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Abstract
Detecting early warning signals of developing mood disorders in continuously collected affective experi-
ence sampling (ESM) data would pave the way for timely intervention and prevention of a mood disorder
from occurring or to mitigate its severity. However, there is an urgent need for online statistical methods
tailored to the specifics of ESM data. Statistical process control (SPC) procedures, originally developed for
monitoring industrial processes, seem promising tools. However, affective ESM data violate major assump-
tions of the SPC procedures: The observations are not independent across time, often skewed distributed,
and characterized by missingness. Therefore, evaluating SPC performance on simulated data with typical
ESM features is a crucial step. In this article, we didactically introduce six univariate and multivariate SPC
procedures: Shewhart, Hotelling’s T2, EWMA, MEWMA, CUSUM and MCUSUM. Their behavior is
illustrated on publicly available affective ESM data of a patient that relapsed into depression. To deal with
the missingness, autocorrelation, and skewness in these data, we compute and monitor the day averages
rather than the individual measurement occasions. Moreover, we apply all procedures on simulated data
with typical affective ESM features, and evaluate their performance at detecting small to moderate mean
changes. The simulation results indicate that the (M)EWMA and (M)CUSUM procedures clearly outper-
form the Shewhart and Hotelling’s T2 procedures and support using day averages rather than the original
data. Based on these results, we provide some recommendations for optimizing SPC performance when
monitoring ESM data as well as a wide range of directions for future research.

Translational Abstract
Detecting early warning signals of developing mood disorders in continuously collected data, would pave
the way for timely intervention and prevention of a mood disorder from occurring or to mitigate its severity.
We focus on data collected in experience sampling (ESM) studies, where individuals report on their mo-
mentary affect at a number of occasions throughout the day, for multiple days. To detect such early warning
signals, there is an urgent need for online statistical methods tailored to the specifics of ESM data.
Statistical process control (SPC) procedures, originally developed for monitoring industrial processes, seem
promising tools. However, affective ESM data violate major assumptions of the SPC procedures. Therefore,
evaluating SPC performance on simulated data with typical ESM features is a crucial step. In this paper, we
didactically introduce three univariate and three multivariate SPC procedures. Their behavior is illustrated
on publicly available affective ESM data of a patient that relapsed into depression. To deal with the assump-
tion violations, we compute and monitor the day averages rather than the individual measurement occasions.
Moreover, we apply all procedures on simulated data with typical affective ESM features, and evaluate their
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performance at detecting small to moderate mean changes. The simulation results indicate that certain SPC
procedures clearly outperform others, and support using day averages rather than the original data. Based on
these results we provide some recommendations for optimizing SPC performance when monitoring ESM
data as well as a wide range of directions for future research.

Keywords: statistical process control, online monitoring, experience sampling method, detection of
mean changes

Mood disorders, including major depression, are highly preva-
lent and come with a large cost for individuals, their social envi-
ronment and society in general (Steel et al., 2014; Vigo et al.,
2016; Wittchen, 2012). Early detection of developing mood disor-
ders is therefore of great importance, as this would allow to inter-
vene and to prevent an episode from occurring or to mitigate its
severity. Given that mood disorders are characterized by altered
emotional and affective experiences, monitoring these affective
experiences across time may be a promising solution.
To capture affective fluctuations over time, many researchers use

experience sampling (ESM) approaches (Myin-Germeys et al., 2009,
2018). In ESM studies, participants are instructed to report on their
momentary affect at a number of occasions throughout the day, for
multiple days. The type of data that are generated by ESM studies are
called intensive longitudinal data (see e.g., Hamaker & Wichers, 2017;
Lafit et al., 2021). Between-person comparisons of ESM data show
that healthy persons generally experience higher levels of positive
affect and lower levels of negative affect than depressed persons and
demonstrate a certain level of resilience, in that intense emotions do
not linger long (Dejonckheere, Mestdagh, et al., 2019; Dejonckheere
et al., 2018; Hollenstein et al., 2013; Houben et al., 2015). Moreover,
retrospective analyses of longer-term within-person ESM studies yield
first indications that in case of an imminent depressive episode, a per-
son’s affective system may become less resilient (i.e., higher auto cor-
relation) and more variable and may show increased levels of negative
affect and decreased levels of positive affect (Cabrieto, Adolf, et al.,
2018; Cabrieto et al., 2019; Nelson et al., 2017; Olthof et al., 2020;
Smit et al., 2019; Wichers et al., 2020; Wichers & Groot, 2016). Such
changes may thus be potential early warning signals of an imminent
depression. Hence, online scanning continuously harvested ESM data
for the presence of these early warning signals may be fruitful in the
prevention and timely treatment of severe depression.
The goal of this article is to didactically introduce existing

online methods from other scientific disciplines and to evaluate
how useful they are for detecting (small) changes in the level of
positive and negative affect across time. We focus on the family of
statistical process control (SPC) procedures (Montgomery, 2009).
The origin of SPC lies in industry, where it was developed to mon-
itor production processes over time (Shewhart, 1931). Nowadays,
SPC techniques are widely used in numerous domains, such as cli-
mate change (Hackney et al., 2013), agriculture (Mertens et al.,
2008), and pharmaceutics (Silva et al., 2017). Smit et al. (2019)
recently reported a first application of a univariate SPC technique
in depression research. However, up to now, it remains unclear
how well SPC handles the specific characteristics of ESM data.

Statistical Process Control

SPC was originally devised to monitor industrial production
processes (Shewhart, 1931). The central idea is that quality scores of

products will always show some natural variability. The production
process is said to be in statistical control if it remains within control
limits derived from this variability. However, when a production
process is perturbed, the distribution of the quality measures
changes, and some of the quality scores may exceed the control lim-
its, indicating that the process is out-of-control.

To apply SPC procedures in practice, two distinct phases are
required (for a detailed introduction, see Montgomery, 2009). Dur-
ing Phase I, the natural variability of a set of in-control data is
evaluated in order to establish an in-control baseline distribution.
The actual online monitoring takes place in Phase II. In this phase,
the incoming continuously harvested data are compared to the in-
control distribution, to detect and test whether and when the pro-
cess generating the data goes out-of-control. To assess and visual-
ize the behavior of the process, a control chart is usually drawn. In
such a chart, the monitored scores are plotted against time. An
example of a Shewhart control chart (see Shewhart Procedure sec-
tion for more details) is given in Figure 1a, where Phase I consists
of 25 measurement occasions; in this phase, the monitored scores
were simulated from a normal distribution with l1 = 0 and r1 = 1.
The remaining 50 measurement occasions belong to Phase II. The
scores in this second phase were randomly sampled from a normal
distribution with l2 = 1 and r2 = 1, implying a mean change of
one. The control chart contains a center line (CL), an upper control
limit (UCL), and a lower control limit (LCL), which are computed
based on the in-control data in Phase I. As long as the Phase II
scores fall within the control limits, the process is considered to be
in-control. As soon as a Phase II score goes beyond the control
limits, the process is flagged as out-of-control. In the control chart
in Figure 1a, this happens at measurement occasion 30, as indi-
cated by the first red dot.

The performance of SPC procedures and associated control charts is
usually assessed by inspecting the run length (denoted as RL). This run
length indicates at which Phase II occasion the process goes out-of-
control for the first time. In case the process did not change, this run
length should ideally be high because an out-of-control signal would
be a false positive, whereas it should be short in case the process does
change to allow for fast interventions. However, the run length can
hugely vary across different samples from the same Phase I and Phase
II distributions, as demonstrated in Figure 1b. This figure shows the
typical positively skewed run length distribution of an in-control pro-
cess. One usually reports the average of this RL distribution (average
run length or ARL), where one distinguishes between the in-control
ARL0 and the out-of-control ARL1. The ARL0 is the average run length,
given that the process remains in-control throughout Phase II and is
ideally as large as possible. For instance, the ARL0 associated with
Figure 1b amounts to 390. The ARL1 is the average run length given
that the process changed at the start of Phase II. ARL1 values quantify
the power to detect a specific change and should therefore be as small
as possible. An example is shown in Figure 1c, where a change of 1r
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occurred at the start of Phase II, resulting in an ARL1 of 1.8. The ARL0
and ARL1 are in trade off relation with each other (as is usually the
case with false alarms and power). Thus, different methods will resolve
the trade-off differently.
A wide variety of univariate and multivariate SPC procedures have

been proposed, where the univariate ones have been researched most
extensively. In this article, we will study the performance of six SPC
procedures. First, we will evaluate three standard univariate proce-
dures: the Shewhart procedure (Shewhart, 1931), the exponentially
weighted moving average (EWMA; Roberts, 1959) procedure, and the
cumulative sum (CUSUM; Page, 1954) procedure. As we will discuss
in the next section, these three SPC procedures differ with respect to
which score they actually monitor: the original data or a derived score
(e.g., a cumulative sum, an exponentially weighted moving average).
This difference obviously affects the computation of the control limits
and consequently the associated ARL0 and ARL1. However, all three
procedures build on the assumption that the original data are

independently sampled from a normal distribution. Moreover, a suffi-
cient amount of Phase I data is needed to reliably compute the control
limits. Second, we will consider the multivariate extensions of these
three procedures, which are the Hotelling’s T2 procedure (Hotelling,
1947), the multivariate exponentially weighted moving average
(MEWMA; Lowry et al., 1992) procedure, and the multivariate cumu-
lative sum (MCUSUM; Crosier, 1988) procedure, respectively.

