displayed more mutations at the end of the 
experiment. The presence or absence of the plasmid does not seem to impact the number of 
mutations that occur for both the control and ciprofloxacin-exposed treatments. Black lines 
indicate the median number of mutations, boxes indicate the interquartile range. 

The mutation patterns associated with resistance in the strains exposed to 
ciprofloxacin are shown in Figure 7. For this analysis, we only considered 
mutations that occurred independently in at least two of the populations. 
Mutations in the tgt gene that also frequently occurred in control 
populations are also removed from the analysis, as they most likely represent 
adaptation to the medium. These criteria ensure that the analysed mutations 
are likely involved in modulating ciprofloxacin resistance. The frequencies of 
different mutations are also plotted in supplementary figure S6  

When examining Figure 7, it seems that the presence or absence of the 
plasmid does not impact the patterns of mutation in the evolved strains. 
Furthermore, we did not find any mutations in the pLP712 plasmid. However, 
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several interesting observations can be made by examining the mutation 
patterns of the chromosome. Mutations in the rpoB gene are most 
commonly observed (in 8 out of 16 evolved populations), second most 
commonly are mutations in the parC gene and the llmg_2080 gene (6/16) 
and the rpoC gene (5/16). The rpoB and rpoC genes encode the β and the β’ 
subunits of the RNA polymerase. Mutations in these genes occur in 13 out of 
16 populations, interestingly it seems that either rpoB mutates or rpoC, these 
mutations do not co-occur. Mutations in the llmg_2080 gene seem to be very 
common; this mutation is of note since this gene is not traditionally 
associated with ciprofloxacin resistance. Interestingly mutations in the 
llmg_2080 gene do not co-occur with mutations in the rpoC gene, but they 
do frequently co-occur with mutations in the rpoB gene. This observation 
supports the aforementioned hypothesis that there are two separate 
mutation pathways leading to resistance.  

The genes traditionally associated with ciprofloxacin resistance are parC and 
gyrA and to a lesser extent parE and gyrB (Lupien et al. 2013; Shariati et al. 
2022). These genes produce the DNA topoisomerase IV and the DNA gyrase 
enzymes, which are the direct targets to which ciprofloxacin binds. 
Mutations in these genes do occur in several of the evolved populations 
(parC: 5 out of 16, gyrA: 3 out of 16, parE: 2 out of 16 and gyrB: 3 out of 16). 
However, these mutations are far from ubiquitous and they are not clearly 
associated with a high level of resistance. The main observation that can be 
made from the mutational patterns is that there seems to be a wide variety 
of mutational patterns that lead to ciprofloxacin resistance. These patterns 
seem to suggest that ciprofloxacin resistance depends on mutations in 
multiple genes. 

 

188



 

Figure 7. Visualisation of the mutation patterns that are associated with resistance. It shows 
the occurrence of different mutations identified in the evolved populations exposed to 
ciprofloxacin at the end of the evolution experiment. Mutations were analysed at the gene 
level and only those with a within-population frequency of 10% were counted. Furthermore, 
only mutations that occurred in two or more populations are included in this plot. Mutations 
in the tgt gene that also frequently occurred in the control populations are also not included. 
Plasmid-free populations are marked as NP, whilst plasmid-bearing populations are marked 
as P. The numbers show the level of resistance each population managed to achieve. The 
populations are sorted vertically based on the similarity of their mutation patterns (as 
indicated by the dendrogram). 

Finally, we used the sequencing results to assess the plasmid abundance in 
the evolved plasmid-bearing populations. To estimate plasmid abundance, 
we used the percentage of the total sequencing reads that mapped to the 
plasmid, as reported by BRESEQ. As a baseline, we used the sequencing 
results from the starting plasmid-bearing strain, which has been regrown (on 
medium selecting for plasmid presence) from a single colony. When this 
strain was sequenced, 3.1 % of sequencing reads mapped to the plasmid. In 
the literature, the copy number of pLP712 is reported to be between 1-2 
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copies per cell (Wegeman et al. 2012; Tarazanova et al. 2016). If we consider 
the relative sizes of the MG1363 genome (2529478 bp) and the pLP712 
plasmid (55395 bp), we arrive on the following: (55395/2529478) * 100 = 2.2 
%. This would be the expected percentage of reads mapping to the plasmid 
if each cell had a single plasmid. Therefore, if we then use this to estimate 
the copy number per cell, we obtain 3.1%/2.2% = 1.4 copies per cell in the 
starting plasmid-bearing strain. 

Figure 8 shows the percentage of reads mapped to the plasmid for the 
evolved plasmid-bearing populations. When examining this figure, it seems 
that the control plasmid-bearing populations largely maintain the plasmid at 
the same abundance as the starting strain. However, when we examine the 
plasmid-bearing populations that were exposed to ciprofloxacin it is 
immediately evident that most populations (6/8) clearly display a marked 
decrease in plasmid abundance over the course of the experiment.  
Interestingly, one of the ciprofloxacin-exposed populations completely lost 
the plasmid from the population. Furthermore, another ciprofloxacin-
exposed population completely lost the sex factor that is necessary for 
conjugation. To confirm these impressions we performed two one-sample 
Wilcoxon tests, comparing the plasmid abundance at the start of the 
experiment with the plasmid abundance in the evolved control populations 
and the evolved ciprofloxacin-exposed populations. These tests showed 
evidence of a change in plasmid frequency for the ciprofloxacin-exposed 
populations (p= 0.04). For control populations this test did not provide any 
evidence for a change in plasmid frequency (p= 0.844). A Wilcoxon test 
comparing the difference in plasmid abundance between the control 
populations and the ciprofloxacin-exposed populations did not yield a 
significant result (p=0.105), but note the violation of the homoscedasticity 
assumption.  

190



 

Figure 8. Percentage of reads mapped to the plasmid in the evolved plasmid-bearing 
populations. The percentage of reads mapped to the plasmid for the plasmid-bearing starting 
strain is shown by a red line. It can be observed that most of the control populations maintain 
the plasmid at about the same abundance as the starting strain. The populations exposed to 
ciprofloxacin on the other hand showed a marked decrease in the plasmid abundance. Black 
line shows the median, box shows the interquartile range. 

Cost of resistance  

Evolving resistance often comes at the cost of a lower growth rate in the 
absence of the antibiotic. To assess this cost of evolving resistance and to see 
if this cost differed between plasmid-free and plasmid-bearing populations, 
we examined the growth rates of the evolved populations. The populations 
were grown in medium without antibiotics and their growth curves (OD600) 
were obtained. The growth rate was estimated by fitting a linear model to 
the linear portion of the log-transformed OD600 data, model fits are shown 
in supplementary figure S7. The resulting growth rates of the different 
evolved populations are shown in Figure 9. A one-way ANOVA confirmed that 
there were significant differences in growth rate between the different 
treatments (p < 0.0001). A subsequent post-hoc Tukey test did not show any 
indication that the presence or absence of the plasmid impacted the growth 
rate of the evolved populations (Control NP-Control P: p=0.728 and Cipro NP-
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Cipro P: p=0.957). The fact that no difference in growth rate is detected here, 
whilst such a difference was present in the starting strains, might be due to 
the strong decrease in plasmid abundance in the plasmid-bearing 
populations exposed to ciprofloxacin. Whether a population evolved in the 
presence of ciprofloxacin did significantly impact the growth rate in the 
absence of antibiotic (Control NP-Cipro NP, Control NP-Cipro P, Control P-
Cipro NP and Control P-Cipro P: for all cases p < 0.00001). The populations 
that evolved ciprofloxacin resistance had a lower growth rate when 
cultivated in the absence of this antibiotic when compared to the control. In 
other words, it seems that evolving ciprofloxacin resistance comes at the cost 
of a lower growth rate in the absence of this antibiotic. 
 

 
Figure 9. The growth rates of the evolved populations measured in the absence of 
antibiotics. The following treatments are displayed (left to right): ciprofloxacin exposed 
plasmid-free (Cipro NP), ciprofloxacin exposed plasmid-bearing (Cipro P), control plasmid-free 
(Control NP), control plasmid-bearing (Control P). The black lines indicate the mean, the boxes 
the 95% confidence interval. 
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Discussion 

Over the course of the evolution experiment the populations manage to 
rapidly evolve ciprofloxacin resistance. Before discussing the results in detail, 
it is important to emphasise that our experiment is not aiming to understand 
the role that plasmids play in the spread of antibiotic resistance, a process 
that has already been studied extensively. We are interested to see the 
impact that plasmids play in the development of resistance. Hence, we use a 
plasmid and a bacterial strain that both do not have any resistance genes at 
the start of the experiment. Our experimental evolution approach allows us 
to examine, from several different angles, the role that plasmids play in this 
de-novo evolution of ciprofloxacin resistance. 

Considering all the outcomes of our experiment, we did not find any evidence 
that the presence of the plasmid enhanced evolvability in the context of 
antibiotic resistance. The presence of a plasmid does not seem to result in a 
significantly higher final evolved resistance level at the end of the 
experiment. Furthermore, when we analysed the slope of the increase in 
resistance during the experiment, this was also not significantly impacted by 
the presence of the plasmid. If anything, it seems that the presence of the 
plasmid might be detrimental when evolving resistance: we observed strong 
selection against the plasmid in populations exposed to ciprofloxacin. This is 
evidenced by the strong decrease in plasmid frequencies in populations 
exposed to ciprofloxacin, whilst plasmid frequencies remained stable in the 
control populations.  

Whole genome sequencing revealed that the plasmid also did not influence 
the mutational patterns that underly ciprofloxacin resistance. This result 
might provide some explanation as to why the hypothesised effect of 
plasmids on evolvability was not observed. The hypothesised evolvability 
impact of a plasmid would involve bringing together resistance genes from 
different clonal lineages into a single lineage. In our experiment, this would 
likely involve the transfer of genes between the chromosome and the 
plasmid, which we did not observe. Perhaps the timescale of our experiment 
may have been too short for such relatively rare mutational events to occur. 
Furthermore, we only evolved resistance to a single antibiotic, perhaps a 
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plasmid would enhance evolvability in a more complex selective 
environment. Regardless, contrary to our initial hypothesis, it seems that in 
the current experiment the presence of the pLP712 plasmid did not enhance 
evolvability in the de-novo evolution of ciprofloxacin resistance in L. lactis.  

As highlighted before, in the plasmid-bearing populations that evolve 
ciprofloxacin resistance the frequency of the plasmid in the populations 
strongly decreases, with one of the populations even losing the plasmid 
entirely. It appears that there is strong selection against the plasmid when 
populations are exposed to ciprofloxacin. On the other hand, when 
populations are grown without ciprofloxacin (control) it seems that there is 
no selection against the plasmid. It seems that the plasmid is only costly in 
the presence of ciprofloxacin. This conditional cost of the plasmid also comes 
to light when we examine the growth of the plasmid-free and plasmid-
bearing starting strains, from which the evolved populations were created. 
In the absence of antibiotic, the plasmid-bearing strain has a faster growth 
rate than the plasmid-free strain. However, when both strains are exposed 
to a sub-inhibitory concentration of ciprofloxacin the plasmid-bearing strain 
grows slower than the plasmid-free strain Somehow the growth rate of the 
plasmid-bearing strain is disproportionately affected by the presence of 
ciprofloxacin. This could explain the lower baseline level of resistance and 
the strong selection against the plasmid observed in the plasmid-bearing 
populations exposed to ciprofloxacin. 

To further explain why the plasmid is only costly in the presence of 
ciprofloxacin it is necessary to examine the mechanism of action of this 
antibiotic. Ciprofloxacin works by inhibiting the DNA topoisomerase IV and 
the DNA gyrase enzymes, which serve to release mechanical stress on the 
DNA during replication and transcription. When these enzymes are poisoned 
by ciprofloxacin they bind to the DNA and then are unable to disassociate, 
this blocks DNA synthesis and causes double-stranded DNA breaks (Lupien et 
al. 2013; Oijkic et al., 2020; Shariati et al. 2022). We hypothesise that, under 
normal circumstances, the replication rate of cells is not limited by the 
presence of enough DNA topoisomerase IV and DNA gyrase or the stability 
of replication forks and hence the plasmid is not costly. However, in the 
presence of ciprofloxacin these factors limit the rate of replication. As 
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functioning DNA topoisomerase IV and DNA gyrase are scarce and replication 
forks are unstable, maintaining and replicating (which requires the formation 
of an extra replication fork) extra DNA in the form of a plasmid suddenly 
becomes very costly to a host cell.  

We also made some interesting observations regarding the mutational 
patterns underlying ciprofloxacin resistance in L. lactis. To our knowledge, 
these mutation patterns have not been described before, while they may be 
especially relevant since L. lactis is closely related to S. pneumoniae, a 
pathogen that has acquired problematic resistance to ciprofloxacin (Sahm et 
al., 2000; Mrazek et al. 2002; Wegeman et al. 2007; Patel et al. 2011). The 
classic mutations associated with ciprofloxacin resistance in S. pneumoniae 
and many other bacteria are in the parC and gyrA genes and to a lesser extent 
gyrB and parE which encode the DNA gyrase and topoisomerase IV enzymes 
(Lupien et al. 2013; Oijkic et al., 2020; Shariati et al. 2022). These mutations 
also occur in some of our evolved populations, with 11 out of 16 populations 
having a mutation in one of these four genes. The three populations that 
evolved a very high level of resistance (80 ug/ml or higher), all have a parC 
mutation. However, these mutations do not occur in all our populations and 
some populations manage to reach quite high levels of resistance (40 ug/ml) 
without mutating any of these genes.  

