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Highlights Impact and implications
� NR1H4/FXR is highly expressed in stellate cells of human
and murine livers.

� NR1H4 binding motifs are highly enriched in stellate cell
accessible chromatin.

� The NR1H4 agonist obeticholic acid upholds expression of
stellate cell identity genes.

� Stellate cell-confined expression of GSPCR VIPR1 is atten-
uated in MASH livers.

� cAMP induces stellate cell expression of homeostatic factor
GDF2 in vitro and in vivo.
https://doi.org/10.1016/j.jhep.2023.11.001
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Homeostatic interactions between hepatic cell types and their
deterioration in metabolic dysfunction-associated steatohepa-
titis are poorly characterized. In our current single cell-resolved
study of advanced murine metabolic dysfunction-associated
steatohepatitis, we identified a quiescence-associated hepatic
stellate cell-signaling module with potential to preserve normal
sinusoid function. As expression levels of its constituents are
conserved in the human liver, stimulation of the identified
signaling module is a promising therapeutic strategy to restore
sinusoid function in chronic liver disease.
for the Study of the Liver. This is an open access article under the CC BY license
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Journal of Hepatology 2024. vol. 80 j 467–481
Background & Aims: Metabolic dysfunction-associated steatohepatitis (MASH) is linked to insulin resistance and type 2 diabetes
and marked by hepatic inflammation, microvascular dysfunction, and fibrosis, impairing liver function and aggravating metabolic
derangements. The liver homeostatic interactions disrupted in MASH are still poorly understood. We aimed to elucidate the
plasticity and changing interactions of non-parenchymal cells associated with advanced MASH.
Methods: We characterized a diet-induced mouse model of advanced MASH at single-cell resolution and validated findings by
assaying chromatin accessibility, bioimaging murine and human livers, and via functional experiments in vivo and in vitro.
Results: The fibrogenic activation of hepatic stellate cells (HSCs) led to deterioration of a signaling module consisting of the bile
acid receptor NR1H4/FXR and HSC-specific GS-protein-coupled receptors (GSPCRs) capable of preserving stellate cell quies-
cence. Accompanying HSC activation, we further observed the attenuation of HSC Gdf2 expression, and a MASH-associated
expansion of a CD207-positive macrophage population likely derived from both incoming monocytes and Kupffer cells.
Conclusion: We conclude that HSC-expressed NR1H4 and GSPCRs of the healthy liver integrate postprandial cues, which
sustain HSC quiescence and, through paracrine signals, overall sinusoidal health. Hence HSC activation in MASH not only drives
fibrogenesis but may desensitize the hepatic sinusoid to liver homeostatic signals.

© 2023 The Authors. Published by Elsevier B.V. on behalf of European Association for the Study of the Liver. This is an open access article under
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Introduction
Metabolic dysfunction-associated steatohepatitis (MASH) is
the result of years of cycling between insults and inadequate
regeneration and presents itself as a state of elevated cellular
turnover and net deposition of extracellular matrix (ECM).
Function of the MASH liver is compromised by inflammation,
microvascular dysfunction, and fibrosis, aggravating the initial
metabolic derangements. This deterioration of liver function is
attributed to hepatocellular plasticity and shifts in cellular
communication. Yet, the progression of MASH is incompletely
understood, as studies resolving liver plasticity in advanced
MASH are scarce. Comprehensive analysis of human MASH is
hindered by the sparsity of patient liver biopsies and by patient
differences. Single cell-resolved studies of murine liver fibrosis
have provided important insights into early disease develop-
ment1–3 but only partially recapitulated established human
MASH. A thorough account of hepatocellular dynamics in
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advanced MASH in the face of prolonged dietary challenge is
hence needed to delineate the altered cellular fluxes and in-
formation circuits amenable to therapeutic intervention.

Herein, we document the phenotypic redefinition of hepatic
cell populations in established MASH in mice fed a Western
diet for 52 weeks. We lay out the concept that postprandial
cues preserve hepatic stellate cell quiescence and sinusoidal
homeostasis, which may guide pharmacological intervention
in MASH.

Materials and methods

Animal experiments

MASH was introduced in C57BL/6JBomTac mice by Western
diet supplemented with D-fructose (42 g/L) in drinking water for
52 weeks. Age-matched control mice were fed standard chow
and pure drinking water. Mice were fasted overnight before
sacrifice. The FLEx-TRAP knock-in mouse was generated from
lic AMP; G-Protein-Coupled Receptors; ScRNAseq; Inflam-

ber 2023; available online 14 November 2023
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Single cell study of advanced MASH
the fusion gene mCherry-Rpl10a-(IRES)-FLPo and the Flip-
excision (FLEx)-switch.4 Gt(ROSA)26Sortm1(CAG-Chrm3*/GFP,

cAMPRE-luc)Berd (GSD), Tg(Lrat-cre)1Rshw mice (Lrat-cre) were
previously described.5,6 From 12 weeks of age, GSD and Lrat-
cre:GSD mice were fed the GAN (Gubra-Amylin MASH) diet for
12 weeks. From 2 days before sacrifice, mice were fasted from
zeitgeber time 6 to 12 and given 0.1 mg/kg deschloroclozapine
in corn oil by oral gavage. On the third day, mice were sacrificed
at zeitgeber time 13.5. All animal experiments were approved
by the Danish Animal Experiments Inspectorate (approval
#2020-15-0201-00603) and adhered to the ARRIVE guidelines.

Immunohistochemistry and staining of FFPE tissues

Mouse liver lobules were immersion-fixed in 4% para-
formaldehyde for 16 h and embedded in paraffin (FFPE). For
immunohistochemistry (IHC), sections were probed with indi-
cated antibodies (see supplementary methods and table S2)
and incubated with EnVision-HRP-coupled anti-rabbit IgG and
AEC+ substrate-chromogen solution. Sections were counter-
stained with hematoxylin. Human liver biopsies were per-
formed in patients with severe obesity as part of the PROME-
THEUS study (ethics approval S-20160006G) conducted in
accordance with the guidelines of the Declaration of Helsinki
and the principles of good clinical practice. All subjects
gave written informed consent for study participation and a
separate biobank consent. Human FFPE liver tissue was
stained as described previously with minor modifications.7 Dual
PDGFR and NR1H4 IHC immunoreactivity was visualized using
DAB+ and Vector SG chromogens. No counter-staining
was performed.