The Current Study

The current study investigates how well the six above mentioned
SPC procedures perform when applied to typical affective ESM data.
ESM data can indeed be expected to violate one or more of the assump-
tions (i.e., normality, independence, sufficient amount of Phase I data)
underlying these SPC procedures. While positive affect items are typi-
cally rather normally distributed, negative affect items tend to be
strongly positively skewed in healthy controls (Heininga et al., 2019).

Figure 1
Examples of a Control Chart and Run Length Distributions

Note. (a) Example of a control chart. Phase I consists of the first 25 measurement occasions, the remaining
50 measurement occasions constitute Phase II. A mean change was introduced at the start of Phase II. The
dashed horizontal lines indicate the UCL and LCL. The solid horizontal line denotes the CL. The red dots indi-
cate out-of-control scores (i.e., scores that are beyond the control limits). (b) Example of a RL0 (run length
under the assumption of no change) distribution based on 10,000 simulated data sets, in which both the Phase I
and Phase II scores were independently sampled from the same normal distribution. (c) Example of a RL1 (run
length when change happens) distribution based on 10,000 simulated data sets, where the Phase I scores were
independently sampled from a normal distribution with l1 = 0 and the Phase II scores from a normal distribu-
tion with l2 = 1; both distributions had equal variances. CL = center line; UCL = upper control limit; LCL =
lower control limit.

DETECTING MEAN CHANGES IN ESM DATA IN REAL-TIME 3

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
lA

ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
tt
o
be

di
ss
em

in
at
ed

br
oa
dl
y.



Moreover, the obtained ESM scores usually are serially dependent
rather than independent (Houben et al., 2015; Kuppens et al., 2010),
reflecting the tendency of intense emotions to linger for a while. An
additional complication here is that the measurement occasions in
ESM are usually not equidistant, because participants for instance do
not report on their experiences during the night. Finally, whereas for
an industrial production process it may be easy to obtain a high num-
ber of Phase I observations, when monitoring a single individual, it is
often unfeasible to collect a large amount of data under in-control con-
ditions. Therefore, it is important to shed light on how robust SPC pro-
cedures are against violations of these assumptions. To this end, we
will simulate data with typical ESM features and inspect the resulting
ARL0 and ARL1 values.
In this study, we focus on the detection of (small) changes in the level

of positive and negative affect, and thus on mean changes across time. It
is important to note here that other early warning signs, such as autocor-
relation and variance changes often also show up in the mean, as these
statistical measures are to some extent interrelated (see e.g., Mestdagh et
al., 2018). Moreover, a reanalysis of the unique information in these
measures in multiple ESM studies revealed that mean levels of positive
and negative affect are often sufficient to indicate that a person is experi-
encing depressive symptoms (Dejonckheere, Mestdagh et al., 2019).
The remainder of this article is structured as follows. First, six well-

known univariate and multivariate SPC procedures are explained
through an illustrative example, using publicly available ESM data.
Next, we report on a simulation study where we apply these six SPC
procedures to simulated data based on empirical ESM data. Lastly, a
discussion of the results and directions for future research is presented.

An Overview of Six Standard SPC Procedures

We first describe the ESM data that we will use throughout this sec-
tion for illustrative purposes. Next, we introduce the three univariate
SPC procedures: Shewhart, EWMA, and CUSUM, followed by the
three multivariate extensions: Hotelling’s T2, MEWMA, and MCU-
SUM. We used the R implementation available in the qcc (Scrucca,
2004) and MSQC packages (Santos-Fernandez, 2016), respectively.
The R code for the illustrative example and numerical examples of the
SPC procedures applied to the ESM data are available on OSF at
https://osf.io/kv7hg/.

ESMData

The ESM data were provided by a mental health care user with a
history of major depressive disorder (Groot, 2010; Wichers & Groot,
2016). The participant was a 57-year-old male and had been using anti-
depressants for the previous 8.5 years. During the experiment, the par-
ticipant underwent a dose reduction of the antidepressant venlafaxine.
The experiment consisted of three periods: a baseline period (4 weeks),
a double-blind period containing the dose reduction (14 weeks), and a
follow-up period (16 weeks). During the double-blind period, the par-
ticipant’s antidepressant dose was gradually reduced from 150 mg to 0
mg over a period of 8 weeks. The dose reduction scheme started on
Day 42 and ended on Day 98, to which both the participant and
researchers were blind. Around Day 127 of the experiment (i.e., the
start of the follow-up), a change in depressive symptoms was observed
and the participant relapsed into depression. The ESM protocol con-
sisted of 10 measurements per day during which the participant
reported on a wide range of momentary states, including affective ones.

Given this setup of the experiment, we used the ESM data of the first
41 days as the Phase I data and the remaining data as the Phase II data.
We investigated whether we could confirm the earlier findings for these
data, that pointed toward distributional changes up to two months before
the relapse (Cabrieto et al., 2019; Smit et al., 2019). A crucial benefit of
such an early detection, is that it allows for timely intervention. Thus,
we checked whether and when the ESM data seem to go out-of-control,
indicating a change in distribution, using six different SPC procedures.

In our analysis, we focused on two affective states: a negative one,
“restless” (see Smit et al., 2019); and a positive one, “cheerful.” Both
affective states were measured on a scale from 1 (not) to 7 (very). Fig-
ure 2a and 2b show the resulting data and associated boxplots for Phase
I and II. In both phases, “restless” and “cheerful’ are right skewed (Fig-
ure 2b). Computing the lag one autocorrelation of each affective state,
we see that the data are serially dependent. For instance, in Phase I, the
autocorrelation amounts to .24 for “cheerful.”1 Moreover, the partici-
pant failed to provide data at many measurement occasions (i.e., 38%,
to be precise). All three data characteristics are challenging, because
SPC assumes that the monitored scores are independently sampled
from a normal distribution. To handle the skewness, the serial depend-
ence and the missing data, we decided to monitor the day averages of
these affective states rather than the scores on the individual measure-
ment occasions. First, Figure 2c and 2d show that computing day aver-
ages indeed renders the skewed distributions less skewed. Second, the
autocorrelation in Phase I reduced to .17 for “cheerful.” Third, it allows
to easily handle missing data, as for all but one day, the participant
responded to at least one measurement occasion.2

The day averages of “restless” and “cheerful” were centered around
the mean of Phase I (so that the average score in Phase I is 0). This cen-
tering operation was needed as for some of the SPC procedures (i.e.,
CUSUM, MCUSUM, and MEWMA), the control limits are calculated
using the spc package in R (Knoth, 2020) or are based on simulations,
which assume that the Phase I average equals 0. Figure 2 shows that
the day averages seem to fluctuate more after the dose-reduction, which
ended on Day 98 (as indicated by the second black line in Figure 2c).

Univariate Statistical Process Control Methods

Shewhart Procedure

Monitored Score. The Shewhart procedure3 (Shewhart, 1931)
directly monitors the observed scores xi, where i ranges from 1 to t. t
denotes the total number of measurement occasions and consists of t1
occasions in Phase I and t2 occasions in Phase II (that is, t = t1 þ t2).
Other variants of the Shewhart procedure exist (e.g., rational subgroup
approach), but we only focus on the Shewhart procedure for individual
measurements in this article, given our ESM application. For

1 The autocorrelation was computed on the subset of equidistant
measurement occasions.

2 Due to missing values, no day average could be obtained for Day 125.
Given that the data are merely used for illustration, this day was left out,
resulting in 238 days.

3 Additionally, a set of decision rules called the Western Electric rules
(Western Electric, 1956) can be used to flag an observation as out-of-
control: (a) one observation falls beyond the 3br1 control limits; (b) two out
of three consecutive observations fall beyond the 2br1 limits; (c) four out of
five consecutive observations fall beyond the 1br1 limits; and (d) eight
consecutive observations are all located above (resp. below) the center line.
Simulation results indicated that the performance of the Shewhart method
was not better when using these rules.
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simplicity, we will not use the qualifier “for individual measurements”
in the remainder.
Calculation of the Control Limits. The calculation of the

control limits starts by quantifying the amount of natural variation
in Phase I. The default option4 in the qcc package is to estimate
the population5 standard deviation r1 of the scores in Phase I by
first computing the moving range MRi of each pair of successive
observations, starting at i = 2:

MRi ¼ jxi � xi�1j:

Next, the average moving rangeMR is calculated:

Figure 2
Raw Scores and Day Averages of the Affective States "Restless" and "Cheerful" During a 239-day Antidepressent Reduction ESM Study

Note. (a) Raw scores at beep level of the affective states “restless” and “cheerful”. The experimental periods are indicated by the varying background
shading. The start (Day 42, Beep 280) and end (Day 98, Beep 666) of the reduction scheme are indicated by the black vertical lines. (b) Boxplots of the
scores of "restless" and “cheerful”, for Phase I and Phase II. (c) Day averages of the affective states “restless” and “cheerful”. The start (Day 42) and
end (Day 98) of the reduction scheme are indicated by the black vertical lines. (d) Boxplots of the day averages of “restless” and “cheerful”, for Phase I
and Phase II. ESM = experience sampling.

4 Though the Shewhart procedure is typically based on the moving
range, the sample standard deviation can also be used to estimate r1. The
choice influences SPC performance when the data is autocorrelated. Using
the moving range of two successive observations is the default option of
the qcc R package. Note that our simulation results reveal that the Shewhart
procedure performs rather badly, also for independently and normally
distributed observations, where using the sample standard deviation or the
moving range are expected to yield the same results.