The most commonly observed mutations in the evolved populations are in 
the rpoB or rpoC genes (13/16 populations), which encode subunits of the 
RNA polymerase. In Escherichia coli it has been described that rpoB 
mutations can lead to ciprofloxacin resistance, by upregulating mdtK 
dependent antibiotic efflux (Pietsch et al. 2016; Brandis et al, 2021). Based 
on the high frequency of rpoB and rpoC mutations we suspect a similar 
mechanism might be operating in L. lactis. RpoB and rpoC mutations do not 
seem to co-occur. This could be due to chance, but it tentatively suggests 
that there might be two separate mutational paths that can lead to 
resistance, were either the β or the β’ subunit of the RNA polymerase 
mutates. Another frequently occurring mutation are mutations in the 
llmg_2280 gene (6/16 populations), this mutation did cooccur with 
mutations in the rpoB gene but never with mutations in the rpoC gene. The 
llmg_2280 gene encodes a small 69 amino acid long protein of the YozE 
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family (NCBI Reference Sequence: WP_011677077). Similar proteins have 
been described from Staphylococcus aureus and Bacillus subtillis and these 
proteins may have a function that involves binding to RNA (Swapna et al. 
2012). Based on our results llmg_2280 represents an interesting new 
candidate gene that clearly plays a role in ciprofloxacin resistance in L. lactis. 
Future studies should aim to investigate the possibility that YozE family 
proteins play a role in ciprofloxacin resistance in other bacterial species.  

Another interesting group of mutations involves mutations in the sugE gene 
(2/16) and its adjacent intergenic region (4/16). The sugE gene encodes a 
protein from the small drug-resistance protein family, many proteins of this 
family are known to be involved in antibiotic efflux (Bay et al. 2008; He et al. 
2011). SugE has been associated with resistance to several antimicrobials, 
but experiments have not previously linked it to ciprofloxacin resistance or 
resistance to other fluoroquinolones (Chung & Saier 2002; He et al. 2011). 
Some populations (3/16) also had mutations in the recD gene, which encodes 
for a protein involved in the repair of double stranded DNA breaks 
(Dillingham et al. 2008). In summary when considering the mutation patterns 
that lead to ciprofloxacin resistance L. lactis it becomes clear that resistance 
is a highly multigenic phenotype. Many different mutations interact to create 
ciprofloxacin resistance and the underlying mechanisms are likely quite 
diverse; involving target modifications (parC, gyrA, gyrB, parE), antibiotic 
efflux (rpoB, rpoC, sugE) and perhaps even other mechanisms (recD, 
llmg_2280). Our results also indicate that in L. lactis ciprofloxacin resistance 
is a costly phenotype: the populations that evolved resistance had a lower 
growth rate compared to the control populations strains when grown in the 
absence of ciprofloxacin (see figure 9). 

All in all, we did not find any support for our initial hypothesis that plasmids 
enhance evolvability in the context of antibiotic resistance. We also did not 
observe any impact of plasmid the mutational patterns that underly 
ciprofloxacin resistance. Nonetheless, our evolution experiment enabled us 
to make several new observations. First of all, we showed that the pLP712 
plasmid was only costly in the presence of ciprofloxacin. This raises the 
interesting possibility of using ciprofloxacin to create selection against 
certain plasmids. Perhaps ciprofloxacin could be used to rid pathogen 
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populations of plasmids containing resistances to other antibiotics. We are 
also the first to describe the mutation patterns in L. lactis that lead to 
ciprofloxacin resistance. We show that there are several different mutational 
paths that can lead to resistance, which go beyond the parC and gyrA 
mutations typically considered. Our results tentatively suggest that 
ciprofloxacin resistance is a highly multigenic phenotype involving several 
different mutations. Finally, we also identify llmg_2208 and by association 
other YozE family genes, as new genes of interest that may play a role in 
ciprofloxacin resistance. 
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Supplementary material 
PCR for pLP712 and Sex factor 

PCR reactions were performed using a standard colony PCR protocol. To 
create a template 200 ul of glycerol stock of each strain was centrifuged and 
the pellet was resuspended in 25ul miliq water, 0.6ul of template was added 
to each reaction. For all PCR reactions an annealing temperature of 50 °C was 
used together with an extension time of 120 seconds, the reaction was run 
for 30 cycles.  

To test for the presence of pLP712 the following primers based on the PrtM 
gene were used, which resulted in a 860bp product: 

prtM_Forward: CGCCTTAAAGTATTATTGGC 

prtM_Reverse: TAACTATCTAGCGCATCCGC 

To test for the presence of the sex factor genes (required for conjugation) 
the following primers based on the TraD gene were used, which resulted in 
a 794 bp product. 

traD_Forward: GAATATTATGCAGCTCAATGCC 

traD-Reverse: CAATCTTACCAATATTGGCG 
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Figure S1 Electrophoresis gel showing PCR results to test for the presence of the 
pLP712 plasmid (PrtM) and the sex factor (TraD) (required for conjugation). NC 
stands for negative control, 1363 indicates strain MG1363 (plasmid-free strain in the 
experiment), 1299 indicates strain MG1299 (which is know to contain pLP712, but 
lacks the sex factor genes), 1363+pLP712 indicates strain MG1363 transformed with 
the pLP712 plasmid (plasmid-bearing strain in the experiment). 1 Kb gene ruler was 
included in the electrophoresis to verify fragment size, showing the PCR products 
match expected sizes (PrtM: 860bp, TraD: 794bp).  
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Linear model fits for growth rate estimations of starting strains 

Figure S2. Linear model fits on log-transformed OD600 growth curve data, used to estimate 
growth rates for the two starting strains in the absence of antibiotic.  

Figure S3. Linear model fits on log-transformed OD600 growth curve data, used to estimate 
growth rates for the two starting strains at a sub-inhibitory concentration of ciprofloxacin (2.5 
ug/ml).  
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Resistance trajectories for populations exposed to ciprofloxacin

 

Figure S4 This figure shows the log-transformed resistance levels of each of the individual 
plasmid-free populations exposed to ciprofloxacin. For each population a linear model-fit is 
shown, the slope of this model fit served as an indicator of the rate of resistance evolution. 
For populations that showed a drastic decline in resistance (due to resuscitation), only the 
trajectory before the decline was used to fit the linear model. Points used to fit the linear 

model are plotted in red, excluded points are plotted in black. 
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Figure S5 This figure shows the log-transformed resistance levels of each of the individual 
plasmid-bearing populations exposed to ciprofloxacin. For each population a linear model-fit 
is shown, the slope of this model fit served as an indicator of the rate of resistance evolution 
(figure 5 in main text). For populations that showed a drastic decline in resistance (due to 
resuscitation), only the trajectory before the decline was used to fit the linear model. Points 
used to fit the linear model are plotted in blue, excluded points are plotted in black. 
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Frequencies of mutations in populations exposed to 
ciprofloxacin 

Figure S6 This figure shows the frequency of different mutations identified in the evolved 
populations exposed to ciprofloxacin at the end of the evolution experiment. Mutations were 
analysed at the gene level and only those with a within population frequency of 10% were 
counted. Furthermore, only mutations that occurred in two or more populations are included 
in this plot. 
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Linear model fits for growth rate estimations of evolved strains 

 
 

Figure S7 Linear model fits on log-transformed OD600 growth curve data (a single growth 
curve per evolved population), used to estimate growth rates in the absence of antibiotic for 
the evolved populations.  Plasmid-free control populations are shown in black, plasmid-
bearing control populations are shown in red, plasmid-free populations exposed to 
ciprofloxacin are shown in green and plasmid-bearing populations exposed to ciprofloxacin 
are shown in blue. 
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Abstract 
Most ecological communities are facing changing environments, 
particularly due to global climate change. When migration is impossible, 
adaptation to these altered environments is necessary to survive. Yet, we 
have little theoretical understanding how ecological communities respond 
both ecologically and evolutionarily to such environmental change. Here 
we introduce a simple eco-evolutionary model, the Community-Wide 
Rescue (CWR) model, in which a community faces environmental 
deterioration and each species within the community is forced to undergo 
adaptation or become extinct. We assume that all species in the community 
are equivalent except for their initial abundance. This individual-based 
simulation model thus combines community ecology and evolutionary 
rescue theory. We show that under Community-Wide Rescue a rapid loss 
of rare species occurs. This loss occurs because rare species face 
competition and a limited supply of mutations. The rapid loss of rare 
species provides a testable prediction regarding the impact of Community-
Wide Rescue on species abundance distributions in ecological 
communities.  

Introduction 
Many ecosystems face abrupt human-induced environmental change and 
evolutionary adaptation might be the only way to avoid extinction when 
migration is difficult (Vitousek et al. 1997, IPCC 2014). Understanding 
precisely how ecological communities respond to abruptly changing 
environments is therefore paramount. This calls for models that predict how 
an ecological community composed of many different species adapts to such 
a deteriorated environment (Hoffman and Sgró, 2011). Such models of 
community-wide adaptation are not only relevant from the perspective of 
global change, but they are also important to understand the response of any 
community to environmental change, such as the microbiome of a medical 
patient undergoing a prolonged treatment with antibiotics. In this case, not 
just a single pathogenic bacterium faces a changed environment, but a 
complex community consisting of many thousands of species (Arumugam et 
al. 2011, Cho and Blaser 2012),  must adapt to avoid extinction. Whilst many 
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models exist that study how a population of a single species, or a community 
composed two species, adapts to environmental change (Hoffman and Sgrò, 
2011, Martin et al. 2013, Osmond & De Mazancourt 2013, Northfield & Ives 
2013 , Cortez & Yamamichi 2019), fewer models exist that describe the 
response of an entire community composed of a multitude species to an 
altered environment, though there are some examples (De Mazancourt et al. 
2008, Bell 2017, Lasky 2019).  Furthermore, empirical results, describing 
community wide adaptation, such as those presented by Low-Décarie et al. 
(2015), Bell et al. (2019) and Roodgar et al. (2019), are clearly calling for such 
models.  

Evolutionary rescue theory models situations in which a population can only 
escape extinction if it adapts. In a classical evolutionary rescue scenario, 
where the environment in which a population resides deteriorates, the 
population starts declining as a result. Extinction can then only be averted if 
a mutant establishes that has a positive growth rate in the new environment; 
i.e. the population is rescued. This process results in the well-known U-
shaped curve of population size over time (Gomulkiewicz & Holt 1995,
Gonzalez et al. 2012, Orr and Unckless 2014). Most models of evolutionary
rescue focus on deriving the probability of the occurrence of such a rescue
event given a certain initial population size, a rate of population decline, and
a mutation rate. Evolutionary rescue theory could even be a useful tool to
predict the emergence of antibiotic resistance (Martin et al. 2013; Alexander
et al. 2014).

Here, we explore a new scenario in which not a single population, but a whole 
community composed of many different species faces a deteriorated 
environment, causing the populations of each species to decline. Only those 
species in which a rescue mutant with a positive growth rate establishes, 
remain in the community. In other words, evolutionary rescue occurs on a 
community-wide basis.  

We present a parsimonious model of this Community-Wide Rescue (CWR) 
process.  It describes the change in species abundances, during and after 
community-wide evolutionary rescue. We assume that all species are 
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equivalent; they all start with the same negative growth rate and all have the 
same fixed mutation rate towards a phenotype with a positive growth rate. 
These assumptions are inspired by those made in the neutral model of 
biodiversity (Hubbell, 1997). The neutral model has been shown to be able 
to explain various patterns of species abundances, and has become a 
baseline model for community diversity patterns when species differences or 
species asymmetries are ignored (Alonso et al. 2006, Rosindell et al. 2011, 
Wennekes et al. 2012, Scheffer et al. 2018). However, because we include an 
explicit mutational process that introduces a different growth rate, our 
Community-Wide Rescue model is not strictly neutral. We compare our 
results with those of two neutral models, in which the community dynamics 
are solely governed by ecological drift, that serve as null models.  
 