Immunofluorescence and single-molecule fluorescence in
situ hybridization

Fixed-frozen OCT (optimal cutting temperature) compound-
embedded liver tissue was cut, permeabilized, and blocked
before probing with antibodies and DAPI. Single-molecule
fluorescence in situ hybridization (FISH) was conducted on
FFPE sections using the RNAscope Multiplex Fluorescent Re-
agent Kit v2 assay according to the manufacturer’s in-
structions. Slides were mounted with ProLong Diamond
Antifade Mountant and DAPI and scanned on a Nikon A1
confocal microscope. Images were passed through the AFid
algorithm for autofluorescence mitigation. The same settings
were used for all images. Single-molecule FISH image quanti-
fication was performed using QuPath (v.0.2.3). Digital cell
detection was based on DAPI staining. Data visualization and
statistics were performed in R.

Whole liver/bulk RNA purification, sequencing, and analysis

Whole liver RNA was extracted by phenol/chloroform and col-
umn purification. Libraries were constructed using the NEBNext
Ultra RNA Library Prep Kit for Illumina and paired-end
sequenced on the NovaSeq 6000. STAR was used for align-
ment of reads to the mm10 genome. DESeq2 was used to
identify differentially expressed genes. Data visualization and
statistics were performed in R. A weighted correlation network
analysis (WGCNA) was performed using the WGCNA R-pack-
age based on 5,000 genes with top loadings across the first
four principal components.
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Gene expression analysis of Nr1h4 knockout livers

Nr1h4 knockout animals treated with GSK2324 or vehicle for 3
days, whole liver RNA extraction, cDNA synthesis and qPCR
analysis were described previously.8 Relative expression values
for all genes of interest were normalized to Rplp0 (36B4)
expression. Differential expression between conditions (false
discovery rate <0.05) was determined by pairwise Wilcoxon
Rank Sum tests, Benjamini-Hochberg-adjusted for multiple
testing. Primer sequences are provided in Table S1.

Whole liver protein purification and mass
spectrometry analysis

For quantitative comparison of the liver proteomes, we pre-
pared peptides essentially as described elsewhere.9 Equal
fractions of peptides from all animals were used to generate a
spectral library for liquid chromatography mass spectrometry
analysis on a Q Exactive HF-X mass spectrometer and data-
independent acquisition. Only proteins identified in >−3 animals
per group were included in the analyses. Differentially
expressed proteins were identified using DESeq2. Data anal-
ysis and visualizations were performed in R.

Hepatic cell isolation for single-cell sequencing and culture

For single-cell RNA sequencing experiments, retrograde liver
perfusion was performed as described.7 Anti-ASGR1 and anti-
CD31-conjugated antibodies were used for partial immuno-
depletion and SYTOX Red for dead cell labeling. From each
liver, 20,000 live singlets were sorted and loaded onto the 10x
Genomics Chromium controller, and Single-Cell 3’ v3 libraries
were prepared according to the manufacturer’s instructions.
For stellate cell culture, cells were separated by density
centrifugation and sorted by retinoid content and viability and
seeded in 24-well plates with 50,000 cells per well.

Single-cell RNA sequencing data analysis

Sequencing data was demultiplexed, aligned against the mm10
reference genome, quantified, and aggregated using the stan-
dardized pipeline in the Cell Ranger Single-Cell Software Suite.
The Seurat package was used for data pre-processing, and
doublets removed with DoubletFinder. Corrected counts were
integrated by Seurat batch-correction. For clustering, we used
the Seurat implementation of the Leiden algorithm. Testing of
differential abundance of subpopulations was performed using
miloR. Identification of transcription factors and putative target
genes was performed in pySCENIC. Mononuclear phagocyte
transitions were found using scVelo. For diffusion maps, tra-
jectory estimations and differential expression, we used Destiny
in the R-package Scater, Slingshot, and tradeSeq, respectively.
For prediction of ligand-receptor interactions we employed
NicheNet. Human liver single-nuclei data (GSE212837) were
processed with Seurat. DecontX was used for removal of
ambient RNA and DoubletFinder for doublet removal. Batch
integration was performed in Harmony.

Hepatic stellate cells in vitro treatments

All treatments started at 40 h post isolation. Obeticholic acid
(OCA): hepatic stellate cells (HSCs) were treatedwith 10 lMOCA
or DMSO for 6 h before harvest. Forskolin: HSCs were treated
h 2024. vol. 80 j 467–481
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with 5 lM forskolin or DMSO for 3 h. For acute effects, cells were
harvested immediately. For long-term effects, medium was
changed, and HSCs were cultured for an additional 21 h before
harvest. OCA/vasoactive intestinal peptide (VIP): HSCs were
treated with 5 lMOCA or DMSO for 3 h followed by the addition
of 0.5 lM VIP for an additional 3 h before harvest. Cells were
harvested in TRIzol, and RNA purified as described above.

ATACseq and single-nucleus ATACseq

Nuclei were isolated from Lrat-cre:FLEx-TRAPmouse livers after
heart perfusion with 4% PFA followed by dounce homogeniza-
tion, straining, density centrifugation, and fluorescence-sorting
based on DAPI and mCherry (Fig. S5A). Chromatin was tag-
mented and reverse-crosslinked before column cleanup, PCR
amplification, library generation and sequencing. Peak annota-
tion, de novomotif-enrichment analyses, and motif scoring were
conducted inHOMER. For single-nucleusassay for transposase-
accessible chromatin-sequencing (ATACseq), liver nuclei were
processed using the Chromium Next GEM Single Cell ATAC Li-
brary & Gel Bead Kit v1.1 on the 10x Genomics Chromium
controller. Barcode-filtering, clustering and peak calling
were done using the ArchR pipeline. The stellate cell cluster
was identified based on chromatin accessibility in Lrat, Dcn,
and Reln loci. The HOMER pipeline was used for motif-
enrichment analyses.