5 The population parameters l and r are used in the literature on
statistical process control. However, as these population parameters
are unknown, they are replaced by sample estimates. bl1 thus equals the
sample estimate x–1 of Phase I. For the multivariate charts, R1 represents
the sample estimate of the covariance matrix of Phase I. Additionally, in
the literature, the Phase I average bl1 is sometimes referred to as bl0.

DETECTING MEAN CHANGES IN ESM DATA IN REAL-TIME 5

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
lA

ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
tt
o
be

di
ss
em

in
at
ed

br
oa
dl
y.



MR ¼

Xt1

i¼2
MRi

t1 � 1
;

where t1 is the number of measurement occasions in Phase I.
Under the assumption of normally and independently distributed
sores, dividing MR by 1.128 yields an unbiased estimate of r1

(Woodall & Montgomery, 2000), that we will denote by r̂1. Using
r̂1, the UCL and LCL are determined as follows:

UCL ¼ l̂1 þ LShewhatr̂1;

and

LCL ¼ l̂1 � LShewhartr̂1;

where l̂1 is the estimate of the Phase I mean. The parameter
LShewhart determines the width of the in-control zone for Phase II. The
LShewhart value is chosen such that the probability of having an out-
of-control observation, given that the process remains in-control in
Phase II, is very low. LShewhart is often set to 3, which implies that the
Type I error a = .0027 (Montgomery, 2009), if the Phase II scores
are assumed to be independently drawn from Nðl1; r2

1Þ. Given
these assumptions, it takes an average of 370 draws before a draw
falls outside the [LCL, UCL] interval (i.e., 370 is approximately the
mean of the geometric distribution with the event probability set to
a ¼ :0027, such that 1a � 370). Therefore, the ARL0 equals 370.

EWMA Procedure

Monitored Score. Rather than monitoring the observed scores
themselves, the EWMA procedure (Roberts, 1959) combines past
information with current information and tracks a weighted sum of
the scores up to now, where the weights depend on how long ago a
score was observed. Specifically, the EWMA procedure computes
the exponentially weighted moving average zi at each measurement
occasion i (i = 1; . . . ; t):

zi ¼ kxi þ 1� kð Þzi�1:

The starting value zo is set to the Phase I average l̂1. The constant
0 , k # 1 is the weight given to the most recent score. In SPC lit-
erature, a weight in the interval .05 # k # .25 is usually recom-
mended, where lower values for k are useful for detecting smaller
mean changes (Montgomery, 2009). We set it to .1, which is the
default value of the qcc package.6

Calculation of the Control Limits. Estimating r1 by the
sample standard deviation, the UCL and LCL in the EWMA chart
are defined as follows:

UCL ¼ l̂1 þ LEWMAr̂1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

2� kð Þ ½1� 1� kð Þ2i�
s

and

LCL ¼ l̂1 � LEWMAr̂1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

2� kð Þ ½1� 1� kð Þ2i�
s

;

where the term ½1� 1� kð Þ2i� approaches one as i increases, imply-
ing that the control limits do not change anymore (Montgomery,
2009). The parameter LEWMA again determines the range of scores

that are considered in-control. To obtain an ARL0 of 370 given k =
.1, we set LEWMA = 2.7, based on the output of the R package spc
(Knoth, 2020).

CUSUM Procedure

Monitored Score. The CUSUM procedure also combines
past information with current information, by monitoring cumu-
lative sums across the measurement occasions (Page, 1954). It
separately sums information pointing toward a positive and a
negative mean change, yielding two one-sided CUSUMs, an
upper one and a lower one, that can be tracked together in one
chart. The upper CUSUM value Cþ

i at measurement occasion i
is defined as:

Cþ
i ¼ 0 if Yþ

i # K
Yþ
i � K if Yþ

i > K
;

�
where Yþ

i ¼ xi � l̂1ð Þr̂1
�1 þ Cþ

i�1 and Cþ
0 = 0. The parameter K is

a scale-free allowance parameter, which has to be set relative to
the expected mean change. Specifically, it is recommended to
choose K = .5d, where d is the expected change size in r1 units.
The upper CUSUM Cþ

i is reset to 0, when standardizing xi and
adding it to the previous upper CUSUM value yields a value that
is not larger than K. Otherwise, Cþ

i is updated by adding the dif-
ference between the standardized xi score and K to Cþ

i�1.
Similarly, the lower CUSUM value C�

i at measurement occa-
sion i is defined as:

C�
i ¼ 0 if Y�

i $� K
Y�
i þ K if Y�

i ,� K
;

�
where Y�

i ¼ xi � l̂1ð Þr̂1
�1 þ C�

i�1 and C
�
0 = 0.

Calculation of the Control Limits. As far as we know, no
analytical formulas exist for computing the UCL and LCL. We
therefore determined them for an ARL0 of 370 using the spc pack-
age in R (Knoth, 2020). Setting K = .5, yielded an UCL of 4.77
and a LCL of –4.77. Note that the Cþ

i values are compared with
the UCL and the C�

i values with the LCL.

Application of the Three Univariate SPC Procedures to
the ESM Data

Figure 3 shows the control charts that are obtained when applying
the Shewhart, the EWMA, and the CUSUM procedures to the day
averages of “restless.” The red dots indicate the measurement occa-
sions that are considered to be out-of-control. All three charts show a
clear trend indicating that the affective process quickly goes out-of-
control, from Day 51 onward. The Shewhart results seem less clear-
cut than those of the EWMA and CUSUM chart, because according to
the Shewhart chart, many days after Day 51 are still in-control. Indeed,
in the CUSUM and EWMA charts, we do not observe out-of-control
days in the first 8 days of Phase II (i.e., until Day 51), but afterward
almost all days are flagged as out-of-control. This difference in trends
is however natural if one considers that CUSUM and EWMA

6 It should be noted that applications in psychopathology research may
be quite different from previous applications and it could be valid to
explore other options. Therefore, we also evaluated setting k = .05, but
obtained very similar simulation results.
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cumulate information, whereas the Shewhart procedure looks at indi-
vidual scores, and should therefore not be interpreted too strongly.
Actually, given that the practical consequence of a first out-of-control
observation would be to check up on the monitored subject immedi-
ately, all charts would set off alarm bells rather quickly in Phase II and
well in advance of the relapse into depression at Day 127. The
CUSUM chart seems to be slightly more sensitive than the EWMA
chart, in that the affective process consistently remains out-of-control
from Day 51 onward, but this may depend on the parameter values
used to construct the control charts (i.e., EWMA parameter k;
CUSUM parameter K). Note that this clear out-of-control trend starts
well in advance of the relapse into depression at Day 127. The control
charts for the day averages of “cheerful” can be found at https://osf.io/
kv7hg/.

Multivariate Statistical Process Control Methods

We now discuss the multivariate extensions of the three presented
univariate SPC procedures. These multivariate extensions share two
important features. First, all multivariate procedures transform the
multivariate scores into a univariate score, by computing the deviation
between the original or a derived score vector at a measurement occa-
sion and the Phase I averages. Herewith, only the size, but not the
direction of this deviation (i.e., decrease or increase), is taken into
account. This means that multivariate procedures employ a single
control limit only and one-sided testing is impossible. Second, all
the multivariate control charts take the linear dependencies between
the monitored processes into account when transforming the multivar-
iate scores into a univariate one. Intuitively, a simultaneous increase

Figure 3
Shewhart Chart, EWMA Chart, and CUSUM Chart of the Day Averages of
“Restless”

Note. In the CUSUM chart, the upper CUSUM is shown in black and the lower CUSUM
in gray, and the C values on the y-axis are shown on a logarithmic scale. Phase I consists of
the first 41 days, the remaining days constitute Phase II, as indicated by the first dashed ver-
tical line. The second dashed vertical line indicates the day of relapse (Day 127). The
dashed horizontal lines indicate the UCL and LCL. The solid horizontal line denotes the
CL. The red dots indicate the out-of-control days that fall beyond the control limits.
EWMA = exponentially weighted moving average; CUSUM = cumulative sum; CL = cen-
ter line; UCL = upper control limit; LCL = lower control limit.
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in two independent processes is indeed more indicative of a mean
change than a similar increase in two strongly correlated processes.

Hotelling’s T2 Procedure

Monitored Score. The Hotelling’s T2 procedure (Hotelling,
1947) is a multivariate extension of the Shewhart procedure in that
the monitored Hotelling T2

i score only accounts for the observed
scores at measurement occasion i:

Hotelling T2
i ¼ xi � l̂1ð Þ0R̂1

�1 xi � l̂1ð Þ;
where xi and l̂1 are vectors that respectively contain the scores of
the p tracked variables at measurement occasion i and the esti-

mated Phase I averages. R̂1 is the estimated covariance matrix of
Phase I. To illustrate the influence of the covariance matrix, let us
consider an example in which two variables are monitored, where
xi ¼ 1; 1½ � and l̂1 ¼ ½0; 0�. We first assume strongly de-

pendent variables and use a covariance matrix R̂1 =
1 :9
:9 1

� �
. In

this case, Hotelling T2
i =

1� 0
1� 0

� �0
1 :9
:9 1

� ��1
1� 0
1� 0

� �
= 1.05.