The aim of this paper is to construct and explore a simple model for the CWR 
process, and to examine how under this model CWR affects the patterns of 
species abundances within a community. We quantify these patterns using 
Rank Abundance Curves (RAC, also known as rank abundance diagrams or 
distributions, RAD, McGill et al. 2007). It is well known that many different 
mechanisms can generate similar RACs, and hence RACs should be 
interpreted with caution (Chave et al. 2002). We aim to see if this general 
pattern also holds for our CWR model, or if perhaps RACs are informative 
about the (past) occurrence of CWR. We show that CWR causes a loss of rare 
species from the community due to competition and a limited supply of 
mutations. However, RACs produced by the CWR process could equally well 
have been produced by a neutral model. In addition, as RACs proved 
uninformative, we also examined the rate at which CWR changes the relative 
species abundances (i.e. alters the RAC) and compare this to the rate at which 
ecological drift alters species abundance patterns. We show that CWR causes 
an extremely rapid loss of rare species. Such insights are crucial to 
understand the effects of global change on ecological communities.  
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Methods 
Our model of the CWR process is a continuous-time individual-based 
stochastic model, where birth, death, and mutation events are simulated 
using the Doob-Gillespie algorithm (Gillespie 1976). We assume that all 
species are equivalent except for their initial densities. This assumption is 
unlikely to hold in a natural community, but its simplicity allows us to focus 
on the key ingredients of the CWR process. Furthermore, we consider a single 
closed community, i.e. there is no immigration. It is worth noting that this 
implies that the observed dynamics are transient in nature, when time goes 
to infinity all species will eventually go extinct due ecological drift. This 
assumption allows us to more clearly see the effect of CWR in a single (local) 
community. In the CWR model, the community consists of several species, 
each with an initial abundance that is drawn using the sampling formula for 
standard neutral communities (Etienne 2005). Initially, all individuals of each 
species have the same negative growth rate. We call an individual with this 
negative growth rate a “resident”.  The initial community thus represents a 
community immediately after a drastic environmental change, in which the 
populations of all species are declining and unless adaptation occurs 
extinction is inevitable for all species. However, each resident individual can 
undergo a mutation to become a mutant individual, this occurs with a rate μ 
(note that this process implicitly assumes haploid inheritance). Again, the 
value for μ is the same, regardless of the species to which an individual 
belongs. All mutants have the same positive growth rate. Hence, we assume 
the simplest possible model of evolutionary rescue, as posited by Orr & 
Unkcless (2008) and Martin et al. (2013): only a single mutational step is 
required to achieve a positive growth rate and this mutation has a constant 
fitness effect. μ could for example represent the mutation rate toward 
antibiotic resistance, see also Martin et al. (2013).  
 
The growth rates of the residents and mutants are implemented as follows. 
The death rates for the residents and the mutants are equal and given by d. 
We assume that the birth rate for both mutants and residents depends on 
total community size (i.e. total number of individuals in the community of all 
species combined), 
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Equation 1: 𝑏𝑏 = 𝑏𝑏0(1 − 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡 
𝐾𝐾

) 

 
where b0 is the rate of birth in a pristine community (no other individuals 
present). This parameter b0 is different between residents and mutants 
(hence, we have b0, res and b0, mut).  We assume that b0, res < d so that the 
resident always has a negative growth rate and b0, mut > d, so that the mutants 
always have a positive growth rate. Parameter K is the number of individuals 
at which the birth rate is equal to 0, and Ntot is the total number of individuals 
(summed across species, including both residents and mutants) in the 
community. It is important to note that K is not the sole parameter 
controlling the carrying capacity of the community, this is determined by the 
interplay of b0, d, and K and is given by K*(1- d / b0). Our model deviates from 
standard neutral models in that we do not impose a zero-sum constraint 
(otherwise the community cannot decline), and that instead we have 
community-wide density-dependent birth. Haegeman and Etienne (2008) 
showed that community-level density-dependence in immigration and birth 
does not affect the predictions on the species abundance distributions, so 
we do not strongly deviate from a standard neutral model in this sense. The 
default parameter set for simulating the CWR model was b0,res = 0.05, b0,mut = 
0.6, d = 0.1, K = 16000, and μ = 0.0005. The initial species abundances for all 
simulations were generated with the sampling formula for standard neutral 
communities as derived by Etienne (2005) using a community size of 16000, 
a fundamental biodiversity number, θ, of 200 and a migration parameter, I, 
of 40. In this neutral model, the fundamental biodiversity number controls 
the species abundance distribution in the regional species pool, whilst the 
migration parameter governs the frequency of migration from the regional 
species pool to the local species pool. For a more complete description the 
reader is referred to Etienne & Olf (2004) and Etienne (2005). Here this model 
is simply used to generate a reasonable initial species abundance 
distribution. The exact same initial species abundance distribution was used 
for all simulations, unless stated otherwise. All simulations, plots and analysis 
were performed using R version 3.5.1 (R Core Team, 2014). All new 
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simulation code is provided in the CWERNI R-package that is available at: 
https://github.com/DeadParrot69/CWERNI. 
 
To answer the question whether an endpoint RAC from a CWR community 
can be distinguished from a RAC generated by a neutral community, we used 
a simulation, fitting and re-simulation approach. First, we simulated a 
community using CWR, with the default parameters. Subsequently, we fitted 
a neutral model to the RAC using the SADISA-package (Haegeman and 
Etienne 2017). From this fit we obtain a log-likelihood, which in essence is a 
measure of the goodness of fit of the neutral model on the RAC generated 
using CWR. To generate a distribution of log-likelihoods with which to 
compare the log-likelihood of the neutral model fit on the CWR RAC, the 
parameters obtained from the neutral model fit were used to perform 500 
neutral model simulations (Etienne 2005). Then, the SADISA-package 
(Haegeman and Etienne 2017) was used on each of these neutral simulations 
to fit a neutral model. This created a distribution of log-likelihoods for these 
neutral model simulations. Subsequently we determined whether the log-
likelihood obtained from the neutral model fit on the CWR RAC falls outside 
or inside the distribution of the log-likelihoods obtained through neutral 
model fits on neutral model simulations. Instead of the log-likelihood we also 
looked at the distribution of two different diversity indexes, the Shannon and 
Rényi entropy of the simulated communities. This process was repeated ten 
times each time with a newly drawn neutral starting community. We note 
that the model underlying the SADISA estimates is subtly different from that 
used to perform the re-simulations. The SADISA estimator makes an 
independent species assumption, whilst the code used for the simulations 
instead assumes a zero-sum assumption, but it has been shown that the RACs 
that these model produce are indistinguishable (Haegeman and Etienne 
2008, 2017).  
In order to place the rate of rare species loss due to CWR into context, we 
compared it to the rate of rare species loss in a local community due to 
ecological drift in two truly neutral models. The first is a simple neutral model 
(SN) without a CWR process, where the birth and death rates are equal to 
those of the mutant in the CWR model. This model is thus a neutral model of 
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the local community without immigration or speciation; it only describes the 
loss of species through ecological drift. 
 
We expected the CWR model to show a decrease in total community size 
before recovery (due to the negative growth rate of the residents). Such a 
decrease in local community size, can accelerate the rate of rare species loss 
through ecological drift. Therefore, we also constructed a neutral model 
similar to SN, but where the basic birth probability for all species is set to a 
value less than the death probability for a predetermined time interval. This 
induces a steady decrease in total community size from the start of the 
simulation until the end of the interval. We chose the length of the interval, 
such that the community size decrease is similar to that observed during 
CWR. We call this model the variable-birth neutral model (VBN).  
 
We simulated the three models (CWR, SN, and VBN) for 100 units of time. 
This was a sufficient number for all residents to go extinct in the CWR model, 
see also supplementary material figure 6. When there are no more residents 
in the community the evolutionary rescue process is considered complete, 
hence we chose to simulate for 100 units of time. Each model was simulated 
500 times. The SN model was simulated using the parameters b0 = 0.6, d  = 
0.1, and K = 16000 ( i.e. the same parameters as the mutants in the CWR 
model). For the VBN model we set the basic birth rate of all the species in the 
community (b0) equal to b0, res, during the first twenty units of time. After this 
time interval, which was tuned so as to create a decrease in total community 
size similar or perhaps even slightly larger in nature than that in the CWR 
community, we set the basic birth rate equal to b0, mut. The other parameters 
were the same as in the SN model. To study the RAC of a community at 
different stages of CWR, we plotted the resulting RACs at different points in 
time: t = 15, t = 30, t = 50, t = 75 and t = 100.  
 
In models examining evolutionary rescue, the mutation rate and the 
establishment probability of the mutant are known to determine the 
probability of evolutionary rescue (Martin et al. 2013). Therefore, to gain 
more insight into our CWR model, we wanted to examine the effect of the 
mutation rate (μ) and mutant birth rate (b0, mut), on the CWR process. by 
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respectively varying the mutation rates (μ = 0.00005, 0.0005, 0.005, 0.05) and 
the mutant birth rate (b0, mut = 0.2, 0.4, 0.6, 0.8), and leaving all other 
parameters the same as in the default parameter set. Again, we ran 500 
independent simulations for each set of parameters. 
 
In our CWR model we assumed that b0, res < d so that the resident always has 
a negative growth rate. If this condition is not satisfied, one is no longer 
modelling evolutionary rescue. However, one can imagine a scenario in 
which b0, res > d, for example when a bacterial community is confronted with 
sub-inhibitory concentrations of antibiotics. In such a community the species 
are not doomed to go extinct, but residents are simply replaced by fitter 
mutants, in essence a community-wide selective sweep. Such situations 
might be much more common than strict evolutionary rescue scenarios, so 
examining this situation could extend the applicability of our model. 
Therefore, we also studied a selective sweep model, derived from our CWR 
model, in which the only difference is that b0, res > d, resulting in both a 
resident and a mutant with a positive net growth rate, whilst the mutant still 
has a higher net growth rate than the resident. We performed 500 
simulations of this model using the parameter set b0, res = 0.3 and all other 
parameters the same as in the default CWR model parameter set. 
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Results 
The loss of rare species in the CWR community (figure 1A, 1B) is much faster 
than in the neutral (SN) community (figure 1C, 1D). In other words, the CWR 
process causes a very rapid loss of rare species, when compared to the rate 
of rare species loss from a local community due to ecological drift. 
Furthermore, the rate of rare species loss in the CWR model is also much 
larger than in the VBN model (figure 1E, 1F). Because the VBN model has a 
variable carrying capacity tuned to create a decrease in total community size 
similar to the one observed in the CWR model, we can conclude that the 
rapid loss of rare species in the CWR model is not just due to ecological drift 
being accelerated by a decrease in total community size. In addition, the 
observed rapid loss of rare species occurs consistently in a relatively wide 
range of community sizes (K=16000 - K=1000, see supplementary materials 
figures 12-14) 
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Figure 1: RACs and total community size under the CWR, SN and VBN models. Panels A, C, E 
show the RACs produced after 100 units of time by the CWR model, the SN model and the 
VBN model, where the median is shown in black, the 25th and the 75th percentile are shown in 
blue and the 5th and the 95th percentile are shown in grey, the initial community is plotted in 
red. Panels B, D and F show the accompanying trajectories of total community size for each 
simulation over time. All plots are based on 500 simulations. Parameters for A and B: b0, res = 
0.05, b0, mut = 0.6, d = 0.1, K = 16000, and μ = 0.0005, for C and D: b0 = 0.6, d = 0.1 and K = 16000, 
for E and F: b0 = 0.05 for t between 0 and 20, b0 = 0.6 for t between 20 and 100, d = 0.1, and K 
= 16000. 
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The same pattern is evident if one examines the figures showing the RACs at 
different time points for each of the three models (figure 2, supplementary 
materials figures 7 and 8). Furthermore, by closely examining figure 2 one 
can see exactly at which point during the CWR process the loss of rare species 
occurs. During the first stage of CWR a community-wide decline occurs that 
does not greatly alter the shape of the RAC (Figure 2A). It is only as the first 
mutants begin to invade and the total community size starts to rebound 
(figure 2F) that the shape of the RAC begins to change and that the loss of 
rare species starts to occur (figure 2B). The loss of rare species continues 
after the community size has stabilized (figure 2C, 2D). Once the residents 
have disappeared from the population, the shape of the RAC is fairly stable 
(figures 2D, 2E, 2F).  
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Figure 2: Time trajectory of the RAC under the CWR model. Plots based on 500 CWR 
simulations using the (default) parameters b0, res = 0.05, b0, mut  = 0.6,  d = 0.1,  K = 16000 and μ 
= 0.0005. Panels A, B, C, D, and E. show the RAC of the community at t = 15, t= 30, t = 50, t = 
75 and t = 100 respectively, were the median is shown in black, the 25th and the 75th percentile 
are shown in blue and the 5th and the 95th percentile are shown in grey, and the input 
community is plotted in red. Panel F shows the trajectories of the total community size (black), 
the total number of residents in the communities (green) and the total number of mutants in 
the community (blue). 
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The mutation rate has a strong influence on the results (figure 3). If the 
mutation rate is very high, rescue becomes so likely that all species undergo 
rescue and there is no loss of rare species beyond the effects of normal 
ecological drift in a neutral community without speciation/immigration 
(figure 3A, 3B). By contrast, if the mutation rate is very low, almost none of 
the species in the community undergo rescue (figure 3E) and in some cases 
not a single rescue mutant manages to establish itself in the community 
(figure 3F). Therefore, intermediate mutation rates seem to be required for 
CWR to impact the RAC and create a loss of rare species greater than that 
produced by ecological drift alone. In other words, the rate of rare species 
loss during CWR depends on the mutation rate. 
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Figure 3: RACs (A, C, E) and total community size trajectories (B, D, F) under the CWR process, 
for different mutation probabilities (μ), for each different mutation rate 500 simulations were 
performed. In the RAC plots the median is shown in black, the 25th and the 75th percentile are 
shown in blue, the 5th and the 95th percentile are shown in grey and the initial community is 
plotted in red. Simulations were performed using the parameters b0, res = 0.05, b0, mut = 0.6, d = 
0.1, and K = 16000. For A and B μ = 0.05, in C and D μ = 0.005 and in E and F μ = 0.000005. The 
total community size trajectories were plotted for of each of the 500 simulations, hence the 
separation of these trajectories at low mutation rates (F). 
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Increasing b0, mut i.e. increasing the fitness advantage of the mutant, does not 
seem to influence the loss of rare species, as the RAC’s obtained after the 
CWR process, for different values of b0, mut are indistinguishable (figure 4). 
However, increasing b0, mut does seem to increase the speed of the rescue 
process. In particular, if b0, mut is higher, the recovery phase of the rescue 
process proceeds much faster, due to the higher maximal growth rate of the 
mutant. It should be noted that increasing b0, mut also increases the net 
carrying capacity of the rescued population, because despite a constant K, 
the net carrying capacity is the density where the birth probability is equal to 
the death probability. The net carrying capacity is given by K*(1- d / b0). 
Despite this increased carrying capacity, the recovery phase is still much 
faster in the simulations with a high b0, mut. 
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Figure 4: The RAC under CWR processes with different mutant birth probabilities (b0, mut). All 
simulations were performed using the parameters b0, res = 0.05, d = 0.1, K = 16000, and μ = 
0.0005. In panels A and B b0, mut = 0.2, for C and D b0, mut = 0.4 and in E and F b0, mut = 0.8. Panels 
A, C and E show the RAC’s after 100 units of time, where the median is shown in black, the 
25th and the 75th percentile are shown in blue and the 5th and the 95th percentile are shown 
in grey, with the input community plotted in red. Panels B, D, and F display the trajectories of 
total community size over time. All plots are based on 500 simulations.  
 