Additional details are provided in the supplementary data file
and the supplementary CTAT table.

Results

Western diet and fructose-feeding features
advanced MASH

Advanced MASH was established in male C57BL/6J mice by
feeding a Western diet supplemented with D-fructose in the
drinking water for 52 weeks (WD; n = 8). Age-matched control
mice (chow; n = 9) were fed chow diet and pure drinking water.
WD-fed mice gained weight relative to chow-fed mice and
exhibited elevated fasting blood glucose and serum alanine
aminotransferase levels indicating insulin resistance and liver
injury (Fig. 1A). WD-fed mice exhibited hepatic steatosis and
prominent pericellular fibrosis (Figs. 1B,C). We further observed
expansions of F4/80-positive macrophages and hepatic aSMA+

cells (Fig. S1A) but saw no indication of myofibroblast prolifera-
tion. MASH-specific KI67 staining was cytoplasmic and
frequently adjacent tocrown-like structures (Fig.S1B).Mki67RNA
mainly localized to Clec4f+ Trem2+ cells in crown-like structures,
independently of Itgax, and occasionally to large cells with round
nuclei reminiscent of hepatocytes (Figs. S1C-E). NoMki67+/Dpt+-
activated HSCs (aHSCs) or myofibroblasts were seen (Fig. S1F).

To elucidate molecular changes, we sequenced mRNA from
total liver and characterized the proteome. We detected 16,900
transcripts and 5,222 proteins with 4,968 shared features
(Fig. 1D). Differences in transcriptomes and proteomes across
animals were largely diet-driven (Fig. S1G). Comparing dietary
groups, differential expression analyses (p.adj. <0.05) revealed
7,230 transcripts and 2,580 proteins (Fig. 1D). In advanced
MASH, 434 induced genes and 605 repressed genes showed
significant, codirectional changes at the protein level (Spearman
rank correlation R = 0.61, p <2.2E-16). Differentially expressed
genes (DEGs) and proteins (DEPs) belonged to comparable
Journal of Hepatology, Marc
biological processes and pathways (Figs. 1E, S1H). Induced
genes were implicated in regenerative and immune system
processes (up-DEG, p.adj. <0.05; Fig. 1E) whereas WD-
repressed genes (down-DEG, p.adj. <0.05) were linked to
glucose, lipid, and bile acid metabolic processes (Fig. 1E).

While the differences between diet groups dominated, we
leveraged the minor differences within our WD-fed group to
identify processes that covaried. A WGCNA10 led to 23 co-
expression modules (Fig. S1I). Clustering by adjacencies of
the module eigengenes gave us seven clusters of modules
across our MASH mice (Fig. 1F). Enriched gene ontology (GO)
terms for genes in the clusters showed coupling of processes
across cell types (Fig. 1G). Some clusters inversely correlated,
such as clusters A & G, clusters B & D, and clusters E & F.
Clusters B, E, and G relating to nutrient handling, and clusters
A, D, and F reflecting zone-3 detoxification processes, regen-
eration, and inflammation, respectively. Within co-expression
modules we found signature genes of aHSCs, macrophages,
and endothelial cells, expression of which covaried tightly
across our WD-fed mice (Fig. 1G and not shown). Still, all were
significantly induced in WD-fed compared to chow-fed mice
and likely represent coupled, MASH-associated processes.

Cell type-resolved analysis of MASH-associated shifts in
hepatic gene expression

For a single cell-resolved view, we dissociated livers of 52-week
WD- and chow-fed mice (n = 6). We limited the input of hepa-
tocytes and endothelial cells through partial anti-ASGR1 and
anti-CD31 immunodepletion and sequenced libraries of live
cells (Fig. S2A). The 32,282 cells clustered into 22 Leiden
clusters, all containing cells from both conditions (Figs. 2A, B
and S2B). From marker gene expression, we identified 10 major
hepatic cell types and a population of Birc5+ cycling cells
(Figs. 2C–E and S2C). In keeping with histology and bulk data,
statistical analysis using miloR11 showed increased abun-
dances of mononuclear phagocytes (MPs), dendritic cells (DCs),
T cells/natural killer (NK) cells, and neutrophils. The same was
true for neighborhoods of mesenchymal and cholangiocyte-like
cells whereas other mesenchymal, endothelial and hepatocyte
subpopulations were reduced (Fig. 2E left).

We next assigned the annotated cell types to the WGCNA
modules from our MASH livers. These assignments confirmed
our GO analyses (Fig. S2D) and distilled the inverse relationship
between normal parenchymal function, inflammation, and
regeneration in MASH.

Expression changes within cell populations were prominent
in advanced MASH including the repression of Kupffer cell (KC)
genes Cd163 and Marco, hepatocyte Acot1-4, and hedgehog-
associated Hhip and Disp2 in HSCs (Fig. 2F). Major transcrip-
tional increases included the angiogenesis-associated gene
Esm1, macrophage Gpnmb, hepatocyte serum amyloid genes
Saa1/2, and fibrosis-associated Col1a1 and Dpt in aHSCs. We
attributed discrepancies between bulk and cluster-averaged
single-cell expression changes to changes in cell stoichiom-
etry in situ. This was most apparent for neutrophils, T cells and
B cells leading to increased whole liver S100a8, Cd3g, and
Ly6d expression. We further subclustered endothelial cells,
cholangiocyte-like cells and hepatocytes, NK cells, T cells,
DCs, neutrophils, plasma cells and B cells for increased reso-
lution (Figs. S2E-J).
h 2024. vol. 80 j 467–481 469
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We inferred gene regulatory networks defining these cell
populations in advanced MASH, using SCENIC.12 Clustering of
cells according to regulon activity (AUC) scores led to 12
clusters largely aligned with cell types (Figs. 2G and S2K, L).
Marker regulons for each cluster and mean AUC scores for
cells herein allowed us to infer cell type- and condition-specific
transcription factor (TF) activities (Figs. 2H and S2M). Top TFs
predicted to lose activity in resident cells in MASH included
HSC lineage-determining factors FOXF1,13 LHX2,14 and
NR1H4 in mesenchymal cells, HOXA5 in endothelial cells, and
the xenobiotic receptor NR1I3/CAR in hepatocytes (Fig. 2H).
Developmental and regenerative TFs appeared activated in
MASH including GATA6, MECOM, and SOX17 in endothelial
and mesenchymal cells, as well as FOXJ1, FOXP2, and HNF1B
in the cholangiocyte-like cells. MASH-repressed TF activities
within immune cell clusters included MAFB, ETV5, NR1H3 in
KCs, and a panel of T cell- and NK cell-enriched TFs including
EOMES and STAT4 (Fig. S2M). SPI1/PU.1, CEBPE, and IRF5
were among the most activated TFs within myeloid clusters
likely reflecting shifts in cluster composition in MASH.