Second, we consider independent variables and take R̂1 =

1 0
0 1

� �
. Then, Hotelling T2

i =
1� 0
1� 0

� �0
1 0
0 1

� ��1
1� 0
1� 0

� �
=

2.0. This example demonstrates that Hotelling T2
i is larger when

two independent processes deviate in the same direction from the
Phase I averages. Finally, we investigate two processes that are

strongly negatively correlated and use R̂1 = ½ 1 �:9
�:9 1

�. Then,

Hotelling T2
i =

1� 0
1� 0

� �0
1 �:9

�:9 1

� ��1
1� 0
1� 0

� �
= 20. This

illustrates that Hotelling T2
i is even larger when two strongly nega-

tively correlated processes deviate in the same direction from the
Phase I averages.
Calculation of the Upper Control Limit. The upper control

limit is defined as (Tracy et al., 1992):

UCL ¼ p t1 þ 1ð Þ t1 � 1ð Þ
t12 � t1p

Faðp; t1 � pÞ;

where F denotes the F-distribution and a is the significance level.
To obtain an ARL0 of 370, we set a to .0027; like we did in the
Shewhart procedure.

MEWMA Procedure

Monitored Score. The MEWMA procedure (Lowry et al.,
1992) is the multivariate extension of the EWMA procedure.
Therefore, MEWMA computes the multivariate exponentially
weighted moving averages zi at the different measurement occa-
sions i:

zi ¼ kxi þ 1� kð Þzi�1:

The starting vector z0 equals l̂1. Again, the constant 0 , k # 1,
that we set to .1, specifies the weight given to the current

observations. Using zi, we obtain the MEWMA T2
i values that

are monitored:

MEWMA T2
i ¼ ðzi � l̂1Þ0R�1

zi ðzi � l̂1Þ;

where Rzi is the MEWMA covariance matrix at measurement
occasion i, calculated as:

Rzi ¼
k

2� k
½1� 1� kð Þ2t2;i �R̂1:

t2;i is the ith time point in Phase II.
Calculation of the Upper Control Limit. The control limit

for an ARL0 of 370 was determined using the spc package (Knoth,
2017; 2020). Given k = .1, the UCL is 10.07.

MCUSUM Procedure

Monitored Score. The MCUSUM procedure is the multi-
variate extension of the CUSUM procedure. Although several
multivariate extensions have been proposed, we focus on the
proposal by Crosier (1988).7 The proposal replaces the scalars
in the univariate CUSUM procedure by the corresponding vec-
tors, and accounts for the covariance of the different moni-
tored variables. Hence, the MCUSUM vectors Cþ

i are defined
as8

Cþ
i ¼

0 if Yþ
i # K

Cþ
i�1 þ xi � l̂1

� 	
1� K

Yþ
i

� �
if Yþ

i > K ;

8<:
where Yþ

i ¼ ½ Cþ
i�1 þ xi � l̂1

� 	0
R̂1

�1 Cþ
i�1 þ xi � l̂1

� 	�1=2. The
starting vector Cþ

0 is set to 0. In line with the CUSUM proce-
dure, the allowance parameter K is set relative to the expected
size of the mean change d, expressed in terms of standard devi-
ations: K = .5d. Based on the MCUSUM vectors Cþ

i , we obtain
the MCUSUM Ti values that are monitored:

MCUSUM Ti ¼ ½Cþ
i
0 R̂1

�1 Cþ
i �1=2:

Calculation of the Upper Control Limit. The control limit
for an ARL0 of 370 was based on the simulation results of Lee and
Khoo (2006). When monitoring two variables and setting the
allowance parameter to K = .5 (i.e., the default value in the MSQC
package), the appropriate UCL amounts to 6.21.

7 The MC1 procedure proposed by Pignatiello and Runger (1990) is also
available in the MSQC package in R (Santos-Fernandez, 2016). The
simulation results for the MCUSUM and MC1 procedures do not differ
much, aside from the ARL0 values and the ARL1 values for a mean change
of .25r. However, as one procedure does not consistently outperform the
other, we only focus on the MCUSUM procedure. Details of the MC1
procedure can be found in Appendix A and the simulation results can be
found at https://osf.io/kv7hg/.

8 The MCUSUM chart applied to univariate data is equal to the CUSUM
chart. As the relation between the CUSUM and MCUSUM charts may not
be directly apparent, it is demonstrated in Appendix B.
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Application of the Three Multivariate SPC Procedures to
the ESM Data

Figure 4 shows the control charts that result from applying the
three multivariate SPC procedures to the day averages of “restless”
and “cheerful.” Note that the correlation between the day averages
of “restless” and “cheerful” amounted to –.48 in Phase I and –.53
in Phase II. The results are largely in line with the conclusions
drawn from the corresponding univariate charts. In the Hotelling’s
T2 chart, some days are flagged as out-of-control, which are inter-
spersed with in-control days. The MEWMA and MCUSUM charts
go out-of-control from Day 51 onward, although the MEWMA
chart briefly returns in-control around Day 70; this difference in
MEWMA and MCUSUM results may again be due to the parame-
ter tuning. Taken together, all charts indicate possible mean
changes early on in Phase II.

Dependence of SPC Results on Data Characteristics

In this section we review the literature on the performance of
the six SPC procedures under study. We focus on the influence of
four data characteristics: size of the mean change, distribution
of the Phase I data, presence of autocorrelation and the amount of
data in Phase I.

Size of the Mean Change

The Shewhart and Hotelling’s T2 procedures directly monitor
the observed scores, making them poor at detecting small mean
changes in the underlying process (#1.5r) but rather useful for
detecting larger changes and sudden spikes in the observed data
(Hotelling, 1947; Montgomery, 2009; Shewhart, 1931). The
EWMA and CUSUM procedure, as well as their multivariate
counterparts, combine past information with current information,

Figure 4
Hotelling’s T2 Chart, MEWMA Chart and MCUSUM Chart of the Day Averages of
“Restless” and “Cheerful”

Note. In the MCUSUM chart, the T scores on the y-axis are shown on a logarithmic scale. The
Phase I consists of the first 41 days, the remaining days constitute Phase II, as indicated by the
first dashed vertical line. The second dashed vertical line indicates the day of relapse (Day 127).
The dashed horizontal line indicates the UCL. The red dots indicate the out-of-control days that
fall beyond the control limit. MEWMA = exponentially weighted moving average; CUSUM = cu-
mulative sum; CL = center line; UCL = upper control limit; LCL = lower control limit.
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making them suitable for detecting small changes in the underly-
ing process (Crosier, 1988; Lowry et al., 1992; Montgomery,
2009; Page, 1954; Roberts, 1959). We therefore expect that the
latter two procedures might be better suited for our application.
For EWMA and MEWMA, the choice of the weight k is crucial,

in that smaller values of k are to be used for the detection of
smaller changes. For some recommendations based on the
expected size of the change and the desired ARL0, see Crowder
(1987) or Lucas and Saccucci (1990). Note that when k = 1,
EWMA and MEWMA are equivalent to the Shewhart and Hotel-
ling’s T2 procedures, respectively. Indeed, k = 1 implies that the
monitored scores equal the original scores. Moreover, when calcu-
lating the control limits for the EWMA procedure, the termffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k
2�kð Þ ½1� 1� kð Þ2i�

q
reduces to one, implying that the limits

boil down to the Shewhart ones: UCL ¼ l̂1 þ LEWMAr̂1 and
LCL ¼ l̂1 � LEWMAr̂1. Consequently, with LEWMA equal to 3, the
ARL0 is 370.
For CUSUM and MCUSUM, the allowance parameter K plays

an important role as K is set relative to the expected size of the
mean change. The procedures are optimal for detecting a change
that is equal in size to the expected change, but not for detecting
changes of other sizes. Like EWMA, the CUSUM procedure can
be turned into the Shewhart procedure, by setting K to the LShewhart
value and the control limits to zero (Woodall & Adams, 1993). In
this case, the CUSUM procedure flags a measurement occasion as
out-of-control as soon as the cumulative sum differs from 0. In
other words, when j xi � l̂1ð Þr̂1

�1j > K.

Distribution of the Data

All SPC procedures discussed here assume that the data in both
phases are generated from normal distributions. The performance of
the Shewhart and Hotelling’s T2 procedures are especially influenced
by deviations from normality. Even slightly non-normal distributions
considerably reduce the ARL0 which in turn increases the number of
false alarms (Borror et al., 1999; Stoumbos & Reynolds, 2000;
Stoumbos & Sullivan, 2002). Furthermore, the ARL1 for the detec-
tion of small mean changes may increase, depending on whether the
mean change aligns with the distribution’s heavy or thin tail (i.e.,
alignment with the heavy tail leads to higher ARL1 values). The
EWMA and MEWMA procedures appear to be relatively robust to
violations of the normality assumption, given that the procedures are
properly designed (Borror et al., 1999; Stoumbos & Reynolds, 2000;
Stoumbos & Sullivan, 2002; Testik et al., 2003). Specifically, the k
parameter should take on values between .05 and .1 in the EWMA
procedure and values between .02 and .05 in the MEWMA procedure
to remain unaffected by distributional violations. The CUSUM and
MCUSUM procedures can also be tuned to be robust to violations of
the normality assumption (Chang, 2006; Stoumbos & Reynolds,
2004). Specifically, setting the allowance parameter K between .10
and .30 will yield ARL0 and ARL1 values that are comparable to
those for normally distributed data, even for highly skewed or heavy-
tailed distributions.