227



In the selective sweep model, the residents have a positive net growth rate, 
i.e. instead of CWR, the resident with a positive growth rate is replaced by a 
mutant with an even higher growth rate. As can be seen in figure 5B, there is 
only a very minor decrease in the total community size during this 
replacement process. However as can be seen in figure 5A, the rate of rare 
species loss in the selective sweep model is much higher than in the neutral 
SN and VBN models. In other words, when compared to ecological drift, 
community wide adaptation can cause a very rapid loss of rare species, just 
like CWR. 
 

 
Figure 5: The RAC (A) and the total community size (B) for simulations of the CWR model 
where the strict conditions of CWR are relaxed and reflect a scenario where the net growth 
rate of the residents is positive, yet still lower than that of the mutants. This causes a selective 
sweep during which the residents are replaced by the mutants, because the mutants have a 
higher fitness. In the RAC plot the median is shown in black, the 25th and the 75th percentile 
are shown in blue and the 5th and the 95th percentile are shown in grey, and the input 
community is plotted in red. These plots are based on 500 simulations. The parameters used 
were b0, res = 0.3, b0, mut = 0.6, d = 0.1, K = 16000 and μ = 0.0005. 

 
The fitting and re-simulation approach using the log-likelihoods of neutral 
model fits showed that the log-likelihood of a neutral model fit on the CWR 
model results consistently fell within the distribution of log-likelihoods 
obtained from neutral model simulations (supplementary material figure 
9A). A similar result was obtained when instead of log-likelihoods, the values 
of the Shannon entropy and the Rényi entropy of the RACs were used; the 
values of the Shannon entropy and the Rényi entropy estimated from the 
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CWR RAC consistently fell inside those estimated on neutral model 
simulations simulated using neutral model parameters estimated from the 
CWR RACs (supplementary material figure 9B, 9C). Both of these results 
imply that there is no information in an endpoint RAC alone that would allow 
one to determine whether that RAC had been created by a neutral process 
or a CWR process.  

Discussion 
We have shown that a single endpoint RAC does not allow one to determine 
whether that RAC had been created by a neutral process or a CWR process. 
This conclusion is in accordance with the general pattern in the literature; 
whilst some non-neutral processes, such as trait based environmental 
filtering (Jabot, 2010), can be detected by examining species abundances, 
many different non-neutral processes can generate surprisingly similar RACs 
(Chave et al. 2002).  
 
The most striking outcome of our modelling effort is that CWR (figure 1A, 1B) 
causes a very rapid loss of rare species, when compared to ecological drift 
(figure 1C, 1D). This holds even if one accounts for the increase in ecological 
drift due to a decrease in total community size as in the VBN model (figure 
1E, 1F). Furthermore, this result is shown for a wide range of community sizes 
(K=16000 - K=1000, see supplementary materials figures 12-14). In a neutral 
model governed by ecological drift, rare species are more likely to go extinct 
simply due to their lower abundance. However, in the CWR model rare 
species have a higher probability of going extinct, because their low 
abundance also means that they will have a lower probability of producing a 
beneficial mutant before going extinct. In other words, for rare species the 
supply of beneficial mutations is limited by their low abundance. This 
dependence of the probability of rescue on the initial population density is 
well characterized in standard models of evolutionary rescue and has also 
been demonstrated empirically (Bell & Gonzalez 2009, Martin et al. 2013). 
Low abundance causes a low probability of a beneficial mutant occurring, 
because mutation occurs on a per-capita basis, so during the same time 
interval a mutation is less likely to occur in a small population. Furthermore, 
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the time to extinction for rare species is lower, so there is less time for a 
mutant to arise before the rare species goes extinct.  
 
However, there is another effect, hypothesized by Bell (2017), which 
contributes to the loss of rare species: competition. This represents a crucial 
difference between our model and standard models of evolutionary rescue 
(Martin et al. 2013). In our model the birth rate of all species is governed by 
the total number of individuals in the community (regardless of their 
species), all species compete with each other (community-level density 
dependence). So, a species that has undergone rescue will increase the total 
number of individuals in the community. This causes the birth-rate of the 
remaining species to decrease. For the species that have not yet undergone 
rescue, this accelerates their decay, decreasing the time available to find a 
mutant before going extinct. In other words, the evolutionary rescue of one 
species, promotes the extinction of its competitors (Bell 2017). Rare species 
that do manage to produce a mutant will tend to do so relatively late in the 
simulation, because their low abundance gives them a low probability of 
producing a mutant per unit of time. On the other hand, species with a high 
abundance that manage to produce a mutant will tend to do so relatively 
early on in the simulation, thereby promoting the extinction of the rare 
species through competition. It is interesting to contrast these results with 
those of De Mazancourt et al. (2008), who showed that on a community level 
biodiversity can inhibit adaptation, due to competitive interactions. In our 
model, the fact that rare species fail to adapt is also partly driven by 
competitive interactions, in that sense reaffirming the general result that 
competition can inhibit adaptation. However, the crucial difference is that in 
the model of De Mazancourt et al. (2008) these competitive interactions are 
driven by explicit assumptions about the ecology of each species, whilst in 
our model species are ecologically equivalent except for their initial 
abundance.  
 
In our model, the limited supply of beneficial mutations at low abundance 
and competition between the species together disproportionally promote 
the extinction of rare species during CWR. These two effects are also crucial 
to understand how changing the mutation rate impacts the CWR process 

230



(figure 3). From standard models of evolutionary rescue it follows that a high 
mutation rate results in a high probability of rescue (Martin et al. 2013). 
Furthermore, in our model a high mutation rate implies that mutations occur 
at very similar times for different species, limiting the competitive advantage 
of common species that rescue early. Therefore, if the mutation rate is too 
high, almost all species undergo rescue and very little rare species loss occurs 
(figure 3A, 3B). For very low mutation rates the opposite holds true and very 
few species undergo rescue (figure 3E, 3F). It should be noted that at very 
low mutation rates, in some cases not even a single species undergoes 
rescue. So, in other words, a lower mutation rate causes a greater loss of rare 
species, yet if the mutation rate is too low no rescue occurs and the entire 
community goes extinct.  
 
The influence of the mutant birth rate (b0, mut) on the CWR process (figure 4) 
is not as straightforward. Based on standard models of evolutionary rescue, 
increasing the mutant birth rate should increase the fixation probability of 
the mutant and thereby increase the probability of rescue. Furthermore, 
increasing the mutant birth rate should also increase the competitive 
advantage of those species that rescue early. However, contrary to our 
expectations, we observed that an increase in the mutant birth rate does not 
cause an increase in the loss of rare species. Instead, an increase in the 
mutant birth rate only seems to affect the speed of the CWR process.  This is 
in part due to the fact that an increase in the mutant birth rate also increases 
the overall carrying capacity of the community. This increase could offset the 
competitive advantage of the species that rescue early. Because they grow 
faster, the equilibrium community size is also larger. However, this increase 
in the community size does not influence the fixation probability of the 
mutant as derived in classical models of evolutionary rescue. Therefore, the 
fact that increasing the mutant birth rate does not increase the loss of rare 
species indicates that competition between early and late rescuing species is 
the more dominant mechanism responsible for the loss of rare species. This 
emphasizes the added value of our current modelling approach for 
understanding evolutionary rescue in a multi-species context. 
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We also created a different model based on the CWR model where we 
allowed the residents to have a positive growth rate (b0, res > d). Relaxing this 
assumption implies that this model does not reflect a strict evolutionary 
rescue scenario, as this requires a decaying resident population. This model 
represents a community wide selective sweep, during which residents with a 
positive growth rate are replaced by mutants with an even higher growth 
rate. When comparing this selective sweep model (figure 5A, B) to the 
neutral SN and VBN model it is evident that the community wide selective 
sweep causes a rapid loss of rare species when compared to ecological drift. 
However, the rate of rare species loss is lower than in the CWR model.  
Hence, one might conclude that community wide adaptation in general leads 
to a loss of rare species, implying that our findings from the CWR model are 
more generally applicable. Furthermore, as there is no evolutionary rescue 
process in our selective sweep model, the only mechanism responsible is the 
competition between species that have found the high fitness mutant. Hence 
the fact that competition alone is enough to cause the rapid rare species loss 
in the selective sweep model also indicates that competition is a more 
dominant mechanism of rare species loss in the CWR model. 
 
As emphasized before, our CWR model assumes a simple model of 
evolutionary rescue. Most notably, rescue requires only a single mutation 
step, with a fixed positive fitness effect. For some situations these 
assumptions should provide a reasonable approximation. For example, the 
evolution of resistance to certain antibiotics requires only a single or very few 
mutations. In addition, the mechanisms underlying resistance can be quite 
similar across different species (Hooper & Jacoby 2015). However, obviously 
these simple assumptions do not hold under all biological circumstances. So 
how would a more complex assumptions regarding mutation affect the 
outcome of our CWR model? Allowing multiple mutational steps of varying 
fitness effects would serve to make the competition during the rescue 
process more asymmetrical. Therefore, this would be expected to cause an 
even greater loss of rare species compared to our current CWR model. 
 
The CWR model presented here assumes that all species are (initially) equal, 
differing only in their initial abundances, an assumption inspired by the 
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neutral theory of biodiversity. Evidently this assumption is unlikely to strictly 
hold in natural communities, yet it allows us to create a relatively simple 
model. Furthermore, our model does not consider immigration and 
speciation. Future CWR models could include mutation probabilities, birth 
probabilities, and death probabilities that differ across species, and include 
migration and speciation. It will be interesting to see whether demographic 
rescue, by immigration, will counteract or aid evolutionary rescue by 
mutation.  
 
It is striking that the change in the shape of the RAC produced by the CWR 
process i.e. one devoid of rare species is a pattern commonly observed by 
ecologists in “stressed” or disturbed communities (Bazzaz 1975, Halloy and 
Barratt 2007, Webb et al. 2011). Additionally, antibiotic treatment also 
seems to cause a similar loss of rare species in the microbiome of patients, 
which persists long after the treatment (Sommer and Dantas 2011). 
Interestingly, a study of benthic foraminifera during the Palaeocene-Eocene 
thermal maximum by Webb et al. (2009) showed a decrease in richness, an 
increase in kurtosis, and a decrease in evenness during the Palaeocene-
Eocene thermal maximum, i.e. a change in the shape of the RAC that would 
also be consistent with a CWR scenario.  
 
However, it is important to realize that there are countless other ecological 
explanations that may account for the loss of rare species in stressed 
environments. For example, rare species tend to be more specialized and are 
hence more sensitive to disturbance (Davies et al. 2004). Or the loss of a 
single keystone species can in turn lead to the loss of many rare species that 
may depend on it (Rapport et al. 1985). Thus, if rapid loss of rare species is 
observed, that is much faster than would be expected due to ecological drift, 
this does not per se imply an underlying CWR process. 
 
However, this does not mean that CWR is a hypothetical process with little 
relevance, to real ecological communities. Experimentalists are examining 
evolutionary rescue in a community context. The examples include 
microbiomes adapting to antibiotic treatment (Roodgar et al. 2019); soil 
microbial communities adapting to herbicides (Low-Décarie et al. 2015) and 
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lacustrine plankton communities adapting to acidification (Bell et al. 2019). 
There are many more situations in which CWR could be considered as a 
potential mechanism for rare species loss, as many ecosystems face 
irreversible human induced environmental change on a community-wide 
level (Vitousek et al. 1997). 
 