We recapitulated at single-cell resolution the broad tran-
scriptional changes in advanced MASH. We predicted these
changes to be rooted in reset TF activities across cell types,
aligning well with the shift from nutrient and xenobiotic handling
to inflammatory and wound healing programs observed in our
bulk studies.

Liver mesenchyme dynamics in advanced MASH

We subclustered the contiguous mesenchymal population into
four clusters of Lrathi/Rgs5+ quiescent HSCs (qHSCs), Col1a1+/
Dpt+ aHSCs, fibroblasts, and Msln+/Gpm6a+ mesothelial cells
(MCs) (Figs. 3A, B). qHSCs of subcluster 1 and 2 mainly came
from healthy livers, while aHSCs/fibroblasts of subcluster 3 were
derived from MASH livers with the fraction of subcluster-3 cells
from chow-fed mice likely representing fibroblasts (Fig. 3C).

We identified subcluster marker genes and tracked their
expression across mesenchymal cells and in whole livers from
healthy and MASH mice (Figs. 3D and S3A). Markers of aHSCs/
fibroblasts related to regeneration and fibrogenesis were
induced in MASH livers together with immediate-early genes
broadly expressed across hepatic cell types. Notably, while
expression of qHSC markers were lower in individual aHSCs,
several were higher in MASH livers overall (e.g., Rgs5, Reln,
Lrat) and others (e.g., Vipr1 and Ecm1) were suppressed. This
suggested to us that the expanded population of HSCs was
toned by the MASH milieu prior to its activation. Expression
distributions within subclusters supported this view showing a
clear reduction in Vipr1hi HSCs among MASH liver-derived
subcluster 1-cells whereas Rgs5 and Lrat levels were largely
upheld (Fig. 3E). Expression of all HSC markers declined in
subcluster-3 and were all but absent in MASH aHSCs. Dpt and
Col1a1 expression on the other hand was confined to sub-
cluster 3 and induced in MASH. We confirmed the expansion of
HSCs and HSC-derived cells in MASH livers from our FLEx-
TRAP knock-in mice crossed with the Lrat-cre driver line6 (to
express mCherry-Rpl10a in HSCs) (Fig. 3F). Despite low re-
covery of Acta2+ cells by single-cell RNA sequencing
(scRNAseq), aSMA+/mCherry+ cells were readily seen in MASH
livers, indicating an HSC origin of the activated mesenchyme.

We next delineated the HSC activation trajectory in pseu-
dotime (Fig. 3G). We excluded subcluster-4 MCs, which
Journal of Hepatology, Marc
separated from subclusters 1-3 with only very few cells bridging
the two populations (Fig. S3B). A single, unbranched trajectory
recapitulated the predicted transition from qHSCs to aHSCs.
Focusing on the dominant subclusters 1 and 3, we profiled top
highly variable genes (HVGs) over pseudotime (Fig. 3H). This
activation trajectory of HSCs in MASH was reminiscent of the
HSC trajectory in carbon tetrachloride-induced liver injury,
suggesting a common HSC activation mechanism.2,7

We applied SCENIC for a focused regulatory network anal-
ysis and identification of mesenchymal TFs. AUC-based clus-
tering gave six subclusters (Figs. 3I, top and S3C) essentially
overlapping our HVG-based clusters (Fig. 3I bottom left).
Clusters 1 and 2, mainly populated by qHSCs, showed
distinctively high activities of LHX2, nuclear receptors NR1H4,
NR2F2, NR3C1, RARB, and RXRA as well as ETS1, RELB,
NFIB, and SOX5. SCENIC cluster 3 and 4 aHSCs/fibroblasts
showed higher activities of SRF, TCF21, HOXB5, KLF9, and
HEY1. Yet, TCF21 activity was seen across HSC/fibroblast
clusters and decreased in MASH (Figs. 3I and 2H). Cluster
5 MCs were dominated by BHLHE40, WT1, KLF2/4, HLF, DBP,
and FOXQ1. High activities of LHX2, NR1H4, NR2F2, NR3C1,
and TCF21 regulons yielded to a transient increase in HOXB5
activity and more sustained activity of HEY1 in HVG cluster-1
and -3 cells over pseudotime (Fig. S3E).

Expression of many qHSC signature genes was repressed
along the HSC activation trajectory but elevated in whole
MASH livers, reflecting an overall increase in MASH-toned
HSCs. Shifts in TF usage away from nuclear receptors could
have driven this transition in response to WD-induced meta-
bolic stress, tissue damage, and altered immune cell activities.