Autocorrelation

Another critical assumption of SPC procedures is independence
of observations over time. In practice this assumption is often vio-
lated, leading to incorrect control limits. For instance, for the

Shewhart and Hotelling’s T2 procedure, sample standard deviation
based control limits are too wide, implying longer ARL0 and ARL1
values (Schmid, 1995; Vanhatalo & Kulahci, 2015). On the other
hand, moving-range based control limits will be too narrow in
case of positive autocorrelation, implying that mean changes are
easier to detect, but that the number of false alarms increases as
well (Alwan, 1991, 1992). Even low levels of autocorrelation lead
to such suboptimal control limits (Montgomery, 2009).

Three approaches to deal with autocorrelated data have been
investigated. The first and most simple approach is sampling less
frequently from the process under study (Psarakis & Papaleonida,
2007). When more time elapses between sampled observations, the
amount of autocorrelation is expected to decrease. However, such
subsampling implies that it may take longer to detect a mean
change in the process. In the second approach, the standard SPC
procedures are used but with adjusted control limits to account for
the autocorrelation (see, e.g., Schmid, 1995; Vasilopolous & Stam-
boulis, 1978; Wardell et al., 1994). The third approach transforms
the raw observations such that the transformed observations are in-
dependent. Specifically, a time series model is fitted to the data of
Phase I. Based on this model, the residuals are obtained for the data
in both Phase I and Phase II. The SPC procedures are then applied
to these residuals, which are assumed to be independent (see, e.g.,
Alwan & Roberts, 1988; Harris & Ross, 1991; Lu and Reynolds
(1999b), 2001; Mastrangelo & Montgomery, 1995; Montgomery &
Mastrangelo, 1991; Noorossana & Vaghefi, 2006). Different time
series models have already been implied, including: the AR(1)
model (e.g., Bagshaw & Johnson, 1975; Johnson & Bagshaw,
1974), the AR(2) model (Longnecker & Ryan, 1992), the ARMA
(1,1) model (Longnecker & Ryan, 1992), the ARIMA(0,1,1) model
(Harris & Ross, 1991), and the VAR(1) model (Kalgonda & Kul-
karni, 2004). As already indicated in the ESM Data section, we pro-
pose a new, fourth approach to deal with autocorrelation, based on
computing day averages. However, in the simulation studies we
also evaluate the first and third approach, in that we will inspect
how (a) including less beeps per day and (b) monitoring AR(1)-
residuals rather than the raw day averages affects performance.

Number of Measurement Occasions in Phase I

SPC procedures heavily rely on estimates of l1 and r1, which
are obtained using the available data in Phase I. A sufficient
amount of Phase I data is therefore required to obtain accurate
enough estimates such that the SPC procedures behave as if l1
and r1 were known. With little Phase I data, the sampling distribu-
tions of these estimates become wider with heavier tails. Due to
these heavier tails, the RL distribution has an increased number of
short RLs and an increased number of very long RLs (Köksal et
al., 2008; Quesenberry, 1993).

So what is considered a sufficient amount of Phase I data? Jen-
sen et al. (2006) noted that more Phase I data is needed than is typ-
ically recommended. For example, for the Shewhart procedure
less than 50 observations are typically recommended, while
research has shown that at least 100 Phase I observations are
needed to approach the known-parameter case (Quesenberry,
1993; Rigdon et al., 1994). For the EWMA and CUSUM proce-
dures, values much larger than 100 are required for good parame-
ter estimates (Lu & Reynolds, 1999b, 2001), while about 100
observations in Phase I are typically recommended. As far as we
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know, no exact recommendations for the number of observations
have been given for the multivariate procedures, which is no sur-
prise since differences in dimensionality and covariance structure
complicate matters further.
Moreover, what is considered sufficient also interacts with the

previously discussed characteristics, especially in the presence of
autocorrelation. The effective sample size of autocorrelated data is
lower than the actual number of observations, as there are less in-
dependent units of information to estimate l1 and r1. Further-
more, when filtering out autocorrelation using time series models,
the parameters of these time series models (for example, AR(1)
model) need to be estimated as well. It has been shown that the ac-
curacy of these estimates has a large influence on the performance
of SPC procedures (Kramer & Schmid, 1997; Schmid, 1995).
When applying univariate SPC procedures to serially dependent
data, 400 Phase I observations are recommended, based on the
ARL1 performance (Adams & Tseng, 1998). When applying the
EWMA to simple AR(1)-residuals, Lu and Reynolds (1999b) even
suggested that 1,000 Phase I observations are needed to obtain an
ARL0 close to the prespecified ARL0. Note that the appropriateness
of these suggestions may also depend on the amount and type of
serial dependency in the data.

Simulation Studies

Two simulation studies were conducted to evaluate and com-
pare the performance of SPC procedures in detecting mean
changes in typical ESM data. The first simulation study focused
on univariate procedures and the second simulation study on mul-
tivariate procedures. The R code to reproduce the simulation is
available at https://osf.io/kv7hg/.

Design and Rationale of the Two Studies

Data Characteristics

To make our simulation study relevant, we simulated positive
or negative affective time series that mimic typical ESM data.
Herewith, we systematically manipulated the four data characteris-
tics that we emphasized in the previous section: size of the mean
change, distribution of the data, presence of autocorrelation and
number of Phase I data. Additionally, we also varied the number
of measurement occasions per day. This allowed us investigate

their main and interaction effects on SPC performance. As far as
we know, published studies have only focused on a subset of these
characteristics.

Size of the Mean Change. We used a mean change of 0 to
study the ARL0 performance and mean changes between .25r and
1r to study the ARL1. We focused on changes # 1r, as these are
more likely to occur in affective ESM data. A negative change
(i.e., decrease) was introduced for positive affect and a positive
change (i.e., increase) was introduced for negative affect, as this
corresponds to a person falling into a depressed state. The change
was introduced at the first measurement occasion in Phase II. We
expected the EWMA and CUSUM procedures, together with their
multivariate counterparts, to have lower ARL1 values than the She-
whart and Hotelling’s T2 procedures. The ARL0 was expected to
be the same for all procedures, as all parameters and correspond-
ing control limits were set such that the ARL0 would equal 370,
given that no assumptions were violated.

Distribution of the Data. In the univariate study, the distribu-
tion of the data was manipulated by simulating either positive or
negative affective states. These data were generated based on the
ESM data from healthy controls that were collected and reported
on by Heininga et al. (2019). Forty healthy controls participated in
this study who had no current or previous psychiatric illness. For 7
consecutive days, the participants reported on a range of affective
states at 10 semirandom times a day. Positive and negative affect
were calculated by averaging the positive affect items (relaxed,
happy, euphoric) and negative affect items (depressed, stressed,
anxious, anger, restless), respectively. The items were all meas-
ured on a scale from 0 (not at all) to 100 (very). Figure 5 shows
the distributions of positive (PA) and negative affect (NA). The
distribution of positive affect seems to approximate a normal dis-
tribution whereas that of negative affect is clearly right skewed.
Therefore, we fitted a gamma distribution to the negative affect
data using the fitdistrplus package in R (Delignette-Muller &
Dutang, 2015). Based on the resulting parameter estimates, nega-
tive affect scores were simulated from a standardized Gamma
(1.18, .12) distribution, whereas positive affect scores were simu-
lated from a standard normal distribution. We expected these dis-
tributional differences to impact SPC performance, especially for
the Shewhart procedure.

In the second study, we focused on bivariate data. Specifically,
we manipulated whether two PA, two NA or one PA and one NA

Figure 5
Histograms of Positive Affect (PA) and Negative Affect (NA) Scores in the ESM
Data of Heininga et al. (2019)

Note. ESM = experience sampling.
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variables were monitored. To this end, we sampled the affective
scores from a multivariate distribution with correlated variables.
Specifically, the magnitudes of the correlations were also based on
the ESM data of Heininga et al. (2019) and amounted to .40
between PA states, .40 between NA states and –.15 between PA
and NA states. To simulate the three types of data, we first
sampled two appropriately correlated variables from a standard
normal distribution with a given covariance matrix. Next, the
probability integral transform was used to obtain bivariate data
with the marginal distributions following a Uniform(0, 1) distribu-
tion. Lastly, the inverse transform sampling method was used to
obtain data from the desired distributions (i.e., normal distribution
for positive affect and gamma distribution for negative affect).
This transformation changed the correlations slightly (e.g., .36
instead of .40 and –.14 instead of –.15).
Autocorrelation. To investigate the impact of autocorrelation

on SPC performance, we set the autocorrelation of the variables to
either 0 or to .30, by means of a recursive AR(1) filter (Hamilton,
1989). The latter amount of autocorrelation is similar to the values
reported in Kuppens et al. (2010).
Number of Measurement Occasions per Day. We manipu-