All in all, the current CWR model represents an initial exploration of CWR and 
could be considered as a baseline model regarding the effect of community 
wide evolutionary rescue on species abundances. Yet, this simple model 
provides a clear testable prediction regarding the effect of CWR on species 
abundances: Community Wide Rescue causes a very rapid loss of rare 
species.  
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Supplementary material 
 

 
Figure 6: Panel A shows a boxplot of the amount of residents and mutants at the end of each 
of the 500 CWR simulations using the default parameters, this plot corresponds to figure 1A 
and 1B. This boxplot looked the same for all other CWR simulations i.e. all residents had gone 
completely extinct in all simulations (figures 2, 3 and 5), except for those simulations 
performed under the selective sweep scenario. The distribution of residents and mutants at 
the end of 500 CWR simulations for the selective sweep scenario (figure 4) is shown in panel 
B.  
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Figure 7: Time trajectory of the RAC under the SN model. Panels A, B, C, D, and E. show the 
RAC of the community at t = 15, t= 30, t = 50, t = 75 and t = 100 respectively, were the 
median is shown in black, the 25th and the 75th percentile are shown in blue and the 5th and 
the 95th percentile are shown in grey, and the input community is plotted in red. Panel F 
shows the trajectories of the total community. Plots are based on 500 SN simulations using 
the parameters. 
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Figure 8: Time trajectory of the RAC under the VBN model A, B, C, D, and E. show the RAC of 
the community at t = 15, t= 30, t = 50, t = 75 and t = 100 respectively, were the median is 
shown in black, the 25th and the 75th percentile are shown in blue and the 5th and the 95th 
percentile are shown in grey, and the input community is plotted in red. Panel F shows the 
trajectories of the total community. Plots are based on 500 VBN simulations using the 
default parameters. 
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Figure 9: Distribution of log-likelihoods under neutral simulations with parameters derived 
from the neutral fit to the CWR simulation data. The log-likelihood of the neutral model fit on 
the CWR simulation is shown in red. In total this analysis was repeated ten times, each time 
producing the same result, here only a single example is shown. 

 
Figure 10: Distribution of the Shannon entropy under neutral simulations with parameters 
derived from the neutral fit to the CWR simulation data. The value of the Shanon entropy 
(Reny entropy, α = 1) with of the CWR simulation RAC is shown in red. In total this analysis 
was repeated ten times, each time producing the same result here only a single example is 
shown. 
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Figure 11: Distribution of log-likelihoods under neutral simulations with parameters derived 
from the neutral fit to the CWR simulation data. The value of the collision entropy (Reny 
entropy, α = 2) with of the CWR simulation RAC is shown in red. In total this analysis was 
repeated ten times, each time producing the same result here only a single example is shown. 
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Figure 12: RACs and total community size under the CWR, SN and VBN models for K = 8000. 
Panels A, C, E show the RACs produced after 100 units of time by the CWR model, the SN 
model and the VBN model, where the median is shown in black, the 25th and the 75th 
percentile are shown in blue and the 5th and the 95th percentile are shown in grey, the initial 
community is plotted in red. Panels B, D and F show the accompanying trajectories of total 
community size for each simulation over time. All plots are based on 500 simulations. 
Parameters for A and B: b0, res = 0.05, b0, mut = 0.6, d = 0.1, K = 8000, and μ = 0.0005, for C and 
D: b0 = 0.6, d = 0.1 and K = 8000, for E and F: b0 = 0.05 for T between 0 and 20, b0 = 0.6 for T 
between 20 and 100, d = 0.1, and K = 8000. 
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Figure 13: RACs and total community size under the CWR, SN and VBN models for K = 4000. 
Panels A, C, E show the RACs produced after 100 units of time by the CWR model, the SN 
model and the VBN model, where the median is shown in black, the 25th and the 75th 
percentile are shown in blue and the 5th and the 95th percentile are shown in grey, the initial 
community is plotted in red. Panels B, D and F show the accompanying trajectories of total 
community size for each simulation over time. All plots are based on 500 simulations. 
Parameters for A and B: b0, res = 0.05, b0, mut = 0.6, d = 0.1, K = 4000, and μ = 0.0005, for C and 
D: b0 = 0.6, d = 0.1 and K = 4000, for E and F: b0 = 0.05 for T between 0 and 20, b0 = 0.6 for T 
between 20 and 100, d = 0.1, and K = 4000. 
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Figure 14: RACs and total community size under the CWR, SN and VBN models for K = 1000. 
Panels A, C, E show the RACs produced after 100 units of time by the CWR model, the SN 
model and the VBN model, where the median is shown in black, the 25th and the 75th 
percentile are shown in blue and the 5th and the 95th percentile are shown in grey, the initial 
community is plotted in red. Panels B, D and F show the accompanying trajectories of total 
community size for each simulation over time. All plots are based on 500 simulations. 
Parameters for A and B: b0, res = 0.05, b0, mut = 0.6, d = 0.1, K = 1000, and μ = 0.0005, for C and 
D: b0 = 0.6, d = 0.1 and K = 1000, for E and F: b0 = 0.05 for T between 0 and 20, b0 = 0.6 for T 
between 20 and 100, d = 0.1, and K = 1000. 
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Chapter 8 
_______________________________________ 

Discussion

Timo J.B. van Eldijk 
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In this thesis, I have studied evolvability, the ability of biological systems to 
undergo adaptive evolution, in the context of antibiotic resistance. 
Throughout I took a mechanistic approach, combining theory and 
experiment. The purpose of this final chapter is twofold: I will first briefly 
reflect on how some of my findings might be applied to combat the 
emergence of antibiotic resistance and improve antibiotic treatment. 
Second, I will reflect on what I perceive to be the way forward for evolvability 
research. 

Applying evolvability insights to combat antibiotic 
resistance 

Before discussing in detail how the insights into evolvability I obtained in this 
thesis might be applied, a general word of caution is due. Whilst I have 
extensively studied the evolution of antibiotic resistance in this thesis, I have 
exclusively done so using theoretical models and controlled experiments in 
the laboratory. Hence, the insights gained throughout this thesis are of a 
more fundamental nature. The process of translating such insights into 
clinical improvements requires many decades of further experiments, 
modelling and clinical trials. Nonetheless, I think fundamental insights are 
essential to facilitate the practical progress of the future. We need to look no 
further than the history of antibiotics to find an illustrative example: 
Alexander Fleming's fundamental work on penicillin in 1929 initially received 
little attention. Yet, it was essential to the work of Ernst Boris Chain, Howard 
Florey, and Norman who more than a decade later figured out how to 
successfully isolate penicillin, turning it into a practically utilisable drug 
(Gaynes et al. 2017). The fundamental insights of today are essential for 
tomorrow’s practical breakthroughs. In this first section of my discussion, I 
hope to sketch out how the insights about evolvability in the context of 
antibiotic resistance, that I obtained in this thesis, may in the future be 
translated into practice. My purpose is to inspire those with more knowledge 
of practical medical aspects to pick up the gauntlet. 
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Chapter 3 – Temperature dependent mutation rates 

When populations are well adapted to their environment, a low mutation 
rate is advantageous, since most mutations are deleterious. However, when 
a population is poorly adapted, a higher mutation rate can be advantageous, 
as the positive effects of beneficial mutations can outweigh the negative 
effects of deleterious mutations. Therefore, elevated mutation rates can 
evolve when a bacterial population is maladapted, a prime example of the 
evolution of evolvability (Sniegowski et al., 1997; 2000). However, some 
bacteria have also evolved a more refined solution to optimise their mutation 
rate. In this case, the mutation rate is regulated depending on the conditions. 
A good example of such a condition-dependent mutation rate is stress-
induced mutagenesis, which has been described in several different bacterial 
species (MacLean et al., 2013). When the bacterial cell experiences stress 
(indicative of maladaptation) the mutation rate is upregulated, for example 
by using different error-prone DNA polymerases for DNA replication. 

Stress-induced mutagenesis may be very relevant in the context of antibiotic 
resistance: the mutation rate towards antibiotic resistance determines the 
probability that a bacterial population will evolve resistance. Higher 
mutation rates make it easier to evolve resistance. However, environmental 
conditions can influence mutation rates in bacteria. Fever, a change in body 
temperature in response to infection can alter the growth conditions of 
infecting bacteria. Therefore in Chapter 3, I used laboratory experiments to 
examine the effect of fever temperatures on the mutation rate towards 
antibiotic resistance for three different antibiotics in Escherichia coli. I show 
that in all cases the mutation rate toward resistance was influenced by fever 
temperatures, however, the nature of this relationship differed per 
antibiotic. For two antibiotics, rifampicin and ciprofloxacin, fever 
temperatures lead to an increased mutation rate. For another antibiotic, 
ampicillin, fever temperatures lead to a decreased mutation rate. Stress-
induced mutagenesis could provide an explanation for the observation that 
the mutation rate towards resistance increases at fever temperatures for the 
antibiotics ciprofloxacin and rifampicin. The different result for ampicillin is 
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likely due to the temperature-dependent efficacy of this antibiotic, which I 
demonstrated using a separate experiment. 

Together these results suggest that coordinating the choice of antibiotic and 
the choice to use fever-suppressing drugs when treating a patient could be 
used to lower the mutation rate towards resistance. The findings from 
Chapter 3 are perhaps the most promising when it comes to translation into 
medical practice. They open a clear new avenue of research regarding the 
effect of fever suppression on the evolution of resistance, potentially paving 
the way for improved treatments. However, a word of caution is due. It 
remains to be seen how the results from Chapter 3 translate to different 
bacteria and antibiotic concentrations. Furthermore, a change in 
temperature might also alter other parameters that affect the probability of 
resistance evolution, such as the rate of killing of a non-resistant population 
exposed to antibiotics (Mackowiack et al., 1981; Martin et al., 2013). In 
addition, it is unclear how these in vitro results might hold up in vivo. For 
example, the experiments leave the body’s own antimicrobial defence 
strategies out of consideration. It is well known that fever can play an 
important role in stimulating the immune system. In other words, there are 
still a lot of unanswered questions regarding the exact mechanism by which 
fever might affect the evolution of antibiotic resistance. While we wait for 
these mechanisms to be unravelled by follow-up fundamental research, we 
may take a more empirical approach in order to translate the results from 
Chapter 3 into improved treatments. Data on the impact of fever suppression 
on the outcomes of severe infections treated with antibiotics has already 
been gathered, using both observational studies and randomly controlled 
trials (Young et al. 2015; Schnell-Chapele 2018). Overall analyses of these 
data did not show a consistent positive effect of fever suppression on 
treatment outcomes (Young et al. 2015; Schnell-Chapele 2018). However, in 
Chapter 3 I showed that the impact of fever suppression on the mutation rate 
differed per antibiotic. Therefore, I would suggest in the future that such data 
should be analysed whilst taking into account the exact antibiotic used in the 
antimicrobial treatment. In addition, future studies could gather real-time 
data on the impact of within-patient and between-patient evolution of 
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resistance (for example using the methodology of Tueffers et al., 2019). It 
could be that antibiotic-specific fever suppression strategies can prevent the 
evolution of resistant strains, without necessarily improving within patient 
treatment outcomes.  

Chapter 4 – Condition-dependent mutation rates 

Condition-dependent mutation rates have been empirically demonstrated in 
several different species of bacteria (including in Chapter 3 of this thesis), but 
some controversy surrounds the interpretation of these results (MacLean et 
al., 2013). Some have argued for a non-adaptive explanation, where the 
increase in the mutation rate is simply a side-effect of suboptimal functioning 
under stressful conditions. Others have argued that the increase in the 
mutation rate under stressful conditions represents an evolved response, 
which optimises the mutation rate to facilitate adaptation and enhance 
evolvability (MacLean et al., 2013). Therefore, in Chapter 4, I set out to 
examine under what circumstances we would expect condition-dependent 
mutation rates to evolve. I used an individual-based simulation model with 
an environment that changes at different speeds, ranging from a change 
every ten generations to a change every ten thousand generations. Such an 
environment could represent a bacterial pathogen population which, over 
the course of generations, faces different within-patient conditions (and 
possibly antibiotics). Each individual has three evolving loci that determine 
the mutation rate as a function of the fitness of the individual in the current 
environment (i.e. degree of maladaptation).  