Steady-state dynamics of mononuclear phagocytes

Stellate cell activation co-occurs with profoundly changing
macrophage function.15 By investigating these changes, we
expanded on recent reports16–19 and added important new
observations. We subclustered the MP population into nine
clusters, capturing its diversity (Fig. 4A). Most MPs recovered
from the MASH livers, including monocyte and macrophage
subpopulations, rarely found in healthy livers (Fig. 4B). The
abundance of embryonically derived Timd4+ Kupffer cells
(emKCs) declined in advanced MASH while neighborhoods of
Clec4f+/Timd4–/Cd163–/Marco– KCs increased (Figs. 4C–E and
S4A). This was consistent with impaired emKC self-
renewal17,18 and replacement by monocyte-derived macro-
phages (MdMs) and KC-like cells (moKCs), but also with emKC
re-specification in MASH. The MASH-associated Clec4f+/
Timd4– KC population had increased expression of Clec1b,
Trem2, and Cd63 together with Cd5l and Vsig4. Notably, also in
healthy livers, most Clec4f+ KCs lacked expression of Timd4,
Cd163, and Marco demonstrating an inherent heterogeneity.
We hence perceived the three subclusters (1-3) as a continuum
of emKCs and Clec4f+ moKCs adapting to the MASH envi-
ronment. Subcluster-1 KCs showed the most complete
expression of KC markers while subcluster-2 and -3 KCs
shared elevated expression of macrophage markers Cd63 and
Trem2 in the MASH setting (Figs. 4D, E and S4A). A fraction of
subcluster-2 KCs expressed Mmp12, Gpnmb and lipid-
handling genes Lpl, Cd36, and Fabp5 (Figs. 4D and S4A)
while subcluster 3 was signified by higher expression of antigen
processing and presentation genes. These included Cd207
(Langerin), Tmem176b and MHC class II genes in addition to
h 2024. vol. 80 j 467–481 471
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macrophage markers (Fig. S4A) but not DC markers Flt3, Xcr1
or Clec10a. A Cd207hi population was detectable in the healthy
liver but expanded in MASH.

Besides the reconfiguration of em- and moKCs, advanced
MASH was associated with increased numbers of Ly6c2hi/
Chil3hi monocytes, transitioning monocytes, and Spn+ patrol-
ling monocytes (Figs. 4D, E; subclusters 6-8). In line with pre-
vious reports,16,20 two Trem2hi/Cd9+/Cd63+ MdM populations
expanded in MASH; subcluster 4 was characterized by Gpnmb,
Spp1 (Osteopontin) and lipid-handling genes while subcluster 5
retained Cx3cr1 and Ccr2 expression and acquired Mrc1,
Cd81, H2-Ab1, H2-Eb1, and Tmem176b. Subcluster-4 MdMs
identified as scar-associated macrophages were already pre-
sent at lower levels in healthy livers. Both MdM subclusters
contained Clec1b- and Cd5l-expressing cells, but the absence
of Clec4f distinguished these from emKCs and moKCs.

To infer transitions between cell populations in healthy and
MASH livers, we applied scVelo.21 MASH liver MPs showed a
divergence of the classical Ly6c2hi/Ccr2hi/Chil3hi monocytes into
Spnhipatrollingmonocytes and the twoTrem2hiMdMpopulations
through a transient, Ly6c2lo/Ccr2hi and MHC class II-positive
monocyte state (Fig. 4F). Among scar-associated macrophages,
the induced top-likelihood genes Gpnmb, Elovl1, Fabp5, Trem2,
and Lamp2 pointed towards increased phagocytotic capacities
(Figs. 4F and S4B). Meanwhile, specifically Cx3cr1hi/Mrc1hi/
Cd81hi MdMs transitioned further into the Cd207hi population of
subcluster 3 predicted as the main, MASH-specific endpoint.
During this transition, expression of Clec4f, Cd5l, and Vsig4
emerged while that of Cxc3r1, Ccr2, and Itgax was lost.

Importantly, we further predicted the convergence of
Clec4fhi subcluster-1 KCs with this Cd207hi KC-like subcluster
3 in MASH. Dynamic expression of KC-enriched genes (Cd5l,
Clec1b, Apoc1, Wfdc17, and C6) accompanied their transition
in concert with induction of Apoe, Mrc1, Nedd8, and Vcam1
(Figs. 4F and S4B). A focused delineation of the transition from
subcluster 1 to 3 supported Cd207hi cells being a likely end-
state in murine MASH (Fig. 4G). In cultured precision-cut liver
slices from a healthy human donor undergoing ex vivo wound
healing, MP transitions were uncoupled from the influx of
monocytes yet showed a swift repression of KC signature
genes and induction of activation markers including TREM2
and GPNMB (Fig. 4H).

CD207 was previously found to be a marker of capsule
macrophages22 but in advanced murine MASH, CD207+ cells
populated the parenchyma (Figs. 4I, J). While GPNMB+/Trem2+

MdMs were frequently observed in hepatic crown-like struc-
tures, Cd207hi/Trem2+ KC-like cells were rarely found in them
(not shown). Their high expression of Slc40a1, Igf1, and immu-
nomodulatory Irf7, Il18bp, and Hpgd could point to
inflammation-resolving functions. In the healthy liver, transition
of low numbers of Ly6c2himonocytes through subclusters 5 and
3 towards Timd4hi end cells (Fig. 4F) indicated a steady-state
monocyte contribution to the hepatic MP population (Fig. 4I, J).
based UMAP of MASH liver-derived MPs. Bottom, scaled expression of top 210
annotation shown in top color bars. (H) Rlog-transformed, scaled expression of se
Benjamini-Hochberg-corrected). Boxplot vertical bars show data range and horizont
quantification (right) with indication of total number of positive cells (n = 10-12 frame
fed mice. (K) Top left, SCENIC AUC-based Leiden subclusters 1-9 projected onto HV
SCENIC AUC-based subclusters. Bottom left, dot plot of scaled MP regulon activit
show fraction of cells in subcluster with regulon activity. Bottom right, AUC scores fo
genes; PCLS, precision-cut liver slices; UMAP, uniform manifold approximation an
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To infer transcriptional drivers, we again turned to SCENIC.
Nine AUC score-based subclusters were identified (Figs. 4K,
left, and S4D-E). SCENIC inferred high activities of NR1H3,
MAF, MAFB, TFEC, and SPIC across the KC-rich clusters 1-4
(Figs. 4K and S4F). The broad profile of NR1H3 would fit with
dual roles in Clec4f+/Timd4+ KCs specification and adaptation
to injury.17,23 Glucocorticoid receptor NR3C1 and MEF2A ac-
tivities were more confined to subcluster-1 KCs from healthy
livers, whereas active IRF7 and C/EBPa marked cells of sub-
clusters 2-4 with a larger fraction of KCs from MASH livers. The
monocyte-rich subclusters 7-9 were dominated by PU.1 (SPI1),
C/EBPb, C/EBPd, and NFIL3 whose predicted activities drop-
ped steeply in MdMs.