lated the number of measurement occasions (i.e., beeps) per day,
by either assuming one, two, five, or 10 beeps per day (for all
days) or by assuming the following cyclical pattern (i.e., Day 1: 10
beeps, Day 2: five beeps, Day 3: two beeps, Day 4: one beep, Day
5: 10 beeps, and so on). It is realistic that the number of beeps
filled in by a participant differ per day, and thus we investigate an
extreme scenario with the cyclical pattern. To mimic an underly-
ing process unfolding continuously throughout time, we started by
sampling 20 equidistant beeps per day (i.e., 10 beeps during the
day and 10 during the night), which showed an autocorrelation of
0 or of .30. Next, we omitted the night beeps and, where needed
(i.e., less than 10 beeps a day), we selected the used beeps from
the day beeps as follows: For the one beep settings, we always
picked the first day beep; for two beeps, we used the first and sixth
day beep; and the second, fourth, sixth, eighth, and 10th day beeps
constituted the five beeps settings. For each affective variable, we
then computed the day averages across these selected beeps. As
discussed earlier, using day averages allows to further investigate
and handle the influence of autocorrelation. Using day averages
effectively decreased the amount of autocorrelation for the five
and 10 beeps per day settings, whereas the autocorrelation for the
other settings was already negligible. Specifically, based on the
day averages, the average autocorrelation for the data without
mean change amounted to 0 for all settings. The lower autocorrela-
tion due to beep averaging is expected to boost SPC performance.
Second, averaging scores per day allows to increase to size of the
mean change, because the day averages will have lower variance
than the original scores. Indeed, computing the size of the mean
change (i.e., 0, .25, .50, .75 and 1r) in terms of Cohen’s d yields
larger mean changes than those introduced. For example, on the
basis of the nonautocorrelated univariate positive affect day aver-
ages, the average mean changes in terms of Cohen’s d are [0, .36,
.72, 1.07, 1.43] for two beeps, [0, .57, 1.13, 1.70, 2.26] for five
beeps, [0, .80, 1.60, 2.40, 3.21] for 10 beeps, and [0, .38, .77, 1.15,
1.53] for the cyclical pattern.9 Obviously, increasing the size of
the mean change is expected to have a beneficial effect on the ARL
performance; based on the above changes in effect size, we
hypothesize that the cycle and two beeps results will be similar.

Finally, using day averages will render the very skewed distribu-
tion of the negative affect scores less skewed. We expect this to
mainly affect the Shewhart procedure, as the EWMA and CUSUM
procedures always average over multiple observations and thereby
reduce the skewness by default.

Number of Days in Phase I. We varied the amount of Phase I
data by setting the number of measurement days to 20, 50, 100,
200, or 500. We expect more Phase I data to lead to better parame-
ter estimates (i.e., estimates of l1, r1, time series model parame-
ters) and thus to better SPC performance.

To summarize,10 the following five data characteristics were
varied in both simulation studies and were fully crossed with
10,000 replicates per cell of the design:

1. Size of the mean change: 0, .25, .50, .75, and 1r.

2. Distribution of the data: a normal distribution for PA, a
gamma distribution for NA in the univariate study; two
normals, two gamma’s, and one of both in the bivariate
study.

3. Autocorrelation: 0 and .30.

4. Number of beeps per day: one, two, five, 10, and cyclical
pattern (denoted as cycle).

5. Number of days in Phase I: 20, 50, 100, 200, and 500.

Analyses and Performance Measures

Each simulated dataset was analyzed six times. Specifically, in
the univariate simulation study, we applied each of the three uni-
variate SPC procedures twice: once to the raw day averages and
once to the corresponding AR(1)-residuals. Similarly, the multi-
variate simulation study scrutinized the performance of the three
multivariate SPC procedures, when applied to either the raw day
averages or to the corresponding AR(1)-residuals.11

The performance of the SPC procedures was measured in terms
of ARL0 and ARL1. Following Qiu and Li (2011), we combined
both measures in one ARL curve, obtained by plotting the ARL as
a function of the size of the mean change. The ARL0 performance
then corresponds to the mean change of 0 and the ARL1 perform-
ance to the remaining mean changes. Ideally, the ARL curve starts
with an ARL0 of around 370 for a mean change of 0 (as explained
before this corresponds to a Type I error probability of .0027 under
normality and independence) and shows a steep downward trend
as the size of the mean change increases. As mentioned in the

9 The average mean changes in terms of Cohen’s d for the cyclical
pattern are most similar to those of two beeps per day. Due to unequal
sample sizes, the effective sample size for the cyclical pattern, as calculated
using the harmonic mean, is equal to 4

1
1ð Þþ 1

2ð Þþ 1
5ð Þþ 1

10ð Þ = 2.22.

10 The Phase I and II data were simulated from the same distribution.
The data were then standardized, followed by the introduction of the
autocorrelation. Next, the mean change was imposed on the data in phase
II. The parameters of the NA distribution may have slightly changed due to
these steps, however, the skewness in the data was still clearly present.

11When monitoring AR(1)-residuals, an AR(1) model was fit to the day
averages of Phase I. Based on this AR(1) model, the residuals of the data in
both Phase I and Phase II were obtained.
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Number of Measurement Occasions in Phase I section, insufficient
Phase I data can lead to an increased number of very high run
lengths. Due to computational reasons we cut off the run length of
Phase II at 10,000 days. In case no out-of-control day was detected
within 10,000 days, the first out-of-control day was set at 10,001
days. The number of replicates per design cell for which we set
the run length to 10,001 can be found at https://osf.io/kv7hg/.

Univariate Results

The results for the AR(1)-residuals did not differ much from the
results for the raw day averages. Therefore, we will focus here on
the latter results since monitoring raw day averages is obviously
simpler than having to compute AR(1)-residuals first. The results
for the AR(1)-residuals can however be consulted at https://osf.io/
kv7hg/.
Figure 6 shows the ARL curves averaged over all “number of

beeps per day” and “number of Phase I data” settings of the raw
day average results. There is a clear effect of the size of the mean
change: the larger the change, the lower the ARL values. Overall,
the EWMA and CUSUM procedures consistently have a steeper
ARL curve than the Shewhart procedure, with lower ARL1 values.
Furthermore, for negative affect, the ARL0 values of the Shewhart
procedure drop substantially, indicating that the procedure is
affected by the distribution of the observed scores. While the She-
whart procedure performs almost uniformly worse than EWMA
and CUSUM, the differences between the EWMA and CUSUM
results are very small and their direction depends on the specific
design cells. Because EWMA is on average slightly better than
CUSUM and clearly outperforms Shewhart, we opted to focus on
the EWMA procedure in the remainder of this section, for simplic-
ity’s sake.

From the EWMA results in Figure 7, we see that the ARL0 val-
ues for PA are mostly close to 370, the nominal value indicated by
the horizontal line. The ARL0 values for NA are too conservative,
however, with ARL0 values above 370 for the smaller numbers of
beeps per day (i.e., 1, 2, and cyclical) and when Phase I is rather
short (i.e., 20 or 50 days).

In turn, the ARL1 values improve if the number of beeps per day
increases, resulting in steeper ARL curves. The ARL curves for the
cyclical pattern are most similar to the ARL curves of two beeps per
day. This was expected given the impact of the averaging operation
on the effect size of the mean change. The averaging operation also
renders the very skewed distribution of the NA scores less skewed.
This explains why for 10 beeps per day the difference between the
ARL for PA and NA is substantially smaller than for one beep per
day. The number of days in Phase I plays a further role, as the dif-
ference in the ARL for PA and NA becomes smaller as the number
of Phase I days increase. The effect of autocorrelation is most nota-
ble for five and 10 beeps per day, in that the added benefit of moni-
toring more beeps per day decreases with the presence of
autocorrelation. Finally, a longer Phase I leads to lower ARL1 val-
ues. Including at least 50 days in Phase I is strongly recommended
for five and 10 beeps per day, whereas at least 100 days is recom-
mended for one and two beeps per day as well as for the cycle.

Bivariate Results

Again, we focus on the results for the raw day averages, because
analyzing AR(1)-residuals hardly improved the results, see https://osf
.io/kv7hg/. Figure 8 shows the ARL curves of the Hotelling’s T2,
MEWMA, and MCUSUM procedures, averaged over all “number of
beeps per day” and “number of Phase I data” settings. The results and
conclusions of the univariate study seem to largely generalize to the

Figure 6
ARL of the Univariate SPC Procedures Applied to the Raw Day Averages, Averaged Over All
“Number of Beeps per Day” and “Number of Phase I Data” Settings

Note. The first two columns show the results without autocorrelation, the remaining columns show the results
with autocorrelation. Within these settings, the first column shows the results for positive affect (PA), the next
column for negative affect (NA). The ARL values are shown on a logarithmic scale and the horizontal black
line shows the nominal ARL0 value of 370. The shaded areas indicate the range of ARL values across all design
cells. ARL = average run length; EWMA = exponentially weighted moving average; CUSUM = cumulative
sum.
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Figure 7
ARL Curves of the EWMA Procedure Applied to the Raw Day Averages, for Varying Number of
Beeps per Day

Note. The first two columns show the results without autocorrelation, the remaining columns show the results with
autocorrelation. Within these settings, the first column shows the results for positive affect (PA), the next column for
negative affect (NA). The rows indicate the number of days in Phase I. The ARL values are shown on a logarithmic
scale and the horizontal black line shows the nominal ARL0 value of 370. ARL = average run length; EWMA =
exponentially weighted moving average.
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multivariate study. Like their univariate counterparts, the MEWMA
and MCUSUM procedures consistently outperform the Hotelling’s T2

procedure. The MEWMA procedure seems to have more power at
detecting changes than the MCUSUM procedure, with lower ARL1
values. However, MEWMA also has more Type I errors with lower
ARL0 values. Because the ARL0 differences are relatively small, we
will focus on the MEWMA in the remainder of this section.
Figure 9 offers a more detailed overview of the MEWMA

curves (the results for all design cells separately can be found at
https://osf.io/kv7hg/). We see that the ARL0 values are always too
liberal, for both autocorrelated and not autocorrelated scores,
although having a higher number of Phase I days clearly improves
matters, probably due to better parameter estimation. In line with
the univariate results, including more beeps per days also
improves the ARL curves, with the ARL curves for the cyclical pat-
tern again being most similar to the ARL curves of two beeps per
day. Also, for the ARL1, we observe that more Phase I days are
needed than in the univariate case, as the results with 500 days are
still visually better than those with 200 days.