The results of the model show that both condition-dependent and condition-
independent mutation strategies emerge, under a wide range of different 
environments, ranging from environments that change every ten 
generations to environments that change every thousand generations. I also 
considered two scenarios for the mutation rate of the mutator loci: a ‘self-
referent’ mutation rate that is determined by the mutator loci themselves, 
and an externally determined (not self-referent) mutation rate. Previous 
models of the evolution of condition-dependent mutation rates only 
considered non-self-referent mutation rate loci. However, I would argue that 
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many empirical examples, such as stress-induced mutagenesis, are to some 
extent self-referent. After all, error-prone DNA polymerases are also used to 
replicate the genes in which they are themselves encoded. When the 
mutation rate loci are assumed to be self-referent, the condition-dependent 
mutation strategy emerges at a much higher frequency. In addition, I also 
show that condition-dependent mutation rates lead to better tracking of a 
changing environment i.e., they improve evolvability. Considering these 
results I conclude that condition-dependent mutation rates can evolve under 
a large array of circumstances. This lends some credence to the idea that the 
empirically observed condition-dependent mutation rates are indeed 
evolved responses and not merely a side-effect. However, some caution is 
due, as the model in Chapter 4 makes several important simplifying 
assumptions. The environment considered is relatively simple. In reality, the 
environment faced by infecting bacteria is much more complex. The 
individuals in the model adapt using only a single trait. Additional traits under 
stabilising selection are not considered in the model and hence some of the 
deleterious effects of mutations are likely underestimated. The model 
therefore possibly overestimates the range of conditions in which condition-
dependent mutation rates can arise.  

I conclude that condition-dependent mutation rates can evolve under a wide 
range of circumstances and can enhance adaptation to the environment (i.e. 
enhance evolvability). Therefore, I would argue that evolved condition-
dependent mutation rates are likely to be widespread in bacteria. I 
hypothesize that the empirical observations of condition-dependent 
mutation rates in several bacterial species can be explained by selection for 
evolvability. Furthermore, given that condition-dependent mutation rates 
can enhance evolvability I would also expect them to play an important role 
in the evolution of antibiotic resistance. Effectively applying this insight will 
obviously require many more years of research, however, I believe that it 
highlights a relevant research direction: interfering with condition-
dependent mutation rates could be a promising strategy to combat the 
evolution of antibiotic resistance. One way to utilise the presence of 
condition-dependent mutation rates is to modify the environment to 
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downregulate the stress response and minimize the mutation rate, thereby 
decreasing the probability of resistance evolution. In Chapter 3 I studied a 
particular implementation of this idea, however, there may be many other 
ways to modify the environment. For example, the availability of carbon 
sources, the environmental pH and quorum sensing (a proxy for cell density) 
can impact the stress response (Joelsson et al., 2007; Arcari et al., 2020; Tapia 
et al., 2020). Thus, these factors could perhaps be engineered to 
downregulate the stress response, lowering the mutation rate, and slowing 
the evolution of resistance. Alternatively, it may be possible to use molecules 
that directly interfere with the mechanisms underlying the stress response, 
such as N6-(1-naphthyl)-ADP, thereby preventing the upregulation of 
mutation rates (Lee et al., 2005). The molecular mechanisms behind 
condition-dependent mutation rates are only well understood in a few model 
bacterial species (Tenallion et al., 2004; MacLean et al., 2013). Therefore, 
future research into these fundamental mechanisms should be pursued with 
the aim of uncovering new methods to lower the mutation rate towards 
resistance.  

Chapter 5 – Mutational transformers 

Many standard evolutionary models commonly assume a relatively 
straightforward relationship between the genotype and the phenotype. For 
example, quantitative genetic models commonly assume that traits are 
governed by many unlinked genes with infinitesimally small effects (Hill, 
2010). However, in reality, there is a complex network of genetic interactions 
and regulation that translate a genotype into a phenotype. It has been 
demonstrated that taking into account this complex gene regulatory network 
can drastically improve the predictions of trait evolution when compared to 
more traditional quantitative genetics approaches (Milocco & Salazar-
Ciudad, 2020). A hallmark study by Crombach & Hogeweg (2008) showed 
that explicitly modelling gene regulatory networks is also essential when 
trying to understand evolvability. They modelled virtual cells that had to 
adapt to an environment that alternated between two states. However, after 
a while, adaptation occurred much more rapidly when the environment 
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changed. The structure of the gene regulatory network had evolved and 
transformed the phenotypic impact of some mutations in such a way that 
relatively few mutations were required to achieve rapid adaptation to new 
environmental conditions. In other words, Crombach and Hogeweg 
demonstrated that evolvability can evolve through a restructuring of the 
gene regulatory network.  

I was greatly inspired by their work as it shows how evolvability can evolve 
through the structure of gene regulatory networks. Furthermore, the 
alternating environment they studied was reminiscent of the environment 
faced by bacterial pathogens facing intermittent antibiotic treatment as they 
move from host to host. Therefore, in Chapter 5 I aimed to further investigate 
the phenomenon discovered by Crombach & Hogeweg (2008) which I have 
termed “mutational transformation”: A gene regulatory network is 
structured in such a way that some mutations have a high phenotypic impact, 
allowing to switch to a different adaptive phenotype in a few mutational 
steps, thus facilitating rapid adaptation. As the Crombach-Hogeweg model is 
very complex, making it difficult to understand the exact mechanisms 
underlying mutational transformation, I investigated very simple gene-
regulatory-network models, allowing me to explore these mechanisms in 
detail. In Chapter 5, I show that mutational transformers can evolve even in 
very simple gene regulatory network models. I uncovered two distinct 
mechanisms underlying mutational transformation: mutation amplifiers and 
mutation canalisers. A mutation amplifier enlarges the phenotypic effects 
mutation but the distribution of phenotypic effects remains unbiased. A 
mutation canaliser biases the effects of mutations towards particular 
(adaptive) phenotypic outcomes. These two mechanisms impact evolvability 
in different ways, to use the terminology from Chapter 2; they have a 
different scope. Mutation amplifiers can enhance evolvability even when the 
environment changes erratically. On the other hand, mutation canalisers can 
only enhance evolvability towards environments that have already occurred 
repeatedly in the past. Based on these two mechanisms, I expect that 
mutational transformers will also evolve in many different types of changing 
environments, not just environments that alternate between two states. 
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Mutational transformers can easily evolve in a model that makes relatively 
few assumptions about the exact nature of the gene regulatory networks. 
Furthermore, in view of the plausible underlying mechanisms, mutational 
transformers should be able to evolve and operate in many different types 
of changing environments. This leads to the expectation that mutational 
transformers are widespread in organisms that face changing environments. 
When it comes to the evolution of antibiotic resistance bacterial pathogens 
face just such an environment. As pathogenic bacteria transfer between 
hosts, they alternatingly face environments with and without antibiotics, 
each time undergoing evolutionary adapting to a change in the environment. 
Therefore, I argue mutational transformers likely play a role in the evolution 
of resistance. There is even some empirical evidence that supports this 
assertion. Consider for example the phenomenon known as 
“heteroresistance”, where some bacterial strains can very rapidly evolve high 
levels of resistance through gene duplications (Andersson et al., 2019). This 
somewhat resembles a mutation canaliser: the effect of gene duplications 
seems biased towards an adaptive outcome.  

I think that taking into account mutational transformers in the context of 
antibiotic resistance could help to improve treatment. If we can identify 
mutational transformers for the evolution of resistance to certain antibiotics, 
bacteria causing an infection could be screened for their presence. This 
information could be used to evaluate how easily a certain pathogen can 
evolve resistance to a certain antibiotic (i.e. evolvability in the context of 
antibiotic resistance). Subsequently, this information might help us optimise 
the choice of the antibiotic that will be used to combat a particular infection. 
However, we can only account for mutational transformers if we can reliably 
identify them. Currently empirically identifying mutational transformers in 
bacteria is very difficult. It requires extensive analysis of the phenotypic 
effects of mutations and evolutionary trajectories, a difficult and labour-
intensive process. While empirical examples exist that suggest the presence 
of mutational transformers, as far as I know, no one has yet managed to 
unequivocally identify an empirical mutational transformer. Nonetheless, in 
the future the painstaking research aimed at empirically studying mutational 
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transformers and their inner workings should be undertaken. Experimental 
evolution (similar to the methodology used in Chapter 6) could be used to 
examine evolutionary trajectories, whilst targeted mutagenesis could be 
used to explore the distribution of phenotypic effects. I hope that coupled 
with modelling efforts (such as the one presented in Chapter 5) such research 
can lead to ways to identify mutational transformers quickly and reliably. It 
could turn out that in the future some mutational transformers can be 
identified simply on the basis of the structure of a gene regulatory network 
or the presence of particular genes. In this case, sequencing methods could 
be employed to rapidly identify relevant mutational transformers in bacterial 
pathogens, potentially enhancing antibiotic treatment. 

Chapter 6 – Horizontal gene transfer 

Many clinically relevant antibiotic resistance genes are located on 
extrachromosomal elements called plasmids. Plasmids can be horizontally 
transferred between cells through a process known as conjugation. Plasmids 
can play an important role in the spread of antibiotic resistance. However, 
before antibiotic resistance can spread, it must first arise. The role of 
plasmids in the de-novo evolution of resistance is much less well studied. It 
has been hypothesised that plasmids might facilitate the evolution of 
resistance (i.e. enhance evolvability), for example by bringing together 
resistance genes from separate clonal lineages. Therefore, in Chapter 6 I used 
experimental evolution to study the impact of plasmids on the de-novo 
evolution of antibiotic resistance. I used a plasmid and a bacterial strain  that 
did not contain any antibiotic resistance genes at the start of the experiment. 
Subsequently, I evolved populations with and without plasmids in the 
presence of an increasing concentration of the antibiotic ciprofloxacin. This 
experiment showed no significant effect of plasmids on the rate of resistance 
evolution. It seems that in the context of this experiment, plasmids did not 
enhance evolvability, perhaps due to the relatively short timescale of the 
experiment.  

However, the experiment I conducted in Chapter 6 did yield several other 
interesting outcomes. I found that in Lactococcus lactis, ciprofloxacin 

256



exposure creates selection against the plasmid. I hypothesise that having 
extra DNA in the form of a plasmid is costly when evolving resistance to a 
DNA-damaging antibiotic. Further study is required to see if this finding holds 
up in other bacterial species and with other plasmids, which I would expect 
based on the hypothesised mechanism. If ciprofloxacin can indeed effectively 
create selection against plasmids this could be utilised in the fight against 
antibiotic resistance, since many clinically relevant resistance genes are 
located on plasmids. If, for example, an infecting bacterial population 
contains plasmids that provide resistance against beta-lactam antibiotics, a 
pre-treatment with ciprofloxacin could be used to decrease the abundance 
of this resistance plasmid. This might then increase the effectiveness of a 
subsequent treatment with a beta-lactam antibiotic. However, some words 
of caution are due, depending on the clinical situation such a pre-treatment 
might not be feasible, for example, if an infection is immediately life-
threatening. Furthermore, a pre-treatment might also create selection for 
plasmid-borne resistance genes to be integrated into the chromosome, 
especially if these resistance genes also convey some resistance against 
ciprofloxacin. The chromosomal integration of resistance genes would make 
resistance genes more persistent and could perhaps even lead to an increase 
in resistance levels. Thus, many more experiments and trials would be 
required to see if an anti-plasmid pre-treatment can be a successful strategy 
to increase the efficacy of antibiotic treatment.  

Chapter 7 – Microbial communities 

When a patient receives antibiotic treatment, the effects of this treatment 
will not just be limited to infecting pathogenic bacterial cells. The microbial 
community inhabiting the patient’s gut will also face the antibiotic and will 
be forced to adapt to the antibiotic or face extinction. Evolutionary rescue 
theory is a modelling framework that has previously been used to describe 
the probability that a single bacterial species adapts when it is exposed to an 
antibiotic. In Chapter 7, I expand this modelling framework to a multispecies 
context. I model a community-wide evolutionary rescue process, with the 
aim of understanding how this process changes species abundance 
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distributions. The model makes several simplifying assumptions, most 
importantly it assumes that besides differences in their initial abundance, all 
species in the community are ecologically equivalent. Real bacterial 
communities obviously have complex ecological interactions, that are 
ignored in this model. The model in Chapter 7 is meant to serve as a null 
model. Only if the changes in the species abundance distribution observed in 
a real-life bacterial community do not match the model predictions, complex 
ecological interactions need to be invoked to explain the observed patterns. 
The results in Chapter 7 show that community-wide rescue leads to a rapid 
loss of rare species. I also show that the mutation rate modulates the degree 
of rare-species loss: the higher the mutation rate, the fewer rare species are 
lost. In other words, the lower the evolvability of the community with respect 
to a certain antibiotic, the larger the number of rare species that will be lost 
during the rescue process. 