Inference of the steady-state transitions of MPs in healthy
liver and MASH showed the convergence of liver-resident
emKCs and MdMs in Timd4hi and Cd207hi end populations,
respectively. Proof of the contribution of both emKCs and
monocytes to the latter population in advanced MASH will
require lineage tracing.

HSC NR1H4 activity is associated with quiescence

Having seen extensive transcriptional reconfiguration of
mesenchymal and MP populations, we next predicted specific
interactions between these populations in healthy livers and
advanced MASH (Fig. 5A). Among the predicted, mesenchyme-
derived ligands with top activities were the BMPs (GDF2/
BMP9, BMP5, and BMP10) signaling autocrinally through re-
ceptors ALK3 (Bmpr1a) and BMPR2 or to KCs/MdMs through
ACVR2A and ALK1 (Acvrl1). Most mesenchyme-derived li-
gands were abundantly expressed in qHSCs and repressed in
aHSCs/fibroblasts. Strongly qHSC-enriched ligands with pre-
dicted effects on MPs further included CXCL12, CDH2,
NRXN1, MAPT, IL34, HGF, and NTN1, as supported by visu-
alization of expression patterns across HSC clusters (Fig. 5B).
Given the importance of GDF2 in the specification of KCs and
liver sinusoidal endothelial cells (LSECs),24,25 we validated our
observations in situ, demonstrating reduced per-cell Gdf2
transcript levels in MASH livers (Fig. 5C). Along with VIPR1 and
other qHSC markers, expression of GDF2 was also strongly
reduced in human precision-cut liver slices as they underwent
ex vivo wound healing (Fig. 5D).

We revisited predicted target genes in our HSC SCENIC
analysis and found Gdf2 as a putative NR1H4 target gene. The
association of NR1H4 with HSC quiescence sparked our inter-
est, as NR1H4 agonists like OCA are antifibrotic in humans and
mice.26,27 We therefore transcriptionally profiled primary murine
HSCs treated with OCA for 6 h. Culturing induces HSC activa-
tion, but OCA preserved expression of the key quiescence-
associated genes Lhx2, Lrat, Hhip, and stimulatory GS-protein-
coupled receptors (GSPCRs) in addition to Gdf2, Bmp10,
Angptl6 and other stellakines (Fig. 5E and not shown). aHSC-
associated genes Col1a2, Ccn2, Alcam, Aebp1, and Mmp10
were repressed. OCA hence had quiescence-preserving activity
variable genes across subclusters 1-3. Latent time coordinates and subcluster
lected DEGs in precision-cut human liver slices (p.adj. <0.005, n = 5, Wald test,
al bar median value. (I) Cd207 mRNA in livers from chow- and WD-fed mice, spot
s, Wilcoxon rank-sum test). (J) CD207, IBA1 protein in livers from chow- and WD-
G-based UMAP. Top right, relative contribution of each HVG-based subcluster to
ies. Colors show scaled mean AUC score for regulons across subclusters. Sizes
r indicated regulons. AUC, area under curve; FC, fold change; HVG, highly variable
d projection; WD, Western diet. (This figure appears in color on the web.)
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directly on HSCs beyond what was previously reported. Direct
NR1H4 transactivation would reflect in accessible NR1H4 IR1
binding motifs in HSC chromatin. To test this, we isolated
mCherry-tagged nuclei from livers of our FLEx-TRAPmouse line
and performed ATACseq. The NR1H4 motif was strongly
enriched (p = 1E-214) in HSC ATACseq peaks found in intronic,
intergenic, and promoter-proximal genomic regions (Figs. 5F
and S5B). Among the most enriched motifs were also motifs for
the HSC lineage-associated ETS-family, CREB, FOXF1, and
NRF. Within peaks near (+/-25 kb) transcriptional start sites of
OCA-induced genes, the NR1H4 IR1 motif was the top enriched
motif (p <1E-41, Fig. S5C) and with higher log-odds motif scores
relative to randomly sampled peaks elsewhere (Fig. 5G).
Consistent with direct regulation, peaks with NR1H4 binding
motifs were found in the vicinity of the OCA-induced qHSC
genes Vipr1, Pth1r, Lhx2, and Des. Co-enrichment of the ETS-
family binding motif in NR1H4 motif-containing peaks (not
shown) could explain the HSC-selective effects of OCA. We
corroborated our findings from genetically labeled HSCs by
single-nuclei ATACseq analysis of mesenchymal nuclei. Again,
the NR1H4 IR1 motif was highly enriched within HSC peaks (p =
1E-67) and topped the list of enriched motifs in peaks near OCA-
induced genes (p <1E-20) (Figs. S5D-E).

WeconfirmedHSC-specific co-expression ofNr1h4 andVipr1
in our scRNAseqdataset (Fig. 5H) andvalidated this inhuman liver
(NAFLD activity score [NAS] 2) in situ (Fig. 5I). Here, VIPR1-
expressing cells co-expressed NR1H4 and GDF2 whereas
NR1H4+/VIPR1– cells had large, round nuclei distinctive of he-
patocytes. NR1H4 and VIPR1 were co-expressed with LUM,
further indicating thatNR1H4+/VIPR1+ cellswereHSCs (Fig.S5F).
NR1H4 and VIPR1 more abundant in healthy liver (NAS 0) while
LUM levels increased in MASH (NAS 7). Human snRNAseq data
(GSE212837)28 corroborated HSC LUM expression in both
healthy and MASH livers (Fig. S5G). Importantly, the NR1H4
protein was also particularly abundant in PDGFR+ mesenchymal
cells (likely HSCs) lining the human liver sinusoids (Fig. 5J).