Discussion

Online methods that can accurately detect early warning signals
of developing mood disorders in affective ESM data are much
needed, as such methods would allow to intervene and to try to pre-
vent an episode from occurring or to mitigate its severity. The fam-
ily of SPC procedures that were initially developed for monitoring
industrial production processes seem very promising tools, at least
for detecting mean changes. We therefore recapitulated six well-
known univariate and multivariate SPC procedures: Shewhart and
Hotelling’s T2, EWMA and MEWMA, and CUSUM and MCU-
SUM, and illustrated their behavior on publicly available affective
ESM data of a patient that relapsed into depression. We also

investigated their performance on simulated data with typical affec-
tive ESM features. We first discuss the obtained results and use
them to provide some recommendations. Next, we list a number of
remaining challenges, that deserve attention in future research.

Results and Recommendations

Analyzing the publicly available ESM data of a patient that
relapsed into depression after antidepressant tapering (Groot, 2010;
Wichers & Groot, 2016) showed that affective ESM data violate
major assumptions of standard SPC procedures. Data distributions
are skewed, scores are autocorrelated across time, and data were
missing for a considerable number of measurement occasions.
Importantly, these data features have been reported in great detail in
affective ESM research (E. H. Bos et al., 2019; Eisele et al., 2020;
Kuppens et al., 2012). As a solution to these violations, we pro-
posed to compute and monitor the day averages rather than the
scores at the individual measurement occasions. Next to rendering
data distributions less skewed, decreasing autocorrelation in case of
many beeps per day and mitigating missing data issues, this averag-
ing operation comes with an attractive and important additional
benefit: Effect size clearly increases because measurement error is
averaged out, which boosts the performance of SPC procedures.

In the simulation study, we manipulated the size of the mean
change, the distribution of the observed data, the presence of auto-
correlation, the number of measurement occasions in Phase I, and
the number of measurement occasions per day. The day averages of
each generated data set were analyzed with all considered SPC pro-
cedures. We also investigated whether first fitting an AR(1) model
to serially correlated day averages improves SPC performance. The
simulation results indicate that the EWMA and CUSUM proce-
dures, together with their multivariate counterparts, perform very
similarly and clearly outperform the Shewhart and Hotelling’s T2

Figure 8
ARL Curves of the Multivariate SPC Procedures Applied to the Raw Day Averages, Averaged Over All “Number of Beeps per Day”
and “Number of Phase I Data” Settings

Note. The first three columns show the results without autocorrelation, the remaining columns show the results with autocorrelation. Within these set-
tings, the first column shows the results for positive affect (PA), the second column for negative affect (NA), and the third column for positive and nega-
tive affect (PA and NA). The ARL values are shown on a logarithmic scale and the horizontal black line shows the nominal ARL0 value of 370. The
shaded areas indicate the range of ARL values across all design cells. ARL = average run length; SPC = statistical process control; MCUSUM = multi-
variate cumulative sum; MEWMA = multivariate exponentially weighted moving average.
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Figure 9
ARL Curves of the MEWMA Procedure Applied to the Raw Day Averages, for Varying Number of Beeps per Day

Note. The first three columns show the results without autocorrelation, the remaining columns show the results with autocorrelation. Within these set-
tings, the first column shows the results for positive affect (PA), the second column for negative affect (NA), and the third column for positive and nega-
tive affect (PA and NA). The rows indicate the number of days in Phase I. The ARL values are shown on a logarithmic scale and the horizontal black line
shows the nominal ARL0 value of 370. ARL = average run length; MEWMA = multivariate exponentially weighted moving average.
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procedures, respectively, which is in line with previous research
(Lowry et al., 1992; Montgomery & Mastrangelo, 1991; Roberts,
1959). Additionally, the (M)EWMA and (M)CUSUM procedures
seem to be most robust to violations of the normality assumption,
as they have shown to be in previous studies (Borror et al., 1999;
Stoumbos & Reynolds, 2000; Stoumbos & Sullivan, 2002). Fur-
thermore, results suggest that there is no benefit in monitoring the
AR(1)-residuals as compared with the raw day averages. This
makes sense as the autocorrelation was (partly) removed due to the
beeping schedule and day averaging. Including more measurement
occasions per day is advantageous because this increases the effect
size of the mean change due to the day averaging operation, and
thus lowers the ARL1 values. However, the benefit of more mea-
surement occasions only holds when all beeps are consistently
responded to. If this is not the case, as with the cyclical pattern, the
benefit may not be that large. Moreover, the day averaging opera-
tion renders skewed distributions less skewed. Finally, in the uni-
variate case it is strongly recommended to include at least 50 days
in Phase I for five and 10 beeps per day and at least 100 days for
one and two beeps per day and the cyclical pattern. However, previ-
ous research has suggested an even larger number of Phase I data
for the univariate procedures (Lu & Reynolds, 1999b, 2001). Even
though it was indeed observed that adding more Phase I days
slightly improved SPC performance, we argue that the improve-
ment is too small when weighed against the additional burden on
participants and researchers. For the multivariate case, much more
Phase I data is needed. Even with 500 Phase I days, there was still
room for improvement in the ARL0 values.

Future Directions

Although the results provided many valuable insights and rec-
ommendations, they also pinpointed some challenges and research
directions which deserve further investigation. These challenges
pertain to the interpretation of the ARL as performance measure,
the type of change and to the typical characteristics of ESM data.

ARL

Interpretation of ARL. In line with the SPC literature, we
quantified the performance of the SPC procedures in terms of the
ARL, the average run length across samples from the same Phase I
and Phase II distributions. Although parsimonious and standard
practice, only reporting the average disregards all other aspects of
the run length distribution, which may however importantly qual-
ify the performance interpretation. Indeed, it is known that the run
length distribution is right skewed and has a large variance, when
no change occurs (Figure 1b). This implies that false positives of-
ten occur very early in Phase II, although this is not apparent from
the ARL0 value. In case of a mean change, the run length distribu-
tion ideally not only has a low ARL1, but also a small variance
(Figure 1c), implying that this change will always be detected fast.
The above observations imply that a therapist or researcher that is
confronted with an out-of-control warning will still always be
charged with the task of deciding whether this warning should be
taken seriously or might be considered a false positive.
Choice of ARL0. In the ESM application and simulation

studies, the parameters of the SPC procedures were based on an
ARL0 of 370. However, if the cost of intervention is low and thus
having more false positives is not problematic, the ARL0 can be

lowered making it easier for SPC procedures to detect changes
(i.e., lower ARL1 values). On the other hand, if the cost of inter-
vention is very high, the ARL0 can be increased. This decreases
the probability of detecting false positives but also makes it more
difficult to detect changes (i.e., higher ARL1 values).

Future research is needed to cast the problem in a more general
decision theoretical framework. In order to optimally set detection
thresholds, we need to investigate what the costs and benefits of an
early detection and a missed detection are. Most likely, such a de-
cision theoretical analysis will lead to different recommendations
depending on the disorder or problems under study.

Type of Change

The simulation studies focused on detecting abrupt mean changes.
Other choices could be considered however, with respect to the statis-
tic as well as the speed of change (i.e., abrupt vs gradual).

Focus on the Mean. We opted for the mean for reasons of
parsimony and because research has provided some indications
that mean levels of affective states are often sufficient to predict
which individuals are facing depressive symptoms (Dejonckheere,
Mestdagh, et al., 2019), with other statistics yielding little addi-
tional information. Moreover, when generating the simulated data,
we imposed that all other distributional characteristics remained
unchanged across Phase I and II. However, empirical studies have
shown that it may be possible to observe early warning signals in
other statistics, such as the variance and (auto)correlation (Cab-
rieto et al., 2019; Wichers & Groot, 2016). Moreover, combina-
tions of these changes can occur simultaneously or sequentially,
which may both simplify or complicate detection. It thus remains
to be established how SPC procedures perform in case a change
occurs in a statistic other than the mean, or in settings with
changes in multiple statistics (Crowder & Hamilton, 1992; Lu &
Reynolds, 1999a; Reynolds & Stoumbos, 2001). Furthermore, the
shape of the distribution may also change across phases, impacting
SPC performance. This also remains to be investigated.

Focus on Abrupt Changes. In our studies, the mean changes
were introduced abruptly at the start of Phase II. However, the de-
velopment of early warning signs of a potential depressive episode
may also be more gradual, slowly evolving from a smaller to a
larger change over time. We do not expect the long-term detection
of gradual changes to be a problem for SPC procedures (Chen &
Nembhard, 2011; Sullivan & Woodall, 1996). However, it is rea-
sonable to predict that gradual changes may not be detected imme-
diately at their start. More research is thus needed to investigate
such performance differences between abrupt and gradual changes.

Typical Characteristics of Affective ESM Data

Although our results already shed some light on the effect of the
number of variables, the number of Phase I days, the number of
beeps per day, and missing data, important open questions and
challenges remain.