The effect of antibiotic treatment on the gut microbiome can cause 
unwanted side effects, such as antibiotic-associated diarrhoea and an 
increased risk for gastrointestinal infections. It has been demonstrated that 
antibiotic treatment can lead to changes in the gut microbiome that can 
persist for months after treatment has ended (Patangia et al., 2022). 
Currently, a fully mechanistic and functional understanding of the human gut 
microbiome is lacking; we are unable to predict the exact effects an antibiotic 
treatment might have, or when side effects will occur. However, we do know 
that rare species might be especially important for the functioning of 
microbial communities since they can ensure that functioning is maintained 
under a broad set of conditions (Jousset et al. 2017). Therefore, maintaining 
as much of the rare species in the gut microbiome as possible during 
antibiotic treatment might allow us to minimise side effects. Here the 
insights from Chapter 7 come in handy. Sequencing-based methods could be 
used to quantify the loss of rare species experienced by gut microbial 
communities during antibiotic treatment. This allows us to assess the 
evolvability of gut microbial communities with respect to different types of 
antibiotics. This information about the evolvability of the gut microbiome 
should be combined with information about the evolvability of specific 
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pathogens. Compiling this information would allow us to  optimise the choice 
of antibiotic, choosing an antibiotic to which the gut microbiome can adapt, 
whilst the pathogen cannot. Thus we can effectively eliminate the pathogen, 
whilst minimising the negative effects of antibiotic treatment on the gut 
microbiota. There is likely some degree of trade-off here, if the gut 
microbiome can more easily adapt to an antibiotic it is likely a pathogen is 
also better able to adapt to said antibiotic. However, even if such a trade-off 
exists, the choice of antibiotic can still be optimised along this trade-off. It 
should also be noted that the composition of healthy gut microbiomes differs 
between individuals, thus when assessing gut microbiome evolvability, one 
might also need to account for different types of gut microbial communities 
(also called enterotypes) (Rininella et al., 2019). Some words of caution are 
due, many labour-intensive clinical experiments would need to be conducted 
in order to compile the relevant information. Furthermore, the loss of rare 
species can only be used to assess microbiome evolvability if the model in 
Chapter 7 is a decent approximation of the microbiome dynamics during 
antibiotic treatment. This may not be the case given the simplifying 
assumptions this model makes, such as assuming that all species are 
ecologically equivalent. However, this assumption of ecological equivalence 
may be more reasonable when we divide the microbiome into broad 
functional groups. In this case, within a group of microbes performing the 
same function, all species could be considered ecologically equivalent. Thus, 
instead of estimating the evolvability of the entire microbiome, we could 
expand the model in Chapter 7 to estimate the evolvability of certain 
functional groups within the microbiome independently. In addition, the 
changes in the microbiome during antibiotic treatment may not be the 
outcome of an evolutionary rescue process and could just be due to pre-
existing differences in resistance amongst the different species. A good next 
step would be to see if the model in Chapter 7 can be used to quantitatively 
reproduce the changes in species abundance patterns observed in the gut 
microbiome during antibiotic treatment, using already available datasets 
(Patangia et al., 2022). 
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Towards a theory of evolvability and its evolution 

In this next section, I will briefly outline what I perceive to be the way forward 
for evolutionary biology. I will first argue why I think a theory of evolvability 
is essential to advance evolutionary biology. Subsequently, I will explain why 
I think that such a theory can best be obtained by taking a mechanistic 
approach.  

The goal of evolutionary biology is to explain and predict evolutionary 
processes. To some extent, current evolutionary theory has been successful 
at achieving this goal. Consider for example the numerous animal and plant 
breeding programmes that have successfully used quantitative genetics 
models to improve yield and disease resistance. However, many evolutionary 
models make important simplifying assumptions about the processes that 
generate variation that limit their predictive and explanatory power. For 
example, most quantitative genetics models make simplifying assumptions 
regarding the genetic underpinnings of traits, ignoring the complex gene 
regulatory networks underlying traits. In a similar vein, many standard 
models simply lack mutational processes altogether. When these processes 
are considered, mutation rates are often assumed to be constant. These and 
other simplifying assumptions about the processes that generate variation 
likely affect the explanatory and predictive power of evolutionary models, 
especially on longer timescales. In the short term, the response to selection 
is mostly governed by standing genetic variation. On longer timescales, 
however, the generation of variation is what ultimately determines 
evolutionary trajectories! Consider as an example the outcomes of the 
famous Lenski long-term evolution experiment. This elegant experiment 
follows the evolution of several bacterial populations originating from a 
single clone for thousands of generations as they evolve in a very simple 
constant environment (Sniegowski et al., 1997; 2000; Blount, 2016; Tenallion 
et al., 2016; Leon et al., 2018). Many of the key findings that have emerged 
from this experiment, such as the emergence of elevated mutation rates and 
the evolution of citrate metabolism, can only be adequately explained when 
the mechanisms underlying the generation of variation are explicitly 
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considered (Sniegowski et al., 1997; 2000; Blount, 2016; Tenallion et al., 
2016; Leon et al., 2018).  

By taking into account evolvability, i.e. the capability of biological systems to 
undergo adaptive evolution, we can expand the explanatory and predictive 
power of evolutionary models. Studying evolvability shifts focus to the 
processes that underly the generation of variation. These processes are 
currently often neglected but may strongly affect the course and outcome of 
evolution. A good example is provided by Milocco & Salazar-Ciudad  (2020), 
who showed that explicitliy accounting for developmental processes strongly 
impacted evolutionary predictions. Furthermore, when we consider 
evolvability it becomes evident, that mutation rates are unlikely to be 
constant across environments. As I have shown in Chapters 3 and 4 of this 
thesis, mutation rates vary depending on the conditions. In other words, a 
solid theory of evolvability has the potential to enhance the explanatory and 
predictive power of evolutionary models.  

Yet, I think the study of evolvability has even more to offer. If one considers 
that evolvability is the product of underlying mechanisms, such as the 
structure of gene regulatory networks and mutation rates, it becomes 
immediately evident that these underlying mechanisms must themselves be 
shaped by evolution. In some cases the mechanisms enhancing evolvability 
may evolve simply as a side-effect of selection on other traits, in other cases, 
evolvability may be the target of selection. For example, there is extensive 
evidence that in Lenski’s long-term evolution experiment, elevated mutation 
rates evolved due to selection for evolvability (Sniegowski et al., 1997; 2000; 
Blount, 2016; Tenallion et al., 2016; Leon et al., 2018). I have also observed 
the evolution of evolvability in this thesis: In the model in Chapter 4 
condition-dependent mutation rates evolve due to selection for evolvability. 
In Chapter 5 I showed that the structure of gene regulatory networks can 
respond to selection for evolvability, by biasing the phenotypic effects of 
mutations towards adaptive outcomes. However, currently the evolution of 
evolvability is still poorly understood, with most insights based on simplified 
models. Furthermore, the degree to which evolvability mechanisms in 
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empirical systems are shaped by selection for evolvability remains mostly 
unknown. Regardless, to truly enhance current evolutionary theory, we need 
to understand how evolvability evolves.  

In summary, I think that evolvability is a key concept to enhance the 
predictive and explanatory power of evolutionary theory. To obtain long-
term predictions about evolution we need to go beyond merely predicting 
what happens when selection acts on variation. We need to understand the 
mechanisms that generate and maintain variation. We need to grasp how 
the gene regulatory networks shape the phenotypic impact of mutations. We 
need to account for the subtle organismal features that shape the process of 
selection. In other words, we need a coherent general theory of evolvability 
and its evolution. It is therefore not surprising that evolvability plays an 
important role in the discussion regarding a potential Extended Evolutionary 
Synthesis (EES; Laland et al., 2014; Laland et al., 2015). If such a synthesis 
were to come about, I think that evolvability would be one of its most central 
concepts, as it relates to a wide array of EES concepts such as mutational 
bias, phenotypic plasticity and epigenetic inheritance (Crombach & 
Hogeweg, 2008; Laland et al., 2015; Cuypers et al., 2017). However, currently 
the extended evolutionary synthesis best be described as a loose 
agglomeration of interesting ideas, rather than a coherent synthesis. 

So how might the scientific community go about creating a theory of 
evolvability and its evolution? I by no means have a definitive answer to this 
question. However, given the current state of the art, I consider it unlikely 
that a general theory of evolvability and its evolution can easily be created. 
The problems at hand are too poorly understood and underlying mechanisms 
are too idiosyncratic. 

I have shown several times in this thesis that seemingly minor mechanistic 
details of biological systems can greatly impact how these systems evolve 
and function. For example, I showed in Chapter 3 that the exact type of 
antibiotic can influence the relationship between temperature and the 
mutation rate towards resistance. Fever temperatures decreased the 
mutation rate towards ampicillin resistance, but increased the mutation rate 
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towards ciprofloxacin and rifampicin resistance. In Chapter 4, I considered 
the assumption of whether mutation rate loci mutate according to a separate 
fixed rate (not self-referent), or mutate according to their own value (self-
referent). This assumption drastically impacted the dynamics and outcome 
of evolution: when mutation rate loci mutated in a self-referent manner 
evolution proceeded much faster and a condition-dependent mutation 
strategy evolved much more frequently. In Chapter 5, I showed that the 
nature of gene interactions (linear or non-linear) altered the kind of 
mutational transformer that evolved. In Chapter 6, I expected to show the 
impact of plasmids on the rate of ciprofloxacin resistance evolution. 
However, I failed to foresee that due to its particular mechanism of action 
ciprofloxacin would create selection against plasmids. I believe these results 
represent a more general truth: when it comes to evolvability, the l devil is 
hiding in the mechanistic details. The impact of mechanistic details illustrates 
why with the current state of the art developing a general theory on 
evolvability is not feasible. Therefore, I think that for now we best resign 
ourselves to a mechanistic approach. However, I would argue that this 
resignation is perhaps a blessing in disguise: to some extent, it frees us of the 
conceptual shackles of previous evolutionary models. I think this freedom is 
essential since a theory of evolvability and its evolution might represent a 
significant change from current general evolutionary models. Thus for now 
we should focus on studying the specific idiosyncratic mechanisms, allowing 
a great diversity of mechanistic models to flourish, so that eventually we can 
distil solid general principles from a multitude of mechanistic models. 
Perhaps, the mechanistic models presented in this thesis could then be 
viewed as tiny pebbles paving the road towards a theory of evolvability and 
its evolution.  
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Summary 
The rise of antibiotic resistance represents a major societal challenge. It has 
been estimated that currently, at least 700,000 people die annually because 
of antibiotic resistance. According to some estimates, this number may rise 
to 10 million by 2050. A better understanding of antibiotic resistance is 
crucial to combat this looming threat. In essence, the emergence of antibiotic 
resistance is an example of adaptive evolution: when bacteria are faced with 
antibiotics this creates a strong selection for resistance. However, luckily for 
humans, bacterial populations are not always able to adapt and develop 
resistance. What determines if a bacterial population can evolve resistance? 
To answer this question, we need to consider “evolvability”: the ability of 
organisms to undergo adaptive evolution. In this thesis, I therefore study the 
evolvability of bacteria in the context of antibiotic resistance. To this end, I 
apply a combined experimental and theoretical approach. I strive to gain 
general insights about evolvability, whilst at the same time applying these 
insights to better understand the evolution of antibiotic resistance.  

In Chapter 1, I briefly introduce the concept of evolvability, and I motivate 
my definition of evolvability. I also explain and motivate the mechanistic 
approach used throughout this thesis. Subsequently, I briefly introduce three 
mechanisms underlying the evolvability of bacteria: condition-dependent 
mutation rates, the architecture of gene-regulatory networks, and horizontal 
gene transfer. All three mechanisms are studied in this thesis. 

In Chapter 2, I provide a theoretical framework for understanding 
evolvability. This framework outlines how evolvability can be understood 
through its underlying mechanisms. I classify the many mechanisms and 
organismal features that determine evolvability into three categories: 
determinants that provide variation, determinants that shape the 
relationship between genetic variation and phenotypic fitness effects, and 
determinants that determine how fitness differences lead to evolutionary 
change. Each category of determinants shapes evolvability in a different way. 
These differences are often not considered, which has led to 
miscommunication and confusion in the scientific literature. The proposed 
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framework also leads to concrete recommendations on how evolvability 
should be studied. For example, researchers should specify the timescale on 
which the determinant under scrutiny is supposed to act. Moreover, one 
should consider the scope of a particular determinant: some determinants 
impact adaptation in many different environments, whilst others act only in 
a more restricted set of environments.  

Chapter 3 addresses the condition dependence of mutation rates. Using 
laboratory experiments, I assessed the impact of environmental temperature 
on the mutation rate toward antibiotic resistance in the bacterium 
Escherichia coli. I show for three different antibiotics that a small 
temperature change from 37 °C to 40 °C, as would be associated with fever, 
can alter the mutation rate towards resistance by almost an order of 
magnitude. For some antibiotics, an increase in temperature led to an 
elevated mutation rate, whilst for others this led to a decrease in the 
mutation rate. Regardless, antibiotic resistance is expected to evolve much 
faster under the temperature at which the mutation rate is the highest. This 
highlights a potential new way to mitigate the evolution of antibiotic 
resistance by selectively using fever suppression to minimise the mutation 
rate towards resistance.  

In Chapter 4, I use a simulation model to study whether and when one would 
expect the evolution of condition-dependent mutation rates. It has been 
hypothesised that an increase in the mutation rate under stressful conditions 
enhances evolvability since it provides extra variation during times of 
maladaptation, thus accelerating adaptive evolution. I show that stress-
related mutation rates do indeed evolve under a wide array of 
circumstances. Furthermore, I show that condition-dependent mutation 
rates enhance the ability of populations to adapt to changing environments 
and that this evolvability-enhancing effect drives their evolution. These 
results illustrate that evolvability can itself evolve.   