In vivo stimulation of HSC NR1H4 by OCA in mice has
proven difficult. Either due to high levels of endogenous ligands
or because of modification rendering it refractory to OCA
activation.29 We instead quantified gene expression in livers of
wild-type or Nr1h4 null mice acutely treated with the selective
NR1H4 agonist GSK2324 or vehicle.8 Like OCA, GSK2324 had
no acute effect on qHSC-expressed Ecm1, Vipr1, Pth1r, nor
Col1a1 in vivo (Fig. 5K). Mafg, expressed by both HSCs and
hepatocytes, was readily induced, and Nr1h4 was repressed as
seen in HSCs in vitro. Nevertheless, loss of NR1H4 significantly
reduced expression of Ecm1, Vipr1, and Pth1r, while Col1a1
expression was elevated. These findings were consistent with
our scRNAseq studies and with NR1H4 upholding HSC
quiescence in vivo. We found comparable albeit less pro-
nounced changes in our analysis of liver microarray data from
Nr1h4 null mice bred independently elsewhere (Fig. S5H).30

The HSC as a sinusoidal signaling nexus

GSPCR genes Vipr1 and Pth1r were repressed in aHSCs along
with other GPCRs and auxiliary factors in vivo and in vitro
(Fig. 6A, not shown). This together with the OCA-induced in-
crease in Vipr1 and Pth1r expression prompted us to examine
HSC cAMP signaling at the transcriptomic level. To profile the
cAMP response independently of receptor levels we treated
Journal of Hepatology, Marc
murine HSCs with forskolin (5 lM, 3 h). Besides induction of
canonical CREB targets and repression of hippo pathway-
regulated genes, cAMP increased expression of defining
genes for qHSC function including Foxf1, S1pr3, Hhip, Gdf2,
andHgf (Fig. S6A). We next investigated the sustained effects of
cAMP signaling in HSCs 24 h after the 3 h stimulation with
forskolin. Consistent with phenotype-preserving effects of
cAMP signaling, qHSC gene expression was upheld while
activation-associated genes were suppressed (Fig. 6B). This is
reflected in the enriched GO categories including differentiation
processes and immunomodulation (Figs. 6C and S6B).
Accordingly, cAMP-induced genes were abundantly expressed
in qHSC subclusters 1 and 2 compared to aHSCs/fibroblasts of
subcluster 3 where cAMP-repressed genes were prominent
(Fig. 6D). Bile acids and VIP are both elevated in portal circula-
tion postprandially. Having seen OCA-induced GSPCR expres-
sion, we stimulated primary HSCs with OCA prior to VIP to
potentiate its effects. In keeping with this notion, pre-stimulation
with OCA enhanced the stimulatory effects of VIP on qHSC
genes and repression of HSC activation genes (Fig. 6E).

Systemic effects of VIP complicate targeting of HSC-
specific VIPR1 in vivo. We therefore applied a chemogenetic
strategy expressing the eGPF-tagged GS-coupled designer
receptor exclusively activated by designer drugs (GSD)

5 in HSCs
for ligand-induced cAMP signaling with the otherwise biologi-
cally inert ligand DCZ (deschloroclozapine). We confirmed the
eGFP signal specifically in Des+ HSCs of Lrat-cre:GSD but not
in cre-negative littermates (Fig. S6C). We next fed these mice
(n = 3) the GAN diet for 12 weeks to invoke obesity and massive
hepatic steatosis (Fig. S6D). No differences between genotypes
were seen. After 3 days with daily oral doses of DCZ (0.1 mg/
kg), we found Gdf2 and Nr4a1 cre-dependently induced in Lrat+

HSCs recapitulating our findings from isolated HSCs in vivo in
the context of steatotic liver disease (Figs. 6F and S6E). Longer
term studies will show if HSC-specific cAMP signaling has
sinusoid-preserving and antifibrotic effects in vivo.

Combined, our findings feature HSCs as integrators and
conveyors of postprandial signals. Further, they point to the
phenotypic preservation of qHSCs as a possible direct
antifibrotic effect of NR1H4 activation and to the therapeutic
potential of HSC-directed treatment to preserve liver sinusoi-
dal health.

Discussion
In the current study, we fed mice a Western diet supplemented
with fructose for 52 weeks to recapitulate human MASH.
Steatosis, hepatocyte damage, massive expansion of the F4/
80hi macrophage population, and extensive pericellular fibrosis
were accompanied by major alterations in gene and protein
expression revealing process-coupling across hepatic cell
populations. Resolving individual cell populations by scRNA-
seq allowed us to further explore transitions of cell types and
crosstalk between them. This led us not only to the elucidation
of novel cellular dynamics in both MASH and in healthy livers,
but also to the discovery of a NR1H4-GSPCR-GDF2 signaling
module that may be exploited therapeutically.

In MASH, HSCs, the main cell type implicated in ECM pro-
duction, underwent repression of nuclear receptor gene pro-
grams conferring pericyte identity including GPCR expression.
One of these nuclear receptors, NR1H4, is a promising target for
h 2024. vol. 80 j 467–481 477
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antifibrotic therapy.26,31 NR1H4 agonists may directly oppose
HSC activation29,32 but the expression and function of NR1H4 in
HSCs have been questioned.33–35 We found NR1H4 highly
expressed in human and murine qHSCs as the sole non-
parenchymal cell type and inferred high NR1H4 activity in
qHSCs by ATACseq and SCENIC analyses. Paralleling Foxf1
and Lhx2, the expression and inferred activity of Nr1h4 in HSCs
were diminished inMASH,whereasOCA inducedqHSCmarkers
and stellakines including Gdf2, Angptl6, and Bmp10. OCA also
induced the expression ofGSPCRgenesVipr1 andPth1r thereby
priming HSCs for cAMP signaling. Why treatment with NR1H4
agonists in vivo fails to further stimulate qHSC markers despite
high NR1H4 expression is unclear. It is possible that NR1H4,
unliganded or activated by endogenous ligands, upholds qHSC
gene expression in the healthy liver via cooperation with, for
example, ETS1 and FOXF1. Posttranslational modifications
could also modulate NR1H4 activities in vivo.29 Refined studies
are needed to understand HSC-specific NR1H4 activation in
appropriate disease contexts.
478 Journal of Hepatology, Marc
Intriguingly, Nr1h4 null mice are protected against bile duct
ligation (BDL)-induced hypercholemia and fibrosis.33 Similarly,
mice lackingNr1h4 in HSCs show less BDL-induced fibrosis and
a tendency towards lower circulating alanine aminotransferase
and bile acid levels,36 arguing that either HSC NR1H4 links si-
nusoidal bile acid accumulation to HSC activation or itself con-
tributes to cholestasis. Disease context and dosage of NR1H4
ligands may explain the contrast to the HSC quiescence-
preserving effects of NR1H4 in our current study. Further,
BDL-associated fibrosis in mice is generally attributed to the
activation of portal fibroblasts expressing neither Nr1h4 nor
Lrat.37,38 Constitutive ablation of Nr1h4 in HSCs could hence
impact other mesenchymal populations, the interplay of which is
incompletely understood. Notably, Nr1h4 null mice are not pro-
tected against carbon tetrachloride- nor Schistosoma-induced
liver fibrosis.33,39