The Number of Variables. Many ESM studies include a
large number of monitored variables. In this article, we focused on
univariate and bivariate data. Hence, how to optimally handle
larger number of variables remains to be investigated. Two
obvious options are to perform variable reduction or variable
selection. Regarding variable reduction, one can work with aver-
age scores of all negative states and of all positive states as is often
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done in affective ESM research (for example, Dejonckheere et al.,
2018; Dejonckheere, Kalokerinos et al., 2019). This is likely to be
a good option if the change signal is present in all variables to the
same extent but perturbed by measurement error. However,
another interesting option might be to apply principal component
analysis on the variables, yielding a few orthogonal dimensions
(Bulteel et al., 2014, 2018). Indeed, as demonstrated in Section
Hotelling’s T2 procedure, SPC procedures may often be better at
detecting changes when the variables are uncorrelated. Although
extracting orthogonal principal components may reduce interpret-
ability, we argue that this is not a major issue if the main goal is to
detect changes as soon as possible rather than interpreting the
monitored values. Variable selection is a valuable option in case
researchers have a good hypothesis on which affective variables
are of interest (see e.g., Smit et al., 2019). Furthermore, it remains
to be established whether it is better to reduce variables to univari-
ate data and apply univariate SPC methods, or to keep multiple
variables and apply multivariate SPC procedures.
The Number of Phase I Days. Our results regarding the

amount of Phase I data needed for optimal SPC performance are
challenging for ESM research. Even for univariate applications, a
large number of Phase I data is needed (i.e., 50 days), while for
multivariate applications even more data is needed. Clearly, it is
not trivial to obtain such large amounts of in-control Phase I data,
though a number of recent studies have shown that collecting
ESM data across many months is feasible (F. M. Bos et al., 2020;
Dejonckheere et al., 2021; Helmich et al., 2020; Myin-Germeys et
al., 2018; Olthof et al., 2020; Schreuder et al., 2020; Wichers et
al., 2020; Wichers & Groot, 2016). A possible solution could be to
use information from more standard 1- or 2-week ESM studies,
that are regularly run to investigate between-person differences in
affective dynamics and how they relate to other person-level char-
acteristics (Dejonckheere et al., 2018; Dejonckheere, Kalokerinos,
et al., 2019; Eisele et al., 2020; Houben et al., 2017). Specifically,
we could pool the shorter ESM time series of healthy individuals
with similar person-level characteristics as the to be monitored
person, to obtain sufficient in-control data to compute control lim-
its. A more sophisticated option would to be combine the pooled
data from healthy individuals with a more limited amount of data
from the individual under study, where the weight of the individu-
al’s data increases with the amount of data (see e.g., Maselyne et
al., 2018; for a similar approach to monitoring pigs).
The Number of Beeps Per Day. Lastly, our results show that

it is beneficial to include multiple measurement occasions per day
and work with the day averages of the resulting data. However,
considering the intrusiveness of responding to multiple beeps ev-
ery day and the amount of Phase I data needed, is it reasonable to
expect this from people for a longer period of time? Despite the
benefits of having multiple beeps per day, it is also worth looking
at alternative and especially less intrusive measurements. Other
types of intensive longitudinal data are currently also being col-
lected, such as sleep variables and passively obtained physiologi-
cal data (see e.g., Hori et al., 2016; Minaeva et al., 2020). Future
research can check whether monitoring these types of data, either
separately or in combination with ESM data, also yields useful
early warning signs.
Missing Data. Although our simulation results yield first indi-

cations that computing day averages may be a promising solution
in case of missing data, further investigation is warranted. Indeed,

we implemented a specific type of missingness in that the missing-
ness of beeps was spread equally over the day. Further research
could therefore look into different patterns of missingness. For
example, when an individual is not doing so well, may this be for a
day or for a longer period, he or she may be less inclined to respond
to beeps. Answering patterns may also be time-dependent, in that
morning beeps are more responded to than afternoon beeps or vice
versa. Furthermore, the simulation results suggest that it is perhaps
better to decrease the burden for participants and keep them moti-
vated to respond to all given beeps throughout the day. This is in
line with the effective sample size, in terms of the harmonic mean,
decreasing due to unequal sample sizes. Responding to all five
beeps per day yielded better SPC results than responding to only a
subset of ten beeps per day (i.e., cycle).

Other Types of Data

Although we focused on ESM data in this article, a wider range
of applications and disciplines in the social and behavioral sciences
can benefit from SPC procedures. For instance, many experimental
studies include some physiological measures nowadays (e.g.,
Mauss et al., 2005; Meuret et al., 2008). Some studies have used
change point detection methods or SPC like procedures to gain
insight into the timing of participants’ reactions to presented stimuli
(Bulteel et al., 2014; Cabrieto, Tuerlinckx et al., 2018; Cabrieto et
al., 2017; Hoover et al., 2012; Rosenfield et al., 2010). Within the
clinically oriented field, technical advances (i.e., smartphones,
wearable devices) are making it easier to collect intensive longitudi-
nal data (i.e., active and passive) in individual’s daily life and use
those to implement interventions (Myin-Germeys et al., 2018; Tor-
ous et al., 2021). Smartphone sensing data, for example, can easily
be harvested, and an increasing body of research is indeed suggest-
ing that such passively collected data can aid in the understanding
of behavioral patterns as well as contribute to interventions and
treatments (Harari et al., 2016; Insel, 2018; Torous et al., 2021).

Conclusion

SPC procedures are clearly promising for the detection of early
warning signals of imminent mood disorders in affective ESM
data. We provided some recommendations for optimizing SPC
performance in this setting as well as a wide range of directions
for future research.
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Appendix A

MC1 Procedure

The MC1 procedure is a proposed multivariate extension of
the CUSUM procedure by Pignatiello and Runger (1990). The
procedure replaces the scales in the univariate CUSUM proce-
dure by the corresponding vectors and accounts for the covari-
ance of the different monitored variables. The MC1 vectors
Cþ

i are based on the norm of the cumulative sum and are thus
defined as:

jjCþ
i jj ¼ Cþ0

i
bR–1

Cþ
i

h i1=2
where

Cþ
i ¼

Xi

j¼i�t�i þ1

ðxj � l̂1Þ:

Based on the MC1 vectors Cþ
i , we obtain the MC1i values that

are monitored:

MC1i ¼ max 0; jjCþ
i jj � t�i K


 �
;

where

t�i ¼
t�i�1 þ 1 if MC1i�1 > 0
1 if MC1i�1 ¼ 0

:

�

t�i $1 denotes the number of measurement occasions since
MC1i�1 was equal to 0. When MC1i�1 is equal to 0, t�i is set to
1. The MC1 vectors Cþ

i thus contains information from mea-
surement occasion ði� t�i þ 1Þ up until measurement occasion
i. The starting valueMC10 is set to 0. The allowance parameter
K is set relative to the expected size of the mean change d.
Figure A1 shows the MC1 control chart resulting from apply-
ing the MC1 procedure to the day averages of “restless” and
“cheerful.” The chart is very similar to the MCUSUM chart
(see Figure 4).

Figure A1
MC1 Chart of the Day Averages of “Restless” and “Cheerful”

Note. The MC1 scores on the y-axis are shown on a logarithmic scale. Phase I consists of
the first 41 days, the remaining days constitute Phase II, as indicated by the first dashed ver-
tical line. The second dashed vertical line indicates the day of relapse (Day 127). The dashed
horizontal line indicates the UCL. The red dots indicate the out-of-control measurement
occasions that fall beyond the control limit.

(Appendices continue)
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Appendix B

Relation CUSUM and MCUSUM Procedures

The MCUSUM procedure applied to univariate data pro-
duces the same results as the CUSUM procedure. The idea is
the same, such that the standardized xi added to the previous
upper CUSUM is compared to allowance parameter K. When
the MCUSUM procedure is applied to univariate data, Yþ

i
becomes:

Yþ
i ¼ Cþ

i�1 þ xi � l̂1

� 	0
r̂1

2ð Þ�1
Cþ
i�1 þ xi � l̂1

� 	h i1=2
¼ Cþ

i�1 þ xi � l̂1

� 	2
r̂1

2ð Þ�1
h i1=2

¼ Cþ
i�1 þ xi � l̂1

� 	
r̂1

�1

¼ Cþ
i�1r̂1

�1 þ xi � l̂1ð Þr̂1
�1

If Yþ
i > K, then

Cþ
i ¼ Cþ

i�1 þ xi � l̂1

� 	
1� K

Yþ
i

� �
¼ Cþ

i�1 þ xi � l̂1

� 	
1� K

Cþ
i�1 þ xi � l̂1

� 	
r̂1

0B@
1CA

¼ Cþ
i�1 þ xi � l̂1

� 	� K Cþ
i�1 þ xi � l̂1

� 	
Cþ
i�1 þ xi � l̂1

� 	
r̂1

¼ Cþ
i�1 þ xi � l̂1 � Kr̂1

¼ Cþ
i�1 þ r̂1 xi � l̂1ð Þr̂1

�1 � K
� 	

The MCUSUM Cþ
i then becomes:

Cþ
i ¼ 0 if Yþ

i #K
Cþ
i�1 þ r̂1 xi � l̂1ð Þr̂1

�1 � K
� 	

if Yþ
i > K

�

As compared to the CUSUM procedure, in the MCUSUM pro-
cedure Cþ

i�1 is divided by r̂1 in Yþ
i . This is solved for in Cþ

i
where K is multiplied by r̂1.
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