Interlude 1 shows a modelling contribution that was added to an empirical 
study of fat metabolism in certain parasitoid wasps. This study found 
empirically that fat metabolism was still maintained within a lineage, even 
though it had supposedly been lost millions of generations ago. It turns out 
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that the wasps had maintained the ability to switch on fat metabolism under 
certain rarely occurring circumstances. The model explains how such a switch 
can evolve to become robust to mutation, allowing phenotypic plasticity to 
be maintained even if it is only sporadically exposed to selection.  

In Chapter 5, I simulate the evolution of a very simple gene-regulatory 
network in a changing environment. I show that the structure of the gene-
regulatory network can easily evolve to bias the phenotypic effect of 
mutations towards adaptive outcomes, thereby accelerating adaptation in 
the changing environment. I term the underlying mechanism a mutational 
transformer: it transforms the phenotypic effects of random genetic 
mutations in such a way that they promote an adaptive outcome. Depending 
on model details, two different types of transformers evolved in my 
simulations. The evolution of mutational transformers shows that 
evolvability can evolve through the modification of gene-regulatory 
networks.  

Chapter 6 reports on an experiment that investigates the impact of 
horizontal gene transfer on evolvability in the context of antibiotic 
resistance. It has been hypothesised that horizontal gene transfer can 
enhance evolvability, for example by bringing together favourable mutations 
within a single lineage, which can accelerate adaptation. Using experimental 
evolution, I examined the impact of horizontally transferable plasmids on the 
de-novo evolution of ciprofloxacin resistance in Lactococcus lactis. During 
the 31-day (approximately 200 generations) experiment, the bacterial 
populations evolved high-level resistance. Contrary to expectations, the 
presence of plasmids did not accelerate the rate of resistance evolution. 
However, this outcome may be specific for the experimental system 
considered, as plasmid abundance decreased strongly in populations 
exposed to ciprofloxacin. Apparently, exposure to ciprofloxacin had created 
selection against the plasmid. This serendipitous finding may be of clinical 
relevance. Using next-generation sequencing I also analysed the mutations 
underlying resistance, revealing several previously unknown genes that may 
be involved in resistance.  
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In Chapter 7, I modelled how species abundances change when a community 
of bacteria composed of many different species (for example, a gut 
microbiome) is exposed to an antibiotic. I used a modelling framework 
known as evolutionary rescue theory. The question was how the pattern of 
species abundances in the community changes when each component 
species is selected to evolve antibiotic resistance. My simulations show that 
a community-wide rescue process leads to the rapid loss of rare species from 
the community. This model may help us better understand how bacterial 
communities change when exposed to antibiotics.  

Chapter 8 constitutes an overarching discussion of this thesis. This chapter 
addresses two main themes. First, I consider on a chapter-by-chapter basis 
how the insights from this thesis may eventually be applied to improve 
antibiotic treatment in a clinical context. Second, I outline my vision for the 
future of evolutionary biology. A coherent theory of evolvability and its 
evolution is essential to better understand, explain, and predict evolutionary 
processes. I argue that such a theory can best be obtained by taking a 
mechanistic approach. 
  

270



Samenvatting 
De toename van antibioticaresistentie vormt een grote maatschappelijke 
uitdaging. Er wordt geschat dat op dit moment jaarlijks minstens 700.000 
mensen sterven als gevolg van antibioticaresistentie. Volgens sommige 
schattingen kan dit aantal tegen 2050 zijn opgelopen tot 10 miljoen. Een 
beter begrip van antibioticaresistentie is cruciaal om deze dreiging het hoofd 
te bieden. In wezen is het ontstaan van antibioticaresistentie een voorbeeld 
van adaptieve evolutie: wanneer bacteriën worden geconfronteerd met 
antibiotica leidt dit tot een sterke selectie op resistentie. Gelukkig voor de 
mens zijn bacteriepopulaties niet altijd in staat om zich aan te passen en 
resistentie te ontwikkelen. Wat bepaalt of een bacteriepopulatie resistentie 
kan ontwikkelen? Om deze vraag te beantwoorden moeten we kijken naar 
"evolueerbaarheid": het vermogen van organismen om adaptieve evolutie te 
ondergaan. In dit proefschrift bestudeer ik daarom de evolueerbaarheid van 
bacteriën in de context van antibioticaresistentie. Hiervoor gebruik ik een 
gecombineerde experimentele en theoretische benadering. Ik streef ernaar 
algemene inzichten te verwerven over evolueerbaarheid om hierdoor de 
evolutie van antibioticaresistentie beter te begrijpen. 

In Hoofdstuk 1 introduceer ik het concept van evolueerbaarheid. Ik verklaar 
en motiveer ook de mechanistische benadering die in dit proefschrift 
gebruikt wordt. Vervolgens introduceer ik drie mechanismen die ten 
grondslag liggen aan de evolueerbaarheid van bacteriën: omgevings-
afhankelijke mutatiesnelheden, de architectuur van genregulatienetwerken 
en horizontale genoverdracht. Alle drie de mechanismen worden in dit 
proefschrift nader bestudeerd. 

In Hoofdstuk 2 geef ik een theoretisch raamwerk voor het begrijpen van 
evolueerbaarheid. Dit raamwerk schetst hoe evolueerbaarheid begrepen kan 
worden aan de hand van de onderliggende mechanismen. Ik deel de 
mechanismen en eigenschappen die evolueerbaarheid bepalen in 
verschillende categorieën in: determinanten die variatie verschaffen, 
determinanten die de relatie tussen genetische variatie en fenotypische 
fitnesseffecten vormgeven, en determinanten die bepalen hoe 
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fitnessverschillen leiden tot evolutionaire verandering. Elke categorie van 
determinanten draagt op een andere manier bij aan evolueerbaarheid. De 
verschillende manieren waarop determinanten evolueerbaarheid bepalen 
worden vaak niet in beschouwing genomen, wat heeft geleid tot 
miscommunicatie en verwarring in de wetenschappelijke literatuur. Het door 
mij geschetste raamwerk leidt tot een aantal concrete aanbevelingen over 
hoe evolueerbaarheid bestudeerd zou moeten worden. Ten eerste moet 
men rekening houden met de tijdschaal waarop bepaalde determinanten 
werken. Daarnaast is ook de reikwijdte van een bepaalde determinant 
belangrijk: sommige determinanten beïnvloeden adaptatie in veel 
verschillende omgevingen, terwijl andere slechts in een beperktere reeks 
omgevingen relevant zijn. 

Hoofdstuk 3 behandelt de omgevings-afhankelijkheid van 
mutatiesnelheden. Met laboratoriumexperimenten heb ik de invloed van 
omgevingstemperatuur op de mutatiesnelheid naar antibioticaresistentie in 
de bacterie Escherichia coli onderzocht. Ik laat voor drie verschillende 
antibiotica zien dat een kleine temperatuurverandering van 37 °C naar 40 °C 
(zoals bij koorts), de mutatiesnelheid naar resistentie met een orde van 
grootte kan veranderen. Voor sommige antibiotica leidde een verhoging van 
de temperatuur tot een verhoogde mutatiesnelheid, terwijl dit voor andere 
antibiotica tot een verlaging van de mutatiesnelheid leidde. Hoe dan ook, 
antibioticaresistentie zal naar verwachting veel sneller evolueren bij een 
hogere mutatiesnelheid. Dit wijst op een mogelijke nieuwe manier om de 
evolutie van antibioticaresistentie te beperken door selectief gebruik te 
maken van koortsonderdrukking om de mutatiesnelheid naar resistentie te 
minimaliseren. 

In Hoofdstuk 4 gebruik ik een simulatiemodel om te bestuderen of en 
wanneer men de evolutie van toestandsafhankelijke mutatiesnelheden zou 
kunnen verwachten. In de literatuur werd de hypothese geopperd dat een 
toename in de mutatiesnelheid onder stressvolle omstandigheden de 
evolueerbaarheid verbetert, omdat dit in tijden van maladaptatie een 
grotere genetische variatie oplevert, waardoor adaptieve evolutie versneld 
wordt. Ik laat zien dat stress-gerelateerde mutatiesnelheden inderdaad 
evolueren onder een breed scala aan omstandigheden. Verder laat ik zien 
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dat toestandsafhankelijke mutatiesnelheden het vermogen van populaties 
om zich aan te passen aan veranderende omgevingen vergroten en dat dit 
effect op evolueerbaarheid verantwoordelijk is voor de evolutie van 
toestandsafhankelijke mutatiesnelheiden. Deze resultaten illustreren dat 
evolueerbaarheid zelf kan evolueren. 

Intermezzo 1 toont een modelleringbijdrage die werd toegevoegd aan een 
empirische studie naar vetmetabolisme bij bepaalde soorten parasitaire 
wespen. Op basis van meerdere studies had men verondersteld dat deze 
wespen hun vetmetabolisme al miljoenen generaties geleden kwijt waren 
geraakt. Nu bleek uit nieuwe experimenten dat de wespen het vermogen 
hadden behouden, maar dat zij hun vetstofwisseling alleen onder bepaalde, 
zelden voorkomende omstandigheden inschakelen. Het model verklaart hoe 
zo’n zelden gebruikte schakelaar evolutionair behouden kan blijven omdat 
deze, via evolutie, robuust wordt voor mutatie. Hierdoor kan deze 
fenotypische plasticiteit behouden blijven, zelfs als deze slechts sporadisch 
wordt blootgesteld aan selectie. 

In Hoofdstuk 5 bestudeer ik met behulp van een simulatiemodel de evolutie 
van een genregulatie netwerk in een omgeving die over de generaties sterk 
verandert. Ik laat zien dat de structuur van een genregulatie netwerk 
gemakkelijk kan evolueren om de fenotypische effecten van mutaties te 
beïnvloeden in de richting van adaptieve uitkomsten, hetgeen adaptatie 
versnelt. Ik noem het onderliggende mechanisme een mutatietransformator: 
het transformeert de fenotypische effecten van willekeurige genetische 
mutaties zodanig dat ze een adaptieve uitkomst bevorderen. Afhankelijk van 
de details van het model evolueerden er twee verschillende soorten 
transformatoren in mijn simulaties. De evolutie van mutatietransformatoren 
laat zien dat evolueerbaarheid kan evolueren door de modificatie van 
genregulatienetwerken. 

In Hoofdstuk 6 bestudeer ik de invloed van horizontale genoverdracht op 
evolueerbaarheid in de context van antibioticaresistentie. Er wordt 
verondersteld dat horizontale genoverdracht de evolueerbaarheid kan 
vergroten, bijvoorbeeld door het samenbrengen van gunstige mutaties, 
hetgeen adaptatie kan versnellen. Met behulp van experimentele evolutie 
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heb ik de invloed onderzocht van een horizontaal overdraagbare plasmide 
op de de-novo evolutie van ciprofloxacine resistentie in de bacterie 
Lactococcus lactis. Tijdens het experiment van 31 dagen (ongeveer 200 
generaties) evolueerden de bacteriële populaties een hoge mate van 
resistentie. Tegen de verwachting in versnelde de aanwezigheid van 
plasmiden de snelheid van de resistentie-evolutie niet. Dit resultaat kan 
echter specifiek zijn voor het experimentele systeem in kwestie, want tijdens 
het experiment nam het aantal plasmiden sterk af in populaties die 
blootgesteld werden aan ciprofloxacine. Blijkbaar leidde blootstelling aan 
ciprofloxacine tot selectie tegen het plasmide. Deze toevallige bevinding kan 
van klinisch belang zijn. Met behulp van “next-generation sequencing” 
analyseerde ik ook de mutaties die ten grondslag liggen aan resistentie. 
Hierbij werden verschillende, voorheen onbekende genen gevonden die 
mogelijk betrokken zijn bij resistentie. 

In Hoofdstuk 7 heb ik gemodelleerd hoe de soortenrijkdom verandert als een 
gemeenschap van bacteriën, die bestaat uit veel verschillende soorten 
(bijvoorbeeld een darmmicrobioom), wordt blootgesteld aan een 
antibioticum. Ik gebruikte een modelleerraamwerk dat bekend staat als 
evolutionaire reddingstheorie. Ik modelleer hoe elke soort in de 
gemeenschap onafhankelijk van elkaar antibioticaresistentie ontwikkelt door 
mutatie en hoe dit proces de patronen van soortenrijkdom verandert. De 
modelresultaten laten zien dat een dergelijk proces leidt tot een zeer snel 
verlies van zeldzame soorten uit de gemeenschap. Dit model kan ons helpen 
beter te begrijpen hoe bacteriegemeenschappen veranderen wanneer ze 
worden blootgesteld aan antibiotica. 

Hoofdstuk 8 vormt een overkoepelende discussie van dit proefschrift. Dit 
hoofdstuk behandelt twee hoofdthema's. Ten eerste beschouw ik per 
hoofdstuk hoe de fundamentele inzichten uit dit proefschrift uiteindelijk 
kunnen worden toegepast om de behandeling met antibiotica in een 
klinische context te verbeteren. Ten tweede schets ik mijn visie op de 
toekomst van de evolutiebiologie. Een coherente theorie van 
evolueerbaarheid en de evolutie daarvan is essentieel om evolutionaire 
processen beter te begrijpen, te verklaren en te voorspellen. Ik 
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beargumenteer dat zo'n theorie het beste kan worden verkregen door een 
mechanistische benadering te kiezen. 
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