OCAhas not previously beendemonstrated to phenotypically
preserve HSC identity and sensitize towards GSPCR agonism.
Curiously, NR1H4 does induce Vipr1 in gallbladder epithelium
h 2024. vol. 80 j 467–481
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where VIP promotes choleresis through increased electrogenic
bicarbonate secretion.40 While the function of HSC-expressed
solute carriers is underexplored, the regulatory similarity raises
the interesting possibility that HSC-specific VIPR1, by aug-
menting sinusoidal blood flow, also affects peribiliary vascular
drainage and postprandial bile acid transport from the liver.

GSPCRs like VIPR1 are abundant in HSCs and promote their
postprandial relaxation. Ablation of NR1H4 or development of
MASH led tostriking repressionofVipr1. To test if VIPR1-induced
cAMPsignalingwaslinkedtoHSCquiescence,weinducedcAMP
production in isolated HSCs and recorded effects on gene
expression. Acute stimulation increased expression of quies-
cence markers including Hhip, Gdf2, Hgf, S1pr3, and Foxf1.
Sustained effects of transient cAMP-elevation included repres-
sion of ECM genes and myofibroblast markers in addition to
preservation of the qHSC program. Follow-up experiments will
determine if these effects depend on FOXF1 and if selective
elevation of cAMP in HSCs in vivo can blunt or even reverse their
activation. Transient, chemogenetic elevation of cAMP in HSCs
in vivo markedly elevated Gdf2 expression, confirming the
signaling module revealed by our scRNAseq and in vitro studies.
An anti-inflammatory and antifibrotic outcomeof cAMPsignaling
in HSCs would be in line with effects in other pathologies.41–43

Transcriptional regulators we predicted lose activity upon
HSC activation also include nuclear receptors NR2F2, NR3C1,
RARB, and RXRA as well as ETS1, IRF1, and SOX5. NR2F2 is
abundant in HSCs and LSECs and instrumental for retinoic acid
signaling during development44 but has also been implicated in
the liver injury response.45 ETS1 and IRF1 were recently pro-
posed as HSC lineage-determining factors,46 whereas SOX5 is
critical for neurogenesis and chondrocyte specification.47,48

Given its putative role in chondrocyte collagen expression, we
speculate that SOX5 and possibly NR2F2 maintain accessible
chromatin around both quiescence- and repair-associated
genes to ensure HSC plasticity and immediate response to
injury. We previously proposed a similar role for ETS1.7

The steady-state fluxes of MPs of embryonic and mono-
cyte origin expanded and rerouted in advanced MASH.
Different environments clearly guided MdMs as they transi-
tioned towards moKCs in healthy and MASH livers. In
advanced MASH, activated emKCs and Cx3cr1hi MdMs
Journal of Hepatology, Marc
appeared to converge towards Cd207hi/Trem2hi KC-like cells.
Activation of emKCs in advanced MASH involved loss of
Timd4, Cd163, and Marco expression also seen at earlier
disease stages.17 We did not experimentally validate the
mixed emKC and MdM origin of the Cd207hi population, and a
contribution from emKCs contrasts with recent reports that
Trem2+ KC-like cells in less advanced, murine MASH are
entirely monocyte derived.18,20 CCR2 is critical for monocyte
extravasation at sites of inflammation. In elegant studies of
mice fed a fibrogenic diet, Daemen et al.20 observed little
reduction in the TIM4lo KC population in Ccr2-/- mice despite
steep declines in liver Ly6Chi monocytes and CX3CR1hi

MdMs. Notably, the Ccr2-/- mice showing near-normal levels
of TIM4lo KCs all had markedly lower levels of TIM4hi KCs.
Whether accelerated loss of resident TIM4hi emKCs in these
mice had opened the niche to Ccr2-/- monocytes escaping the
recruitment block, or if reduced monocyte infiltration led more
activated emKCs to contribute to the TIM4lo population re-
mains unclear. The repression of HSC Gdf2 and Bmp10 in
MASH presented here may contribute to sinusoidal pheno-
typic transition. GDF2-ALK1 and GDF2-BMPR2 signaling is
crucial for KC and LSEC specification, respectively,24,25,49 and
missing input from HSCs may accelerate deterioration of the
sinusoidal niche.19 Such a shift from qHSCs upholding sinu-
soidal specialization to fibrogenic aHSCs is reminiscent of
their transition from HGF-producing suppressors of hep-
atocarcinogenesis to tumor-promoting myofibroblasts50 upon
activation. This highlights the wider prospects of therapeutic
preservation of HSC quiescence in chronic liver disease.

Our study establishes a conceptual framework where sig-
nals preparing the liver sinusoid for the postprandial state
concurrently promote its phenotypic stability through tran-
scriptional networks and paracrine mediators. Within this
framework, HSCs emerge as a nexus for the integration and
transmission of physiological signals sustaining sinusoidal ho-
meostasis. In advanced MASH, ongoing parenchymal damage,
inflammation, and HSC activation may drive sinusoidal deteri-
oration both through fibrogenesis and by desensitization to
these physiological cues. Therapeutic utilization of this pericyte
signaling module may on the other hand restore liver sinusoi-
dal homeostasis.
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